
Dang Van Hung
Deepak Kapur (Eds.)

 123

LN
CS

 1
05

80

14th International Colloquium
Hanoi, Vietnam, October 23–27, 2017
Proceedings

Theoretical Aspects
of Computing – ICTAC 2017

Lecture Notes in Computer Science 10580

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Dang Van Hung • Deepak Kapur (Eds.)

Theoretical Aspects
of Computing – ICTAC 2017
14th International Colloquium
Hanoi, Vietnam, October 23–27, 2017
Proceedings

123

Editors
Dang Van Hung
Vietnam National University
Hanoi
Vietnam

Deepak Kapur
University of New Mexico
Albuquerque, NM
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-67728-6 ISBN 978-3-319-67729-3 (eBook)
DOI 10.1007/978-3-319-67729-3

Library of Congress Control Number: 2017953430

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 14th International Colloquium on
Theoretical Aspects of Computing (ICTAC), held in Hanoi, Vietnam, during October
23–27, 2017.

The International Colloquium on Theoretical Aspects of Computing (ICTAC)
constitutes a series of annual conferences/schools, initiated in 2003 by the then United
Nations University International Institute for Software Technology, to bring together
researchers and provide them with an international venue to present their results,
exchange ideas, and engage in discussions. There were two additional goals: (i) pro-
mote cooperation between participants from emerging and developed regions, and most
importantly, (ii) provide an opportunity for students and young researchers to get
exposed to topical research directions in theoretical aspects of computing technologies.

ICTAC 2017 received 40 full-paper submissions coauthored by researchers from 20
different countries. Each submission was reviewed by at least three Program Com-
mittee (PC) members with the help of reviewers outside the PC. After two weeks of
online discussions, the committee decided to accept 17 papers for presentation at the
conference.

We would like to express our gratitude to all the researchers who submitted their
work to the symposium. We are particularly thankful to all colleagues who served on
the Program Committee, as well as the external reviewers, whose hard work in the
review process helped us prepare the conference program. The international diversity
of the PC as well as the external reviewers is noteworthy as well: PC members and
external reviewers have affiliations with institutes in 22 different countries. Special
thanks go to the three invited speakers – Jun Andronick from UNSW, Australia;
Joose-Pieter Katoen from RWTH Aachen University, Germany; and Ruston Leino
from Microsoft Research, Redmond, USA. The abstracts of the invited talks are
included in this volume.

Like previous ICTACs, the 14th ICTAC included four tutorials by Jun Andronick,
Joose-Pieter Katoen, Ruston Leino, and Zhiming Liu (Southwest University, China).
We thank them for agreeing to offer this valuable service.

A number of colleagues have worked very hard to make this conference a success.
We wish to express our thanks to the local organizing committee, Hung Pham Ngoc,
Hoang Truong Anh, Hieu Vo Dinh, and many student volunteers. The University of
Engineering and Technology of the Vietnam National University, Hanoi, the host
of the conference, provided support and facilities for organizing the conference and its
tutorials. Finally, we enjoyed institutional and financial support from the National
Foundation for Science and Technology Development (NAFOSTED) of Vietnam and
the HUMAX VINA Company in Hanoi, Vietnam.

The conference program and proceedings were prepared with the help of EasyChair.
We thank Springer for continuing to publish the conference proceedings.

October 2017 Dang Van Hung
Deepak Kapur

VI Preface

Organization

ICTAC 2017 was organized by the University of Engineering and Technology,
Vietnam National University (UET-VNU), Hanoi, Vietnam.

Steering Committee

Ana Cavalcanti University of York, UK
John Fitzgerald Newcastle University, UK
Martin Leucker University of Luebeck, Germany
Zhiming Liu Southwest University, China
Tobias Nipkow Technical University of Munich, Germany
Augusto Sampaio Federal University of Pernambuco, Brazil
Natarajan Shankar SRI International, USA

General Chair

Nguyen Viet Ha University of Engineering and Technology, VNU,
Vietnam

Organizing Committee

Ninh-Thuan Truong
(Co-chair)

UET-VNU, Vietnam

Ngoc-Hung Pham
(Co-chair)

UET-VNU, Vietnam

Truong Anh Hoang UET-VNU, Vietnam
Vo Dinh Hieu UET-VNU, Vietnam
To Van Khanh UET-VNU, Vietnam
Dang Duc Hanh UET-VNU, Vietnam
Vu Dieu Huong UET-VNU, Vietnam

Program Committee

Bernhard K. Aichernig TU Graz, Austria
Farhad Arbab CWI and Leiden University, The Netherlands
Ana Cavalcanti University of York, UK
Wei-Ngan Chin National University of Singapore, Singapore
Hung Dang-Van (Co-chair) UET-VNU, Hanoi, Vietnam
Martin Fränzle Carl von Ossietzky Universität Oldenburg, Germany
Marcelo Frias Buenos Aires Institute of Technology, Argentina
Dimitar P. Guelev Bulgarian Academy of Sciences, Bulgaria

Deepak Kapur (Co-chair) University of New Mexico, USA
Kim Guldstrand Larsen Aalborg University, Denmark
Martin Leucker University of Lübeck, Germany
Xuandong Li Nanjing University, China
Xiaoshan Li University of Macau, Macao
Zhiming Liu Southwest University, China
Dominique Mery Université de Lorraine, LORIA, France
Mohammadreza Mousavi Halmstad University, Sweden
Thanh-Binh Nguyen Da Nang University of Technology, Vietnam
Mizuhito Ogawa JAIST, Japan
Jose Oliveira Universidade do Minho, Portugal
Catuscia Palamidessi Inria, France
Minh-Dung Phan AIT, Thailand
Sanjiva Prasad Indian Institute of Technology Delhi, India
Thanh-Tho Quan Hochiminh City University of Technology, Vietnam
António Ravara Universidade Nova de Lisboa, Portugal
Augusto Sampaio Federal University of Pernambuco, Brazil
Emil Sekerinski McMaster University, Canada
Hiroyuki Seki Nagoya University, Japan
Deepak D’Souza Indian Institute of Science, Bangalore, India
Hoang Truong-Anh UET-VNU, Hanoi, Vietnam
Kazunori Ueda Waseda University, Japan
Farn Wang National Taiwan University, Taiwan
Jim Woodcock University of York, UK
Hsu-Chun Yen National Taiwan University, Taiwan
Naijun Zhan IoS, Chinese Academy of Sciences, China
Huibiao Zhu East China Normal University, China
Abdullah Mohd Zin Universiti Kebangsaan Malaysia, Malaysia

Additional Reviewers

Ana Almeida Matos
Ullas Aparanji
Marius Bozga
Georgiana Caltais
Pablo Castro
Ugo Dal Lago
Duc-Hanh Dang
Kasper Dokter
Bertram Felgenhauer
Raul Fervari
Sebastian Gerwinn
Falk Howar
Huu Hung Huynh
Raghavendra K.R.

Tobias Kapp
Natallia Kokash
Martin Lange
Xinxin Liu
Kamal Lodaya
Ben Moszkowski
Matthias Niewerth
Masahiko Sakai
Vinicius Santos
Torben Scheffel
Karsten Scheibler
Malte Schmitz
Richard Schumi
Xiang Shuangqing

VIII Organization

Mani Swaminathan
Martin Tappler
Daniel Thoma
Tinko Tinchev
Ionut Tutu
Mahsa Varshosaz
Hieu Vo
Xuan Tung Vu
Shuling Wang
Karsten Wolf

Zhilin Wu
Xiaoyuan Xie
Yilong Yang
Shoji Yuen
Hengjun Zhao
Jianhua Zhao
Liang Zhao
Quan Zu

Sponsoring Institutions

National Foundation for Science and Technology Development (NAFOSTED) of
Vietnam, Hanoi, Vietnam
HUMAX VINA Company in Hanoi, Vietnam
University of Engineering and Technology, Vietnam National University (UET-VNU),
Hanoi, Vietnam

Organization IX

Abstract of Invited Talks

From Hoare Logic to Owicki-Gries
and Rely-Guarantee for Interruptible

eChronos and Multicore seL4
(Extended Abstract)

June Andronick

Data61, CSIRO (formerly NICTA) and UNSW, Sydney, Australia
june.andronick@data61.csiro.au

In this talk we will be exploring the use of foundational proof techniques in the formal
verification of real-world operating system (OS) kernels. We will focus on eChronos
[2], a small interruptible real-time OS, and seL4 [7, 8], the landmark verified micro-
kernel, currently undergoing verification of its multicore version. Both are deployed in
various safety- and security-critical areas, and present challenging complexities due to
their performance constraints and concurrency behavior. Foundational techniques have
been and are being used for their verification, ranging for standard Hoare logic [5], to
concurrency logics like Owicki-Gries [10] and Rely-Guarantee [6]. We will describe
their use and combination with theorem proving and automation techniques to achieve
impact on large-scale software.

Hoare logic is well known to be the foundation of formal verification for
main-stream programs. It is what is taught to university students to prove formally the
correctness of programs. Hoare logic can also be the basis of large-scale, real-world
software verification, such as the verified seL4 microkernel. seL4 is a very small OS
kernel, the core and most critical part of any software system. It provides minimal
hardware abstractions and communication mechanisms to applications. seL4 addi-
tionally enforces strong access control: applications can be configured to have precise
rights to access memory or to communicate, and seL4 guarantees the absence of
unauthorised accesses. seL4 has undergone extensive formal verification [7, 8] when
running on unicore hardware. The central piece of this verification is the proof of
functional correctness: that seL4 source code satisfies its specification. This proof uses
Hoare logic at its core, while the top-level theorem is a traditional refinement proof
through forward simulation: we show that all behaviors of the source program are
contained in the behaviors of the specification. For small programs, Hoare logic can be
the central method to prove functional correctness, where the specification is defined as
being the description of the state in the postcondition. For larger programs, and in
particular for programs where further verification is desired (like seL4’s further security
proofs), having the specification as a separate standalone artifact saves significant
overall effort. In this case a refinement proof links the concrete source code to the
abstract specification, and often relies on global invariants to be maintained. In seL4
verification, invariant proofs represent the largest part of the effort [8]. They heavily use

Hoare logic reasoning, combined with important use of automation in the Isabelle/HOL
theorem prover [9], both to generate the required invariant statements for each of the
hundreds of seL4 functions and to discharge as many as possible without need for
human interaction.

Following this verification of a large and complex, but sequential program, we
investigated the impact of concurrency in settings where interrupts cannot be avoided
(seL4 runs with interrupts mostly disabled), or where running on multiple processors is
desired.

Reasoning about interrupt-induced concurrency is motivated by our verification
of the eChronos [2] embedded OS. In an eChronos-based system, the kernel runs with
interrupts enabled, even during scheduling operations, to be able to satisfy stringent
latency requirements. The additional challenge in its concurrency reasoning is that racy
access to shared state between the scheduler and interrupt handlers is allowed, and can
indeed occur.

The modelling and verification approach we chose for this fine-grained concurrency
reasoning is Owicki-Gries [10], the simple extension on Hoare logic with parallel
composition and await statements for synchronisation. Owicki-Gries provided the
low-level of abstraction needed for the high-performance shared-variable system code
we were verifying. We could conveniently identify localised Owicki-Gries assertions at
the points of the racy accesses, and tune them to enforce the overall correctness
invariant of eChronos scheduler. In contrast, the Rely-Guarantee (RG) approach [6]
would have required identification of global interference conditions, which was chal-
lenging for such racy sharing with no clear interface, unless we made heavier use of
auxiliary variables to identify racy sections of code, but this defeats the composi-
tionality of the RG approach, one of its principal purposes. The explosion of verifi-
cation conditions inherent in the Owicki-Gries approach has been minimized by the
controlled nature of the interrupt-induced concurrency, and mitigated by
proof-engineering techniques and automation of a modern theorem prover. We were
able to develop an abstract model of eChronos scheduling behavior and prove its main
scheduling property: that the running task is always the highest-priority runnable task
[4, 3]. Our models and proofs are available online [1].

We are currently exploring multicore-induced concurrency for seL4 in a setting
where most but not all of the code is running under a big lock. Here we have explored
the RG approach, on an abstracted model identifying the allowed interleaving between
cores. In this setting, the relies and guarantees can express what shared state the lock is
protecting, and what the conditions are under which shared state can be accessed
without holding the lock. The main challenge is resource reuse. The kernel runs in
privileged mode, and as such has access to everything; it can for instance delete objects
on other cores to which critical registers point. This could create a system crash if later
on in that core, the kernel code accesses these registers pointing to corrupted memory.
Designs to solve this issue include forcing kernel operations on all other cores without
holding the lock. The proof that this is sound needs to be expressed via relies and
guarantees between cores. We proved, on our abstract model of the multicore
seL4-system, that critical registers remain valid at all times.

The main challenge now, for both the eChronos verification and multicore seL4
one, is to transfer the verification down to the source code via refinement.

XIV J. Andronick

Acknowledgements. The author would like to thank the people that have worked on the research
presented in this paper: Sidney Amani, Maksym Bortin, Gerwin Klein, Corey Lewis, Daniel
Matichuk, Carroll Morgan and Christine Rizkallah. The author also thanks Carroll Morgan and
Gerwin Klein for their feedback on drafts of this paper.

Parts of the work presented are supported by the Air Force Office of Scientific Research,
Asian Office of Aerospace Research and Development (AOARD) and U.S. Army International
Technology Center - Pacific under grant FA2386-15-1-4055.

References

1. eChronos model and proofs. https://github.com/echronos/echronos-proofs
2. The eChronos OS. http://echronos.systems
3. Andronick, J., Lewis, C., Matichuk, D., Morgan, C., Rizkallah, C.: Proof of OS scheduling

behavior in the presence of interrupt-induced concurrency. In: Blanchette, J.C., Merz, S.
(eds.) ITP 2016. LNCS, pp. 52–68. Springer, Cham (2016)

4. Andronick, J., Lewis, C., Morgan, C.: Controlled owicki-gries concurrency: reasoning about
the preemptible eChronos embedded operating system. In: van Glabbeek, R.J., Groote J.F.,
Höfner, P. (eds.) Workshop on Models for Formal Analysis of Real Systems, MARS 2015,
pp. 10–24. Suva, Fiji (Nov 2015)

5. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12, 576–580 (1969)
6. Jones, C.B.: Tentative steps towards a development method for interfering programs. ACM

Trans. Program. Lang. Syst. 5(4), 596–619 (1983)
7. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D.,

Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an operating-system kernel. CACM 53(6), 107–115 (2010)

8. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R., Heiser, G.:
Comprehensive formal verification of an OS microkernel. Trans. Comp. Syst. 32(1),
2:1–2:70 (2014)

9. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL— A Proof Assistant for Higher-Order
Logic. LNCS, vol. 2283, Springer, Heidelberg (2002)

10. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta Informatica
6, 319–340 (1976)

From Hoare Logic to Owicki-Gries and Rely-Guarantee XV

https://github.com/echronos/echronos-proofs
http://echronos.systems

Tweaking the Odds: Parameter Synthesis
in Markov Models

(Abstract)

Joost-Pieter Katoen1,2

1 RWTH Aachen University, Germany
2 University of Twente, The Netherlands

Markov decision processes (MDPs) are the prime model in sequential decision making
under uncertainty. Their transition probabilities are fixed. Transitions in parametric
Markov models are equipped with functions (e.g., polynomials or rational functions)
over a finite set of parameters x1 through xn, say. Instantiating each variable xi with a
value vi induces a MDP or a Markov chain (MC) if non-determinism is absent. We
present recent advances on the parameter synthesis problem: for which parameter
values — and for MDPs, for which policy — does the instantiated Markov model
satisfy a given objective? For objectives such as reachability probabilities and expected
costs we consider (1) an exact procedure and (2) an approximative technique. Both
approaches come with a CEGAR-like procedure to obtain a good coverage of the
parameter space indicating which parameter regions satisfy the property and which
ones do not.

The exact approach first obtains symbolic representations of the synthesis problem
at hand. This can be done using e.g., Gaussian elimination or a technique introduced by
Daws at ICTAC 2004 [4] that is based on an automata-to-regular expression conver-
sion. These symbolic representations (in fact, rational functions in x1 through xn) can be
solved using satisfiability-modulo-theory techniques over non-linear real arithmetic [7].
This technique is applicable to parametric MCs only but extendible to conditional
reachability objectives too. Using advanced reduction and implementation techniques
[5] it is practically applicable to MCs of up to a few million states and 2–3 parameters.

The approximative approach removes parameter dependencies at the expense of
adding new parameters and then replaces them by lower and upper bounds [9]. It
reduces parameter synthesis to standard model checking of non-parametric Markov
models that have one extra degree of non-determinism. Its beauty is the simplicity and
applicability to both MCs and MDPs. It is applicable to models of up to about ten
million states and 4–5 parameters.

Finally, we treat parameter synthesis for (3) multiple objectives for parametric
MDPs. Whereas multi-objectivemodel-checking of MDPs can be cast as a linear
programming problem [6], its analogue for parametric MDPs results in a non-linear
programming (NLP) problem. An approximate solution of this NLP problem can be
obtained in polynomial time using geometric programming [3]. This technique is
extendible to richer objectives such as weighted combinations of single objectives.

Initial experiments indicate that this approach seems scalable to models with tens of
parameters.

Parameter synthesis has abundant applications. These include model repair [2, 8]
— how to adapt certain probabilities in a Markov model that refutes a given objective
such that the tweaked model satisfies it — and finding minimal recovery times for
randomized self-stabilizing algorithms [1].

Reference

1. Aflaki, S., Volk, M., Bonakdarpour, B., Katoen, J.-P., Storjohann, A.: Automated fine tuning
of probabilistic self-stabilizing algorithms. In: SRDS (2017, to be published)

2. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C. R., Smolka, S.A.: Model repair for
probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol.
6605, pp. 326–340. Springer, Heidelberg (2011)

3. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Papusha, I., Poonawala, H.A., Topcu,
U.: Sequential convex programming for the efficient verification of parametric MDPs. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.10206, pp. 133–150, Springer,
Heidelberg (2017)

4. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains. In: Liu,
Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2004)

5. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P.,
Ábrahám, E.: Prophesy: A probabilistic parameter synthesis tool. In: Kroening, D., Păsăreanu,
C. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Cham (2015)

6. Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. Log. Methods Comput. Sci. 4(4), (2008)

7. Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.-P., Becker, B.:
Accelerating parametric probabilistic verification. In: Norman, G., Sanders, W. (eds.) QEST
2014. LNCS, Vol. 8657, pp. 404–420. Springer, Cham (2014)

8. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy approach for the
efficient repair of stochastic models. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM
2015. LNCS, vol. 9058, pp. 295–309. Springer, Cham (2015)

9. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis for
Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016.
LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016)

Tweaking the Odds: Parameter Synthesis in Markov Models (Abstract) XVII

Directions to and for Verified Software

K. Rustan M. Leino1,2

1 Microsoft Research, Redmond
2 Imperial College London

Abstract. There are many techniques and tools aimed at creating and main-
taining reliable software. At one extreme of the reliability spectrum is deductive
verification, where software designers write specifications for what the software
is supposed to do and where programs are developed together with proofs that
show that the specifications are met. The journey of research and development
behind deductive verification spans many decades, from early visions of the
idea, through criticism and doubt, through the development of automated
techniques, to education, to experience in using tools in practice, and to the
streamlining of the process.

In this talk, I give a perspective of where this journey of program-verification
research has brought us today, give a demo of a state-of-the-art system for
writing verified programs [1], and discuss directions for what may be possible in
the future.

Reference

1. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: Clarke, E.
M., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6355, pp. 348–370. Springer, Heidelberg
(2010)

Contents

Logics

A Formal Proof Generator from Semi-formal Proof Documents 3
Adrián Riesco and Kazuhiro Ogata

Institutions for Behavioural Dynamic Logic with Binders. 13
Rolf Hennicker and Alexandre Madeira

The Delay Monad and Restriction Categories . 32
Tarmo Uustalu and Niccolò Veltri

Logical Characterisation of Parameterised Bisimulations 51
Divyanshu Bagga and S. Arun Kumar

A Probabilistic Semantics for the Pure k-Calculus . 70
Alessandra Di Pierro

Software Components and Concurrency

Towards a Calculus for Dynamic Architectures. 79
Diego Marmsoler

Class-Diagrams for Abstract Data Types . 100
Thai Son Hoang, Colin Snook, Dana Dghaym, and Michael Butler

Value-Based or Conflict-Based? Opacity Definitions for STMs 118
Jürgen König and Heike Wehrheim

Smaller-State Implementations of 2D FSSP Algorithms:
Recent Developments . 136

Hiroshi Umeo, Keisuke Kubo, and Akira Nomura

Automata

Derived-Term Automata of Weighted Rational Expressions
with Quotient Operators . 155

Akim Demaille and Thibaud Michaud

Polynomial Time Learner for Inferring Subclasses of Internal Contextual
Grammars with Local Maximum Selectors . 174

Abhisek Midya, D.G. Thomas, Saleem Malik, and Alok Kumar Pani

http://dx.doi.org/10.1007/978-3-319-67729-3_1
http://dx.doi.org/10.1007/978-3-319-67729-3_2
http://dx.doi.org/10.1007/978-3-319-67729-3_3
http://dx.doi.org/10.1007/978-3-319-67729-3_4
http://dx.doi.org/10.1007/978-3-319-67729-3_5
http://dx.doi.org/10.1007/978-3-319-67729-3_5
http://dx.doi.org/10.1007/978-3-319-67729-3_6
http://dx.doi.org/10.1007/978-3-319-67729-3_7
http://dx.doi.org/10.1007/978-3-319-67729-3_8
http://dx.doi.org/10.1007/978-3-319-67729-3_9
http://dx.doi.org/10.1007/978-3-319-67729-3_9
http://dx.doi.org/10.1007/978-3-319-67729-3_10
http://dx.doi.org/10.1007/978-3-319-67729-3_10
http://dx.doi.org/10.1007/978-3-319-67729-3_11
http://dx.doi.org/10.1007/978-3-319-67729-3_11

Trace Relations and Logical Preservation for Continuous-Time
Markov Decision Processes . 192

Arpit Sharma

SMT Solvers and Algorithms

Constructing Cycles in the Simplex Method for DPLL(T) 213
Bertram Felgenhauer and Aart Middeldorp

Tableaux with Partial Caching for Hybrid PDL with
Satisfaction Statements. 229

Agathoklis Kritsimallis

PTrie: Data Structure for Compressing and Storing Sets via
Prefix Sharing. 248

Peter Gjøl Jensen, Kim Guldstrand Larsen, and Jiří Srba

Security

Inferring Secrets by Guided Experiments . 269
Quoc Huy Do, Richard Bubel, and Reiner Hähnle

ECBC: A High Performance Educational Certificate Blockchain
with Efficient Query . 288

Yuqin Xu, Shangli Zhao, Lanju Kong, Yongqing Zheng, Shidong Zhang,
and Qingzhong Li

Author Index . 305

XX Contents

http://dx.doi.org/10.1007/978-3-319-67729-3_12
http://dx.doi.org/10.1007/978-3-319-67729-3_12
http://dx.doi.org/10.1007/978-3-319-67729-3_13
http://dx.doi.org/10.1007/978-3-319-67729-3_14
http://dx.doi.org/10.1007/978-3-319-67729-3_14
http://dx.doi.org/10.1007/978-3-319-67729-3_15
http://dx.doi.org/10.1007/978-3-319-67729-3_15
http://dx.doi.org/10.1007/978-3-319-67729-3_16
http://dx.doi.org/10.1007/978-3-319-67729-3_17
http://dx.doi.org/10.1007/978-3-319-67729-3_17

Logics

A Formal Proof Generator from Semi-formal
Proof Documents

Adrián Riesco1(B) and Kazuhiro Ogata2,3

1 Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

2 School of Information Science, JAIST, Nomi, Japan
ogata@jaist.ac.jp

3 Research Center for Theoretical Computer Science, JAIST, Nomi, Japan

Abstract. We present the CafeInMaude Proof Assistant (CiMPA) and
the CafeInMaude Proof Generator (CiMPG), two complementary exten-
sions of CafeInMaude, a CafeOBJ interpreter implemented in Maude.
CiMPA is a proof assistant for inductive properties of CafeOBJ specifi-
cations, and CiMPG generates formal proofs that can be fed into CiMPA
from semi-formal proof documents called proof scores in CafeOBJ.

1 Introduction

CafeOBJ [17] is a language for writing formal specifications for a wide vari-
ety of software and/or hardware systems, and verifying properties of them (see
e.g. [4,12,13]). CafeOBJ implements equational logic by rewriting and can be
used as a powerful platform for proving properties on systems. More specifically,
specifiers can write proof scores to prove properties on their specifications. Proof
scores are proof outlines written in an algebraic specification language, such as
OBJ [8]. If they are executed by such a language processor and all results are as
expected (e.g. true is obtained), then the corresponding theorems are proved.
Proof scores were developed by Joseph Goguen, and the CafeOBJ team have
demonstrated that they are a promising approach to systems verification [5].
An important advantage of this approach to systems verification, also known as
“proving as programming” and shared by other paradigms such as the Larch
Prover (LP) [7], is its flexibility: the syntax for performing proofs is the same as
for specifying systems. However, in the CafeOBJ case this flexibility is obtained
by losing formality, since CafeOBJ does not check proof scores in any way. For
this reason, in this paper we present an inductive theorem prover that formally
proves properties on CafeOBJ specifications and a proof script generator that
infers formal proofs from proof scores.

We outline in the next section how to use proof scores to verify CafeOBJ
specifications, while Sect. 3 discusses the weaknesses of this approach. Section 4
summarizes the main features of the CafeInMaude Proof Assistant, while
Sect. 5 presents the CafeInMaude Proof Generator and somebenchmarks.

c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 3–12, 2017.
DOI: 10.1007/978-3-319-67729-3 1

4 A. Riesco and K. Ogata

Section 6 briefly discusses related work. Finally, Sect. 7 concludes and outlines
some lines of future work. The tool and several case studies are available at
https://github.com/ariesco/CafeInMaude.

2 Proof Score Approach to Systems Verification

Let us consider a concrete example: a simple mutual exclusion protocol for two
processes specified in CafeOBJ; we will focus on the function introducing the
first process into the critical section, while the rest is available at the link given
in the previous section.

The module 2P-MUTEX below is in charge of defining the behavior of the
protocol. It first imports the LABEL module, which defines the type Label and
two constants rs and cs that stand for remainder section and critical section,
respectively. Then, it defines the sort Sys and the corresponding constructors;
in particular enter1 indicates that the first process wants to enter the critical
section. Moreover, observations on the system are obtained by using pc1 for the
first process and pc2 for the second one:

mod* 2P-MUTEX {pr(LABEL) [Sys]

op enter1: Sys -> Sys {constr}

ops pc1 pc2: Sys -> Label

Note that new functions are defined by the keyword op, the function name, the
arity, the coarity, and a possibly empty set of attributes, such as constr for
constructors. We will use equations (eq and ceq for conditional equations) for
defining the behavior of non-constructor functions.

We use an auxiliary Boolean function c-enter1, which holds if the second
process is in the remainder section, to define the behavior for enter1: the first
equation states that the first process will be in the critical section if c-enter1
holds; the second equation indicates that the second process is in the remainder
section if c-enter1 holds; and the third equation indicates that enter1 can be
discharged if c-enter1 does not hold:

ceq pc1(enter1(S:Sys)) = cs if c-enter1(S).

ceq pc2(enter1(S:Sys)) = rs if c-enter1(S).

ceq enter1(S:Sys) = S if not c-enter1(S).

Assuming we have defined observations for the rest of states (the initial
state, the second process entering the critical section, and both processes leaving
the critical section) we state the invariant inv that indicates that we cannot
observe both the first process and the second one in the critical section at the
same time:

op inv: Sys -> Bool

eq inv(S:Sys) = not ((pc1(S) = cs) and (pc2(S) = cs)).

https://github.com/ariesco/CafeInMaude

A Formal Proof Generator from Semi-formal Proof Documents 5

How can we prove this invariant? We would proceed state by state, starting
with enter1. What we want to discharge in this case is written in CafeOBJ as:1

open 2P-MUTEX.

op s: -> Sys.

eq [:nonexec]: inv(s) = true.

red inv(enter1(s)).

close

That is, given the specification in 2P-MUTEX, we add the fresh constant s, that
stands for any system, and the equation inv(s) = true (that would stand for
the induction hypothesis in a usual induction scheme and cannot be used for sim-
plification purposes thanks to the :nonexec label) and apply the red command,
which simplifies by using equations, to the invariant applied to our state. Unfor-
tunately, the term is not reduced to true but to (true xor ((pc2(enter1(s))
= cs) and (pc1(enter1(s)) = cs))). By using this result as a guide, we can
enrich the open-close environment above with the equation pc2(s) = cs and use
the induction hypothesis as a premise in the red command as inv(s) implies
inv(enter1(s)). In this case the term is reduced to true and the invariant
holds under the assumption that pc2(s) = cs holds. We need to prove that the
property also holds for the complementary case, so we would need two open-close
environments to discharge this induction case:

open 2P-MUTEX. open 2P-MUTEX.

op s: -> Sys. op s: -> Sys.

eq [:nonexec]: inv(s) = true. eq [:nonexec]: inv(s) = true.

eq pc2(s) = rs. eq (pc2(s) = rs) = false.

red inv(s)implies inv(enter1(s)). red inv(s)implies inv(enter1(s)).

close close

In this way we obtain the following results, which show that the proof for
this case is correct:

Opening module 2P-MUTEX: Opening module 2P-MUTEX:

red inv1(s)implies inv1(enter1(s)). red inv1(s)implies inv1(enter1(s)).

Result: true: Bool Result: true: Bool

3 Achilles’ Heel and a Possible Remedy

The proof score approach to systems verification, which allows for proving prop-
erties in the same language used for specifying the system, is less formal in charge
for this flexibility. Since proof scores only require the terms to be reduced to the
expected value (in general true) if we skip one of the environments above, if we
add extra equations (and more environment are required for checking all cases),
or even if we just reduce true we fulfill the requirements and the property would
1 Note that so-called open-close environments allows for adding further objects and
equations to existing theories.

6 A. Riesco and K. Ogata

be considered proved, although it is not. Hence, if it is permitted to write proof
scores at any levels of flexibility, it is unlikely to make the approach really formal:
too many equations can be added; non-existent hypothesis can be used; and some
cases can be lost, specially if we need to distinguish among many cases. There-
fore, specifiers have abandoned extremely flexible ways of writing proof scores.
From our experience in many case studies in which the proof score approach has
been used to verify that various kinds of systems, protocols, etc. enjoy the desired
properties, we have learned that there are mainly four things to be conducted by
proof scores: (1) use of structural induction, (2) use of theorem of constants (elim-
ination of universally quantified variables), (3) case splitting based on construc-
tors, and (4) use of the left-hand side l of an equation l = true, where l is ground,
appearing in the specification as the premise of the implication (the main idea
here is that l stands for the induction hypothesis). Hence, we consider it would
be worth implementing an automatic way (1) to formally verify that the proofs
carried out by these proof scores is actually correct and, if the proof is wrong, (2)
to obtain detailed information on the cases that remain unproved. Although we
do not cover all these proofs yet, we set the basis for developing more powerful
tools of this kind in the future.

Even though CafeOBJ has an inductive theorem prover, it cannot be used
for this purpose because it is implemented in Lisp and hence it cannot access
the on-the-fly modules created by proof scores, and it does not provide a data
structure that can be manipulated by external sources. For these reasons, we
have developed CiMPA and CiMPG, two complementary extensions of CafeIn-
Maude [16], a CafeOBJ interpreter implemented in Maude [1]. In addition to
carrying out inductive proofs, CiMPA takes advantage of the metalevel features
of Maude to explicitly store the current proof, including the proof tree and the
associated modules. On the other hand, CiMPG provides extra annotations for
proof scores so it is possible to indicate whether a proof score is related to a
specific proof. Once a proof score is annotated, CiMPG can analyze it at the
metalevel, put together all those proof scores related to the same proof and try
to infer a proof script (that is, a list of commands) for CiMPA.

Soundness in CiMPA is obtained by using the standard inference rules for
constructor-based systems (see e.g. [6]); soundness is extended to CiMPG by
ensuring a one-to-one correspondence between the leaves of the proof tree and
the reduction commands in the original proof scores. We cannot ensure complete-
ness in CiMPG: since our algorithm relies on CiMPA and on some assumptions
on the form the proof scores are written, if they require features that are not
implemented in CiMPA or follow a different approach CiMPG will fail.

4 The CafeInMaude Proof Assistant

The CafeInMaude Proof Assistant (CiMPA) is an inductive theorem prover for
proving properties on CafeOBJ specifications. An important feature of CiMPA
is that it takes advantage of the metalevel capabilities of Maude to store the
whole proof as a proof tree that can be manipulated by other tools, which is the
key of the CiMPG tool described in the next section. In particular, each node in

A Formal Proof Generator from Semi-formal Proof Documents 7

the proof tree stores information about the goal, the list of commands required
to reach the node, and the current module, which consists of the initial module
enriched with the equations used for case splitting, the fresh constants generated
during the process, and possibly the induction hypotheses. CiMPA allows to:

– State a set of equations as initial goal. We consider the goal has been proved
if all the equalities stated in the goal can be reduced to true.

– Apply simultaneous induction on a variable of the current goal. In this case
CiMPA uses the constr attribute in the operator declarations to create
appropriate ground terms and generate as many new goals as constructors.

– Apply case splitting by equations. This command generates two new goals,
distinguishing whether the equation holds or not.

– Apply case splitting by terms. In this case CiMPA adds an equation stating
that the term is equal to any ground term built with the constructors defined
for the sort of the term. Hence, this command generates as many new goals
as constructors defined in the module for the sort.

– Apply the theorem of constants. This command replaces variables by fresh
constants and splits the different equations in the goal, hence generating the
corresponding new goals.

– Indicate that a given equation (possibly requiring a substitution for binding
the free variables) implies the current goal. This command updates the current
goal, assuming the equation exists.

– Reduce the current goal. This command checks whether the lefthand side and
the righthand side of the equation are equal. If this is the case, then the goal
is discharged; otherwise, different commands indicate whether the equations
are kept unmodified or reduced.

– Display the current goal, the open goals, and the complete proof tree.

We present here part of the proof script used to prove the invariant in the
previous section. First, we introduce the invariant as goal, set S:Sys as the
variable were induction is applied, and simultaneous induction as:

open 2P-MUTEX.

:goal{eq [inv:nonexec]: inv(S:Sys) = true.}

:ind on (S:Sys)

:apply(si)

Applying induction on S generates 5 new goals, and CiMPA generates them
following their alphabetic ordering, so it will try to prove first (the current goal
is marked by >) the subgoal for enter1(S#Sys), with S#Sys a fresh constant; it
includes the induction hypothesis as part of the module used for this goal:

Current proof:

root eq [inv:nonexec]: inv(S:Sys) = true.

-- Assumption:

eq [inv:nonexec]: inv(S#Sys) = true.

1. > SI eq [inv:nonexec]: inv(enter1(S#Sys)) = true.

8 A. Riesco and K. Ogata

-- Assumption:

eq [inv:nonexec]: inv(S#Sys) = true.

2. SI eq [inv:nonexec]: inv(enter2(S#Sys)) = true.

-- Assumption:

eq [inv:nonexec]: inv(S#Sys) = true.

3. SI eq [inv:nonexec]: inv(init) = true.

-- Assumption:

eq [inv:nonexec]: inv(S#Sys) = true.

4. SI eq [inv:nonexec]: inv(leave1(S#Sys)) = true.

-- Assumption:

eq [inv:nonexec]: inv(S#Sys) = true.

5. SI eq [inv:nonexec]: inv(leave2(S#Sys)) = true.

As we saw in the proof scores, we need to use the induction hypothesis as a
premise to discharge both cases, so we ask CiMPA to do it by using the command
:imp [inv]., where inv is the label of the induction hypothesis. Now we obtain:

New goal generated:

imp eq [inv:nonexec]: true xor cs = pc1(S#Sys) and cs = pc2(S#Sys)

implies inv1(enter1(S#Sys)) = true.

Now we need to split cases on the equation eq pc2(s) = rs., so we define
a macro csb1 and apply it with :apply(csb1).

:def csb1 =:ctf {eq pc2(S#Sys) = rs.}

:apply(csb1)

hence obtaining the following new goals:

-- Assumption:

eq pc2(S#Sys) = rs.

-- Assumption:

eq [inv1:nonexec]: inv1(S#Sys) = true.

1-1. > csb1 eq [inv1:nonexec]: true xor cs = pc1(S#Sys)

and cs = pc2(S#Sys)implies inv1(enter1(S#Sys)) = true.

-- Assumption:

eq pc2(S#Sys)= rs = false.

-- Assumption:

eq [inv1:nonexec]: inv1(S#Sys) = true.

1-2. csb1 eq [inv1:nonexec]: true xor cs = pc1(S#Sys)

and cs = pc2(S#Sys)implies inv1(enter1(S#Sys)) = true.

At this point, the module associated to the current node has enough informa-
tion to discharge it by using reductions, so we can discharge the goal by means
of :apply(rd). Once discharged, the complementary goal (where csb1 does not
hold) can be also discharged by reduction, so we apply reduction again by using
:apply(rd). The rest of the proof would be carried out in the same way.

A Formal Proof Generator from Semi-formal Proof Documents 9

5 The CafeInMaude Proof Generator

The CafeInMaude Proof Generator (CiMPG) provides annotations for identify-
ing proof scores defined in open-close environments and generating proof scripts
for CiMPA from them. The restrictions imposed to these proof scores are (i)
reducing only goal-related terms, (ii) making sure that all environments use the
same module expression, and (iii) relying in functionalities that can be simu-
lated by the CiMPA commands presented in the previous section. Restriction (i)
ensures that no dummy goals are generated, restriction (ii) is required to make
sure that the property is being proved for the same specification, and restriction
(iii) ensures that the proof script can be generated. These annotations are of
the form :id(LAB), where LAB is a label that identifies the proof; the same label
must be used in all open-close environments related to the same proof. Then,
the command :proof(LAB) will generate the proof script from the proof scores
labeled with LAB. Hence, the modified open-close environments would be:

open 2P-MUTEX. open 2P-MUTEX.

:id(2p-mutex) :id(2p-mutex)

op s : -> Sys. op s : -> Sys .

eq [:nonexec]: inv(s) = true. eq [:nonexec]: inv(s) = true.

eq pc2(s) = rs. eq (pc2(s) = rs) = false.

red inv(s)implies inv(enter1(s)). red inv(s)implies inv(enter1(s)).

close close

while the final environment would state:

open 2P-MUTEX

:proof(2p-mutex)

close

CiMPG stores the metarepresentation of these open-close environments in
the CafeInMaude database so it can use them later. Once the user asks CiMPG
to generate the proof script, it follows an algorithm for inferring the proof that
has been specifically designed for CiMPG. It first infers the goal to be proved
by generalizing the reduction commands in the proof scores, hence creating the
initial proof tree. Then, it starts a loop that will modify the tree by (i) looking
for those proof scores related to the current goal (in the sense the reductions in
the proof scores use the same constructors as the goal and the module in the goal
contains a subset of the constants and the equations of the module defined in
the proof scores) and (ii) enriching the module (by using induction, the theorem
of constants, or case splitting) and modifying the goal (by using implications) so
they become equal (up to renaming) to one proof score. In this case a reduction
is applied and the goal can be discharged. This loop finishes when no more proof
scores can be used. Note that these manipulations require to manipulate the
proof scores and the proof tree generated by CiMPA at the metalevel, so we can
compute and apply substitutions between the terms in the proof scores and the
goals and perform reductions in the modules stored in the tree.

10 A. Riesco and K. Ogata

In our particular example, the algorithm would work as follows:

1. It infers the goal. Actually, it infers inv(S) because it uses not only the proof
scores shown in the paper, but also the ones for the rest of cases, that forces
the algorithm to generalize the argument (S instead of enter) and to drop
the implication (since it is not used in the base case).

2. It applies simultaneous induction on S, since it realizes that all reductions in
the proof scores have a constructed term in that place.

3. Apply case splitting, since the proof scores contain an equation and its
negation.

4. Apply implication, since the goals have an implication and the premise
appears in the current module as induction hypothesis.

5. Once the module in CiMPA and the one in the proof score are equal, reduce.

Note that the obtained proof script is slightly different from the one shown
in the previous section, since in this case case splitting is applied before using
implication. This proof, as well as the annotated proof scores that generate it,
is available at https://github.com/ariesco/CafeInMaude.

How does CiMPG help specifiers? Assume we remove the second proof score
in Sect. 2, the proof script generated by CiMPG would contain a postpone com-
mand, since we did not define all cases for enter1, and once introduced in CiMPA
the proof score would finish as follows, where the extra information is depicted
by using :desc proof, which describes the complete proof:

Next goal is 1-2: eq [inv :nonexec]: inv(enter1(S#Sys)) = true.

-- Assumptions:

eq pc2(S#Sys)= rs = false.

eq [inv:nonexec]: inv(S#Sys) = true.

That is, the proof did not finish because the goal for enter1 was not discharged
for the case where csb1 does not hold. This information would greatly help the
user to write the missing proof scores to finish the proof.

The benchmarks performed thus far give us confidence in its applicability.
Our main benchmarks are shown in the table below, where LOC is the lines
of code of the specification plus the proof scores; Commands is the number of
commands in the generated proof script; and Time is the amount of time required
by CiMPG. It is worth noting that the benchmark for the cloud protocol allowed
us to detect a missing proof score, so the proof contained an error that went
unnoticed by experts and that CiMPG found and helped to correct.

Name LOC Commands Time Comments

2p-mutex 50 + 70 28 470 ms Mutual exclusion protocol for 2 processes

TAS 50 + 230 76 2130 ms Spinlock – Mutual exclusion protocol

QLOCK 100 + 400 112 9510 ms Variant of Dijkstra’s binary semaphore

NSLPK 180 + 1100 284 48390 ms Authentication protocol NSLPK

Cloud 120 + 1700 383 96470 ms Simplified cloud synchronization protocol

https://github.com/ariesco/CafeInMaude

A Formal Proof Generator from Semi-formal Proof Documents 11

6 Related Work

We briefly present in this section the closest works related to CiMPA and
CiMPG. The current CafeOBJ implementation provides a Constructor-based
Inductive Theorem Prover. Although it can only be used following the documen-
tation written in Japanese at https://cafeobj.org/files/citp.pdf it is completely
functional and provides a set of commands very similar to the ones described
here for CiMPA. However, this prover was not suitable for our purposes because
it is implemented in Lisp and hence we could not combine it with the informa-
tion written in the proof scores. Other theorem provers, such as Isabelle [11,15]
and PVS [14], present the same drawback and, in addition, are further from
CafeOBJ, hence requiring extra transformations.

From the Maude side we also have other theorem provers, such as the ITP [2]
and CITP [6]. Since both of them are implemented in Full Maude they were
good candidates for a theorem prover that could carry out the proofs inferred
from proof scores. However, these tools rely on Maude annotations that are not
available in CafeOBJ: we can either add these annotations in CafeInMaude,
hence preventing older CafeOBJ specifications to work with CiMPG, or provide
intermediate translations that would impair the proof process, since the user will
not understand the source of part of the goals to be discarded. Moreover, Maude
ITP has a set of commands that does correspond exactly with the mechanisms
underlying CafeOBJ proof scores, so we would also need to extend its commands,
hence tampering the theoretical basis of ITP.

We think that nowadays software systems have a heterogeneous nature and
hence different paradigms should be applied to formal verification of their dif-
ferent parts. CafeOBJ is especially suitable for dealing with complex data struc-
tures, such as associative and/or commutative ones, in an abstract way and for
representing state machines (or state transition systems) by means of equations,
while other frameworks are more appropriate for other tasks (e.g. Dafny for ver-
ification of the actual code [9], Frama-C [3] for static analysis, etc.). Therefore,
in our opinion it is worth developing different frameworks and utilizing them all
during the software development cycle.

7 Concluding Remarks and Ongoing Work

In this paper we have presented two tools that combine different approaches to
theorem proving in CafeOBJ. This combination is sound and, even though it is
not complete, the examples used thus far give us confidence in the technique.

Although other approaches for heterogeneous verification have been devel-
oped in the last years, they basically rely on translation between logic to take
advantage of the tools available for each one, like in the Hets system [10]. The
translation between proofs described here provides a new approach that can be
farther extended by taking into account more complex proofs, e.g. those requiring
searches or unification.

Currently, we are working in more commands for performing different kinds
of case splitting when dealing with sequences. Once they are proved sound and
added to CiMPA we plan to include them into the CiMPG inference algorithm.

https://cafeobj.org/files/citp.pdf

12 A. Riesco and K. Ogata

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71999-1

2. Clavel, M., Palomino, M., Riesco, A.: Introducing the ITP tool: a tutorial. J.
Univ. Comput. Sci. 12(11), 1618–1650 (2006). Programming and Languages. Spe-
cial Issue with Extended Versions of Selected Papers from PROLE 2005: The 5th
Spanish Conference on Programming and Languages

3. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: a software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33826-7 16

4. Futatsugi, K.: Generate & check method for verifying transition systems in
CafeOBJ. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Sys-
tems. LNCS, vol. 8950, pp. 171–192. Springer, Cham (2015). doi:10.1007/
978-3-319-15545-6 13

5. Futatsugi, K., Gâinâ, D., Ogata, K.: Principles of proof scores in CafeOBJ. Theoret.
Comput. Sci. 464, 90–112 (2012)

6. Gâinâ, D., Zhang, M., Chiba, Y., Arimoto, Y.: Constructor-based inductive the-
orem prover. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp.
328–333. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40206-7 26

7. Garland, S.J., Guttag, J.V.: LP, the Larch Prover (Version 3.1). MIT Laboratory
for Computer Science (1991)

8. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Introducing
OBJ. Software Engineering with OBJ: Algebraic Specification in Action. Kluwer,
Boston (2000)

9. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

10. Mossakowski, T., Maeder, C., Codescu, M., Lücke, D.: Hets user guide -version
0.97-. Technical report, DFKI GmbH, Formal Methods for Software Development,
February 2011

11. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

12. Ogata, K., Futatsugi, K.: Compositionally writing proof scores of invariants in the
OTS/CafeOBJ method. J. UCS 19(6), 771–804 (2013)

13. Ouranos, I., Ogata, K., Stefaneas, P.S.: TESLA source authentication protocol ver-
ification experiment in the timed OTS/CafeOBJ method: experiences and lessons
learned. IEICE Trans. 97–D(5), 1160–1170 (2014)

14. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). doi:10.1007/3-540-55602-8 217

15. Paulson, L.C. (ed.): Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer,
Heidelberg (1994)

16. Riesco, A., Ogata, K., Futatsugi, K.: A Maude environment for CafeOBJ. Formal
Aspects Comput. 29, 1–26 (2016)

17. Sawada, T., Futatsugi, K., Preining, N.: CafeOBJ Reference Manual (version 1.5.3),
February 2015

http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-319-15545-6_13
http://dx.doi.org/10.1007/978-3-319-15545-6_13
http://dx.doi.org/10.1007/978-3-642-40206-7_26
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/3-540-55602-8_217

Institutions for Behavioural Dynamic Logic
with Binders

Rolf Hennicker1 and Alexandre Madeira2,3(B)

1 Ludwig-Maximilians-Universität München, Munich, Germany
hennicke@pst.ifi.lmu.de

2 HASLab, INESC TEC, University of Minho, Braga, Portugal
amadeira@inesctec.pt

3 CIDMA, University of Aveiro, Aveiro, Portugal
madeira@ua.pt

Abstract. Dynamic logic with binders D↓ has been introduced as an
institution for the development of reactive systems based on model
class semantics. The satisfaction relation of this logic was, however, not
abstract enough to enjoy the modal invariance property (bisimilar models
should satisfy the same sentences). We recently overcame this problem
by proposing an observational satisfaction relation where the equality on
states is interpreted by bisimilarity of states. This entailed, however, a
price to pay - the satisfaction condition required for institutions was lost.
This paper works on this limitation by establishing a behavioural seman-
tics for D↓ parametric to behavioural structures - families of equivalence
relations on the states of each model. Such structures are taken in con-
sideration in the signature category and, in particular, for the definition
of signature morphisms. We show that with these changes we get again
an institution with a behavioural model class semantics. The framework
is instantiated with specific behavioural structures, resulting in the novel
Institution of Crucial Actions.

1 Introduction

This paper deals with logical formalisms for the specification and development
of reactive systems. Dynamic logic with binders, called D↓-logic, has been intro-
duced in [13] as an institution in the sense of [6] which allows expressing proper-
ties of reactive systems, from abstract safety and liveness requirements down to
concrete specifications of the (recursive) structure of executable processes. It is
therefore well suited for program development by stepwise refinement. D↓-logic
combines modalities indexed by regular expressions of actions, as in Dynamic

This work is financed by the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation -
COMPETE 2020 Programme and by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia, within projects
POCI-01-0145-FEDER-016692 and UID/MAT/04106/2013, and by the individual grant
SFRH/BPD/103004/2014.

c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 13–31, 2017.
DOI: 10.1007/978-3-319-67729-3 2

14 R. Hennicker and A. Madeira

Logic [10], and state variables with binders, as in Hybrid Logic [4]. These moti-
vations are reflected in its semantics. Differently from what is usual in modal
logics, whose semantics is given by Kripke structures and satisfaction of formulas
is evaluated globally, D↓ models are reachable, labelled transition systems with
initial states where satisfaction is evaluated. This reflects our focus on compu-
tations, i.e. on effective processes.

1.1 Motivation

The commitment of D↓-logic concerning bisimulation equivalence is, however,
not satisfactory: the model class semantics of specifications in D↓ is not closed
under bisimulation equivalence; there are D↓-sentences that distinguish bisimu-
lation equivalent models, i.e., D↓ does not enjoy the modal invariance property.
As an example consider the two models N and M in Fig. 1 and the sentence
↓ x.〈a〉x. This sentence, evaluated in the initial state, expresses that after exe-
cuting the action a the initial state is reached again. Obviously this is true for
N but not for M though N and M are bisimulation equivalent.

Fig. 1. Bisimilar models

As a way out, we have proposed D↓
∼-logic [12]

which relaxes the satisfaction relation such that
equality of states is interpreted by bisimilarity
of states. We call this observational equality and
denote it by ∼M for each model M. Then the
model M in Fig. 1 satisfies observationally the
sentence ↓ x.〈a〉x, denoted by M |=∼↓ x.〈a〉x,

since the two states w0 and w1 are observationally equal. Indeed we have shown
in [12] that in D↓

∼ the modal invariance property holds. But, unfortunately, with
relaxing the satisfaction relation we lost the institution property of D↓ because
D↓

∼ does not satisfy the satisfaction condition of an institution. Intuitively the
satisfaction condition expresses that truth is invariant under change of notation
[6]. From the software engineer’s perspective it expresses that satisfaction of
properties, i.e. sentences, should be preserved when models are put in a larger
context. Figure 2 illustrates the problem with D↓

∼.

Fig. 2. Examples of {a} and {a, b}-models

It shows two models M and
M′. The signature of M is the sin-
gleton action set A = {a} and the
signature of M′ is the larger action
set A′ = {a, b}. As a signature mor-
phism we take the inclusion σ :
A → A′ with σ(a) = a. Looking at

M′ we see that w′
0 and w′

1 are not observationally equal, since in w′
0 the action b

is enabled which is not the case in state w′
1. Hence, M′ �|=∼↓ x.〈a〉x. Restricting

M′ to A yields the A-model M. As we have seen before M |=∼↓ x.〈a〉x. Hence,
observational satisfaction is not preserved in larger contexts and therefore the
satisfaction condition does not hold in D↓

∼. In this work, we are looking for
possibilities to overcome this deficiency.

Institutions for Behavioural Dynamic Logic with Binders 15

1.2 Overview of the Proposal

On the way to solve the problem we found (again) the paper of Misiak [15] who
has studied institutions with behavioural semantics in arbitrary logical systems
with concrete model categories. Misiak’s paper is an abstraction of more concrete
institutions that have been studied in the framework of observational algebraic
specification where a similar problem to ours was solved by adding restrictions
to signature morphisms [5,7] and putting more information into the signatures
[3,8,11]. To instantiate Misiak’s approach by using labelled transition systems as
models, we forget, for the moment, the observational equalities ∼M and consider
instead, for each set of actions A, a family ≈ of equivalence relations ≈M, indexed
by the models of D↓. A signature is then a pair (A,≈) and the satisfaction of
sentences is defined by interpreting equality of states in terms of ≈M. Misiak’s
trick is to consider a signature morphism as a mapping σ : A → A′ which is
compatible with the equivalences of each signature. This means, more formally,
that for each A′-model M′ the restriction of ≈M′ to the states of M, denoted
by (≈M′)|σ, is the same as the equivalence ≈(M′|σ) used in ≈ for the A-model
M′|σ, which is the reduct of M′ along σ. This means that we have, for each
A′-model M′, the following crucial equation:

(≈M′)|σ =≈(M′|σ) (1)

Thus the satisfaction condition is enforced by the notion of a signature mor-
phism and we may ask how useful this additional information in signatures,
given by the family of equivalences, can be for our problem. In particular, how
the family of equivalences can be syntactically presented and how this can be
related to the observational equalities ∼M considered in D↓

∼. To approach this,
we first observe that Misiak has reduced the model classes for signatures (A,≈)
to those models M for which the equivalence ≈M is a congruence.1 In our frame-
work of labelled transition systems this makes perfect sense, since the congruence
property expresses that equivalence of states must be preserved when an action
a ∈ A is executed. In this way we obtain an institution. We also consider the
“black-box” view of each (A,≈)-model M obtained by its quotient structure
M/≈M. We show that this construction can be extended to a full and faithfull
functor mapping (A,≈)-models to A-models in D↓. This functor preserves and
reflects satisfaction of sentences.

Next we are looking for a meaningful syntactic representation of signatures
(A,≈). The idea comes from the observational algebraic specification frameworks
[3,8,11] where a distinguished subset of so-called observer operations has been
selected for each signature. In our context of labelled transition systems we
select, for each action set A, a distinguished subset C ⊆ A of crucial actions and
consider two states equivalent w.r.t. C if they have the same behaviour under
the execution of actions from C. This equivalence is called (A,C)-equality and
denoted by ∼C

M for each labelled transition system M. Following the Misiak’s

1 Thus the information in signatures is used to constrain models as in [3]. In contrast,
in Hiden Algebra [7] restrictions concern only signature morphisms but not models.

16 R. Hennicker and A. Madeira

approach we consider only those models M for which ∼C
M is a congruence, i.e.

∼C
M is preserved by all actions in A. We show that in these models, called (A,C)-

models, (A,C)-equality coincides with observational equality, i.e., ∼C
M =∼M.

The model class of D↓ (and of D↓
∼) is therefore restricted to those labelled

transition systems for which the set of crucial actions is already sufficient to
characterize the observational equality, i.e. bisimilarity of states. This has the
side effect that for proving that two states are bisimilar it is sufficient to check
transitions with actions from C, a technique which has also been proposed in
the selective μ-calculus [2] to reduce verification complexity for modal formulae.

Having signatures as pairs (A,C), it remains to define signature morphisms
σ : (A,C) → (A′, C ′) such that the Eq. (1) from above is valid for each (A′, C ′)-
model M′, which now means (∼M′)|σ =∼(M′|σ) (with ∼ denoting observational
equalities as before in D↓

∼). To achieve this, we require that no new crucial
actions are introduced by σ, i.e., σ[C] = C ′. In this way, observational equalities
are preserved under change of notation, in particular in larger contexts when the
action set A is enlarged to A′. Hence the satisfaction condition holds and we get
a concrete institution.

The paper is organized as follows. In Sect. 2, we recall the definitions of D↓-
logic and of the observational semantics defined in D↓

∼. Then, in Sect. 3, we
apply Misiak’s approach to labelled transition systems yielding a behavioural
institution with a family of congruence relations on models. We provide the
black-box functor in Sect. 4, which maps the behavioural model category to the
model category of D↓-logic. In Sect. 5, we consider syntactic representations of
signatures and signature morphisms leading to the crucial actions institution.
We finish with concluding remarks in Sect. 6.

In order to fix notations, we recall here the institution definition from [6]: An
institution I =

(
SignI ,SenI ,ModI , (|=I

Σ)Σ∈|SignI |
)

consists of

– a category SignI whose objects are signatures and arrows signature
morphisms;

– a functor SenI : SignI → Set giving for each signature a set of sentences,
– a models functor ModI : (SignI)op → Cat, giving for each signature Σ a

category whose objects are Σ-models, and arrows are Σ-(model) homomor-
phisms; each arrow ϕ : Σ → Σ′ ∈ SignI , (i.e., ϕ : Σ′ → Σ ∈ (SignI)op) is
mapped to a functor ModI(ϕ) : ModI(Σ′) → ModI(Σ) called reduct functor,
whose effect is to cast a model of Σ′ as a model of Σ;

– a satisfaction relation |=I
Σ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI |,

such that for each morphism ϕ : Σ → Σ′ ∈ SignI , the satisfaction condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

Σ ρ (2)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

Institutions for Behavioural Dynamic Logic with Binders 17

2 Dynamic Logics with Binders

This section recalls the underlying definitions and facts of D↓-logic introduced
in [13] and its observational variant D↓

∼ introduced in [12]. While D↓ is an
institution, D↓

∼ is not as explained before.

2.1 D↓-Logic

Signatures for D↓ are finite sets A of atomic actions, and a signature morphism

A
σ �� A′ is a function σ : A → A′. Clearly, this entails a category denoted

by SignD↓
.

Definition 1 (Models and model morphisms). Let A be a finite set of
atomic actions. An A-model is triple (W,w0, R) where W is a set of states,
w0 ∈ W is the initial state and R = (Ra ⊆ W ×W)a∈A is a family of transition
relations such that, for each w ∈ W , there is a finite sequence of transitions
Rak(wk−1, wk), 1 ≤ k ≤ n, with wk ∈ W , ak ∈ A, such that w0 = w0 and
wn = w. Given two A-models M = (W,w0, R) and M′ = (W ′, w′

0, R
′), a model

morphism h : M → M′ is a function h : W → W ′ such that h(w0) = w′
0 and,

for each a ∈ A, if (w1, w2) ∈ Ra then (h(w1), h(w2)) ∈ R′
a.

The class of A-models and A-model morphisms define a category denoted by
ModD↓

(A). The identity morphisms idM are the identity functions.

Definition 2 (Model reduct). Let A
σ �� A′ be a signature morphism and

M′ = (W ′, w′
0, R

′) an A′-model. The reduct of M′ is the A-model M′|σ =
(W ′|σ, R′|σ, w′

0|σ) where (w′
0|σ) = w′

0 and W ′|σ is the largest set with w′
0 ∈ W ′|σ.

For each v ∈ W ′|σ, either v = w′
0 or there is a w ∈ W ′|σ such that (w, v) ∈ R′

σ(a),
for some a ∈ A. For each a ∈ A, Ra = R′

σ(a) ∩ (W × W).

The reduct |σ induces, for each signature morphism σ : A → A′, a functor
ModD↓

(σ) : ModD↓
(A′) → ModD↓

(A). This functor, named reduct functor, maps
models as ModD↓

(M′) = M′|σ and A′-model morphisms h : M′ → N ′ to A-
model morphisms h|σ : M′|σ → N ′|σ, where h|σ is the restriction of h to the
scope of M′|σ and N ′|σ. Finally, we consider the contravariant models functor
ModD↓

: (SignD↓
)op → Cat that maps each signature to its model category and

each signature morphism to the respective reduct functor.

Definition 3 (Formulas and sentences). The set of A-formulas FmD↓
(A)

is given by

ϕ ::= tt | ff | x | ↓ x. ϕ | @xϕ | 〈α〉ϕ | [α]ϕ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where x ∈ X, for X an infinite set of variables, and actions are composed from
atomic actions a ∈ A by sequential composition choice and iteration:

α ::= a | α;α | α + α | α∗

18 R. Hennicker and A. Madeira

An A-formula ϕ is called an A-sentence if ϕ contains no free variables. Free
variables are defined as usual with ↓ being the unique operator binding variables.
The set of A-sentences is denoted by SenD↓

(A).

The binder operator ↓ x.ϕ assigns to the variable x the current state of
evaluation and evaluates ϕ. The operator @xϕ evaluates ϕ in the state assigned
to x.

Each signature morphism σ : A → A′ can be extended to a formula transla-
tion function σ̂ : FmD↓

(A) → FmD↓
(A′), that keeps variables and connectives

and replaces each action a by σ(a). If we restrict σ̂ to sentences we get the trans-
lation function SenD↓

(σ) : SenD↓
(A) → SenD↓

(A′) with SenD↓
(σ)(ϕ) = σ̂(ϕ) for

ϕ ∈ SenD↓
(A). Hence we have the sentence functor SenD↓

: SignD↓ → Set, that
maps each signature to the set of its sentences, and each signature morphism to
the corresponding translation of sentences.

To define the satisfaction relation formally we need to clarify how composed
actions are interpreted in models. Let α ∈ Act(A) and M ∈ ModD↓

(A). The
interpretation of an action α in M extends the interpretation of atomic actions
by Rα;α′ = Rα · Rα′ , Rα+α′ = Rα ∪ Rα′ and Rα∗ = (Rα)�, with the operations
◦, ∪ and � standing for relational composition, union and reflexive-transitive
closure. For a set X of variables and an A-model M = (W,w0, R), a valuation
is a function g : X → W . Given such a valuation g, a variable x ∈ X and
a state w ∈ W , g[x �→ w] denotes the valuation with g[x �→ w](x) = w and
g[x �→ w](y) = g(y) for any y ∈ X, y �= x. Given an A-model M = (W,w0, R),
w ∈ W and g : X → W ,

– M, g, w |= tt is true; M, g, w |= ff is false;
– M, g, w |= x iff g(x) = w;
– M, g, w |=↓ x. ϕ iff M, g[x �→ w], w |= ϕ;
– M, g, w |= @xϕ iff M, g, g(x) |= ϕ;
– M, g, w |= 〈α〉ϕ iff there is a v ∈ W with (w, v) ∈ Rα and M, g, v |= ϕ;
– M, g, w |= [α]ϕ iff for any v ∈ W with (w, v) ∈ Rα it holds M, g, v |= ϕ;
– M, g, w |= ¬ϕ iff it is false that M, g, w |= ϕ;
– M, g, w |= ϕ ∧ ϕ′ iff M, g, w |= ϕ and M, g, w |= ϕ′;
– M, g, w |= ϕ ∨ ϕ′ iff M, g, w |= ϕ or M, g, w |= ϕ′.

We write M, w |= ϕ if, for any valuation g : X → W , we have M, g, w |= ϕ. If ϕ
is an A-sentence, then the valuation is irrelevant, i.e., M, g, w |= ϕ iff M, w |= ϕ.
M satisfies an A-sentence ϕ, written M |= ϕ, if M, w0 |= ϕ.

Finally, as shown in [13], the satisfaction condition holds and therefore these
ingredients constitute an institution in the sense of Goguen and Burstall [6]:

Theorem 1 (Satisfaction condition). For any signature morphism

A
σ �� A′ ∈ SignD↓

, model M′ ∈ ModD↓
(A′) and sentence ϕ ∈ SenD↓

(A),
we have

ModD↓
(σ)(M′) |= ϕ iff M′ |= SenD↓

(σ)(ϕ).

Institutions for Behavioural Dynamic Logic with Binders 19

2.2 D↓
∼-Logic

In the observational variant of D↓, called D↓
∼ [12], the signature category and the

sentences are the same as in D↓. Models are also the same, but model morphisms
and the satisfaction relation are different. Both make use of the observational
equality of states, denoted by ∼M for any A-model M. For M = (W,w0, R),
observational equality w ∼M v holds for two states w, v ∈ W if there exists a
bisimulation relation B ⊆ W × W such that (w, v) ∈ B.

Definition 4 (Observational morphisms). Let M = (W,w0, R) and M′ =
(W ′, w′

0, R
′) be two A-models. An observational morphism h : M → M′ is a

relation h ⊆ W × W ′ containing (w0, w
′
0) such that the following conditions are

satisfied:

1. For any a ∈ A, w, v ∈ W,w′ ∈ W ′ such that (w,w′) ∈ h:
if (w, v) ∈ Ra, then there is a v′ ∈ W ′ such that (w′, v′) ∈ R′

a and (v, v′) ∈ h.
2. For any w, v ∈ W,w′, v′ ∈ W ′ such that (w,w′) ∈ h and (v, v′) ∈ h:

if w ∼M v, then w′ ∼M′ v′.
3. For any w, v ∈ W,w′ ∈ W ′ such that (w,w′) ∈ h:

if w ∼M v, then (v, w′) ∈ h.
4. For any w ∈ W,w′, v′ ∈ W ′ such that (w,w′) ∈ h:

if w′ ∼M′ v′, then (w, v′) ∈ h.

A novelty of this model category is that isomorphism corresponds to bisim-
ulation equivalence of models (see [12]). The observational satisfaction relation
M, g, w |=∼ ϕ is defined exactly as |= with the exception of the satisfaction for
variables which relaxes their interpretation up to observational equality, i.e., for
any valuation g and state w,

M, g, w |=∼ x iff g(x) ∼M w (3)

These two adjustments on D↓ ensure that D↓
∼ has the Hennessy-Milner prop-

erty: Modal invariance holds w.r.t. |=∼ and two image-finite models satisfying
w.r.t. |=∼ the same sentences are bisimulation equivalent; see [12]. However, as
illustrated in Sect. 1.1, the satisfaction condition does not hold in D↓

∼, i.e. D↓
∼ is

not an institution.

3 Behavioural Institution

To get a behavioural institution we use the ideas of Misiak [15] who has studied
institutions with behavioural semantics in arbitrary logical systems with concrete
model categories. More specifically, our model categories will contain as objects
A-models, i.e. transition systems with labels from A. The behavioural semantics
introduced in this section is not committed to the observational equality but,
following Misiak’s idea, to an arbitrary family of equivalence relations, called
behavioural structure. It should however be pointed out that, in contrast to
Misiak’s approach, we can define an explicit satisfaction relation here due to the
specific model category of labeled transition systems.

20 R. Hennicker and A. Madeira

Definition 5. A behavioural structure for a set of actions A, i.e. A ∈ SignD↓
,

is a family ≈ = (≈M)M∈ModD↓
(A)

of equivalence relations ≈M ⊆ W × W .

Definition 6 (Behavioural signatures and their morphisms). A behav-
ioural signature is a pair (A,≈) where A ∈ SignD↓

is a set of actions and ≈
is a behavioural structure for A. Given two behavioural signatures (A,≈) and
(A′,≈′), a behavioural signature morphism (A,≈) σ �� (A′,≈′) is a function

σ : A → A′ such that for any M′ ∈ ModD↓
(A′), we have ≈(M′|σ)= (≈′

M′)|σ.

Lemma 1. The behavioural signatures with respective morphisms define a cat-
egory. This category will be denoted by SignB.

For each behavioural signature (A,≈), sentences are given by A-sentences as
before. The equivalences ≈M used in a behavioural signature (A,≈) need not to
be congruence relations for all A-models M. Following Misiak’s approach, in the
new behavioural model category over a signature (A,≈) only those A-models M
are admitted as (A,≈)-models, for which ≈M is a congruence relation.

Definition 7 ((A,≈)-Models and their morphisms). An A-model M ∈
ModD↓

(A) is an (A,≈)-model if≈M is a congruence, in the following sense: for any
a ∈ A and w,w′, v ∈ W , if w ≈M v and (w,w′) ∈ Ra, then there is a v′ ∈ W such
that (v, v′) ∈ Ra and w′ ≈M v′. The morphisms between (A,≈)-models are like
observational model morphisms in Definition 4, but observational equalities ∼M
are replaced by the congruences ≈M for each (A,≈)-model M.

Lemma 2. The class of (A,≈)-models with their respective morphisms define a
category. This category will be denoted by ModB(A,≈).

The next lemma shows that the reduct functor for models in ModD↓
(A)

leads to a reduct functor for models in ModB(A,≈). This is important to get an
institution. It follows from the definition of behavioural signature morphisms.

Lemma 3. Let σ : (A,≈) → (A′,≈′) ∈ SignB be a behavioural signature mor-
phism and M′ an (A′,≈′)-model. Then, the A-model M′|σ is an (A,≈)-model.

Proof. We have to prove that ≈(M′|σ) is a congruence in M′|σ. Let us suppose
w,w′, v ∈ W ′|σ such that w ≈(M′|σ) w′ and (w, v) ∈ (R′|σ)a = R′

σ(a). Since σ

is a behavioural signature morphism we have that ≈(M′|σ)= (≈′
M′)|σ. Hence,

we have

w
≈′

M′

(R′|σ)a

��

w′

v

(1)
=⇒ ∃v ∈ W ′,

w
≈′

M′

R′
σ(a)

��

w′

R′
σ(a)

��

v
≈′

M′
v′

(2)
=⇒

w
≈M′|σ

(R′|σ)a

��

w′

(R′|σ)a

��

v ≈M′|σ
v′

where (1) holds since ≈′
M′ is a congruence in M′ and (2) holds, since v′ ∈ W ′

is accessible by Rσ(a), thus v′ ∈ W ′|σ and by the definition of R′|σ.

Institutions for Behavioural Dynamic Logic with Binders 21

As a consequence of the last lemma, we can use again the construction of
reducts |σ to define a models functor ModB : (SignB)op → Cat similarly as done
for D↓ in Sect. 2.1.

Definition 8 (Behavioural satisfaction |=(A,≈)). Let M be an (A,≈)-model,
w ∈ W and g : X → W a valuation. The behavioural satisfaction of an A-
formula ϕ in state w of M w.r.t. valuation g, denoted by M, g, w |=(A,≈) ϕ, is
defined analogously to the satisfaction relation |= in Sect. 2.1, with the exception
of M, g, w |=(A,≈) x iff g(x) ≈M w. For A-sentences ϕ valuations are irrelevant
and we define M |=(A,≈) ϕ, if M, w0 |=(A,≈) ϕ.

The next theorem is the key to get the satisfaction relation. It relies on the
definition of behavioural signature morphisms.

Theorem 2. Let σ : (A,≈) → (A′,≈′) be a signature morphism and M′ =
(W ′, w′

0, R
′) ∈ ModB(A′,≈′). Then, for any w ∈ W ′|σ(⊆ W ′), for any valuation

g : X → W ′|σ, and for any A-formula ϕ,

ModB(σ)(M′), g, w |=(A,≈) ϕ iff M′, g, w |=(A′,≈′) σ̂(ϕ).

Proof. The proof is done by induction on the structure of formulas. We consider
below atomic formulas x, ↓ x.ϕ and 〈α〉ϕ. Actually, cases 〈α〉ϕ and [α]ϕ are
proved similarly, and the remaining cases are trivial.

In the sequel we denote ModB(σ)(M′) by M.
Case x:

M, g, w |=(A,≈) x

⇔ { |=(A,≈) def.}
w ≈M g(x)

⇔ { ≈M = (≈′
M′)|σ }

w (≈′
M′)|σ g(x)

⇔ { w, g(x) ∈ W ′|σ and by |σ def. }

w ≈′
M′ g(x)

⇔ { |=(A′,≈′) def.}
M′, g, w |=(A′,≈′) x

⇔ { σ̂ def.}
M′, g, w |=(A′,≈′) σ̂(x)

Case ↓ x.ϕ:

M, g, w |=(A,≈)↓ x.ϕ

⇔ { |=(A,≈) def.}
M, g[x �→ w], w |=(A,≈) ϕ

⇔ { I.H.}
M′, g[x �→ w], w |=(A′,≈′) σ̂(ϕ)

⇔ { |=(A′,≈′) def.}
M′, g, w |=(A′,≈′)↓ x.σ̂(ϕ)

⇔ { σ̂ def.}
M′, g, w |=(A′,≈′) σ̂(↓ x.ϕ)

22 R. Hennicker and A. Madeira

Case 〈α〉ϕ:

M, g, w |=(A,≈) 〈α〉ϕ
⇔ { |=(A,≈) def.}

M, g, v |=(A,≈) ϕ for some v ∈ W ′|σ
such that (w, v) ∈ (R′|σ)α

⇔ { step (�) + I.H.}
M′, g, v |=(A′,≈′) σ̂(ϕ) for some v ∈ W ′

such that (w, v) ∈ R′
σ̄(α)

⇔ { |=(A′,≈′) def.}
M′, g, w |=(A′,≈′) 〈σ(α)〉σ̂(ϕ)

⇔ { σ̂ def.}
M′, g, w |=(A′,≈′) σ̂(〈α〉ϕ)

For the step (�) we just have to observe that for any action α ∈ Act(A), R′|α =
R′

σ(α)∩(W ′|σ)2. This can be easily seen by induction on the structure of actions:
The property holds by definition for basic actions a ∈ A. We consider below
sequential composition of actions (α;α′); the remaining cases follow a similar
argument. So, we have Rα;α′ = Rα·Rα′ =I.H. (R′

σ(α)∩(W ′|σ)2)·(R′
σ(α)∩(W ′|σ)2)

Hence,

(w, v) ∈ (R′
σ(α) ∩ (W ′|σ)2) · (R′

σ(α) ∩ (W ′|σ)2)

⇔ { · def.}
(∃z)

(
(w, z) ∈ (R′

σ(α) ∩ (W ′|σ)2) ∧ (z, v) ∈ (R′
σ(α′) ∩ (W ′|σ)2)

)

⇒ { · def. + rewriting }
(∃z)

(
(w, z) ∈ (R′

σ(α) ∧ (z, v) ∈ R′
σ(α′)

) ∧
(∃z)

(
(w, z) ∈ (W ′|σ)2 ∧ (z, v) ∈ (W ′|σ)2)

)

⇔ { · def. + rewriting }
(w, v) ∈ (R′

σ(α) · R′
σ(α′)) ∩ ((W ′|σ)2 · (W ′|σ)2)

⇒ { ∩ monotonicity (since (W ′|σ)2 · (W ′|σ)2 ⊆ (W ′|σ)2) + σ def.}
(w, v) ∈ (R′

σ(α;α′)) ∩ (W ′|σ)2

Therefore Rα;α′ ⊆ R′
σ(α;α′) ∩ (W ′|σ)2. For the converse direction:

R′
σ(α;α′) ∩ (W ′|σ)2

= { σ defn + actions interpretation}
(R′

σ(α) · R′
σ(α′)) ∩ (W ′|σ)2

⊆ { ·, ∩ distributivity}
(
(R′

σ(α) ∩ (W ′|σ)2) · (R′
σ(α′) ∩ (W ′|σ)2)

) ∩ (W ′|σ)2
= { I.H.}

(Rα · Rα′) ∩ (W ′|σ)2
= { Rα, Rα′ ⊆ (W ′|σ)2}

Rα · Rα′

= { actions int.}
Rα;α′

Institutions for Behavioural Dynamic Logic with Binders 23

Corollary 1 (Satisfaction condition). Let σ : (A,≈) → (A′,≈′) be a sig-
nature morphism and M′ = (W ′, w′

0, R
′) ∈ ModB(A′,≈′). Then, for any A-

sentence ϕ, we have ModB(σ)(M′) |=(A,≈) ϕ iff M′ |=(A′,≈′) SenB(σ)(ϕ)

Proof. This proof follows directly from Theorem2: the satisfaction of sentences
does not depend on the valuations (all the variables are bound and hence, their
interpretation is determined by the model). Thus, for any state w ∈ W ′|σ(⊆ W ′)
we have ModB(σ)(M′), w |=(A,≈) ϕ iff M′, w |=(A′,≈′) SenB(σ)(ϕ). More-
over, w′

0|σ = w′
0. Hence ModB(σ)(M′), w′

0|σ |=(A,≈) ϕ iff M′, w′
0 |=(A′,≈′)

SenB(σ)(ϕ), i.e., ModB(σ)(M′) |=(A,≈) ϕ iff M′ |=(A′,≈′) SenB(σ)(ϕ).

With the last corollary we have all ingredients to define the behavioural
institution:

Theorem 3. The tuple B = (SignB ,SenD↓
,ModB , (|=(A,≈))((A,≈)∈|SignB |)) is

an institution.

4 Black-Box Functor

The black-box view of an (A,≈)-model M is an A-model that represents the
behaviour of M from the user’s point of view. This model that collapses every-
thing that is identified by ≈M, abstracting distinctions between states related by
≈M, is build via quotient construction. In this section we extend this construc-
tion to a full and faithful functor that maps each (A,≈)-model into (an A-model
representing) its black-box view. Finally we show that this functor preserves and
reflects satisfaction of sentences.

Definition 9. Let M = (W,w0, R) be an (A,≈)-model. The quotient of
M, denoted by M/ ≈M, is the A-model (W/ ≈M, [w0]≈M , R/ ≈M), where
W/≈M= {[w]≈M |w ∈ W} with [w]≈M = {w′ ∈ W |w ≈M w′} and (R/≈M)a =
{([w]≈M , [v]≈M) | there exist w′ ∈ [w]≈M and v′ ∈ [v]≈M s.t. (w, v) ∈ Ra}.
Remark 1. For any a ∈ A and w, v ∈ W , if ([w]≈M , [v]≈M) ∈ (R/≈M)a then
there exists v̂ ∈ [v] such that (w, v̂) ∈ Ra. This follows from the (zig) property
of ∼M. This fact can be generalised to composed actions α ∈ Act(A).

Definition 10. The Black Box map is defined as the pair of maps BB =
(BBobj ,BBhom) where BBobj : |ModB(A,≈)| → |ModD↓

(A)| is a function
defined for each M ∈ ModB(A,≈) by BBobj(M) = M/ ≈M; and BBhom :
Hom(M,M′) → Hom(BB(M),BB(M′)) a function mapping each morphism
h : M → M′ to the relation BB h ⊆ W/≈M × W ′/≈M′ defined by BB h =
{([w]≈M , [w′]≈M′)| there are v ∈ [w]≈M , v′ ∈ [w′]≈M such that (v, v′) ∈ h}. As
usual, we omit in the sequel the subscripts in BB.

Theorem 4. Black box is a functor BB : ModB(A,≈) → ModD↓
(A).

24 R. Hennicker and A. Madeira

Proof. Let us firstly observe that BB h is a morphism in ModD↓
(A). According

to Definition 1, we have to show that (i) it is a function and (ii) that it preserve
transitions. In order to see (i), let us suppose ([w]≈M , [w′]≈M′) ∈ BBh and
([w]≈M , [w′′]≈M′) ∈ BBh. By BBh definition we have that (w,w′) ∈ h and
(w,w′′) ∈ h. Since h is an observational morphism, we have by 2 of Definition 4
that w′ ≈M′ w′′, and hence, [w′]≈M′ = [w′′]≈M′ .2

In order to see (ii), let us suppose, for a given [w]≈M , [v]≈M ∈ W/ ≈M,
that ([w]≈M , [w′]≈M′) ∈ BBh and ([w]≈M , [v]≈M) ∈ (R/≈M)a. By definition
of BBh and of R/≈M, we have that (w,w′) ∈ h and (w, v) ∈ Ra. Moreover,
since h is a morphism we have by 1 of Definition 4 that there is a v′ ∈ W ′ such
that (v, v′) ∈ h and (w′, v′) ∈ R′

a. Thus ([w′]≈M′ , [v′]≈M′) ∈ (R′/≈M′)a and
([v]≈M , [v′]≈M′) ∈ BBh.

Then, in order to be a functor we have also to see that, for any two morphisms

M h �� M′ h′
�� M′′ , BB h · BB h′ = BB h · h′. Then,

([w]≈M , [w′′]≈M′′) ∈ BB h · BB h′

⇔ { relational composition}
∃[w′]≈′

M , ([w]≈M , [w′]≈M′) ∈ BB h

and ([w′]≈M′ , [w′′]≈M′′) ∈ BB h′

⇔ { Step (a)}

∃w′, (w,w′) ∈ h and (w′, w′′) ∈ h′

⇔ { relational composition}
(w,w′′) ∈ h · h′

⇔ { Step (b)}
([w]≈M , [w′′]≈M′′) ∈ BB h · h′

Step (a): implication ⇒: by definition of BB we have that there are w̄ ∈
[w]≈M , w̄′ ∈ [w′]≈M′ and w̄′′ ∈ [w′′]≈M′′ such that (w̄, w̄′) ∈ h and (w̄′, w̄′′) ∈ h′.
But we have also that w̄ ≈M w, w̄′ ≈M′ w′ and w̄′′ ≈M′′ w′′. The implication
follows by 3 and 4 of Definition 4 of the morphism h. Definition of BB entails
the implication ⇐. Justification of Step (b) is analogous. Moreover, BB 1M =
{([w]≈M , [v]≈M)|(w, v) ∈ 1M} = {([w]≈M , [v]≈M))|w ≈M v} = 1BB(M).

Given a model M ∈ ModB(A,≈), BB(M) is called black box view of M.

Theorem 5. The functor BB is full.

Proof. Let us prove that BB is full, i.e. that for any morphism k : BB(M) →
BB(M′) there is an observational morphism h : M → M′ such that k = BB h.
Let us consider the relation h ⊆ W × W ′ = {(v, v′)|([w]≈M , [w′]≈M′) ∈ k,
v ∈ [w]1M , v′ ∈ [w′]1M′ }. It is enough to prove that h is an observational
morphism. Let us check the conditions of Definition 4: In order to see the condi-
tion 1: by assuming (v, r) ∈ Ra and (v, v′) ∈ h, we have by definitions of h and
R/≈M that

2 For sake of uniformity, we still use along the section the relational notation to present
this function, i.e. we use (w, w′) ∈ BBh to represent BBh(w) = w′.

Institutions for Behavioural Dynamic Logic with Binders 25

[v]≈M
(R/≈M)a

k

��

[r]≈M

[v′]≈M′

k is a morphism
==========⇒

[v]≈M
(R/≈M)a

k

��

[r]≈M

k

��

[v′]≈M′
(R/≈M)a

�� [r′]≈M′

∀r′∈[r′]
=====⇒

v
Ra

k

��

r

k

��

v′
Ra

�� r′

Conditions 2, 3 and 4 follow trivially, since v ≈M r implies that [v]≈M = [r]≈M .

Theorem 6. The functor BB is faithful.

Proof. We have to show that, for any observational morphisms h, h′ : M → M′,
BB h = BB h′ implies h = h′. In view of contradiction, let us suppose that BB h =
BB h′ and h �= h′. Then, there is a pair (w,w′) such that (w,w′) ∈ h and (w,w′) �∈
h′ (or vice-versa). By BB definition we have ([w]≈M , [w′]≈M′) ∈ BBh′(= BBh).
Hence, there is an r ∈ [w]≈M and r′ ∈ [w′]≈M′ such that (r, r′) ∈ h′. Since
r ≈M w and h′ is a morphism, we have by 3 of Definition 4 that (w, r′) ∈ h′.
Moreover, since r′ ≈M′ w′, we have by 4 of Definition 4 that (w,w′) ∈ h′, what
contradicts our initial assumption. Therefore h = h′.

Theorem 7. Let M ∈ ModB(A,≈) be a model. Then,

M iso∼ M′ iff M/≈M iso M′/≈M′ .

Proof. Implication ‘⇒’ holds since BB is a functor. Implication ‘⇐’ is entailed
because BB is a full and faithful functor

In the remainder of this section we show that the functor BB preserves and
reflects satisfaction. This result is a simple generalisation of Theorem 5 in [12].

Theorem 8. For any model M ∈ ModB(A,≈) and for any A-sentence ϕ,

M |=(A,≈) ϕ iff M/≈M|= ϕ (4)

Proof. For the proof we show, more generally, that for any w ∈ W , valuation
g : X → W and A-formula ϕ,

M, g, w |=(A,≈) ϕ iff M/≈M, g/≈M, [w]≈M |= ϕ

where g/≈M: X → W is defined by (g/≈M)(x) = [g(x)]≈M . The proof can be
performed by induction over the structure of A-formulas. For the base formulas
ϕ = x, we have:

M, g, w |=(A,≈) x

⇔ { |=(A,≈) def.}
g(x) ≈M w

⇔ { equivalence classes def.}

[g(x)]≈M = [w]≈M

⇔ { [g(x)]≈M = (g/≈M)(x) + |= def.}
M/≈M, g/≈M, [w]≈M |= x

26 R. Hennicker and A. Madeira

For the case ϕ = 〈α〉φ, we have:

M, g, w |=(A,≈) 〈α〉φ
⇔ { |=(A,≈) def.}

there exists v ∈ W with (w, v) ∈ Rα and M, g, v |=(A,≈) φ

⇔ { step � }
there exists [v′]≈M ∈ W/≈M with

([w]≈M , [v′]≈M) ∈ (R/≈M)α and M/≈M, g/≈M, [v′]≈M |= φ

⇔ { |= def.}
M/≈M, g/≈M, [w]≈M |= 〈α〉φ

Step �: The direction “⇒” is trivial using v′ = v and the Induction Hypothesis.
For the direction “⇐” assume ([w]≈M , [v′]≈M) ∈ (R/ ≈M)α for some v′. By
Remark 1 we know that there exists v̂ ∈ [v′]≈M such that (w, v̂) ∈ Rα. From
M/≈M, g/≈M, [v′]≈M |= φ it follows that M/≈M, g/≈M, [v̂]≈M |= φ (since
[v̂]≈M = [v′]≈M). By Ind. Hyp. we get M, g, v̂ |=(A,≈) φ. Since (w, v̂) ∈ Rα, we
have M, g, w |=(A,≈) 〈α〉φ.

The remaining cases are straightforward.

5 Institution of Crucial Actions

This section introduces the “Logic of Crucial Actions”. We show that this logic
is a specific institution of observational dynamic logic with binders, inheriting
the whole theory developed in the previous sections. The crucial idea to do this
is to define signatures and signature morphisms syntactically and to relate them
to behavioural signatures and behavioural signature morphisms as considered
in Sect. 3. An important extra ingredient is that the restriction of A-models to
those on which the given equivalences are congruences will yield, in the case of
crucial actions signatures, exactly observational equalities. Thus, by applying the
results of Sect. 3, we have recovered the satisfaction condition for the satisfaction
relation |=∼ used in D↓

∼, since signatures with crucial actions have less models
than in D↓

∼.

Definition 11 (Crucial actions signatures and morphisms). A crucial
actions signature is a pair (A,C) where A is a set of actions, and C ⊆ A is a
set of crucial actions. Given two crucial actions signatures (A,C) and (A′, C ′),
a crucial actions signature morphism σ : (A,C) → (A′, C ′) is a function σ :
A → A′ such that σ[C] = C ′.

Lemma 4. Crucial action signatures with their morphisms define a category.
This category will be denoted by SignCr.

Institutions for Behavioural Dynamic Logic with Binders 27

Sentences of this logic are the same as in D↓
∼ and in D↓. The sentences functor

SenCr : SignCr → Set is defined as SenD↓
by forgetting the second component

of the signatures. Now, we define a variant of bisimulation on A-models which
takes into account only crucial actions in C. In the particular case where C = A
we get the usual notion of (strong) bisimulation.

Definition 12 (Crucial actions bisimulation). Let (A,C) be a crucial
actions signature and let M = (W,w0, R) be an A-model. An (A,C)-bisimulation
on M = (W,w0, R) is a relation B ⊆ W × W such that (w0, w0) ∈ B and

(zig) For any c ∈ C, w, v, w′ ∈ W such that (w,w′) ∈ B, if (w, v) ∈ Rc, then
there is a v′ ∈ W such that (w′, v′) ∈ Rc and (v, v′) ∈ B.

(zag) For any c ∈ C, w, v, v′ ∈ W such that (w,w′) ∈ B, if (w′, v′) ∈ R′
c, then

there is a v ∈ W such that (w, v) ∈ Rc and (v, v′) ∈ B.

Definition 13 ((A,C)-Equality). Let (A,C) be a crucial actions signature.
For any A-model M the (A,C)-equality on M is the relation ∼C

M ⊆ W × W
such that, for any w,w′, w ∼C

M w′ iff there is an (A,C)-bisimulation B in M
such that (w,w′) ∈ B.

Lemma 5. The family ∼C= (∼C
M)M∈ModD↓

(A)
is a behavioural structure.

Proof. For any A-model M, the (A,C)-equality ∼C
M is an equivalence relation.

Given a crucial actions signature (A,C), we consider, along the lines of
Sect. 3, only those A-models M as admissible (A,C)-models, for which the
(A,C)-equality ∼C

M is a congruence.

Definition 14 ((A,C)-Models). A model M ∈ ModD↓
(A) is an (A,C)-model

if ∼C
M is a congruence relation on M.

Example 1. Let A′ = {a, b} and C ′ = {a}. The A′-model M′ of Fig. 2 is not
an (A′, C ′)-model since we have w′

0 ∼C′
M′ w′

1 and (w′
0, w

′
1) ∈ R′

b but action b is
not enabled in w′

1. Now, consider the A′-model M′′ in Fig. 3. It is obviously an
({a, b}, {a})-model.

Fig. 3. ({a, b}, {a})-model

The important point to link the current notions
to the observational equality ∼M considered in D↓

∼
is given by the next lemma.

Lemma 6. Let M be an A-model. M is an (A,C)-
model if, and only if, the (A,C)-equality on M
coincides with the observational equality ∼M, i.e.
∼C

M =∼M.

Proof. The implication “⇐” is easy since the observational equality ∼M is
trivially a congruence relation and so is ∼C

M by assumption. For the implica-
tion “⇒” we have to prove that ∼M = ∼C

M. The inclusion ∼M ⊆ ∼C
M is

28 R. Hennicker and A. Madeira

obvious - we have the bisimulation properties assured for all actions of A and
hence also for all actions of C. For the converse inclusion, we observe that for
any congruence ≡ in M, w0 ≡ w0 (any congruence is an equivalence relation).
Moreover, by definition, it satisfies (zig) and, because of its symmetry (any con-
gruence is an equivalence relation), (zag) also holds. Therefore any congruence
≡ in M is a bisimulation in M. Thus, since ∼C

M is a congruence and by bisim-
ulation equivalence definition, we have ∼C

M ⊆ ∼M.

Example 2. Consider again the A′-models M′ and M′′ of the previous example.
Actually, we have that the observational equality ∼M′ is the identity of states in
M′, while the crucial actions equality ∼C′

M′ identifies all states of M′. Due to the
previous lemma, this shows again that M′ is not an (A′, C ′)-model. Considering
M′′, however, we have ∼M′′ = ∼C′

M′′ since the execution of action b does not
distinguish more elements than distinguished by a.

For each crucial actions signature (A,C) we have the category of models
ModCr(A,C) = ModB(A,∼C). Next we show that crucial actions signature
morphisms are behavioural signature morphisms in the sense of Definition 6.

Lemma 7. Let σ : (A,C) → (A′, C ′) be a crucial actions signature morphism
and M′ be an (A′, C ′)-model. Then, ∼C

(M′|σ) = (∼C′
M′)|σ.

Proof. Let us suppose w ∼C
(M′|σ) w′. Then, there is an (A,C)-bisimulation B ⊆

W ′|σ × W ′|σ such that (w,w′) ∈ B. Since for any c ∈ C, (R′|σ)c = R′
σ(c), and

σ[C] = C ′, the relation B is also an (A′, C ′)-bisimulation and, hence w ∼C′
M′ w′.

Moreover, (w,w′) ∈ (W |σ)2. Hence w
(∼C′

M′ ∩ (W ′|σ)2
)
w′, i.e., w(∼C′

M′)|σw′.
Let us suppose w

(∼C′
M′ ∩ (W ′|σ)2

)
w′. Let B′ ⊆ W ′ × W ′ be an (A′, C ′)-

bisimulation containing w and w′ (its existence is assured by w ∼C′
M′ w′). Again,

since for any c ∈ C, (R′|σ)c = R′
σ(c), and σ[C] = C ′, we have that B′ satisfies

the conditions of (A′, C ′)-bisimulation. We have also that W ′|σ is closed by A-
actions. Hence, B′ ∩ (W ′|σ)2 is an (A,C)-bisimulation. Therefore w ∼C

(M′|σ) w′.

As a direct consequence of this lemma we have the following result:

Corollary 2. Let σ : A → A′ be a function. If σ : (A,C) → (A′, C ′) is a cru-
cial actions signature morphism, then σ : (A,∼C) → (A′,∼C′

) is a behavioural
signature morphism.

As a consequence of the last corollary and Lemma 3 we get the functor
ModCr : (SignCr)op → Cat. Next, by taking |=(A,C) as the satisfaction rela-
tion |=(A,∼C) and instantiating Corollary 1 we have:

Corollary 3 (Satisfaction condition for logic of crucial actions). Let
σ : (A,C) → (A′, C ′) be a crucial actions signature morphism and M′ be an
(A′, C ′)-model. Then, for any A-sentence ϕ, we have

ModCr(σ)(M′) |=(A,C) ϕ iff M′ |=(A′,C′) SenCr(σ)(ϕ)

Institutions for Behavioural Dynamic Logic with Binders 29

Theorem 9 (Crucial actions institution). The tuple Cr =
(
SignCr,SenCr,

ModCr, (|=(A,C))(A,C)∈|SignCr|
)

is an institution.

Remark 2. As a consequence of Lemma 6 the satisfaction relation |=(A,C) coin-
cides with the observational satisfaction relation |=∼ (see Sect. 2.2) if we use it
just for (A,C)-models.

Example 3. Coming back to the example considered in Sect. 1 we want to empha-
sise that the problem considered there does not apply anymore, if we consider the
crucial actions signature morphism σ : ({a}, {a}) → ({a, b}, {a}) with σ(a) = a.
Then, the structure M′ in Fig. 2 is not an ({a, b}, {a})-model, as explained
above, and therefore the reduct w.r.t. σ is not meaningful in the crucial actions
institution. The situation is different, however, if we consider the model M′′ of
Fig. 3 whose reduct w.r.t. σ is just the model M of Fig. 2. In this case we have
M′′ |=∼↓ x.〈a〉x and M |=∼↓ x.〈a〉x; see Remark 2.

According to the results of Sect. 4 we get for free the black-box functor map-
ping (A,C)-models to A-models by constructing quotients w.r.t. the (A,C)-
equalities ∼C

M. In particular, we can instantiate Theorem8:

Corollary 4. For any (A,C)-model M and for any A-formula ϕ,

M |=(A,C) ϕ iff M/∼C
M |= ϕ.

6 Conclusion and Future Work

The observational logic with binders D↓ was suggested in [13] as a suitable for-
malism to develop reactive systems. This research was pursued in [12] with the
introduction of an alternative semantics for D↓, endowing it with modal invari-
ance. However, with this accommodation, the satisfaction condition was lost, i.e.
unlike the original D↓, this new logic is not an institution. The present paper
works on this handicap. As done in the context of the observational semantics
(see [15]) we adopted behavioural structures - families of equivalence relations
on the states of each model - as behavioural interpretations of the equalities on
the states. Then, by adjusting the morphisms of the category of signatures (as
done in [3,7,15]) the (standard) reduct works properly to assure the satisfaction
condition. Under this abstract setting, the black-box functor was defined and the
relation between the strict satisfaction of D↓ and the observational ones of D↓

∼
was established. Finally, an interesting instantiation of this generic institution
was presented - the Crucial Actions Institution.

These efforts on the parametrization of the logic with generic observational
structures (i), as well on the adjustment of D↓

∼ to recover the institutional nature
of D↓ (ii) would be worthy explored in the future. Concerning the direction (i),
we are looking for a specific observational structure (maybe combined with some
slight adaptations of D↓

∼) to deal with (internal) τ -transitions (e.g. [9,14]). More-
over, in analogy with what was done in [3] we intend to define an institutional

30 R. Hennicker and A. Madeira

encoding, in sense of [17], from D↓
∼ to D↓. This could provide useful tool support

for D↓
∼ borrowed from D↓ - a calculus for D↓ was already suggested in a journal

extended version of [13] (currently in revision process). On the direction (ii),
it would be interesting to explore the ‘once and for all’ techniques and results
established for generic institutions. In this view, the use and characterisation of
the Casl-in-the-large specification constructors [1] in D↓

∼ specifications, as well
as the integration of these institutions in HETS [16], could provide appropriate
conditions to make D↓

∼ (and D↓) an effective formal method for reactive systems
development.

Acknowledgement. We would like to thank the anonymous reviewers of this paper
for their careful reviews with many useful comments and suggestions.

References

1. Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P.D., Sannella,
D., Tarlecki, A.: CASL: the common algebraic specification language. Theor. Com-
put. Sci. 286(2), 153–196 (2002)

2. Barbuti, R., Francesco, N.D., Santone, A., Vaglini, G.: Selective mu-calculus and
formula-based equivalence of transition systems. J. Comput. Syst. Sci. 59(3), 537–
556 (1999)

3. Bidoit, M., Hennicker, R.: Constructor-based observational logic. J. Log. Algebr.
Program. 67(1–2), 3–51 (2006)

4. Braüner, T.: Hybrid Logic and Its Proof-Theory. Applied Logic Series. Springer,
Dordrecht (2010). doi:10.1007/978-94-007-0002-4

5. Goguen, J.: Types as theories. In: George Michael Reed, A.W.R., Wachter, R.F.,
(eds.) Topology and Category Theory in Computer Science (1991)

6. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

7. Goguen, J.A., Malcolm, G.: A hidden agenda. Theor. Comput. Sci. 245(1), 55–101
(2000)

8. Goguen, J., Roşu, G.: Hiding more of hidden algebra. In: Wing, J.M., Woodcock,
J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1704–1719. Springer, Heidelberg
(1999). doi:10.1007/3-540-48118-4 40

9. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
11. Hennicker, R., Bidoit, M.: Observational logic. In: Haeberer, A.M. (ed.) AMAST

1999. LNCS, vol. 1548, pp. 263–277. Springer, Heidelberg (1998). doi:10.1007/
3-540-49253-4 20

12. Hennicker, R., Madeira, A.: Behavioural semantics for the dynamic logic with
binders. In: Roggenbach, M. (ed.) Recent Trends in Algebraic Development Meth-
ods - Selected Papers of WADT 2016. Springer (2016, to appear)

13. Madeira, A., Barbosa, L.S., Hennicker, R., Martins, M.A.: Dynamic logic with
binders and its application to the development of reactive systems. In: Sampaio,
A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 422–440. Springer, Cham
(2016). doi:10.1007/978-3-319-46750-4 24

14. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

http://dx.doi.org/10.1007/978-94-007-0002-4
http://dx.doi.org/10.1007/3-540-48118-4_40
http://dx.doi.org/10.1007/3-540-49253-4_20
http://dx.doi.org/10.1007/3-540-49253-4_20
http://dx.doi.org/10.1007/978-3-319-46750-4_24

Institutions for Behavioural Dynamic Logic with Binders 31

15. Misiak, M.: Behavioural semantics of algebraic specifications in arbitrary logical
systems. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol.
3423, pp. 144–161. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31959-7 9

16. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 40

17. Tarlecki, A.: Towards heterogeneous specifications. In: Frontiers of Combining Sys-
tems (FroCoS 1998). Applied Logic Series, pp. 337–360. Kluwer Academic Pub-
lishers (1998)

http://dx.doi.org/10.1007/978-3-540-31959-7_9
http://dx.doi.org/10.1007/978-3-540-71209-1_40

The Delay Monad and Restriction Categories

Tarmo Uustalu and Niccolò Veltri(B)

Department of Software Science, Tallinn University of Technology,
Akadeemia tee 21B, 12618 Tallinn, Estonia

{tarmo,niccolo}@cs.ioc.ee

Abstract. We continue the study of Capretta’s delay monad as a means
of introducing non-termination from iteration into Martin-Löf type the-
ory. In particular, we explain in what sense this monad provides a canon-
ical solution. We discuss a class of monads that we call ω-complete
pointed classifying monads. These are monads whose Kleisli category
is an ω-complete pointed restriction category where pure maps are total.
All such monads support non-termination from iteration: this is because
restriction categories are a general framework for partiality; the presence
of an ω-join operation on homsets equips a restriction category with a
uniform iteration operator. We show that the delay monad, when quo-
tiented by weak bisimilarity, is the initial ω-complete pointed classifying
monad in our type-theoretic setting. This universal property singles it
out from among other examples of such monads.

1 Introduction

The delay datatype was introduced by Capretta [4] in order to facilitate the
definition of non-terminating functions in type theory and has been used as
such by several authors, see, e.g., Danielsson’s work [10] for an application to
operational semantics or Benton et al.’s work [2] on domain theory in type theory.
Inhabitants of the delay datatype are “delayed values”, called computations
throughout this paper. They can be non-terminating and not return a value at
all. Often, one is only interested in termination of computations and not the exact
computation time. Identifying computations that only differ by finite amounts
of delay corresponds to quotienting the delay datatype by termination-sensitive
weak bisimilarity. In earlier work [5], we showed that the monad structure of
the delay datatype is preserved under quotienting by weak bisimilarity in an
extension of type theory with inductive-like quotient types à la Hofmann [14],
proposition extensionality and the axiom of countable choice.

It is common in the type-theoretic programming community to say that the
quotiented delay monad is useful for “modeling partial functions” or “introduc-
ing non-termination as an effect” in type theory. In this paper, we explain in what
sense exactly this monad meets these aims. To do so, we introduce the notion of
ω-complete pointed classifying monad. Such a monad is first of all a “monad for
partiality”, in that its Kleisli category is a restriction category where pure maps
are total. Cockett and Lack [8] have termed such monads classifying monads;
c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 32–50, 2017.
DOI: 10.1007/978-3-319-67729-3 3

The Delay Monad and Restriction Categories 33

the restriction categories of Cockett and Lack [7] are an axiomatic approach to
partiality where every partial function is required to define a partial endofunc-
tion on its domain, the corresponding partial identity function, meeting certain
equational conditions. Moreover, an ω-complete pointed classifying monad is a
“monad for non-termination”, in that its Kleisli category is ωCPPO-enriched
wrt. the “less defined than” order on homsets induced by the restriction oper-
ation. In other words, the Kleisli category is an ω-complete pointed restriction
category (in a sense that is analogous to finite-join restriction categories [13]).

We show that the quotiented delay datatype possesses an ω-complete pointed
classifying monad structure. To this end, we first prove that the quotiented
delay datatype delivers free ω-complete pointed partial orders. From this, we
further prove that the quotiented delay datatype is the initial ω-complete pointed
classifying monad. Intuitively, this tells us that the Kleisli category of this monad
is the minimal setting in Martin-Löf type theory for non-terminating functions.

The initiality result is only interesting, if the category of ω-complete pointed
classifying monads contains at least some other interesting examples. We show
that the datatype of “values on conditions” also possesses an ω-complete pointed
classifying monad structure and observe that it is not isomorphic to the quo-
tiented delay monad.

Throughout the paper, we reason constructively, in type theory. The maybe
monad is therefore a classifying monad, but not an ω-complete pointed classi-
fying monad. Classically, both the delay monad and the conditional monad are
isomorphic to the maybe monad and thus just complications of something that
can be expressed much simpler. But constructively they are very different.

The paper is organized as follows. In Sect. 2, we define ω-complete pointed
classifying monads and prove some properties about them. In Sect. 3, we intro-
duce the delay monad and weak bisimilarity. In Sect. 4, we quotient the delay
monad by weak bisimilarity and we show that the resulting monad is a clas-
sifying monad. In Sect. 5, we construct an alternative monad structure on the
delay datatype, which makes it an almost-classifying monad. In Sect. 6, we prove
that the quotiented delay datatype is the initial ω-complete pointed classifying
monad. In Sect. 7, we present some other examples of ω-complete pointed clas-
sifying monads. Finally, in Sect. 8, we draw some conclusions and discuss future
work.

Our discussion on ω-complete pointed classifying monads applies to general
categories. The discussion of the delay monad is carried out for Set; generalizing
it is future work. We reiterate that we only accept constructive reasoning.

We have fully formalized the development of the paper in the dependently
typed programming language Agda [16]. The code is available at http://cs.ioc.ee/
∼niccolo/omegacpcm/. It uses Agda version 2.4.2.3 and Agda standard library
version 0.9.

The Type-Theoretical Framework. Our work is settled in Martin-Löf type theory
extended with the following extensional concepts: function extensionality (point-
wise equal functions are equal), proposition extensionality (logically equivalent
propositions are equal) and inductive-like quotient types à la Hofmann [14].

http://cs.ioc.ee/~niccolo/omegacpcm/
http://cs.ioc.ee/~niccolo/omegacpcm/

34 T. Uustalu and N. Veltri

Equivalently, we could work in homotopy type theory, where function and
proposition extensionality are consequences of the univalence axiom and quo-
tient types are definable as higher inductive types. Remember that a type is a
proposition when every two of its inhabitants are equal.

We assume uniqueness of identity proofs, which corresponds to working with
0-truncated types in homotopy type theory. We also assume that strongly bisim-
ilar coinductive data are equal.

We write = for definitional equality and ≡ for propositional equality (the
identity type).

We review quotient types. Let X be a type and R an equivalence relation on
X. Given another type Y , we say that a function f : X → Y is R-compatible
(or simply compatible, when the equivalence relation is clear from the context)
if x1Rx2 implies f x1 ≡ f x2. The notion of R-compatibility extends straight-
forwardly to dependent functions. The quotient of X by R is described by the
following data:

(i) a carrier type X/R;
(ii) a R-compatible map [] : X → X/R;
(iii) a dependent eliminator: for every family of types Y : X/R → Uk and

R-compatible function f :
∏

x:X Y [x], there exists a function lift f :∏
q:X/R Y q such that lift f [x] ≡ f x for all x : X.

We postulate the existence of the above data for all X and R.

2 ω-Complete Pointed Classifying Monads

In this section, we introduce our monads for non-termination. We call them
ω-complete pointed classifying monads. Their definition is built on Cockett and
Lack’s restriction categories and classifying monads [7,8] and Cockett and Guo’s
finite-join restriction categories [13]. Throughout this section, we work in a fixed
base category C.

2.1 Classifying Monads

First, some notation. Given a monad T = (T, η, (−)∗), we write Kl(T) for its
Kleisli category. We write g � f for the composition g∗ ◦ f of g and f in Kl(T).

Definition 1. We call a monad T an almost-classifying monad, if there exists
an operation

f : X → TY

f : X → TX

called restriction, subject to the following conditions:

CM1 f � f ≡ f , for all f : X → TY
CM2 g � f ≡ f � g, for all f : X → TY and g : X → TZ

The Delay Monad and Restriction Categories 35

CM3 g � f ≡ g � f , for all f : X → TY and g : X → TZ
CM4 g � f ≡ f � g � f , for all f : X → TY and g : Y → TZ
CM5 ηY ◦ f ≡ ηX , for all f : X → Y .

We call it a classifying monad, if it also satisfies

CM6 idTX ≡ TηX .

In other words, T is an almost-classifying monad, if its Kleisli category Kl(T)
is a restriction category (conditions CM1–CM4) in which pure maps are total
(condition CM5). The restriction of a map f : X → TY should be thought of
as a “partial identity function” on X, a kind of a specification, in the form of
a map, of the “domain of definedness” of f (which need not be present in the
category as an object). A map f : X → TY is called total, if its restriction is
the identity function on X in Kl(T), i.e., if f ≡ ηX .

The additional condition CM6 of a classifying monad was postulated by
Cockett and Lack in order to connect classifying monads and partial map
classifiers, or more generally, classified restriction categories and classified M-
categories (Theorem 3.6 of [8]), M-categories being Robinson and Rosolini’s
[17] framework for partiality. While it fulfills this purpose, this condition is very
restrictive for other purposes. First of all, it forbids a general monad T from
being a classifying monad whose Kleisli category has all maps total. Indeed,
define f = ηX , for all f : X → TY . Then conditions CM1–CM5 trivially hold,
while condition CM6 is usually false, since generally idTX ≡ ηTX �≡ TηX .

Notice that the condition CM1 is a consequence of CM4 and CM5:

f � f ≡ f � ηY � f
CM4≡ ηY � f

CM5≡ ηY � f ≡ f

Definition 2. A classifying monad morphism between classifying monads T

and S, with restrictions (−) resp. (̃−), is a monad morphism σ between the
underlying monads such that σ ◦ f ≡ σ̃ ◦ f , for all f : X → TY .

(Almost) classifying monads and (almost) classifying monad morphisms form
categories.

An important class of classifying monads is given by the equational lifting
monads of Bucalo et al. [3]. Recall that a strong monad T , with left strength ψ,
is called commutative, if the following diagram commutes:

T X × T Y
ψT X,Y ��

φX,T Y

��

T (T X × Y)

φ∗
X,Y

��
T (X × T Y)

ψ∗
X,Y �� T (X × Y)

Here φ = T swap ◦ ψ ◦ swap is the right strength.

36 T. Uustalu and N. Veltri

Definition 3. An equational lifting monad is a commutative monad making the
following diagram commute:

TX
Δ ��

TΔ
��

TX × TX

ψT X,X
��

T (X × X)
T (ηX×idX) �� T (TX × X)

(1)

Every equational lifting monad is canonically a classifying monad. Its restric-
tion operation is defined with the aid of the strength:

f = X
〈idX ,f〉 �� X × TY

ψX,Y �� T (X × Y) T fst �� TX

Notice that, in order to construct an almost-classifying monad, we can relax
condition (1) above and consider Cockett and Lack’s copy monads [9].

Definition 4. A copy monad is a commutative monad making the following
diagram commute:

TX
Δ ��

TΔ
��

TX × TX

ψT X,X
��

T (X × X) T (TX × X)
φ∗

X,X��

Every equational lifting monad is a copy monad:

φ∗ ◦ ψ ◦ Δ ≡ φ∗ ◦ T 〈η, id〉 ≡ (φ ◦ (η × id) ◦ Δ)∗ ≡ (η ◦ Δ)∗ ≡ TΔ

Every copy monad is canonically an almost-classifying monad. Its restriction
operation is defined as for an equational lifting monad.

2.2 ω-Joins

The Kleisli category of a classifying monad is equipped with a partial order
called the restriction order : f ≤ g if and only if f ≡ g � f . That is, f is less
defined than g, if f coincides with g on f ’s domain of definedness. Notice that,
for all f : X → TY , we have f ≤ ηX .

Lemma 1. Given a classifying monad T :

(i) the ordering ≤ makes Kl(T) Poset-enriched, i.e., for all h : W → TX,
f, g : X → TY and k : Y → TZ, if f ≤ g, then k � f � h ≤ k � g � h;

(ii) if f ≤ g, then f ≤ g, for all f, g : X → TY .

Given a stream s : N → (X → TY), we say that s is increasing (or a chain)
with respect to ≤, and we write isIncr≤ s, if s n ≤ s (n + 1), for all n : N.

The Delay Monad and Restriction Categories 37

Definition 5. A classifying monad T is a ω-complete pointed classifying monad,
if there exist two operations

⊥X,Y : X → TY

s : N → (X → TY) isIncr≤ s
⊔

s : X → TY

satisfying the following conditions:

BOT1 ⊥X,Y ≤ f , for all f : X → TY
BOT2 ⊥Y,Z � f ≡ ⊥X,Z , for all f : X → TY
LUB1 s n ≤ ⊔

s, for all n : N and increasing s : N → (X → TY)
LUB2 if s n ≤ t for all n : N, then

⊔
s ≤ t, for all t : X → TY and increasing

s : N → (X → TY)
LUB3

⊔
s � f ≡ ⊔

(λn. s n � f), for all f : X → TY and increasing s : N →
(Y → TZ).

Conditions BOT1, LUB1 and LUB2 state that every homset in Kl(T) is a
ω-complete pointed partial order, ωcppo for short. Conditions BOT2 and LUB3
state that precomposition in Kl(T) is strict and continuous. It is actually possible
to prove that Kl(T) is ωCPPO-enriched. Moreover, the ⊥ and

⊔
operations

interact well with restriction, as stated in the following lemma.

Lemma 2. Let T be an ω-complete pointed classifying monad. Then the follow-
ing equalities hold:

BOT3 f � ⊥X,Y ≡ ⊥X,Z , for all f : Y → TZ
BOTR ⊥X,Y ≡ ⊥X,X

LUB4 f � ⊔
s ≡ ⊔

(λn. f � s n), for all f : Y → TZ and increasing s : N →
(X → TY)

LUBR
⊔

s =
⊔

(λn. s n), for all increasing s : N → (X → TY).

Notice that the right-hand sides of LUB3, LUB4 and LUBR are well defined,
i.e., the streams that the

⊔
operation is applied to are chains, thanks to Lemma1.

Definition 6. A ω-complete pointed classifying monad morphism between ω-
complete pointed classifying monads T and S is a classifying monad morphism
σ between the underlying classifying monads such that σ ◦ ⊥ ≡ ⊥ and σ ◦ ⊔

s ≡⊔
(λn. σ ◦ s n), for all increasing s : N → (X → TY).

In the definition above, the least upper bound
⊔

(λn. σ ◦ s n) is well-defined,
since postcomposition with a classifying monad morphism is a monotone oper-
ation. In other words, for all f, g : X → TY with f ≤ g, we have σ ◦ f ≤ σ ◦ g.
ω-complete pointed classifying monads and ω-complete pointed classifying
monad morphisms form a category.

38 T. Uustalu and N. Veltri

2.3 Uniform Iteration

If a category is ωCPPO-enriched, it has an iteration operator that is uniform
with respect to all maps. Given a monad T whose Kleisli category is ωCPPO-
enriched, this means that we have an operation

f : X → T (Y + X)

f† : X → TY

satisfying the conditions

ITE1 f† ≡ [ηY , f†] � f , for all f : X → T (Y + X)
ITE2 g�f† ≡ ([T inl◦g, T inr◦ηX]�f)†, for all f : X → T (Y +X) and g : Y → TZ
ITE3 (T [idY +X , inr] ◦ f)† ≡ (f†)†, for all f : X → T ((Y + X) + X)
ITEU if f�h ≡ [T inl◦ηY , T inr◦ηh]�g, then f†�h ≡ g†, for all f : X → T (Y +X),

g : Z → T (Y + Z) and h : Z → TX.

The standard definition of uniform iteration operator includes the dinatural-
ity axiom. Recently it has been discovered that the latter is derivable from the
other laws [11].

Concretely, the operation (−)† is defined as follows. Let f : X → T (Y + X).
We construct a stream s : N → (X → TY) by

s 0 = ⊥X,Y s (n + 1) = [ηY , s n] � f

The stream s is a chain, since the function λg. [ηY , g] � f is order-preserving.
We define f† =

⊔
s. That (−)† satisfies ITE1 is checked as follows. Clearly,

f† ≤ [ηY , f†]�f , since s n ≤ [ηY , f†]�f , for all n : N. For the converse inequality
[ηY , f†] � f ≤ f†, it is enough to notice that [ηY ,

⊔
s] � f ≡ ⊔

(λn. [ηY , s n] � f)
and that [ηY , s n] � f ≤ f†, for all n : N.

3 The Delay Monad

We now introduce Capretta’s delay monad, first the unquotiented version D and
then the quotient D≈.

From this section onward, we do not work with a general base category, but
specifically with Set only. As before, we only admit type-theoretical constructive
reasoning. We use the words ‘set’ and ‘type’ interchangeably.

For a given type X, each element of DX is a possibly non-terminating “com-
putation” that returns a value of X, if and when it terminates. We define DX
as a coinductive type by the rules

now x : DX

c : DX

later c : DX

(Here and in the following, single rule lines refer to an inductive definition, double
rule lines to a coinductive definition.) The non-terminating computation never
is corecursively defined as never = later never.

The Delay Monad and Restriction Categories 39

Propositional equality is not suitable for coinductive types. We need different
notions of equality, namely strong and weak bisimilarity. Strong bisimilarity is
coinductively defined by the rules

now x ∼ now x

c1 ∼ c2

later c1 ∼ later c2

One cannot prove that strongly bisimilar computations are equal in intensional
Martin-Löf type theory. Therefore we postulate an inhabitant for c1 ∼ c2 →
c1 ≡ c2 for all c1, c2 : DX.

Weak bisimilarity is defined in terms of convergence. The latter is a binary
relation between DX and X relating terminating computations to their values.
It is inductively defined by the rules

now x ↓ x

c ↓ x

later c ↓ x

Two computations are considered weakly bisimilar, if they differ by a finite num-
ber of applications of the constructor later (from where it follows classically that
they either converge to equal values or diverge). Weak bisimilarity is defined
coinductively by the rules

c1 ↓ x c2 ↓ x

c1 ≈ c2

c1 ≈ c2

later c1 ≈ later c2

The delay datatype D is a monad. The unit η is the constructor now, while the
Kleisli extension bind is corecursively defined as follows:

bind : (X → DY) → DX → DY

bind f (now x) = f x

bind f (later c) = later (bind f c)

We denote by str : X × DY → D (X × Y) the strength operation of the monad
D (which it has uniquely, as any monad on Set).

Theorem 1. The delay datatype D is a commutative monad.

We do not know how to construct a non-trivial almost-classifying monad
structure on D. We believe that such a construction is impossible. In fact, notice
that D is not an equational lifting monad. Indeed, consider the computation c =
later (now x). We have str (c, c) �∼ D〈now, id〉 c, since str (c, c) ∼ later (now (c, x))
and D〈now, id〉 c ∼ later (now (now x, x)).

In order to obtain an almost-classifying monad, we work with the following
modifications of the functor D.

(i) We identify weak bisimilar computations and work with the delay datatype
quotiented by weak bisimilarity, defined as D≈ X = DX/≈. D≈ does not
inherit the monad structure from D straightforwardly. A monad structure is
definable assuming the axiom of countable choice [5]. The quotiented delay
monad D≈ is an equational lifting monad and therefore a classifying monad.
We show this in Sect. 4.

40 T. Uustalu and N. Veltri

(ii) We change the definition of the Kleisli extension. In this way we are able to
construct an almost-classifying monad structure on D without the need of
quotienting. We show this in Sect. 5.

4 The Quotiented Delay Monad

We know that D≈ is a functor, since we can define D≈ f = lift ([] ◦ D f). It is
easy to show that the function [] ◦ D f is compatible with ≈. Unfortunately, in
the type theory we are working in, the functor D≈ does not extend to a monad.
It is a pointed endofunctor, since we can define the unit as [] ◦ now. But we are
unable to define the multiplication. In order to overcome this obstacle, we assume
the axiom of countable choice. In our setting, this principle can be formulated
as follows: given a type X and an equivalence relation R on it, the following
isomorphism holds:

N → X/R ∼= (N → X)/(N → R)

where f (N → R) g =
∏

n:N (f n)R (g n). We refer to [5] for details on how to
exploit countable choice in order to construct a monad structure on the D≈ and
for a detailed discussion on why we cannot perform the construction without
this additional principle.

Theorem 2. Assume countable choice. The quotiented delay datatype D≈ is a
monad.

We call η≈ the unit, bind≈ the Kleisli extension and str≈ the strength oper-
ation of D≈.

The monad D≈ is commutative, because D is commutative. Moreover, it is
an equational lifting monad.

Theorem 3. Assume countable choice. The monad D≈ is an equational lifting
monad and therefore a classifying monad.

Proof. We need to prove str≈ (q, q) ≡ D≈〈η≈, id〉 q for all q : D≈ X. Using the
induction principle of quotients, it is sufficient to show that, for all c : DX, we
have str≈ ([c], [c]) ≡ D≈〈η≈, id〉 [c]. Using the computation rule of quotients, we
have that str≈ ([c], [c]) ≡ [str ([c], c)] and D≈〈η≈, id〉 [c] ≡ [D〈η≈, id〉 c]. Therefore
it is sufficient to show str ([c], c) ∼ D〈η≈, id〉 c for all x : D X. We prove this by
corecursion on c:

• if c = now x, then both terms are equal to now ([now x], x);
• if c = later c′, we have to show, after an application of the 2nd constructor

of strong bisimilarity, that str ([later c′], c′) ∼ D〈η≈, id〉 c′. This is true since
by corecursion we have str ([c′], c′) ∼ D〈η≈, id〉 c′ and we know [c′] ≡ [later c′].

The Delay Monad and Restriction Categories 41

We continue the construction of an ω-complete pointed classifying monad
structure on D≈ and the proof that it is initial in Sect. 6. In the next section,
we show that the datatype D carries a monad structure different from the one
presented in Sect. 3. This structure makes D an almost-classifying monad already
before quotienting.

5 A Different Monad Structure on D

We show how to endow the type D with a copy monad structure without the
need of quotienting by weak bisimilarity. The unit is still now, but we change
the Kleisli extension. In order to have an easy description of this construction, it
is convenient to give an alternative presentation of the delay datatype. In fact,
the type DX is isomorphic to the type of increasing streams over X + 1 with
respect to the ordering ≤S on X + 1 defined by the rules:

inlx ≤S inlx inr ∗ ≤S inlx

So we define the type DS X =
∑

s:N→X+1

∏
n:N s n ≤S s (sucn). It is not difficult

to show that DS X is isomorphic to DX.
Notice that the stream functor StreamX = N → X is a monad. The unit

returns a constant stream, while the Kleisli extension on a function f : X →
StreamY and a stream s : StreamX returns the diagonal of the stream of streams
[f (s 0), f (s 1), f (s 2), . . .]. The existence of a distributive law lX : (StreamX)+
1 → Stream (X + 1) between the stream monad and the maybe monad induces
a monad structure on the functor Stream+1 X = Stream (X + 1). Concretely, its
unit and Kleisli extension can be described as follows:

ηS : X → Stream+1 X

ηS xn = inlx

bindS : (X → Stream+1 Y) → Stream+1 X → Stream+1 Y

bindS f s n = case s n of

inlx �→ f xn

inr ∗ �→ inr ∗
It is easy to see that ηS x is increasing wrt. ≤S, for all x : X. Moreover, given
a function f : X → DS Y and an increasing stream s : Stream+1 X, the stream
bindS (fst ◦ f) s is also increasing. Thus, DS inherits the monad structure from
Stream+1.

Since the types DS X and DX are isomorphic, we also described a monad
structure on D. Intuitively, the new Kleisli extension on D, that we call bind∧,
acts on a function f : X → DY and a computation c : DX as follows: if
c = never, then bind∧ f c = never; if c ↓ x, then bind∧ f c = c ∧ f x, where the
operation ∧ is corecursively defined with the help of the auxiliary operation ∧′:

42 T. Uustalu and N. Veltri

∧′ : DX → DY → D (X × Y)
now x ∧′ now y = now (x, y)
now x ∧′ later c2 = later (now x ∧′ c2)
later c1 ∧′ now y = later (c1 ∧′ now y)
later c1 ∧′ later c2 = later (c1 ∧′ c2)

∧ : DX → DY → DY

c1 ∧ c2 = D snd (c1 ∧′ c2)

When applied to two computations laterk (now x) and latern (now y), the oper-
ation ∧ returns latermax(k,n) (now y). Notice the difference between bind∧ and
the operation bind introduced in Sect. 3. Given c = laterk (now x) and f x =
latern (now y), we have:

bind∧ f c = latermax(k,n) (now y) bind f c = laterk+n (now y)

After quotienting by weak bisimilarity, the two monad structures on D lift, with
the aid of countable choice, to the same monad structure (D≈, η≈, bind≈).

Theorem 4. The monad (D, now, bind∧) is a copy monad and therefore an
almost-classifying monad.

Proof. We need to prove that, for all c : DX, we have costr∗∧(str∧ (c, c)) ≡ DΔc,
where str∧ and costr∧ are the left and right strength operations associated to the
monad (D, now, bind∧). It is not difficult to show that the functions costr∧ � str∧
and DΔ are both propositionally equal to ∧′.

6 D≈ Is the Initial ω-Complete Pointed Classifying
Monad

We move back to the construction of ω-complete pointed classifying monad struc-
ture on D≈ and initiality. First, we show that D≈ X is the free ωcppo on X.

6.1 D≈ Delivers Free ωcppos

Following [4], we introduce the following relation on DX:

c1 ↓ x c2 ↓ x

c1 � c2

c1 � c2

later c1 � later c2

c1 � c2

later c1 � c2

The type c1 � c2 is inhabited not only if c1 ≈ c2, but also when c1 has some
(possibly infinitely many) laters more than c2. The relation � lifts to a relation
�≈ on D≈X, that makes the latter a pointed partial order, with [never] as least
element.

The Delay Monad and Restriction Categories 43

We define a binary operation race on DX that returns the computation with
the least number of laters. If two computations c1 and c2 converge simultaneously,
race c1 c2 returns c1.

race : DX → DX → DX

race (now x) c = now x

race (later c) (now x) = now x

race (later c1) (later c2) = later (race c1 c2)

Notice that generally race c1 c2 is not an upper bound of c1 and c2, since the two
computations may converge to different values. The binary operation race can be
extended to an ω-operation ωrace. This operation constructs the first converging
element of a chain of computations. It is defined using the auxiliary operation
ωrace′:

ωrace′ : (N → DX) → N → DX → DX

ωrace′ s n (now x) = now x

ωrace′ s n (later c) = later (ωrace′ s (sucn) (race c (s n)))

The operation ωrace′, when applied to a chain s : N → DX, a number n : N

and a computation c : DX, constructs the first converging element of the chain
s′ : N → DX, with s′ zero = c and s′ (suc k) = s (n + k). The operation ωrace is
constructed by instantiating ωrace′ with n = zero and c = never. In this way we
have that the first converging element of s is the first converging element of s′,
since never diverges.

ωrace : (N → DX) → DX

ωrace s = ωrace′ s zero never

Generally ωrace s is not an upper bound of s. But if s is a chain, then ωrace s is
the join of s. The operation ωrace, when restricted to chains, lifts, with the aid
of countable choice, to an operation ωrace≈ on D≈X, which makes the latter a
ωcppo.

Theorem 5. Assume countable choice. The functor D≈ delivers ωcppos.

Let (Y,≤,⊥,
⊔

) be an ωcppo and f : X → Y a function. Every computation
over X defines a chain in Y .

cpt2chainf : DX → N → Y

cpt2chainf (now x) n = f x

cpt2chainf (later c) zero = ⊥
cpt2chainf (later c) (sucn) = cpt2chainf c n

Given a computation c = latern (now x) (if n = ω, then c = never), the chain
cpt2chainf c looks as follows:

⊥ ⊥ . . . ⊥︸ ︷︷ ︸
n

f x f x f x . . .

44 T. Uustalu and N. Veltri

Therefore it is possible to extend the function f to a function f̂ : DX → Y ,
f̂ c =

⊔
(cpt2chainf c). The function f̂ is ≈-compatible, and therefore it can be

lifted to a function of type D≈ X → Y , that we also name f̂ . This function is
a ωcppo morphism and it is the unique such morphism making the following
diagram commute:

X
[]◦now ��

f
���������������� D≈ X

̂f

���
�
�

Y

Therefore D≈ X is the free ωcppo over X.

Theorem 6. Assume countable choice. The functor D≈ delivers free ωcppos.

Recently, Altenkirch et al. [1] constructed a higher inductive-inductive type
that delivers free ωcppos by definition without recourse to the axiom of count-
able choice. To prove that this datatype is isomorphic to the quotiented delay
datatype countable choice is again necessary.

6.2 ω-Complete Pointed Classifying Monad Structure on D≈ and
Initiality

We extend the order �≈ to functions in Kl(D≈) in the usual pointwise way. Let
f, g : X → D≈ Y , we say that f �≈ g if and only if, for all x : X, f x �≈ g x.
(Notice that we use the same notation �≈ for functions as well). It is not difficult
to show that the order �≈ is equivalent to the order associated to the restriction
operator that we described in Sect. 2.2.

Lemma 3. For all f, g : X → D≈ Y , we have f �≈ g if and only if f ≤ g
(where ≤ is the restriction order).

Theorem 7. Assume countable choice. The monad D≈ is an ω-complete pointed
classifying monad.

Proof. Let X and Y be two types. The bottom element of the homset X → D≈Y
is the constant map λ . [never]. Let s : N → (X → D≈ Y) be a chain wrt. ≤. We
define ⊔

≈s : X → D≈ Y
(⊔

≈s
)

x = ωrace≈ (λn. s n x)

where the stream λn. s n x is increasing wrt. �≈, which is the case thanks to
Lemma 3.

One should now verify that conditions BOT1, BOT2 and and LUB1–LUB3
are met. Conditions BOT1, LUB1 and LUB2 follow directly from D≈ Y being a
ωcppo, as described in Sect. 6.1. Conditions BOT2 and LUB3 follow from bind≈
being a ωcppo morphism between X → D≈Y and D≈X → D≈Y .

The Delay Monad and Restriction Categories 45

Let T be an ω-complete pointed almost-classifying monad. We already noted
that the type X → TY is an ωcppo, for all types X and Y . In particular, every
type TX ∼= 1 → TX is a ωcppo. Explicitly, given x1, x2 : TX, we define x1 ≤ x2

as λ∗. x1 ≤ λ∗. x2. The bottom element of TX is ⊥1,X ∗, while the join of a
chain s : N → TX is

⊔
(λn. λ∗. s n) ∗.

We show that there is a unique ω-complete pointed almost-classifying monad
morphism between D≈ and T . This characterizes the quotiented delay monad as
the universal monad of non-termination.

Theorem 8. Assume countable choice. D≈ is the initial ω-complete pointed
almost-classifying monad (and therefore also the initial ω-complete pointed clas-
sifying monad).

Proof. Let T = (T, η, bind) be a ω-complete pointed almost-classifying monad.
Since TX is a ωcppo and we have a map ηX : X → TX, there is a unique ωcppo
morphism η̂ between D≈X and TX such that η̂ ◦ η≈ ≡ η. Therefore, we define

σ : D≈X → TX

σ = η̂

First, we show that σ is a monad morphism:

– σ ◦ η≈ ≡ η by the universal property of the free ωcppo.
– Given f : X → D≈Y , we have σ ◦ bind≈ f ≡ bind (σ ◦ f) ◦ σ, because both

maps are ωcppo morphisms between D≈X and TY and both maps are equal
to σ ◦ f when precomposed with η≈.

Second, we show that σ is an almost-classifying monad morphism. We have to
show that σ ◦ f ≡ σ̃ ◦ f for all f : X → D≈Y . Notice that, for all x : 1 → X, we
have:

σ ◦ f ◦ x
CM4≡ σ ◦ D≈x ◦ f ◦ x

nat≡ Tx ◦ σ ◦ f ◦ x

σ̃ ◦ f ◦ x
CM4≡ Tx ◦ ˜σ ◦ f ◦ x

Therefore it is sufficient to show σ◦c ≡ σ̃ ◦ c for all c : 1 → D≈ X. The maps g c =
σ ◦ c and h c = σ̃ ◦ c are both strict and continuous maps of type (1 → D≈ X) →
(1 → T 1), and the latter type is isomorphic to D≈ X → T 1. Notice that since
D≈ X is the free ωcppo over X, we know that there exists only one strict and
continuous map between D≈ X and T 1 that sends terminating computations to
η ∗. Notice that, for all x : 1 → X, we have

g (η≈X ◦ x) = σ ◦ η≈X ◦ x
CM5≡ σ ◦ η≈1 ≡ η1

h (η≈X ◦ x) = ˜σ ◦ η≈X ◦ x ≡ η̃X ◦ x
CM5≡ η1

This shows that g ≡ h, and therefore σ is a classifying monad morphism.
Finally, σ is a ω-complete pointed almost-classifying monad morphism since

σ = η̂ is a ωcppo morphism between D≈X and TX. In particular, it is strict
and continuous.

46 T. Uustalu and N. Veltri

It remains to check that σ is the unique ω-complete pointed almost-classifying
monad morphism between D≈ and T . Let τ be another ω-complete pointed
almost classifying monad morphism between D≈ and T . In particular, for all
types X, we have that τ is a ωcppo morphism between D≈X and TX and also
τ ◦ η≈ ≡ η. Therefore, by the universal property of the free ωcppo D≈, we have
that τ ≡ η̂ = σ.

One might wonder whether Kl(D≈) could be the free ω-complete pointed
restriction category over Set. This is not the case, since the latter has as objects
sets and as maps between X and Y elements of D≈(X → Y). This observation
is an adaptation of a construction by Grandis described by Guo [13].

7 Other Monads of Non-termination

In the previous section, we showed that D≈ is the initial ω-complete pointed
almost-classifying monad and also the initial ω-complete pointed classifying
monad. This would not be a significant result, if the categories of ω-complete
pointed classifying and almost-classifying monads were lacking other interest-
ing examples. It is immediate that these categories are non-trivial, since at least
the monad TerminX = 1 is another ω-complete pointed classifying monad. Since
Termin is the final object in the category of monads, it is also the final ω-complete
pointed almost-classifying monad and the final ω-complete pointed classifying
monad. But of course we are looking for more interesting examples.

7.1 A Non-example: Maybe Monad

The maybe monad MaybeX = X + 1 is an example of a classifying monad that
is not a ω-complete pointed classifying monad.

The maybe monad is a canonical example of equational lifting monad, so it
is a classifying monad. But it is not a ω-complete pointed classifying monad:
in order to construct the join of a chain s : N → X + 1, we need to decide
whether there exist an element x : X and a number k : N such that s k = inlx, or
s n = inr ∗ for all n : N. This decision requires the limited principle of omniscience
LPO =

∏
s:N→2 (

∑
n:N s n ≡ 1) + (

∏
n:N s n ≡ 0).

7.2 Conditional Monad

For a more interesting example, consider the monad C defined by

CX =
∑

P :U
isPropP × (P → X)

where isPropX =
∏

x1,x2:X
x1 ≡ x2.1 Intuitively, an element of CX is a propo-

sition P together with an element of X for every proof of P (so at most one
1 C is typed U1 → U1, so it is an endofunctor on Set1. But as the other examples can

be replayed for any Uk, comparing this example to them is unproblematic.

The Delay Monad and Restriction Categories 47

element of X). So a computation produces a condition of its liking and only
releases a value of X, if the user can supply a proof; the computation does not
give out any hint on how to decide the condition.

The type CX consists of the propositional objects of the slice category of X.
The endofunctor C is an equational lifting monad and thus a classifying monad.

The monad C is a ω-complete pointed classifying monad. This is because
every type CX is a ωcppo. To see this, we first define a partial order on CX:

(P, ip, i) � (Q, iq, j) =
∑

f :P→Q

∏

p:P

i p ≡ j (f p)

That is, two elements in CX are related by �, if there exists a morphism in the
slice category of X connecting them:

P

i ��������
f �� Q

j��������

X

In other words, the poset (CX,�) is the full subcategory of the slice category of
X in which objects are propositions. Interestingly, this poset is also a ωcppo. The
bottom element is the proposition 0 together with the empty function 0 → X.
Joins of chains are computed as the following colimit:

P0
��

i0

�� P1
��

i1

		���������������������������� P2
��

i2

����������������� P3
��

i3

��	
		

		
		

		
		

	 P4
��

i4

��

. . .

‖∑
n:N Pn‖ iω �� X

∑
n:N Pn

| |
��

λ(n,p).in p

where ‖∑
n:N Pn‖ is the propositional truncation of

∑
n:N Pn, i.e., the quotient of∑

n:N Pn by the total equivalence relation (which relates every pair of elements in
the type). The function iω is obtained as the lifting of λ(n, p).in p :

∑
n:N Pn →

X. Notice that the latter function is constant, i.e., in pn ≡ im pm for all pn :
Pn and pm : Pm. In fact, suppose w.l.o.g. m ≤ n. Then, since the stream is
increasing, there exists a function f : Pm → Pn such that im pm ≡ in (f pm).
The type Pn is a proposition, therefore f pm ≡ pn and in pn ≡ im pm.

As usual, the order � extends to function spaces. It is not difficult to show
that this is equivalent to the restriction order and that C satisfies the laws of an
ω-complete pointed classifying monad.

The types CX and MaybeX are isomorphic if and only if the principle of
excluded middle for propositions LEMProp =

∏
X:U isPropX → X + ¬X holds.

Since D≈ X and MaybeX are isomorphic if and only if LPO holds, and since
LEMProp is strictly stronger than LPO, CX is generally not isomorphic to D≈ X.

48 T. Uustalu and N. Veltri

The conditional monad C is an instance of a partial map classifier in the
sense of [15]. In type theory, partial map classifiers are monads of the form
TX =

∑
x:D (x ≡ � → X) where D is a dominance in the sense of [18] and

� : D is the truth value corresponding to truthfulness. The conditional monad
is the partial map classifier associated to the dominance D =

∑
X:U isPropX

with � = (1, p) where p is the simple proof of 1 being a proposition.

7.3 Countable Powerset Monad

An example of an ω-complete pointed almost-classifying monad that is not a
classifying monad (since the condition CM6 is not met), is given by the count-
able powerset construction. This monad is typically employed to model non-
deterministic computations. In type theory, the countable powerset monad can
be introduced as follows:

P∞X = Stream (X + 1)/SameElem

where SameElem s1 s2 =
∏

x:X x ∈ s1 ↔ x ∈ s2 and x ∈ s =
∑

n:N s n ≡ inlx. It
can be proved that the functor P∞ is a monad. This requires the assumption of
the axiom of countable choice, because it is defined as a quotient.

Intuitively, the restriction f of a map f : X → P∞Y is the map that, given
x : X, returns the singleton {x}, if f x is non-empty, and the empty set otherwise.
The restriction order on P∞X ∼= 1 → P∞X is thus different from set inclusion.
In fact, for s, t : P∞X, intuitively s ≤ t if and only if s ≡ t or s ≡ ∅.

7.4 State Monad Transformer

New ω-complete pointed almost-classifying monads can be constructed from
already constructed ones with the state monad transformer. Recall that the
state monad is defined as StateX = S → X × S, where S is a fixed set of
states. Given an ω-complete pointed almost-classifying monad T , the functor
StateTT defined by StateTT X = S → T (X ×S) is another ω-complete pointed
almost-classifying monad. All operations of StateTT are defined in terms of the
operations of T . For example, restriction is constructed as follows:

(̃) : (X → S → T (Y × S)) → X → S → T (X × S)

f̃ = curry (uncurry f)

8 Conclusions

In this paper, we introduced the notion of ω-complete pointed classifying monad.
We argued that it explains the idea of “non-termination as an effect”. We showed
that Capretta’s delay monad quotiented by weak bisimilarity is the initial ω-
complete pointed classifying monad on Set under constructive reasoning and
in this sense is the minimal monad for non-termination. We also showed that

The Delay Monad and Restriction Categories 49

the class of ω-complete pointed classifying monads is non-trivial, since it also
contains the monad C, which is non-isomorphic to the quotiented delay monad.

ω-complete pointed classifying monads are derived from Cockett and Lack’s
restriction categories. There are two reasons behind this choice over other
category-theoretical approaches to partiality such as partial map categories.
Restriction categories, being an axiomatic framework for partiality, are conve-
niently formalizable in a proof assistant like Agda. This is not the case for partial
map categories, whose formalization quickly becomes very involved. Moreover,
Cockett and Guo [6] proved that every finite-join restriction category is a full
subcategory of the partial map category of an adhesive M-category whose gaps
are in M. Therefore, one can come up with a complementary notion of a finite-
join classifying monad for partial map categories, but this will inevitably be
more involved than the simple notion considered here.

As future work, We would like to generalize this work from Set to a general
base category while still only accepting constructive reasoning. This requires,
first of all, generalizing the definition of the delay monad suitably for less struc-
tured categories. Also, we would like to understand whether the delay monad
could be the initial completely Elgot monad on Set constructively under reason-
able semi-classical principles (a monad is said to be a completely Elgot monad, if
its Kleisli category has an iteration operator uniform for pure maps). Goncharov
et al. [12] have proved that the maybe monad is the initial completely Elgot
monad on Set classically, but the constructive content of this proof has so far
remained elusive for us.

Acknowledgements. This research was supported by the Estonian Ministry of Edu-
cation and Research institutional research grant IUT33-13 and the Estonian Research
Council personal research grant PUT763.

References

1. Altenkirch, T., Danielsson, N.A., Kraus, N.: Partiality, revisited: the partiality
monad as a quotient inductive-inductive type. In: Esparza, J., Murawski, A.S.
(eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 534–549. Springer, Heidelberg (2017).
doi:10.1007/978-3-662-54458-7 31

2. Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational
semantics in Coq. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 115–130. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03359-9 10

3. Bucalo, A., Führmann, C., Simpson, A.: An equational notion of lifting monad.
Theor. Comput. Sci. 294(1–2), 31–60 (2003)

4. Capretta, V.: General recursion via coinductive types. Log. Methods Comput. Sci.
1(2), article 1 (2005)

5. Chapman, J., Uustalu, T., Veltri, N.: Quotienting the delay monad by weak bisim-
ilarity. Math. Struct. Comput. Sci. (to appear)

6. Cockett, J.R.B., Guo, X.: Join restriction categories and the importance of being
adhesive. Abstract of talk presented at CT 2007 (2007)

http://dx.doi.org/10.1007/978-3-662-54458-7_31
http://dx.doi.org/10.1007/978-3-642-03359-9_10
http://dx.doi.org/10.1007/978-3-642-03359-9_10

50 T. Uustalu and N. Veltri

7. Cockett, J.R.B., Lack, S.: Restriction categories I: categories of partial maps.
Theor. Comput. Sci. 270(1–2), 223–259 (2002)

8. Cockett, J.R.B., Lack, S.: Restriction categories II: partial map classification.
Theor. Comput. Sci. 294(1–2), 61–102 (2003)

9. Cockett, J.R.B., Lack, S.: Restriction categories III: colimits, partial limits, and
extensivity. Math. Struct. Comput. Sci. 17(4), 775–817 (2007)

10. Danielsson, N.A.: Operational semantics using the partiality monad. In: Proceed-
ings of 17th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2012, pp. 127–138. ACM, New York (2012)

11. Ésik, Z., Goncharov, S.: Some remarks on Conway and iteration theories. arXiv
preprint arXiv:1603.00838 (2016)

12. Goncharov, S., Rauch, C., Schröder, L.: Unguarded recursion on coinductive
resumptions. Electron. Notes Theor. Comput. Sci. 319, 183–198 (2015)

13. Guo, X.: Products, joins, meets, and ranges in restriction categories. Ph.D. thesis,
University of Calgary (2012)

14. Hofmann, M.: Extensional Constructs in Intensional Type Theory.
CPHS/BCS Distinguished Dissertations. Springer, London (1997). doi:10.
1007/978-1-4471-0963-1

15. Mulry, P.S.: Partial map classifiers and partial cartesian closed categories. Theor.
Comput. Sci. 136(1), 109–123 (1994)

16. Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmei-
jer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04652-0 5

17. Robinson, E., Rosolini, G.: Categories of partial maps. Inf. Comput. 79(2), 95–130
(1988)

18. Rosolini, G.: Continuity and effectiveness in topoi. DPhil. thesis, University of
Oxford (1986)

http://arxiv.org/abs/1603.00838
http://dx.doi.org/10.1007/978-1-4471-0963-1
http://dx.doi.org/10.1007/978-1-4471-0963-1
http://dx.doi.org/10.1007/978-3-642-04652-0_5

Logical Characterisation of Parameterised
Bisimulations

Divyanshu Bagga(B) and S. Arun Kumar

Department of Computer Science and Engineering,
Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India

{divyanshu.bagga,sak}@cse.iitd.ac.in

Abstract. We explore the relationship between bisimulations and logic.
The link between them is formed by logical characterisations, which
have been given for well-known bisimulation equivalences and preorders.
Parameterised bisimulations allow us to incorporate notions of abstrac-
tion or efficiency into behavioural equivalences. This generalised frame-
work of parameterised bisimulations is used to develop a parameterised
logical characterisation, thereby, unifying the existing logical character-
isations as well as paving the way for characterisation of novel bisimula-
tions. Methods for generating distinguishing formulae and characteristic
formulae in the parameterised logic are also discussed.

Keywords: Bisimulations · Modal logic · Logical characterisation ·
Distinguishing formula · Characteristic formula

1 Introduction

Bisimulation checking and model checking are among the two major approaches
to the verification of concurrent processes. Both model behaviour using labelled
transition systems but differ in specification. Bisimulation checking expresses
specification also as a labelled transition system, whereas model checking
expresses specification as a collection of logical formulas. Both have their advan-
tages. Model checking allows for partial specifications and its refinements by
adding more properties. Bisimulation checking gives us modularity as it is often
closed under most of the process constructors [9]. Therefore, both approaches
have their own applications.

But there is an interesting connection between them - formalized as logi-
cal characterisations - one of the most important being Hennessy-Milner logic
(HML) [16], which gives a modal logic characterisation for strong bisimulation.
Any two processes are strongly bisimilar if and only if they satisfy the same
set of HML formulae1. Consequently, for any two non-bisimilar processes, there
must exist a distinguishing formula which is satisfied by exactly one of the given
processes, and can be very useful for debugging.

1 Processes were constrained to be image-finite for finite logical characterisation.

c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 51–69, 2017.
DOI: 10.1007/978-3-319-67729-3 4

52 D. Bagga and S.A. Kumar

Sometimes, it is possible to construct a single formula capable of distinguish-
ing a process from every other non-bisimilar process. Known as characteristic
formula, it facilitates the reduction of bisimulation checking to model checking,
which may yield efficient algorithms for deciding behavioural preorders [10]. The
existence of a characteristic formula is therefore, central to the study of logical
characterisations [14].

The importance of logical characterisations can be gauged from the work
done towards showing their existence for many other bisimulation equivalences
besides strong bisimulation, e.g., timed bisimulations [19], probabilistic bisimu-
lations and preorders such as prebisimulation preorder [27], efficiency preorders
[17], contravariant simulation [1], etc. In this paper, we develop a logical charac-
terisation of parameterised bisimulations. As shown in [4], various bisimulation
relations can be expressed as instances of parameterised bisimulation. By work-
ing in a general framework of parameterised bisimulations, we achieve two goals.
Firstly, we unify the results on obtaining the logical characterisations for different
bisimulation relations. Secondly, this gives us a systematic way of obtaining a log-
ical characterisation of any novel bisimulation relation, which may be expressed
as an instance of parameterised bisimulation. As one would expect, the logical
characterisation of the parameterised bisimulations should also depend on the
same parameters. Since our logic generalises HML, we refer to it as parameterised
Hennessy-Milner logic.

The contributions of this paper may be summarized as follows:

– We propose parameterised HML, in Sect. 3, and show that it is a logical
characterisation of all bisimulation equivalences and preorders which can be
expressed in the framework of parameterised bisimulations.

– We study the conditions required to ensure that the distinguishing formula
is always finite. We also give procedures for model checking and generating
distinguishing formulae.

– We extend our logical characterisation with fixed point operators, in Sect. 4,
which allows us to derive the characteristic formula for any finite-state
process, and possibly some infinite-state systems, using suitable abstractions.

2 Background

To model process behaviours, both bisimulation and model checking use labelled
transition systems, which is one of the most widely used models of computation.

Definition 1. A labelled transition system (LTS) L is a triple 〈P,Act,−→〉,
where P is a set of process states or processes, Act is a set of actions and −→
⊆ P ×Act×P is the transition relation. We use p

a−→ q to denote (p, a, q) ∈−→.

2.1 Parameterised Bisimulations

The origin of bisimulations can be traced back to logic [24], where it serves
an important role in establishing modal logic as a fragment of first order logic

Parameterised Logical Characterisations 53

[30]. It was first proposed in [7], as relations which preserve satisfiability of modal
logic formulas. Its discovery in computer science and fixed point characterisation
is attributed to [23] and is central to Milner’s theory of CCS [21]. Being the
finest behavioural equivalence [31], its importance in the theory of verification
is undeniable.

One can think of interesting behavioural relations, which may relate one
process with another behaviourally equivalent but more efficient process. Effi-
ciency need not be only in terms of time, it may also refer to other quantitative
measures like probability, energy, etc. One approach to defining these relations is
by incorporating efficiency into bisimulation, which is the idea behind efficiency
preorder [5] or timed prebisimulation [15]. The key idea behind them is to allow
an action to be matched with a functionally equivalent but more efficient one.
The same approach is used to incorporate abstraction into bisimulation, e.g.
weak bisimulation, where an action can be matched with another non-identical
but equivalent under the given abstraction. These bisimulations can be unified
under the general framework of parameterised bisimulations, which allow the
relations over actions to be parameters in the definition of bisimulation. The
parameter relations incorporates the desired notion of efficiency or abstraction.

Definition 2 [4]. Let P be the set of processes and ρ and σ be binary relations
on Act. A binary relation R ⊆ P ×P is a (ρ, σ)-bisimulation if p R q implies the
following conditions for all a, b ∈ Act.

p
a−→ p′ ⇒ ∃b, q′[a ρ b ∧ q

b−→ q′ ∧ p′ R q′] (1)

q
b−→ q′ ⇒ ∃a, p′[a σ b ∧ p

a−→ p′ ∧ p′ R q′] (2)

The largest (ρ, σ)-bisimulation, denoted �(ρ,σ), is called (ρ, σ)-bisimilarity.

This generalization captures a number of useful bisimulations. Strong bisim-
ulation is obtained by simply setting ρ and σ as identity relation over actions,
IdAct. Other interesting relations are defined by exploiting semantic relation-
ships between actions. For example, in Timed LTS, a special class of LTS
with labels from the set Act ∪ R≥0, one may differ in matching delay actions
d ∈ R≥0. We obtain time-abstracted bisimulation [20] by not distinguishing
between delay quantities. It is an instance of a parameterised bisimulation where
ρ = σ = IdAct ∪ (R≥0 × R≥0). We can also capture delay based efficiency, to
define timed prebisimulation [15], where a delay d can be matched by a faster
delay d′ ≤ d, by setting ρ = σ = IdAct∪ ≤R.

Another class of interesting relations emerge when we model internal actions,
in the LTS, as transitions labeled with τ . These τ -actions cannot be observed,
and the behavioural equivalence must ignore them. This behavioural equivalence
is captured by weak bisimulation [16]. One may also view τ as a measure of
internal activity, to define efficiency preorders [5]. These relations can also be
expressed as an instance of parameterised bisimulations, which is described in
Sect. 5.

54 D. Bagga and S.A. Kumar

We will obtain the logical characterisations for these bisimilarities, by devel-
oping results for parameterised bisimilarities. However, we will limit ourselves to
parameterised bisimilarities which become preorders (or equivalences), by plac-
ing suitable restrictions on the underlying relations over actions.

Fixed Point Characterisation: The fixed point characterisation of (ρ, σ)-
bisimilarity, over the complete lattice of binary relations on P under the ⊆
ordering serves an important role as the starting point for the derivation of
characteristic formulae.

Lemma 1. The relation �(ρ,σ) over processes P may be expressed as the greatest
fixed point of the monotonic function F(ρ,σ) : 2P×P → 2P×P , defined as

F(ρ,σ)(R) = {(p, q) | [∀a, p′ : p
a−→ p′ ⇒ ∃b, q′[a ρ b ∧ q

b−→ q′ ∧ p′ R q′]]∧
[∀b, q′ : q

b−→ q′ ⇒ ∃a, p′[a σ b ∧ p
a−→ p′ ∧ p′ R q′]]}

One approach to computing the greatest fixed point in a lattice, is to take
the top element (the universal relation in our case), and keep on applying the
function until it reaches the fixed point. Let U denote the universal relation,
then the ith approximant of (ρ, σ)-bisimilarity is defined as �i

(ρ,σ)= F i
(ρ,σ)(U).

In general, the intersection of all the approximants, �ω
(ρ,σ)=

⋂
i∈N

�i
(ρ,σ),

will contain the greatest fixed point, �(ρ,σ), and �ω
(ρ,σ)=�(ρ,σ) when F i

(ρ,σ) is
co-continuous [13].

Lemma 2 [4]. For any i ∈ N, the i-th approximant, �i
(ρ,σ), as well as �ω

(ρ,σ)

and �(ρ,σ) are preorders iff both ρ and σ are preorders. Moreover, they become
an equivalence iff we also have ρ = σ−1.

The proof for (ρ, σ)-bisimilarity, given in [4], can be generalised for approxi-
mants using induction.

Abstracted LTS: The notion of an abstracted LTS allows us to extend our
results to some infinite-state systems.

Definition 3. Given a set S ⊆ P and a preorder ≤⊆ P ×P, we define an initial
set Si and a terminal set St as

Si = {s ∈ S| ∃s′[s′ ∈ S ∧ s′ < s]} St = {s ∈ S| ∃s′[s′ ∈ S ∧ s < s′]}
where s < s′ iff s ≤ s′ and s = s′. The set S is closed if for every s ∈ S, there
exists an s′ ∈ Si and s′′ ∈ St such that s′ ≤ s ≤ s′′.

Let p
a−→ p1 and p

b−→ p2 be two transitions such that a ρ b and p1 �(ρ,σ) p2.

Then matching the transition p
b−→ p2 with q

c−→ q′, where b ρ c and p2 �(ρ,σ) q′

holds, also matches p
a−→ p1 due to transitivity of ρ and �(ρ,σ). Effectively,

satisfying the condition (1) in Definition 2 only requires matching transitions to
the terminal states under �(ρ,σ) ordering, {p′ | p

b−→ p′ ∧a ρ b }t, provided it is a

Parameterised Logical Characterisations 55

closed set. Similarly for satisfying the condition (2), i.e. matching a transition of
q, it suffices to only look at transitions to the initial states, {p′ | p

a−→ p′∧a σ b}i.
Therefore, we define an abstracted LTS which retains only the relevant states.

Definition 4. Let L = 〈P,Act,−→〉 be an LTS. For any p ∈ P and a ∈ Act,
let aρ-Succ(p) = {p′ | p

b−→ p′ ∧ a ρ b}, σa-Succ(p) = {p′ | p
b−→ p′ ∧ b σ a} and

TI(p) =
⋃

a∈Act[(aρ-Succ(p))t ∪ (σa-Succ(p))i]. Then an LTS abstracted with
respect to process p ∈ P is defined as L†

p = 〈Reach(p),Act,−→†
p〉 where

Reach(p) = {p} ∪
⋃

p′∈TI(p)

Reach(p′)

the terminal and initial sets are created with respect to �(ρ,σ) ordering and the
transition relation −→†

p is the restriction of −→ to Reach(p).

Since L and L†
p have common elements, we will subscript the process state

with the LTS when there is ambiguity. The following lemma formalizes this
intuitive property of preservation of bisimilarity by the abstracted LTS.

Lemma 3. Let L be an LTS such that the sets {p′ | ∃b[p b−→ p′ ∧ a ρ b]} and
{p′ | ∃[p b−→ p′ ∧ b σ a]} are always closed, for any state p and label a. Then, for
any state p, we have pL �(ρ,σ) pL†

p
as well as pL†

p
�(ρ,σ) pL.

Proof. A state q is in L is also in L†
p iff qL ∈ Reach(pL). Let R = {(qL, q′

L†
p
) |

qL �(ρ,σ) q′
L ∧ q′

L ∈ Reach(pL)}.

Claim. The relation R is a (ρ, σ)-bisimulation.
Consider an arbitrary (qL, q′

L†
p
) ∈ R. Since qL �(ρ,σ) q′

L, if qL
a−→ rL, then

there must be some b, r′ such that q′
L

b−→ r′
L with a ρ b and rL �(ρ,σ) r′

L. Since

the set {s | q
b−→ s ∧ a ρ b} is closed, there must be some r′′

L ∈ {s | q
b−→

s ∧ a ρ b}t such that r′
L �(ρ,σ) r′′

L. Since q′
L ∈ Reach(pL), by recursive definition

of Reach(pL), we will also have r′′
L ∈ Reach(pL). Hence, by definition of R, we

will have (r′
Lp

, r′′
L†

p
) ∈ R.

Conversely, for any q′
L†

p

b−→ r′
L†

p
, since L†

p can be embedded into L, we will

also have q′
L

b−→ r′
L. By definition of R, qL �(ρ,σ) q′

L, hence there must be some
a, r such that qL

a−→ rL with a σ b and rL �(ρ,σ) r′
L. Clearly, r′

L ∈ Reach(pL),
since it is in L†

p, and hence (rLp
, r′

L†
p
) ∈ R.

By a symmetric argument, we can show that the relation R′ = {(q′
L†

p
, qL) |

q′
L �(ρ,σ) qL ∧ q′

L ∈ Reach(pL)} is also a (ρ, σ)-bisimulation. Since pL ∈
Reach(pL) and pL �(ρ,σ) pL, we will have (rLp

, pL†
p
) ∈ R and (pL†

p
, pLp

) ∈ R′.

An abstracted LTS may help in reducing an infinite-state system to a finite
one. In some cases, it can be obtained without computing the bisimilarity rela-
tion. An example would be Timed Prebisimulation in Timed Automata [26].

56 D. Bagga and S.A. Kumar

3 Parameterised Hennessy-Milner Logic

Logical characterisation gives an effective syntax for describing distinguishing
behaviour, which differentiates the implementation from the specification with
respect to the behavioural preorder, as the distinguishing formula. For strong
bisimilarity, Hennessy-Milner Logic (HML) with the possibility modality 〈a〉
and the necessity modality [a], for every observation a ∈ Act, suffice. But when
we have a more general notion of functional equivalence, same must also be
incorporated in our modalities. For that, we look closely at how these modalities
describe distinguishing behaviour.

Suppose distinguishing behaviour arises because the implementation can give
an observation a, leading to behaviour described by some formula ϕ. Since it is
not allowed by the specification, there will be no observation b, such that a ρ b,
leading to a state satisfying ϕ. We can describe this using the modality 〈a〉ρ.

Conversely, distinguishing behaviour may arise as the specification has an
observation a, leading to behaviour described by some formula ϕ, but there
is no functionally equivalent observation in the implementation leading to the
matching behaviour. That is, for every b, such that b σ a, the implementation
does not yield the behaviour ϕ. This can be described using the modality [a]σ

−1
.

Hence, we propose the following as logical characterisation,

Definition 5. The syntax of the logic L(ρ,σ) is given by the following BNF

ϕ := � | ⊥ | 〈a〉ρ
ϕ | [a]σ

−1
ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

where a ∈ Act. The semantics of ϕ ∈ L(ρ,σ) is inductively defined as

‖�‖P = P ‖ϕ1 ∨ ϕ2‖P = ‖ϕ1‖P ∪ ‖ϕ2‖P

‖⊥‖P = ∅ ‖ϕ1 ∧ ϕ2‖P = ‖ϕ1‖P ∩ ‖ϕ2‖P

‖〈a〉ρ
ϕ‖P = {p | ∃b, p′[aρb ∧ p

b−→ p′ ∧ p′ ∈ ‖ϕ‖P]}
‖[a]σ

−1
ϕ‖P = {p | ∀b, p′[bσa ∧ p

b−→ p′ ⇒ p′ ∈ ‖ϕ‖P]}
These definitions can be seen as a natural generalization of those given for

HML and observational HML. A process p satisfies a formula ϕ ∈ L(ρ,σ), denoted
p � ϕ, iff p ∈ ‖ϕ‖P . In general, this logic is not closed under complementation.
However, when ρ = σ−1, the two operators 〈 〉ρ and []σ

−1
will become dual, mak-

ing it a modal logic. The satisfiability relation can be used to generate a preorder
relation on processes, which brings us to the notion of logical characterisation.

Definition 6. A logic L characterises a preorder �L over P if for any p, q ∈ P,
p �L q iff ∀ϕ ∈ L[p � ϕ ⇒ q � ϕ].

The following lemma justifies L(ρ,σ) by showing its invariance under (ρ, σ)-
bisimilarity.

Lemma 4. If ρ, σ are transitive, then for any processes p, q such that p �(ρ,σ) q,
we have p �L(ρ,σ) q.

Parameterised Logical Characterisations 57

Proof (By structural induction). Conjunction and disjunction being trivial cases,
we only sketch the proofs for modal operators. Suppose we are given processes
p, q such that p �(ρ,σ) q and p � ϕ holds.

– ϕ = 〈a〉ρ
ϕ′: There must exist an action b and state p′, such that p

b−→ p′,
aρb, and p′ � ϕ′. But since p �(ρ,σ) q, we must have some action c and state
q′, such that q

c−→ q′, bρc, and p′ �(ρ,σ) q′. By the induction hypothesis, we
will have q′ � ϕ′. Also since ρ is transitive, we have aρc. Hence q � 〈a〉ρ

ϕ′.
– ϕ = [a]σ

−1
ϕ′: Consider any transition q

b−→ q′, such that bσa holds. Since
p �(ρ,σ) q, there must exist an action c such that p

c−→ p′, cσb, and
p′ �(ρ,σ) q′. By transitivity of σ, we must have cσa. If p′ � ϕ′, by the induc-
tion hypothesis, we must have q′ � ϕ′. This holds for any b such that bσa,
therefore, q � [a]σ

−1
ϕ′.

The other direction, that is, if p �L(ρ,σ) q then p �(ρ,σ) q, requires additional
constraints, one of them being image-finiteness.

3.1 Image-Finiteness

Definition 7. An LTS L = 〈P,Act,−→〉 is (ρ, σ)-image-finite iff for any p ∈ P
and a ∈ Act, the sets, {q | p

b−→ q ∧ aρb } and {q | p
b−→ q ∧ bσa}, are finite.

An LTS L is image-finite upto (ρ, σ)-bisimilarity if L†
p is (ρ, σ)-image-finite for

every p ∈ P.

Image-finiteness enables the decidability of bisimulation by making the bisim-
ulation function co-continuous, which in turn guarantees a finite distinguishing
behaviour between non-bisimilar processes.

Theorem 1. Given an LTS L, if for every p ∈ P, the sets {p′|p b−→ p′ ∧ aρb}
and {p′|aσb ∧ p

a−→ p′} are closed and L†
p is (ρ, σ)-image-finite, then �ω

(ρ,σ)⊆
F(ρ,σ)(�ω

(ρ,σ)), and hence �ω
(ρ,σ)= �(ρ,σ).

Proof. Let p �ω
(ρ,σ) q. Then for any a, p′ such that p

a−→ p′, the set Qi =

{q′|q b−→ q′ ∧ aρb ∧ p′ �i
(ρ,σ) q′} is non-empty for every i. Since �i

(ρ,σ)⊆ �j
(ρ,σ),

for all i ≥ j, we would have Qi ⊆ Qj , which gives us a decreasing sequence of

sets. If some q′ is common to every Qi, then q
b−→ q′ ∧ aρb ∧ p′ �ω

(ρ,σ) q′ will
hold.

We can also show that Qt
i ⊆ Qt

j , for all i ≥ j. Suppose not, i.e., Qt
i ⊆ Qt

j for
some i, j with i ≥ j. Then there must exist some r ∈ Qt

i such that r ∈ Qt
j . Now

we will also have r ∈ Qi, and hence r ∈ Qj , since Qi ⊆ Qj . But since r is not
in Qt

j , there must exist some r′ ∈ Qt
j such that r �(ρ,σ) r′ holds. But this would

mean that r′ must also be in Qi since �(ρ,σ)⊆ �i
(ρ,σ), and hence in Qt

i in place
of r by transitivity of �i

(ρ,σ), giving us a contradiction.
By assumption, Q0 is a closed set, and hence Qt

0 is non-empty. In fact, we can
show that for every i ≥ 0, Qi is a closed set, making Qt

i non-empty. Consider

58 D. Bagga and S.A. Kumar

any r ∈ Qi, then r is also in Q0, and hence there is some r′ ∈ Qt
0 such that

r �(ρ,σ) r′. But since �(ρ,σ)⊆ �i
(ρ,σ) and �i

(ρ,σ) is transitive, r′ will also be in
Qi and hence in Qt

i.
Now under (ρ, σ)-image-finiteness assumption, Qt

0 is a finite set, hence there
will be an i0 such that Qt

i0
= Qt

j for all j ≥ i0. Also Qt
i0

is non-empty, hence
any element from Qt

i0
would be common to every Qi. Similar argument can be

made for a transition of q.

Lemma 5. If ρ, σ are reflexive and L†
p is (ρ, σ)-image-finite for every p ∈ P,

then the preorder �L(ρ,σ) is a (ρ, σ)-bisimulation.

Proof (Proof by Contradiction). Assume not. Then there must exist processes
p, q which are not bisimilar but p �L(ρ,σ) q holds. This can happen only if some
transition of p or q cannot be matched, giving us two cases

Case 1: We have p �L(ρ,σ) q and p
a−→ p′, but there is no action b and state

q′ with q
b−→ q′, aρb, and p′ �L(ρ,σ) q′. Let Q = {q′ | ∃b[q b−→ q′ ∧ a ρ b]}. Now

Q has a finite terminal set Qt. Moreover, for every q′ ∈ Qt, there must exist a
formula ϕq′ such that p′ � ϕq′ but q′ � ϕq′ . Consider the formula ϕ =

∧
q′∈Qt ϕq′ .

Clearly p′ � ϕ, and since ρ is reflexive, we have p � 〈a〉ρ
ϕ. Since p �L(ρ,σ) q, q

must also satisfy this formula, but this requires some state q′′ ∈ Q to satisfy ϕ,
which in turn requires some q′ ∈ Qt to satisfy ϕ, as q′′ �(ρ,σ) q′ (Lemma 4). But
q′ cannot satisfy ϕq′ , and consequently ϕ.

Case 2: We have p �L(ρ,σ) q and q
b−→ q′, but there is no action a and state p′

with p
a−→ p′, aσb, and p′ �L(ρ,σ) q′. Let P = {p′ | ∃a[p a−→ p′ ∧ a σ b]}. Now P

has a finite initial set P i. Moreover, for every p′ ∈ P , there must exist a formula
ϕp′ such that p′ � ϕp′ but q′ � ϕp′ . Consider the formula ϕ =

∨
p′∈P i ϕp′ . For

any p′′ ∈ P , there will be some p′ ∈ P i such that p′ �(ρ,σ) p′′, and due to
Lemma 4, we will have p′′ � ϕp′ , consequently p′′ � ϕ, and hence, p � [b]σ

−1
ϕ.

Since p �L(ρ,σ) q, q must also satisfy this formula. But this is only possible if q′

satisfies ϕ since σ is reflexive.

Theorem 2 now follows from Lemmas 4 and 5.

Theorem 2. If ρ, σ are preorders then �(ρ,σ)= �L(ρ,σ) , i.e. L(ρ,σ) is a logical
characterisation of �(ρ,σ) over (ρ, σ)-image-finite LTS.

The proof argument uses image-finiteness to ensure finite conjunctions and
disjunctions. If we allow infinite conjunctions and disjunctions in our logic,
denoted L∞

(ρ,σ), then we can obtain the logical characterisation result without
requiring the constraints of image-finiteness.

Theorem 3. If ρ, σ are preorders then �(ρ,σ)= �L(ρ,σ) , i.e. L∞
(ρ,σ) is a logical

characterisation of �(ρ,σ).

Parameterised Logical Characterisations 59

Procedure. GenerateFormula for generating a distinguishing formula
Input: p, q ∈ L = 〈P, Act, −→〉
Assumption: L†

r is (ρ, σ)-image-finite for every r ∈ P. If p ��i
(ρ,σ) q then

Bisimilar(p, q) = (a, p′) s.t. there does not exist any b, q′ with

q
b−→ q′ �i−1

(ρ,σ) p′ and aρb or Bisimilar(p, q) = (b, q′) s.t. there

does not exist any a, p′ with p
a−→ p′ �i−1

(ρ,σ) q′ and aσb

Output: if p �(ρ,σ) q then ff else ϕ s.t. (p � ϕ and q � ϕ) or (p � ϕ and q � ϕ)

GenerateFormula(p, q) = if p �(ρ,σ) q then return ff

else switch Bisimilar(p, q) do
case (a, p′): do return 〈a〉ρ∧

{q′ | q
b−→q′∧aρb}t

GenerateFormula(p′, q′)

case (b, q′): do return [b]σ
−1 ∨

{p′ | p
a−→p′∧aσb}iGenerateFormula(p

′, q′)

Logical characterisation implies the existence of a distinguishing formula,
which is satisfied by p but not by q, whenever p �(ρ,σ) q. The proof of Lemma 5
can be molded into a procedure for generating the distinguishing formula. Pro-
cedure GenerateFormula generates a distinguishing formula between the input
processes, assuming a bisimulation procedure which not only tells us whether
two processes are bisimilar, but also gives us the unmatched transition when
they are not. Image-finiteness bounds the number of recursive calls and also the
depth of recursion, by guaranteeing an i such that p �(ρ,σ) q implies p �i

(ρ,σ) q
(Theorem 1), and hence ensures the termination of the procedure.

3.2 Testing Preorders Logically

We may also view the parameterised HML formulas as tests. If p �(ρ,σ) q, then
the L(ρ,σ) formulas satisfied by p, denoted L(ρ,σ)(p), is a subset of the L(ρ,σ)

formulas satisfied by q, L(ρ,σ)(q). If q is the specification, then L(ρ,σ)(q) can be
seen as the set of allowed behaviours, therefore, L(ρ,σ)(p) ⊆ L(ρ,σ)(q) ensures the
correctness of p.

We may define complementation for the parameterised HML. Given a formula
ϕ ∈ L(ρ,σ), its complement, ϕc ∈ L(σ−1,ρ−1), is defined by following structural
induction.

�c = ⊥ (ϕ1 ∨ ϕ2)
c = ϕ1

c ∧ ϕ2
c (〈a〉ρ

ϕ)c = [a]ρϕc

⊥c = � (ϕ1 ∧ ϕ2)
c = ϕ1

c ∨ ϕ2
c ([a]σ

−1
ϕ)

c
= 〈a〉σ−1

ϕc

It may be easily seen that p � ϕ iff p � ϕc. Therefore, if L(ρ,σ)(p) ⊆ L(ρ,σ)(q),
then L(σ−1,ρ−1)(q) ⊆ L(σ−1,ρ−1)(p). The specification may be seen as the set of all
tests that the correct implementation should pass. Then, an implementation is
correct under (ρ, σ)-bisimilarity, iff all the specification’s tests, L(σ−1,ρ−1)(q), are
satisfied by the implementation, implying L(σ−1,ρ−1)(q) ⊆ L(σ−1,ρ−1)(p), which
by logical characterisation result implies p �(ρ,σ) q.

60 D. Bagga and S.A. Kumar

Procedure. IsModel for checking satisfiability
Input: ϕ ∈ L(ρ,σ), p ∈ L = 〈P, Act, −→〉
Assumption: L†

p is (ρ, σ)-image-finite
Output: p � ϕ
IsModel(tt , p) = true
IsModel(

∧
i∈I ϕi, p) =∧

i∈IIsModel(ϕi, p)

IsModel(ff , p) = false
IsModel(

∨
i∈I ϕi, p) =∨

i∈IIsModel(ϕi, p)

IsModel(〈a〉ρϕ, p) =
∨

q∈{q | p
b−→q∧aρb}t

IsModel(ϕ, q)

IsModel([a]σ
−1

ϕ, p) =
∧

q∈{q | p
b−→q∧bσa}i

IsModel(ϕ, q)

Procedure IsModel gives a recursive method for deciding whether a formula ϕ
is satisfied by a process p. It is guaranteed to terminate when L†

p is (ρ, σ)-image-
finite. Note that a finite or algebraic description of the LTS is not necessary.
If the LTS is described co-algebraically, then the procedure IsModel gives a co-
inductive definition2. To evaluate a PHML formula, you only need to look at
the current state and its immediate successors, which can be done in a purely
observational model. Therefore, we may also view �L(ρ,σ)= �−1

L(σ−1,ρ−1)
as the

testing equivalence obtained by interpreting formulas of logic L(σ−1,ρ−1) as the
encoding of tests.

4 Extending Parameterised HML with Fixed Point
Operators

The parameterised HML can be extended with fixed point operators [18].

Definition 8. The syntax of the logic LX
(ρ,σ) is given by the following BNF

ϕ := � | ⊥ | X | 〈a〉ρ
ϕ | [a]σ

−1
ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | νX.ϕ | μX.ϕ

where a ∈ Act and X ∈ X ranges over a countable set of variables.

The operators νX and μX denote the greatest fixed point and least fixed
point respectively, binding the variable X in its scope. Any variable which is not
bound is called a free variable. A closed formula is one without any free variables,
and the fragment of closed formulas of the logic will be denoted cf(LX

(ρ,σ)). To
define the semantics, we need the notion of valuations, which assigns meaning to
free variables. Given a countable set of variables X , a valuation V is essentially
a map from X to 2P .

2 It is still inductively defined over L(ρ,σ), but it is co-inductively defined over
processes.

Parameterised Logical Characterisations 61

Definition 9. The semantics of the formula ϕ ∈ LX
(ρ,σ) over some process set

P is defined inductively as,

‖X‖P
V = V(X)

‖ϕ1 ∨ ϕ2‖P
V = ‖ϕ1‖P

V ∪ ‖ϕ1‖P
V

‖ϕ1 ∧ ϕ2‖P
V = ‖ϕ1‖P

V ∩ ‖ϕ1‖P
V

‖〈a〉ρ
ϕ‖P

V = {p | ∃b, p′[aρb ∧ p
b−→ p′ ∧ p′ ∈ ‖ϕ‖P

V]}
‖[a]σ

−1
ϕ‖P

V = {p | ∀b, p′[bσa ∧ p
b−→ p′ ⇒ p′ ∈ ‖ϕ‖P

V]}
‖νX.ϕ‖P

V =
⋃{E ⊆ P | E ⊆ ‖ϕ‖P

V[E/X]}
‖μX.ϕ‖P

V =
⋂{E ⊆ P | ‖ϕ‖P

V[E/X] ⊆ E}

where V[E/X](Y) = V(Y) for all Y = X and V[E/X](X) = E.

The semantics of any formula depends upon the valuation supplied. Conse-
quently, the satisfaction relation should be redefined.

Definition 10. A process p satisfies a formula ϕ under V, denoted p �V ϕ,
iff p ∈ ‖ϕ‖P

V . It satisfies the formula ϕ, denoted p � ϕ, iff p ∈ ‖ϕ‖P
V for all

valuations V.

A valuation can be seen as an element of (2P)|X |, which is the |X | fold
product of 2P . Since powerset forms a complete lattice, and the direct product
of a countable collection of complete lattices is also a complete lattice, this must
also be a complete lattice under pointwise subset ordering [8]. More formally,

Definition 11. Let V1 and V2 be any two valuations over X . We define a partial
order ≤ on valuations as

V1 ≤ V2 ⇔ ∀X ∈ X [V1(X) ⊆ V2(X)]

The ≤ ordering yields a complete lattice, (X → 2P ,≤), over valuations.

The semantics of any formula is monotonic with respect to this partial order
over valuations.

Lemma 6. Let V1 and V2 be any two valuations over X and ϕ be any formula
in LX

(ρ,σ). If V1 ≤ V2 then ‖ϕ‖P
V1

⊆ ‖ϕ‖P
V2

(Refer [25]).

Given a formula ϕ with a free variable X ∈ X , the function, Oϕ(V) =
V[‖ϕ‖P

V /X], is monotonic over the complete lattice (X → 2P ,≤). Hence by
Tarski’s theorem [29], the semantic definition of νX and μX indeed defines the
greatest and the least fixed point respectively. It also makes the model checking
of LX

(ρ,σ) decidable over finite-state systems. For example, to compute ‖νX.ϕ‖P ,
we just need to apply Oϕ repeatedly, starting from P (empty set in case of least
fixed point), until we reach a fixed point.

Theorem 4. Given a finite L†
p, for any ϕ ∈ cf(LX

(ρ,σ)), p � ϕ is decidable.

62 D. Bagga and S.A. Kumar

4.1 Preservation Under Bisimulations

The characterisation result can be broken into two assertions. Firstly, if q satisfies
all the formulae which are satisfied by p, then p is (ρ, σ)-bisimilar to q. Since
LX
(ρ,σ) extends L(ρ,σ), this result will continue to hold. Interestingly, the other

assertion, i.e. if p is (ρ, σ)-bisimilar to q then q satisfies all formulae which are
true for p, also holds for LX

(ρ,σ), despite it being more expressive on account of
fixed point operators, provided that the valuation is (ρ, σ)-bisimilarity-closed.

Definition 12. Given any relation R, a set E ⊆ P is R-closed iff for every
process p, q, whenever p ∈ E and pRq, we have q ∈ E. Naturally, a valuation V
is R-closed iff V(X) is R-closed for every variable X.

For every p, q ∈ P with p �(ρ,σ) q, p ∈ ‖ϕ‖P
V implies q ∈ ‖ϕ‖P

V is equivalent to
saying that the set ‖ϕ‖P

V is bisimilarity-closed, i.e., the counterpart of Lemma 4
here will be showing that ‖ϕ‖P

V is bisimilarity-closed. The results given below
are a generalization of a corresponding result for strong bisimulation [28].

Definition 13

1. Given any set E ⊆ P, its upward (ρ, σ)-bisimilarity closure, Eu
(ρ,σ), is the set

{q ∈ P | ∃p[p �(ρ,σ) q ∧ p ∈ E]}.
2. Given any set E ⊆ P, its downward (ρ, σ)-bisimilarity closure, Ed

(ρ,σ), is the
set {p ∈ E | ∀q[p �(ρ,σ) q ⇒ q ∈ E]}.

Lemma 7. Let E = {Ei}i∈I be any collection of (ρ, σ)-bisimilarity-closed sets.
Then both

⋃
i∈I Ei and

⋂
i∈I Ei are also (ρ, σ)-bisimilarity-closed.

Lemma 8. If ρ, σ are preorders, then for any arbitrary set E,

1. Eu
(ρ,σ) is a (ρ, σ)-bisimilarity-closed set containing E.

2. Ed
(ρ,σ) is a (ρ, σ)-bisimilarity-closed set contained in E (Refer [25]).

Lemma 9. Given preorders ρ, σ, (ρ, σ)-image-finite processes in P and a (ρ, σ)-
bisimilarity-closed valuation V, the set ‖ϕ‖P

V is also (ρ, σ)-bisimilarity-closed for
any formula ϕ ∈ LX

(ρ,σ).

Proof. We extend the inductive argument of Lemma 4, which requires (ρ, σ)-
image-finiteness, with the proofs for fixed point operators. The case of the sin-
gle variable X trivially follows from the fact that the valuation V is (ρ, σ)-
bisimilarity-closed.

– Case νX.ϕ: For any E ⊆ ‖ϕ‖P
V[E/X], we have ‖ϕ‖P

V[E/X] ⊆ ‖ϕ‖P
V[Eu/X]

(Lemma 6), and hence E ⊆ ‖ϕ‖P
V[Eu/X]. By the induction hypothesis,

‖ϕ‖P
V[Eu/X] is (ρ, σ)-bisimilarity-closed. We can show Eu ⊆ ‖ϕ‖P

V[Eu/X], as any
q ∈ Eu will have a p ∈ E with p �(ρ,σ) q. Since E ⊆ ‖ϕ‖P

V[Eu/X], we will have
p ∈ ‖ϕ‖P

V[Eu/X], and hence q ∈ ‖ϕ‖P
V[Eu/X], due to it being (ρ, σ)-bisimilarity-

closed. Since Eu ∪ E = Eu, we can rewrite
⋃{E ⊆ P | E ⊆ ‖ϕ‖P

V[E/X]} as
⋃{Eu ⊆ P | Eu ⊆ ‖ϕ‖P

V[Eu/X]}, which is a (ρ, σ)-bisimilarity-closed set by
Lemma 7, and hence ‖νX.ϕ‖P

V is (ρ, σ)-bisimilarity-closed.

Parameterised Logical Characterisations 63

– Case μX.ϕ: For any ‖ϕ‖P
V[E/X] ⊆ E , we have ‖ϕ‖P

V[Ed/X] ⊆ ‖ϕ‖P
V[E/X]

(Lemma 6), and hence ‖ϕ‖P
V[Ed/X] ⊆ E . By the induction hypothesis,

‖ϕ‖P
V[Ed/X] is (ρ, σ)-bisimilarity-closed. Therefore, for any p, q with p ∈

‖ϕ‖P
V[Ed/X] and p �(ρ,σ) q, we will have q ∈ ‖ϕ‖P

V[Ed/X] and hence q ∈ E .
This, however, implies that p must be in Ed, and hence ‖ϕ‖P

V[Ed/X] ⊆ Ed.
Since Ed ∩ E = Ed, we can rewrite

⋂{E ⊆ P | ‖ϕ‖P
V[E/X] ⊆ E} as

⋂{Ed ⊆ P | ‖ϕ‖P
V[Ed/X] ⊆ Ed}, which is a (ρ, σ)-bisimilarity-closed set by

Lemma 7, and hence ‖μX.ϕ‖P
V is also (ρ, σ)-bisimilarity-closed.

If ϕ is a closed formula, i.e. ϕ ∈ cf(LX
(ρ,σ)), then its meaning is independent

of the valuation, and hence is always bisimilarity-closed.

Theorem 5. Given preorders ρ, σ, for any (ρ, σ)-image-finite processes p, q,
p �(ρ,σ) q iff p �cf(LX

(ρ,σ))
q, i.e., cf(LX

(ρ,σ)) is a logical characterisation for
�(ρ,σ).

4.2 Characteristic Formula

Equipped with the fixed point operators, the logic LX
(ρ,σ) is powerful enough

to define characteristic formulae. Given a process p, a characteristic formula
is satisfied only by the processes which are (ρ, σ)-bisimilar to p. Its existence,
therefore, reduces bisimulation checking to model checking. More formally,

Definition 14. A closed formula ϕp ∈ LX
(ρ,σ) is characteristic of a process p, if

for every q ∈ P, we have p �(ρ,σ) q iff q ∈ ‖ϕp‖P .

Numerous derivations of characteristic formulae share a common underlying
structure [2], which encode the fixed point characterisation of the relation as a
formula in the logic. We adopt the derivation in [22] for parameterised bisimu-
lations, as it gives a step-by-step conversion of the fixed point characterisation
into a characteristic formula.

We will derive an equational system from which the characteristic formula
can be obtained using standard techniques [22]. Given some process set P, an
equational system EP is a collection of mutually recursive equations of the form
Xp = ϕp, where ϕp ∈ LX

(ρ,σ) and p ∈ P. We can also view this equational system
as a function over valuations, defined as (EP(V))(Xp) = ‖ϕp‖P

V . By Lemma 6,
this defines a monotonic function over the lattice ({Xp}p∈P → 2P ,≤), which is
isomorphic to the lattice of binary relations over P.

Lemma 10. The lattice ({Xp}p∈P → 2P ,≤) is isomorphic to (2P×P ,⊆) under
the following mapping

I(V) = {(p, q) | q ∈ V(Xp)} I
−1(R) = {q ∈ V(Xp) | (p, q) ∈ R}

64 D. Bagga and S.A. Kumar

The utility of this isomorphism lies in its ability to define a characteristic
equational system as EP = I

−1 ◦ F(ρ,σ) ◦ I, with its greatest fixed point corre-
sponding to (ρ, σ)-bisimilarity. Its encoding in logic follows as

q ∈ (I−1 ◦ F(ρ,σ) ◦ I)(V)(Xp)

⇐⇒ (p, q) ∈ (F(ρ,σ) ◦ I)(V) [by definition of I−1]

⇐⇒ (∀a, p′ : p
a−→ p′ ⇒ ∃b, q′[aρb ∧ q

b−→ q′ ∧ q′ ∈ V(Xp′)])∧
(∀b, q′ : q

b−→ q′ ⇒ ∃a, p′[aσb ∧ p
a−→ p′ ∧ q′ ∈ V(Xp′)]) [by definition of F(ρ,σ), I]

We can translate the above two conditions to logic in the following manner

(1) ∀a, p′ : p
a−→ p′ ⇒ ∃b, q′[aρb ∧ q

b−→ q′ ∧ q′ ∈ V(Xp′)]

⇐⇒ ∀a, p′ : p
a−→ p′ ⇒ q ∈ ‖〈a〉ρXp′‖P

V [by definition of 〈a〉ρ]
⇐⇒ q ∈ ‖∧

a,p′:p a−→p′ 〈a〉ρXp′‖P
V [by definition of ∧]

(2) ∀b, q′ : q
b−→ q′ ⇒ ∃a, p′[aσb ∧ p

a−→ p′ ∧ q′ ∈ V(Xp′)]
⇐⇒ ∀b, q′ : q

b−→ q′ ⇒ q′ ∈ ‖∨
a,p′:aσb∧p

a−→p′ Xp′‖P
V [by definition of ∨]

Assuming ρ, σ are preorders, ∀b, q′ : q
b−→ q′ ⇒ q′ ∈ ‖∨

a,p′:aσb∧p
a−→p′ Xp′‖P

V
is equivalent to ∀b, c, q′ : cσb ∧ q

c−→ q′ ⇒ q′ ∈ ‖∨
a,p′:aσb∧p

a−→p′ Xp′‖P
V .

First implies the second due to transitivity, which makes {(a, p′) | aσc ∧
p

a−→ p′} ⊆ {(a, p′) | aσb ∧ p
a−→ p′} whenever cσb holds, and hence

q ∈ ‖∨
a,p′:aσb∧p

a−→p′ Xp′‖P
V is true whenever q ∈ ‖∨

a,p′:aσc∧p
a−→p′ Xp′‖P

V is true.
Second implies the first due to reflexivity of σ, giving us,

∀b, q′ : q
b−→ q′ ⇒ q′ ∈ ‖∨

a,p′:aσb∧p
a−→p′ Xp′‖P

V
⇐⇒ ∀b, c, q′ : cσb ∧ q

c−→ q′ ⇒ q′ ∈ ‖∨
a,p′:aσb∧p

a−→p′ Xp′‖P
V [by ref. and trans. of σ]

⇐⇒ ∀b : q ∈ ‖[b]σ
−1 ∨

a,p′:aσb∧p
a−→p′ Xp′‖P

V [by definition of [b]σ
−1

]

⇐⇒ q ∈ ‖∧b [b]σ
−1 ∨

a,p′:aσb∧p
a−→p′ Xp′‖P

V [by definition of ∧]

Combining the two, the characteristic equational system, EP′
�(ρ,σ)

, becomes

Xp = (
∧

a,p′:p a−→p′

〈a〉ρ
Xp′) ∧ (

∧

b

[b]σ
−1

(
∨

a,p′:aσb∧p
a−→p′

Xp′))

Clearly, if L†
p is finite, then the equational system will also be finite. Now

for any two actions a, b with aρb, the formula 〈b〉ρ
ϕ implies 〈a〉ρ

ϕ. Therefore,
if every subset of Act has finitely many maximal elements under the ordering
ρ, then we can always rewrite

∧
a,p′:p a−→p′ 〈a〉ρ

Xp′ as a finite conjunct. Simi-

larly, [b]σ
−1

ϕ implies [a]σ
−1

ϕ if aσb holds, and
∨

a,p′:aσb∧p
a−→p′ Xp′ will be finite

if we have only finitely many variables. Therefore, if every subset of Act has
finitely many maximal elements under the ordering σ, then we can always rewrite∧

b [b]σ
−1

(
∨

a,p′:aσb∧p
a−→p′ Xp′) as a finite conjunct. The following theorem cap-

tures this idea,

Parameterised Logical Characterisations 65

Theorem 6. A process p has a finite characteristic formula in LX
(ρ,σ), if ρ and

σ are preorders with finitely many maximal elements and every action being less
than some maximal element, and L†

p is finite with pL†
p

�(ρ,σ) pL.

By constructing the characteristic formula of p and model checking it for q,
we obtain a procedure for deciding parameterised bisimilarity, p �(ρ,σ) q [10].
Though this requires ρ and σ to have finitely many maximal elements, and L†

p,
L†

q to be finite, i.e., the set of reachable initial and terminal states from p and q
must be finite.

5 Applications

Weak Bisimilarity and Efficiency Preorder. Expressing concrete bisimu-
lations as parameterised bisimulations may involve LTS transformation, for e.g.,
weak bisimulation requires the transitive closure of the transition relation under
τ actions [4], i.e. extending the action set to sequences τ iaτ j , i, j ≥ 0. Weak
bisimulation [16] is a (=̂, =̂)-bisimulation over this extended action set, where
=̂ = {(τ i, τ j) | i, j ≥ 0} ∪ {(τ iaτ j , τ i′

aτ j′
) | i, j, i′, j′ ≥ 0, a ∈ Act}. This gives

the logical characterisation L(=̂,=̂), which is identical to observational HML [16].
Similarly, efficiency preorders [5] is a (�,�)-bisimulation, where � = {(τ i, τ j) |
0 ≤ i ≤ j} ∪ {(τ iaτ j , τ i′

aτ j′
) | 0 ≤ i + j ≤ i′ + j′, i, j, i′, j′ ≥ 0, a ∈ Act}. Its

logical characterisation L(,), however, differs from the existing one [17].

Covariant-Contravariant Simulation. The classical view of process simula-
tion assumes all actions to be input actions, which the user may trigger. The
simulating process must simulate all the input actions of the process being sim-
ulated. But in the presence of output actions, this condition is reversed. This
forms the intuition for defining covariant-contravariant simulations [11].

Definition 15. Let P be the set of process states and Act be the set of actions
which can be partitioned into the sets Actr, Actl and Actbi. A binary relation
R ⊆ P ×P is a covariant-contravariant simulation if p R q implies the following
conditions

∀a ∈ Actr ∪ Actbi[p a−→ p′ ⇒ ∃q′[q a−→ q′ ∧ p′ R q′]]

∀a ∈ Actl ∪ Actbi[q a−→ q′ ⇒ ∃p′[p a−→ p′ ∧ p′ R q′]

We will write p �CC q, if there is a covariant-contravariant simulation R such
that p R q.

The covariant-contravariant simulation, defined above, ignores the Actl tran-
sitions for p and Actr transitions for q. To specify it as an instance of para-
meterised bisimulation, we introduce a special state 0, such that from every
process p there is a transition p

!−→ 0, and there is only one transition from
0, that is to itself as 0 ∗−→ 0, where !, ∗ are new action labels. Now covariant-
contravariant simulation can be instantiated as parameterised bisimulation by

66 D. Bagga and S.A. Kumar

setting ρ = IdAct ∪ {(a, !)|a ∈ Actl} ∪ {(a, ∗)|a ∈ Act} ∪ {(!, !), (∗, ∗), (∗, !}
and σ−1 = IdAct ∪ {(a, !)|a ∈ Actr} ∪ {(a, ∗)|a ∈ Act} ∪ {(!, !), (∗, ∗), (∗, !}. All
processes will be (ρ, σ)-bisimilar to 0. Also, 0 satisfies every formula ψ ∈ L(ρ,σ−1).
As a consequence, every process p will satisfy any formula of the form 〈!〉ρ

ψ, and
hence 〈a〉ρ

ψ where a ∈ Actl, as well as 〈∗〉ρ
ψ, for any ψ ∈ L(ρ,σ−1). Similar

argument also holds for [!]σ
−1

ψ, [∗]σ
−1

ψ and [a]σ
−1

ψ, where a ∈ Actr and ψ is
any formula in L(ρ,σ). If we remove these modalities, we are only left with 〈a〉ρ,
where a ∈ Actr ∪ Actbi and [a]σ

−1
, where a ∈ Actl ∪ Actbi, and ρ, σ are identity

relations over these actions. This is exactly the logical characterisation given in
[12] for covariant-contravariant simulation.

Time Abstracted Bisimilarity and Timed Prebisimulation. Timed LTS
is a special class of LTS, where the label set is of the form Act ∪ R≥0, where
the labels in R≥0 correspond to delay observations. The strong bisimulation
over Timed LTS is also referred as Timed bisimulation. In general, the timed
bisimilarity over arbitrary Timed LTS is undecidable, but it becomes decidable
when restricted to Timed LTS generated from Timed Automata [3]. The Timed
LTS generated from Timed Automata has deterministic delays, that is, there
is a unique successor state for every delay transition. This, in turn, implies
image-finiteness, and hence the logical characterisation for strong bisimilarity
also works for timed bisimilarity.

Time abstracted bisimulation [20], which relaxes the condition of match-
ing a delay transition with any other delay transition, irrespective of the delay
amount, is another interesting behavioural equivalence over Timed LTS. As
noted in Sect. 3, time abstracted bisimulation [16] is a (�,�)-bisimulation, where
� = IdAct ∪ (R≥0 × R≥0). It is also decidable for TLTS generated from timed
automata. In fact one can apply zone abstraction [6] to obtain a finite abstracted
LTS, as all states in the same zone are time abstracted bisimilar. Since a finite
abstracted LTS is always image-finite, we obtain L(�,�) as the logical character-
isation for time abstracted bisimilarity.

Similarly, timed prebisimulation [15] is a (�,�)-bisimulation, where � =
IdAct∪ ≥ R. Again we can apply zone abstraction, and use zone endpoints to
obtain a finite abstracted LTS for TLTS generated from timed automata. How-
ever we require infinitesimal δ-delays, of the form d + δ or d − δ, to define zone
endpoints when zone boundaries are given by strict inequalities. This is also
why the decidability result for timed prebisimilarity based on zone abstraction
is restricted to one clock timed automata [15]. This technique can only be applied
to one clock timed automata, as δ delays for multiple clocks are incomparable.
We can remove the δ-delays from our logical characterisation, by noting that
〈d − δ〉≥ = 〈d〉≥, 〈d + δ〉≥ = 〈d〉>, [d − δ]≤ = [d]<, and [d + δ]≤ = [d]≤. Hence
we obtain the following as logical characterisation for timed prebisimilarity over
TLTS generated from one clock timed automata.

ϕ := 〈a〉ϕ | [a]ϕ | 〈d〉≥
ϕ | [d]≤ϕ | 〈d〉>

ϕ | [d]<ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

where a ∈ Act and d ∈ R≥0. We refer the reader to [26] for detailed proof.

Parameterised Logical Characterisations 67

6 Conclusion and Future Work

Parameterised HML, L(ρ,σ), generalises HML as the logical characterisation
for parameterised bisimulations. By selecting suitable relations on actions, one
readily obtains the existing characterisations of strong and weak bisimulation,
covariant-contravariant simulation [12], and novel characterisations for prebisim-
ilarity relations like efficiency preorder [17], timed prebisimulation [15], etc.

The characterisation immediately yields distinguishing formulae between
non-bisimilar processes. However it requires (ρ, σ)-image-finiteness upto (ρ, σ)-
bisimilarity, in which case non-bisimilar processes have a finite distinguishing
behaviour. Consequently, we obtain the algorithm for generating distinguish-
ing formulae when the processes are (ρ, σ)-image-finite and have a decidability
procedure for (ρ, σ)-bisimilarity.

The extension of parameterised HML with fixed point operators, LX
(ρ,σ),

remains invariant under the corresponding parameterised bisimulation, while
increasing its power to allow expressing characteristic formulae for finite-state
processes. Model checking of characteristic formula may yield efficient algorithms
for deciding behavioural relations [10], and is worth studying in the context of
parameterised bisimulations.

Generating distinguishing formula requires image-finiteness; similarly the
existence of finite characteristic formula is only guaranteed for finite-state sys-
tems. Interestingly, these results may be extended to infinite-state systems
through abstracted LTS. Infinite-state systems with quantitative aspects, like
time, may offer interesting instantiations of parameterised bisimulations, and
can become a good application domain for these results.

The expressive power of parameterised HML is another area worth investigat-
ing. This may involve generalizing the correspondence results for modal logic and
strong bisimulation [7], and may help in relating this logic to (ρ, σ)-bisimulation
invariant fragments of classical logics. This will enable us to compare our logical
characterisation with the existing ones, where they differ.

References

1. Aceto, L., Fábregas, I., de Frutos-Escrig, D., Ingólfsdóttir, A., Palomino, M.:
Graphical representation of covariant-contravariant modal formulae (2011).
arXiv:1108.4464

2. Aceto, L., Ingólfsdóttir, A., et al.: Characteristic formulae for fixed-point semantics.
Math. Struct. Comput. Sci. 22, 125–173 (2012)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

4. Arun-Kumar, S.: On bisimilarities induced by relations on actions. In: SEFM 2006,
pp. 41–49. IEEE (2006)

5. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Inform.
29(8), 737–760 (1992)

http://arxiv.org/abs/1108.4464

68 D. Bagga and S.A. Kumar

6. Bengtsson, J., Yi, W.: On clock difference constraints and termination in reach-
ability analysis of timed automata. In: Dong, J.S., Woodcock, J. (eds.) ICFEM
2003. LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39893-6 28

7. Van Benthem, J.: Modal correspondence theory. Ph.D. thesis, University of
Amsterdam (1976)

8. Birkhoff, G.: Lattice Theory, vol. 25. American Mathematical Society, Providence
(1967)

9. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theoret. Comput.
Sci. 106(1), 3–20 (1992)

10. Cleaveland, R., Steffen, B.: Computing behavioural relations, logically. In: Albert,
J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 127–138.
Springer, Heidelberg (1991). doi:10.1007/3-540-54233-7 129

11. Fábregas, I., de Frutos Escrig, D., Palomino, M.: Non-strongly stable orders also
define interesting simulation relations. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 221–235. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03741-2 16

12. Fábregas, I., de Frutos Escrig, D., Palomino, M.: Logics for contravariant simula-
tions. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE -2010. LNCS, vol. 6117,
pp. 224–231. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13464-7 18

13. Gierz, G., Scott, D.S., et al.: Continuous Lattices and Domains, vol. 93. Cambridge
University Press, Cambridge (2003)

14. Graf, S., Sifakis, J.: A modal characterization of observational congruence on finite
terms of CCS. Inf. Control 68(1), 125–145 (1986)

15. Guha, S., Narayan, C., Arun-Kumar, S.: On decidability of prebisimulation for
timed automata. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 444–461. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 33

16. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985)

17. Korade, N., Arun-Kumar, S.: A logical characterization of efficiency preorders.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 99–112. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31862-0 9

18. Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M., Schmidt, E.M.
(eds.) ICALP 1982. LNCS, vol. 140, pp. 348–359. Springer, Heidelberg (1982).
doi:10.1007/BFb0012782

19. Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic — and
back. In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–
539. Springer, Heidelberg (1995). doi:10.1007/3-540-60246-1 158

20. Larsen, K.G., Yi, W.: Time abstracted bisimulation: implicit specifications and
decidability. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
MFPS 1993. LNCS, vol. 802, pp. 160–176. Springer, Heidelberg (1994). doi:10.
1007/3-540-58027-1 8

21. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

22. Müller-Olm, M.: Derivation of characteristic formulae. Electron. Notes Theoret.
Comput. Sci. 18, 159–170 (1998)

23. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). doi:10.
1007/BFb0017309

24. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Pro-
gram. Lang. Syst. 31(4), 15:1–15:41 (2009)

http://dx.doi.org/10.1007/978-3-540-39893-6_28
http://dx.doi.org/10.1007/978-3-540-39893-6_28
http://dx.doi.org/10.1007/3-540-54233-7_129
http://dx.doi.org/10.1007/978-3-642-03741-2_16
http://dx.doi.org/10.1007/978-3-642-03741-2_16
http://dx.doi.org/10.1007/978-3-642-13464-7_18
http://dx.doi.org/10.1007/978-3-642-31424-7_33
http://dx.doi.org/10.1007/978-3-540-31862-0_9
http://dx.doi.org/10.1007/BFb0012782
http://dx.doi.org/10.1007/3-540-60246-1_158
http://dx.doi.org/10.1007/3-540-58027-1_8
http://dx.doi.org/10.1007/3-540-58027-1_8
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1007/BFb0017309

Parameterised Logical Characterisations 69

25. Logical characterisation proofs, July 2017. http://www.cse.iitd.ac.in/∼bagga/
detailedProofs.pdf

26. Timed bisimulations as parameterised bisimulations, July 2017. http://www.cse.
iitd.ac.in/∼bagga/TimedBisimulations.pdf

27. Steffen, B., Ingólfsdóttir, A.: Characteristic formulas for processes with divergence.
Inf. Comput. 110(1), 149–163 (1994)

28. Stirling, C.: Modal and temporal logics for processes. In: Moller, F., Birtwistle, G.
(eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 149–237. Springer, Heidelberg
(1996). doi:10.1007/3-540-60915-6 5

29. Tarski, A., et al.: A lattice-theoretical fixpoint theorem and its applications. Pac.
J. Math. 5(2), 285–309 (1955)

30. Van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.)
Handbook of Philosophical Logic. Synthese Library (Studies in Epistemology,
Logic, Methodology, and Philosophy of Science), vol. 165, pp. 167–247. Springer,
Heidelberg (1984). doi:10.1007/978-94-009-6259-0 4

31. van Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer,
Heidelberg (1990). doi:10.1007/BFb0039066

http://www.cse.iitd.ac.in/~bagga/detailedProofs.pdf
http://www.cse.iitd.ac.in/~bagga/detailedProofs.pdf
http://www.cse.iitd.ac.in/~bagga/TimedBisimulations.pdf
http://www.cse.iitd.ac.in/~bagga/TimedBisimulations.pdf
http://dx.doi.org/10.1007/3-540-60915-6_5
http://dx.doi.org/10.1007/978-94-009-6259-0_4
http://dx.doi.org/10.1007/BFb0039066

A Probabilistic Semantics for the Pure
λ-Calculus

Alessandra Di Pierro(B)

Dipartimento di Informatica, Università di Verona, Verona, Italy
alessandra.dipierro@univr.it

Abstract. From a programming language viewpoint, the λ-calculus for-
malises several features of the modern description of computation and
its implementation. We present a denotational semantics for the untyped
calculus that captures a basic feature of probabilistic programming lan-
guages, namely probability distributions as both the objects and the
result of a computation.

1 Introduction

Although probabilistic programming is today a well-established discipline, a the-
ory similar to the pure λ-calculus has not yet been fully developed in that setting.
In this paper we address the problem of defining a probabilistic model for the
pure λ-calculus which could serve as a basis for the design of functional program-
ming languages and their semantics. We concentrate here on the denotational
approach which is central for expressing the functional meaning of a program
and is therefore an essential basis for several program analyses.

The idea we intend to develop in this work is that a natural model for prob-
abilistic behaviours can be found in linear algebra and that their analysis is
nothing else than a calculus for finding the solution of linear systems of differ-
ential equations.

It is well known that the choice of a suitable denotational domain for the
pure λ-calculus is problematic due to its type-free character: one has to use
the same domain for denoting both the data and the program. In 1969, Scott
solved the problem for the pure λ-calculus by restricting to cpo’s and continuous
functions. We show here that, in analogy to the fundamental results of Scott,
we can identify a solution by considering Hilbert spaces and bounded linear
operators on them. This can be achieved essentially by defining a lifting of the
classical Scott’s semantics to a probabilistic interpretation of the pure un-typed
λ-calculus

exp ::= var | λ var.exp | exp exp, (1)

and is sufficient to make the pure calculus a foundation for probabilistic (func-
tional) programming. The idea is to define an environment as an assignment of
probability distributions to variables. This corresponds to considering the vari-
ables of the calculus as random variables. Thus the semantic domain could simply
be a set of distributions. However, in order to define a meaning function, [[−]],
c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 70–76, 2017.
DOI: 10.1007/978-3-319-67729-3 5

A Probabilistic Semantics for the Pure λ-Calculus 71

that suitably associates to each λ-expression a probabilistic value, we will define
both the environment and the domain as vector spaces and, as a consequence,
[[−]] as a linear operator.

2 Domain Equation

It is well-known that a classical model for the λ-calculus is a reflexive object
in the Cartesian Closed Category of complete partial orders (cpo’s) and Scott-
continuous functions [1]. A set D is a reflexive object if [D → D], the cpo of all
Scott-continuous functions from D to D is a retract of D, i.e. there are continuous
maps F : D → [D → D] and G : [D → D] → D such that F · G = Id[D→D].
In the literature, this kind of models are referred to as continuously complete
λ-models (all continuous functions defined on them are representable).

In this section we show how a reflexive domain for the pure λ-calculus can be
defined, which supports probabilistic computation. To this purpose we consider
Hilbert spaces and use their mathematical properties to construct a denotational
semantics for the pure λ-calculus as defined by the grammar in Eq. 1.

2.1 The Hilbert Space �2

A Hilbert space is defined as a complete inner product space [2]. We recall that
a inner product space is a vector space V endowed with an inner product, i.e. a
scalar function 〈·, ·〉 : V → C satisfying the following properties:

– 〈x, y〉 = 〈y, x〉, (where the bar indicates complex conjugation)
– 〈αx + βy, z〉 = 〈αx, z〉 + 〈βy, z〉,
– 〈x, y〉 ≥ 0,
– 〈x, x〉 = 0 implies x = 0.

By completeness of an inner product space E, we mean completeness of E as a
normed space with the norm defined by the inner product.

A well-known result of the theory of operator algebras states that every
separable Hilbert space is isomorphic to the ‘standard’ Hilbert space of infinite
vectors [3, Corollary 2.2.13], [2, Theorem 3.4.27]

�2 = {(xi)i∈N | xi ∈ C and
∑

i∈N

|xi|2 < ∞}

with standard norm ‖x‖2 = ‖(xi)i∈N‖2 =
√∑

i∈N
|xi|2. This is a Hilbert space

with respect to the inner product defined by

〈x, y〉 =
∑

i∈N

xiȳi, (2)

for x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .) sequences of complex numbers in
�2 (z̄ stands for the complex conjugate of z).

72 A. Di Pierro

Moreover, an important result states that every Hilbert space H is a reflexive
domain; in functional analysis this means that there is an isomorphism between
H and its double dual H∗∗, that is the space of all linear bounded functionals on
the dual space H∗, which in turn is the space of all linear bounded functionals
on H. We will give here this result since it is important in the construction of our
probabililistic domain D and in particular of linear functionals F : D → [D → D]
and G : [D → D] → D such that F ◦ G is the identity in [D → D]. The proof
is based on the following important theorem known as the Riesz representation
theorem [2, Theorem 3.7.7]

Theorem 1. Let f be a bounded linear functional on a Hilbert space H. There
exists exactly one x0 ∈ H, called the representer, such that f(x) = 〈x, x0〉 for all
x ∈ H. Moreover, we have that ‖f‖ = ‖x0‖.

We recall that there exists a canonical embedding, C : H → H∗∗, from a
Hilbert space H into its double dual H∗∗. This is natural, both in the intuitive
sense and in the formal sense of natural transformations: it turns an element of
a Hilbert space H into a linear functional on linear functions on H as follows.
Let x be an element of H and let f be an element of H∗. The action of x on f
is simply f(x). That is, x acts on linear functions by letting them act on it or,
in other words, by evaluating f at the element x of H.

Theorem 2. Every Hilbert space H is reflexive.

Proof. It is sufficient to show that the canonical embedding C : H → H∗∗ is
surjective, i.e. H∗∗ = {gx | x ∈ H}. Since H∗ is a Hilbert space, the Riesz
representation theorem guarantees that any linear bounded linear functional g
on H∗ has a unique representer fg ∈ H∗, i.e. for all f ∈ H∗, g(f) = 〈f, fg〉 with
‖g‖ = ‖fg‖. As fg is a bounded linear functional on H we can apply again
the Riesz representation theorem and obtain that for all x ∈ H, fg(x) = 〈x, xfg 〉
with ‖fg‖ = ‖xfg‖. This shows that for every g ∈ H∗∗ we can construct a unique
x ∈ H such that g = gx.

2.2 The Probabilistic Domain D

Let V be the countable set of all possible values that can be assigned to the
variables var of the λ-calculus in Eq. 1. Then we can define the Hilbert space,
�2(V) as the space of all square-summable functions [4]:

�2(V) = {f : V → R |
∑

v∈V
|f(v)|2 ≤ ∞}.

This space contains the space Dist(V) of all discrete probability distributions
on V, that is the space of sequences (x1, x2, x3, . . .) of real numbers with only
a finite number of non-zero terms and such that

∑
i xi = 1. Probability distri-

butions on values are the obvious results of term reduction in the probabilistic
interpretation of the λ-calculus. However, although Dist(V) is an inner product

A Probabilistic Semantics for the Pure λ-Calculus 73

space with the inner product defined by Eq. 2, it is not a Hilbert space because
it is not complete: there are Cauchy sequences in Dist(V) whose limit is not in
Dist(V) (these sequences converge in �2(V), cf. Example 3.3.4 in [2]). Therefore,
we will not restrict to this space for the definition of a probabilistic denotational
semantics, as it would not allow us to exploit the reflexivity property of Hilbert
spaces, but will consider D = �2(V) as our denotational domain.

We now show how to define a retract [D → D] demonstrating that D is a
suitable domain for a denotational semantics of the untyped λ-calculus.

Let D∗ = �2(V)∗ be the dual space of D, that is the space of all bounded linear
functionals on D. A linear operator A is called bounded if there is a number k
such that ‖Ax‖ ≤ k‖x‖ for every x in the domain of A. The norm of A is defined
as the infimum of all such numbers k, or equivalently, by ‖A‖ = sup‖x‖=1 ‖Ax‖.

It is well known that if H is a Hilbert space then for any v ∈ H,
fv(x) = 〈v, x〉H defines a unique bounded linear functional on H. Similarly, we
can apply the Riesz representation theorem and construct a representer x0 for fv
such that fv(x) = 〈x, x0〉H with ‖fv‖ = ‖x0‖. In fact, there exists an isometric
isomorphism between H and H∗ that allows us to identify them. Thus, every
vector in our domain D can be dually seen as a functional on D. Intuitively, this
means that we can look at vectors v ∈ H also as linear operators fv ∈ H∗.

We can now construct a retract for D as the double dual space D∗∗ = [D∗ →
D∗], that is the space of all bounded linear operators on D∗ and define F : D →
[D∗ → D∗] and G : [D∗ → D∗] → D as below.

For the definition of F : D → [D∗ → D∗] we can use the canonical embedding
of D in D∗∗ and construct F as

F (z) = gz, with gz(f(x)) = f(x) for all x ∈ D.

In order to define G : [D∗ → D∗] → D, we use the reflexivity of D that guaran-
tees the existence for every g ∈ D∗∗ of an element x ∈ D such that g = gx.

G(g) = z, with z constructed as in the proof of Theorem 2.

We give here a more explicit construction of the element in D associated by G
to a functional in D∗∗.

Construction of xfg
. Given an arbitrary g ∈ D∗∗, consider an element f of

the space D∗ on which g acts. By Theorem 1, we can represent f as

f(x) = 〈x, z〉, for some z ∈ D. (3)

This gives us a map A : D∗ → D by A(f) = z. By using this map we can define
an inner product on D∗ as 〈f1, f2〉 = 〈Af2, Af1〉1. We know that D∗ with this
inner product is a Hilbert space, thus we can apply again Theorem1 and obtain
for g ∈ [D∗ → D∗] the representation g(f) = 〈f, f0〉 for some f0 ∈ D∗. Now by
the definition in 3 we have

1 We can show that this indeed defines a inner product.

74 A. Di Pierro

g(f) = 〈f, f0〉
= 〈Af0, Af〉
= 〈x, z〉,

and we can take xfg = z. Thus the linear functional G assigns to each g ∈ D∗∗

the representer in D of its argument f , that is effectively f(x).
With these definitions of F and G, it is immediate to see that G(F (x)) = x.

In fact, we have:
G(F (z)(f(x))) = G(gz(f(x)) = z.

Moreover, they are continuous maps since they are bounded2.

2.3 Semantic Equations

We define Env as the set of all functions ρ : V ar → �2(V), where V ar denotes the
set of all variables. We call these functions environments. The semantic function
assigning a meaning to the term of the λ-calculus is the map

[[−]] : exp → ρ → D

that we define inductively by:

[[c]] = c if c is a constant

[[x]] = ρ(x) ∈ Dist(V) (discrete probablity distribution for the random variable x)

[[e1e2]] = ([[e1]]ρ)([[e2]]ρ)

[[λx.e]] = G(F (d)([[e]]ρ[x := d]))

We now present two simple examples demonstrating this semantics. For sim-
plicity we will write terms by using abbreviations containing ‘impure’ terms that
do not belong to the grammar in Eq. 1, such as predefined constants including
list of numerals (e.g. b, c) and function identifiers (e.g. f). It is well known that
the pure λ-calculus is able to express all of the common constants and functions
of arithmetic and list manipulation (see e.g. [5]).

As a first example consider the term λx.f(x), with f(x) = x+y. The seman-
tics [[λx.f(x)]] of this term in a given environment ρ such that ρ(y) = v can be
evaluated as follows.

[[λx.f(x)]]ρ = G(F (d)([[f(d)]]ρ)) = d + v = f(d)

Note that the value d + v must be considered in this case as a function in D∗.
As another example, consider (λx.f(x))(b), with f(x) = x + c and

b = (0, 0, 1, 0 . . .) representing the number 3. Suppose that c is a constant repre-
senting the distribution (13 , 2

3 , 0, . . .), i.e. the values 1 and 2 with probability 1
3

and 2
3 , respectively. We have:

[[(λx.f(x))(b)]]ρ = ([[λx.f(x)]]ρ)[[b]]ρ = f(b) = b + (
1
3
,
2
3
, 0, . . .) = (

1
6
,
1
3
,
1
2
, 0, . . .).

2 It can be shown that a linear mapping is continuous if and only if it is bounded. For
a proof see Theorem 1.5.7 of [2].

A Probabilistic Semantics for the Pure λ-Calculus 75

The resulting vector is now a constant representing the values 1, 2, 3 with proba-
bility 1

6 , 1
3 and 1

2 respectively. Note that we had to normalise the vector entries in
order to get a probability distribution. This assumption would not be necessary
in a probabilistic reduction involving only probability distributions.

3 Related and Future Work

We have presented a probabilistic denotational semantics for the untyped
λ-calculus which gives a probabilistic interpretation of the classical λ-terms,
thus providing a formal basis for probabilistic functional programming.

We are not aware of previous work addressing the problem of defining a
probabilistic semantics of the untyped lambda calculus. A recent book by Dirk
Draheim [6] contains an extensive review of the various semantics of the proba-
bilistic typed λ-calculus that have been defined up to now. Note that typically
the operational semantics for these calculi refers to a λ-calculus that extends the
classical one by adding a term for probabilistic choice. Although the syntax is
different from the one we adopted in this work, from the semantical viewpoint
random choice and random variables are two perfectly equivalent constructs for
expressing probabilistic computation. Thus, there are in principle no obstacles in
applying our probabilistic interpretation to an untyped version of these calculi.

Chapter 5 of Draheim’s book gives a full account of the various approaches
to the denotational semantics of the λ-calculus that have been presented in the
literature. These approaches all refer to a semantics of types and to the inter-
pretation of probabilistic programs as continuous functions from values to set of
probability distributions. The only reference related to the untyped λ-calculus is
[7], where a denotational semantics is defined in terms of probabilistic coherent
spaces, which is adequate for a probabilistic extension of the classical untyped
λ-calculus. Similarly to our approach, this model is based on the construction of
a denotational domain as a reflexive object (no powerdomain monad is needed).
However, this construction uses morphisms that are power series with non neg-
ative real coefficients. This is different from Scott’s model D∞ but is also sub-
stantially different from our construction which is based instead on homogeneous
functions on probability distributions.

Finally, we would like to mention the work [8], where two alternative
approaches to the definition of a probabilistic semantics are introduced in the
general setting of programming languages. One of these approaches, called in the
paper Semantics 1, is similar in principle to the approach we have followed in our
work, in as far as it is based on the assumption that input variables are random
variables. This semantics essentially treats probabilistic programs as determin-
istic ones whose execution refers to an explicit stack where random numbers are
kept to allow the execution of random calls. As the author himself argues, this
has several limitations especially in applications based on probabilistic semantics
such as e.g. program analysis. In such cases a denotational approach like the one
of Semantics 2 (the second approach introduced in the paper) would be more
appropriate. The denotational semantics we have introduced here for the un-
typed λ-calculus was inspired by both the approaches in [8] and we believe that

76 A. Di Pierro

its implementation for concrete probabilistic programming languages could enjoy
the positive features of Semantics 1 such as the fact of being closer to classical
probability theory and therefore more intuitive and operational, and Semantics
2 such as compositionality and therefore suitability for program analysis.

References

1. Barendregt, H.P.: The Lambda Calculus. Studies in Logic and the Foundations of
Mathematics, vol. 103. North-Holland, Amsterdam (1991). revised edn

2. Debnath, L., Mikusinski, P.: Introduction to Hilbert Spaces with Applications. 3rd
revised edn. Elsevier Science Publishing, San Diego (2005). reprint from Academic
Press edition 2005

3. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras: Vol-
ume I – Elementary Theory. Graduate Studies in Mathematics, vol. 15. American
Mathematical Society, Providence (1997). reprint from Academic Press edition 1983

4. Roman, S.: Advanced Linear Algebra, 2nd edn. Springer, Heidelberg (2005)
5. Slonneger, K., Kurtz, B.: Formal Syntax and Semantics of Programming Languages:

A Laboratory Based Approach, 1st edn. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1995)

6. Draheim, D.: Semantics of the Probabilistic Typed Lambda Calculus - Markov
Chain Semantics, Termination Behavior, and Denotational Semantics. Springer,
Heidelberg (2017). doi:10.1007/978-3-642-55198-7

7. Ehrhard, T., Pagani, M., Tasson, C.: The computational meaning of probabilistic
coherence spaces. In: 2011 IEEE 26th Annual Symposium on Logic in Computer
Science, pp. 87–96 (2011)

8. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

http://dx.doi.org/10.1007/978-3-642-55198-7

Software Components and Concurrency

Towards a Calculus for Dynamic Architectures

Diego Marmsoler(B)

Technische Universität München, Munich, Germany
diego.marmsoler@tum.de

Abstract. The architecture of a system describes the system’s overall
organization into components and connections between those compo-
nents. With the emergence of mobile computing, dynamic architectures
have become increasingly important. In such architectures, components
may appear or disappear, and connections may change over time. The
dynamic nature of such architectures makes reasoning about their behav-
ior difficult. Since components can be activated and deactivated over
time, their behavioral specifications depend on their state of activation.
To address this problem, we introduce a calculus for dynamic architec-
tures in a natural deduction style. Therefore, we provide introduction and
elimination rules for several operators traditionally employed to specify
component behavior. Finally, we show soundness and relative complete-
ness of these rules. The calculus can be used to reason about component
behavior in a dynamic environment. This is demonstrated by applying
it to verify a property of dynamic blackboard architectures.

Keywords: Dynamic architectures · Component calculus · Architecture
verification · Configuration traces · Behavior traces

1 Introduction

A system’s architecture provides a set of components and connections between
their ports. With the emergence of mobile computing, dynamic architectures
have become more and more important [2,8,16]. In such architectures, compo-
nents can appear and disappear, and connections can change, both over time.
Dynamic architectures can be modeled in terms of configuration traces [14,15].
Consider, for example, the execution trace of a dynamic architecture depicted
in Fig. 1. The figure shows the first three configurations of one possible execu-
tion of a dynamic architecture composed of three components c1, c2, and c3.
To facilitate the specification of such architectures, they can be separated into
behavioral specifications for components, activation specifications, and connec-
tion specifications [15]. Thereby, behavior of components is often specified by
means of temporal logic formulæ [13] over the components interface. Consider,
for example, a component c3 with output port o1 whose behavior is given by the
temporal specification “©(o1 = 8)”, meaning that it outputs an 8 on its port o1
at time point 1 (assuming that time starts at 0).

c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 79–99, 2017.
DOI: 10.1007/978-3-319-67729-3 6

80 D. Marmsoler

c1
o0 = {9}
i0 = {5}
o1 = {A,X}

o2 = {5}

c2i0 = {Z}
o0 = {9}

i1 = {A,X}

i2 = {8, 4}

c3 i0 = {X}
o0 = {9}

i1 = {5}

o1 = {8, 4}

n = 0

,

c1
o0 = {2, 7}

i0 = {3}
o1 = {D}

o2 = {9}

c2i0 = {B,G}
o0 = {6}

i1 = {D}

i2 = {1, 3}

n = 1

,

c1
o0 = {5, 3}

i0 = {1}
o1 = {F,Q}

o2 = {2, 4}

c2i0 = {Z}
o0 = {9}

i1 = {H}

i2 = {3, 9}

c3 i0 = {T,B}
o0 = {7}

i1 = {2, 4}

o1 = {3, 9}

n = 2

,

Fig. 1. Execution trace of a dynamic architecture.

For static architectures, the original specification of temporal properties of
single components remain valid even when deployed to the architecture. The
original specification of component c3, for example, is still valid when deployed
to a static architecture, i.e., c3 will still output an 8 on its port o1 at time point
1, even if deployed to the architecture. For dynamic architectures, on the other
hand, the traditional interpretation of temporal specifications of the behavior
of components is not valid anymore. For example, it is not clear whether the
trace depicted in Fig. 1 actually fulfills the original specification of component
c3, since c3 is not active at time point 1 (n = 1).

So, how can we reason about the behavior of components deployed to dynamic
architectures? To answer this question, in the following we provide a calculus
for dynamic architectures. It formalizes reasoning about the behavior of a com-
ponent when it can be activated and deactivated. In the spirit of natural deduc-
tion, we provide introduction and elimination rules for each temporal operator.
Finally, we show soundness and relative completeness of the calculus. As a prac-
tical implication, our calculus can be used to support the verification of proper-
ties for dynamic architectures. This is demonstrated by means of the blackboard
pattern for dynamic architectures. To this end, we apply the calculus to verify
a characteristic property of the pattern.

The remainder of the paper is structured as follows: First, we introduce our
model for dynamic architectures in Sect. 2. In Sect. 3, we then provide the notion
of behavior assertions and behavior trace assertions as means to specify the
behavior of components. In Sect. 4, we introduce our calculus, which allows us
to reason about component behavior in a dynamic context. Sect. 5 then demon-
strates the practical usability of the calculus by applying it to verify a property
of dynamic blackboard architectures. Finally, we conclude our discussion with a
review of related work in Sect. 6 and a brief summary of the major contributions
of this paper in Sect. 7.

2 A Model of Dynamic Architectures

In [15], we introduce a model for dynamic architectures based on the notion of
configuration traces. Our model is based on Broy’s Focus theory [3] and an
adaptation of its dynamic extension [4]. In this section, we briefly summarize
the main concepts of the model and extend it with the notion of behavior traces
to model the behavior of single components.

Towards a Calculus for Dynamic Architectures 81

2.1 Foundations: Ports, Valuations, and Components

In our model, components communicate by exchanging messages over ports.
Thus, we assume the existence of sets M and P containing all messages and
ports, respectively.

Port Valuations. Ports can be valuated by messages. Roughly speaking, a
valuation for a set of ports is an assignment of messages to each port.

Definition 1 (Port Valuation). For a set of ports P ⊆ P, we denote by P the
set of all possible PVs, formally:

P
def
= (P → ℘(M)).

Moreover, we denote by [p1, p2, . . . �→ {m1}, {m2}, . . .] the valuation of ports
p1, p2, . . . with sets {m1}, {m2}, . . ., respectively. For singleton sets we shall
sometimes omit the set parentheses and simply write [p1, p2, . . . �→ m1,m2, . . .].

Note that in our model, ports can be valuated by a set of messages, meaning
that a component can send/receive no message, a single message, or multiple
messages at each point in time.

Components. In our model, the basic unit of computation is a component. It
consists of an identifier and a set of input and output ports. Thus, we assume
the existence of set Cid containing all component identifiers.

Definition 2 (Component). A component is a triple (id , I, O) consisting of:

– a component identifier id ∈ Cid and
– two disjoint sets of input and output ports I,O ⊆ P.

The set of all components is denoted by C. For a set of components C ⊆ C, we
denote by:

– in(C)
def
=

⋃
(id,I,O)∈C({id} × I) the set of component input ports,

– out(C)
def
=

⋃
(id,I,O)∈C({id} × O) the set of component output ports,

– port(C)
def
= in(C) ∪ out(C) the set of all component ports, and

– id(C)
def
=

⋃
(id,I,O)∈C{id} the set of all component identifiers.

A set of components C ⊆ C is called healthy iff a component is uniquely
determined by its name:

∀(id , I, O), (id ′, I ′, O′) ∈ C : id = id ′ =⇒ I = I ′ ∧ O = O′. (1)

Similar to Definition 1, we define the set of all possible component port val-
uations (CPVs) for a set of component P ⊆ Cid × P.

82 D. Marmsoler

2.2 Modeling Component Behavior

A component’s behavior is modeled by a set of execution traces over the com-
ponent’s interface. In the following, we denote with (E)+ the set of all finite
sequences over elements of a given set E, by (E)∞ the set of all infinite sequences
over E, and by (E)∗ the set of all finite and infinite sequences over E.

Definition 3 (Behavior Trace). A behavior trace for a component (id , I, O)
is an infinite sequence (I × O)∞. The set of all BTs for component c is denoted
by B(c).

Note that a component’s behavior is actually modeled as a set of behavior traces,
rather than just a single trace. This is to handle non-determinism for inputs to,
as well as outputs from components.

Example 1 (Behavior Trace). In the following, we provide a possible BT for a
component c3 with two input ports i0 and i1, and two output ports o0 and o1:
[i0, i1, o0, o1 �→ X, 5, 9, {8, 4}], [i0, i1, o0, o1 �→ {T,B}, {2, 4}, 7, {3, 9}], · · · .

2.3 Modeling Dynamic Architectures

Dynamic architectures are modeled as sets of configuration traces which are
sequences over architecture configurations.

Architecture Configurations. In our model, an architecture configuration
connects ports of active components.

Definition 4 (Architecture Configuration). An architecture configuration
(AC) over a healthy set of components C ⊆ C is a triple (C ′, N, μ), consisting of:

– a set of active components C ′ ⊆ C,
– a connection N : in(C ′) → ℘(out(C ′)), and
– a CPV μ ∈ port(C ′).

We require connected ports to be consistent in their valuation, that is, if a com-
ponent provides messages at its output port, these messages are transferred to
the corresponding, connected input ports:

∀pi ∈ in(C ′) : N(pi) �= ∅ =⇒ μ(pi) =
⋃

po∈N(pi)

μ(po). (2)

The set of all possible ACs over a healthy set of components C ⊆ C is denoted
by K(C).

Note that connection N is modeled as a set-valued function from component
input ports to component output ports, meaning that: (i) input/output ports
can be connected to several output/input ports, respectively, and (ii) not every
input/output port needs to be connected to an output/input port (in which case
the connection returns the empty set).

Towards a Calculus for Dynamic Architectures 83

Configuration Traces. A configuration Traces consists of a series of configu-
ration snapshots of an architecture during system execution.

Definition 5 (Configuration Trace). A configuration trace (CT) over a
healthy set of components C ⊆ C is an infinite sequence (K(C))∞. The set of all
CTs over C is denoted by R(C).

Example 2 (Configuration Trace). Fig. 1 shows the first three ACs of a possible
CT. The first AC, t(0) = (C ′, N, μ), e.g., consists of:

– components C ′ = {C1, C2, C3}, with C1 = (c1, {i0}, {o0, o1, o2}), C2 =
(c2, {i0, i1, i2}, {o0}), and C3 = (c3, {i0, i1}, {o0, o1});

– connection N , with N((c2, i1)) = {(c1, o1)}, N((c3, i1)) = {(c1, o2)}, and
N((c2, i2)) = {(c3, o1)}; and

– valuation μ = [(c1, i0), (c1, o0), (c2, i2), · · · �→ 5, 9, {8, 4}, · · ·].
Note that a dynamic architecture is modeled as a set of CTs rather than

just one single trace. Again, this allows for non-determinism in inputs to an
architecture as well as its reaction. Moreover, note that our notion of architecture
is dynamic in the following sense: (i) components may appear and disappear over
time and (ii) connections may change over time.

In the following, we introduce an operator to denote the number of activations
of a component in a (possible finite) configuration trace. Thereby, we denote by
[c]i = ci the i-th component (where i ≥ 1 and i ≤ n) of a tuple c = (c1, . . . , cn).

Definition 6 (Number of Activations). With 〈c
n

t〉, we denote the num-
ber of activations of component c in a (possibly finite) configuration trace t up to
(excluding) point in time n:

〈c
0

t〉 def
= 0,

c ∈ [t(n)]1 =⇒ 〈c
n+1

t〉 def
= 〈c

n

t〉 + 1,

c /∈ [t(n)]1 =⇒ 〈c
n+1

t〉 def
= 〈c

n

t〉.
Moreover, we introduce an operator to return the last activation of a component
in a configuration trace.

Definition 7 (Last Activation). With last(t, c), we denote the greatest i ∈ N,
such that c ∈ [t(i)]1.

Note that last(t, c) is well-defined iff ∃i ∈ N : c ∈ [t(i)]1 and ∃n ∈ N : ∀n′ ≥
n : c /∈ [t(n′)]1.

Finally, we introduce an operator which for a given point in time returns the
least earlier point in time where a certain component was not yet active.

Definition 8 (Least Not Active). With 〈c n∨ t〉, we denote the least n′ ∈ N,
such that n′ = n ∨ (

n′ < n ∧ ∀n′ ≤ k. ≤ n : c /∈ [t(n′)]1
)
.

Note that 〈c n∨ t〉 is always well-defined and for the case in which c ∈ [t(n)]1, it
returns n itself.

84 D. Marmsoler

2.4 From Configuration Traces to Behavior Traces

In the following, we introduce the notion of projection to extract the behavior
of a certain component out of a given CT.

Definition 9 (Projection). Given a (finite or infinite) CTt ∈ (K(C))∗ over a
healthy set of components C ⊆ C. The projection to component c = (id , I, O) ∈ C
is denoted by Πc(t) ∈ (B(c))∗ and defined as the greatest relation satisfying the
following equations:

Πc(t |0) def
= 〈〉,

c ∈ [t(n)]1 =⇒ Πc(t |n+1)
def
= Πc(t |n) ̂ (

λp ∈ I ∪ O : [t(n)]3 (id , p)
)
,

c /∈ [t(n)]1 =⇒ Πc(t |n+1)
def
= Πc(t |n),

where ŝ e denotes the sequence resulting from appending element e to sequence s.

Example 3 (Projection). Applying projection of component c3 to the CT given
by Example 2 results in a BT starting as described by Example 1.

Note that for systems in which a component is activated only finitely many
times, the projection to this component results in only a finite behavior trace.

3 Specifying Component Behavior

In the following, we introduce the notion of behavior trace assertions, a language
to specify component behavior over a given interface specification. We provide its
syntax as well as a formal semantics thereof in terms of behavior traces. Finally,
we introduce a satisfaction relation for configuration traces which serves as a
foundation for the calculus presented in the next section.

3.1 Behavior Trace Assertions

Component behavior can be specified by means of behavior trace assertions, i.e.,
temporal logic [13] formulæ over behavior assertions. Behavior assertions, on the
other hand, are used to specify a component’s state at a certain point in time.
They are specified over a given interface specification.

Interface Specifications. Interfaces declare a set of port identifiers and asso-
ciate a sort with each port. Thus, in the following, we postulate the existence of
the set of all port identifiers Pid. Moreover, interfaces are specified over a given
signature Σ = (S, F,B) consisting of a set of sorts S, function symbols F , and
predicate symbols B.

Definition 10 (Interface Specification). An interface specification (IS) over
a signature Σ = (S, F,B) is a triple (Pin , Pout , t

p), consisting of:

– two disjoint sets of input and output port identifiers Pin , Pout ⊆ Pid,
– a mapping tp : Pin ∪ Pout → S assigning a sort to each port identifier.

The set of all interface specifications over signature Σ is denoted by SI(Σ).

Towards a Calculus for Dynamic Architectures 85

Behavior Assertions. Behavior assertions specify a component’s state (i.e.:
valuations of its ports with messages) at a certain point in time. In the following,
we do not go into the details of how to specify such assertions, rather, we assume
the existence of a set containing all type-compatible behavior assertions over a
given interface specification.

Definition 11 (Behavior Assertions). Given IS Si = (Pin , Pout , t
p) over

signature Σ = (S, F,B) and family of variables V = (Vs)s∈S with variables Vs

for each sort s ∈ S. With ϕV
Σ(Si), we denote the set of all type-compatible (with

regard to tp) behavior assertions (BAs) for Si, Σ, and V .

Algebras and Variable Assignments. A BA is always interpreted over a given
algebra for the signature used in the corresponding IS. Thus, in the following,
we denote by A(Σ) the set of all algebras (S′, F ′, B′, α, β, γ) for signature Σ =
(S, F,B), consisting of sets S′, functions F ′, predicates B′, and corresponding
interpretations α : S → S′, β : F → F ′, and γ : B → B′. Moreover, with IV

A , we
denote the set of all variable assignments (VAs) ι = (ιs)s∈S (with ιs : Vs → α(s)
for each s ∈ S) for a family of variables V = (Vs)s∈S in an algebra A.

Semantics of Behavior Assertions. The semantics of behavior assertions is
described in terms of component port valuations satisfying a certain behavior
assertion. In the following, we denote with A ↔ B a bijective function from set
A to set B.

Definition 12 (Behavior Assertions: Semantics). Given interface specifi-
cation Si = (Pin , Pout , t

p) ∈ SI(Σ), a healthy set of components C ⊆ C, compo-
nent c = (id , I, O) ∈ C, algebra A ∈ A(Σ), and V Aι = (ιs)s∈S ∈ IV

A . We denote

with μ b|=(δi,δo)
(A,ι) γ that μ ∈ I ∪ O satisfies BA γ ∈ ϕV

Σ(Si) for port interpretations
(PIs) δi : I ↔ Pin and δo : O ↔ Pout .

Behavior Trace Assertions. Behavior trace assertions are a means to spec-
ify a component’s behavior in terms of temporal specifications over behavior
assertions.

Definition 13 (Behavior Trace Assertions). For a family of variables V =
(Vs)s∈S, rigid (fixed for the whole execution) variables V ′ = (V ′

s)s∈S, the set of
all behavior trace assertions (BTAs) for ISSi ∈ SI(Σ) is given by Γ

(V,V ′)
Σ (Si)

and defined inductively by the equations provided in Fig. 2.

φ ∈ ϕV ∪V ′
Σ (Si) =⇒ φ ∈ Γ

(V,V ′)
Σ (Si) ,

“γ” ∈ Γ
(V,V ′)
Σ (Si) =⇒ “ © γ”, “♦γ”, “�γ” ∈ Γ

(V,V ′)
Σ (Si) ,

“γ”, “γ′” ∈ Γ
(V,V ′)
Σ (Si) =⇒ “ γ U γ′)” ∈ Γ

(V,V ′)
Σ (Si) .

Fig. 2. Inductive definition of behavior trace assertions.

86 D. Marmsoler

3.2 Semantics: Behavior Traces

In the following, we define what it means for a behavior trace to satisfy a corre-
sponding behavior trace assertion.

Definition 14 (Semantics BTs). Given algebra A and corresponding VAs
ι′ = (ι′s)s∈S ∈ IV ′

A for variables V ′. With (t, n) t
b|=(δi,δo)

(A,ι′) γ, defined recursively
by the equations listed in Fig. 3, we denote that BT t ∈ B(c) satisfies BA
γ ∈ Γ

(V,V ′)
Σ (Si) at time n ∈ N. A BT t ∈ B(c) satisfies BA γ ∈ Γ

(V,V ′)
Σ (Si),

denoted t
t
b|=(δi,δo)

(A,ι′) γ iff (t, 0) t
b|=(δi,δo)

(A,ι′) γ.

(t, n) t
b|=(δi,δo)

(A,ι′) “φ” ⇐⇒ ∀ι ∈ IV
A : t(n) b|=(δi,δo)

(A,ι∪ι′)“φ” [for φ ∈ ϕV
Σ(Si)] ,

(t, n) t
b|=(δi,δo)

(A,ι′) “ © γ” ⇐⇒ (t, n + 1) t
b|=(δi,δo)

(A,ι′) “γ” ,

(t, n) t
b|=(δi,δo)

(A,ι′) “♦γ” ⇐⇒ ∃n′ ≥ n : (t, n′) t
b|=(δi,δo)

(A,ι′) “γ” ,

(t, n) t
b|=(δi,δo)

(A,ι′) “�γ” ⇐⇒ ∀n′ ≥ n : (t, n′) t
b|=(δi,δo)

(A,ι′) “γ” ,

(t, n) t
b|=(δi,δo)

(A,ι′) “ γ′ U γ
)
” ⇐⇒ ∃n′ ≥ n : (t, n′) t

b|=(δi,δo)
(A,ι′) “γ” ∧

∀n ≤ m < n′ : (t, m) t
b|=(δi,δo)

(A,ι′) “γ′” .

Fig. 3. Recursive definition of satisfaction relation for behavior traces.

3.3 Semantics: Configuration Traces

In the following, we define what it means for a configuration trace to satisfy a
behavior assertion.

Definition 15 (Semantics CTs). Given algebra A, corresponding VAs ι′ =
(ι′s)s∈S ∈ IV ′

A for variables V ′, and behavior trace t′ ∈ B(c). With

(t, t′, n) t
k|=(c,δi,δo)

(A,ι′) γ
def⇐⇒(

∃i ≥ n : c ∈ [t(i)]1 ∧ (
Πc(t) ◦ t′, 〈c

n

t〉) t
b|=(δi,δo)

(A,ι′) γ
)

∨ (3)(
∃i : c ∈ [t(i)]1 ∧ �i ≥ n : c ∈ [t(i)]1 ∧(

Πc(t) ◦ t′,#(Πc(t)) − 1 + (n − last(t, c))
) t

b|=(δi,δo)
(A,ι′) γ

)
∨ (4)(

�i : c ∈ [t(i)]1 ∧ (
t′, n

) t
b|=(δi,δo)

(A,ι′) γ
)
, (5)

we denote that CT t ∈ R(C) satisfies BA γ ∈ Γ
(V,V ′)
Σ (Si) at time n ∈ N for

a given continuation t′. Again, a CT t ∈ B(c) satisfies BA γ ∈ Γ
(V,V ′)
Σ (Si),

denoted t
t
k|=(c,δi,δo)

(A,ι′) γ iff (t, 0) t
k|=(c,δi,δo)

(A,ι′) γ.

Towards a Calculus for Dynamic Architectures 87

To satisfy a given behavior assertion γ for a component c at a certain point in
time n under a given continuation t′, a configuration trace t is required to fulfill
one of the following conditions:

– By Eq. (3): Component c is again activated (after time point n) and the
projection to c for t fulfills γ at the point in time given by the current number
of activations of c.

– By Eq. (4): Component c is activated at least once but not again in the
future and the continuation fulfills γ at the point in time resulting from the
difference of the current point in time and the last activation of c.

– By Eq. (5): Component c is never activated and the continuation fulfills γ at
point in time n.

For the sake of readability, from now on, we omit symbols for algebras and
port/variable interpretations for satisfaction relations. An algebra and corre-
sponding interpretations are, however, assumed to be fixed for each property.

The following property ensures correctness of Definition 15:

Proposition 1 (Soundness of Definition 15). A CT t ∈ R(c) satisfies BA
γ ∈ Γ

(V,V ′)
Σ (Si) for a given continuation t′ ∈ B(c) iff the corresponding projection

satisfies γ:
(t, t′) t

k|=
(c)

γ ⇐⇒ Πc(t) ◦ t′ t
b|=γ,

where s◦s′ denotes the sequence resulting from concatenating sequences s and s′.

Remember that for architectures in which a component is activated only
finitely many times, the projection to this component results in only a finite
behavior trace. This is why we actually check for a valid continuation t′ ∈ B(c).

4 A Calculus for Dynamic Architectures

Until now, t
k|= is only implicitly defined in terms of t

b|=. While this mirrors our
intuition about t

k|=, it is not very useful to reason about it. Thus, in the following
section, we provide an explicit characterization of t

k|= in terms of a calculus for
dynamic architectures. Then, we show soundness and relative completeness of
the calculus with regard to Definition 15. Using a natural deduction style, we
provide introduction and elimination rules for each temporal operator.

4.1 Introduction Rules

We provide 8 rules which can be used to introduce temporal operators in a
dynamic context.

Behavior Assertions. The first rules characterize introduction for basic behav-
ior assertions. Therefore, we distinguish between three cases: First, the following

88 D. Marmsoler

case in which a component is guaranteed to be eventually activated in the
future:

AssIa [
n ≤ i c ∈ [t(i)]1 �n ≤

˙
k < i : c ∈ [t(k)]1

]
....

λp ∈ I ∪ O : [t(i)]3 (c, p) b|=“φ”

(t, t′, n) t
k|=

(c)
“φ”

∃i ≥ n : c ∈ [t(i)]1

For this case, in order to show that a BA φ holds at time point n, we have to
show that φ holds at the very next point in time at which component c is active.

For the case in which a component was sometimes active, but is not activated
again in the future, we get the following rule:

AssIn1
t′ n − last(c, t)

)
b|=“φ”

(t, t′, n) t
k|=

(c)
“φ”

∃i : c ∈ [t(i)]1 ∧ �i ≥ n : c ∈ [t(i)]1

In order to show that BA φ holds at a certain point in time n, we have to show
that φ holds for the continuation t′. Note that the corresponding time point is
calculated as the difference from n to the last point in time at which component
c was active in t.

Finally, we have another rule for the case in which component is never
activated:

AssIn2 t′(n) b|=“φ”

(t, t′, n) t
k|=

(c)
“φ”

�i : c ∈ [t(i)]1

For such cases, BA φ holds at a certain point in time n when φ holds for t′

at time point n.

Next. The next rule characterizes introduction for the next operator. For this
operator as well, we distinguish two cases: The first case is again the one in
which a component is guaranteed to be eventually activated in the future:

NxtIa [
n ≤ i c ∈ [t(i)]1 �n ≤

˙
k < i : c ∈ [t(k)]1

]
....

(t, t′, i + 1) t
k|=

(c)
“γ”

(t, t′, n) t
k|=

(c)
“ © γ”

∃i ≥ n : c ∈ [t(i)]1

For this case, in order to show that a BTA ©γ holds at a certain point in time
n, we have to show that it holds after the very next activation of c in t.

Towards a Calculus for Dynamic Architectures 89

For the case in which a component is not activated again in the future, we
get the following rule for the next operator:

NxtIn (t, t′, n + 1) t
k|=

(c)
“γ”

(t, t′, n) t
k|=

(c)
“ © γ”

�i ≥ n : c ∈ [t(i)]1

In this case, the dynamic interpretation of the operator resembles its traditional
one. Thus, it suffices to show that BTA γ holds for the next point in time n+1,
in order to conclude that ©γ holds at n.

Eventually. Introduction for the eventually operator can be described with a
single rule:

EvtI 〈c n∨ t〉 ≤ n′ (t, t′, n′) t
k|=

(c)
“γ”

(t, t′, n) t
k|=

(c)
“♦γ”

It states that in order to show that ♦γ holds for a component c at some point
in time n, we only have to show that γ holds at some time point later than the
last activation (before n) of c.

Globally. Similarly, we provide a single introduction rule for the globally
operator:

GlobI [
n ≤ n′]

....
(t, t′, n′) t

k|=
(c)

“γ”

(t, t′, n) t
k|=

(c)
“�γ”

It allows us to conclude �γ for time point n whenever we can show that γ holds
for an arbitrary n′ ≥ n.

Until. Finally, we provide a single rule for introducing the until operator:

UntilI

〈cn∨t〉≤n′ (t,t′,n′) t
k|=

(c)
“γ”

[
n≤n′′ n′′≤i′′

c∈[t(i′′)]1 i′′<n′

]
....

(t,t′,n′′) t
k|=(c,δi,δo)

(A,ι) “γ′”

[
n≤n′′ n′′<n′

�i′′≥n′′ : c∈[t(i′′)]1

]
....

(t,t′,n′′) t
k|=(c,δi,δo)

(A,ι) “γ′”

(t,t′,n) t
k|=

(c)
“γ′ U γ”

90 D. Marmsoler

In order to show that γ′ U γ holds for a component c at some point in time
n, the rule requires to show that γ holds at some point n′ later than the last
activation (before n) of c and that for every time point up to the last activation
of component c before n′ (or the last time point n′′ < n′ for the case component
c is not activated anymore), γ′ holds.

4.2 Elimination Rules

In contrast to introduction, we provide 10 rules for the elimination of the different
temporal operators.

Behavior Assertions. Again, we first provide rules characterizing elimination
for basic behavior assertions. Similar to introduction, we distinguish between
three cases: The first case describes elimination for situations in which a com-
ponent is guaranteed to be activated sometimes in the future:

AssEa
(t, t′,n) t

k|=
(c)

“φ” n≤ i c∈ [t(i)]1 �n≤
˙
k<i : c∈ [t(k)]1

λp∈I ∪ O : [t(i)]3 (c,p) b|=“φ”
∃i≥n : c∈ [t(i)]1

The rule for such cases allows us to eliminate a basic BA φ and conclude that φ
holds at the very next point in time where component c is active.

The next rule deals with the case in which a component was sometimes active,
but is not activated again in the future.

AssEn1 (t, t′, n) t
k|=

(c)
“φ”

t′ n − last(c, t)
)

b|=“φ”
∃i : c ∈ [t(i)]1 ∧ �i ≥ n : c ∈ [t(i)]1

The rule for this case allows us to conclude that a BA φ holds at a certain point
in time for continuation t′. Again, the corresponding time point is calculated as
the difference of n and the last time component c was activated.

Finally, we have another rule for the case in which component is never
activated:

AssEn2 (t, t′, n) t
k|=

(c)
“φ”

t′(n) b|=“φ” �i : c ∈ [t(i)]1

For such cases, we may eliminate φ and conclude that φ holds at n for con-
tinuation t′.

Towards a Calculus for Dynamic Architectures 91

Next. Similar to introduction, we provide two rules to eliminate a next operator:
The first rule deals again with the case in which a component is guaranteed to
be activated sometimes in the future:

NxtEa
(t,t′,n) t

k|=
(c)

“©γ” n≤i c∈[t(i)]1 �n≤
˙
k<i : c∈[t(k)]1

(t,t′,i+1) t
k|=

(c)
“γ”

∃i≥n : c∈[t(i)]1

Similar to the corresponding introduction rule, this rule allows us to conclude
BTA γ for a certain point in time i + 1, whenever ©γ holds at an earlier point
in time n and i is the very next activation of component c.

If a component is not activated again, we get the following rule for eliminating
a next operator:

NxtEn (t, t′, n) t
k|=

(c)
“ © γ”

(t, t′, n + 1) t
k|=

(c)
“γ”

�i ≥ n : c ∈ [t(i)]1

Again, the rule resembles the traditional interpretation of next, which allows us
to conclude that BTA γ holds for a certain point in time n + 1, whenever ©γ
holds at n.

Eventually. We provide two rules to eliminate an eventually operator:

EvtEa (t, t′, n) t
k|=

(c)
“♦γ”

∃n′ ≥ 〈c n∨ t〉 : (t, t′, n′) t
k|=

(c)
“γ”

∃i ≥ n : c ∈ [t(i)]1

When eliminating a ♦γ for a component c at time point n, the rule allows us
to conclude that BTA γ holds sometimes after the last activation (before n) of
component c.

A similar rule applies for the case in which c is not activated again (∃n′ ≥
n : (t, t′, n′) t

k|=
(c)

“γ′′). For this case (denoted EvtEn), however, we can conclude
that the corresponding point in time n′ is actually greater than n instead of
〈c n∨ t〉.

Globally. Similar to introduction, we have a single rule for the elimination of
a globally operator:

GlobE
(t, t′, n) t

k|=
(c)

“�γ” n′ ≥ 〈c n∨ t〉
(t, t′, n′) t

k|=
(c)

“γ”

92 D. Marmsoler

The rule allows us to eliminate �γ for component c at time point n and conclude
that γ holds at an arbitrary point later than the last activation of c before n.

Until. Finally, we provide two rules to eliminate until operators:

UntilEa (t, t′, n) t
k|=

(c)
“γ′ U γ”

∃
˙
n′ ≥ 〈c

n

t〉 : (t, t′, n′) t
k|=

(c)
“γ” ∧(

∀
˙

n′′ ≥ 〈c n∨ t〉 : ∃n′′ ≤
˙
i′ < n′ : c ∈ [t(i′)]1

)
∨ (�i ≥ n′′ : c ∈ [t(i)]1 ∧ n′′ < n′)

=⇒ (t, t′, n′′) t
k|=

(c)
“γ′”

)

∃i ≥ n : c ∈ [t(i)]1

Assuming that γ′ U γ holds at some time point n, the rule allows us to conclude
that there exists a time point in the future n′, such that BTA γ holds and that
up to the last activation of component c earlier to n′ (or the last time point
n′′ < n′ for the case component c is not activated anymore), BTA γ′ holds.

Again, a similar rule applies for the case in which c is not activated again
(∃n′ ≥ n : (t, t′, n′) t

k|=
(c)

“γ′′). For this case (denoted UntilEn), however, we can
conclude that the corresponding point in time n′ is actually greater than n

instead of 〈c n∨ t〉.

4.3 Soundness and Completeness

In the following, we show soundness and relative completeness of the calculus.
Thereby, we denote with �DA

(
(t, n) t

k|=
(c)

γ
)

that it is possible to derive (t, n) t
k|=

(c)
γ

with the rules introduced in Sect. 4. With |=DA

(
(t, n) t

k|=
(c)

γ
)
, on the other hand,

we denote that configuration trace t indeed satisfies BTA γ at time point n.

Theorem 1 (Soundness). The calculus presented in Sects. 4.1 and 4.2 is
sound:

Proof (Sketch). For each rule, we assume its premises and prove its conclusions
from Definitions 14 and 15.

Theorem 2 (Completeness). The calculus presented in Sects. 4.1 and 4.2 is
complete (relative to the completeness of b|=):

�DA

(
(t, n) t

k|=
(c)

“γ”
)

⇐= |=DA

(
(t, n) t

k|=
(c)

“γ”
)
.

Proof (Sketch). The validity of each BTA can be derived by applying the corre-
sponding introduction rules.

Towards a Calculus for Dynamic Architectures 93

5 Verifying Properties of Dynamic Architectures

In the following, we demonstrate the practical usability of the calculus presented
in Sect. 4. Therefore, we specify a dynamic version of the blackboard architecture
pattern and apply our calculus to verify a simple property of such architectures.

5.1 Dynamic Blackboard Architectures: Specification

In the following, we introduce a simplified version of the blackboard pattern
as described, for example, by Shaw and Garlan [18], Buschmann et al. [5], and
Taylor et al. [19]. Therefore, we first specify the involved datatypes, the compo-
nents interfaces, and constraints regarding the activation/deactivation of compo-
nents as well as connections between their ports. Then we provide a specification
of component behavior in terms of BTAs.

Datatypes. Blackboard architectures work with problems and solutions for
them. Figure 4a provides the corresponding datatype specification (DTS) in
terms of an algebraic specification [21]. We denote by PROB the set of all problems
and by SOL the set of all solutions. To relate a problem with a corresponding
solution, we assume the existence of a function s : PROB → SOL which assigns the
correct solution to each problem.

Interfaces. In our example, a blackboard architecture consists of a blackboard
(BB) component and a knowledgesource (KS) component. The configuration dia-
gram (CD) [14] in Fig. 4c shows the specification of the corresponding interfaces.
In our simple example, the BB component merely forwards messages to and from
the KS component. Thus, it has an input port ip which receives a problem and
an output port os which returns the corresponding solution. Moreover, it has an
output port pp to forward a problem to a KS and a corresponding input port ps

to receive its solution. A KS, in our example, gets a problem on its input port
pp and provides a corresponding solution on its output port ps.

DTSpec ProbSol

sort PROB, SOL

s : PROB → SOL

(a) Datatype Specification.

PSpec BPort uses ProbSol

ip, pp : PROB
os, ps : SOL

(b) Port Specification.

Diagram Blackboard
based on BPort uses ProbSol

ks : KS

pp ps

bb : BB

pp

osip

ps

(c) Configuration Diagram.

Fig. 4. Specification of the blackboard pattern.

94 D. Marmsoler

Spec Blackboard Activation uses Blackboard

�
(
bb.pp �= ∅ =⇒ ‖ks‖

)
(6)

�
(
‖ks‖ =⇒ � ♦‖ks‖))

(7)

� ‖bb‖)
(8)

Fig. 5. Specification of activation constraints for blackboard architectures.

Activation Constraints. Activation constraints restrict the activation or deac-
tivation of components. They are introduced by CDs and refined by activation
assertions (AAs).

In our example, the “bb : BB” and “ks : KS” annotations for a BB and KS
interface, respectively, denote the condition that there are unique BB and KS
components denoted bb and ks, respectively. Moreover, we require three more
activation constraints formulated as AAs in Fig. 5:

– By Eq. (6) we require ks to be active whenever bb posts a problem.
– By Eq. (7) we require a fairness condition for the activation of an already

activated ks.
– By Eq. (8) we require that bb is always active.

Connection Constraints. Connection constraints restrict the connection
between components. They are introduced by CDs and refined by connection
assertions CAs.

In our example, connection constraints are also specified graphically by the
CD in Fig. 4c. The solid connections between the ports denote a constraint
requiring that the ports of a KS component are connected with the corresponding
ports of a BB component as depicted, whenever both components are active.

Behavior Specifications. Behavior is specified in terms of BTAs as introduced
in Sect. 3. Note that we do not consider activation and deactivation of a compo-
nent when specifying its behavior. Rather, this is done in a separate specification
and our calculus can then be used to reason about such behavior, in a dynamic
environment as well.

In Fig. 6, we specify two simple properties for BB components. They merely
require messages from their input ports to be forwarded to the corresponding
output ports. Figure 7 provides a specification of the KS’s behavior. The property
requires that whenever a problem is received it is guaranteed to be eventually
solved.

Towards a Calculus for Dynamic Architectures 95

Spec BB Bhv uses Blackboard

var p, p′ : PROB
s : SOL
P : PROB SET

�
(
p ∈ ip =⇒ p ∈ pp

)
(9)

�
(
p ∈ ps =⇒ p ∈ os

)
(10)

Fig. 6. Specification of behavior for
blackboard components.

Spec KS Bhv uses Blackboard

var p, q : PROB
P : PROB SET

�
(
p ∈ pp =⇒ ♦ s(p) ∈ ps

)
(11)

Fig. 7. Specification of behavior for
knowledgesource components.

5.2 Dynamic Blackboard Architectures: Verification

In the following, we demonstrate how the calculus proposed in Sect. 4 can be
used to verify a simple property of blackboard architectures as specified above.

A simple property of a blackboard architecture as specified above is that
a problem is always solved. Expressed in terms of a behavior assertion over a
blackboard interface, it looks as follows:

�
(
p ∈ ip =⇒ ♦(

s(p) ∈ os

))
. (12)

It actually resembles the behavior property of KS components. Its proof is split
into 4 parts.

First, we apply introduction for the globally and eventually operators to
our goal. Thereby we use Hilbert’s ε-operator to denote an arbitrary but fixed
element satisfying a certain property. Moreover, we use Ass to abbreviate the
assumption (t, t′, n) t

k|=
(bb)

p ∈ ip for later reference.

...
(t, t′, εn′. n′ ≥ 〈bb n∨ t〉) t

k|=
(bb)

(s(p) ∈ os) 〈bb n∨ t〉 ≤ εn′. n′ ≥ 〈bb n∨ t〉)
EvtI

(t, t′, n) t
k|=
(bb)

♦ s(p) ∈ os
)

[Ass] ImpI
(t, t′, n) t

k|=
(bb)

(
p ∈ ip =⇒ ♦ s(p) ∈ os

))

[n ≥ 0] GlobI
(t, t′, 0) t

k|=
(bb)

�
(
p ∈ ip =⇒ ♦ s(p) ∈ os

))

We are now left with the goal of showing that the solution to the original
problem p is provided by the blackboard at port os at some point in time later
than the last activation of the blackboard. To discharge the proof obligation,
we apply elimination for the globally operator and the behavior specification of
blackboards. In the following, we abbreviate εn′. n′ ≥ 〈bb n∨ t〉 with n∗.

96 D. Marmsoler

n∗ ≥ 〈c 0∨ t〉
Eq. (10)

(t, t′, 0) t
k|=
(bb)

� s(p) ∈ ps =⇒ s(p) ∈ os
)

GlobE
(t, t′, n∗) t

k|=
(bb)

s(p) ∈ ps =⇒ s(p) ∈ os

...
(t, t′, n∗) t

k|=
(bb)

(s(p) ∈ ps)

ImpE
(t, t′, n∗) t

k|=
(bb)

(s(p) ∈ os)

We are left with the goal of showing that the solution for p is indeed received
by the blackboard. To this end, we apply connection constraints from the CD
as well as elimination rules for eventually and globally.

...
(t, t′, n) t

k|=
(ks)

p ∈ pp

Eq. (11)
(t, t′, 0) t

k|=
(ks)

�
(
p ∈ pp =⇒ ♦ s(p) ∈ ps

))
n ≥ 〈c 0∨ t〉

GlobE
(t, t′, n) t

k|=
(ks)

(
p ∈ pp =⇒ ♦ s(p) ∈ ps

))

ImpE
(t, t′, n) t

k|=
(ks)

♦(s(p) ∈ ps)

EvtEa, Eq. (7)
(t, t′, εn′. n′ ≥ 〈bb n∨ t〉) t

k|=
(ks)

(s(p) ∈ ps)

Fig. 4c, Eq. (6)
(t, t′, εn′. n′ ≥ 〈bb n∨ t〉) t

k|=
(bb)

(s(p) ∈ ps)

Finally it remains to show that the knowledgesource indeed receives the origi-
nal problem. To discharge this obligation, we simply again apply the constraints
induced by the CD as well as the behavioral specification of the blackboard
component.

Ass
(t, t′, n) t

k|=
(bb)

p ∈ ip

Eq. (9)
(t, t′, 0) t

k|=
(bb)

�
(
p ∈ ip =⇒ p ∈ pp

))
n ≥ 〈c 0∨ t〉

GlobE
(t, t′, n) t

k|=
(bb)

p ∈ ip =⇒ p ∈ pp

ImpE
(t, t′, n) t

k|=
(bb)

p ∈ pp

Fig. 4c, Eq. (8)
(t, t′, n) t

k|=
(ks)

p ∈ pp

Note that one of the premises is closed by reference to the assumption Ass
obtained at the beginning of the proof.

6 Related Work

Related work can be found in two different areas: work on the specification of
dynamic architectures in general and calculi about dynamic systems specifically.

Over the last years, some approaches to the specification of dynamic architec-
tures in general have emerged. One related approach comes from Le Métayer [12],
who applies graph theory to specify architectural evolution. Similar to our work,
the author proposed to model dynamic architectures as a sequence of graphs

Towards a Calculus for Dynamic Architectures 97

and to employ graph grammars as a technique to specify architectural evolution.
A similar approach comes from Hirsch and Montanari [11], who employ hyper-
graphs as a formal model to represent styles and their reconfigurations. Another,
closely related approach is the one used by Wermlinger et al. [20]. The authors
combine behavior and structure to model dynamic reconfigurations. Recently,
categorical approaches to dynamic architecture reconfiguration have appeared,
such as the work of Castro et al. [7] and Fiadeiro and Lopes [9]. While they all
introduce models for dynamic architectures similar to ours, they do not provide
a calculus to reason about such architectures. Thus, we complement their work
by providing rules to reason about such architectures.

A second area of work concerns approaches to reason about dynamic systems
in general: Pioneering work in this area goes back to Milner in his well-known
work on the π-calculus [17]. Here, the author provides a set of rules to reason
about reconfigurable systems in general. The main idea behind the underlying
model is that channels can be passed as messages between processes, which
can then exchange messages over these channels. Another foundational model
of dynamic systems which provides rules to reason about such systems is the
Chemical Abstract Machine (CHAM) [1]. It is built upon the chemical metaphor
and models a system as multi-set transformers. Thereby it also provides a set of
general laws to reason about such systems. Finally, the ambient calculus [6] can
be seen as an advancement of the CHAM. In contrast to membranes in CHAM,
ambients provide stronger protection and provide mobility for sub-solutions as
well. While all these approaches provide rules to reason about dynamic systems
in general, their underlying model of dynamic systems is different from our model
of dynamic architectures. Thus, we actually complement their work by providing
rules to reason about different types of systems.

7 Conclusion

In this paper, we introduce a framework to reason about the behavior of compo-
nents deployed to a dynamic environment. The major contributions of the paper
can be summarized as follows: (i) We extend our model of dynamic architectures
introduced in [15] with the notion of behavior traces to model behavior of single
components. Thereby we also characterize an operator to extract the behavior
of single components out of a given configuration trace. (ii) We introduce the
notion of behavior trace assertions to specify behavior of single components and
provide its formal semantics in terms of behavior traces. (iii) We provide a cal-
culus to reason about the behavior of components in dynamic architectures. It is
in a natural deduction style and provides introduction and elimination rules for
each operator of behavior trace assertions. (iv) We show soundness and relative
completeness of the calculus.

Our results can be used to support the verification of dynamic architec-
tures. This was demonstrated by applying our calculus to verify a property for
a dynamic version of the blackboard architecture pattern. Our overall research
is directed towards a unified framework for the specification and verification of

98 D. Marmsoler

patterns for dynamic architectures. By introducing the calculus, we provide an
important step towards this overall goal. However, future work is still required
in three major directions: (i) To better support verification, we are aiming at
integrating the calculus in Isabelle/HOL. Very much in the spirit of LCF [10],
we are currently working on a mechanized proof of the rules of the calculus from
first principles. (ii) Moreover, the calculus should be extended to better inte-
grate port connections. (iii) We are currently looking for ways to leverage the
hierarchical nature of patterns for their verification. Thus, we are interested in
theoretical results of how results for one pattern can be reused for the verification
of other, related patterns.

Acknowledgments. We would like to thank Manfred Broy, Mario Gleirscher,
Vasileios Koutsoumpas, and the anonymous reviewers of ICTAC 2017 for their com-
ments and helpful suggestions. The work was partially funded by the German Federal
Ministry of Education and Research (BMBF) under grant “01Is16043A”.

References

1. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1),
217–248 (1992)

2. Bradbury, J.S., et al.: A survey of self-management in dynamic software archi-
tecture specifications. In: Proceedings of the 1st ACM SIGSOFT Workshop on
Self-Managed Systems, pp. 28–33 (2004)

3. Broy, M.: A logical basis for component-oriented software and systems engineering.
Comput. J. 53(10), 1758–1782 (2010)

4. Broy, M.: A model of dynamic systems. In: Bensalem, S., Lakhneck, Y., Legay,
A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 39–53. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54848-2 3

5. Buschmann, F., et al.: Pattern-Oriented Software Architecture: A System of Pat-
terns (1996)

6. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213
(2000)

7. Castro, P.F., Aguirre, N.M., López Pombo, C.G., Maibaum, T.S.E.: Towards
managing dynamic reconfiguration of software systems in a categorical setting.
In: Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC
2010. LNCS, vol. 6255, pp. 306–321. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14808-8 21

8. Clements, P.C.: A survey of architecture description languages. In: Proceedings of
the 8th International Workshop on Software Specification and Design, p. 16 (1996)

9. Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in serviceoriented
architectures. Softw. Syst. Model. 12(2), 349–367 (2013)

10. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979). (Ed. by G. Goos and J. Hartmanis. 1st ed.)

11. Hirsch, D., Montanari, U.: Two graph-based techniques for software architecture
reconfiguration. Electron. Notes Theor. Comput. Sci. 51, 177–190 (2002)

12. Le Mtayer, D.: Describing software architecture styles using graph grammars. IEEE
Trans. Softw. Eng. 24(7), 521–533 (1998)

13. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992). doi:10.1007/978-1-4612-0931-7

http://dx.doi.org/10.1007/978-3-642-54848-2_3
http://dx.doi.org/10.1007/978-3-642-14808-8_21
http://dx.doi.org/10.1007/978-3-642-14808-8_21
http://dx.doi.org/10.1007/978-1-4612-0931-7

Towards a Calculus for Dynamic Architectures 99

14. Marmsoler, D.: On the specification of constraints for dynamic architectures. ArXiv
e-prints, March 2017. arXiv: 1703.06823

15. Marmsoler, D., Gleirscher, M.: Specifying properties of dynamic architectures using
configuration traces. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol.
9965, pp. 235–254. Springer, Cham (2016). doi:10.1007/978-3-319-46750-4 14

16. Medvidovic, N.: ADLs and dynamic architecture changes. In: Joint Proceedings
of the Second International Software Architecture Workshop and International
Workshop on Multiple Perspectives in Software Development on SIGSOFT 1996
Workshops, pp. 24–27 (1996)

17. Milner, R.: Communicating and Mobile Systems: The π-calculus (1999)
18. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-

pline, vol. 1 (1996)
19. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,

Theory, and Practice. Wiley, Hoboken (2009)
20. Wermelinger, M., Lopes, A., Fiadeiro, J.L.: A graph based architectural

(re)configuration language. Softw. Eng. Notes 26(5), 21–32 (2001)
21. Wirsing, M.: Algebraic specification. In: van Leeuwen, J. (ed.) Handbook of The-

oretical Computer Science, vol. B, Cambridge, pp. 675–788 (1990)

http://arxiv.org/abs/1703.06823
http://dx.doi.org/10.1007/978-3-319-46750-4_14

Class-Diagrams for Abstract Data Types

Thai Son Hoang(B), Colin Snook, Dana Dghaym, and Michael Butler

ECS, University of Southampton, Southampton, UK
{t.s.hoang,cfs,dd4g12,mjb}@ecs.soton.ac.uk

Abstract. We propose to extend iUML-B class-diagrams to elaborate
Abstract Data Types (ADTs) specified using Event-B theories. Classes
are linked to data types, while attributes and associations correspond to
operators of the data types. Axioms about the data types and operators
are specified as constraints on the class. We illustrate our approach on a
development of a control system in the railway domain.

Keywords: Event-B · iUML-B · Class-diagrams · Theory · Abstract
Data Types (ADTs)

1 Introduction

Event-B [1] is a well-established formalism for developing systems whose compo-
nents can be modelled as discrete transition systems. An Event-B model contains
two parts: a dynamic part (called machine) modelled by a transition system and
a static part (called context) capturing the model’s parameters and assumptions
about them. The main technique in Event-B to cope with system complexity is
stepwise refinement, where design details are gradually introduced into the for-
mal models. Refinement enables the abstraction of machines, and since abstract
machines contain fewer details than concrete ones, they are usually easier to
validate and verify.

To enhance the user experience with developing models, Event-B and its sup-
porting Rodin platform (Rodin) is extensible. One of the extensions is iUML-B
which includes state-machines and class-diagrams [9–11]. While state-machines
give a visualisation of the system’s dynamic state and the transitions between
them, class-diagrams provide a visualisation of the model data and relationships.
Another extension is the Theory plug-in [3] for extending the mathematical lan-
guage of Event-B and supporting reasoning about these additional concepts.
In particular, we can use Event-B theories to formalise Abstract Data Types
(ADTs) [7] and subsequently utilise the ADTs to model the system’s dynamic
behaviour in the machines.

Our motivation is to provide a diagrammatic visualisation for the ADTs
specified using Event-B theories. In particular, we propose to extend iUML-B
class-diagrams with new and adapted diagrammatic elements, linking them to
the data types and operators in the theories. The extension helps the design
of the ADTs and provides a better understanding of the data types and the
relationships between them.
c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 100–117, 2017.
DOI: 10.1007/978-3-319-67729-3 7

Class-diagrams for ADTs 101

Our contribution therefore is a proposal for extending iUML-B class-
diagrams. Classes are linked to data types specified using theories. Attributes
and associations elaborate operators of the data types. Axioms about the data
types and operators are specified as class constraints. We illustrate our approach
on a development of the RailGround case study [8] provided by Thales Austria
GmbH.

The rest of the paper is structured as follows. Section 2 gives some background
information about the Event-B method and the extensions such as iUML-B
and the Theory plug-in. We present our proposal for extending iUML-B class-
diagrams for Event-B theories in Sect. 3. We illustrate our approach using the
Rail Ground case study in Sect. 4. We give a summary of our development in
Sect. 5 and some conclusion of our work in Sect. 6.

2 Background

2.1 Event-B

Event-B [1] is a formal method for system development. Main features of Event-
B include the use of refinement to introduce system details gradually into the
formal model. An Event-B model contains two parts: contexts and machines.
Contexts contain carrier sets, constants, and axioms that constrain the carrier
sets and constants. Machines contain variables v , invariants I(v) that constrain
the variables, and events. An event comprises a guard denoting its enabling-
condition and an action describing how the variables are modified when the
event is executed. In general, an event e has the following form, where t are
the event parameters, G(t , v) is the guard of the event, and v := E(t , v) is the
action of the event1.

e == any t where G(t,v) then v := E(t,v) end

A machine in Event-B corresponds to a transition system where variables rep-
resent the states and events specify the transitions. Contexts can be extended
by adding new carrier sets, constants, axioms, and theorems. Machine M can
be refined by machine N (we call M the abstract machine and N the con-
crete machine). The state of M and N are related by a gluing invariant J(v ,w)
where v ,w are variables of M and N, respectively. Intuitively, any “behaviour”
exhibited by N can be simulated by M, with respect to the gluing invariant
J . Refinement in Event-B is reasoned event-wise. Consider an abstract event e
and the corresponding concrete event f. Somewhat simplifying, we say that e is
refined by f if f’s guard is stronger than that of e and f’s action can be simulated
by e’s action, taking into account the gluing invariant J . More information about
Event-B can be found in [6]. Event-B is supported by Rodin [2], an extensible
toolkit which includes facilities for modelling, verifying the consistency of mod-
els using theorem proving and model checking techniques, and validating models
with simulation-based approaches.
1 Actions in Event-B are, in the most general cases, non-deterministic [6].

102 T.S. Hoang et al.

2.2 iUML-B

iUML-B [9–11] provides a diagrammatic modelling notation for Event-B in the
form of state-machines and class-diagrams. The diagrammatic elements are con-
tained within an Event-B model and generate or contribute to parts of it. For
example a state-machine will automatically generate the Event-B data elements
(sets, constants, axioms, variables, and invariants) to implement the states, and
contribute additional guards and actions to existing events. Class diagrams pro-
vide a way to visually model data relationships. Classes, attributes and associa-
tions are linked to Event-B data elements (carrier sets, constants, or variables)
and generate constraints on those elements. In this paper, we focus on extending
class-diagrams for visualising abstract data types specified using theories.

2.3 Theory Plug-In

The Theory plug-in [3] enables developers to define new (polymorphic) data
types and operators upon those data types. These additional modelling concepts
might be defined directly (including inductive definitions) or axiomatically.

An (inductive) datatype can be directly defined using several constructors.
Each constructor can have zero or more destructors. A datatype without any def-
inition is axiomatically defined. We focus on axiomatic data types in this paper.
By convention, an axiomatic datatype satisfies the non-emptiness and maximal-
ity properties, i.e., for an axiomatic type S, we have S �= ∅ and ∀ e · e ∈ S.
As an example, an axiomatic type for stacks is declared as follows.

1 theory Stack(T)
2 types STACK(T)
3 end

Operators can be defined directly, inductively (on inductive data types)
or axiomatically. An operator defined without any definition will be defined
axiomatically. Operator notation is prefix by default. Operators with two argu-
ments can be infix. Further properties can be declared for operators including
associativity and commutativity.

In the following, we show the declaration for some stack operators:
emptyStack, top, pop, and push.

1 operators
2 emptyStack: "STACK(T)"
3 top(st : "STACK(T)"): "T"
4 pop(st : "STACK(T)"): "STACK"
5 for "st �= emptyStack"
6 push(st : "STACK(T)", e : "T"): "STACK"
7 ≺ (e : "T", st : "STACK(T)") infix
8 axioms
9 @axm1 "∀ st, e · e ∈ T ⇒ push(st, e) �= emptyStack"

10 @axm2 "∀ st, e · e ∈ T ⇒ pop(push(st, e)) = st"
11 @axm3 "∀ st, e · e ∈ T ⇒ top(push(st, e)) = e"
12 @axm4 "∀ st · st ∈ STACK(T) ∧ st �= emptyStack ⇒ top(st) ≺ st"
13 @thm1 "∀ st, e· e ∈ T ⇒ e ≺ push(st, e)" theorem

Class-diagrams for ADTs 103

An additional infix operator ≺ defines a predicate (without any returning
type) specifying whether an element e is in the stack st or not. The axioms
are the assumptions about these operators that can be used to define proof
rules. Note that @thm1 is a theorem which is derivable from the axioms defined
previously. We omit the presentation of proof rules in this paper.

Finally, theories can be constructed in hierarchical manner: a theory can
extend other theories by adding more data types, operators, and axioms.

3 Class-Diagrams for Abstract Data Types

An ADT is a mathematical model of a class of data structures. It is typically
defined by a set of operations that can be performed on the ADT, along with
a specification of their effect. By using Event-B theories to formalise ADTs, we
can subsequently utilise the ADTs to model the system’s dynamic behaviour in
the machines. An ADT can be specified straightforwardly using Event-B theories
with axiomatic data type and operators, e.g., the STACK data type in Sect. 2.3.

In order to aid the design of ADTs, we propose to extend class diagrams to
ADTs that are specified using theories. In particular, data types are represented
using classes and operators are modelled using attributes or associations. We
illustrate our idea using the STACK data type example. The class-diagram for
the STACK data type is shown in Fig. 1. In the diagram, there are two classes,
namely STACK and T. The dashed arrow from STACK to T indicates that STACK is
polymorphic and T is the type parameter of STACK. This is also denoted by the
label, i.e., STACK<T>, of the STACK class. Since class T represents a formal type
parameter it cannot own any child features such as associations or constraints.

Fig. 1. A class-diagram for stack ADT

For now, we use the existing class diagram features to illustrate the pro-
posed approach. Our intention is to add features to iUML-B to represent the
ADT features with new diagram elements including a new class container for
adding class constant instances, a new arrow/label feature for expressing class

104 T.S. Hoang et al.

type parameters, a new diagram node for multi-source associations, and a new
diagram node for representing abstract formal type parameters such as T.

Operators are represented by the special associations between classes. Each
association operator can have one or more inputs and zero or one outputs. An
operator without any output, e.g., ≺, indicates a predicate. The inputs to oper-
ators are labelled to indicate their formal parameters. If an operator has two or
more inputs, e.g., push or ≺, each input is numbered (e.g., 1, 2, . . .) specifying
their order.

A “query” operator, i.e., those with one input which is an instance of the
data type and one output (e.g., top), can be specified as attributes of the class.
An operator without any input and return an instance of the data type, i.e., a
constant of the data type (e.g., emptyStack), is specified using a “constant” of
the class. Finally, the axioms and theorems about the data type and its operators
are specified as constraints on the class. The constraints are lifted automatically
to all instances of the data type. Let st be the instance name for the STACK data
type, @axm1 becomes

∀ st · st ∈ STACK ⇒ (∀ e · e ∈ T ⇒ push(st, e) �= emptyStack) .

Note that in general, the class-diagrams and their corresponding theories for
ADTs are developed gradually through several steps. In each step, additional
data types, operators, and constraints can be added.

4 Example. An Interlocking System

The example used in this paper is based on a formal model of a railway interlock-
ing system, which was developed by Thales Austria GmbH. This is a simplified
version of interlocking systems, built specifically for research on formal valida-
tion and verification of railway systems [8]. This example is used as part of the
rail use case of the European project Enable-S3 [4].

4.1 Requirements

Railway systems, in general, aim at providing a timely, efficient and most impor-
tantly a safe train service. This requires a reliable command and control system
that ensures a train can safely enter its specified route. In the system under con-
sideration, the railway topology consists of a set of connected elements, which
are controlled by signals passing information to the trains. The safety of a train
is ensured by allowing its route to be set, only if it does not conflict with the
current available routes. The following requirements are extracted and simplified
from [8]. For illustration, we will consider the network topology with one track
and two points as in Fig. 2.

Rail Elements. The railway topology is formed by a set of rail elements. A
Rail Element is a unit which provides a physical running path for the trains, i.e.
rails (e.g. track, points, crossing). Typically, a rail element is made up of one or
more segments. The sets of segments belong to each rail element are disjoint.

Class-diagrams for ADTs 105

⊕
a b

⊕
c d

⊕
e f

⊕
i j

⊕
g h

T P1 P2

S1 S2

S3 S4

Fig. 2. An example railway topology [8]

REQ 1 The network topology is a set of rail elements.
REQ 2 A rail element contains one or more segments.

In Fig. 2, the segments are {bc,cb,di,id,de,ed,jg,gj,fg,gf}. There are three
rail elements, namely T (a track), P1, P2 (points). The relationship between the
rail elements and the segments are as follows:

T �→ {bc,cb}, P1 �→ {di,id,de,ed}, P2 �→ {jg,gj,fg,gf}.

Element Positions. For each rail element, a Rail Element Position is a distinct
situation of that rail element. Furthermore, each element position defines the set
of possible element connections (defined by segments) for that particular rail
element.

REQ 3 For each rail element, there is a set of possible element positions.
REQ 4 Each rail element and position correspond to a set of rail segments.

For example, a points has three possible position POS_X (in transition), POS_L
(left), POS_R (right). Consider points P1, position POS_X corresponds to an emp-
tyset of segments, POS_L corresponds to segments {di, id}, and POS_R corre-
sponds to segments {de, ed}.

Paths. A path is a sequence of rail segments, with the constraint that two rail
segments of the same rail element are not allowed within one path. A path can
be activated so that trains are allowed to be on that path.

REQ 5 A path is a sequence of rail segments.
REQ 6 Two rail segments belonging to the same element are not allowed
within one path.

Consider the example in Fig. 2, a path could be the following sequence of seg-
ments [bc,di,jg], or [gf,ed,cb]. Note that any sub-sequence of a path is also
a path, e.g., [di,jg] is also a path.

106 T.S. Hoang et al.

Route Life-Cycle. A set of routes are defined. Each route correspond to a pre-
defined path in the network. Before becoming active, a route must be requested.
As soon as all conditions for the route (e.g., rail elements must be in the required
position to establish its path), a requested route can be activated. A path corre-
sponds to an active route is called active path. As a train moves along a route,
rail elements that are no longer in use can be released. An active route can be
removed only after all its rail elements are released. A rail element position can
only be changed if the rail element is not part of an active path.

REQ 7 A requested route can become an active route when all conditions for
that route are met.

REQ 8 An active route can be removed only after all its rail elements are
released.

REQ 9 A rail element position can only be changed if it is not part of an
active path.

In the example network topology, we can have the following routes R1–R4,
with the following associations: R1 �→ [bc, de, fg], R2 �→ [bc, di, jg],
R3 �→ [gf, ed, cb], R4 �→ [gj, id, cb].

Vacancy Detection. To simplify, we assume that each rail element corresponds
to exactly one Track Vacancy Detection (TVD) section. The state of the TVD
section is either vacant or occupied. A TVD section is occupied if there is some
train on some segment belonging to the rail element.

REQ 10 Each rail element corresponds to exactly one TVD section.
REQ 11 A TVD section can be either in vacant or occupied state.

Signals. A signal is an entity capable of passing information to trains. A signal is
associated with a rail element for a particular traversal direction. A signal aspect
is an (abstract) information conveyed by a signal. Signal Default is a predefined
aspect of signals. Trains are assumed to obey the signals, in particular, stop at
a signal containing default aspect.

REQ 12 A signal is associated with a rail element.
REQ 13 A signal may be set to an aspect other than default, only if there is

an active element after this signal.

In Fig. 2, we have 4 signals, S1– S4. Note that both S1 and S3 associated with
T, but they protect the rail element in different traversal directions.

Safety Properties. Safety in this model is ensured by the paths which are
active. The paths can only be set if all its elements are in the right positions.
Safety is ensured by preventing paths to be requested if there are other paths
requiring the same elements.

REQ 14 Two active paths cannot overlap.
REQ 15 An active path must have all its elements in the right positions.
REQ 16 A route can be requested if it is disjoint from other active or requested
routes.

Class-diagrams for ADTs 107

4.2 Development

For this paper, we omit the presentation of the proof rules associated with the
theories. Most of them are directly inferred from the axioms constraining the
data types. For the example, we abstract from rail segments. Details about
rail segments (e.g., REQ 2, REQ 4, REQ 5, REQ 6) can be introduced later
via refinement. The development is available online at http://doi.org/10.5258/
SOTON/D0162 including instructions on Rodin configuration.

Refinement Strategy. We adopt the following refinement strategy for devel-
oping a model of the system. The requirements taken into account at each refine-
ment level is also listed.

– M0: To abstractly specify active routes in the system, focusing on collision-
free properties (REQ 14).

– M1: To introduce the life-cycle of routes by specifying requested routes
(REQ 7, REQ 16).

– M2: To formalise the rail elements and the link between rail elements and
paths (REQ 1, REQ 8).

– M3: To specify the element positions and their association with the rail
elements (REQ 3, REQ 15, REQ 9).

– M4: To introduce the track vacancy detection mechanism (REQ 10,
REQ 11).

– M5: To introduce the signals controlling the trains’ movement (REQ 12,
REQ 13).

M0. Paths. In the initial model, we focus on the notion of paths and the rela-
tionships between them (abstractly). In particular, our model of the dynamic of
the system centres around the main safety property of the system, i.e., collision-
free (REQ 14). For this, we want to specify that there are no overlaps between
currently active paths. The diagram for the initial theory of the PATH data type
can be seen in Fig. 3. Two operators, namely ⊕ and
, are introduced to specify
disjointness and sub-path relationships between two paths p1 and p2. Properties
of the operators are specified by constraints @axm1 and @axm2. Constraint @axm1
states that ⊕ is symmetric and @axm2 states that disjointness is preserved by
the sub-path relationship. The corresponding theory can be seen as follows. Note
that the constraints are lifted to be universally quantified over all instance p of
the PATH data type.

1 theory Paths_01
2 types
3 PATH
4 operators
5 ⊕ (p1: "PATH", p2 : "PATH") infix
6
 (p1: "PATH", p2 : "PATH") infix
7 axioms
8 @axm1 "∀ p· p ∈ PATH ⇒ (∀ q · p ⊕ q ⇒ q ⊕ p)"
9 @axm2 "∀ p· p ∈ PATH ⇒ (∀ p1,p2 · p1
 p2 ∧ p2 ⊕ p ⇒ p ⊕ p1)"

10 end

http://doi.org/10.5258/SOTON/D0162
http://doi.org/10.5258/SOTON/D0162

108 T.S. Hoang et al.

Fig. 3. Class-diagrams in M0

We can use the PATH data type to specify our dynamic system as follows.
Context C0_RG_Paths declares a carrier set ROUTE denoting a set of pre-defined
routes. Constant path links the routes with its initial paths (specified by the
PATH data type).

1 context C0_RG_Paths
2 sets ROUTE
3 constants path
4 axioms
5 @axm1: "path ∈ ROUTE → PATH"
6 end

In machine M0_RG_Paths, variable path_curr is introduced to capture the
active routes. Invariant @inv1 associates each active route with some path.
Invariant @inv2 specifies the collision-free property: two different active routes
must be disjoint.

1 machine M0_RG_Paths
2 sees C0_RG_Paths
3 variables path_curr
4 invariants
5 @inv1: "path_curr ∈ ROUTE �→ PATH"
6 @inv2: "∀ pth1, pth2 ·
7 pth1 ∈ dom(path_curr) ∧ pth2 ∈ dom(path_curr) ∧ pth1 �= pth2 ⇒
8 path_curr(pth1) ⊕ path_curr(pth2)"
9 INITIALISATION == begin @act1: "path_curr := ∅ " end

Three events are modelled at this specification level for adding, modifying,
and removing routes. In addRoute, a new route pe, where the corresponding path
(i.e., path(pe)) does not conflict with any existing routes (addRoute’s @grd2), is
activated. The initial path associated with pe is path(pe). Event modifyRoute
updates the path corresponding to the route pe with the new path pth. Guard
@grd2 of modifyRoute specifies that the new path pth must be a sub-path of
the current path associated with pe (a route can only be updated by releasing
rail elements which no longer in use). Finally, event removeRoute removes an
active route specified by route pe from the set of active routes.

Class-diagrams for ADTs 109

1 events
2 addRoute ==
3 any pe where
4 @grd1: "pe ∈ ROUTE \ dom(path_curr)"
5 @grd2: "∀ p · p ∈ dom(path_curr) ⇒ path(pe) ⊕ path_curr(p)"
6 then
7 @act1: "path_curr(pe) := path(pe)"
8 end
9

10 modifyRoute ==
11 any pe pth where
12 @grd1: "pe ∈ dom(path_curr)"
13 @grd2: "pth
 path_curr(pe)"
14 then
15 @act1: "path_curr(pe) := pth"
16 end
17

18 removeRoute ==
19 any pe where
20 @grd1: "pe ∈ dom(path_curr)"
21 then
22 @act2: "path_curr := {pe} �− path_curr"
23 end
24 end

M1. Route Life-Cycle. In the first refinement, we model the life-cycle of
routes by introducing the notion of requested routes. In this refinement, there
are no changes for the PATH data type. Variable path_req captures the set of
requested routes (i.e., a subset of ROUTE) which must be disjoint from the set of
current routes (@inv2).

1 invariants
2 @inv1: "path_req ⊆ ROUTE"
3 @inv2: "path_req ∩ dom(path_curr) = ∅ "

We refine event addRoute as follows, i.e., a requested route pe becomes an
active route.

1 addRoute
2 refines addRoute
3 any pe where
4 @grd1: "pe ∈ path_req"
5 then
6 @act1: "path_curr(pe) := path(pe)"
7 @act2: "path_req := path_req \ {pe}"
8 end

In order to prove the refinement of event addRoute, we need additional invari-
ants linking path_req and path_curr.

1 @inv3: "∀ pth1, pth2 · pth1 ∈ path_req ∧ pth2 ∈ dom(path_curr) ⇒ path(pth1) ⊕ path_curr
(pth2)"

2 @inv4: "∀ pth1, pth2 · pth1 ∈ path_req ∧ pth2 ∈ path_req ∧ pth1 �= pth2 ⇒ path(pth1) ⊕
path(pth2)"

110 T.S. Hoang et al.

Two new events requestRoute and removeRequest are introduced to create
a new request for a path and remove an existing request. Notice the guards of
requestRoute ensure the maintenance of invariants @inv3 and @inv4.

1 requestRoute ==
2 any pe where
3 @grd1: "pe ∈ ROUTE \ path_req"
4 @grd2: "pe /∈ dom(path_curr)"
5 @grd3: "∀ p · p ∈ dom(path_curr) ⇒ path(pe) ⊕ path_curr(p)"
6 @grd4: "∀ p · p ∈ path_req ⇒ path(pe) ⊕ path(p)"
7 then
8 @act1: "path_req := path_req ∪ {pe}"
9 end

10

11 removeRequest ==
12 any pth where
13 @grd1: "pth ∈ path_req"
14 then
15 @act1: "path_req := path_req \ {pth}"
16 end

M2. Rail Elements. In this refinement, we introduce the rail elements into
the formal models. A new data type RAIL_ELEMENT is introduced. We extend
the PATH data type with a new operator rail_elements returning the set of rail
elements associated with each path (see Fig. 4). Another operator � specifying
whether a rail element re belongs to some path p or not is defined using the
direct definition, i.e. re � p == re ∈ rail_elements(p). Finally, we intro-
duce an operator shrink for removing a rail element re from the path p. The
shrink operator is only defined for the rail element re belonging to the path
p. Axiom @axm1 defines the disjointness between paths p and q as the disjoint-
ness of their rail elements. Axioms @axm2 and @axm3 specify the properties of

Fig. 4. Class-diagrams in M2

Class-diagrams for ADTs 111

shrink operator: it makes the path p smaller and removes the element re from
the path’s rail elements. The corresponding theory is as follows.

1 theory Paths_02
2 imports Paths_01 RailElement_01
3 operators
4 rail_elements(p: "PATH"): "P(RAIL_ELEMENT)"
5 � (re: "RAIL_ELEMENT", p : "PATH") infix =
6 "re ∈ rail_elements(p)"
7 shrink(p : "PATH", re : "RAIL_ELEMENT"): "PATH"
8 for "re � p"
9 axioms

10 @axm1 "∀ p · p ∈ PATH ⇒ (∀ q · p ⊕ q ⇔ rail_elements(p) ∩ rail_elements(q) = ∅)"
11 @axm2 "∀ p · p ∈ PATH ⇒ (∀ re · re � p ⇒ shrink(p, re)
 p)"
12 @axm3 "∀ p · p ∈ PATH ⇒ (∀ re · re � p ⇒ rail_elements(shrink(p, re)) =

rail_elements(p) \ {re})"
13 end

For the dynamic system, a variable rail_element_path is introduced to
keep the relationship between the rail elements and the current active route.
Each rail element is associated with at most one active route (@inv1). Invariant
@inv2 states the consistency between rail_element_path and the set of rail
elements associated with some active route p.

1 @inv1: "rail_element_path ∈ RAIL_ELEMENT �→ dom(path_curr)"
2 @inv2: "∀ p· p ∈ dom(path_curr) ⇒ rail_elements(path_curr(p)) = rail_element_path∼[{p}]"

We focus on the refinement of modifyRoute in this level. The changes to the
other events are trivial. With the introduction of the shrink operator, we can
now be more precise about how an active route is modified, i.e., it can be done
by releasing some no longer used rail element re.

1 modifyRoute
2 refines modifyRoute
3 any pe re where
4 @grd1: "pe ∈ dom(path_curr)"
5 @grd2: "re � path_curr(pe)"
6 with
7 @pth: "pth = shrink(path_curr(pe), re)"
8 then
9 @act1: "path_curr(pe) := shrink(path_curr(pe), re)"

10 @act2: "rail_element_path := {re} �− rail_element_path"
11 end

The witness for pth (using the with clause) specifies the value of the removed
abstract parameter pth. The rail element re is removed from the domain of
rail_element_path: it is no longer associated with any active path.

M3. Element Positions. In this refinement, we introduce the positions for rail
elements. We introduce a new ADT, namely RAIL_POSITION (see Fig. 5). A new
operator � is added to the RAIL_ELEMENT ADT. For an element position rp and
a rail element re, ep � re states that rp is a valid position for re. An additional
operator Default for RAIL_ELEMENT which returns the default position for each
rail element. Axiom @axm1 states that the default position for a rail element re is

112 T.S. Hoang et al.

Fig. 5. Class-diagrams in M3

always a valid one for that rail element. Finally, an operator Path_Element_Pos
is added to the PATH ADT which returns a (partial) function relating the rail
elements (belonging to the path) with the element position. Axiom @axm2 states
that the position defined for a rail element re of a path p must be a valid
position for re. Axiom @axm3 gives the relationship between rail_elements
and Path_Element_Pos as expected.

We introduce a variable rail_positions to capture the current position of
every rail element (@inv1 below). Invariant @inv2 states that the position of
every rail element re must be a valid one for re. Invariant @inv3 specifies the
important safety property for each current active route: the position of the rail
elements that belong to the active route must be the correct position.

1 invariants
2 @inv1: "rail_positions ∈ RAIL_ELEMENT → RAIL_POSITION"
3 @inv2: "∀ re · rail_positions(re) � re"
4 @inv3: "∀ p, re · p ∈ dom(path_curr) ∧ re � path_curr(p) ⇒ rail_positions(re) =

Path_Element_Pos(path_curr(p))(re)"

An additional guard @grd2 is added to addRoute event as follows.

1 @grd2: "∀ re · re � path(pe) ⇒ rail_positions(re) = Path_Element_Pos(path(pe))(re)"

The guard ensures that only when every rail element re that belongs to a
requested route pe is in the correct position, can this route pe can be turned
into a current route. Two new events are added for setting the position of a rail
element: setRailElementPos and setRailElementPath.

1 setRailElementPos
2 any re pos where
3 @grd1: "re /∈ dom(rail_element_path)"
4 @grd2: "∀ p · p ∈ path_req ⇒ re � path(p)"
5 @grd3: "pos � re" // @pos is valid
6 @grd4: "pos �= rail_positions(re)" // @pos is new
7 then
8 @act: "rail_positions(re) := pos"
9 end

10

Class-diagrams for ADTs 113

11 setRailElementPath
12 any p re where
13 @grd1: "p ∈ path_req" // @p is a requested path.
14 @grd2: "re � path(p)" // @re is a rail element of @p
15 @grd3: "Path_Element_Pos(path(p))(re) �= rail_positions(re)"
16 then
17 @act: "rail_positions(re) := Path_Element_Pos(path(p))(re)"
18 end

Event setRailElementPos sets the new position pos for a rail element re
which does not belong to any active path (@grd1) and does not belong to any
requested route (@grd2). Event setRailElementPath sets the position for a
rail element re belonging to a requested route p. The new position of the
element re is the position required for path p as specified by the operator
Path_Element_Pos.

M4. Vacancy Detection. In this refinement, we introduce the track vacancy
detection. Each TVD section corresponds to a rail element. As a result, we
introduce a new data type TVD_SECTION with an operator TVD_Element as in
Fig. 6. Axioms @axm1 and @axm2 ensure the one-to-one relationship between
TVD_SECTION and RAIL_ELEMENT.

Fig. 6. Class-diagrams in M4

We introduce a new variable TVD_status to capture the current vacancy
status of the TVD sections. The invariants for this refinement level are as follows,

1 @inv1: "TVD_status ∈ TVD_SECTION → TVD_STATE_ENUM"
2 @inv2: "∀ s · TVD_status(s) = TVD_STATE_OCCUPIED ⇒ TVD_Element(s) ∈ dom(

rail_element_path)"

where TVD_STATE_ENUM is a data type with two elements: TVD_STATE_OCCUPIED
and TVD_STATE_VACANT.

Invariant @inv2 states that if a TVD section s is occupied then the corre-
sponding rail element must be a part of an active path. This corresponds to the
assumption that trains cannot go out of the current active paths.

114 T.S. Hoang et al.

Event modifyRoute is extended as follows.

1 modifyRoute extended
2 refines modifyRoute
3 any s where
4 @grd2: "TVD_status(s) = TVD_STATE_OCCUPIED"
5 @grd3: "re = TVD_Element(s)"
6 then
7 @act3: "TVD_status(s) := TVD_STATE_VACANT"
8 end

The additional parameter s denotes the TVD section corresponding to the
rail element re (@grd3). The status of s is changed from occupied to vacant
in this modifyRoute event. Essentially, this event models the situation where
a train departs from the rail element re (hence the TVD status changed from
occupied to vacant) and the rail element re is released.

A new event setTVDStatus is introduced for changing the status of a TVD
section from vacant to occupied.

1 setTVDStatus
2 any s where
3 @grd1: "TVD_status(s) = TVD_STATE_VACANT"
4 @grd2: "TVD_Element(s) ∈ dom(rail_element_path)"
5 then
6 @act1: "TVD_status(s) := TVD_STATE_OCCUPIED"
7 end

Guard @grd2 ensures that the rail element is currently within some active path.

M5. Signal. In this refinement, we introduce the signals and signal aspects.
Two new ADTs are introduced: SIGNAL and SIGNAL_ASPECT_ENUM (Fig. 7). The
SIGNAL data type has one operator, namely Signal_Element, returning the
rail element that the signal protects. The SIGNAL_ASPECT_ENUM has a constant,
namely SIGNAL_ASPECT_DEFAULT, representing the default aspect of the signals.
No additional assumptions are made about SIGNAL and SIGNAL_ASPECT_ENUM.

Fig. 7. Class-diagrams in M5

We introduce a variable signal_status to model the status of all the signals.

1 @inv1: "signal_status ∈ SIGNAL → SIGNAL_ASPECT_ENUM"

Class-diagrams for ADTs 115

Event setTVDStatus is refined by two events according to whether or not
the rail element is protected by a signal. Event setTVDStatusPath captures the
case where the rail element corresponding to the TVD section s is not protected
by a signal. This reflects the situation where a train is moving along an existing
path. Event setTVDStatusSignal corresponds to the case where the rail ele-
ment is protected by a signal. Note that the signal is turned automatically to
SIGNAL_ASPECT_DEFAULT when the train occupied the element.

1 setTVDStatusPath refines setTVDStatus
2 any s where
3 @grd1: "TVD_status(s) = TVD_STATE_VACANT"
4 @grd2: "TVD_Element(s) ∈ dom(rail_element_path)"
5 @grd3: "∀ sg · TVD_Element(s) �= Signal_Element(sg)"
6 then
7 @act1: "TVD_status(s) := TVD_STATE_OCCUPIED"
8 end
9

10 setTVDStatusSignal refines setTVDStatus
11 any s sg where
12 @grd1: "TVD_status(s) = TVD_STATE_VACANT"
13 @grd2: "signal_status(sg) �= SIGNAL_ASPECT_DEFAULT"
14 @grd3: "TVD_Element(s) = Signal_Element(sg)"
15 then
16 @act1: "TVD_status(s) := TVD_STATE_OCCUPIED"
17 @act2: "signal_status(sg) := SIGNAL_ASPECT_DEFAULT"
18 end

In order to prove the correctness of the refinement of setTVDStatus by
setTVDStatusSignal, we need the following invariants. Invariants @inv2 and
@inv3 state that if the signal status for sg is not SIGNAL_ASPECT_DEFAULT then
(1) the rail element corresponding to the signal must belong to some active path
and (2) the rail element must be vacant as detected by the TVD section. Invari-
ant @inv4 states that if two signals sg1 and sg2 protecting the same rail element
and sg1 is not SIGNAL_ASPECT_DEFAULT then sg2 must have the default aspect.

1 @inv2: "∀ sg · signal_status(sg) �= SIGNAL_ASPECT_DEFAULT ⇒ Signal_Element(sg) ∈ dom(
rail_element_path)"

2 @inv3: "∀ sg, s · signal_status(sg) �= SIGNAL_ASPECT_DEFAULT ∧ TVD_Element(s) =
Signal_Element(sg) ⇒ TVD_status(s) = TVD_STATE_VACANT"

3 @inv4: "∀ sg1, sg2 · signal_status(sg1) �= SIGNAL_ASPECT_DEFAULT ∧ Signal_Element(sg1) =
Signal_Element(sg2) ∧ sg1 �= sg2 ⇒ signal_status(sg2) = SIGNAL_ASPECT_DEFAULT"

A new event to set the signal aspect to proceed (i.e., not the default aspect)
as follows, taking into account the above invariants.

1 setSignalAspectProceed
2 any sg asp s where
3 @grd1: "signal_status(sg) = SIGNAL_ASPECT_DEFAULT"
4 @grd2: "asp �= SIGNAL_ASPECT_DEFAULT"
5 @grd3: "Signal_Element(sg) ∈ dom(rail_element_path)"
6 @grd4: "TVD_Element(s) = Signal_Element(sg)"
7 @grd5: "TVD_status(s) = TVD_STATE_VACANT"
8 @grd6: "∀ sg1 · Signal_Element(sg) = Signal_Element(sg1) ∧ sg �= sg1 ⇒ signal_status(

sg1) = SIGNAL_ASPECT_DEFAULT"
9 then

10 @act1: "signal_status(sg) := asp"
11 end

116 T.S. Hoang et al.

5 Summary

Our RailGround development using theories contains 6 machines, i.e., M0–M5
forming a refinement-chain. Out of the total 147 proof obligations, 95% (139) are
discharged automatically. This high perchantage of automatic proofs is due to the
carefully constructed ADTs with appropriate axioms and proof rules supporting
the reasoning.

Typically we develop Event-B models to express important (safety) proper-
ties at a very abstract level and then make a series of refinements to gradually
introduce the details of a design mechanism that maintains this property. The
RailGround model is atypical in that it begins by modelling the established prin-
cipals of interlocking systems without modelling the safety properties that those
systems are designed to achieve. The reason for this is that the principles of
interlocking are a proven design mechanism for controlling trains in a safe way.
The model focusses instead on providing a precise and accurate specification
of the interlocking product-line. Nevertheless, the model provides a good case
study to illustrate the use of our diagrammatic representation of ADTs linked to
Event-B theories including sufficient properties concerning the lack of conflicts
in paths.

6 Conclusion

In this paper, we propose an extension to class-diagrams elaborating ADTs spec-
ified using Event-B theories. Classes are linked to data types, while attributes
and associations correspond to operators of the data types. Axioms about the
data types and operators are specified as constraints on the class. We illustrate
our approach on a development of RailGround case study provided by Thales
Austria GmbH. The diagrammatic visualisation helps us to design appropriate
theories supporting the system development. Moreover, the diagrams and their
corresponding theories can be developed gradually and integrated seamlessly
with the refinement development process of Event-B.

In the future, we plan to implement our proposal by extending iUML-B.
Furthermore, we plan to incorporate other techniques such as instantiation [5]
to support the development of theories. Currently, during the development, we
extending our class-diagrams with new data types, operators and axioms. This
result in data type with several operators and constraints. A possibility for ADT
is that they contain contradict axioms. An alternative to data type extension
is instantation where one or more operators is “replaced” by new ones. For
example, when we introduce the rail_elements operator for paths, we can
instantiate ⊕ (i.e., define it) using rail_elements and prove the axioms about
⊕ can be derived from the properties of rail_elements. Compare to extension,
instatiation will result in more concrete and smaller data types.

Class-diagrams for ADTs 117

Acknowledgement. This work has been conducted within the ENABLE-S3 project
that has received funding from the ECSEL Joint Undertaking under Grant Agree-
ment no. 692455. This Joint Undertaking receives support from the European Union’s
HORIZON 2020 research and innovation programme and Austria, Denmark, Germany,
Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium, France,
Netherlands, United Kingdom, Slovakia, Norway.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

3. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39698-4 5

4. The Enable-S3 Consortium. Enable-S3 European project (2016).
www.enable-s3.eu/

5. Fürst, A., Hoang, T.S., Basin, D.A., Sato, N., Miyazaki, K.: Large-scale system
development using abstract data types and refinement. Sci. Comput. Program.
131, 59–75 (2016)

6. Hoang, T.S.: An introduction to the Event-B modelling method. In: Romanovsky,
A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp.
211–236. Springer, Heidelberg (2013)

7. Liskov, B., Zilles, S.: Programming with abstract data types. In: Proceedings of
the ACM SIGPLAN Symposium on Very High Level Languages, pp. 50–59. ACM,
New York (1974). http://doi.acm.org/10.1145/800233.807045

8. Reichl, K.: Railground Model on GitHub (2016). https://github.com/klar42/
railground/. Accessed 20 Apr 2017

9. Said, M.Y., Butler, M., Snook, C.: A method of refinement in UML-B. Softw. Syst.
Model. 14(4), 1557–1580 (2015)

10. Snook, C.: iUML-B statemachines. In: Proceedings of the Rodin Workshop 2014,
Toulouse, France, pp. 29–30 (2014). http://eprints.soton.ac.uk/365301/

11. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

http://dx.doi.org/10.1007/978-3-642-39698-4_5
http://www.enable-s3.eu/
http://doi.acm.org/10.1145/800233.807045
https://github.com/klar42/railground/
https://github.com/klar42/railground/
http://eprints.soton.ac.uk/365301/

Value-Based or Conflict-Based? Opacity
Definitions for STMs

Jürgen König(B) and Heike Wehrheim

Department of Computer Science, Paderborn University, Paderborn, Germany
jkoenig@mail.upb.de

Abstract. Software Transactional Memory (STM) algorithms provide
programmers with a high-level synchronization technique for concurrent
access to shared state. STMs typically guarantee some sort of serializ-
ability: the concurrent execution of transactions appears to occur in a
sequential order. With Guerraoui and Kapalka’s 2008 paper, serializabil-
ity of software transactions has been phrased as opacity. While opacity
has been accepted as the standard correctness criterion for STMs, later
verification approaches nevertheless adopt different formulations – claim-
ing them to be opacity.

In this paper, we study the relationships between different ver-
sions of opacity, Guerraoui and Kapalka’s value-based version and the
verification-friendly, value-less conflict-based version. We show that even
under some reasonable restrictions on executions, conflict-based remains
stronger than value-based opacity, rejecting some serializable executions.
We provide an alternative definition of conflict-based opacity, still not
tracking values and thus keeping its verification-friendly style. This ver-
sion, which we call constraint-based, is proven to coincide with value-
based opacity. Finally, we propose a technique for checking constraint-
based opacity on executions, employing the SMT-solver Z3.

1 Introduction

In modern computing, one of the greater changes was the switch from singlecore
to multicore processors inducing a rising amount of concurrency in programs.
(Software) Transactional Memory ((S)TM) [14,25] is a method for synchroniz-
ing multiple threads accessing shared memory. It frees the programmer from
the responsibility of ensuring the atomicity of his/her code. He/she can simply
mark blocks as transactions, and the STM then ensures that transactions will
be executed seemingly atomic.

As the last sentence implies, an STM does not necessarily internally execute
these blocks atomically, but externally it has to seem like it does. Formally defin-
ing this concept of “seeming atomicity” – thus also defining correctness criteria
for STMs – has been the subject of past and current research. Currently, value-
based opacity (value opacity in the following) [13] represents a consensus about
the correct behavior of an STM. Value opacity inspects the histories generated by
STM executions and checks whether transactions never read inconsistent values.
c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 118–135, 2017.
DOI: 10.1007/978-3-319-67729-3 8

Value-Based or Conflict-Based? Opacity Definitions for STMs 119

Given that there are many STM algorithms (e.g. [4,5,24,28]), an essential
question is how to ensure that they are opaque. There are two main approaches
for this: deductive (interactive) verification and model checking. Interactive ver-
ification approaches typically use refinement proofs to show opacity (e.g. [7,17]).
To this end, they employ an intermediate specification called TMS2 [8] which is
known to be opaque and prove the STM algorithm to be a refinement of TMS2
using forward or backward simulation. Lesani and Palsberg [19] on the other hand
introduced a notion called markability, proved it to be equivalent to opacity and
used interactive verification to show actual STM algorithms to be markable.

Model checking as a means for proving opacity of STM algorithms has been
investigated by Guerraoui et al. [12]. Their key result is the proof of a kind of
small-model-theorem: model checking for opacity of arbitrary numbers of threads
operating on arbitrarily many variables can be reduced to model checking for two
threads and two variables (under certain assumptions on the STM algorithm).
For this, they employ a definition of opacity which is based on a notion of conflict
between transactions, not on the idea of checking for inconsistent values of reads.
Still, they refer to this as the definition of opacity of [13], which however uses a
value-based formalization. Similarly, STM validation techniques based on testing
frequently employ conflict-based versions. The advantage for testing as well as
model checking is the possibility of completely neglecting the values written to
or read from shared variables, and thus a significant gain in state space saving.

In this paper we study the question of equality of value-based and conflict-
based versions of opacity. Our first result is that value and conflict opacity are
basically incomparable. Under some reasonable assumptions on executions of
STMs, we can show that conflict opacity implies value opacity. Taking the wish
for a definition of opacity without values into account, we then propose a new
definition called constraint opacity. Constraint opacity is fully equivalent to value
opacity given two reasonable assumptions on STM executions. Interestingly, it
turns out that our new definition is conceptually similar to markability [19],
however ignoring variables values. Finally, we show how histories (execution
sequences) of STMs can be easily checked for constraint opacity (and thus for
value opacity) by encoding the constraints into first order logic and using a
standard SMT solver (Z3 [21]) for satisfiability checking.

2 Notation

We start with introducing some background notation. In software transactional
memory systems, programmers write transactions to access shared memory. We
let L be the set of memory locations, V the set of possible values of these locations
and T the set of transaction identifiers. The variables v, t and any variation of
them are elements of their respective sets V, T . We denote locations with x, y.
In executions of STMs, we observe certain events happening: a transaction can
be started, it can read from or write to locations and it might finally end. The
set of events is

E = {writet(x, v), readt(x, v), committ, abortt,begint | x ∈ L, v ∈ V, t ∈ T}

120 J. König and H. Wehrheim

Events form histories, i.e., sequences e0 . . . en of events where ei ∈ E. We write
e < e′ if there exists some i, j with i < j and e = ei, e

′ = ej , and e ∈ h if e = ei
for some i, 0 ≤ i ≤ n. We write trans(e) = t iff ei ∈ {writet(x, v), readt(x, v),
committ, abortt,begint | x ∈ L, v ∈ V }.

We let h|t be the projection of the history h onto the events of transaction t
only. A transaction t occurs in h, t ∈ h, if h|t is non-empty. The write set of a
transaction t is WSt = {x | writet(x, v) ∈ h, v ∈ V, x ∈ L}. The read set RSt is
defined analogeously. Next, we define key properties of histories and introduce
some conventions to simplify proofs.

We only want to consider executions where programmers use the STM
according to a fixed scheme. Every transaction has to start with a begin and
– if it ends – has to end with a commit or abort. Furthermore, transactions may
not contain more than one begin event and not more than one commit or abort
event. These requirements give rise to the notion of well formed histories.

Definition 1 (Well Formedness). Let h be a history. A transaction t is well
formed in h iff the following holds for h|t = ei . . . ej:

1. ei = begint ∧ ∀k �= i : ek �= begint and
2. ∀k < j : ek /∈ {committ, abortt}.
A history is well formed if all transactions occurring in it are well formed.

From now on we assume all histories to be well formed. A history imposes a
partial ordering on the transactions occuring in it: one transaction precedes
another if the first one ends before the second one starts.

Definition 2 (Real Time Order). Let h be a history. Two transactions t1, t2
in h with h|t1 = ei, ..., ej , h|t2 = ei′ . . . ej′ are called real time ordered in h,
t1 <h

rt t2, if j < i′ and ej ∈ {committ, abortt}.
A history h is sequential if it is well-formed and all of its transactions are real
time ordered (not concurrent), i.e., ∀t1 ∈ h, t2 ∈ h : t1 <h

rt t2 ∨ t2 <h
rt t1. Later,

we also need the completion of histories: In the completion of a history, any non
committed and non-aborted transaction is aborted at the end of the history. The
order of these abortions does not matter in our context. We write this completion
of a history h as complete(h).

For defining the correctness of an STM algorithm, we inspect the histories
it generates. Basically, all opacity definitions define correctness of a history h
via the ability of finding an equivalent sequential history hs, i.e., the ability of
showing that a concurrent history can be serialized in some way. They differ in
the requirements they impose on hs.

One such requirement is legality. Basically, a sequential history is legal if
every read of a variable returns the latest written value to that variable. This in
particular also has to hold for reads of aborting transactions. STM algorithms
basically employ one of two ways of updating shared state: direct and deferred
update semantics. In this paper, we will consider the deferred update semantics
as it is the more frequently employed technique. In a deferred update STM, an

Value-Based or Conflict-Based? Opacity Definitions for STMs 121

t1
Begin WR(x,1) Commit

t2
Begin RD(x,2) Commit

Fig. 1. Conflict-based opaque but not value-based opaque

update of memory locations occurs at commit time only. This implies that all
writes of a transaction can be seen by itself after the write and be seen by other
transactions only if the writing transaction has committed. For the following
definition, we assume that every history starts with a committing transaction
T0 writing 0 to every location. Thereby, we need not differentiate between read
events reading from other writes and reading initial values of locations. We
furthermore assume that every transaction writes at most once to every location,
which does not come with any cost regarding expressiveness. This lets us define
what the latest write is which a read event can access.

Definition 3 (Deferred Update Latest Write). Let h = e0 . . . em . . . en
be a history. We define the latest write to a location x for an event em with
trans(em) = t as

LWh(x, em) =

{
writet(x, v) = em′ , em′ ∈ h,m′ < m

committ′ = em′ ,m′ ≤ m,m′ max., x ∈ WSt′ else

Similarly, we can define the latest written value.

Definition 4 (Deferred Update Latest Written Value). The latest written
value to a location x for an event trans(em) = t in a history h = e0 . . . em . . . en
is

LWVh(x, em) =

{
v, if ∃writet′(x, v) : committ′ = LWh(x, em)
v, if LWh(x, em) = writet(x, v)

A sequential history is then legal when it always reads the latest written values:
∀em = readt′(x, v) : v = LWVh(x, em). Finally, two histories h, h′ are equivalent,
h ≡ h′, if ∀t : h|t = h′|t. It is trivial to see that ≡ is an equivalence relation.

Example 1. Figure 1 graphically depicts a history with two transactions t1 and
t2, namely h = begint1begint2writet1(x, 1) committ1readt2(x, 2) committ2 . The
history is well formed and not sequential (the begin of t2 happens before the
commit of t1). The latest write for readt2(x, 2) is committ1 . Trying to find a
sequential history justifying the correctness of this concurrent history fails: There
are two possible sequential reorderings, t1t2 and t2t1, which both are not legal
since the latest value written to x can never be 2.

122 J. König and H. Wehrheim

t1
Begin WR(x,1) WR(y,2)Commit

t2
Begin WR(x,1)WR(y,3) Commit

t3
Begin RD(x,1) RD(y,3) Commit

Fig. 2. Value opaque but not conflict opaque

3 Value and Conflict Opacity

The last section has introduced all neccessary notations which now let us define
opacity. Basically, it remains to be defined when a sequential history can be used
as a justification for a concurrent history. We give the following two definitions
of value and conflict opacity according to Guerraoui et al. [13] and [12]. For value
opacity, we in addition require prefix closedness which is now standardly added
to opacity definitions.

Value opacity uses legality as its main correctness requirement, i.e., in a
sequential history all values read have to be written by the latest write.

Definition 5 (Value Opacity). A history h is value final-state opaque iff

– there exists a sequential legal history hs which is equivalent to complete(h)
and

– <h
rt ⊆ <hs

rt .

A history h is value opaque iff all prefixes of h are value final-state opaque.

Conflict opacity on the other hand is characterized by a conflict order and the
sequential history is not allowed to “reorder” conflicting transactions.

Definition 6 (Conflict Order). The conflict order of h, written as <h
c , is the

union of the following three relations:

1. read-write conflicts:
{(t1, t2) | t1, t2 ∈ h,∃e′ = readt1(x, v), e = committ2 ∈ h, e < e′, (x ∈ WSt2)},

2. write-read conflicts:
{(t1, t2) | t1, t2 ∈ h,∃e′ = committ1 , e = readt2(x, v) ∈ h, e′ < e, (x ∈ WSt2)},

3. write-write conflicts:
{(t1, t2) | t1, t2∈h,∃e=committ1 , e

′ = committ2 ∈h, e<e′,WSt1 ∩WSt2) �=∅},
and

4. real-time order: <h
rt.

Note that we have write conflicts between commit events because we consider
a deferred-update semantics. From this conflict order the definition of conflict
opacity is derived.

Value-Based or Conflict-Based? Opacity Definitions for STMs 123

Definition 7 (Conflict Opacity). A history h is conflict opaque iff for the
history h′ = complete(h) the conflict order <h′

c is a strict partial order.

At a first glance the histories accepted by these two definitions may seem to be
equal, but it can be shown that both properties do not imply each other.

Observation 1. Conflict opacity does not imply value opacity.

This observation can easily be confirmed by looking at Fig. 1. The conflict order
only contains t1 <h

c t2, so it is a strict partial order. But there exists no sequential
equivalent history which is legal.

Observation 2. Value opacity does not imply conflict opacity.

This observation can easily be confirmed by looking at Fig. 2. The conflict order
contains (beside other elements) t2 <h

c t3 and t3 <h
c t2, thus it cannot be a strict

partial order. The sequential order t2t3t1 is legal and equivalent to the original
history, thus it is value opaque.

These two counterexamples illustrate differences between the opacity def-
initions which only occur in very specific situations. The differences are the
following.

1. Conflict-Based Opacity is oblivious to values:
For conflict opacity it only matters whether two events access the same loca-
tion and whether one of them is a commit. Values are not part of the evalua-
tion, which implies that non-realistic histories as the one in Fig. 1 are actually
conflict opaque. One could argue that these histories are not very likely to
appear in practice. However, consider the history in Fig. 3. This history could
actually be produced by an STM using snapshots (e.g. the STM fulfilling
snapshot isolation presented by Riegel et al. [24]). In the history, the value
of x is important since the second read of t2 on x could return either 0 or 1,
because of the concurrent transaction t1. The value of x determines whether
the history is value opaque but its conflict order is always t1 <h

c t2 <h
c t1,

thus it is not conflict opaque in any case.
2. Value-Based Opacity does not factor in where values originated from:

In Fig. 2, x is set to 1 by t1 and t2. Conflict opacity does not accept this
history because its conflict order is t2 <h

c t3 <h
c t2. This conflict represents

the fact that t3 reads inconsistent values of x and y, since t2 writes to x and
y but t3 sees an older value of x namely the one of t1. In this specific case,
though, these values are equal, so the serialization t1t3t2 is legal. If the value
were not equal this serialization (and any other) would not be legal, and thus
the history would not be value opaque.

To allow a meaningful comparison between conflict and value opacity, we exclude
such specific cases in the following and check again whether value and conflict
opacity coincide then.

Excluding the first case means requiring an STM to return only those values
in a read which are in memory at the moment of the call to the read (or in its own

124 J. König and H. Wehrheim

t1
Begin WR(x,1) Commit

t2
Begin RD(x,0) RD(x,1) Commit

Fig. 3. A realistic history where the read value determines opacity

write set). Most but not all STMs do so (e.g. [7,8]). We call such STMs to have
“no-out-of-thin-air-reads”, using a term which is employed for a similar property
in weak memory models. This property can easily be checked syntactically on
the STM algorithm, looking at the read operation.

A history does not contain out-of-thin-air-reads if for every read to a location
x the latest written value to that location is read. Basically, it is a form of legality
for non-sequential histories.

Definition 8 (No Out-Of-Thin-Air Reads). A history h = e0...en does not
contain out-of-thin-air reads iff the following holds:

∀em = readt′(x, v) : v = LWVh(x,m).

Although definitely possible in real life scenarios, the second case is rather specific
and not present as soon as any type of timestamp is included in the STM. Thus
excluding it does not cause a significant change in the semantics of an STM. We
call this second property the “unique writer” property.

Intuitively, a history has unique writers if each write to a location uses a
different value.

Definition 9 (Unique Writers). A history h = e0 . . . en has unique writers
iff the following holds:

∀ei = writet(x, v) ∈ h,∀ei′ , i �= i′,∀t′, t �= t′ : (writet′(x, v) /∈ h).

Both assumptions combined imply prefix closedness for most reasonable opacity
definitions. Under these assumptions it is now possible to prove that conflict
opacity does imply value opacity but not the other way round.

Lemma 1. Conflict opacity implies value opacity for any history h having
unique writers and no-out-of-thin-air-reads.

Proof. W.l.o.g. assume h to be a completed history. The order <h
c is a strict

partial order by definition. It also respects the real time order of h by definition.
Let h′ be a sequential history equivalent to h with its transaction order being
an arbitrary strict total order fulfilling <h′

ct ⊇ <h
c .

We now prove that the history h′ is value opaque. Thus it has to be sequential,
legal, equivalent to h and respect the real time order of h. The history h′ fulfills
any condition but legality by definition. Thus it is left to prove that it is legal.

If h′ was not legal it would intuitively not respect the conflict order of h
since this order totally orders all writes and reads to a location. Thus if h′ is

Value-Based or Conflict-Based? Opacity Definitions for STMs 125

not legal this order would have changed between h and h′. Now we assume
h′ is not legal thus: ∃eh′

m′ = readt1(x, v) : v �= LWVh′(x, em′) which implies
LWh(x, em) = committ2 �= LWh′(x, em′) = committ3 where em = em′ . In h′ this
implies t3 <h t1 and ¬(t3 < t2 ∧ t2 < t1) by the definition of a latest write.
But in h, and by construction consecutively also in h′, it holds t2 < t1 and
¬(t2 < t3 ∧ t3 < t1) by definition of a latest write.

The combined statement ¬(t3 < t2 ∧ t2 < t1) ∧ ¬(t2 < t3 ∧ t3 < t1) ∧ t2 <
t1 ∧ t3 < t1 resolves to false and is a contradiction to the assumptions, thus h′

is legal, sequential and equivalent to h. �

Observation 3. Value opacity does not imply conflict opacity even under the
assumption of unique writers and no-out-of-thin-air-reads.

Proof. Figure 4 shows a counterexample. The sequence t3t2t1 is a proof of its
value opacity. But as conflicts we have t3 <c t1 and t1 <c t3, thus it is not
conflict opaque.

t1
Begin RD(x,1) WR(x,3)Commit

t2
Begin WR(x,1) Commit

t3
Begin WR(x,2) Commit

Fig. 4. Example for the semantic difference between conflict and value opacity

The counterexample in Fig. 4 demonstrates that there exists an actual seman-
tical difference between conflict and value opacity. While value opacity in prin-
ciple allows concurrent transactions to appear in any order, as long as the result
is legal, conflict opacity does fix the order beforehand. It is however possible to
use aspects of conflict opacity for a different defintion, which is equivalent to
value opacity under these assumptions. Alike conflict opacity, this definition –
given next – allows to define opacity without considering the values of read and
write operations.

4 Constraint Opacity

The advantage of a conflict-based definition of opacity is its ease in opacity of
a given history. Instead of having to find an equivalent sequential legal history,
we only need to generate the conflict order and check for cycles in it. For testing
and verification, we would like to have a similarly simple definition, which is
however equivalent to value opacity. We present such a definition below, called
constraint-based opacity (constraint opacity). Like conflict opacity it ignores the

126 J. König and H. Wehrheim

value aspect of a history. As in value opacity it still has some reordering aspects,
but it mostly relies on conflicts. These conflicts can be used to reduce the search
space for a possible legal equivalent sequential history. Constraint opacity is
conceptually close to markability [19], the differences and similarities of both
definitions are discussed in Sect. 6.

Constraint opacity requires the preservation of two orderings plus imposes a
set of additional constraints on transaction ordering, called not-in-between (NIB)
constraints. The first ordering is again real time order, as value opacity respects
it and the constraint based variant needs to match it. The second ordering,
called write order, resembles that in histories transactions are always ordered
if one writes a value which the other reads. The NIB constraints state that no
write may be overwritten in between where it has taken effect through a commit
and where it is read by another transaction. This is another way of stating that
the reordered history must be legal. The advantage is that it can be expressed
via constraints of a single type.

Definition 10 (Write Order). The write order of h is defined as the strict
partial order between transactions for each location x written as <h

x, where t1 <h
x

t2 holds iff the following is true:

∃readt2(x, v) : LW (readt2(x, v)) = committ1

With this at hand, we can define constraint opacity.

Definition 11 (Constraint Opacity). A history h is constraint opaque iff
there exists a strict total order <h s.t.

– it respects the write order of h: ∀x ∈ L : <h
x ⊆ <h,

– it respects the real time order of h : <h
rt ⊆ <h,

– and it fulfills the NIB constraints:
∀t1, t2, t3 s.t. t1 <h

x t3 : ¬(t1 <h t2 ∧ t2 <h t3 ∧ x ∈ WSt2).

Due to its constraint-based nature, this version of opacity is prefix-closed by
definition.

Proposition 1. Let h be a constraint opaque history which satisfies the prop-
erties of unique writers and no out-of-thin-air-reads, and let h′ be a prefix of h.
Then h′ is constraint opaque.

Constraint opacity is indeed equivalent to value-based opacity as we will prove
in the following.

Lemma 2. For any history having unique writers and no out-of-thin-air-reads
constraint opacity implies value opacity.

Proof. We show that any constraint opaque history h can be reordered to a value
opaque history h′ that has the same orderings and fulfills the same constraints.
We assume the strict total order of the transactions of h′ to be <h′

to , where

Value-Based or Conflict-Based? Opacity Definitions for STMs 127

<h′
to ⊇ (

⋃
x∈L <h

x) ∪ <h
rt and it respects the NIB constraints. We show that h′ is

legal. It is sequential and equivalent to h′ by definition.
We show that the latest write for a read readt(x, v) = ehm = eh

′
m is the same

for h and h′, then that this implies the legality of the history.
Assume that ti = trans(LWh(x, em′)) and tj = trans(LWh′(x, em)). Intu-

itively, i = j must hold because otherwise h′ would violate the NIB constraints
of h which by definition it does not. In h, ti <h t and ¬(ti <h tj ∧ tj <

h t) holds
by the NIB constraints. These hold also for h′ by construction. For tj in h′ it
holds that tj <h t and ¬(tj <h ti ∧ ti <

h t) by the definition of a latest write.
Thus in h′, ti and tj happen before t but both cannot be in between the other
in t, this statement is false except when i = j. Thus h′ cannot exist.

In h, every read reads the value of the latest write by the no-out-of-thin-air-
reads assumption since in h′ the latest writer for every read is identical this still
holds. Thus h′ is legal. �

Lemma 3. For any history having unique writers and no out-of-thin-air-reads
value opacity implies constraint opacity.

Proof. Let h be an arbitrary value opaque history, let <h
t be the strict total order

of a sequential legal equivalent history h′, which exists since h is value opaque.
It holds that there is some ordering <h′

t such that <h′
t = <h. We show this for

each subpart:

– ∀x : <h
x ⊆ <h : where t1 <h

x t2 holds if ∃readt2(x, v) : LW (readt2(x, v)) =
committ1 . By the condition of legality any latest write for a read must happen
before that read. Thus t1 <h′

t2 which also implies t1 <h t2.
– <h

rt ⊆ <h: Holds by definition of value opacity.
– ∀t1, t2, t3, t1 <h

x t3 : ¬(t1 <h t2 ∧ t2 <h t3 ∧ x ∈ WSt2): t1 <h
x t3 holds

if ∃em = readt3(x, v) : trans(LW (readt3(x, v))) = t1. Assume that (t1 <h

t2 ∧ t2 <h t3 ∧ x ∈ WSt2) by the no-out-of-thin-air assumption v would be
the value written by t2. Thus it would hold that t2 <h

x t3 and t1 <h
x t3 which

by definition cannot. Thus the NIB constraints are adhered to.
�

As a consequence, we obtain the following corollary stating the equivalence of
constraint and value opacity.

Corollary 1. A history h satisfying the properties of unique writer and no out-
of-thin-air reads is constraint opaque if and only if it is value opaque.

5 Checking for Constraint Opacity with Z3

Given a version of opacity without values, we next develop a way of checking
histories for constraint opacity. We envisage such a checking procedure to be
used in approaches for testing STMs, first of all logging the generated histories
during a run of the STM and afterwards checking the logged history for opacity.

128 J. König and H. Wehrheim

For checking opacity, we use an encoding of the constraints and required
orderings in first order logic and use the SMT-solver Z3 [21] for satisfiability
solving. To check a given history h with Z3, two main steps are required. First,
the orders <rt, <x and the NIB constraints need to be constructed and brought
into suitable format. This is basic implementation work and not further specified
here. Then these constraints are converted into a logical formula written in
SMT code that is accepted by Z3. This conversion is shown in Fig. 5. To avoid
unnecessary specifications, we use the already present semantics in Z3 of the
ordering < on integers. We do so by reducing the search for a sequential history
to assigning to every transaction a unique positive integer so that all restrictions
are fulfilled. The resulting injective function T → N specifies the order of the
transactions; the transaction assigned the smallest number happens first and so
on.

1: procedure SMT Transformation
2: Input: h, {<x| x ∈ L}, <rt, Cons = {cons | cons is a NIB constraint}
3: Output: An SMT Command Sequence: smt
4: for all ti ∈ T do
5: Add (declare-const ti Int) to smt

6: for i = 1 ... |T | − 1 do
7: Add (assert (not (= ti t(i+1))))

8: for all (t1, t2) ∈ <rt do
9: Add (assert(< t1 t2)) to smt

10: for all x ∈ L do
11: for all (t1, t2) ∈ <x do
12: if (assert(< t1 t2)) is not in smt then
13: Add (assert(< t1 t2)) to smt

14: for all (¬(t1 < t2) ∧ ¬(t2 < t3) ∈ Cons do
15: Add (assert(not(and (< t1 t2) (< t2 t3)))) to smt

16: Add (check-sat) to smt
17: Add (get-model) to smt

Fig. 5. SMT code transformation

Evaluation. We evaluated a prototype version of the checker on a 64 bit Win-
dows machine with a 2.70 GHz i7-6820HQ Intel processor and 16 GB RAM. The
prototype was implemented in Java using the Java API of Z3. For the evalua-
tion, data sets from two sources were used. One source generated histories by
randomly interleaving a set of read and read-write transactions. The transac-
tions were chosen to yield balanced results, with regards to being opaque or not,
and also to have a relevant number of constraints. Also a maximum amount of
concurrent transactions and an upper bound of the variables used were set for
each data set. Each read and write was assigned a location uniformly at random.

Value-Based or Conflict-Based? Opacity Definitions for STMs 129

The other source was the benchmark test of the RingSTM implementation pre-
sented in [28]. In our evaluation the results for the RingSTM were comparable
to similar configurations of randomly generated histories. Thus we focus on the
latter histories, as they allow us to look at a broader spectrum of histories.

We aimed to evaluate the influence of three factors on the runtime of the
checker: history size, degree of concurrency, and number of constraints. For
evaluating the influence of the history size, histories with 20 transactions and
100 transactions were generated. The influence of concurrency was evaluated by
changing the maximum number of transactions active at a time. This also can
be viewed as the number of threads active in an STM. To measure the influence
of the amount of constraints, the maximum amount of variables was changed.

We systematically evaluated combinations of both factors for a given history
size. For 20 transactions the number of threads for each configuration was chosen
out of the interval of 2 to 20, in steps of size 2. The interval was chosen this way,
because having 1 thread would be a sequential history and having more than
20 threads has no semantical difference to having exactly 20 threads. This is
because the number of active transactions cannot be higher than the number of
all transactions. The maximum amount of variables for each test case was also
chosen from the interval of 2 to 20 with the same step size. The amount was
capped at 20. Additional testing showed that increasing the value even further
did not have a significant effect. So altogether 100 different configurations were
tested. For both configuration’s parameters the interval of 2 was chosen to keep
evaluation feasible. It also showed that choosing the intervals smaller did not
result in relevant changes to the results. For 100 transactions values between 5
and 100 were chosen, with the interval being 5, for the reasons stated above. For
each configuration a data set of 100 histories was given as input to the checker.

The results of the evaluation can be seen in Figs. 6 and 7. Except for a few
spikes the average runtime to check one history is about 0.018 s for 20 trans-
actions and 0.205 s for 100 transactions. This is completely sufficient for most
practical testing purposes. The configurations do not yield largely different run-
times, except for the tendency that most larger spikes are found in configurations
with a low thread count. Also in configurations with a low maximum amount of
variables low average runtimes are more frequent.

Additionally a separate evaluation with 1000 histories was done for chosen
specific configurations. The results can be found in Table 1. In these tests we
only considered low variable and thread counts for better comparison and as
seen in the above results, higher values did not seem to influence the run time
too much.

The new measurements in these tests encompass the average runtime for
opaque and not opaque histories, the number of opaque histories and not opaque
histories and the average number of constraints of a history in each configuration
given by constraint type.

The results show that testing an opaque history takes longer than testing a
not opaque history. Also they show that history size has an exponential effect
on the run time of the tool, which is not surprising given the computational

130 J. König and H. Wehrheim

complexity of the problem. For 100 transactions there could be a correlation
between the number of constraints and the runtime of the checker. This effect
can not be found in the configurations for 20 transactions. The assumption that
the runtime for histories with 20 transactions mostly consists of the internal
overhead of the Java tool excluding the Z3 libraries, could not be confirmed in
further tests. Looking into Z3 was beyond the scope of this paper.

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

Threads 2
 4

 6
 8

 10
 12

 14
 16

 18

Variables

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021
Average Runtime

Fig. 6. Average runtimes for configurations of histories with 20 transactions

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100
 110

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0.15

 0.2

 0.25

 0.3

 0.35

Threads

Variables

Average Runtime

Fig. 7. Average runtimes for configurations of histories with 100 transactions

6 Related Work and Conclusion

We will give a general overview over the related work and then present options
for future work.

Value-Based or Conflict-Based? Opacity Definitions for STMs 131

Table 1. Specific configurations

Configuration Runtime in seconds # Histories Ø # of constraints

#Tr. #Thr. #V. Total Ø � Ø × � × RT LW NIB

20 2 2 12.879 0.0136 0.0116 620 380 174.603 30.492 15.226

20 2 5 13.657 0.0137 0.0128 930 70 174.753 26.507 8.563

20 2 20 12.211 0.0122 0.012 995 5 174.695 13.898 1.322

20 5 2 9.856 0.0116 0.0096 144 856 132.847 27.407 47.299

20 5 5 10.912 0.0114 0.0103 545 455 133.063 23.498 21.689

20 5 20 11.707 0.0117 0.0105 972 28 132.723 11.874 3.026

20 20 2 13.381 0.0143 0.0133 22 978 15.026 18.168 131.419

20 20 5 14.027 0.0144 0.0138 393 607 14.717 12.864 40.078

20 20 20 14.467 0.0145 0.0139 982 18 15.355 5.421 4.215

20 2 2 10.525 0.0111 0.0095 620 380 174.603 30.492 15.226

20 2 5 10.512 0.0107 0.0078 930 70 174.753 26.507 8.563

20 2 20 10.156 0.0102 0.0032 995 5 174.695 13.898 1.322

20 5 2 9.322 0.0114 0.009 144 856 132.847 27.407 47.299

20 5 5 10.217 0.0107 0.0096 545 455 133.063 23.498 21.689

20 5 20 10.392 0.0104 0.0098 972 28 132.723 11.874 3.026

20 20 2 9.958 0.0128 0.0099 22 978 15.026 18.168 131.419

20 20 5 10.358 0.0108 0.01 393 607 14.717 12.864 40.078

20 20 20 10.422 0.0104 0.0105 982 18 15.355 5.421 4.215

100 2 2 145.565 0.1611 0.1159 655 345 4870.689 170.37 83.059

100 2 5 174.026 0.1771 0.1353 926 74 4870.628 166.377 56.485

100 2 20 176.995 0.1774 0.0924 995 5 4870.608 145.611 15.652

100 5 2 126.599 0.1788 0.1169 157 843 4636.681 167.477 215.245

100 5 5 161.748 0.1862 0.1375 497 503 4636.243 163.048 133.474

100 5 20 192.099 0.1958 0.1178 952 48 4636.823 142.727 38.576

100 20 2 101.533 0.219 0.1012 3 997 3557.147 157.415 1026.333

100 20 5 144.64 0.2224 0.1428 23 977 3556.569 150.495 534.84

100 20 20 205.69 0.2299 0.1889 410 590 3557.211 127.93 131.426

Related Work. Several correctness criteria have been suggested for STMs. Early
suggestions were serializability and linearizability [15,23]. Value opacity was pro-
posed in [13], conflict opacity in [12]. Beside this several variants of opacity have
been proposed. Elastic opacity is an extension of opacity where transactions can
be elastic, such transactions can be split up into multiple subtransactions [10].
Virtual World Consistency relaxes opacity with regards to aborted transactions.
Committed transactions still need to be totally ordered but aborted transac-
tions must only be consistent with their causal past [16]. Attiya et al. defined a
deferred update version of opacity which included the deferred update semantics
in its legality definition [2]. Dziuma et al. introduced live opacity, a variant of
opacity where values may be read from live transactions, assuming they commit

132 J. König and H. Wehrheim

[9]. A similar approach is Last use opacity, which relaxes opacity such that under
certain circumstances values from non committed transactions may be released
early [26]. The property is still stronger than serializability.

There have been several approaches to validate STMs with regards to con-
sistency criteria. Those approaches can mainly either be classified as deductive
verification or as model checking. For testing, there is a fairly limited amount
of research for opacity but applicable results for different consistency criteria.
A main approach for deductive verification is to show an STM algorithm to be
a refinement of an abstract automaton fulfilling opacity like TMS2 [8]. There
have been multiple results using this approach. In [7] Doherty et al. proved the
opacity of a pessimistic STM. Armstrong et al. proposed a method where proofs
for the opacity of STMs can be reduced to a proof of linearizability, which yields
a simpler proof [1]. Derrick et al. used KIV to verify TML using an intermediate
specification between the actual implementation and the abstract automaton [6].
Another approach which uses a similar description of value opacity as constraint
opacity is discussed and compared in the following.

In [19] final state opacity, which is value opacity without prefix closedness,
was decomposed into several invariants together called markability. It then was
shown that a history is markable if and only if it is final state opaque. So if
one can prove that an STM only produces markable histories, it is final state
opaque. This verification approach is then used to show that TL2 is opaque.
Our definition of constraint based opacity on the other hand has been made
with efficient validation techniques for generated histories in mind. Conceptually,
constraint opacity and markability share similiar ideas, and coincide under the
unique writers and no-out-of-thin-air-reads assumptions. We briefly describe the
structure of markability and compare it to the structure of constraint opacity.
For a history to be markable, there has to exist an order on transactions. As well
there has to exist a order for every location where every read on that location
is ordered with every transaction writing to that location. This marking has
to be a superset of the real time order, which is the case for any definition
equivalent to value opacity, and it has to fulfill two additional properties: write
observation and read-preservation. Write observation states that for any read
there has to exist a committed write which writes the value read on the location
read and in the marking there is no other committed writer to that location
in between. If the no-out-thin-air-reads assumption holds, the commited write
exists and is known, so only the not-in-between part of the property is still
relevant. Read-preservation states that no transaction may be ordered between
where a transaction takes place and where a read of the same transaction takes
place, this ensures atomicity. In contrast to this constraint opacity only defines a
order on transactions. Thus any order generated by it is atomic and it does not
require a condition similar to read-preservation. Write-Observation is matched
by the combination of <x and the NIB constraints where <x defines the relation
to the known writer for a read and the constraints state the second part of write
observation.

Value-Based or Conflict-Based? Opacity Definitions for STMs 133

For model checking there are fewer results. A main result is that, assuming
certain properties, an STM that is conflict opaque or strictly serializable for two
threads and two locations is also opaque for an arbitrary number of threads and
locations [12]. This paper also introduced the notion of conflict opacity which we
discussed in Sect. 3. As we showed in our paper, this definition is not equivalent
to value opacity. Related to this, a fully automatic STM verification tool was
presented in [11], which accounts for arbitrary contention managers. Their tool
uses model checking to check whether the language of an STM is contained in
the language of an opaque specification. In [22] this result was used to check
for strict serializability. With regards to testing one of the first approaches was
[20]. In this approach, the legal operation of a TM is specified, a test program is
generated, run and logged on the actual implementation of the TM. Afterwards,
an analysis tool checks whether the log corresponds to a sequential legal run of
the TM or not. Two analysis tools are presented, one is fast but not complete
while the other is complete but has an worst case runtime that is exponential
in the input size. The authors claim it to be fast for practical purposes. Con-
straint opacity could also be used in such an approach and would replace the
specific specification of legality for an STM with a more general specification.
Burckhardt et al. presented Line-Up, which is a complete and automated testing
tool for linearizability of concurrent programs [3]. It iterates through test cases
and checks them for linearizbility. Its goal is to prove incorrectness and thus it
does not terminate on correct input. Via a theoretical result it is known that
any incorrect program in this context has a finite execution which is not lineariz-
able. Thus for any incorrect program the algorithm will terminate and yield a
correct result. In [27] the authors presented a method for runtime checking of
serializability for STMs. Constraint opacity could be an option to do similar
checking for value opacity. In general runtime checking the logged histories is
a interesting direction, since for the checking of histories they will have to be
generated from the STM somehow anyway. With regards to opacity, Lesani and
Palsberg presented a tool that can automatically detect certain bug patterns in
STMs and thus prove that they are not value opaque [18].

Conclusion and Future Work. In our paper we analyzed the relationship between
existing value-based and conflict-based definitions of opacity. As general result,
we showed the incomparability of these two versions of opacity. Under some mild
assumptions on histories, we proved value opacity to be less strict than conflict
opacity. We then proposed a new constraint based definition of opacity being
equivalent to value opacity (under the same assumptions), although not tracking
variable values. As such, it is a promising candidate as correctness criterion for
efficient testing and model checking techniques. We furthermore showed how
to check existing histories for constraint opacity with the SMT-solver Z3. The
evaluation of a prototype showed that it is feasible to check large numbers of
histories of medium size using this technique.

Future work could involve implementing an optimized version of this checking
tool and evaluating its effectiveness. Also using this tool in combination with a
model checker could be an option, if it operates fast enough, or it could be used

134 J. König and H. Wehrheim

for runtime verfication. On the theoretical side, modifiying constraint opacity
to be even more accommodating to constraint solvers would be an interesting
approach, as reducing the number of constraints under a modified version of the
definition would improve testing performance.

Acknowledgements. Thanks to Jan Haltermann for help with Z3.

References

1. Armstrong, A., Dongol, B., Doherty, S.: Reducing opacity to linearizability: a sound
and complete method. arXiv preprint arXiv:1610.01004 (2016)

2. Attiya, H., Hans, S., Kuznetsov, P., Ravi, S.: Safety of deferred update in trans-
actional memory. In: 2013 IEEE 33rd International Conference on Distributed
Computing Systems (ICDCS), pp. 601–610. IEEE (2013)

3. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: ACM SIGPLAN Notices, vol. 45, pp. 330–340.
ACM (2010)

4. Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional mutex
locks. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol.
6272, pp. 2–13. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15291-7 2

5. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: ACM Sigplan Notices, vol. 45, pp. 67–78. ACM (2010)

6. Derrick, J., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.: Verify-
ing opacity of a transactional mutex lock. In: Bjørner, N., de Boer, F. (eds.)
FM 2015. LNCS, vol. 9109, pp. 161–177. Springer, Cham (2015). doi:10.1007/
978-3-319-19249-9 11

7. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opac-
ity of a pessimistic STM. In: Fatourou, P., Jiménez, E., Pedone, F. (eds.) 20th
International Conference on Principles of Distributed Systems (OPODIS 2016).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 70, pp. 35:1–35:17.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2017). http://drops.
dagstuhl.de/opus/volltexte/2017/7104

8. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Aspects Comput. 25(5), 769–799 (2013).
http://dx.doi.org/10.1007/s00165-012-0225-8

9. Dziuma, D., Fatourou, P., Kanellou, E.: Consistency for transactional memory
computing. In: Guerraoui, R., Romano, P. (eds.) Transactional Memory. Founda-
tions, Algorithms, Tools, and Applications. LNCS, vol. 8913, pp. 3–31. Springer,
Cham (2015). doi:10.1007/978-3-319-14720-8 1

10. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04355-0 12

11. Guerraoui, R., Henzinger, T.A., Singh, V.: Completeness and nondeterminism in
model checking transactional memories. In: van Breugel, F., Chechik, M. (eds.)
CONCUR 2008. LNCS, vol. 5201, pp. 21–35. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85361-9 6

12. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional
memories. Distrib. Comput. 22(3), 129–145 (2010). http://dx.doi.org/10.1007/
s00446-009-0092-6

http://arxiv.org/abs/1610.01004
http://dx.doi.org/10.1007/978-3-642-15291-7_2
http://dx.doi.org/10.1007/978-3-319-19249-9_11
http://dx.doi.org/10.1007/978-3-319-19249-9_11
http://drops.dagstuhl.de/opus/volltexte/2017/7104
http://drops.dagstuhl.de/opus/volltexte/2017/7104
http://dx.doi.org/10.1007/s00165-012-0225-8
http://dx.doi.org/10.1007/978-3-319-14720-8_1
http://dx.doi.org/10.1007/978-3-642-04355-0_12
http://dx.doi.org/10.1007/978-3-642-04355-0_12
http://dx.doi.org/10.1007/978-3-540-85361-9_6
http://dx.doi.org/10.1007/978-3-540-85361-9_6
http://dx.doi.org/10.1007/s00446-009-0092-6
http://dx.doi.org/10.1007/s00446-009-0092-6

Value-Based or Conflict-Based? Opacity Definitions for STMs 135

13. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming (PPoPP 2008), pp. 175–184. ACM, New York (2008). http://
doi.acm.org/10.1145/1345206.1345233

14. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture, San Diego, CA, May 1993, pp. 289–300 (1993). http://
doi.acm.org/10.1145/165123.165164

15. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

16. Imbs, D., Raynal, M.: Virtual world consistency: a condition for STM systems
(with a versatile protocol with invisible read operations). Theoret. Comput. Sci.
444, 113–127 (2012)

17. Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying software
transactional memory algorithms. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 516–530. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32940-1 36

18. Lesani, M., Palsberg, J.: Proving non-opacity. In: Afek, Y. (ed.) DISC
2013. LNCS, vol. 8205, pp. 106–120. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41527-2 8

19. Lesani, M., Palsberg, J.: Decomposing opacity. In: Kuhn, F. (ed.) DISC
2014. LNCS, vol. 8784, pp. 391–405. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45174-8 27

20. Manovit, C., Hangal, S., Chafi, H., McDonald, A., Kozyrakis, C., Olukotun, K.:
Testing implementations of transactional memory. In: Proceedings of the 15th
International Conference on Parallel Architectures and Compilation Techniques,
pp. 134–143. ACM (2006)

21. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

22. O’Leary, J., Saha, B., Tuttle, M.R.: Model checking transactional memory with
spin. In: 2009 29th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS 2009), pp. 335–342. IEEE (2009)

23. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
(JACM) 26(4), 631–653 (1979)

24. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional mem-
ory. In: First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing (TRANSACT 2006), pp. 1–10. Association
for Computing Machinery (ACM) (2006)

25. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2),
99–116 (1997)

26. Siek, K., Wojciechowski, P.T.: Last-use opacity: a strong safety property for trans-
actional memory with early release support. CoRR abs/1506.06275 (2015). http://
arxiv.org/abs/1506.06275

27. Sinha, A., Malik, S.: Runtime checking of serializability in software transactional
memory. In: 2010 IEEE International Symposium on Parallel and Distributed
Processing (IPDPS), pp. 1–12. IEEE (2010)

28. Spear, M.F., Michael, M.M., von Praun, C.: RingSTM: Scalable transactions with
a single atomic instruction. In: Proceedings of the Twentieth Annual Symposium
on Parallelism in Algorithms and Architectures, pp. 275–284. ACM (2008)

http://doi.acm.org/10.1145/1345206.1345233
http://doi.acm.org/10.1145/1345206.1345233
http://doi.acm.org/10.1145/165123.165164
http://doi.acm.org/10.1145/165123.165164
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-41527-2_8
http://dx.doi.org/10.1007/978-3-642-41527-2_8
http://dx.doi.org/10.1007/978-3-662-45174-8_27
http://dx.doi.org/10.1007/978-3-662-45174-8_27
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1506.06275
http://arxiv.org/abs/1506.06275

Smaller-State Implementations of 2D FSSP
Algorithms

Recent Developments

Hiroshi Umeo(B), Keisuke Kubo, and Akira Nomura

University of Osaka Electro-Communication,
Neyagawa-shi, Hastu-cho, 18-8, Osaka 572-8530, Japan

umeo@osakac.ac.jp

Abstract. The synchronization in ultra-fine-grained parallel computa-
tional model of cellular automata is known as the firing squad syn-
chronization problem (FSSP) since its development, in which it was
originally proposed by Myhill in the book edited by Moore [3] to syn-
chronize all/some parts of self-reproducing cellular automata. The FSSP
has been studied extensively for more than fifty years, and a rich vari-
ety of synchronization algorithms has been proposed. In this paper,
we give several smaller-state implementations of the FSSP algorithms
for 2D arrays based on an L-shaped zebra mapping, where synchro-
nized configurations on 1D arrays are mapped onto 2D arrays in an
L-shaped zebra form efficiently, yielding smaller-state minimum-time
implementations.

1 Introduction

The synchronization in ultra-fine-grained parallel computational model of cel-
lular automata is known as the firing squad synchronization problem (FSSP)
since its development, in which it was originally proposed by Myhill in the book
edited by Moore [3] to synchronize all/some parts of self-reproducing cellular
automata. The FSSP has been studied extensively for more than fifty years, and
a rich variety of synchronization algorithms has been proposed [1–16].

In the present article, we focus our attention to a class of 2D minimum-time
FSSP algorithms that is based on an L-shaped mapping, where synchronized
configurations on 1D arrays are mapped onto 2D arrays in an L-shaped form
efficiently, yielding minimum-time FSSP algorithms and smaller-state implemen-
tations. In Sect. 2, we give a description of the 2D FSSP and review some basic
results on the 2D FSSP algorithms. The first 2D FSSP algorithm developed
by Beyer [1] and Shinahr [5] is reviewed in Sect. 3. In Sect. 4, we introduce a
new class of FSSP algorithms based on the L-shaped mapping for 2D arrays
and present several smaller-state implementations of the algorithms. In the last
section, we give a summary of the paper.

c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 136–152, 2017.
DOI: 10.1007/978-3-319-67729-3 9

Smaller-State Implementations of 2D FSSP Algorithms 137

2 Firing Squad Synchronization Problem

2.1 FSSP on 2D Cellular Arrays

Figure 1 shows a finite two-dimensional (2D) cellular array consisting of m × n
cells. Each cell is an identical (except the border cells) finite-state automaton.
The array operates in lock-step mode in such a way that the next state of each
cell (except border cells) is determined by both its own present state and the
present states of its north, south, east, and west neighbors. All cells (soldiers),
except the north-west corner cell (general), are initially in the quiescent state
at time t = 0 with the property that the next state of a quiescent cell with
quiescent neighbors is the quiescent state again. At time t = 0, the north-west
upper corner cell C1,1 is in the fire-when-ready state, which is the initiation signal
for the array to start the synchronization operations. The FSSP is to determine
a description (state set and next-state function) for cells that ensures all cells
enter the fire state at exactly the same time and for the first time. The tricky
part of the problem is that the same kind of soldier having a fixed number of
states must be synchronized, regardless of the size m × n of the array. The set
of states and transition rules must be independent of m and n.

1 2 3 n

1

2

3

m

...

...

...

...

...

C11 C12 C13 C1n

C21 C22 C23

C31 C32

C2n

C33 C3n

Cm1 Cm2 Cm3 Cmn

4

...

C14

C24

C34

Cm4

...

Fig. 1. A two-dimensional (2D) rectangular cellular automaton of size m×n arranged
in m rows and n columns.

A formal definition of the 2D FSSP is as follows: A cellular automaton M is
a pair M = (Q, δ), where

1. Q is a finite set of states with three distinguished states G, Q, and F, each in
Q. G is an initial general state, Q is a quiescent state, and F is a firing state,
respectively.

2. δ is a next state function such that δ : Q × (Q ∪ {∗})4 → Q. The state *
/∈ Q is a pseudo state of the border of the array. Each tuple in the next state
function δ means that:

St+1
itself = δ(St

itself , S
t
north, S

t
south, S

t
east, S

t
west).

Here, we denote the state of Ci,j at time (step) t by St
i,j , where t ≥ 0, 1 ≤ i ≤

m, 1 ≤ j ≤ n.

138 H. Umeo et al.

3. The quiescent state Q must satisfy the following conditions:
δ(Q, Q, Q, Q, Q) = δ(Q, ∗, Q, Q, ∗) = δ(Q, ∗, Q, Q, Q) = δ(Q, ∗, Q, ∗, Q) =
δ(Q, Q, Q, ∗, Q) = δ(Q, Q, ∗, ∗, Q) = δ(Q, Q, ∗, Q, Q) = δ(Q, Q, ∗, Q, ∗) =
δ(Q, Q, Q, Q, ∗) = Q.

A 2D cellular automaton of size m × n, Mm×n consisting of m × n copies of
M, is a 2D array of M. Each M is referred to as a cell and denoted by Ci,j ,
where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

A configuration of Mm×n at time t is a function Ct : [1,m] × [1, n] → Q and
denoted as:

St
1,1S

t
1,2 St

1,n

St
2,1S

t
2,2 St

2,n

St
3,1S

t
3,2 St

3,n

...

St
m,1S

t
m,2 St

m,n.

A computation of Mm×n is a sequence of configurations of Mm×n, C0, C1, C2,
...., Ct, ..., where C0 is a given initial configuration such that:

S0i,j =

{
G i = j = 1
Q otherwise.

(1)

A configuration at time t + 1, Ct+1 is computed by synchronous applications of
the next state function δ to each cell of Mm×n in Ct such that:

St+1
i,j = δ(St

i,j , S
t
i−1,j , S

t
i+1,j , S

t
i,j+1, S

t
i,j−1).

A synchronized configuration of Mm×n at time t is a configuration Ct, St
i,j = F,

for any 1 ≤ i ≤ m and 1 ≤ j ≤ n. The FSSP is to obtain an M such that, for
any m,n ≥ 2,

1. A synchronized configuration at time t = T (m,n), CT (m,n) : ST (m,n)
i,j = F, for

any 1 ≤ i ≤ m and 1 ≤ j ≤ n, can be computed from an initial configuration
C0 in Eq. 1.

2. For any t, i, j such that 1 ≤ t ≤ T (m,n) − 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n, St
i,j �= F.

No cells fire before time t = T (m,n). We say that the array Mm×n is syn-
chronized at time t = T (m,n) and the function T (m,n) is the time complexity
for the synchronization.

2.2 Lower-Bound and Optimality in 2D FSSP Algorithms

Concerning the time optimality of the 2D FSSP algorithms, Beyer [1] and
Shinahr [5] gave a lower bound of the algorithms and proposed a minimum-
time FSSP algorithm. Note that there is a difference between rectangles and
squares in lower bound and optimality. An a priori knowledge on the shape of a
given 2D array is assumed.

Smaller-State Implementations of 2D FSSP Algorithms 139

Theorem 1. There exists no cellular automaton that can synchronize any 2D
array of size m × n in less than m + n + max(m,n) − 3 steps, where the general
is located at one corner of the array.

Theorem 2. There exists a cellular automaton that can synchronize any 2D
array of size m × n at exactly m + n + max(m,n) − 3 steps, where the general is
located at one corner of the array.

Theorem 3. There exists no cellular automaton that can synchronize any 2D
square array of size n × n in less than 2n − 2 steps, where the general is located
at one corner of the array.

Theorem 4. There exists a cellular automaton that can synchronize any 2D
square array of size n × n at exactly 2n − 2 optimum steps.

3 Beyer-Shinahr Algorithm

The first 2D minimum-time FSSP algorithm A1, developed independently by
Beyer [1] and Shinar [5], is based on a rotated L-shaped mapping which maps
configurations of 1D generalized FSSP (GFSSP, for short) solution on 1D arrays
onto 2D arrays in an L-shaped fashion. A rectangular array of size m × n is
regarded as min(m,n) rotated L-shaped 1D arrays, where each rotated L-shaped
1D array is synchronized independently by using the GFSSP algorithm.

Figure 2 (top, left) is a space-time diagram for the original FSSP with a
general at left end on which most of the minimum-time FSSP algorithms have
been developed. The general at time t = 0 emits an infinite number of signals
which propagates at 1/(2�+1−1) speed, where � is positive integer. These signals
meet with a reflected signal at half point, quarter points, ..., etc., denoted by • in
Fig. 2 (top, left). It is noted that these cells indicated by • are synchronized. By
increasing the number of pre-synchronized cells (not in firing state) exponentially,
eventually all of the cells are synchronized at the last stage for the first time.

A key idea behind the GFSSP algorithm proposed by Moore and Langdon [4]
is to reconstruct the original FSSP algorithm as if an initial general had been at
the left or right end with being in the general state at time t = −(k − 1), where
k is the number of cells between the general and the nearest end. Figure 2 (top,
right) illustrates a space-time diagram for the GFSSP. The initial general emits
a left- and right-going signal with 1/1 speed and keeps its position by marking
a special symbol. The propagated signals generate a new general at each end.
On reaching the end, they generate the necessary signals assuming that the end
is the far end. The special marking symbol tells the first 1/1 signal generated
by the left and right end generals that that side was the just nearest end. At
that point the slope 1/1 signal is generated and it changes the slope of all the
preceding signals to the next higher one, that is, 1/(2� −1) becomes 1/(2�+1−1).

Note that the original minimum-time solution is working below the dot-
ted line in the Fig. 2 (top, right). Therefore the minimum-time complexity
for the GFSSP is min(k − 1, n − k) steps smaller than the original FSSP

140 H. Umeo et al.

1/1

1/1

1/11/1

1/1

1/1

1/31/3

1/7

1/15

1/3

1/3

t = n-2+max(k,n-k+1)

t = -(k-1)

CnC1
Cellular Space

 t = 0

Time

1/7 1/1

t = 2k -2

1/1

1/1

1/11/1

1/31/3

1/7
1/3

CnC1
Cellular Space

 t = 0

Time

1/15

t = k -1

Ck

t = n - k

t = 2n -2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 Q Q Q Q Q Q Q P Q Q Q Q Q Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q L D S Q Q Q Q Q Q Q Q Q Q Q Q

2 Q Q Q Q Q L Q D Q S Q Q Q Q Q Q Q Q Q Q Q

3 Q Q Q Q L Q Q D Q Q S Q Q Q Q Q Q Q Q Q Q

4 Q Q Q L Q Q Q D Q Q Q S Q Q Q Q Q Q Q Q Q

5 Q Q L Q Q Q Q D Q Q Q Q S Q Q Q Q Q Q Q Q

6 Q L Q Q Q Q Q D Q Q Q Q Q S Q Q Q Q Q Q Q

7 K Q Q Q Q Q Q D Q Q Q Q Q Q S Q Q Q Q Q Q

8 K I Q Q Q Q Q D Q Q Q Q Q Q Q S Q Q Q Q Q

9 K R I Q Q Q Q D Q Q Q Q Q Q Q Q S Q Q Q Q

10 K A Q I Q Q Q D Q Q Q Q Q Q Q Q Q S Q Q Q

11 K A Q R I Q Q D Q Q Q Q Q Q Q Q Q Q S Q Q

12 K A R Q Q I Q D Q Q Q Q Q Q Q Q Q Q Q S Q

13 K R B Q Q R I D Q Q Q Q Q Q Q Q Q Q Q Q K

14 K A B Q R Q Q X Q Q Q Q Q Q Q Q Q Q Q G K

15 K A B R Q Q Q A W Q Q Q Q Q Q Q Q Q G H K

16 K A Q A Q Q Q A R W Q Q Q Q Q Q Q G Q A K

17 K A Q A Q Q Q R B Q W Q Q Q Q Q G H Q A K

18 K A Q A Q Q R Q B Q R W Q Q Q G Q Q H A K

19 K A Q A Q R Q Q B R Q Q W Q G H Q Q B H K

20 K A Q A R Q Q Q Q A Q Q R G Q Q H Q B A K

21 K A Q R B Q Q Q Q A Q R G H Q Q Q H B A K

22 K A R Q B Q Q Q Q A R G Q Q H Q Q A Q A K

23 K R B Q B Q Q Q Q R K H Q Q Q H Q A Q A K

24 K A B Q B Q Q Q R G K I H Q Q Q H A Q A K

25 K A B Q B Q Q R G H K R I H Q Q B H Q A K

26 K A B Q B Q R G Q A K A Q I H Q B Q H A K

27 K A B Q B R G H Q A K A Q R I H B Q B H K

28 K A B Q Q K Q Q H A K A R Q Q K Q Q B A K

29 K A B Q G K I Q B H K R B Q G K I Q B A K

30 K A B G H K R I B A K A B G H K R I B A K

31 K A K K A K A K K A K A K K A K A K K A K

32 K

33 T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q P Q Q Q Q Q

1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q L D S Q Q Q Q

2 Q Q Q Q Q Q Q Q Q Q Q Q Q L Q D Q S Q Q Q

3 Q Q Q Q Q Q Q Q Q Q Q Q L Q Q D Q Q S Q Q

4 Q Q Q Q Q Q Q Q Q Q Q L Q Q Q D Q Q Q S Q

5 Q Q Q Q Q Q Q Q Q Q L Q Q Q Q D Q Q Q Q K

6 Q Q Q Q Q Q Q Q Q L Q Q Q Q Q D Q Q Q G K

7 Q Q Q Q Q Q Q Q L Q Q Q Q Q Q D Q Q G H K

8 Q Q Q Q Q Q Q L Q Q Q Q Q Q Q D Q G Q A K

9 Q Q Q Q Q Q L Q Q Q Q Q Q Q Q D G H Q A K

10 Q Q Q Q Q L Q Q Q Q Q Q Q Q Q Y Q Q H A K

11 Q Q Q Q L Q Q Q Q Q Q Q Q Q Z A Q Q B H K

12 Q Q Q L Q Q Q Q Q Q Q Q Q Z H A Q Q B A K

13 Q Q L Q Q Q Q Q Q Q Q Q Z Q B H Q Q B A K

14 Q L Q Q Q Q Q Q Q Q Q Z H Q B Q H Q B A K

15 K Q Q Q Q Q Q Q Q Q Z Q Q H B Q Q H B A K

16 K I Q Q Q Q Q Q Q Z H Q Q A Q Q Q A Q A K

17 K R I Q Q Q Q Q Z Q Q H Q A Q Q Q A Q A K

18 K A Q I Q Q Q Z H Q Q Q H A Q Q Q A Q A K

19 K A Q R I Q Z Q Q H Q Q B H Q Q Q A Q A K

20 K A R Q Q I H Q Q Q H Q B Q H Q Q A Q A K

21 K R B Q Q R I H Q Q Q H B Q Q H Q A Q A K

22 K A B Q R Q Q I H Q Q A Q Q Q Q H A Q A K

23 K A B R Q Q Q R I H Q A Q Q Q Q B H Q A K

24 K A Q A Q Q R Q Q I H A Q Q Q Q B Q H A K

25 K A Q A Q R Q Q Q R K H Q Q Q Q B Q B H K

26 K A Q A R Q Q Q R G K I H Q Q Q B Q B A K

27 K A Q R B Q Q R G H K R I H Q Q B Q B A K

28 K A R Q B Q R G Q A K A Q I H Q B Q B A K

29 K R B Q B R G H Q A K A Q R I H B Q B A K

30 K A B Q Q K Q Q H A K A R Q Q K Q Q B A K

31 K A B Q G K I Q B H K R B Q G K I Q B A K

32 K A B G H K R I B A K A B G H K R I B A K

33 K A K K A K A K K A K A K K A K A K K A K

34 K

35 T

Fig. 2. Space-time diagram of the synchronization algorithms for the original FSSP
with a general at one end (top, left) and the GFSSP with a general at an arbitrary
position (top, right) in a 1D array of length n and snapshots (bottom) of the Moore
and Langdon’s [4] 17-state GFSSP algorithm implemented on 21 cells with a general
on 16th and 8th cells, respectively.

with a general at one end. Thus, the time complexity is 2n − 2 − min(k −
1, n − k) = n − 1 + max(k − 1, n − k) = n − 2 + max(k, n − k + 1). Most
of the GFSSP algorithms presented in the past are based on the space-
time diagram shown in Fig. 2 (top, right). Figure 2 (bottom) presents some
snapshots for the Moore and Langdon’s [4] 17-state implementation on 21

Smaller-State Implementations of 2D FSSP Algorithms 141

cells with a general on 8th and 16th cells, implemented in Umeo et al. [10].
A comprehensive survey on the GFSSP algorithms and their implementations
can be seen in Umeo et al. [10]. The minimum-time GFSSP algorithm [4,10] is
stated as follows:

Theorem 5. There exists a cellular automaton that can synchronize any 1D
array of length n in minimum n+max(k, n− k +1)− 2 steps, where the general
is located on the kth cell from left end.

We overview the 2D FSSP algorithm A1 operating on an array of size m×n.
Configurations of the generalized synchronization processes on 1D array can
be mapped on the rotated L-shaped array. We refer the array as L-array. See
Fig. 3 (top). At time t = 0, the north-west cell C1,1 is in general state and all
other cells are in quiescent state. For any i such that 1 ≤ i ≤ min(m,n), the
cell Ci,i will be in the general state at time t = 3i − 3. A special signal which
travels towards a diagonal direction is used to generate generals on the cells
{Ci,i|1 ≤ i ≤ min(m,n) }. For each i such that 1 ≤ i ≤ min(m,n), the cells
{Ci,j |i ≤ j ≤ n } and {Ck,i|i ≤ k ≤ m} constitute the ith L-shaped array. Note
that the ith general generated at time t = 3i−3 is on the (m− i+1)th cell from
the left end of the ith L-array. The length of the ith L-array is m + n − 2i + 1.
Thus, using Theorem 5, the ith L-array can be synchronized at exactly ti =
3i − 3 + m + n − 2i + 1 − 2 + max(m − i + 1, n − i + 1) = m + n + max(m,n) − 3,
which is independent of i. In this way, all of the L-arrays can be synchronized
simultaneously.

Thus, an m × n array synchronization problem is reduced to independent
min(m,n) 1D GFSSP problems such that:

{ P(m,m + n − 1),P(m − 1,m + n − 3), ...,P(1, n − m + 1) m ≤ n,
P(m,m + n − 1),P(m − 1,m + n − 3), ...,P(m − n + 1,m − n + 1) m > n.

Here, P(k, �) means the 1D GFSSP problem for � cells with a general on the
kth cell from left end.

Shinahr [5] presented a 28-state implementation of the algorithm, where most
of the transition rules (97%) had wild cards which can match any state. Umeo,
Ishida, Tachibana, and Kamikawa [9] showed that the rule set for the implemen-
tation consists of 12849 transition rules and it is valid for the synchronization for
any rectangle arrays of size m × n such that 2 ≤ m,n ≤ 500. Figure 3 (bottom)
illustrates snapshots of the configurations on an array of size 9 × 14 based on
the new 28-state, 12849-rule implementation given in Umeo et al. [9]. Thus, we
have:

Theorem 6. The algorithm A1, implemented on a cellular automaton with 28
states and 12849 rules, can synchronize any m×n rectangular array in minimum
m + n + max(m,n) − 3 steps.

142 H. Umeo et al.

1 2 3 4 n
1
2
3
4

m

m

1 2 3 4 nm

2 3 4 nm

3 4 nm

4 nm

1
2
3
4

m

2
3
4

m

3
4

m

4

m

nm
m

i

j

t = 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Q6 K0 Q1 A1 S2 Q1 A2 Q1 Q1 S1 Q1 K1 K0 M1
2 Q2 A5 K1 Q1 S2 Q1 Q1 Q1 A2 Q1 Q1 S1 K0 M1
3 Q2 Q2 K3 A1 S2 Q1 Q1 Q1 Q1 Q1 A2 Q1 K0 M1
4 Q2 Q2 Q2 K2 S2 Q1 Q1 Q1 Q1 Q1 Q1 Q1 A2 M1
5 K1 Q2 Q2 Q2 Y1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0
6 A3 K0 A3 Q2 A3 P0 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0
7 Q2 Q2 K1 K1 Q2 S4 P0 Q1 S1 Q0 Q0 Q0 Q0 Q0
8 K0 K0 K0 A3 K0 A3 Q2 P1 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 M2 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
2 Q2 P0 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
3 Q2 Q2 P1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0
2 Q2 P0 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
3 Q2 Q2 P0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 Q2 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Q6 A2 M1 M1 S2 Q1 S1 Q1 Q1 K1 S1 Q1 K0 M1
2 Q2 Q6 Q1 M1 M1 Q1 Q1 Q1 S1 Q1 K0 Q1 K0 M1
3 A3 Q2 A5 Q1 K1 A2 S1 Q1 Q1 Q1 S1 K1 K0 M1
4 Q2 Q2 Q2 Q6 Q1 K0 Q1 A2 S1 Q1 Q1 K1 S1 M1
5 K1 K1 Q2 Q2 Q6 K0 A1 Q1 Q1 A2 S1 Q1 K0 M1
6 Q2 Q2 K0 K0 Q2 Q6 K1 Q1 A1 S2 Q1 A2 S1 M1
7 K1 A3 Q2 Q2 K1 A3 Q6 K0 Q1 S2 Q1 Q1 Q1 M1
8 K0 K0 K0 K0 K0 K0 K0 K2 A1 S2 Q1 S1 Q0 Q0
9 M2 M2 M2 M2 M2 M2 M2 M2 M0 S2 Q0 Q0 Q0 Q0

t = 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 A6 S1 M1 M1 A1 S2 Q1 S1 Q1 K1 Q1 S1 K0 M1
2 Q2 Q6 A2 M1 M1 S2 Q1 Q1 Q1 S1 K0 Q1 K0 M1
3 Q2 Q2 Q6 Q1 M1 M1 Q1 S1 Q1 Q1 K0 Q1 K0 M1
4 A3 Q2 A3 Q6 Q1 K0 A2 Q1 Q1 S1 Q1 K1 K0 M1
5 K1 K1 Q2 Q2 Q6 A1 K1 Q1 A2 Q1 Q1 S1 K0 M1
6 Q2 Q2 K0 K0 Q2 Q6 K1 A1 Q1 Q1 A2 Q1 K0 M1
7 K1 K1 Q2 Q2 K1 K1 Q6 K0 Q1 A1 S2 Q1 A2 M1
8 K0 A3 K0 K0 K0 A3 K0 A5 K1 Q1 S2 Q1 S1 Q0
9 M2 M2 M2 M2 M2 M2 M2 M2 M0 A1 S2 Q0 Q0 Q0

t = 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Q6 K0 M1 M1 K0 Q1 S2 Q1 S1 K1 Q1 K1 S1 M1
2 A4 A6 S1 M1 M1 A1 S2 Q1 Q1 K1 S1 Q1 K0 M1
3 Q2 Q2 Q6 A2 M1 M1 S2 Q1 S1 Q1 K0 Q1 K0 M1
4 K0 Q2 Q2 Q6 Q1 M1 M1 Q1 Q1 Q1 S1 K1 K0 M1
5 Q2 K1 A3 Q2 A5 Q1 K1 A2 S1 Q1 Q1 K1 S1 M1
6 Q2 Q2 K0 K0 Q2 Q6 Q1 K0 Q1 A2 S1 Q1 K0 M1
7 K1 K1 Q2 Q2 K1 K1 Q6 K0 A1 Q1 Q1 A2 S1 M1
8 K0 K0 K0 K0 K0 K0 K0 K2 K1 Q1 A1 S2 Q1 M1
9 M2 M2 M2 M2 M2 M2 M2 M2 M0 K0 Q1 S2 Q0 Q0

t = 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0
2 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0
3 Q2 Q2 P0 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 Q2 Q2 Q2 P0 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q2 Q2 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q2 Q2 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 S4 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 A3 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0
2 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0
3 Q2 Q2 P0 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0
4 Q2 Q2 Q2 P0 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q2 Q2 Q2 Q2 P1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 S4 Q2 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q2 Q2 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 K0 S4 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0
2 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0
3 Q2 Q2 P0 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0
4 Q2 Q2 Q2 P0 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 S4 Q2 Q2 Q2 P0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 A3 Q2 Q2 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q2 S4 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 K0 A3 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 M1
2 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0
3 Q2 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0
4 S4 Q2 Q2 P0 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0
5 Q2 Q2 Q2 Q2 P0 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q2 S4 Q2 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 A3 Q2 Q2 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 K0 K0 S4 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
2 Q2 P1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
3 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
2 Q2 P0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
3 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
2 Q2 P0 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
3 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0
2 Q2 P0 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
3 Q2 Q2 P0 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 Q2 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q2 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0
2 Q2 P0 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0
3 Q2 Q2 P0 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 Q2 Q2 Q2 P1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q2 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q2 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0
2 Q2 P0 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0
3 Q2 Q2 P0 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
4 Q2 Q2 Q2 P0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
5 Q2 Q2 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q2 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 Q2 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 S4 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 A2 M1
2 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0
3 S4 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0
4 A3 Q2 Q2 P0 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0
5 Q2 S4 Q2 Q2 P0 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0
6 Q2 A3 Q2 Q2 Q2 P1 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 K1 Q2 S4 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 A3 K0 A3 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 A2 S1 M1
2 S4 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 M1
3 Q2 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0
4 Q2 S4 Q2 P0 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0
5 A3 Q2 Q2 Q2 P0 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0
6 Q2 Q2 S4 Q2 Q2 P0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 K1 A3 Q2 Q2 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 K0 K0 K0 S4 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Y1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 A2 Q1 K0 M1
2 A3 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 A2 M1
3 Q2 S4 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0
4 Q2 A3 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0
5 Q2 Q2 S4 Q2 P0 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0
6 A3 Q2 A3 Q2 Q2 P0 S1 Q0 Q0 Q0 Q0 Q0 Q0 Q0
7 K1 K1 Q2 S4 Q2 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 K0 A3 K0 A3 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 K3 S2 Q1 Q1 Q1 Q1 Q1 Q1 Q1 A2 S1 Q1 K0 M1
2 Q2 Y1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 A2 S1 M1
3 A3 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 M1
4 Q2 Q2 S4 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0
5 Q2 A3 Q2 Q2 P0 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0
6 K0 Q2 Q2 S4 Q2 P0 Q1 S1 Q0 Q0 Q0 Q0 Q0 Q0
7 Q2 K1 A3 Q2 Q2 Q2 P1 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 K0 K0 K0 K0 S4 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 K3 A1 S2 Q1 Q1 Q1 Q1 Q1 A2 Q1 Q1 S1 K0 M1
2 Q2 K2 S2 Q1 Q1 Q1 Q1 Q1 Q1 Q1 A2 Q1 K0 M1
3 Q2 Q2 Y1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 A2 M1
4 A3 Q2 A3 P0 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0
5 Q2 Q2 Q2 S4 P0 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0 Q0
6 K0 A3 Q2 A3 Q2 P0 Q1 Q1 S1 Q0 Q0 Q0 Q0 Q0
7 Q2 K1 K1 Q2 S4 Q2 P0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
8 K0 K0 A3 K0 A3 Q2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Q6 K0 Q1 S2 Q1 Q1 Q1 A2 S1 Q1 Q1 K1 S1 M1
2 Q2 K2 A1 S2 Q1 Q1 Q1 Q1 Q1 A2 S1 Q1 K0 M1
3 Q2 Q2 K3 S2 Q1 Q1 Q1 Q1 Q1 Q1 Q1 A2 S1 M1
4 Q2 Q2 Q2 Y1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 M1
5 A3 Q2 A3 Q2 P0 Q1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0
6 K0 K0 Q2 Q2 S4 P0 Q1 Q1 Q1 S1 Q0 Q0 Q0 Q0
7 Q2 Q2 K1 A3 Q2 Q2 P0 S1 Q0 Q0 Q0 Q0 Q0 Q0
8 K0 K0 K0 K0 K0 S4 A3 Q0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Q6 K0 A1 Q1 Q1 A2 S1 Q1 Q1 Q1 S1 K1 K0 M1
2 Q2 Q6 K1 Q1 A1 S2 Q1 A2 S1 Q1 Q1 K1 S1 M1
3 Q2 A3 Q6 K0 Q1 S2 Q1 Q1 Q1 A2 S1 Q1 K0 M1
4 Q2 Q2 Q2 K2 A1 S2 Q1 Q1 Q1 Q1 Q1 A2 S1 M1
5 K1 Q2 Q2 Q2 K3 S2 Q1 Q1 Q1 Q1 Q1 Q1 Q1 M1
6 Q2 K0 K0 Q2 Q2 Y1 Q1 Q1 Q1 Q1 Q1 S1 Q0 Q0
7 A3 Q2 Q2 K1 A3 Q2 P0 Q1 Q1 S1 Q0 Q0 Q0 Q0
8 K0 K0 K0 K0 K0 K0 S4 P0 Q0 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 M2 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0 Q0

t = 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Q6 A1 K1 Q1 A2 Q1 Q1 S1 Q1 Q1 K0 Q1 K0 M1
2 Q2 Q6 K1 A1 Q1 Q1 A2 Q1 Q1 S1 Q1 K1 K0 M1
3 Q2 Q2 Q6 K0 Q1 A1 S2 Q1 A2 Q1 Q1 S1 K0 M1
4 Q2 A3 Q2 A5 K1 Q1 S2 Q1 Q1 Q1 A2 Q1 K0 M1
5 K1 Q2 Q2 Q2 K3 A1 S2 Q1 Q1 Q1 Q1 Q1 A2 M1
6 Q2 K0 K0 Q2 Q2 K2 S2 Q1 Q1 Q1 Q1 Q1 S1 Q0
7 K1 Q2 Q2 K1 K1 Q2 Y1 Q1 Q1 Q1 S1 Q0 Q0 Q0
8 A3 K0 K0 K0 A3 K0 A3 P0 S1 Q0 Q0 Q0 Q0 Q0
9 M2 M2 M2 M2 M2 M2 M2 M2 Q0 Q0 Q0 Q0 Q0 Q0

t = 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 A5 Q1 K1 A2 S1 Q1 Q1 Q1 S1 Q1 K0 Q1 K0 M1
2 Q2 Q6 Q1 K0 Q1 A2 S1 Q1 Q1 Q1 S1 K1 K0 M1
3 Q2 Q2 Q6 K0 A1 Q1 Q1 A2 S1 Q1 Q1 K1 S1 M1
4 Q2 Q2 Q2 Q6 K1 Q1 A1 S2 Q1 A2 S1 Q1 K0 M1
5 K1 A3 Q2 A3 Q6 K0 Q1 S2 Q1 Q1 Q1 A2 S1 M1
6 Q2 K0 K0 Q2 Q2 K2 A1 S2 Q1 Q1 Q1 Q1 Q1 M1
7 K1 Q2 Q2 K1 K1 Q2 K3 S2 Q1 Q1 Q1 S1 Q0 Q0
8 K0 K0 K0 K0 K0 K0 K0 Y1 Q1 S1 Q0 Q0 Q0 Q0
9 M2 M2 M2 M2 M2 M2 M2 M2 P1 Q0 Q0 Q0 Q0 Q0

t = 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Q6 Q1 M1 M1 Q1 S1 Q1 Q1 Q1 S1 K0 Q1 K0 M1
2 A3 Q6 Q1 K0 A2 Q1 Q1 S1 Q1 Q1 K0 Q1 K0 M1
3 Q2 Q2 Q6 A1 K1 Q1 A2 Q1 Q1 S1 Q1 K1 K0 M1
4 Q2 Q2 Q2 Q6 K1 A1 Q1 Q1 A2 Q1 Q1 S1 K0 M1
5 K1 K1 Q2 Q2 Q6 K0 Q1 A1 S2 Q1 A2 Q1 K0 M1
6 Q2 A3 K0 A3 Q2 A5 K1 Q1 S2 Q1 Q1 Q1 A2 M1
7 K1 Q2 Q2 K1 K1 Q2 K3 A1 S2 Q1 Q1 Q1 S1 Q0
8 K0 K0 K0 K0 K0 K0 K0 K2 S2 Q1 S1 Q0 Q0 Q0
9 M2 M2 M2 M2 M2 M2 M2 M2 M0 Q0 Q0 Q0 Q0 Q0

t = 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Q6 K0 M1 M1 K0 Q1 A1 S2 K0 Q1 Q1 K1 K0 M1
2 S3 Q6 K0 M1 M1 K0 Q1 S2 Q1 K1 Q1 S1 K0 M1
3 A4 A4 A6 S1 M1 M1 A1 S2 Q1 S1 K0 Q1 K0 M1
4 K0 Q2 Q2 Q6 A2 M1 M1 S2 Q1 Q1 K0 Q1 K0 M1
5 Q2 K1 K1 Q2 Q6 Q1 M1 M1 Q1 S1 Q1 K1 K0 M1
6 Q2 Q2 A3 K0 A3 Q6 Q1 K0 A2 Q1 Q1 S1 K0 M1
7 K1 K1 Q2 Q2 K1 K1 Q6 A1 K1 Q1 A2 Q1 K0 M1
8 K0 K0 K0 K0 K0 K0 K0 K2 K1 A1 Q1 Q1 A2 M1
9 M2 M2 M2 M2 M2 M2 M2 M2 M0 K0 Q1 A1 S2 Q0

t = 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 S5 K0 M1 M1 K0 A1 Q1 Q1 M1 Q1 Q1 K1 K0 M1
2 Q2 Q6 K0 M1 M1 K0 Q1 A1 S2 K1 Q1 K1 S1 M1
3 Q2 S3 Q6 K0 M1 M1 K0 Q1 S2 K1 S1 Q1 K0 M1
4 M2 A4 A4 A6 S1 M1 M1 A1 S2 Q1 K0 Q1 K0 M1
5 Q2 K1 K1 Q2 Q6 A2 M1 M1 S2 Q1 S1 K1 K0 M1
6 Q2 Q2 Q2 K0 K0 Q6 Q1 M1 M1 Q1 Q1 K1 S1 M1
7 K1 K1 A3 Q2 Q2 K1 A5 Q1 K1 A2 S1 Q1 K0 M1
8 K0 K0 K0 K0 K0 K0 K0 K2 Q1 K0 Q1 A2 S1 M1
9 M2 M2 M2 M2 M2 M2 M2 M2 M0 K0 A1 Q1 Q1 M1

t = 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 K3 S1 M1 M1 A1 K1 Q1 A2 M1 S2 Q1 K1 K0 M1
2 Q2 S5 K0 M1 M1 K0 A1 Q1 M1 M1 Q1 K1 K0 M1
3 S4 Q2 Q6 K0 M1 M1 K0 Q1 A1 M1 Q1 S1 K0 M1
4 M2 M2 S3 Q6 K0 M1 M1 K0 Q1 S2 K0 Q1 K0 M1
5 A4 M2 M2 A4 A6 S1 M1 M1 A1 S2 K0 Q1 K0 M1
6 Q2 Q2 Q2 K0 K0 Q6 A2 M1 M1 S2 Q1 K1 K0 M1
7 K1 K1 K1 Q2 Q2 K1 K3 Q1 M1 M1 Q1 S1 K0 M1
8 K0 K0 A3 K0 K0 K0 A3 K2 Q1 K0 A2 Q1 K0 M1
9 M2 M2 M2 M2 M2 M2 M2 M2 M0 A1 K1 Q1 A2 M1

t = 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 K3 K0 M1 M1 K0 K1 A2 S1 M1 A1 S2 K1 K0 M1
2 S4 K3 S1 M1 M1 A1 K1 A2 M1 M1 S2 K1 K0 M1
3 A3 S4 S5 K0 M1 M1 K0 A1 A2 M1 S2 K1 S1 M1
4 M2 M2 S4 Q6 K0 M1 M1 K0 Q1 M1 M1 Q1 K0 M1
5 S3 M2 M2 M2 Q6 K0 M1 M1 K0 Q1 M1 Q1 K0 M1
6 A4 A4 A4 M2 M2 A6 S1 M1 M1 A1 S2 K1 K0 M1
7 K1 K1 K1 Q2 Q2 K1 K3 A2 M1 M1 S2 K1 S1 M1
8 K0 K0 K0 K0 K0 K0 K0 K2 Q1 M1 M1 Q1 K0 M1
9 M2 M2 M2 M2 M2 M2 M2 M2 M0 K0 K1 A2 S1 M1

t = 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 M0 K0 M1 M1 K0 M1 M1 K0 M1 K0 M1 M1 K0 M1
2 M2 M0 K0 M1 M1 K0 M1 S1 M1 M1 A1 M1 K0 M1
3 K0 A3 M0 S1 M1 M1 A1 M1 S1 M1 A1 M1 K0 M1
4 M2 M2 A3 S6 K0 M1 M1 K0 A2 M1 M1 S2 K0 M1
5 K0 M2 M2 M2 S6 K0 M1 M1 K0 A2 M1 S2 K0 M1
6 M2 S3 S3 M2 M2 M0 K0 M1 M1 K0 M1 M1 K0 M1
7 M2 M2 M2 A4 A4 M2 M0 S1 M1 M1 A1 M1 K0 M1
8 K0 K0 K0 K0 K0 K0 K0 K2 A2 M1 M1 S2 K0 M1
9 M2 M2 M2 M2 M2 M2 M2 M2 M0 K0 M1 M1 K0 M1

t = 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 M0 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1
2 M2 M0 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1
3 M2 M2 M0 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1
4 M2 M2 M2 M0 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1
5 M2 M2 M2 M2 M0 M1 M1 M1 M1 M1 M1 M1 M1 M1
6 M2 M2 M2 M2 M2 M0 M1 M1 M1 M1 M1 M1 M1 M1
7 M2 M2 M2 M2 M2 M2 M0 M1 M1 M1 M1 M1 M1 M1
8 M2 M2 M2 M2 M2 M2 M2 M0 M1 M1 M1 M1 M1 M1
9 M2 M2 M2 M2 M2 M2 M2 M2 M0 M1 M1 M1 M1 M1

t = 34

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
2 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
3 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
4 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
5 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
6 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
7 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
8 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0
9 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0

Fig. 3. A 2D synchronization scheme (top) based on an L-shaped mapping developed
in Beyer [1] and Shinahr [5]. Snapshots (bottom) of the configurations of the Shinahr’s
28-state synchronization algorithm on a rectangle array of size 9 × 14, implemented in
Umeo et al. [9]

Smaller-State Implementations of 2D FSSP Algorithms 143

4 Smaller-State Zebra Implementations

4.1 Zebra Mapping on Square Arrays

The implementation is based on a zebra mapping which was originally developed
for realizing a 7-state square synchronizer in Umeo and Kubo [11]. We overview
an implementation technique of the zebra mapping for square arrays.

The zebra mapping is basically similar to the rotated L-shaped mapping
scheme presented in the previous section, however, the mapped configuration on
square arrays consists of two types of configurations: one is a one-cell smaller
synchronized configuration and the other is a filled-in configuration with a sta-
tionary state. The stationary state remains unchanged once filled-in by the time
before the final synchronization. Each configuration is mapped alternatively in
space onto an L-shaped array in a zebra fashion. The mapping is referred to
as zebra mapping. Figure 4 illustrates the zebra mapping which consists of the
embedded synchronization layer and the filled-in layer.

A key idea of the zebra implementation is:

– Alternative embedding of two types of configurations. A stationary layer sep-
arates synchronization layers and it allows us to use an equal state set for the
vertical and horizontal synchronization on each layer, helping us to construct
a smaller-state transition rule set for the synchronization layers.

– A one-cell smaller synchronization configuration than the L-shaped mapping
is embedded, where we can save synchronization time by two steps.

1 2 3 4 5 6 n
1
2
3
4
5
6
 .
 .
 .
 .
 .
n

G

2 3 4 n
2
3
4

n

4 n
4

n

1 2 3 4 n
1
2
3
4

n

3 4 n
3
4

n

.

.

.

.

Fig. 4. A zebra mapping schema for an n × n square array.

144 H. Umeo et al.

– A single state X is used in common as an initial general state of the square
synchronizer, the stationary state in stationary layers, and a firing state of
the embedded one-cell-smaller synchronization algorithm. The state X itself
acts as a pre-firing state.

– Any cell in state X, except Cn,n, enters the final synchronization state at
the next step if all its neighbors are in state X or the boundary state of the
square. The cell Cn,n enters the synchronization state if and only if its north
and west cells are in state X and its east and south cells are in the boundary
state. A cell in state X that is adjacent to the cell Cn,n is also an exception.
This is an only condition that makes cells fire.

In our construction we take Mazoyer’s [2] 6-state 1D synchronization rule as
an embedded synchronization algorithm. The set of the 6-states is {G, Q, A, B,
C, X}, where G is a general, Q is a quiescent, and X is a firing state, respectively.
The other three states A, B and C are auxiliary states, respectively.

The seven-state square synchronizer that we construct has the following state
set: {G, Q, A, B, C, X, F}, where F is a newly introduced firing state, X is a
general, and Q is a quiescent state, respectively. The state G is the general state of
the embedded synchronization. Those states A, B and C are also auxiliary states,
respectively. The transition rule set is constructed in such a way that: The initial
general on C1,1 in state X generates a new general in state G on the cell C1,2 and
C2,1 at time t = 1. The general in state G initiates a synchronization for the
following cells {C1,2, C1,3, ..., C1,n} and {C2,1, C3,1, ..., Cn,1}, each of length
n − 1. Note that the length of the array where optimum-time synchronization
operations are embedded is shorter by one than the usual embedding in Sect. 2.
The cells on the segments are constructed to operate so that they simulate
the Mazoyer’s optimum-time synchronization operations. All cells on the two
horizontal and vertical segments of length n − 1 enter the pre-firing state X at
time t = 1+2(n−1)−2 = 2n−3. In this way, the first L1 acts as a synchronization
layer. At time t = 2, the cell C2,2 takes the state X and it extends an X-arm (a
cell segment in state X) in the right and lower direction, respectively, towards
the cells {C2,3, C2,4, ..., C2,n} and {C3,2, C4,2, ..., Cn,2}, respectively, each of
length n − 2. Every cell once entered in state X remains unchanged by the time
before it meets a local condition for the synchronization given later. At time
t = 2 + n − 2 = n, the filled-in operation with the stationary state X on the
second layer is finished. In this way, the second L2 acts as a stationary layer.

Concerning the embedding on the odd ith layer, the cell Ci,i takes the sta-
tionary state X time t = 2i− 2 and generates a new general in state G on the cell
Ci,i+1 and Ci+1,i at time t = 2i − 1. The general in state G initiates a synchro-
nization for the following cells {Ci,i+1, Ci,i+2, ..., Ci,n} and {Ci+1,i, Ci+2,i, ...,
Cn,i}, each of length n − i. All cells on the two horizontal and vertical segments
of length n−i enter the pre-firing state X at time t = 2i−1+2(n−i)−2 = 2n−3.
In this way, for odd i, the ith Li acts as a synchronization layer. As for the even
ith layer, at time t = 2i − 2, the cell Ci,i takes the state X and it extends the
X-arm in the right and lower direction, respectively, towards the cells {Ci,i+1,
Ci,i+2, ..., Ci,n} and {Ci+1,i, Ci+2,i, ..., Cn,i}, each of length n − i. Every cell

Smaller-State Implementations of 2D FSSP Algorithms 145

Table 1. Transition rule set used at the last synchronization step.

Q ∗ X X ∗ → F; X Q X X ∗ → F; X X X X X → F; X X X X ∗ → F;

X X X ∗ X → F; X X X ∗ ∗ → F; X X ∗ X X → F; X X ∗ ∗ X → F;

X ∗ X X Q → F; X ∗ X X X → F; X ∗ ∗ X Q → F; X ∗ ∗ X X → F.

t = 0
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X Q Q Q Q Q Q Q Q Q Q Q Q
2 Q Q Q Q Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 1
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G Q Q Q Q Q Q Q Q Q Q Q
2 G Q Q Q Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 2
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X A C Q Q Q Q Q Q Q Q Q Q
2 A X Q Q Q Q Q Q Q Q Q Q Q
3 C Q Q Q Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 3
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q Q Q Q Q Q Q Q Q
2 G X G Q Q Q Q Q Q Q Q Q Q
3 B G Q Q Q Q Q Q Q Q Q Q Q
4 A Q Q Q Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 4
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G G Q Q Q Q Q Q Q Q
2 G X X C Q Q Q Q Q Q Q Q Q
3 C X X Q Q Q Q Q Q Q Q Q Q
4 G C Q Q Q Q Q Q Q Q Q Q Q
5 G Q Q Q Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 5
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A B C Q Q Q Q Q Q Q
2 G X X X C Q Q Q Q Q Q Q Q
3 B X X G Q Q Q Q Q Q Q Q Q
4 A X G Q Q Q Q Q Q Q Q Q Q
5 B C Q Q Q Q Q Q Q Q Q Q Q
6 C Q Q Q Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 6
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q C A Q Q Q Q Q Q
2 G X X X C A Q Q Q Q Q Q Q
3 C X X A C Q Q Q Q Q Q Q Q
4 G X A X Q Q Q Q Q Q Q Q Q
5 Q C C Q Q Q Q Q Q Q Q Q Q
6 C A Q Q Q Q Q Q Q Q Q Q Q
7 A Q Q Q Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 7
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q A A G Q Q Q Q Q
2 G X X X X X B Q Q Q Q Q Q
3 B X X G B A Q Q Q Q Q Q Q
4 A X G X G Q Q Q Q Q Q Q Q
5 Q X B G Q Q Q Q Q Q Q Q Q
6 A X A Q Q Q Q Q Q Q Q Q Q
7 A B Q Q Q Q Q Q Q Q Q Q Q
8 G Q Q Q Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 8
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q A B B C Q Q Q Q
2 G X X X X X X C Q Q Q Q Q
3 C X X G C G G Q Q Q Q Q Q
4 G X G X X C Q Q Q Q Q Q Q
5 Q X C X X Q Q Q Q Q Q Q Q
6 A X G C Q Q Q Q Q Q Q Q Q
7 B X G Q Q Q Q Q Q Q Q Q Q
8 B C Q Q Q Q Q Q Q Q Q Q Q
9 C Q Q Q Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 9
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q Q B C C A Q Q Q
2 G X X X X X X C A Q Q Q Q
3 B X X G B A B C Q Q Q Q Q
4 A X G X X X C Q Q Q Q Q Q
5 Q X B X X G Q Q Q Q Q Q Q
6 Q X A X G Q Q Q Q Q Q Q Q
7 B X B C Q Q Q Q Q Q Q Q Q
8 C C C Q Q Q Q Q Q Q Q Q Q
9 C A Q Q Q Q Q Q Q Q Q Q Q
10 A Q Q Q Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 10
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G G Q Q C A A G Q Q
2 G X X X X X X X X B Q Q Q
3 C X X G C G Q C A Q Q Q Q
4 G X G X X X C A Q Q Q Q Q
5 G X C X X A C Q Q Q Q Q Q
6 Q X G X A X Q Q Q Q Q Q Q
7 Q X Q C C Q Q Q Q Q Q Q Q
8 C X C A Q Q Q Q Q Q Q Q Q
9 A X A Q Q Q Q Q Q Q Q Q Q
10 A B Q Q Q Q Q Q Q Q Q Q Q
11 G Q Q Q Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 11
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A B C Q A A B B C Q
2 G X X X X X X X X X C Q Q
3 B X X G B A Q A A G Q Q Q
4 A X G X X X X X B Q Q Q Q
5 B X B X X G B A Q Q Q Q Q
6 C X A X G X G Q Q Q Q Q Q
7 Q X Q X B G Q Q Q Q Q Q Q
8 A X A X A Q Q Q Q Q Q Q Q
9 A X A B Q Q Q Q Q Q Q Q Q
10 B X G Q Q Q Q Q Q Q Q Q Q
11 B C Q Q Q Q Q Q Q Q Q Q Q
12 C Q Q Q Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q Q Q Q Q

t = 12
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q C Q A B B C C G
2 G X X X X X X X X X C A Q
3 C X X G C G Q A B B C Q Q
4 G X G X X X X X X C Q Q Q
5 Q X C X X G C G G Q Q Q Q
6 C X G X G X X C Q Q Q Q Q
7 Q X Q X C X X Q Q Q Q Q Q
8 A X A X G C Q Q Q Q Q Q Q
9 B X B X G Q Q Q Q Q Q Q Q
10 B X B C Q Q Q Q Q Q Q Q Q
11 C C C Q Q Q Q Q Q Q Q Q Q
12 C A Q Q Q Q Q Q Q Q Q Q Q
13 G Q Q Q Q Q Q Q Q Q Q Q Q

t = 13
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q C Q Q B C C B A
2 G X X X X X X X X X X X X
3 B X X G B A Q Q B C C A Q
4 A X G X X X X X X C A Q Q
5 Q X B X X G B A B C Q Q Q
6 C X A X G X X X C Q Q Q Q
7 Q X Q X B X X G Q Q Q Q Q
8 Q X Q X A X G Q Q Q Q Q Q
9 B X B X B C Q Q Q Q Q Q Q
10 C X C C C Q Q Q Q Q Q Q Q
11 C X C A Q Q Q Q Q Q Q Q Q
12 B X A Q Q Q Q Q Q Q Q Q Q
13 A X Q Q Q Q Q Q Q Q Q Q Q

t = 14
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q C A Q Q C B A C
2 G X X X X X X X X X X X X
3 C X X G C G G Q Q C A A C
4 G X G X X X X X X X X B Q
5 Q X C X X G C G Q C A Q Q
6 C X G X G X X X C A Q Q Q
7 A X G X C X X A C Q Q Q Q
8 Q X Q X G X A X Q Q Q Q Q
9 Q X Q X Q C C Q Q Q Q Q Q
10 C X C X C A Q Q Q Q Q Q Q
11 B X A X A Q Q Q Q Q Q Q Q
12 A X A B Q Q Q Q Q Q Q Q Q
13 C X C Q Q Q Q Q Q Q Q Q Q

t = 15
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q A A G Q G A C B
2 G X X X X X X X X X X X X
3 B X X G B A B C Q A A C B
4 A X G X X X X X X X X X X
5 Q X B X X G B A Q A A G Q
6 A X A X G X X X X X B Q Q
7 A X B X B X X G B A Q Q Q
8 G X C X A X G X G Q Q Q Q
9 Q X Q X Q X B G Q Q Q Q Q
10 G X A X A X A Q Q Q Q Q Q
11 A X A X A B Q Q Q Q Q Q Q
12 C X C X G Q Q Q Q Q Q Q Q
13 B X B X Q Q Q Q Q Q Q Q Q

t = 16
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G Q A B B A G C B Q
2 G X X X X X X X X X X X X
3 C X X G C G Q C Q A C B Q
4 G X G X X X X X X X X X X
5 Q X C X X G C G Q A B B A
6 A X G X G X X X X X X C Q
7 B X Q X C X X G C G G Q Q
8 B X C X G X G X X C Q Q Q
9 A X Q X Q X C X X Q Q Q Q
10 G X A X A X G C Q Q Q Q Q
11 C X C X B X G Q Q Q Q Q Q
12 B X B X B C Q Q Q Q Q Q Q
13 Q X Q X A Q Q Q Q Q Q Q Q

t = 17
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A Q Q B A C G B Q Q
2 G X X X X X X X X X X X X
3 B X X G B A Q C Q G B Q Q
4 A X G X X X X X X X X X X
5 Q X B X X G B A Q Q B A C
6 Q X A X G X X X X X X C Q
7 B X Q X B X X G B A B C Q
8 A X C X A X G X X X C Q Q
9 C X Q X Q X B X X G Q Q Q
10 G X G X Q X A X G Q Q Q Q
11 B X B X B X B C Q Q Q Q Q
12 Q X Q X A C C Q Q Q Q Q Q
13 Q X Q X C Q Q Q Q Q Q Q Q

t = 18
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G G Q G C B G C Q Q
2 G X X X X X X X X X X X X
3 C X X G C G Q C G G C Q Q
4 G X G X X X X X X X X X X
5 G X C X X G C G G Q G C B
6 Q X G X G X X X X X X X X
7 G X Q X C X X G C G Q C G
8 C X C X G X G X X X C A Q
9 B X G X G X C X X A C Q Q
10 G X G X Q X G X A X Q Q Q
11 C X C X G X Q C C Q Q Q Q
12 Q X Q X C X C A Q Q Q Q Q
13 Q X Q X B X G Q Q Q Q Q Q

t = 19
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B A B A G B Q G B A Q
2 G X X X X X X X X X X X X
3 B X X G B A Q G A G B A Q
4 A X G X X X X X X X X X X
5 B X B X X G B A B A G B Q
6 A X A X G X X X X X X X X
7 G X Q X B X X G B A Q G A
8 B X G X A X G X X X X X X
9 Q X A X B X B X X G B A Q
10 G X G X A X A X G X G Q Q
11 B X B X G X Q X B G Q Q Q
12 A X A X B X G X A Q Q Q Q
13 Q X Q X Q X A X Q Q Q Q Q

t = 20
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G C G B C G C Q G C G C
2 G X X X X X X X X X X X X
3 C X X G C G C G C G C G C
4 G X G X X X X X X X X X X
5 B X C X X G C G B C G C Q
6 C X G X G X X X X X X X X
7 G X C X C X X G C G C G C
8 C X G X G X G X X X X X X
9 Q X C X B X C X X G C G C
10 G X G X C X G X G X X C Q
11 C X C X G X C X C X X Q Q
12 G X G X C X G X G C Q Q Q
13 C X C X Q X C X C Q Q Q Q

t = 21
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G B G B G G B G G B G B
2 G X X X X X X X X X X X X
3 B X X G B G B G B G B G B
4 G X G X X X X X X X X X X
5 B X B X X G B G B G G B G
6 G X G X G X X X X X X X X
7 G X B X B X X G B G B G B
8 B X G X G X G X X X X X X
9 G X B X B X B X X G B G B
10 G X G X G X G X G X X X X
11 B X B X G X B X B X X G Q
12 G X G X B X G X G X G Q Q
13 B X B X G X B X B X Q Q Q

t = 22
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X G G G G G G G G G G G G
2 G X X X X X X X X X X X X
3 G X X G G G G G G G G G G
4 G X G X X X X X X X X X X
5 G X G X X G G G G G G G G
6 G X G X G X X X X X X X X
7 G X G X G X X G G G G G G
8 G X G X G X G X X X X X X
9 G X G X G X G X X G G G G
10 G X G X G X G X G X X X X
11 G X G X G X G X G X X A A
12 G X G X G X G X G X A X Q
13 G X G X G X G X G X A Q Q

t = 23
1 2 3 4 5 6 7 8 9 10 11 12 13

1 X X X X X X X X X X X X X
2 X X X X X X X X X X X X X
3 X X X X X X X X X X X X X
4 X X X X X X X X X X X X X
5 X X X X X X X X X X X X X
6 X X X X X X X X X X X X X
7 X X X X X X X X X X X X X
8 X X X X X X X X X X X X X
9 X X X X X X X X X X X X X
10 X X X X X X X X X X X X X
11 X X X X X X X X X X X X X
12 X X X X X X X X X X X X X
13 X X X X X X X X X X X X Q

t = 24
1 2 3 4 5 6 7 8 9 10 11 12 13

1 F F F F F F F F F F F F F
2 F F F F F F F F F F F F F
3 F F F F F F F F F F F F F
4 F F F F F F F F F F F F F
5 F F F F F F F F F F F F F
6 F F F F F F F F F F F F F
7 F F F F F F F F F F F F F
8 F F F F F F F F F F F F F
9 F F F F F F F F F F F F F
10 F F F F F F F F F F F F F
11 F F F F F F F F F F F F F
12 F F F F F F F F F F F F F
13 F F F F F F F F F F F F F

Fig. 5. Snapshots of the synchronization process on 13 × 13 array.

once entered in state X remains unchanged by the time before synchronization.
At time t = 2i − 2 + n − i = n + i − 2, the filled-in operation on the ith layer for
even i is finished.

At time t = 2n − 3, all of the cells, except Cn,n, on the square of size n × n
enter the state X, which is a pre-firing state. The following twelve transition rules,
shown in Table 1, are the only ones that falls into the synchronization state F in

146 H. Umeo et al.

the last stage. In each 6-tuple rule such that Y1 Y2 Y3 Y4 Y5 → Y6, the symbol
Y1 denotes the present state of a cell, Y2 the east state, Y3 the north state, Y4
the west state, Y5 the south state, and Y6 the next state of the cell, respectively.
A symbol “*” denotes a boundary state of square arrays. The final constructed
seven-state cellular automaton has 787 transition rules shown in Appendix I.

Thus we have:

Theorem 7. The seven-state synchronization algorithm can synchronize any
n × n square array in optimum 2n − 2 steps.

Figure 5 shows some snapshots of the synchronization process operating in
optimum-steps on a 13 × 13 square arrays.

4.2 Zebra Mapping on Rectangular Arrays

The zebra implementation for squares can be applied to rectangles with small
modifications. As is shown in Fig. 3, a 1D GFSSP configuration is mapped on an

t = 4

1 2 3 4 5 6 7 8 9

1 Q Q A A] Q Q Q Q
2 Q X X TX Q Q Q Q Q
3 B X Q Q Q Q Q Q Q
4 B TX Q Q Q Q Q Q Q
5 [Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 5

1 2 3 4 5 6 7 8 9

1 Q A A A Q] Q Q Q
2 B X X X TX Q Q Q Q
3 B X TX Q Q Q Q Q Q
4 B X Q Q Q Q Q Q Q
5 Q TX Q Q Q Q Q Q Q
6 [Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 17

1 2 3 4 5 6 7 8 9

1 B B Q B B [B [C
2 [X X X X X X X X
3 B X Q [B B G [C
4 B X B X X X X X X
5 Q X Q X TX A A [C
6 B X B X B X X X TX
7 B X B X B X TX Q Q
8] X B X B X Q Q Q
9 A X Q X Q TX Q Q Q
10 A X B X [Q Q Q Q
11 G X B X Q Q Q Q Q
12] X] X Q Q Q Q Q
13 C X C TX Q Q Q Q Q

t = 0

1 2 3 4 5 6 7 8 9

1 G Q Q Q Q Q Q Q Q
2 Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 1

1 2 3 4 5 6 7 8 9

1 Q] Q Q Q Q Q Q Q
2 [Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 6

1 2 3 4 5 6 7 8 9

1 Q A A Q A A] Q Q
2 B X X X X TX Q Q Q
3 B X G Q Q Q Q Q Q
4 Q X Q Q Q Q Q Q Q
5 B X Q Q Q Q Q Q Q
6 B TX Q Q Q Q Q Q Q
7 [Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 7

1 2 3 4 5 6 7 8 9

1 Q A Q A A A Q] Q
2 B X X X X X TX Q Q
3 Q X Q] Q Q Q Q Q
4 B X [Q Q Q Q Q Q
5 B X Q Q Q Q Q Q Q
6 B X Q Q Q Q Q Q Q
7 Q TX Q Q Q Q Q Q Q
8 [Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 30

1 2 3 4 5 6 7 8 9

1 C] [C] [C [C
2] X X X X X X X X
3 C X C [C] C [C
4 [X] X X X X X X
5 C X C X [C] [C
6 [X [X] X X X X
7] X C X C X C [C
8 C X] X [X] X X
9 [X C X] X C X C
10] X [X C X [X [
11 C X C X [X C X C
12] X] X] X] X Q
13 C X C X C X C X [

t = 31

1 2 3 4 5 6 7 8 9

1 C C C C C C C C C
2 C X X X X X X X X
3 C X C C C C C C C
4 C X C X X X X X X
5 C X C X C C C C C
6 C X C X C X X X X
7 C X C X C X C C C
8 C X C X C X C X X
9 C X C X C X C X C
10 C X C X C X C X C
11 C X C X C X C X C
12 C X C X C X C X C
13 C X C X C X C X C

t = 2

1 2 3 4 5 6 7 8 9

1 Q A] Q Q Q Q Q Q
2 B TX Q Q Q Q Q Q Q
3 [Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 3

1 2 3 4 5 6 7 8 9

1 Q A Q] Q Q Q Q Q
2 B X TX Q Q Q Q Q Q
3 Q TX Q Q Q Q Q Q Q
4 [Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 10

1 2 3 4 5 6 7 8 9

1 Q A A Q A A [] C
2 B X X X X X X X X
3 B X Q Q A A] Q Q
4 Q X Q X X TX Q Q Q
5 B X B X Q Q Q Q Q
6 B X B TX Q Q Q Q Q
7 B X [Q Q Q Q Q Q
8 Q X Q Q Q Q Q Q Q
9 B X Q Q Q Q Q Q Q
10 B TX Q Q Q Q Q Q Q
11 [Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 11

1 2 3 4 5 6 7 8 9

1 Q A Q A A [B [C
2 B X X X X X X X X
3 Q X TX A A A Q] Q
4 B X B X X X TX Q Q
5 B X B X TX Q Q Q Q
6 B X B X Q Q Q Q Q
7 Q X Q TX Q Q Q Q Q
8 B X [Q Q Q Q Q Q
9 B X Q Q Q Q Q Q Q
10 B X Q Q Q Q Q Q Q
11 Q TX Q Q Q Q Q Q Q
12 [Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 8

1 2 3 4 5 6 7 8 9

1 Q Q A A A Q A A C
2 Q X X X X X X TX Q
3 B X Q A] Q Q Q Q
4 B X B TX Q Q Q Q Q
5 B X [Q Q Q Q Q Q
6 Q X Q Q Q Q Q Q Q
7 B X Q Q Q Q Q Q Q
8 B TX Q Q Q Q Q Q Q
9 [Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 9

1 2 3 4 5 6 7 8 9

1 Q A A A Q A A [C
2 B X X X X X X X TX
3 B X Q A Q] Q Q Q
4 B X B X TX Q Q Q Q
5 Q X Q TX Q Q Q Q Q
6 B X [Q Q Q Q Q Q
7 B X Q Q Q Q Q Q Q
8 B X Q Q Q Q Q Q Q
9 Q TX Q Q Q Q Q Q Q
10 [Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 16

1 2 3 4 5 6 7 8 9

1 [Q B B B [G [C
2 Q X X X X X X X X
3 B X Q A [Q B [C
4 B X B X X X X X X
5 B X B X Q Q A A C
6 Q X Q X Q X X TX Q
7 B X B X B X Q Q Q
8 B X B X B TX Q Q Q
9] X B X [Q Q Q Q
10 Q X Q X Q Q Q Q Q
11 A X B X Q Q Q Q Q
12] X B TX Q Q Q Q Q
13 C X C Q Q Q Q Q Q

t = 12

1 2 3 4 5 6 7 8 9

1 Q Q A A [Q B [C
2 Q X X X X X X X X
3 B X Q A A Q A A C
4 B X B X X X X TX Q
5 B X B X G Q Q Q Q
6 Q X Q X Q Q Q Q Q
7 B X B X Q Q Q Q Q
8 B X B TX Q Q Q Q Q
9 B X [Q Q Q Q Q Q
10 Q X Q Q Q Q Q Q Q
11 B X Q Q Q Q Q Q Q
12 B TX Q Q Q Q Q Q Q
13 C Q Q Q Q Q Q Q Q

t = 13

1 2 3 4 5 6 7 8 9

1 Q A A [B B G [C
2 B X X X X X X X X
3 B X Q A Q A A [C
4 B X B X X X X X TX
5 Q X Q X Q] Q Q Q
6 B X B X [Q Q Q Q
7 B X B X Q Q Q Q Q
8 B X B X Q Q Q Q Q
9 Q X Q TX Q Q Q Q Q
10 B X [Q Q Q Q Q Q
11 B X Q Q Q Q Q Q Q
12] X Q Q Q Q Q Q Q
13 C TX Q Q Q Q Q Q Q

t = 14

1 2 3 4 5 6 7 8 9

1 Q A [Q B B G [C
2 B X X X X X X X X
3 B X Q Q A A [] C
4 Q X Q X X X X X X
5 B X B X Q A] Q Q
6 B X B X B TX Q Q Q
7 B X B X [Q Q Q Q
8 Q X Q X Q Q Q Q Q
9 B X B X Q Q Q Q Q
10 B X B TX Q Q Q Q Q
11] X [Q Q Q Q Q Q
12 [X Q Q Q Q Q Q Q
13 C X Q Q Q Q Q Q Q

t = 15

1 2 3 4 5 6 7 8 9

1 Q [B B Q B G [C
2 B X X X X X X X X
3 Q X TX A A [B [C
4 B X B X X X X X X
5 B X B X Q A Q] Q
6 B X B X B X TX Q Q
7 Q X Q X Q TX Q Q Q
8 B X B X [Q Q Q Q
9 B X B X Q Q Q Q Q
10] X B X Q Q Q Q Q
11 A X Q TX Q Q Q Q Q
12] X [Q Q Q Q Q Q
13 C X Q Q Q Q Q Q Q

t = 22

1 2 3 4 5 6 7 8 9

1 B Q B B G B G [C
2 B X X X X X X X X
3 C X B B B [B [C
4 Q X Q X X X X X X
5 A X G X B B G [C
6 A X B X [X X X X
7 A X] X B X [] C
8 Q X Q X Q X Q X X
9 A X A X B X B X Q
10] X A X B X B TX Q
11 A X G X] X [Q Q
12] X] X [X Q Q Q
13 C X C X C X Q Q Q

t = 23

1 2 3 4 5 6 7 8 9

1 B B Q B G B G [C
2] X X X X X X X X
3 C X Q B B [B [C
4 [X B X X X X X X
5 Q X G X B B G [C
6 A X] X [X X X X
7 A X A X G X B [C
8 A X A X B X [X X
9 G X Q X B X B X TX
10] X A X] X B X Q
11 A X G X A X Q TX Q
12] X] X] X [Q Q
13 C X C X C X Q Q Q

t = 18

1 2 3 4 5 6 7 8 9

1 B B B Q B [B [C
2 [X X X X X X X X
3 B X [Q B B G [C
4 Q X Q X X X X X X
5 B X B X Q A [] C
6 B X B X B X X X X
7] X B X B X G Q Q
8 Q X Q X Q X Q Q Q
9 A X B X B X Q Q Q
10 A X B X B TX Q Q Q
11 G X] X [Q Q Q Q
12] X [X Q Q Q Q Q
13 C X C X Q Q Q Q Q

t = 19

1 2 3 4 5 6 7 8 9

1 B B B B G [B [C
2 [X X X X X X X X
3 G X B B Q B G [C
4 B X [X X X X X X
5 B X B X Q [B [C
6] X B X B X X X X
7 A X Q X Q X Q] Q
8 A X B X B X [Q Q
9 Q X B X B X Q Q Q
10 A X] X B X Q Q Q
11 G X A X Q TX Q Q Q
12] X] X [Q Q Q Q
13 C X C X Q Q Q Q Q

t = 20

1 2 3 4 5 6 7 8 9

1 B B B B G Q B [C
2 Q X X X X X X X X
3 G X B B B [G [C
4 B X [X X X X X X
5] X B X [Q B [C
6 Q X Q X Q X X X X
7 A X B X B X Q A C
8 A X B X B X B TX Q
9 A X] X B X [Q Q
10] X Q X Q X Q Q Q
11 G X A X B X Q Q Q
12] X] X B TX Q Q Q
13 C X C X C Q Q Q Q

t = 21

1 2 3 4 5 6 7 8 9

1 Q B B B G B G [C
2 B X X X X X X X X
3 G X B B B [B [C
4] X [X X X X X X
5 A X G X B B G [C
6 A X B X [X X X X
7 Q X B X B X Q [C
8 A X] X B X B X TX
9 A X A X Q X Q TX Q
10] X A X B X [Q Q
11 A X G X B X Q Q Q
12] X] X] X Q Q Q
13 C X C X C TX Q Q Q

t = 28

1 2 3 4 5 6 7 8 9

1 G A [C] B G [C
2] X X X X X X X X
3 C X A Q C B G [C
4 [X] X X X X X X
5 G X C X] [B [C
6 B X [X [X X X X
7] X B X C X G [C
8 C X Q X] X B X X
9 [X C X [X C X C
10 A X Q X] X Q X [
11 G X A X G X A X B
12] X] X] X] X Q
13 C X C X C X C X C

t = 29

1 2 3 4 5 6 7 8 9

1 G [] C [] G [C
2] X X X X X X X X
3 C X G [C] G [C
4 [X] X X X X X X
5 G X C X G C B [C
6] X [X] X X X X
7 [X G X C X G [C
8 C X] X [X] X X
9] X C X G X C X C
10 [X [X C X [X [
11 G X G X A X G X G
12] X] X] X] X]
13 C X C X C X C X]

t = 24

1 2 3 4 5 6 7 8 9

1] B B [G B G [C
2 [X X X X X X X X
3 C X B Q B [B [C
4] X B X X X X X X
5 [X C X B B G [C
6 Q X Q X Q X X X X
7 A X A X G X B [C
8 A X A X B X [X X
9 G X A X] X B X G
10 Q X] X Q X Q X Q
11 A X G X A X B X Q
12] X] X] X B TX Q
13 C X C X C X C Q Q

t = 25

1 2 3 4 5 6 7 8 9

1 A] B [B B G [C
2] X X X X X X X X
3 C X B B G [B [C
4 [X] X X X X X X
5 B X C X Q B G [C
6 [X [X B X X X X
7 Q X Q X G X B [C
8 A X A X] X [X X
9 G X A X A X G X C
10 A X] X A X B X [
11 G X A X G X B X Q
12] X] X] X] X Q
13 C X C X C X C TX Q

t = 26

1 2 3 4 5 6 7 8 9

1 A Q] [B B G [C
2] X X X X X X X X
3 C X] B G Q B [C
4 [X [X X X X X X
5 B X C X B [G [C
6 Q X] X B X X X X
7 [X [X C X B [C
8] X Q X Q X Q X X
9 G X A X A X G X C
10 A X] X A X B X]
11 G X A X G X] X [
12] X] X] X [X Q
13 C X C X C X C X Q

t = 27

1 2 3 4 5 6 7 8 9

1 G A A C B B G [C
2] X X X X X X X X
3 C X A] G B G [C
4 [X] X X X X X X
5 G X C X B [B [C
6 B X [X] X X X X
7 B X B X C X G [C
8 C X [X [X B X X
9 A X G X Q X G X C
10 A X] X A X] X [
11 G X A X G X A X B
12] X] X] X] X [
13 C X C X C X C X Q

t = 32

1 2 3 4 5 6 7 8 9

1 X X X X X X X X X
2 X X X X X X X X X
3 X X X X X X X X X
4 X X X X X X X X X
5 X X X X X X X X X
6 X X X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X
9 X X X X X X X X X
10 X X X X X X X X X
11 X X X X X X X X X
12 X X X X X X X X X
13 X X X X X X X X X

t = 33

1 2 3 4 5 6 7 8 9

1 F F F F F F F F F
2 F F F F F F F F F
3 F F F F F F F F F
4 F F F F F F F F F
5 F F F F F F F F F
6 F F F F F F F F F
7 F F F F F F F F F
8 F F F F F F F F F
9 F F F F F F F F F
10 F F F F F F F F F
11 F F F F F F F F F
12 F F F F F F F F F
13 F F F F F F F F F

Fig. 6. Snapshots of the non-minimum-time 10-state synchronization process on a 13×9
rectangular array.

Smaller-State Implementations of 2D FSSP Algorithms 147

t = 16

1 2 3 4 5 6 7 8 9

1 [Q B B B [G [GX
2 Q X X X X X X X X
3 B X Q [B B G [C
4 B X B X X X X X X
5 B X Q X TX A A [C
6 Q X B X B X X X TX
7 B X B X B X TX Q Q
8 B X B X B X Q Q Q
9] X Q X Q TX Q Q Q
10 Q X B X [Q Q Q Q
11 A X B X Q Q Q Q Q
12] X] X Q Q Q Q Q
13 GX X C TX Q Q Q Q Q

t = 17

1 2 3 4 5 6 7 8 9

1 B B Q B B [B [GX
2 [X X X X X X X X
3 B X [Q B B G [C
4 B X Q X X X X X X
5 Q X B X Q A [] C
6 B X B X B X X X X
7 B X B X B X G Q Q
8] X Q X Q X Q Q Q
9 A X B X B X Q Q Q
10 A X B X B TX Q Q Q
11 G X] X [Q Q Q Q
12] X [X Q Q Q Q Q
13 GX X C X Q Q Q Q Q

t = 6

1 2 3 4 5 6 7 8 9

1 Q A A Q A A] Q Q
2 B X X X X GX Q Q Q
3 B X Q] Q Q Q Q Q
4 Q X [Q Q Q Q Q Q
5 B X Q Q Q Q Q Q Q
6 B GX Q Q Q Q Q Q Q
7 [Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 7

1 2 3 4 5 6 7 8 9

1 Q A Q A A A Q] Q
2 B X X X X X GX Q Q
3 Q X Q A] Q Q Q Q
4 B X B TX Q Q Q Q Q
5 B X [Q Q Q Q Q Q
6 B X Q Q Q Q Q Q Q
7 Q GX Q Q Q Q Q Q Q
8 [Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 30

1 2 3 4 5 6 7 8 9

1 GX] [GX] [GX [GX
2] X X X X X X X X
3 GX X C C C C C C C
4 [X C X X X X X X
5 GX X C X C C C C C
6 [X C X C X X X X
7] X C X C X C C C
8 GX X C X C X C X X
9 [X C X C X C X C
10] X C X C X C X C
11 GX X C X C X C X C
12] X C X C X C X C
13 GX X C X C X C X C

t = 31

1 2 3 4 5 6 7 8 9

1 GX GXGXGXGXGXGXGXGX
2 GX X X X X X X X X
3 GX X X X X X X X X
4 GX X X X X X X X X
5 GX X X X X X X X X
6 GX X X X X X X X X
7 GX X X X X X X X X
8 GX X X X X X X X X
9 GX X X X X X X X X
10 GX X X X X X X X X
11 GX X X X X X X X X
12 GX X X X X X X X X
13 GX X X X X X X X X

t = 3

1 2 3 4 5 6 7 8 9

1 Q A Q] Q Q Q Q Q
2 B X GX Q Q Q Q Q Q
3 Q GX Q Q Q Q Q Q Q
4 [Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 4

1 2 3 4 5 6 7 8 9

1 Q Q A A] Q Q Q Q
2 Q X X GX Q Q Q Q Q
3 B X TX Q Q Q Q Q Q
4 B GX Q Q Q Q Q Q Q
5 [Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 5

1 2 3 4 5 6 7 8 9

1 Q A A A Q] Q Q Q
2 B X X X GX Q Q Q Q
3 B X G Q Q Q Q Q Q
4 B X Q Q Q Q Q Q Q
5 Q GX Q Q Q Q Q Q Q
6 [Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 0

1 2 3 4 5 6 7 8 9

1 G Q Q Q Q Q Q Q Q
2 Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 1

1 2 3 4 5 6 7 8 9

1 Q GX Q Q Q Q Q Q Q
2 [Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 2

1 2 3 4 5 6 7 8 9

1 Q A] Q Q Q Q Q Q
2 B GX Q Q Q Q Q Q Q
3 [Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 9

1 2 3 4 5 6 7 8 9

1 Q A A A Q A A [GX
2 B X X X X X X X TX
3 B X Q Q A A] Q Q
4 B X Q X X TX Q Q Q
5 Q X B X Q Q Q Q Q
6 B X B TX Q Q Q Q Q
7 B X [Q Q Q Q Q Q
8 B X Q Q Q Q Q Q Q
9 Q GX Q Q Q Q Q Q Q
10 [Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 10

1 2 3 4 5 6 7 8 9

1 Q A A Q A A [] GX
2 B X X X X X X X X
3 B X TX A A A Q] Q
4 Q X B X X X TX Q Q
5 B X B X TX Q Q Q Q
6 B X B X Q Q Q Q Q
7 B X Q TX Q Q Q Q Q
8 Q X [Q Q Q Q Q Q
9 B X Q Q Q Q Q Q Q
10 B GX Q Q Q Q Q Q Q
11 [Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 11

1 2 3 4 5 6 7 8 9

1 Q A Q A A [B [GX
2 B X X X X X X X X
3 Q X Q A A Q A A C
4 B X B X X X X TX Q
5 B X B X G Q Q Q Q
6 B X Q X Q Q Q Q Q
7 Q X B X Q Q Q Q Q
8 B X B TX Q Q Q Q Q
9 B X [Q Q Q Q Q Q
10 B X Q Q Q Q Q Q Q
11 Q GX Q Q Q Q Q Q Q
12 [Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 8

1 2 3 4 5 6 7 8 9

1 Q Q A A A Q A A GX
2 Q X X X X X X GX Q
3 B X Q A Q] Q Q Q
4 B X B X TX Q Q Q Q
5 B X Q TX Q Q Q Q Q
6 Q X [Q Q Q Q Q Q
7 B X Q Q Q Q Q Q Q
8 B GX Q Q Q Q Q Q Q
9 [Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 15

1 2 3 4 5 6 7 8 9

1 Q [B B Q B G [GX
2 B X X X X X X X X
3 Q X Q A [Q B [C
4 B X B X X X X X X
5 B X B X Q Q A A C
6 B X Q X Q X X TX Q
7 Q X B X B X Q Q Q
8 B X B X B TX Q Q Q
9 B X B X [Q Q Q Q
10] X Q X Q Q Q Q Q
11 A X B X Q Q Q Q Q
12] X B TX Q Q Q Q Q
13 GX X C Q Q Q Q Q Q

t = 12

1 2 3 4 5 6 7 8 9

1 Q Q A A [Q B [GX
2 Q X X X X X X X X
3 B X Q A Q A A [C
4 B X B X X X X X TX
5 B X Q X Q] Q Q Q
6 Q X B X [Q Q Q Q
7 B X B X Q Q Q Q Q
8 B X B X Q Q Q Q Q
9 B X Q TX Q Q Q Q Q
10 Q X [Q Q Q Q Q Q
11 B X Q Q Q Q Q Q Q
12 B GX Q Q Q Q Q Q Q
13 GX Q Q Q Q Q Q Q Q

t = 13

1 2 3 4 5 6 7 8 9

1 Q A A [B B G [GX
2 B X X X X X X X X
3 B X Q Q A A [] C
4 B X Q X X X X X X
5 Q X B X Q A] Q Q
6 B X B X B TX Q Q Q
7 B X B X [Q Q Q Q
8 B X Q X Q Q Q Q Q
9 Q X B X Q Q Q Q Q
10 B X B TX Q Q Q Q Q
11 B X [Q Q Q Q Q Q
12] X Q Q Q Q Q Q Q
13 GXTX Q Q Q Q Q Q Q

t = 14

1 2 3 4 5 6 7 8 9

1 Q A [Q B B G [GX
2 B X X X X X X X X
3 B X TX A A [B [C
4 Q X B X X X X X X
5 B X B X Q A Q] Q
6 B X B X B X TX Q Q
7 B X Q X Q TX Q Q Q
8 Q X B X [Q Q Q Q
9 B X B X Q Q Q Q Q
10 B X B X Q Q Q Q Q
11] X Q TX Q Q Q Q Q
12 [X [Q Q Q Q Q Q
13 GX X Q Q Q Q Q Q Q

t = 21

1 2 3 4 5 6 7 8 9

1 Q B B B G B G [GX
2 B X X X X X X X X
3 G X B B B [B [C
4] X Q X X X X X X
5 A X G X B B G [C
6 A X B X [X X X X
7 Q X] X B X [] C
8 A X Q X Q X Q X X
9 A X A X B X B X Q
10] X A X B X B TX Q
11 A X G X] X [Q Q
12] X] X [X Q Q Q
13 GX X C X C X Q Q Q

t = 22

1 2 3 4 5 6 7 8 9

1 B Q B B G B G [GX
2 B X X X X X X X X
3 GX X Q B B [B [C
4 Q X B X X X X X X
5 A X G X B B G [C
6 A X] X [X X X X
7 A X A X G X B [C
8 Q X A X B X [X X
9 A X Q X B X B X TX
10] X A X] X B X Q
11 A X G X A X Q TX Q
12] X] X] X [Q Q
13 GX X C X C X Q Q Q

t = 23

1 2 3 4 5 6 7 8 9

1 B B Q B G B G [GX
2] X X X X X X X X
3 GX X B Q B [B [C
4 [X B X X X X X X
5 Q X C X B B G [C
6 A X Q X Q X X X X
7 A X A X G X B [C
8 A X A X B X [X X
9 G X A X] X B X G
10] X] X Q X Q X Q
11 A X G X A X B X Q
12] X] X] X B TX Q
13 GX X C X C X C Q Q

t = 18

1 2 3 4 5 6 7 8 9

1 B B B Q B [B [GX
2 [X X X X X X X X
3 B X B B Q B G [C
4 Q X [X X X X X X
5 B X B X Q [B [C
6 B X B X B X X X X
7] X Q X Q X Q] Q
8 Q X B X B X [Q Q
9 A X B X B X Q Q Q
10 A X] X B X Q Q Q
11 G X A X Q TX Q Q Q
12] X] X [Q Q Q Q
13 GX X C X Q Q Q Q Q

t = 19

1 2 3 4 5 6 7 8 9

1 B B B B G [B [GX
2 [X X X X X X X X
3 G X B B B [G [C
4 B X [X X X X X X
5 B X B X [Q B [C
6] X Q X Q X X X X
7 A X B X B X Q A C
8 A X B X B X B TX Q
9 Q X] X B X [Q Q
10 A X Q X Q X Q Q Q
11 G X A X B X Q Q Q
12] X] X B TX Q Q Q
13 GX X C X C Q Q Q Q

t = 20

1 2 3 4 5 6 7 8 9

1 B B B B G Q B [GX
2 Q X X X X X X X X
3 G X B B B [B [C
4 B X [X X X X X X
5] X G X B B G [C
6 Q X B X [X X X X
7 A X B X B X Q [C
8 A X] X B X B X TX
9 A X A X Q X Q TX Q
10] X A X B X [Q Q
11 G X G X B X Q Q Q
12] X] X] X Q Q Q
13 GX X C X C TX Q Q Q

t = 27

1 2 3 4 5 6 7 8 9

1 G A A GX B B G [GX
2] X X X X X X X X
3 GX X A Q C B G [C
4 [X] X X X X X X
5 G X C X] [B [C
6 B X [X [X X X X
7 B X B X C X G [C
8 GX X Q X] X B X X
9 A X C X [X C X C
10 A X Q X] X Q X [
11 G X A X G X A X B
12] X] X] X] X Q
13 GX X C X C X C X C

t = 28

1 2 3 4 5 6 7 8 9

1 G A [GX] B G [GX
2] X X X X X X X X
3 GX X G [C] G [C
4 [X] X X X X X X
5 G X C X G C B [C
6 B X [X] X X X X
7] X G X C X G [C
8 GX X] X [X] X X
9 [X C X G X C X C
10 A X [X C X [X [
11 G X G X A X G X G
12] X] X] X] X]
13 GX X C X C X C X]

t = 29

1 2 3 4 5 6 7 8 9

1 G [] GX [] G [GX
2] X X X X X X X X
3 GX X C [C] C [C
4 [X] X X X X X X
5 G X C X [C] [C
6] X [X] X X X X
7 [X C X C X C [C
8 GX X] X [X] X X
9] X C X] X C X C
10 [X [X C X [X [
11 G X C X [X C X C
12] X] X] X] X Q
13 GX X C X C X C X [

t = 24

1 2 3 4 5 6 7 8 9

1] B B [G B G [GX
2 [X X X X X X X X
3 GX X B B G [B [C
4] X] X X X X X X
5 [X C X Q B G [C
6 Q X [X B X X X X
7 A X Q X G X B [C
8 A X A X] X [X X
9 G X A X A X G X C
10 Q X] X A X B X [
11 A X A X G X B X Q
12] X] X] X] X Q
13 GX X C X C X C TX Q

t = 25

1 2 3 4 5 6 7 8 9

1 A] B [B B G [GX
2] X X X X X X X X
3 GX X] B G Q B [C
4 [X [X X X X X X
5 B X C X B [G [C
6 [X] X B X X X X
7 Q X [X C X B [C
8 A X Q X Q X Q X X
9 G X A X A X G X C
10 A X] X A X B X]
11 G X A X G X] X [
12] X] X] X [X Q
13 GX X C X C X C X Q

t = 26

1 2 3 4 5 6 7 8 9

1 A Q] [B B G [GX
2] X X X X X X X X
3 GX X A] G B G [C
4 [X] X X X X X X
5 B X C X B [B [C
6 Q X [X] X X X X
7 [X B X C X G [C
8] X [X [X B X X
9 G X G X Q X G X C
10 A X] X A X] X [
11 G X A X G X A X B
12] X] X] X] X [
13 GX X C X C X C X Q

t = 32

1 2 3 4 5 6 7 8 9

1 F F F F F F F F F
2 F F F F F F F F F
3 F F F F F F F F F
4 F F F F F F F F F
5 F F F F F F F F F
6 F F F F F F F F F
7 F F F F F F F F F
8 F F F F F F F F F
9 F F F F F F F F F
10 F F F F F F F F F
11 F F F F F F F F F
12 F F F F F F F F F
13 F F F F F F F F F

Fig. 7. Snapshots of the minimum-time 11-state synchronization process on a 13 × 9
array.

L-shaped array, where the cells on the horizontal and vertical segments have to
cooperate with each other. Thus, in contrast to the square implementation, two
independent, small-size synchronization configurations cannot be implemented
on the horizontal and vertical segment on a single synchronization layer in the
rectangle case. Here we do not go to the details of the implementation. All the
implementations given below are variants of the zebra-mapping.

The first 10-state implementation is a straightforward implementation of the
zebra-mapping, which yields a non-minimum-time algorithm. The second 11-
state implementation is a variant of the zebra-mapping where the first synchro-
nization layer L1 and the thereafter layers Li, i ≥ 3 take a different set of syn-
chronization rule set. The third one is a nine-state implementation which regards
the marking symbol used in the recursive division as the pre-firing state, mak-
ing the algorithm operate in minimum-steps. Those three implementations are
stated in Theorems 8, 9 and 10. Some snapshots of the synchronization processes
in those three implementations are given in Figs. 6, 7, and 8.

148 H. Umeo et al.

t = 16

1 2 3 4 5 6 7 8 9

1 [Q B B B [G [X
2 Q X X X X X X X X
3 B X Q [B B G [C
4 B X B X X X X X X
5 B X Q X Q A A [C
6 Q X B X B X X X B
7 B X B X B X X Q Q
8 B X B X B X Q Q Q
9] X Q X Q G Q Q Q
10 Q X B X [Q Q Q Q
11 A X B X Q Q Q Q Q
12] X] X Q Q Q Q Q
13 X X C A Q Q Q Q Q

t = 17

1 2 3 4 5 6 7 8 9

1 B B Q B B [B [X
2 [X X X X X X X X
3 B X [Q B B G [C
4 B X Q X X X X X X
5 Q X B X Q A [] C
6 B X B X B X X X X
7 B X B X B X G Q Q
8] X Q X Q X Q Q Q
9 A X B X B C Q Q Q
10 A X B X B G Q Q Q
11 G X] X [Q Q Q Q
12] X [X Q Q Q Q Q
13 X X C X Q Q Q Q Q

t = 6

1 2 3 4 5 6 7 8 9

1 Q A A Q A A] Q Q
2 B X X X X X Q Q Q
3 B X Q] Q Q Q Q Q
4 Q X [Q Q Q Q Q Q
5 B X Q Q Q Q Q Q Q
6 B X Q Q Q Q Q Q Q
7 [Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 7

1 2 3 4 5 6 7 8 9

1 Q A Q A A A Q] Q
2 B X X X X X C Q Q
3 Q X Q A] Q Q Q Q
4 B X B G Q Q Q Q Q
5 B X [Q Q Q Q Q Q
6 B X Q Q Q Q Q Q Q
7 Q X Q Q Q Q Q Q Q
8 [Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 30

1 2 3 4 5 6 7 8 9

1 X] [X] [X [X
2] X X X X X X X X
3 X X C C C C C C C
4 [X C X X X X X X
5 X X C X C C C C C
6 [X C X C X X X X
7] X C X C X C C C
8 X X C X C X C X X
9 [X C X C X C X C
10] X C X C X C X C
11 X X C X C X C X C
12] X C X C X C X C
13 X X C X C X C X C

t = 31

1 2 3 4 5 6 7 8 9

1 X X X X X X X X X
2 X X X X X X X X X
3 X X X X X X X X X
4 X X X X X X X X X
5 X X X X X X X X X
6 X X X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X
9 X X X X X X X X X
10 X X X X X X X X X
11 X X X X X X X X X
12 X X X X X X X X X
13 X X X X X X X X X

t = 3

1 2 3 4 5 6 7 8 9

1 Q A Q] Q Q Q Q Q
2 B X C Q Q Q Q Q Q
3 Q X Q Q Q Q Q Q Q
4 [Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 4

1 2 3 4 5 6 7 8 9

1 Q Q A A] Q Q Q Q
2 Q X X X Q Q Q Q Q
3 B X X Q Q Q Q Q Q
4 B X Q Q Q Q Q Q Q
5 [Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 5

1 2 3 4 5 6 7 8 9

1 Q A A A Q] Q Q Q
2 B X X X C Q Q Q Q
3 B X G Q Q Q Q Q Q
4 B X Q Q Q Q Q Q Q
5 Q X Q Q Q Q Q Q Q
6 [Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 0

1 2 3 4 5 6 7 8 9

1 G Q Q Q Q Q Q Q Q
2 Q Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 1

1 2 3 4 5 6 7 8 9

1 Q X Q Q Q Q Q Q Q
2 [Q Q Q Q Q Q Q Q
3 Q Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 2

1 2 3 4 5 6 7 8 9

1 Q A] Q Q Q Q Q Q
2 B X Q Q Q Q Q Q Q
3 [Q Q Q Q Q Q Q Q
4 Q Q Q Q Q Q Q Q Q
5 Q Q Q Q Q Q Q Q Q
6 Q Q Q Q Q Q Q Q Q
7 Q Q Q Q Q Q Q Q Q
8 Q Q Q Q Q Q Q Q Q
9 Q Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 9

1 2 3 4 5 6 7 8 9

1 Q A A A Q A A [X
2 B X X X X X X X A
3 B X Q Q A A] Q Q
4 B X Q X C G Q Q Q
5 Q X B C Q Q Q Q Q
6 B X B G Q Q Q Q Q
7 B X [Q Q Q Q Q Q
8 B X Q Q Q Q Q Q Q
9 Q X Q Q Q Q Q Q Q
10 [Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 10

1 2 3 4 5 6 7 8 9

1 Q A A Q A A [] X
2 B X X X X X X X X
3 B X Q A A A Q] Q
4 Q X B X X X G Q Q
5 B X B X X Q Q Q Q
6 B X B X Q Q Q Q Q
7 B X Q G Q Q Q Q Q
8 Q X [Q Q Q Q Q Q
9 B X Q Q Q Q Q Q Q
10 B X Q Q Q Q Q Q Q
11 [Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 11

1 2 3 4 5 6 7 8 9

1 Q A Q A A [B [X
2 B X X X X X X X X
3 Q X Q A A Q A A C
4 B X B X X X C G Q
5 B X B X G Q Q Q Q
6 B X Q X Q Q Q Q Q
7 Q X B C Q Q Q Q Q
8 B X B G Q Q Q Q Q
9 B X [Q Q Q Q Q Q
10 B X Q Q Q Q Q Q Q
11 Q X Q Q Q Q Q Q Q
12 [Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 8

1 2 3 4 5 6 7 8 9

1 Q Q A A A Q A A C
2 Q X X X X X X X Q
3 B X Q A Q] Q Q Q
4 B X B X G Q Q Q Q
5 B X Q G Q Q Q Q Q
6 Q X [Q Q Q Q Q Q
7 B X Q Q Q Q Q Q Q
8 B X Q Q Q Q Q Q Q
9 [Q Q Q Q Q Q Q Q
10 Q Q Q Q Q Q Q Q Q
11 Q Q Q Q Q Q Q Q Q
12 Q Q Q Q Q Q Q Q Q
13 Q Q Q Q Q Q Q Q Q

t = 15

1 2 3 4 5 6 7 8 9

1 Q [B B Q B G [X
2 B X X X X X X X X
3 Q X Q A [Q B [C
4 B X B X X X X X X
5 B X B X Q Q A A C
6 B X Q X Q X C G Q
7 Q X B X B C Q Q Q
8 B X B X B G Q Q Q
9 B X B X [Q Q Q Q
10] X Q X Q Q Q Q Q
11 A X B C Q Q Q Q Q
12] X B G Q Q Q Q Q
13 X X C Q Q Q Q Q Q

t = 12

1 2 3 4 5 6 7 8 9

1 Q Q A A [Q B [X
2 Q X X X X X X X X
3 B X Q A Q A A [C
4 B X B X X X X X B
5 B X Q X Q] Q Q Q
6 Q X B X [Q Q Q Q
7 B X B X Q Q Q Q Q
8 B X B X Q Q Q Q Q
9 B X Q G Q Q Q Q Q
10 Q X [Q Q Q Q Q Q
11 B X Q Q Q Q Q Q Q
12 B X Q Q Q Q Q Q Q
13 C Q Q Q Q Q Q Q Q

t = 13

1 2 3 4 5 6 7 8 9

1 Q A A [B B G [X
2 B X X X X X X X X
3 B X Q Q A A [] C
4 B X Q X X X X X X
5 Q X B X Q A] Q Q
6 B X B X B G Q Q Q
7 B X B X [Q Q Q Q
8 B X Q X Q Q Q Q Q
9 Q X B C Q Q Q Q Q
10 B X B G Q Q Q Q Q
11 B X [Q Q Q Q Q Q
12] X Q Q Q Q Q Q Q
13 X B Q Q Q Q Q Q Q

t = 14

1 2 3 4 5 6 7 8 9

1 Q A [Q B B G [X
2 B X X X X X X X X
3 B X Q A A [B [C
4 Q X B X X X X X X
5 B X B X Q A Q] Q
6 B X B X B X G Q Q
7 B X Q X Q G Q Q Q
8 Q X B X [Q Q Q Q
9 B X B X Q Q Q Q Q
10 B X B X Q Q Q Q Q
11] X Q G Q Q Q Q Q
12 [X [Q Q Q Q Q Q
13 X X Q Q Q Q Q Q Q

t = 21

1 2 3 4 5 6 7 8 9

1 Q B B B G B G [X
2 B X X X X X X X X
3 G X B B B [B [C
4] X Q X X X X X X
5 A X G X B B G [C
6 A X B X [X X X X
7 Q X] X B X [] C
8 A X Q X Q X Q G X
9 A X A X B X B C Q
10] X A X B X B G Q
11 A X G X] X [Q Q
12] X] X [X Q Q Q
13 X X C X C X Q Q Q

t = 22

1 2 3 4 5 6 7 8 9

1 B Q B B G B G [X
2 B X X X X X X X X
3 X X Q B B [B [C
4 Q X B X X X X X X
5 A X G X B B G [C
6 A X] X [X X X X
7 A X A X G X B [C
8 Q X A X B X [X X
9 A X Q X B X B [Q
10] X A X] X B X Q
11 A X G X A X Q G Q
12] X] X] X [Q Q
13 X X C X C X Q Q Q

t = 23

1 2 3 4 5 6 7 8 9

1 B B Q B G B G [X
2] X X X X X X X X
3 X X B Q B [B [C
4 [X B X X X X X X
5 Q X C X B B G [C
6 A X Q X Q X X X X
7 A X A X G X B [C
8 A X A X B X [X X
9 G X A X] X B X G
10] X] X Q X Q X Q
11 A X G X A X B C Q
12] X] X] X B G Q
13 X X C X C X C Q Q

t = 18

1 2 3 4 5 6 7 8 9

1 B B B Q B [B [X
2 [X X X X X X X X
3 B X B B Q B G [C
4 Q X [X X X X X X
5 B X B X Q [B [C
6 B X B X B X X X X
7] X Q X Q X Q] Q
8 Q X B X B X [Q Q
9 A X B X B X Q Q Q
10 A X] X B X Q Q Q
11 G X A X Q G Q Q Q
12] X] X [Q Q Q Q
13 X X C X Q Q Q Q Q

t = 19

1 2 3 4 5 6 7 8 9

1 B B B B G [B [X
2 [X X X X X X X X
3 G X B B B [G [C
4 B X [X X X X X X
5 B X B X [Q B [C
6] X Q X Q X X X X
7 A X B X B X Q A C
8 A X B X B X B G Q
9 Q X] X B X [Q Q
10 A X Q X Q X Q Q Q
11 G X A X B C Q Q Q
12] X] X B G Q Q Q
13 X X C X C Q Q Q Q

t = 20

1 2 3 4 5 6 7 8 9

1 B B B B G Q B [X
2 Q X X X X X X X X
3 G X B B B [B [C
4 B X [X X X X X X
5] X G X B B G [C
6 Q X B X [X X X X
7 A X B X B X Q [C
8 A X] X B X B X B
9 A X A X Q X Q G Q
10] X A X B X [Q Q
11 G X G X B X Q Q Q
12] X] X] X Q Q Q
13 X X C X C A Q Q Q

t = 27

1 2 3 4 5 6 7 8 9

1 G A A X B B G [X
2] X X X X X X X X
3 X X A Q C B G [C
4 [X] X X X X X X
5 G X C X] [B [C
6 B X [X [X X X X
7 B X B X C X G [C
8 X X Q X] X B X X
9 A X C X [X C X C
10 A X Q X] X Q X [
11 G X A X G X A X B
12] X] X] X] X Q
13 X X C X C X C X C

t = 28

1 2 3 4 5 6 7 8 9

1 G A [X] B G [X
2] X X X X X X X X
3 X X G [C] G [C
4 [X] X X X X X X
5 G X C X G C B [C
6 B X [X] X X X X
7] X G X C X G [C
8 X X] X [X] X X
9 [X C X G X C X C
10 A X [X C X [X [
11 G X G X A X G X G
12] X] X] X] X]
13 X X C X C X C X]

t = 29

1 2 3 4 5 6 7 8 9

1 G [] X [] G [X
2] X X X X X X X X
3 X X C [C] C [C
4 [X] X X X X X X
5 G X C X [C] [C
6] X [X] X X X X
7 [X C X C X C [C
8 X X] X [X] X X
9] X C X] X C X C
10 [X [X C X [X [
11 G X C X [X C X C
12] X] X] X] X Q
13 X X C X C X C X [

t = 24

1 2 3 4 5 6 7 8 9

1] B B [G B G [X
2 [X X X X X X X X
3 X X B B G [B [C
4] X] X X X X X X
5 [X C X Q B G [C
6 Q X [X B X X X X
7 A X Q X G X B [C
8 A X A X] X [X X
9 G X A X A X G X C
10 Q X] X A X B X [
11 A X A X G X B X Q
12] X] X] X] X Q
13 X X C X C X C A Q

t = 25

1 2 3 4 5 6 7 8 9

1 A] B [B B G [X
2] X X X X X X X X
3 X X] B G Q B [C
4 [X [X X X X X X
5 B X C X B [G [C
6 [X] X B X X X X
7 Q X [X C X B [C
8 A X Q X Q X Q X X
9 G X A X A X G X C
10 A X] X A X B X]
11 G X A X G X] X [
12] X] X] X [X Q
13 X X C X C X C X Q

t = 26

1 2 3 4 5 6 7 8 9

1 A Q] [B B G [X
2] X X X X X X X X
3 X X A] G B G [C
4 [X] X X X X X X
5 B X C X B [B [C
6 Q X [X] X X X X
7 [X B X C X G [C
8] X [X [X B X X
9 G X G X Q X G X C
10 A X] X A X] X [
11 G X A X G X A X B
12] X] X] X] X [
13 X X C X C X C X Q

t = 32

1 2 3 4 5 6 7 8 9

1 F F F F F F F F F
2 F F F F F F F F F
3 F F F F F F F F F
4 F F F F F F F F F
5 F F F F F F F F F
6 F F F F F F F F F
7 F F F F F F F F F
8 F F F F F F F F F
9 F F F F F F F F F
10 F F F F F F F F F
11 F F F F F F F F F
12 F F F F F F F F F
13 F F F F F F F F F

Fig. 8. Snapshots of the minimum-time nine-state synchronization process on a 13 × 9
array.

Theorem 8. There exists a 10-state 2D CA that can synchronize any m × n
rectangle arrays in m + n + max(m,n) − 2 non-minimum steps.

Theorem 9. There exists an 11-state 2D CA that can synchronize any m × n
rectangle arrays in m + n + max(m,n) − 3 minimum steps.

Theorem 10. There exists a 9-state 2D CA that can synchronize any m × n
rectangle arrays in m + n + max(m,n) − 3 minimum steps.

5 Summary

In the present paper, we have given several smallest-state, known at present,
implementations of the FSSP algorithms for 2D square and rectangular arrays
based on the L-shaped mapping. It can be seen that the L-shaped mapping
presents a rich variety of 2D minimum-time FSSP algorithms. Most of the 2D

Smaller-State Implementations of 2D FSSP Algorithms 149

algorithm proposed are isotropic with respect to shape of a given rectangle array,
i.e. no need to control the FSSP algorithm for longer-than-wide and wider-than-
long input rectangles, however, the underlying algorithm used in A4 presented in
Umeo et al. [15] is not isotropic. The non-isotropic property led to the increase of
the number of states required in its implementation. The isotropic property plays
an important role in the design of higher dimensional minimum-time FSSP algo-
rithms. A class of isotropic multi-dimensional minimum-time FSSP algorithms
is given in Umeo, Kubo, and Nishide [12]. Here, we present a Table 2 based on
a quantitative comparison of 2D FSSP algorithms and their transition tables
discussed in this paper.

Table 2. A quantitative comparison of 2D FSSP algorithms based on L-shaped
mapping.

Algorithm Time complexity # of
states

of
transition
rules

Reference

A1 m + n + max(m,n) − 3 – – Beyer [1]

A1 m + n + max(m,n) − 3 28 – Shinahr [5]

A1 m + n + max(m,n) − 3 28 12849 Umeo et al. [9]

A2−1 m + n + max(m,n) − 2 10 1629 This paper

A2−2 m + n + max(m,n) − 3 11 4044 This paper

A2−3 m + n + max(m,n) − 3 9 2561 This paper

A3 m + n + max(m,n) − 3 84 8979 Umeo et al. [16]

A4 m + n + max(m,n) − 3 124 45128 Umeo et al. [15]

Appendix I

Transition rule set for the 7-state square synchronizer. In each 6-tuple rule such
that Y1 Y2 Y3 Y4 Y5 → Y6, the symbol Y1 denotes the present state, Y2 the
east state, Y3 the north state, Y4 the west state, Y5 the south state, and Y6 the
next state, respectively. A symbol “*” denotes a boundary state of square arrays
(to be continued).

150 H. Umeo et al.

 Q State

1: Q Q Q Q Q Q
2: Q Q Q Q * Q
3: Q Q Q * Q Q
4: Q Q Q * * Q
5: Q Q A A Q B
6: Q Q A B Q G
7: Q Q A C Q A
8: Q Q A G * X
9: Q Q A G Q C

10: Q Q A X * C
11: Q Q A * Q G
12: Q Q A * * C
13: Q Q B A Q G
14: Q Q B C * X
15: Q Q B G Q C
16: Q Q C Q * G
17: Q Q C A * Q
18: Q Q C A Q A
19: Q Q C C Q A
20: Q Q C C * X
21: Q Q C G Q C
22: Q Q C X Q G
23: Q Q C * Q A
24: Q Q C * * G
25: Q Q G A Q C
26: Q Q G B Q C
27: Q Q G C Q C
28: Q Q G G * X
29: Q Q G G Q X
30: Q Q G X * A
31: Q Q G * Q C
32: Q Q G * * A
33: Q Q X Q X Q
34: Q Q X A X G
35: Q Q X A * X
36: Q Q X B X Q
37: Q Q X C X A
38: Q Q X C Q G
39: Q Q X G X C
40: Q Q X X * X
41: Q Q X * Q G
42: Q Q X * * X
43: Q Q * Q Q Q
44: Q Q * Q X Q
45: Q Q * A X G
46: Q Q * A Q G
47: Q Q * B X Q
48: Q Q * C Q A
49: Q Q * C X A
50: Q Q * G Q C
51: Q Q * G X C
52: Q Q * X Q G
53: Q A X A X Q
54: Q A X B X Q
55: Q A X C X Q
56: Q A X G X Q
57: Q A * A X Q
58: Q A * B X Q
59: Q A * C X Q
60: Q A * G X Q
61: Q B X Q X Q
62: Q B X A X Q
63: Q B X B X Q
64: Q B X C X Q
65: Q B X G X Q
66: Q B * Q X Q
67: Q B * A X Q
68: Q B * B X Q
69: Q B * C X Q
70: Q B * G X Q
71: Q C G X C Q
72: Q C G * C Q
73: Q C X Q X Q
74: Q C X A X Q
75: Q C X B X Q
76: Q C X C X Q
77: Q C X G C Q
78: Q C X G X Q
79: Q C * Q X Q
80: Q C * A X Q
81: Q C * B X Q
82: Q C * C X Q
83: Q C * G X Q
84: Q C * G C Q
85: Q G X Q X Q
86: Q G X A X C
87: Q G X B X Q
88: Q G X C X G
89: Q G X G X A
90: Q G * Q X Q
91: Q G * A X C
92: Q G * B X Q
93: Q G * C X G
94: Q G * G X A
95: Q X Q X Q Q
96: Q X Q X B Q
97: Q X Q X C Q
98: Q X Q X G Q
99: Q X Q X * Q

100: Q X Q * Q Q
101: Q X Q * B Q

102: Q X Q * C Q
103: Q X Q * G Q
104: Q X Q * * Q
105: Q X A X Q G
106: Q X A X A Q
107: Q X A X B Q
108: Q X A X C Q
109: Q X A X G C
110: Q X A X * C
111: Q X A * Q G
112: Q X A * A Q
113: Q X A * B Q
114: Q X A * C Q
115: Q X A * G C
116: Q X A * * C
117: Q X B X Q Q
118: Q X B X A Q
119: Q X B X B Q
120: Q X B X C Q
121: Q X B X G Q
122: Q X B X * Q
123: Q X B * Q Q
124: Q X B * A Q
125: Q X B * B Q
126: Q X B * C Q
127: Q X B * G Q
128: Q X B * * Q
129: Q X C X Q A
130: Q X C X A Q
131: Q X C X B Q
132: Q X C X C Q
133: Q X C X G G
134: Q X C X * G
135: Q X C * Q A
136: Q X C * A Q
137: Q X C * B Q
138: Q X C * C Q
139: Q X C * G G
140: Q X C * * G
141: Q X G X Q C
142: Q X G X A Q
143: Q X G X B Q
144: Q X G X C Q
145: Q X G X G A
146: Q X G X * A
147: Q X G * Q C
148: Q X G * A Q
149: Q X G * B Q
150: Q X G * C Q
151: Q X G * G A
152: Q X G * * A
153: Q * Q Q Q Q
154: Q * Q Q * Q
155: Q * Q C Q G
156: Q * A C Q Q
157: Q * A X Q X
158: Q * C B Q X
159: Q * C C Q X
160: Q * G A Q X
161: Q * G G Q X
162: Q * X Q X Q
163: Q * X A X C
164: Q * X A Q C
165: Q * X B X Q
166: Q * X C X G
167: Q * X G Q A
168: Q * X G X A
169: Q * X X Q X
170: Q * X X * F
171: Q * * Q Q Q
172: Q * * Q X Q
173: Q * * A Q C
174: Q * * A X C
175: Q * * B X Q
176: Q * * C Q G
177: Q * * C X G
178: Q * * G Q A
179: Q * * G X A
180: Q * * X Q X

 A State

181: A Q A X * X
182: A Q A * * X
183: A Q B X Q G
184: A Q B X * C
185: A Q B * Q G
186: A Q B * * C
187: A Q C C Q X
188: A Q C X Q A
189: A Q C * Q A
190: A Q X A X A
191: A Q X B Q G
192: A Q X B X G
193: A Q X C Q A
194: A Q X C X A
195: A Q * A X A
196: A Q * B Q G
197: A Q * B X G
198: A Q * C Q A
199: A Q * C X A
200: A A X Q X A
201: A A X A X A

202: A A X C X A
203: A A X X X X
204: A A * Q X A
205: A A * A X A
206: A A * C X A
207: A A * X X X
208: A B A X C C
209: A B A X G B
210: A B A * C C
211: A B A * G B
212: A B X Q X Q
213: A B X A X B
214: A B X B X G
215: A B * Q X Q
216: A B * A X B
217: A B * B X G
218: A C B X C C
219: A C B * C C
220: A C X Q X G
221: A C X A X C
222: A C X A B C
223: A C X B X C
224: A C X B C C
225: A C X G X C
226: A C X X X G
227: A C * Q X G
228: A C * A B C
229: A C * A X C
230: A C * B X C
231: A C * B C C
232: A C * G X C
233: A C * X X G
234: A G X A B B
235: A G X A X B
236: A G X B X C
237: A G X G X C
238: A G * A B B
239: A G * A X B
240: A G * B X C
241: A G * G X C
242: A X Q X A A
243: A X Q X B Q
244: A X Q X C G
245: A X Q * A A
246: A X Q * B Q
247: A X Q * C G
248: A X A X Q A
249: A X A X A A
250: A X A X B B
251: A X A X C C
252: A X A X G B
253: A X A * Q A
254: A X A * A A
255: A X A * B B
256: A X A * C C
257: A X A * G B
258: A X B X Q G
259: A X B X B G
260: A X B X C C
261: A X B X G C
262: A X B X * C
263: A X B * Q G
264: A X B * B G
265: A X B * C C
266: A X B * G C
267: A X B * * C
268: A X C X A A
269: A X C X Q A
270: A X C * Q A
271: A X C * A A
272: A X G X C C
273: A X G X G C
274: A X G X * C
275: A X G * C C
276: A X G * G C
277: A X G * * C
278: A X X X A X
279: A X X X C G
280: A X X * A X
281: A X X * C G
282: A * X A Q X
283: A * X B X C
284: A * X B Q C
285: A * X G X C
286: A * * A Q X
287: A * * B X C
288: A * * B Q C
289: A * * G X C

 B State

290: B Q A X Q X
291: B Q X A Q X
292: B Q X A X G
293: B Q X B X G
294: B Q X C X Q
295: B Q X G X C
296: B Q * A X G
297: B Q * B X G
298: B Q * C X Q
299: B Q * G X C
300: B A X Q X G
301: B A X A C B

302: B A X A X B
303: B A X B C A
304: B A X B X A
305: B A X C X A
306: B A X G X C
307: B A X G G C
308: B A * Q X G
309: B A * A C B
310: B A * A X B
311: B A * B C A
312: B A * B X A
313: B A * C X A
314: B A * G G C
315: B A * G X C
316: B B X Q X B
317: B B X A X B
318: B B X B X B
319: B B * Q X B
320: B B * A X B
321: B B * B X B
322: B C A X A B
323: B C A X C Q
324: B C A * A B
325: B C A * C Q
326: B C B X A A
327: B C B X C C
328: B C B * A A
329: B C B * C C
330: B C G X C B
331: B C G * C B
332: B C X Q X Q
333: B C X A C Q
334: B C X A X Q
335: B C X B C C
336: B C X B X C
337: B C X G C B
338: B C X G X B
339: B C * Q X Q
340: B C * A C Q
341: B C * A X Q
342: B C * B C C
343: B C * B X C
344: B C * G C B
345: B C * G X B
346: B G G X A C
347: B G G X G G
348: B G G * A C
349: B G G * G G
350: B G X Q X B
351: B G X B X B
352: B G X C X Q
353: B G X G X G
354: B G X G G G
355: B G * Q X B
356: B G * B X B
357: B G * C X Q
358: B G * G G G
359: B G * G X G
360: B X Q X A G
361: B X Q X B B
362: B X Q X C Q
363: B X Q X G B
364: B X Q * A G
365: B X Q * B B
366: B X Q * C Q
367: B X Q * G B
368: B X A X Q G
369: B X A X A B
370: B X A X B B
371: B X A X C Q
372: B X A * Q G
373: B X A * A B
374: B X A * B B
375: B X A * C Q
376: B X B X Q G
377: B X B X A A
378: B X B X B B
379: B X B X C C
380: B X B X G B
381: B X B * Q G
382: B X B * A A
383: B X B * B B
384: B X B * C C
385: B X B * G B
386: B X C X Q Q
387: B X C X A A
388: B X C X G Q
389: B X C X * Q
390: B X C * Q Q
391: B X C * A A
392: B X C * G Q
393: B X C * * Q
394: B X G X Q C
395: B X G X A C
396: B X G X C B
397: B X G X G G
398: B X G X * G
399: B X G * Q C
400: B X G * A C
401: B X G * C B
402: B X G * G G
403: B X G * * G
404: B * X C X Q

Smaller-State Implementations of 2D FSSP Algorithms 151

Appendix I. Transition rule set for the 7-state square synchronizer (continued).

405: B * X G X G
406: B * * C X Q
407: B * * G X G

 C State

408: C Q A C Q B
409: C Q A X C X
410: C Q A X * B
411: C Q A * Q B
412: C Q A * * B
413: C Q B C Q C
414: C Q B X Q C
415: C Q B X C X
416: C Q B X * G
417: C Q B * Q C
418: C Q B * * G
419: C Q C A Q B
420: C Q C B Q C
421: C Q G X * B
422: C Q G X Q X
423: C Q G * * B
424: C Q X Q X C
425: C Q X B Q C
426: C Q X B X C
427: C Q X C X C
428: C Q X G X B
429: C Q X G Q X
430: C Q * Q X C
431: C Q * A Q B
432: C Q * B Q C
433: C Q * B X C
434: C Q * C X C
435: C Q * G X B
436: C A Q X A A
437: C A Q X C X
438: C A Q X G G
439: C A Q * A A
440: C A Q * G G
441: C A C X A A
442: C A C X C X
443: C A C X G B
444: C A C * A A
445: C A C * G B
446: C A X Q A A
447: C A X Q X A
448: C A X C A A
449: C A X C X A
450: C A * Q A A
451: C A * Q X A
452: C A * C A A
453: C A * C X A
454: C B X Q X G
455: C B X A X B
456: C B X C X B
457: C B X G X B
458: C B * Q X G
459: C B * A X B
460: C B * C X B
461: C B * G X B
462: C C B X C C
463: C C B * C C
464: C C X Q A X
465: C C X Q X C
466: C C X A Q X
467: C C X B Q X
468: C C X B C C
469: C C X B X C
470: C C X C A X
471: C C X C X C
472: C C * Q X C
473: C C * B X C
474: C C * B C C
475: C C * C X C
476: C G X Q X G
477: C G X Q A G
478: C G X A X B
479: C G X B X G
480: C G X C A B
481: C G X C X B
482: C G X G X B
483: C G * Q A G
484: C G * Q X G
485: C G * A X B
486: C G * B X G
487: C G * C A B
488: C G * C X B
489: C G * G X B
490: C X Q X Q C
491: C X Q X A A
492: C X Q X B G
493: C X Q X C C
494: C X Q X G G
495: C X Q * Q C
496: C X Q * A A
497: C X Q * B G
498: C X Q * C C
499: C X Q * G G
500: C X A X B B
501: C X A X G B
502: C X A X * B
503: C X A * B B
504: C X A * G B

505: C X A * * B
506: C X B X Q C
507: C X B X C C
508: C X B X G G
509: C X B X * G
510: C X B * Q C
511: C X B * C C
512: C X B * G G
513: C X B * * G
514: C X C X Q C
515: C X C X A A
516: C X C X B B
517: C X C X C C
518: C X C X G B
519: C X C * Q C
520: C X C * A A
521: C X C * B B
522: C X C * C C
523: C X C * G B
524: C X G X Q B
525: C X G X B B
526: C X G X G B
527: C X G X * B
528: C X G * Q B
529: C X G * B B
530: C X G * G B
531: C X G * * B
532: C * X A Q B
533: C * X A X B
534: C * X B Q G
535: C * X B X G
536: C * X G Q B
537: C * X G X B
538: C * * A Q B
539: C * * A X B
540: C * * B Q G
541: C * * B X G
542: C * * G Q B
543: C * * G X B

 G State

544: G Q A X Q B
545: G Q A * Q B
546: G Q B X * G
547: G Q B X Q X
548: G Q B * * G
549: G Q C * * A
550: G Q C X * A
551: G Q G X Q B
552: G Q G * Q B
553: G Q X A Q B
554: G Q X A X B
555: G Q X B X B
556: G Q X B Q X
557: G Q X C X A
558: G Q X G Q B
559: G Q X G X B
560: G Q X X Q A
561: G Q X * Q A
562: G Q * A X B
563: G Q * A Q B
564: G Q * B X B
565: G Q * C X A
566: G Q * G Q B
567: G Q * G X B
568: G Q * X Q A
569: G A X Q X G
570: G A * Q X G
571: G B X Q X G
572: G B X A X G
573: G B X B X G
574: G B X C X G
575: G B X G X G
576: G B X X X G
577: G B * Q X G
578: G B * A X G
579: G B * B X G
580: G B * C X G
581: G B * G X G
582: G B * X X G
583: G C C X C G
584: G C C X G A
585: G C C * C G
586: G C C * G A
587: G C X Q X G
588: G C X A X G
589: G C X B X G
590: G C X C X G
591: G C X C C G
592: G C X G X G
593: G C X X X G
594: G C * Q X G
595: G C * A X G
596: G C * B X G
597: G C * C C G
598: G C * C X G
599: G C * G X G
600: G C * X X G
601: G G X B X G
602: G G X C X A
603: G G X C C A
604: G G X G X X

605: G G X X X X
606: G G * B X G
607: G G * C C A
608: G G * C X A
609: G G * G X X
610: G G * X X X
611: G X Q X A G
612: G X Q X B G
613: G X Q X C G
614: G X Q * A G
615: G X Q * B G
616: G X Q * C G
617: G X A X Q B
618: G X A X B G
619: G X A X C G
620: G X A * Q B
621: G X A * B G
622: G X A * C G
623: G X B X Q B
624: G X B X B G
625: G X B X C G
626: G X B X G G
627: G X B X * G
628: G X B * Q B
629: G X B * B G
630: G X B * C G
631: G X B * G G
632: G X B * * G
633: G X C X Q A
634: G X C X B G
635: G X C X C G
636: G X C X G A
637: G X C X * A
638: G X C * Q A
639: G X C * B G
640: G X C * C G
641: G X C * G A
642: G X C * * A
643: G X G X Q B
644: G X G X B G
645: G X G X C G
646: G X G X G X
647: G X G X * X
648: G X G * Q B
649: G X G * B G
650: G X G * C G
651: G X G * G X
652: G X G * * X
653: G X X X B G
654: G X X X C G
655: G X X X G X
656: G X X * B G
657: G X X * C G
658: G X X * G X
659: G * X B Q G
660: G * X B X G
661: G * X C X A
662: G * X C Q A
663: G * X G X X
664: G * * B Q G
665: G * * B X G
666: G * * C X A
667: G * * C Q A
668: G * * G X X

 X State

669: X Q A A Q X
670: X Q X Q X X
671: X Q X Q * X
672: X Q X A X X
673: X Q X A * X
674: X Q X B X X
675: X Q X B * X
676: X Q X C X X
677: X Q X C * X
678: X Q X G X X
679: X Q X G * X
680: X Q X X * F
681: X Q X X Q X
682: X Q X * * F
683: X Q * * Q X
684: X A X Q * X
685: X A X Q X X
686: X A X A B X
687: X A X A X X
688: X A X A * X
689: X A X B X X
690: X A X C X X
691: X A X G C X
692: X A X G X X
693: X A X G * X
694: X A X X A X
695: X A * * A X
696: X B A X A X
697: X B X Q X X
698: X B X Q * X
699: X B X A X X
700: X B X B C X
701: X B X B X X
702: X B X B * X
703: X B X C X X
704: X B X G X X

705: X B X G * X
706: X C A X G X
707: X C B X B X
708: X C B X G X
709: X C C X X X
710: X C G X A X
711: X C X Q X X
712: X C X Q * X
713: X C X A X X
714: X C X B X X
715: X C X C X X
716: X C X C * X
717: X C X G X X
718: X G G G G X
719: X G X Q X X
720: X G X A C X
721: X G X A X X
722: X G X B C X
723: X G X B X X
724: X G X B * X
725: X G X C X X
726: X G X G X X
727: X G X G * X
728: X G X X G X
729: X G * * G X
730: X X Q X Q X
731: X X Q X A X
732: X X Q X B X
733: X X Q X C X
734: X X Q X G X
735: X X A X Q X
736: X X A X A X
737: X X A X B X
738: X X A X C X
739: X X A X G X
740: X X B X Q X
741: X X B X A X
742: X X B X B X
743: X X B X C X
744: X X B X G X
745: X X B X X X
746: X X C X Q X
747: X X C X A X
748: X X C X B X
749: X X C X C X
750: X X C X G X
751: X X C X X X
752: X X G G X X
753: X X G X Q X
754: X X G X A X
755: X X G X B X
756: X X G X C X
757: X X G X G X
758: X X G X X X
759: X X X B X X
760: X X X C X X
761: X X X C C X
762: X X X G X X
763: X X X X X F
764: X X X X * F
765: X X X * X F
766: X X X * * F
767: X X * X X F
768: X X * * X F
769: X * Q X Q X
770: X * Q X A X
771: X * Q X B X
772: X * Q X C X
773: X * A X Q X
774: X * A X A X
775: X * B X Q X
776: X * B X B X
777: X * B X G X
778: X * C X Q X
779: X * C X C X
780: X * G X Q X
781: X * G X A X
782: X * G X B X
783: X * G X G X
784: X * X X Q F
785: X * X X X F
786: X * * X Q F
787: X * * X X F

152 H. Umeo et al.

References

1. Beyer, W.T.: Recognition of topological invariants by iterative arrays. Ph.D. thesis,
p. 144. MIT (1969)

2. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization
problem. Theoret. Comput. Sci. 50, 183–238 (1987)

3. Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.)
Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading
(1964)

4. Moore, F.R., Langdon, G.G.: A generalized firing squad problem. Inf. Control 12,
212–220 (1968)

5. Shinahr, I.: Two-and three-dimensional firing squad synchronization problems. Inf.
Control 24, 163–180 (1974)

6. Umeo, H.: A simple design of time-efficient firing squad synchronization algorithms
with fault-tolerance. IEICE Trans. Inf. Syst. E87–D(3), 733–739 (2004)

7. Umeo, H.: Firing squad synchronization problem in cellular automata. In: Meyers,
R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 4, pp. 3537–3574.
Springer, Springer (2009). doi:10.1007/978-0-387-30440-3 211

8. Umeo, H.: Synchronizing square arrays in optimum-time. Int. J. Gen. Syst. 41(6),
617–631 (2012)

9. Umeo, H., Ishida, K., Tachibana, K., Kamikawa, N.: A transition rule set for the
first 2-D optimum-time synchronization algorithm. In: Peper, F., Umeo, H., Matsui,
N., Isokawa, T. (eds.) Natural Computing, vol. 2, pp. 333–341. Springer, Tokyo
(2010). doi:10.1007/978-4-431-53868-4 38

10. Umeo, H., Kamikawa, N., Nishioka, K., Akiguchi, S.: Generalized firing squad
synchronization protocols for one-dimensional cellular automata - a survey. Acta
Physica Polonica B: Proc. Suppl. 3, 267–289 (2010)

11. Umeo, H., Kubo, K.: A seven-state time-optimum square synchronizer. In: Bandini,
S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 219–
230. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15979-4 24

12. Umeo, H., Kubo, K., Nishide, K.: A class of FSSP algorithms for multi-dimensional
cellular arrays. Commun. Nonlinear Sci. Numer. Simul. 21, 200–209 (2015)

13. Umeo, H., Kubo, K., Takahashi, Y.: An isotropic optimum-time FSSP algorithm for
two-dimensional cellular automata. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol.
7979, pp. 381–393. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39958-9 35

14. Umeo, H., Uchino, H.: A new time-optimum synchronization algorithm for rectan-
gle arrays. Fundamenta Informaticae 87(2), 155–164 (2008)

15. Umeo, H., Yamawaki, T., Nishide, K.: An optimum-time firing squad synchroniza-
tion algorithm for two-dimensional rectangle arrays –freezing-thawing technique
based–. J. Cell. Automata 7, 31–46 (2012)

16. Umeo, H., Yunès, J.-B., Yamawaki, T.: A simple-optimum-time firing squad syn-
chronization algorithms for two-dimensional arrays. In: Proceedings of 2009 Inter-
national Conference on Computational Intelligence, Modelling and Simulation,
CSSim 2009, pp. 120–125. IEEE Computer Society (2009)

http://dx.doi.org/10.1007/978-0-387-30440-3_211
http://dx.doi.org/10.1007/978-4-431-53868-4_38
http://dx.doi.org/10.1007/978-3-642-15979-4_24
http://dx.doi.org/10.1007/978-3-642-39958-9_35

Automata

Derived-Term Automata of Weighted Rational
Expressions with Quotient Operators

Akim Demaille(B) and Thibaud Michaud

EPITA Research and Development Laboratory (LRDE),
14-16, Rue Voltaire, 94276 Le Kremlin-Bicêtre, France

{akim,tmichaud}@lrde.epita.fr

Abstract. Quotient operators have been rarely studied in the context of
weighted rational expressions and automaton generation—in spite of the
key role played by the quotient of words in formal language theory. To
handle both left- and right-quotients we generalize an expansion-based
construction of the derived-term (or Antimirov, or equation) automaton
and rely on support for a transposition (or reversal) operator. The result-
ing automata may have spontaneous transitions, which requires different
techniques from the usual derived-term constructions.

1 Introduction

There are several well-known algorithms to build an automaton from a rational
expression. We are particularly interested in the construction of the derived-
term automaton, pioneered by the derivatives of Brzozowski [4], improved as
partial derivatives by Antimirov [3], and generalized to weighted expressions by
Lombardy and Sakarovitch [13].

Thiemann [16] explores the properties of rational expression operators that
enable the construction of the derived-term automaton. In particular, he shows
that the left- and right- quotients are not “ε-testable”, and that transposition
(aka reversal) is neither “left nor right derivable”. Our purpose is to show
how expansions allow to overcome these issues and succeed in supporting the
operators.

Our contributions include (i) a proof of the “super S” property, (ii) an exten-
sion of rational expressions to support transpose, left- and right-quotient opera-
tors, (iii) an algorithm to build the derived-term automaton of such an expres-
sion which requires (iv) the support of spontaneous transitions in derived-term
automata.

We settle the notations and left quotient in Sect. 2. Rational expansions are
introduced and computed from an expression in Sect. 3; they are used in Sect. 4 to
construct the derived-term automaton. Handled in a different way, the transpose
operator is introduced in Sect. 5 and used to define the right quotient. In Sect. 6
we present related work and conclude in Sect. 7.

c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 155–173, 2017.
DOI: 10.1007/978-3-319-67729-3 10

156 A. Demaille and T. Michaud

Vcsn is a free-software platform dedicated to weighted automata and rational
expressions [9]. All of constructs presented in this paper can be experimented
from a simple web-browser1.

2 Notations

Our purpose is to introduce a left-quotient operator \ for weighted rational
expressions (e.g., E1 := (〈2〉a)\(〈3〉(a + b) + 〈5〉(aa∗) + 〈7〉(ab∗)) + 〈11〉(ab∗),
weights are in angle brackets), and to build an equivalent automaton from it
(Fig. 1). To this end we compute the rational expansion of an expression [7]:

d(E1) =
Label
︷︸︸︷

ε
︸︷︷︸

First

�
[

Polynomial (Sect. 2.3)
︷ ︸︸ ︷

Weight
︷︸︸︷

〈6〉
︸︷︷︸

Immediate Constant term

� 1 ⊕ 〈10〉 �
Expression (Sect. 2.2)

︷︸︸︷

a∗ ⊕
Monomial
︷ ︸︸ ︷

〈14〉 � b∗
︸︷︷︸

Derived term

]

⊕
Label
︷︸︸︷

a
︸︷︷︸

First

�
[

Polynomial
︷ ︸︸ ︷

〈11〉 � b∗
]

︸ ︷︷ ︸

Expansion (Sect. 3.1)

Expansions can be thought as a (non unique) normal form for expressions. Defin-
ing them requires several concepts, introduced bottom-up in this section.

〈11〉(ab∗) + 〈2〉a \ (〈3〉(a + b) + 〈5〉(aa∗) + 〈7〉(ab∗))
〈6〉

a∗

b∗

〈10〉ε

〈14〉ε, 〈11〉a

a

b

Fig. 1. The derived-term automaton of our running example, E1 := (〈2〉a)\(〈3〉(a + b)
+ 〈5〉aa∗ + 〈7〉ab∗) + 〈11〉ab∗.

2.1 Rational Series

Series are to weighted automata what languages are to Boolean automata. Not
all languages are rational (denoted by an expression), and similarly, not all series
are rational (denoted by a weighted expression). We follow Sakarovitch [15].

Let A be a (finite) alphabet; a word m is a finite sequence of letters of A. The
empty word is denoted ε. The set of words is written A∗, and A? denotes A∪{ε}.
A language is a subset of A∗. Let 〈K,+, ·, 0K, 1K〉 be a commutative semiring
whose multiplication will be denoted by implicit concatenation. A (formal power)
series over A∗ with weights (or multiplicities) in K is any map from A∗ to K. The
weight of a word m in a series s is denoted s(m). The empty series, m �→ 0K, is
1 See the interactive environment, http://vcsn-sandbox.lrde.epita.fr, or the companion

notebook, http://vcsn.lrde.epita.fr/dload/doc/ICTAC-2017.html.

http://vcsn-sandbox.lrde.epita.fr
http://vcsn.lrde.epita.fr/dload/doc/ICTAC-2017.html

Derived-Term Automata of Weighted Rational Expressions 157

denoted 0; for any word u (including ε), u denotes the series m �→ 1K if m = u, 0K
otherwise. Equipped with the pointwise addition (s + t := m �→ s(m) + t(m))
and the Cauchy product (s · t := m �→ ∑

u,v∈A∗|u·v=m s(u) · t(v)) as multiplica-
tion, the set of these series forms a semiring denoted 〈K〈〈A∗〉〉,+, ·, 0, ε〉.

The constant term of a series s, denoted sε, is s(ε), the weight of the empty
word. A series s is proper if sε = 0K. The proper part of s, denoted sp, is the
proper series which coincides with s on non empty words: s = sεε + sp (or, with
a slight abuse of notations s = sε + sp).

Star. A weight k ∈ K is starrable if its star, k∗ :=
∑

n∈N
kn, is defined. We

suppose that K is a topological semiring, i.e., it is equipped with a topology,
and both addition and multiplication are continuous. Besides, it is supposed to
be strong, i.e., the product of two summable families is summable. This ensures
that K〈〈A∗〉〉, equipped with the product topology derived from the topology on
K, is also a strong topological semiring. The star of a series is an infinite sum:
s∗ :=

∑
n∈N

sn.
To prove the correctness of our construct (Proposition 6), we will need a

property of star (Proposition 2) which follows from the following result. In var-
ious forms it is named the “denesting rule” [11, p. 57], the “property S” [15,
Propositions III.2.5 and III.2.6], or the “sum-star equation” [10, p. 188]. Proofs
can be found for the axiomatic approach of star (based on Conway semirings),
but we followed the topology-based one, for which we did not find a published
version.

Proposition 1 (Super S). Let K be a strong topological semiring. For any
series s, t ∈ K〈〈A∗〉〉, if s∗

ε, (tεs∗
ε)

∗, and (sε + tε)∗ are defined and (sε + tε)∗ =
s∗

ε(tεs
∗
ε)

∗, then (s + t)∗ = s∗(ts∗)∗.

Proof. This proof climbs from restricted forms (e.g., s being a weight and t being
proper) to the general cases using previous steps. See Appendix A.1. �	

All the usual semirings (Q,R,Rmin,Log, etc.) are strong topological semi-
rings, in which if s∗

ε, (tεs∗
ε)

∗, and (sε+tε)∗ are defined then (sε+tε)∗ = s∗
ε(tεs

∗
ε)

∗.
Proposition 1 (and Proposition 2) actually do not need K to be commutative.

Proposition 2. Let K be a strong topological semiring. Let s ∈ K, t ∈ K〈〈A∗〉〉,
if s∗, (tεs∗)∗, and (s + tε)∗ are defined and (s + tε)∗ = s∗(tεs∗)∗ then (s + t)∗ =
s∗ + s∗t(s + t)∗.

Proof. The result follows from Proposition 1, and from (ts∗)∗ = ε + (ts∗)(ts∗)∗:
(s + t)∗ = s∗(ts∗)∗ = s∗(ε + (ts∗)(ts∗)∗) = s∗ + s∗t(s∗(ts∗)∗) = s∗ + s∗t(s + t)∗.

�	

Left Quotient. Like Li et al. [12], we define the left quotient by series s of series
t as: s\t := v �→ ∑

u∈A∗ s(u) · t(uv).

158 A. Demaille and T. Michaud

Proposition 3 (Quotient is Bilinear [12, Proposition 6]). For weight k ∈ K

and series s, s′, t, t′ ∈ K〈〈A∗〉〉:

s\(t + t′) = s\t + s\t′ s\kt = k(s\t)
(s + s′)\t = s\t + s′\t (ks)\t = k(s\t)

Let u, v be two words, their root r(u, v) is u if u is a prefix of v, v if v is a
prefix of u, undefined otherwise.

Proposition 4. For series s, t ∈ K〈〈A∗〉〉 and words u, v ∈ A∗:

us\vt =

{
0 if r(u, v) is undefined

u′s\v′t otherwise, with u′ = r(u, v)\u, v′ = r(u, v)\v

2.2 Extended Weighted Rational Expressions

Definition 1 (Extended Weighted Rational Expression). A rational
expression E is a term built from the following grammar, where a ∈ A is a
letter, and k ∈ K a weight: E ::= 0 | 1 | a | E + E | 〈k〉E | E · E | E∗ | E\E.

Example 1. Let E1 := (〈2〉a)\(〈3〉(a + b) + 〈5〉aa∗ + 〈7〉ab∗) + 〈11〉ab∗. By “sim-
plifying” the left quotient (distributivity and (〈2〉a)\(〈3〉(a + b)) ≡ 〈6〉1, etc.), it
can be shown to be equivalent to 〈6〉1 + 〈10〉a∗ + 〈14〉b∗ + 〈11〉ab∗.

Rational expressions are syntactic objects; they provide a finite notation for
(some) series, which are semantic objects.

Definition 2 (Series Denoted by an Expression). Let E be an expression.
The series denoted by E, noted [[E]], is defined by induction on E:

[[0]] := 0 [[1]] := ε [[a]] := a [[E + F]] := [[E]] + [[F]] [[〈k〉E]] := k[[E]]
[[E · F]] := [[E]] · [[F]] [[E∗]] := [[E]]∗ [[E\F]] := [[E]]\[[F]]

An expression is valid if it denotes a series. More specifically, this requires that
[[F]]∗ is well defined for each sub-expression of the form F∗, i.e., that the constant
term of [[F]] is starrable in K (Proposition 2). So for instance, 1∗

K
and (a∗)∗ are

valid in B, but invalid in Q.
Two expressions E and F are equivalent iff [[E]] = [[F]]. Some expressions are

“trivially equivalent”; any candidate expression will be rewritten via the follow-
ing trivial identities. Any sub-expression of a form listed to the left of a ‘⇒’ is
rewritten as indicated on the right.

E + 0 ⇒ E 0 + E ⇒ E

〈0K〉E ⇒ 0 〈1K〉E ⇒ E 〈k〉0 ⇒ 0 〈k〉〈h〉E ⇒ 〈kh〉E
(〈k〉?1) · E ⇒ 〈k〉E E · (〈k〉?1) ⇒ 〈k〉E

E · 0 ⇒ 0 0 · E ⇒ 0 0� ⇒ 1 0\E ⇒ 0 E\0 ⇒ 0 1\E ⇒ E

Derived-Term Automata of Weighted Rational Expressions 159

where E stands for a rational expression, � ∈ A? is a label, k, h ∈ K are weights,
and 〈k〉?� denotes either 〈k〉�, or � in which case k = 1K in the right-hand side of
⇒. The choice of these identities is beyond the scope of this paper [13, p. 149],
they are limited to trivial properties; in particular linearity (“weighted ACI”:
associativity, commutativity, and 〈k〉?E + 〈h〉?E ⇒ 〈k + h〉E) is not enforced —
polynomials will take care of it (Sect. 2.3). In practice, additional identities help
reducing the number of derived terms, hence the final automaton size.

2.3 Rational Polynomials

The “partial derivatives” [3] rely on sets of rational expressions, later generalized
to weighted sets [13], i.e., functions (partial, with finite domain) from the set of
expressions into K\{0K}. It proves useful to view such structures as polynomials
of rational expressions. In essence, they capture the linearity of addition.

Definition 3 (Rational Polynomial). A polynomial (of rational expressions)
is a finite (left) linear combination of rational expressions. Syntactically it is
represented by a term built from the grammar P ::= 0 | 〈k1〉�E1⊕· · ·⊕〈kn〉�En

where ki ∈ K\{0K} denote non-zero weights, and Ei denote non-zero expressions.
Expressions may not appear more than once in a polynomial. A monomial is a
pair 〈ki〉 � Ei. The terms of P is the set exprs(P) := {E1, . . . ,En}.

We use specific symbols (� and ⊕) to clearly separate the outer polynomial
layer from the inner expression layer. A polynomial P of expressions can be
“projected” as a rational expression expr(P) by mapping its sum and left multi-
plication by a weight onto the corresponding operators on rational expressions.
This operation is performed on a canonical form of the polynomial (expressions
are sorted in a well defined order). Polynomials denote series: [[P]] := [[expr(P)]].

Example 2 (Example 1 continued). Let E1 := (〈2〉a)\(〈3〉(a + b) + 〈5〉aa∗ +
〈7〉ab∗) + 〈11〉ab∗. The polynomial ‘P1ε := 〈6〉 � 1 ⊕ 〈10〉 � a∗ ⊕ 〈14〉 � b∗’
has three monomials, and expr(P1ε) = 〈6〉1 + 〈10〉a∗ + 〈14〉b∗.

Let � ∈ A? be a label, P = 〈k1〉 � E1 ⊕ · · · ⊕ 〈kn〉 � En a polynomial, k a
weight (possibly zero) and F an expression (possibly zero), we introduce:

� · P := 〈k1〉 � (� · E1) ⊕ · · · ⊕ 〈kn〉 � (� · En)
P · F := 〈k1〉 � (E1 · F) ⊕ · · · ⊕ 〈kn〉 � (En · F)
〈k〉P := 〈kk1〉 � E1 ⊕ · · · ⊕ 〈kkn〉 � En

P1\P2 :=
⊕

〈k1〉�E1∈P1
〈k2〉�E2∈P2

〈k1 · k2〉 � (E1\E2) (1)

Trivial identities might simplify the result, e.g., (〈1K〉�1)\(〈1K〉�a) = 〈1K〉�a.
Note the asymmetry between left and right exterior products. Addition is com-
mutative, multiplication by zero (be it an expression or a weight) evaluates to
the polynomial zero, and left multiplication by a weight is distributive.

160 A. Demaille and T. Michaud

Lemma 1. [[� · P]] = � · [[P]] [[P · F]] = [[P]] · [[F]]
[[〈k〉P]] = 〈k〉[[P]] [[P1\P2]] = [[P1]]\[[P2]].

Proof. These properties are trivial. In particular, the case of \ follows from
Proposition 3 (see Appendix A.2). �	

2.4 Weighted Automata

Definition 4. A finite weighted automaton A is a tuple 〈A,K, Q,E, I, T 〉
where:

– A is an alphabet,
– K (the set of weights) is a semiring,
– Q is a finite set of states,
– I and T are the initial and final functions from Q into K,
– E is a (partial) function from Q×A?×Q into K\{0K}; its domain represents

the transitions: (source, label , destination).

Our automata are “ε-NFAs”: they may have spontaneous transitions (� ∈ A?).
A path π is a sequence of transitions (q0, �1, q1)(q1, �2, q2) · · · (qn−1, �n, qn) where
the source of each is the destination of the previous one; its source is ι(π) :=
q0, its destination is τ(π) := qn, its label is the word �(π) := �1 · · · �n, its
weight is w(π) := E(q0, �1, q1) · . . . · E(qn−1, �n, qn), and its weighted label [14]
is the monomial wl(π) := w(π)�(π). The set of paths of A is denoted Path(A).
A computation c is a path π together with its initial and final functions at the
ends: c := (I(ι(π)), π, T (τ(π))), its weight is w(c) := I(ι(π))w(π)T (τ(π)).

The evaluation of word u by an automaton A, A(u), is the sum of the weights
of all the computations labeled by u, or 0K if there are none. The behavior of
A is the series [[A]] := u �→ A(u). A state q is initial if I(q) �= 0K. A state q is
accessible if there is a path from an initial state to q. The accessible part of an
automaton A is the sub-automaton whose states are the accessible states of A.

Automata with spontaneous transitions may be invalid, if they have cycles
of spontaneous transitions whose weight is not starrable [14].

Definition 5 (Semantics of a State). Given a weighted automaton A =
〈A,K, Q,E, I, T 〉, the semantics of state q (aka, its future) is the series:

[[q]] := T (q) +
∑

π∈Path(A)|q=i(π)

wl(π)T (τ(π)) (2)

Clearly, [[A]] =
∑

q∈Q I(q)[[q]].

Proposition 5. For any automaton A, we have:

[[q]] = T (q) +
∑

�∈A?,q′∈Q

E(q, �, q′)�[[q′]] (3)

Derived-Term Automata of Weighted Rational Expressions 161

The equivalence of (2) and (3) can be seen as two different strategies of eval-
uation: the first one is by depth first (follow each path individually, then sum
their weights), the second one by breadth (starting from the set of initial states,
descend “simultaneously” each transition, and repeat).

A simple proof by induction [7, Sect. 2.5] suffices in the absence of sponta-
neous transitions. With cycles of spontaneous transitions, we face infinite sums
whose formal treatment requires arguments that go way beyond the scope of this
paper. This is in fact the core of the work of Lombardy and Sakarovitch [14].

3 Rational Expansions

Expansions (Sect. 3.1) can be viewed as a normal form of rational expansions
from which the construction of the derived-term automaton is straightforward.
For instance, the (see Sect. 3.2) expansion of 〈2〉ac + 〈3〉bc is a � [〈2〉 � c] ⊕ b �
[〈3〉 � c].

3.1 Rational Expansions

An expansion [6,7] is a syntactic object that denotes a linear form of a
series/expressions: it maps each label to a polynomial. From systems of expan-
sions, building the “equation” automaton is straightforward (Sect. 4). Although
closely related to the derivatives of an expression, expansions can cope more
easily with new operators (such as quotient) than derivatives [6]. They also have
a more “forward” flavor: their computation follow very simple rules such as dis-
tributivity. Let [n] denote {1, . . . , n}.

Definition 6 (Rational Expansion). A rational expansion X is a term built
from the grammar X ::= 0 | �1 � [P1] ⊕ · · · ⊕ �n � [Pn] where �i ∈ A? are labels
(occurring at most once), and Pi non-zero polynomials. The firsts of X is f(X) :=
{�1, . . . , �n} (possibly empty), and its terms are exprs(X) :=

⋃
i∈[n] exprs(Pi).

Polynomials are written in square brackets to ease reading. Given an expansion
X, we denote by X� (or X(�)) the polynomial corresponding to � in X, or the poly-
nomial zero if � �∈ f(X). Expansions will thus be written: X =

⊕
�∈f(X) � � [X�].

An expansion X can be “projected” as a rational expression expr(X) by map-
ping labels and polynomials to their corresponding rational expressions, and ⊕/�
to the sum/concatenation of rational expressions. Again, this is performed on a
canonical form of the expansion: labels and polynomials are sorted. Expansions
also denote series: [[X]] := [[expr(X)]]. An expansion X is said to be equivalent to
an expression E iff [[X]] = [[E]].

The immediate constant term of an expansion X, X$, is the weight of 1 in
X(ε), or 0K if it does not exist. The immediate proper part of X, Xp, is the
expansion which coincides with X but with a null immediate constant term;
hence2 X = ε� [〈X$〉�1]⊕Xp. Beware that [[Xp]] might not be proper; e.g., with
X := ε � [〈2〉 � 1 ⊕ 〈3〉 � a\a], we have Xp = ε � [〈3〉 � a\a], yet [[Xp]] = 3.
2 The (straightforward) definition of addition of expansions, ⊕, will be given below.

162 A. Demaille and T. Michaud

Example 3 (Examples 1 and 2 continued). Let P1a := 〈11〉 � b∗. Expansion
X1 := ε � P1ε ⊕ a � P1a = ε � [〈6〉 � 1 ⊕ 〈10〉 � a∗ ⊕ 〈14〉 � b∗] ⊕ a � [〈11〉 � b∗]
maps the label ε (resp. a) to the polynomial P1ε (resp. P1a). The immediate
constant term of X1 is 6. X1 is equivalent to E1.

Let X,Y be expansions, k a weight, and E an expression (all possibly zero):

X ⊕ Y :=
⊕

�∈f(X)∪f(Y)

� � [X� ⊕ Y�] 〈k〉X :=
⊕

�∈f(X)

� � [〈k〉X�]

X · E :=
⊕

�∈f(X)

� � [X� · E]

X\Y :=
⊕

⎧
⎪⎪⎨

⎪⎪⎩

ε � [X�\Y�] ∀� ∈ f(X) ∩ f(Y)
ε � [Xε\(�′ · Y�′)] ∀�′ ∈ f(Y) if ε ∈ f(X)
ε � [(� · X�)\Yε] ∀� ∈ f(X) if ε ∈ f(Y)

(4)

Since by definition expansions never map to null polynomials, some firsts might
be smaller sets than suggested by these equations. For instance in Z the sum of
ε � [〈1〉 � 1] ⊕ a � [〈1〉 � b] and ε � [〈1〉 � 1] ⊕ a � [〈−1〉 � b] is ε � [〈2〉 � 1].

With the convention that terms with undefined roots are ignored (i.e., equal
to 0), the definition (4) can be stated as

X\Y =
⊕

�∈f(X),�′∈f(Y)
p=r(�,�′)

ε �
[
((p\�) · X�)\((p\�′) · Y�′)

]
(5)

The following lemma is simple to establish: lift semantic equivalences, such
as those of Propositions 3 and 4, to syntax, using Lemma 1 (AppendixA.3).

Lemma 2. [[X ⊕ Y]] = [[X]] + [[Y]] [[〈k〉X]] = 〈k〉[[X]]
[[X · E]] = [[X]] · [[E]] [[X\Y]] = [[X]]\[[Y]].

3.2 Expansion of a Rational Expression

Definition 7 (Expansion of a Rational Expression). The expansion of a
rational expression E, written d(E), is defined inductively as follows:

d(0) := 0 d(1) := ε � [〈1K〉 � 1] d(a) := a � [〈1K〉 � 1]
d(E + F) := d(E) ⊕ d(F) d(〈k〉E) := 〈k〉d(E)

d(E · F) := dp(E) · F ⊕ 〈d$(E)〉d(F)
d(E∗) := ε � [〈d$(E)∗〉 � 1] ⊕ 〈d$(E)∗〉dp(E) · E∗ (6)

d(E\F) := d(E)\d(F) (7)

where d$(E) and dp(E) are the immediate constant term/immediate proper part
of d(E).

Derived-Term Automata of Weighted Rational Expressions 163

The right-hand sides are indeed expansions. The computation trivially ter-
minates: induction is performed on strictly smaller sub-expressions.

Proposition 6. An expression is equivalent to its expansion.

Proof. Follows from a straightforward induction on E [7]. For instance, the
case of left quotient follows from [[d(E\F)]] = [[d(E)\d(F)]](by Definition (7)) =
[[d(E)]]\[[d(F)]](by Lemma 2). The case of star is more delicate than in our pre-
vious work [7] as dp(E) might not denote a proper series. This is handled by
Proposition 2, much more powerful than its predecessor [7, Proposition 2]. �	

4 Expansion-Based Derived-Term Automaton

Definition 8 (Expansion-Based Derived-Term Automaton). The
derived-term automaton of an expression E over G is the accessible part of
the automaton AE := 〈M,G,K, Q,E, I, T 〉 defined as follows:

– Q is the set of rational expressions on alphabet A with weights in K,
– I = E �→ 1K,
– E(F, �,F′) = k iff � ∈ f(d(F)) and 〈k〉 � F′ ∈ dp(F)(�),
– T (F) = d$(F).

It is straightforward to extract an algorithm from Definition 8, using a work-
list of states whose outgoing transitions need to be computed [7, Algorithm 1].
However, we must justify Definition 8 by proving that this automaton is finite.

Example 4 (Examples 1 to 3 continued). With E1 := (〈2〉a)\(〈3〉(a + b) +
〈5〉aa∗ + 〈7〉ab∗) + 〈11〉ab∗, one has:

d(E1) = ε � [〈6〉 � 1 ⊕ 〈10〉 � a∗ ⊕ 〈14〉 � b∗] ⊕ a � [〈11〉 � b∗] (Example 3)
d(a∗) = ε � [〈1〉 � 1] ⊕ a � [〈1〉 � a∗] d(b∗) = ε � [〈1〉 � 1] ⊕ b � [〈1〉 � b∗]

Therefore dε(E1) is 6, and dε(a∗) = dε(b∗) = 1, from which AE1 follows: Fig. 1.

Example 5. The derived-term automaton of ((〈12 〉ab)\(ab∗))∗ is as follows. It
has a non coaccessible state with a spontaneous loop whose weight, 1, is not
starrable. This automaton must be trimmed to be valid.

Theorem 1. For any expression E, AE is finite.

164 A. Demaille and T. Michaud

Proof. The proof goes in several steps (see Appendix A.5). First introduce the
proper derived terms of E, a set of expressions noted PD(E), and the derived terms
of E, D(E) := PD(E) ∪ {E}. PD(E) admits a simple inductive definition similar
to [2, Definition 3], to which we add PD(E\F) := {E′\F′ | E′ ∈ PD(E),F′ ∈
PD(F)}. Second, verify that PD(E) is finite. Third, prove that D(E) is “stable by
expansion”, i.e., ∀F ∈ D(E), exprs(d(F)) ⊆ D(E). Finally, observe that the states
of AE are therefore members of D(E). �	
Theorem 2. If valid, any expression E and its expansion-based derived-term
automaton AE denote the same series, i.e., [[AE]] = [[E]].

Proof. We show that the semantics of the states of AE (3) and of the expressions
in D(E) define the same system of linear equations (Appendix A.6). �	

The constant term of expressions without quotient can be computed syn-
tactically [7, Definition 8], thus invalid expressions can be rejected during the
construction of the derived-term automaton (when computing d$(E)∗ in (6)).
This is no longer true with the quotient operator: the procedure may succeed on
invalid expressions, the validity of the automaton [14] must be verified at end.
The elimination of the spontaneous transitions is a means to check the validity
of the automaton, but the computations highly depend on the semiring.

Example 6. In Q, E := (ab\ab)∗ is invalid as [[ab\ab]] =
[[ε]] whose constant-term, 1, is not starrable in Q.
Therefore its derived-term automaton is invalid in Q.
However they are valid in B.

E (b \ b)E
ε

ε

F∗ b \ bF∗

〈−1〉ε
ε

〈−1〉ε

εThe procedure may also build invalid automata
from valid expressions. Consider for instance F :=
ab\ab + 〈−1〉1: clearly [[F]] = 0, so [[F∗]] = 1. However
the derived-term automaton of F∗ is invalid: it has
spontaneous loops whose weights are not starrable.
This cannot happen in positive semirings.

5 Transposition and Right Quotient

This section introduces the support for the right quo-
tient. We build it on top of a transpose operator, which
might be used eventually with other operators.

Transpose. The transpose (aka reversal or mirror image) of a word m = a1

a2 . . . an is mt := anan−1 . . . a1. The transpose of a series s is st := m �→ s(mt).

Proposition 7. For series s, t ∈ K〈〈A∗〉〉:
(s + t)t = st + tt (ks)t = k(st) (sk)t = (st)k (st)t = ttst stt = s

Derived-Term Automata of Weighted Rational Expressions 165

Right quotient. We define the right quotient of two series s by t as s/t := v �→∑
u∈A∗ s(vu) · t(u). Since K is commutative, quotients are dual (see Appen-

dix A.7).

Proposition 8. If K is commutative, then s/t = (tt\st)t s\t = (tt/st)t.

We extend Definition 1 with: E ::= 0 | 1 | a | E+E | 〈k〉E | E ·E | E∗ | E\E | Et,
with additional identities 0t ⇒ 0, �t ⇒ � and we add [[Et]] := [[E]]t to Definition 2.
Thanks to Proposition 8, we may add support for the right quotient as syntactic
sugar on top of transposition and left quotient: E/F := (Ft\Et)t.

Definition 9. The transposed expansion of an expression E, written dt(E), is
defined inductively as follows:

dt(0) := d(0) dt(1) := d(1) dt(a) := d(a)

dt(E + F) := dt(E) ⊕ dt(F) dt(〈k〉E) := 〈k〉dt(E)

dt(E · F) := dt
p(F) · Et ⊕ 〈dt

$(F)〉dt(E) dt(E∗) := 〈dt
$(E)∗〉 ⊕ 〈dt

$(E)∗〉dt
p(E) · E∗t

dt(E\F) := dt(E)\dt(F) dt(Et) := d(E)

where dt
$(E) and dt

p(E) are the immediate constant term/immediate proper part
of dt(E). Then Definition 7 is extended with d(Et) := dt(E).

Proposition 6 is generalized by proving [[dt(E)]] = [[E]]t (AppendixA.4).

Example 7. It is well known that the prefix of a language can be defined with
Pref(E) := E/A∗. Let E5 := (ab)/(a+b)∗ = ((a + b)∗t\(ab)t)t. We have d(E5) =
ε � [(ba)t ⊕ ((a + b)∗t\a)t]. Its derived-term automaton is:

E5 = ((a + b)∗t \ (ab)t)t ((a + b)∗t \ a)t a 1

(ba)t b

((a + b)∗t \ 1)t(a(a + b)∗t \ 1)t (b(a + b)∗t \ 1)t

ε

ε

a

ε

ε

a

ε
ε

ε ε

b

6 Related Work

The quotient between rational series is surprisingly little treated in the literature.
Even Sakarovitch [15] defines the quotient by a word only: Sect. 1.2.3 p. 62 for
the quotient of a word and of a language, and Sect. 4.1.1 p. 438 for the quotient
of a series. It is quite rare to find the definition of the quotient of languages,
and to define the quotient of series seems a unique feature of Li et al. [12]3.
3 When lifting the quotient of a language (or series) by a word to a quotient of lan-

guages, there are two options: union vs. intersection of the quotients by words. Li et
al. [12] name quotient the union-based versions and write s−1t and st−1, and name
residual the intersection-based ones, written s\t and s/t. In this paper, we focus
only on left and right quotients, but denoted s\t and s/t.

166 A. Demaille and T. Michaud

Expansions were previously introduced [7] to optimize the construction of the
derived-term automaton [13], and to add additional operators (the Hadamard
product and complement). It was shown that they can also support multi-
tape expressions [6]. Expansions previously appeared as an orphan concept
from Brzozowski [4, last line of p. 484], and as “linear forms” by Antimirov
[3, Definition 2.3].

For basic (weighted) expressions, there are more efficient algorithms to build
the derived-term automaton [1,5], but it is unclear how they could be extended
to support operators such quotients. Actually, it is also doubtful whether the
derivative-based approach [13] could be generalized to quotient, as the possible
presence of ε in the firsts would correspond to derivatives with respect to ε.

Being able to feature ε in the firsts of expansions is a key feature. Indeed,
Thiemann [16] shows that quotients have bad properties, in particular, they are
not ε-testable. We avoided these issues by constructing an automaton with spon-
taneous transitions, which allows us to “delay” the computation of the constant-
term of a\ab∗ to the one of b∗. Besides, although transpose is neither left nor
right derivable Thiemann [16], our procedure succeeds thanks to the introduction
of the transposed computation of the expansion: dt.

7 Conclusion

Thiemann [16] reported that the quotient and transpose operators pose real prob-
lems to the derivative-based construction of the derived-term automaton. We
have addressed these issues in different ways. First, we rely on expansions rather
than on derivatives, which allows us to cope naturally with spontaneous transi-
tions, something that would correspond to nonsensical derivatives wrt the empty
word. Second, since we can no longer determine the validity of an expression by
a simple inductive computation, it is actually the validity of the derived-term
automaton that ensures it. Finally, we introduce the transposed computation of
expansions to handle the transpose operator.

In the future we will study the residuals, which, in the case of languages, rely
on the intersection of quotients of words, rather than their union. We also want
to explore other definitions of quotients, so that 〈2〉a\〈2〉ab = a, not 〈4〉a.

Acknowledgments. We thank the anonymous reviewers for their very helpful
comments.

A Proofs

A.1 Proof of Proposition 1

This proof goes in several steps, with different constraints over s and t. From
a formal point of view, it is actually “trivial”: a simple look at the proof of
Sakarovitch [15, Proposition III.2.6] shows that both expressions are formally

Derived-Term Automata of Weighted Rational Expressions 167

equivalent. The real technical difficulty is semantic: ensuring that all the (infi-
nite) sums are properly defined.

We actually only need Item 4 to establish Proposition 2.

1. When s and t are proper. This is a well-known consequence of Arden’s
lemma [15, Proposition III.2.5].

2. When s ∈ K, and t is proper. This property holds when K is a strong
topological semiring, and when s∗ is defined [15, Proposition III.2.6].

3. When s, t ∈ K. This result follows directly from the hypothesis of this
property. Note however that s∗(ts∗)∗ = (s + t)∗ is verified in all the “usual”
semirings.

– If K is a “usual numerical semiring” (i.e., Q,R, or more generally, a sub-
ring of Cn), then s∗ is the inverse of 1 − s, i.e., (1 − s)s∗ = s∗(1 − s) = 1.
To establish the result, we show that s∗(ts∗)∗ is the inverse of 1− (s+ t).
By hypothesis, s∗ and (ts∗)∗ are defined. (1 − (s + t))s∗(ts∗)∗ = (1 −
s)s∗(ts∗)∗ − ts∗(ts∗)∗ = (ts∗)∗ − ts∗(ts∗)∗ = (1 − ts∗)(ts∗)∗ = 1, which
shows that (s + t)∗ is defined.

– If K is a tropical semiring, say, 〈Z∪{∞},min,+,∞, 0〉, then s∗ is defined
iff s ≥ 0, and then s∗ = 0, hence the result trivially follows.

– If K is the Log semiring, 〈R+∪{∞},+Log,+,∞, 0〉 where +Log := x, y �→
− log(exp(−x) + exp(−y)). Then we get x∗ = log(1 − exp(−x)). Again,
one can verify the identity.

4. When s ∈ K and t is any series. By hypothesis, (ts∗)∗ is defined, i.e., (tεs∗)∗

is defined, so by Item 3, (s + tε)∗ is defined.

(s + t)∗ = (s + tε + tp)∗

= (s + tε)∗(tp(s + tε)∗)∗ by Item 2, tp proper, (s + tε)∗ defined
= s∗(tεs∗)∗(tps∗(tεs∗)∗)∗ by Item 3
= s∗(tεs∗ + tps

∗)∗ by Item 2, tps
∗ proper, (tεs∗)∗ defined

= s∗((tε + tp)s∗)∗

= s∗(ts∗)∗

5. When s is any series and t is proper. By hypothesis, s∗ is defined, so s∗
ε is

defined.

(s + t)∗ = (sε + (sp + t))∗
= s∗

ε((sp + t)s∗
ε)

∗ by Item 2, sp + t proper
= s∗

ε(sps
∗
ε + ts∗

ε)
∗

= s∗
ε(sps

∗
ε)

∗(ts∗
ε(sps

∗
ε)

∗)∗ by Item 1, sps
∗
ε and ts∗

ε are proper
= (sε + sp)∗(t(sε + sp)∗)∗ by Item 2 s∗

ε is defined, sp is proper
= s∗(ts∗)∗

168 A. Demaille and T. Michaud

6. When s and t are any series. By hypothesis, s∗ is defined.

(s + t)∗ = (s + tε + tp)∗

= (s + tε)∗(tp(s + tε)∗)∗ by Item 5, tp proper
= s∗(tεs∗)(tps∗(tεs∗)∗)∗ by Item 4, tε ∈ K

= s∗(tεs∗ + tps
∗)∗ by by Item 5, tps

∗ proper
= s∗(ts∗)∗

A.2 Proof of Lemma 1

These are trivial consequences of the properties of the corresponding operations
on series. For instance, let P =

⊕
i∈[m]〈ki〉 � Ei,Q =

⊕
j∈[n]〈hj〉 � Fj , we have:

[[P\Q]] =
[[⊕

i∈[m],j∈[n]

〈ki · hj〉 � (Ei\Fj)
]]

by definition

=
∑

i∈[m],j∈[n]

[[〈ki · hj〉 � (Ei\Fj)]]

=
∑

i∈[m],j∈[n]

(ki · hj) · [[Ei\Fj]]

=
∑

i∈[m],j∈[n]

(ki · hj) · [[Ei]]\[[Fj]]

=
∑

i∈[m],j∈[n]

(ki · [[Ei]])\(hj · [[Fj]]) by Proposition 3

=
∑

i∈[m],j∈[n]

[[
〈ki〉 � Ei

]]
\
[[
〈hj〉 � Fj

]]

=
(∑

i∈[m]

[[
〈ki〉 � Ei

]])
\
(∑

j∈[n]

[[
〈hj〉 � Fj

]])
by Proposition 3

=
[[⊕

i∈[m]

〈ki〉 � Ei

]]
\
[[⊕

j∈[n]

〈hj〉 � Fj

]]

= [[P]]\[[Q]]

A.3 Proof of Lemma 2

The proofs are straightforward: lift semantic equivalences, such as those of
Propositions 3 and 4, to syntax.

We prove for instance the case of the left quotient. However, we will use (5)
rather than (4) for two reasons: not only is the proof more compact, it is also
more general as it provides support for expressions and automata whose labels
are words (e.g., “abcd”), not just letters or ε. In that case, one can verify that
d(“ab”\“abcd”) = ε � [〈1K〉 � “cd”].

Derived-Term Automata of Weighted Rational Expressions 169

The proof is as follows.

[[X\Y]] =
[[⊕

�∈f(X),�′∈f(Y)
p=r(�,�′)

ε �
[
((p\�) · X�)\((p\�′) · Y�)

]]]
by (5)

=
∑

�∈f(X),�′∈f(Y)
p=r(�,�′)

[[((p\�) · X�)\((p\�′) · Y�)]] by Lemma 2 on ⊕

=
∑

�∈f(X),�′∈f(Y)
p=r(�,�′)

(
(p\�) · [[X�]]

)
\
(
(p\�′) · [[Y�′]]

)
by Lemma 1

=
∑

�∈f(X),�′∈f(Y)

� · [[X�]]\�′ · [[Y�′]] by Proposition 4

=
∑

�∈f(X),�′∈f(Y)

[[� · X�]]\[[�′ · Y�′]] by Lemma 1

=
(∑

�∈f(X)

[[� · X�]]
)
\
(∑

�′∈f(Y)

[[�′ · Y�′]]
)

by Proposition 3

=
[[⊕

�∈f(X)

� � X�

]]
\
[[⊕

�′∈f(Y)

�′ � Y�′
]]

by Lemma 2

= [[X]]\[[Y]]

A.4 Proof of Proposition 6

A simple induction on E proves [[d(E)]] = [[E]], see the details in Demaille [7]. To
handle transpose, we add the following case:

[[dt(EF)]] = [[dt
p(F) · Et ⊕ 〈dt

$(F)〉dt(E)]] by Definition 9

= [[dt
p(F)]][[E]]t + dt

$(F)[[d(E)]]t by Definition 2 and [[Et]]

= [[dt
p(F)]][[E]]t + dt

$(F)[[E]]t by induction hypothesis

= [[dt
p(F) + dt

$(F)]][[E]]t

= [[dt(F)]][[E]]t

= [[F]]t[[E]]t = ([[E]][[F]])t = [[EF]]t by Proposition 7

A.5 Proof of Theorem1

This proof shares large parts with the corresponding proof in Demaille [8, Appen-
dix C], itself being based on the work from Lombardy and Sakarovitch [13]. As
in the former we introduce PD(E), the proper derived terms of E, rather than
TD(E), the true derived terms of E, as in the latter.

We will manipulate sets of expressions. To simplify notations, operations on
expressions are lifted additively on sets of expressions. For instance:

{Ei | i ∈ [n]}\{Fj | j ∈ [m]} := {Ei\Fj | i ∈ [n], j ∈ [m]}

170 A. Demaille and T. Michaud

Definition 10 (Derived Terms). Given an expression E, its proper derived
terms is the set PD(E) defined as follows:

PD(0) := ∅ PD(1) := {1} PD(a) := {1} ∀a ∈ A

PD(E + F) := PD(E) ∪ PD(F) PD(〈k〉E) := PD(E) ∀k ∈ K

PD(E · F) := PD(E) · F ∪ PD(F) PD(E∗) := PD(E) · E∗

PD(E\F) := PD(E)\PD(F)

The derived terms of an expression E is D(E) := PD(E) ∪ {E}.
Lemma 3. For any expression E, D(E) is finite.

Proof. Follows from the finiteness of PD(E), which is a direct consequence from
Definition 10: finiteness propagates during the induction. �	
Lemma 4 (Proper Derived Terms and Single Expansion). For any
expression E, exprs(d(E)) ⊆ PD(E).

Proof. Established by a simple verification of Definition 7. �	
The derived terms of derived terms of E are derived terms of E. In other

words, repeated expansions never “escape” the set of derived terms.

Lemma 5 (Proper Derived Terms and Repeated Expansions). Let E
be an expression. For all F ∈ PD(E), exprs(d(F)) ⊆ PD(E).

Proof. This will be proved by induction over E.

Case E = 0 or E = 1. Trivially true, since there is no such F, as PD(E) = ∅.
Case E = a. Then PD(E) = {1}, hence F = 1 and therefore d(F) = d(1) = 〈0K〉,

so exprs(d(F)) = ∅ ⊆ PD(E).
Case E = G + H. Then PD(E) = PD(G) ∪ PD(H). Suppose, without loss of

generality, that F ∈ PD(G). Then, by induction hypothesis, exprs(d(F)) ⊆
PD(G) ⊆ PD(E).

Case E = 〈k〉G. Then if F ∈ PD(〈k〉G) = PD(G), so by induction hypothesis
exprs(d(F)) ⊆ PD(G) = PD(〈k〉G) = PD(E).

Case E = G · H. Then PD(E) = {Gi · H | Gi ∈ PD(G)} ∪ PD(H).
– If F = Gi · H with Gi ∈ PD(G), then d(F) = d(Gi · H) = dp(Gi) · H ⊕

〈d$(Gi)〉d(H).
Since Gi ∈ PD(G) by induction hypothesis exprs(dp(Gi)) = exprs(d(Gi)) ⊆
PD(G). By definition of the product of an expansion by an expression,
exprs(dp(Gi) · H) ⊆ {Gj · H | Gj ∈ PD(G)} ⊆ PD(G · H) = PD(E).

– If F ∈ PD(H), then by induction hypothesis exprs(d(F)) ⊆ PD(H) ⊆ PD(E).
Case E = G∗. If F ∈ PD(E) = {Gi · G∗ | Gi ∈ PD(G)}, i.e., if F = Gi · G∗

with Gi ∈ PD(G), then d(F) = d(Gi · G∗) = dp(Gi) · G∗ ⊕ 〈d$(Gi)〉d(G∗), so

Derived-Term Automata of Weighted Rational Expressions 171

exprs(d(F)) ⊆ exprs(dp(Gi) · G∗) ∪ exprs(d(G∗)).4 We will show that both are
subsets of PD(E), which will prove the result.
Since Gi ∈ PD(G), by induction hypothesis, exprs(dp(Gi)) = exprs(d(Gi)) ⊆
PD(G), so by definition of a product of an expansion by an expression,
exprs(dp(Gi) · G∗) ⊆ {Gj · G∗

j | Gj ∈ PD(G)} = PD(E).
By Lemma 4 exprs(d(G∗)) ⊆ PD(G∗) = PD(E).

Case E = G\H. (1) and (4) show that for all expansions X,Y,

exprs(X\Y) ⊆ exprs(X)\exprs(Y) (8)

Let F ∈ PD(E) = PD(G)\PD(H), i.e., let F = Gi\Hj with Gi ∈ PD(G),Hj ∈
PD(H), then

exprs(d(F)) = exprs(d(Gi\Hj))
= exprs(d(Gi)\d(Hj)) by (7)
⊆ exprs(d(Gi))\exprs(d(Hj)) by (8)
⊆ PD(G)\PD(H) by induction hypothesis
= PD(G\H) by Definition 10
= PD(E)

�	
Lemma 6 (Derived Terms and Repeated Expansions). Let E be an
expression. For all F ∈ D(E), exprs(d(F)) ⊆ PD(E).

Proof Immediate consequence of Lemmas 4 and 5, since D(E) = PD(E) ∪ {E}. �	
We may now prove Theorem 1.

Theorem 1. 1 For any expression E, AE is finite.

Proof. The states of AE are members of D(E) (Lemma 6), which is finite
(Lemma 3). �	

A.6 Proof of Theorem2

The Definition 8 shows that each state qF of the AE has the following semantics:

[[qF]] =
∑

�∈f(d(F))
〈k〉�F′∈d(F)(�)

k�,F′ � [[qF′]] (9)

4 Given two expansions X,Y, exprs(X ⊕ Y) ⊆ exprs(X) ∪ exprs(Y), but they may be
different; consider for instance X = a � [〈1〉 � 1] and Y = a � [〈−1〉 � 1] in Z.

172 A. Demaille and T. Michaud

Besides:
[[F]] = [[d(F)]] (by Proposition 6)

=
[[⊕

�∈f(d(F))

� � d(F)(�)
]]

=
∑

�∈f(d(F))

�[[d(F)(�)]]

=
∑

�∈f(d(F))

�
[[[⊕

〈k�,i〉�F�,i∈d(F)(�)

〈k�,i〉 � F�,i

]]]

=
∑

�∈f(d(F))

�
∑

〈k�,i〉�F�,i∈d(F)(�)

k�,i[[F�,i]]

=
∑

�∈f(d(F))
〈k�,i〉�F�,i∈d(F)(�)

k�,i � [[F�,i]] (10)

(9) and (10) define the same system of linear equations, hence [[AE]] = [[E]]. �	

A.7 Proof of Proposition 8

(tt\st)t(v) = (tt\st)(vt)

=
∑

u∈A∗
tt(vtu) · st(u)

=
∑

u∈A∗
t(utv) · s(ut) by definition of transpose

=
∑

u∈A∗
t(uv) · s(u) by change of variable: u → ut

=
∑

u∈A∗
s(u) · t(uv) by commutativity of K

= (s/t)(v)

Commutativity may be replaced by a weaker condition: ∀u, v ∈ A∗, t(uv) ·s(u) =
s(u) · t(uv).

The right-quotient is treated similarly.

References

1. Allauzen, C., Mohri, M.: A unified construction of the Glushkov, follow, and
Antimirov automata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 110–121. Springer, Heidelberg (2006). doi:10.1007/11821069 10

2. Angrand, P.-Y., Lombardy, S., Sakarovitch, J.: On the number of broken derived
terms of a rational expression. J. Autom. Lang. Comb. 15(1/2), 27–51 (2010)

3. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. TCS 155(2), 291–319 (1996)

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)

http://dx.doi.org/10.1007/11821069_10

Derived-Term Automata of Weighted Rational Expressions 173

5. Champarnaud, J.-M., Ouardi, F., Ziadi, D.: An efficient computation of the equa-
tion K-automaton of a regular K-expression. In: Harju, T., Karhumäki, J., Lepistö,
A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 145–156. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73208-2 16

6. Demaille, A.: Derived-term automata of multitape rational expressions. In: Han,
Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 51–63. Springer, Cham
(2016). doi:10.1007/978-3-319-40946-7 5

7. Demaille, A.: Derived-term automata for extended weighted rational expressions.
In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 351–369.
Springer, Cham (2016). doi:10.1007/978-3-319-46750-4 20

8. Demaille, A.: Derived-term automata for extended weighted rational expressions.
Technical report 1605.01530, arXiv, May 2016. http://arxiv.org/abs/1605.01530

9. Demaille, A., Duret-Lutz, A., Lombardy, S., Sakarovitch, J.: Implementation con-
cepts in Vaucanson 2. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982,
pp. 122–133. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39274-0 12

10. Ésik, Z., Kuich, W.: Equational Axioms for a Theory of Automata. Springer, Hei-
delberg (2004)

11. Kozen, D.C.: Automata and Computability, 1st edn. Springer, Secaucus (1997)
12. Li, Y., Wang, Q., Li, S.: On quotients of formal power series. Comput. Res. Repos.

abs/1203.2236 (2012)
13. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.

TCS 332(1–3), 141–177 (2005)
14. Lombardy, S., Sakarovitch, J.: The validity of weighted automata. Int. J. Algebra

Comput. 23(4), 863–914 (2013)
15. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,

Cambridge (2009). (Corrected English translation of Éléments de théorie des auto-
mates, Vuibert, 2003)

16. Thiemann, P.: Derivatives for Enhanced Regular Expressions. Springer, Cham
(2016)

http://dx.doi.org/10.1007/978-3-540-73208-2_16
http://dx.doi.org/10.1007/978-3-319-40946-7_5
http://dx.doi.org/10.1007/978-3-319-46750-4_20
http://arxiv.org/abs/1605.01530
http://dx.doi.org/10.1007/978-3-642-39274-0_12

Polynomial Time Learner for Inferring
Subclasses of Internal Contextual Grammars

with Local Maximum Selectors

Abhisek Midya1(B), D.G. Thomas2, Saleem Malik3, and Alok Kumar Pani4

1 Computer Science and Engineering, Icfai Tech School, Hyderabad 501203, India
abhisekmidyacse@gmail.com

2 Department of Mathematics, Madras Christian College, Chennai 600059, India
dgthomasmcc@yahoo.com

3 Computer Science and Engineering, Alliance University, Bangalore 562106, India
baronsaleem@gmail.com

4 Computer Science and Engineering, Faculty of Engineering, Christ University,
Bangalore 560074, India

alok.kumar@christuniversity.in

Abstract. Natural languages contain regular, context-free, and context-
sensitive syntactic constructions, yet none of these classes of formal lan-
guages can be identified in the limit from positive examples. Mildly
context-sensitive languages are capable to represent some context-
sensitive constructions such as multiple agreement, crossed agreement,
and duplication. These languages are important for natural language
applications due to their expressiveness, and the fact that they are not
fully context-sensitive. In this paper, we present a polynomial-time algo-
rithm for inferring subclasses of internal contextual languages using posi-
tive examples only, namely strictly and k-uniform internal contextual lan-
guages with local maximum selectors which can contain mildly context-
sensitive languages.

Keywords: Internal contextual grammar with local maximum selec-
tors · Identification in the limit from positive data

1 Introduction

In theoretical computer science, formal language theory is one of the fundamental
areas. This study has its origin in Chomskian grammars. Contextual grammars
which are different from Chomskian grammars, have been studied in [9,13,14,17]
by formal language theorists, as they provide novel insight into a number of issues
central to formal language theory. In a total contextual grammar, a context
is adjoined depending on the whole current string. Two special cases of total
contextual grammars, namely internal and external are very natural and have
been extensively investigated. (External) Contextual grammars are introduced
by Marcus in 1969 [9] with a linguistic motivation in mind. An internal contextual
c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 174–191, 2017.
DOI: 10.1007/978-3-319-67729-3 11

Polynomial Time Learner for Inferring Subclasses 175

grammar generates a language starting from a finite set of strings (the base) and
iteratively adjoining to its contexts outside the current string. In other families
of contextual grammars, such as internal contextual grammars [9], the contexts
are adjoined inside the current string.

According to [12], it is known that many classes of formal languages, such
as regular and context-free, cannot be learned from positive data only. Now it
natural to look for subclasses of these languages which can be identified in the
limit from positive data only.

In this paper, we present a polynomial-time algorithm for learning Strictly
and k-uniform internal contextual languages with local maximum selector
(SLICGM , k−UICGLM) from positive data. Using these two languages, mildly
context sensitive languages can be generated. That is, they can express the
context-sensitive syntactic constructions that are most prevalent in natural lan-
guages, such as multiple agreement, crossed agreement, and duplication [3].

Currently, there is an algorithm known for inferring the subclasses of the class
of internal contextual grammars with finite selector set [10]. Also, polynomial
time inferring algorithm is available for very attractive subclasses of the class of
external contextual grammars [8].

The paper is organized as follows. Section 2 describes the basic classes of
contextual grammars in more detail. Section 3 describes the newly defined sub-
classes. In Sect. 4, we discuss the generative power of the subclasses. Sections 5,
6 and 7 present the pseudocode and discuss the complete algorithm in detail
along with the correctness. Section 8 discusses the characteristic sample of the
algorithm. Running time complexity of the algorithm has been described in
Sect. 9. In Sect. 10, we present a complex example for better understanding of
the algorithm.

2 Basic Classes of Contextual Languages

This section recalls the definition of the basic classes of contextual languages.
[11] For an alphabet Σ, we denote by Σ∗ the free monoid generated by Σ, by λ
its identity, and Σ+ = Σ∗ − {λ}.

Definition 1. A Contextual grammar is a construct G = (Σ,A, (sel1, C1),
(sel2, C2), . . ., (selk, Ck)), for some k ≥ 1, where Σ is an alphabet, A ⊂ Σ∗

is a finite set, called the axiom set, seli ⊆ Σ∗, 1 ≤ i ≤ k, are the sets of selec-
tors, and Ci ⊂ Σ∗ ×Σ∗ where 1 ≤ i ≤ k, and Ci is a finite set of contexts. There
are two basic modes of derivation as follows. For two words x, y ∈ Σ∗, we have
the internal mode of derivation:

x =⇒in y iff x = x1x2x3, y = x1ux2vx3, x2∈seli, (u, v)∈Ci, for some 1 ≤ i ≤ k.
The external mode of derivation:
x =⇒ex y iff y = uxv, x ∈ seli, (u, v) ∈ Ci, for some 1 ≤ i ≤ k. The language
generated by G with respect to each of the two modes of derivation is: Lα(G) =
{w ∈ Σ∗ | x ∈ A, x =⇒∗

α w}, for α ∈ {in, ex}, where =⇒∗
α denotes the reflexive

- transitive closure of =⇒α.

176 A. Midya et al.

A contextual grammar with internal (external) mode of derivation is called an
internal (external) contextual grammar. The corresponding languages are called
an internal contextual languages and external contextual languages.

If sel1, sel2, . . ., selk are languages in the family of regular languages REG,
then G is said to be with REG choice. The family of languages generated by
contextual grammars with REG choice in the mode α of derivation is denoted
by Lα(REG).

Now consider the local maximum selector in internal local mode of derivation.
One natural restriction has been imposed on the use of selectors as seen in [15]. In
fact, there is a need for some length conditions on the selector to be used, such as
minimality or maximality. It implies that we can put the restriction that any time
when a context is adjoined around a selector, no factor of the selector (minimal
case) can be used as a selector, or no word containing the current selector as a
factor can be used as a selector (maximal case). This restriction can be imposed
with respect to the specified pair of selectors or to the whole grammar. Now we
discuss some details about the maximal case only because using maximal use of
selectors, we will be able to generate mildly context-sensitive family of languages
which is one the most important component to characterize natural languages.

Definition 2. Given a contextual grammar G = (Σ,A, (sel1, C1), (sel2, C2),
. . ., (selk, Ck)), we define, for two words x, y ∈ Σ∗, the local maximal mode of
derivation in G is defined as follows: x =⇒lm y iff x = x1x2x3, y = x1ux2vx3,
for x2 ∈ seli, (u, v) ∈ Ci, i ≤ i ≤ k and for no x′

1, x
′
2, x

′
3 ∈ seli, x = x′

1x
′
2x

′
3, x

′
2 ∈

seli, x2 a factor of x′
2. Here lm denotes the local maximal mode.

Example: Consider the following contextual grammar

– G = ({a, b, c}, {abc}, (b+, {(a, bc)}))

Now we show one sample derivation - here [] denotes the contexts and underlined
string is the selector.

– abc =⇒G a[a]b[bc]c
– aabbcc =⇒G aa[a]bb[bc]cc
– aaabbbccc =⇒G aaa[a]bbb[bc]ccc
– The language generated by G is Llm(G) = {anbncn | n ≥ 1}.

3 Subclasses of the Class of Internal Contextual
Grammars with Local Maximum Selectors

In this paper our learning paradigm is identification in the limit which is defined
as follows:

Definition 3 [12]. Method M identifies language L in the limit if, after a finite
number of examples, M makes a correct guess and does not alter its guess there-
after. A class of languages is identifiable in the limit if there is a method M such
that given any language of the class and given any admissible example sequence
for this language, M identifies the language in the limit.

Polynomial Time Learner for Inferring Subclasses 177

Here our main focus is on designing an identification algorithm to infer internal
contextual languages, but according to Gold model [12], no superfinite class of
languages is inferable from positive data only. A class of languages which consists
of all finite languages but atleast one infinite language, is called super finite class
of languages. From [10], we have the following result.

Theorem 1 [10]. The class of internal contextual languages (ICL), is not infer-
able from positive data only.

As we know that the class ICL is not inferable from positive data only, it is
natural to look for subclasses of these languages which can be identified in the
limit from positive data only. We now define strictly internal contextual grammar
with local maximum selectors (SICGLM) and k-uniform internal contextual
grammar with local maximum selectors (k − UICGLM).

Definition 4. A strictly internal contextual grammar with local maxi-
mum selectors (SICGLM) is an internal contextual grammar G =
(Σ,A, (sel1, C1), (sel2, C2), . . ., (selk, Ck)), for some k ≥ 1, where

– Σ is the alphabet.
– A ⊂ Σ∗ is a finite set, called axiom set.
– seli ⊆ Σ∗, 1 ≤ i ≤ k, are the sets of selectors.
– Ci ⊂ Σ∗ × Σ∗, are sets of contexts.

with the following restrictions,

– If the rule is (seli, Ci) where Ci = {(ui, vi)} then first(ui) �= first(vi) where
first(u) denotes the first alphabet of u.

– for each selector, there exists exactly one context (u, v).

The language generated by SICGLMG is given by Lslm(G) = {w ∈ Σ∗ |
x =⇒∗

slm w, x ∈ A} where =⇒slm denotes the one step derivation in strictly
local maximal mode. Now, SLM denotes the family of languages generated by
SICGLM .

Now we present two examples of SICGLM , G1, G2:

– G1 = ({a, b, c}, {abc}, (b+, {(a, bc)})) where first(u) = a �= first(v) =
b, L(G1) = {anbncn | n ≥ 1}. For better understanding, see the derivation
example of Definition 2.

– G2 = ({a, b, c, d}, {abcd}, (ab+c, {(a, c)}), (bc+d, {(b, d)})) where first(u) =
a �= first(v) = b and first(u) = b �= first(v) = d, L(G2) = {anbmcndm |
n ≥ 1}.

Definition 5. A k - uniform internal contextual grammar with local max-
imum selectors (k − UICGLM) is an internal contextual grammar G =
(Σ,A, (sel1, C1), (sel2, C2), . . ., (selk, Ck)), for some k ≥ 1, where

– Σ is the alphabet.
– A is the finite subset of Σ∗, called axiom set.

178 A. Midya et al.

– seli ⊆ Σ∗, 1 ≤ i ≤ k, are the sets of selectors.
– Ci ⊂ Σ∗ × Σ∗, are sets of contexts.

With the following restrictions, if the rule is (seli, Ci) where Ci = {(ui, vi)}
then |u| = |v| = k.

– The language generated by a k − UICGLM G is given by Lklm(G) = {w ∈
Σ∗ | x =⇒∗

klm w, x ∈ A} where =⇒klm denotes the one step derivation in
k-local maximal mode. Now, KLM denotes the family of languages generated
by k − UICGLM .

Now we present a k −UICGLM G3 = ({a, b, c}, {c}, ({c}{a, b}∗, {(a, a), (b, b)})),
Lklm(G3) = {wcw | w ∈ {a, b}∗}.

4 Power of the Subclasses

In this section we discuss the generative power of these subclasses. We know that
several natural languages are not context-free and these languages are consisting
of non-context-free properties. Thus, in order to obtain formal grammars focus-
ing to model natural languages, we have to look for classes of grammars that
are able to generate non-context-free languages. On the other hand they should
not be too powerful, that means they should not generate languages without
any linguistic relevance. So, the idea of keeping the generative power under con-
trol has lead to the notion of mildly context-sensitive family of languages. The
properties of such families are the following [11]:

1. It contains all three basic non-context-free constructions in, that is,
– multiple agreements: L1 = {anbncn | n ≥ 1}
– crossed agreements: L2 = {anbmcndm | n,m ≥ 1}
– duplication: L3 = {wcw | w ∈ (a + b)∗}.

2. All the languages in the family, are polynomial time parsable.
3. It contains semilinear languages.

Here, our defined subclasses can generate three basic non-context-free
constructions.

Theorem 2

(i) L1, L2 ∈ SLM (See examples of Definition 4).
(ii) L3 ∈ KLM (See example of Definition 5).

Lemma 1. KLM − SLM �= φ.

Proof. From Theorem 2 we know that L3 ∈ KLM . The appropriate gram-
mar to generate L3 is G3 = ({a, b, c}, {c}, ({c}{(a + b)∗}, {(a, a), (b, b)})) where
k = 1. But L3 /∈ SLM , as we know from Definition 3 that if the rule is (seli, Ci)
where Ci = {(ui, vi)} then first(ui) �= first(vi). Here it needs to be always
first(ui) = a = first(vi) or first(ui) = b = first(vi). 	

Polynomial Time Learner for Inferring Subclasses 179

Lemma 2. SLM − KLM �= φ.

Proof. From Theorem 2, we can conclude that L1, L2 ∈ SLM . The appropri-
ate grammar to generate L1 and L2 are respectively G1 = ({a, b, c}, {abc},
(b+, {(a, bc)})) where |u| = |a| = 1 and |v| = |bc| = 2 and G2 = ({a, b, c, d},
{abcd}, (ab+c, {(a, bc)}), (bc+d, {(b, d)})) where for selector ab+c the required
contexts are always |u| = |a| = 1 and |v| = |bc| = 2. So it can be understood
easily that L1, L2 /∈ KLM . 	

Lemma 3. SLM ∩ KLM �= φ.

Proof. L5 = {ancbn | n ≥ 0}, L5 ∈ SLM ∩ KLM . The appropriate grammar to
generate L5 is G = ({a, b, c}, {c}, (c, {(a, b)})) and it satisfies Definitions 4 and 5.

	

Theorem 3. SLM is incomparable with KLM and but they are not disjoint.

Proof. We can conclude this fact from Lemmas 1, 2 and 3. 	

5 Identification of Subclasses of Internal Contextual
Languages with Local Maximum Selectors and
Correctness

In this section, we propose an identification algorithm IA to infer SICGLM from
positive examples only. We recall the notion of an insertion rule. The insertion
operation is first considered by Haussler in [6] and based on the operation, inser-
tion systems are introduced by Kari in [7]. Informally, if a string α is inserted
between two parts w1 and w2 of a string w1w2 to get w1αw2, we call the opera-
tion as insertion.

Our identification algorithm IA takes finite sequences of positive examples
itj in the different time interval tj where j ≥ 1. Our goal is to find out SICGLM ,
such that IPS ⊆ L(G) where IPS is the input set. The algorithm works in the
following way.

• After receiving the first set as an input, based on the size of each input, firstly
the algorithm determines the axiom.

• Then it defines insertion rules in order to find out the contexts and selectors
from input example.

• After that, insertion rules are converted into 1-sided1 contextual rules.
• Next it updates with new contextual rules if the next input cannot be gener-

ated by the existing contextual rules, that is called the correction phase. All
the guessing will be done in a flexible way in the sense that the correction
can be done at every instance.

• Then it will convert 1-sided contextual rule into 2-sided contextual rule to
take care of over generalization, that could be the temporary guess gj at
particular time interval tj , about the unknown grammar.

• Finally we will take care of maximal use of selectors.
1 In an 1-sided contextual rule either left context is λ or right context is λ.

180 A. Midya et al.

Lemma 4. Let gt1 , gt2 , . . ., gti be the sequences of guesses (grammar) about
the unknown grammar produced by identification algorithm IA at different
time interval t1, t2, . . ., ti based on different information, it1 , it2 , . . ., iti such that
gf = gf+1.

Proof. The behavior of the algorithm, in particular, there is an upper bound(in
terms of the size the current input set) to make the guess gi about the unknown
grammar where L(gi−1) ⊂ L(gi). Thus, there exist a f ≥ 1 such that gf = gf+1

where L(gf−1) ⊂ L(gf). So, we conclude this lemma. 	

From this, we have the following result.

Theorem 4. SLM is identifiable in the limit from positive examples only.

6 Pseudocode of Our Algorithm

In this section we present the pseudocode of our algorithm IA and also in further
subsections we explain that in detail.

1: axiom ← FIND − SMALLEST (IPS)
2: inser ← GENERATE − INSR(axiom, si)
3: 1 − Sided − Contextual − Rule ← {}
4: 1 − Sided − Correct − Rule ← {}
5: 2 − Sided − Correct − Rule ← {}
6: Table ← �
7: 1 − Sided − Contextual − Rule.push[CONV ERT − into − CONTEXTUAL −

RULE(inser)]
8: IPS ← REMOV E(IPS, si)
9: for (1 − Sided − Contextual − Rulei ∈ {1 − Sided − Contextual − Rule}) do
10: for (si ∈ IPS) do
11: S ← CHECK − CONTEXTUAL − RULE(1 − Sided − Contextual −

Rulei, si)
12: if S = 1 then
13: 1 − Sided − Correct − Rule.push[1 − Sided − Contextual − Rulei]

14: if S = 0 then
15: 1−Sided−Correct−Rule.push[CORRECTION −CONTEXTUAL−

RULE(1 − Sided − Contextual − Rulei, si)]

16: for (1 − Sided − Correct − Rulei ∈ {1 − Sided − Correct − Rule}) do
17: for (si ∈ IPS) do
18: Table.insert[FIND − NOF − APP − of − EACHRULE − in −

EACHMEMBER(1 − Sided − Correct − Rulei, si)]

19: if TableRowi = TableRowj then
20: 2 − Sided − Correct − Rule.push[MERGE(1 − Sided − Correct − Rulei, 1 −

Sided − Correct − Rulej)]

21: LOC − MAX − SELi ← LMS(seli, ui, vi)

Polynomial Time Learner for Inferring Subclasses 181

6.1 Finding Axiom - Pseudocode-Step: 1

axiom ← FIND − SMALLEST(IPS):

– case 1: It finds the smallest string from the current IPS. The smallest string
will be considered as an axiom.

– case 2: If two strings are given with same length then both of them will be
there in the axiom set A.

– case 3: At any point of time a string can be given as an input which is
smaller than some members of the existing axiom set. In such cases, if the
strings existing in the axiom set can be generated from this new smaller string,
then this new smaller string will replace them.

– case 4: If no member of the existing axiom set can be generated from the
new smaller string then the new smaller string will be added to the axiom set
as a new member of the axiom set.

Let IPS be the set of input strings. IPS = {s1, s2, . . ., sk} where sj =
sj1sj2 . . . sjr, 1 ≤ j ≤ k, 1 ≥ r. (i.e., sj is of length r). Then the axiom will
be Min(IPS) where Min(A) denotes the minimum size member of set A.

6.2 Defining Insertion Rule and Converting It into Contextual Rule
- Pseudocode-Steps: 2, 7, 8

– insr ← GENERATE − INS(axiom, si): It generates the insertion rule
from axiom and any member (si) of input set IPS. The output of the function
will be stored in insr as an insertion rule.

– 1 – Sided – Contextual – Rule.push[CONVERT – into – CONTEXT
–UAL – RULE(inser)]: It converts insr into 1−Sided−Contextual−Rule
and push that into 1 − Sided − Contextual − Rule set.

– IPS ← REMOVE(IPS, IPi): It removes the current input member IPi

from IPS.

We now shortly describe about the intuitive idea of the parts 1–4. We try to
identify the selectors from the axiom and contexts from examining input. If the
format of the insertion rule is uxv where u, x, v ∈ Σ+ are left context, inserted
portion, and right context respectively.

– Let the axiom be sa
j = sa

j 1
sa

j 2
sa

j 3
. . . sa

j n
and the examining (scanning) string

be se
j = se

j1
se

j2
. . . se

jr
where r = length of the examining string. Now from the

axiom we can have the following consideration. In the following four parts, if
a string x is a substring of y, then it is denoted by x ∈ sub(y).

– Part 1: let the initial rule be (u, x, v)ins where u = sa
j 1

, v = sa
j 2

sa
j 3

. . . sa
j n

,
check whether any |x| ≤ r exists with uxv ∈ sub(se

j) or not. If yes then fix
that x (i.e., and go to part 3. Else, go to part 2.

– Part 2: Remove the last alphabet of the right context v and the rule becomes
(u, x, v)ins where u = sa

j 1
, v = sa

j 2
sa

j 3
. . . sa

j n−1
, Check whether any |x| ≤ r

exists with uxv ∈ sub(se
j) or not, if yes, go to part 3. Else, go to (recursively)

part 2 until the rule becomes of the form (u, x, v) | u = sa
j 1

, v = sa
j 2

. Then go
to part 4.

182 A. Midya et al.

– Part 3: Conversion into Contextual Rule: 7. After getting correct
insertion rules (which necessarily satisfy uxv ∈ sub(se

j)), they are converted
into 1-sided contextual rules as follows: (u, x, v)ins −→ (sel, (u, v))icg where
selicg = uins, vicg = x, uicg = λ and the omitted right context vins will be
treated as the left context uins for the next insertion rule. Now, we remove
(ux)ins as a substring from the examining string and only uins from the
axiom. Once we get a selector and associated context with it, we have the
following conditions for each insertion rule.

– Condition 1: If (|u| + |x| + |v|)ins = |E| where |E| denotes the length of
examining string, it implies that only one rule has been applied and we have
obtained that already.

– Condition 2: If (|u|+|v|)ins ≤ |sa
j | where |sa

j | denotes the length of the axiom,
then we remove uins from axiom sa

j , and obtain a new temporary axiom. Also
consider vins = uins for the next insertion rule. Next, it removes (ux)ins as a
substring from se

j and obtain a new temporary input. Here after we continue
our procedure with this temporary axiom and temporary examining input in
the same way.

– Condition 3: If (|u| + |x| + |v|)ins ≤ |E| but (|u| + |v|)ins = |sa
j |, it implies

that some part is still left to scan and that is left context uicg of the first
selector selfirst

icg or right context vicg of the last selector sellast
icg , then we will

include them as a new rule.
(selnew, {umew, vnew})new where unew = uicg, vnew = λ, selnew = selfirst

icg , in
another case, vnew = vicg, selnew = sellast

icg . For these rules, we will never go
for correction.

– Part 4: If uins = sa
j 1

and vins = sa
j 2

, this time we consider uins = sa
j 1

sa
j 2

.
Rest of the axiom part will be considered as right context vins of the new rule
as follows, (u, x, v)ins where u = sa

j 1
sa

j 2
, v = sa

j 3
. . . sa

j n
and go to part 1 until

uins = sa
j 1

sa
j 2

sa
j 3

. . . sa
j n

. In that case, defining insertion rule is not possible.
Here our selection of axiom is wrong, so we need to start with different axiom.

In this section, we get the selectors from axiom and contexts from examining
input. Later on for new input, we may need to change our it for wrong guess
(next section).

6.3 Making Correction and Updating Rules - Pseudocode-Steps:
9–15

– S ← CHECK − CONTEXTUAL − RULE(1 − Sided − Contextual−
Rulei, si): It checks the correctness of 1 − Sided − Contextual − Rulei for
another input.

– If S is true then the correct 1 − Sided − Contextual − Rulei will be pushed
onto set {1−Sided−Correct−Rulei} and continue the process for the next
input.

– CORRECTION–CONTEXTUAL–RULE(1 – Sided –Contextual –
Rulei, si): Otherwise it goes for correction.

Polynomial Time Learner for Inferring Subclasses 183

Below we have discussed that if the new examining string is not derivable with
the existing set of contextual rules, then we need to go for correction and updat-
ing with new rules.

Let the rule be Ri : (seli, (ui, vi))icg where ui = λ. Examining string se
j =

se
j1

se
j2

. . . se
jr

. We can represent the examining as X selis
e
jy+1

se
jy+2

. . . se
jy′

seli+1 Z where X,Z ∈ Σ∗ and the remaining parts of the string. The exam-
ining string is presented in this form X selis

e
jy+1

se
jy+2

. . . se
jy′ seli+1 Z because

we make the correction of rule Ri using rule Ri+1, so it is needed to introduce
the seli and seli+1 both.

Proposition 1. In case of correction, we deal with only 1-sided contextual rules
where left context is always empty. (see condition 3 of Subsect. 6.2)

If seli = se
j l

se
j l+1

. . . se
jy

. If selector seli, seli+1 are not present in se
j then new

insertion rule has to be defined again to find out the correct selectors and go
to Sect. 6.2. If defining insertion rule is not possible even after this step, then it
indicates that the chosen axiom is wrong. In that case, we will choose some other
axiom, if available. If no other axiom is available then we add the examining
string into the axiom set as a new member of axiom set (recall that we have
positive examples only).

If vi �= se
jy+1

se
jy+2

. . . se
jy′ , then correction and updating is required. Let vi

be V1V2 . . . Vw and se
jy+1

se
jy+2

. . . se
jy′ be Q1Q2 . . . Qz for convenience sake.

To apply the rule properly the following condition is required, V1V2 . . . Vw =
Q1Q2 . . . Qz where w = z.

Here we are making an analysis to find out the partially equal part (pre-
fix/suffix) of V1V2 . . . Vw and Q1Q2 . . . Qz.

We have shown that the correction part for one rule, in the same way the
correction can be done for other rules.

Theorem 5. If the analysis starts with equality such that Q1 = V1, Q2 =
V2, . . ., Qf = Vs, and Qf+1 �= Vs+1 or f = z or s = w, then we can have four
different type of errors which are stated in terms of following lemmas. (Finding
common prefix part).

Lemma 5. If (f = z and s = w) then it implies that matching is correct, so no
need to make any correction for this rule and the rule is correct.

Lemma 6. If (f = z and s < w) then we infer two new rules.

Proof. – Rulei′ : (seli′ , Ci′) where Ci ={(ui′ , vi′)}, vi′ =V1V2 . . . Vs = Q1Q2 . . .
Qz, ui′ = λ, seli′ = seli.

– Rule(i+1)′ : (sel(i+1)′ , C(i+1)′) where C(i+1)′ = {(u(i+1)′ , v(i+1)′)}, u(i+1)′ =
Vs+1Vs+2. . .Vw, v(i+1)′ = λ, sel(i+1)′ = sel(i+1). 	

Lemma 7. If (f < z and s = w) then we infer two new rules.

184 A. Midya et al.

Proof. – Rulei′ : (seli′ , Ci′) where Ci = {(ui′ , vi′)}, vi′ = V1V2. . .Vw = Q1Q2 . . .
Qf , ui′ = λ, seli′ = seli.

– Rule(i+1)′ = (sel(i+1)′ , C(i+1)′) where C(i+1)′ = {(u′
(i+1), v(i+1)′)}, u(i+1)′ =

Qf+1Qf+2. . .Qz, v(i+1)′ = λ, sel(i+1)′ = sel(i+1). 	

Lemma 8. If (f < z and s < w) then we infer three new rules.

Proof. – Rulei′ : (seli′ , Ci′) where Ci = {(ui′ , vi′)}, vi′ = V1V2. . .Vs = Q1Q2 . . .
Qf , ui′ = λ, seli′ = seli.

– Rule(i+1)′ : (sel(i+1)′ , C(i+1)′) where u(i+1)′ = Vs+1Vs+2 . . . Vw, u(i+1)′ =
λ, sel(i+1)′ = seli+1.

– Rule(i+2)′ : Rule(i+2)′ : (sel(i+2)′ , C(i+2)′) where u(i+2)′ = Qf+1Qf+2 . . .
Qz, v(i+2)′ = λ, sel(i+2)′ = seli+1. 	

Theorem 6. If the analysis starts with inequality such that Q1 �= V1, but Qz =
Vw, Qz−1 = Vw−1 . . . Qf = Vs, and Qf−1 �= Vs−1 then we can have three different
type of errors which can be seen in the following lemmas. (Finding common suffix
part).

Lemma 9. If (s = 1, f > 1) then we infer two new rules.

Proof. – Rulei′ : (seli′ , Ci′) where Ci′ = {(ui′ , vi′)}, ui′ = V1V2 . . . Vw, vi′ =
λ, seli′ = seli+1.

– Rule(i+1)′ : (sel(i+1)′ , C(i+1)′) where C(i+1)′ = (u′
(i+1), v(i+1)′) where

v(i+1)′ = Q1Q2 . . . Qf−1, u(i+1)′ = λ, sel(i+1)′ = seli. 	

Lemma 10. If (s > 1) then we infer three new rules.

Proof. – Rulei′ : (sel′i, C
′
i) where Ci′ = {(ui′ , vi′)}, ui′ = VsVs+1 . . . Vw, vi′ =

λ, seli′ = seli+1.
– Rule(i+1)′ : (sel(i+1)′ , C(i+1)′) where C(i+1)′ = (u(i+1)′ , v(i+1)′), v(i+1)′ =

Q1Q2 . . . Qf−1, u(i+1)′ = λ, sel(i+1)′ = seli.
– Rule(i+2)′ : (sel(i+2)′ , C(i+2)′) where C(i+2)′ = (u(i+2)′ , v(i+2)′), u(i+2)′ =

λ, v(i+2)′ = V1V2 . . . Vs−1, sel(i+2)′ = seli. 	

Lemma 11. If Qz �= Rw then we infer two new rules. (In this case Theorem6
is not applicable here because common prefix/suffix part is absent).

Proof. – Rulei′ : (sel′i, C
′
i) where Ci = {(ui′ , vi′)}, vi′ = V1V2 . . . Vw, ui′ =

λ, seli′ = seli.
– Rule(i+1)′ : (sel(i+1)′ , C(i+1)′) where C(i+1)′ = (u′

(i+1), v(i+1)′ = Q1Q2 . . . Qz,
u(i+1)′ = λ, sel(i+1)′ = seli. 	

In this section, we must notice that we have different rules with same selectors.
According to Definition 4, for each selector there must be one rule. As we are
inferring 1-sided contextual rule, it does not satisfy our Definition 4. In the next
section we will convert 1-sided contextual rule into 2-sided contextual rule in
order to take care of over generalization.

Polynomial Time Learner for Inferring Subclasses 185

7 Controlling over Generalization - Pseudocode-Steps:
16–20

In this section we determine the number of applications of each rule to generate
the given input set. It is presented in table. We put priority in applying rules
where left context is empty and context is smaller in size. If it is found that
without using any rule we can generate full input set then we can ignore that
rule.

– Using steps 16, 17 - we scan all the correct contextual rule for all the member
of input set.

– Table.insert[FIND − NOF − APP − of − EACHRULE − in − EACH
MEMBER(1 − Sided − Correct − Rulei, IPi)]: It finds out the applica-
tion of each rule on each member of the input and insert that record into the
table.

– 2 – Sided –Correct –Rule.push[MERGE(1 – Sided –Correct –Rulei,
1 − Sided − Correct − Rulej)]: In this case if we find that ith row
(TableRowi) and jth row (TableRowj) of the table are same then we merge
these two rules and store as a 2 − Sided − Correct − Rule.

Actually all the rules are 1-sided where left contexts or right contexts are empty
that generates more elements. Thus, to control this over generalization, we check
that how many times each rule is applied in each member of the input set. Rules
which are applied equal number of times in each member, those can be merged
into one rule based on condition.(discussed in Lemmas 12 and 13)

Lemma 12. If consecutive selectors are seli, selj with (j − i) = 1 and left con-
texts(right contexts) are null in both of the rule then we can get 2-sided internal
contextual rule after merging them.

Proof. Here seli, selj denote ith and jth selector, vi, vj are right contexts of them
respectively, and ui, uj are ith and jth left context of them respectively.

– Ri : (seli, (ui, vi))icg, Rj : (selj , (uj , vj))icg.
– case 1: If seli, selj where (j − i) = 1, if vi = vj = λ then rule becomes

Rnew : (selnew, (unew, vnew))icg where selnew = seli, vnew = uj .
– case 2: If seli, selj where (j − i) = 1, if ui = uj = λ then rule becomes

Rnew : (selnew, (unew, vnew))icg where unew = vi, selnew = selj .

Lemma 13. If consecutive selectors are seli, selj with (j − i) = 1 and left con-
texts of ith rule and right context of jth rule is null then we can get 1-sided
internal contextual rule after merging them.

Proof. Here seli, selj denote ith and jth selector, ui, vj are left contexts of ith
rule and right context of jth rule respectively.

– Ri : (seli, (ui, vi))icg, Rj : (selj , (uj , vj))icg.
– If seli, selj where (j − i) = 1, if ui = vj = λ then rule becomes Rnew :

(selnew, (unew, vnew))icg where selnew = seli, vnew = vivj .

186 A. Midya et al.

7.1 Finding Maximal Use of Selectors - Step 21

In this subsection we show how to identify regular selector set and use the
maximal idea. In this section we denote our already obtained individual selectors
as SEL.

COM(A,B) computes the common subword between A,B. On the other
hand, PREF (A), SUFF (B) denote the prefix and suffix part of A,B respec-
tively, sel stands for selector.

Lemma 14. For any selector and associated context with it, if COM(PREF
(SEL), SUFF (u)) �= λ or COM(PREF (v), SUFF (SEL)) �= λ then we get
regular selector set and we focus on the maximal use of selectors.

Proof. – COM(PREF (sel)), SUFF (u)): If a rule is (SEL, (u, v))icg where
SEL = X1X2..Xk, u = u1u2. . .um where X1 = uj ,X2 = uj+1, . . .,Xn =
um, j ≥ 1 then the regular selector set becomes SEL = (X1X2. . .Xn)∗

Xn+1

Xn+2.. . .Xk.
– COM(PREF (v), SUF (SEL)): If a rule is (SEL, (u, v))icg where SEL =

X1X2. . .Xk, v = v1v2. . .vm where Xj = v1,Xj+1 = v2, . . .,Xk = vn, j ≥ 1
then the selector set becomes SEL = X1X2. . .(XjXj+2. . .Xk)∗. (see example)

Remark 1. The above algorithm can also be used to identify a k-uniform internal
contextual grammar with local maximum selectors. A required modification is
that k is also given along with the input set.

In this case, at the time of defining insertion rule (Sect. 6.2), we need to focus
on the size of selectors and contexts in terms of column as k is given as an input.
Defining insertion rule should be done in the following way, uxv ∈ sub(se

j) where
|u| = |v| = k.

8 Characteristic Sample

The most widely used definition of data efficiency relies on the notion of charac-
teristic sample. The characteristic sample is a finite set of data from a language
L that ensures the correct convergence of the algorithm on any presentation of
L as soon as it is included in the data seen so far.

Definition 6 (Characteristic Sample - CS). If Let L be a SICLLM then a
finite set CS is called a characteristic sample of L if and only if L is the smallest
SICLLM containing CS.

Consider G1 = ({a, b, c}, {abc}, (b+, {(a, bc)})) where first(u) = a �= first(v) =
b, L(G1) = {anbncn | n ≥ 1}. Here, CS = {abc, aaabbbccc, aabbcc, aaaabbbbcccc}.

When the input set IPS of the identification algorithm IA contains all the
elements of CS, the algorithm converges to a correct final guess for the target
SICLLM . Hence, it is clear from the manner in which the characteristic sample
CS is formed that, the class SLM is identifiable in the limit from positive data.

Polynomial Time Learner for Inferring Subclasses 187

9 Time Complexity of Our Algorithm

We analyze the time complexity of our algorithm in two aspects, time for updat-
ing a conjecture and a bound on the number of implicit errors of guesses. We
adapt this idea of time complexity analysis from [16]. Here we make an analysis
of our pseudocode step by step.

– Step 1: If k number of strings are given in the input set, then we need to find
out the size of each member of the set, so here the time complexity depends
on the number of input member k and size of each member of input set. So,
the time taken by step 1 is SumofSize(IPS).

– Step 2: In order to generate all the possible subarrays, it takes polynomial
time in the size of the axiom that is Size(axiom). Also when we search the
substring (uxv) in the examining input then it takes even linear time of the
size of the examining input that is Size(ExaminingInput).

– Step 3–6: It is only declaration.
– Step 7, 8: It can be seen easily that these two steps take constant time. Also

removing one element from the input set, takes constant time. 5
– Step 9–15: Let k be the number of input arrays in the input set. If all the rules

are correct then we do not need to go for any correction, so time complexity
depends on k and SumofSize(IPS). Also for any incorrect rule we need go
for correction and the correction part takes polynomial time in the size of the
input set that is SumofSize(IPS‘), finally these step 9–15 can be executed
in polynomial time in the size of the set.

– Step 16–18: These three steps depend on the number of 1-sided-contextual-
rule, let it be l and again the size of the input set.

– Step 19–20: In these two steps, firstly we search the table we if we find any two
rows are same then merge these two 1-sided-contextual-rule. So, it depends
on the size of the table.

– Step 21: It finds the regular selector. In this case, running time depends on
the size of the correct contextual rule.

Lemma 15 (Time for updating a conjecture). The identification algorithm
IA identifies a target grammar gf , in the limit, from positive data, satisfying the
property that the time for updating the conjecture is bounded by polynomial in
the size of the, SumofSize(IPS).

Proof. From the above discussion we can conclude that. 	

Lemma 16 (Number of implicit errors of guesses). The number of implicit
errors of guesses of IA, is bounded by polynomial in the cardinality of set IPS.

Proof. From the previous step by step running time discussion we can conclude
that. 	

Summing up the previous discussion about the definition of running time com-
plexity [16] and last two lemmas, we have the following theorem.

Theorem 7. The identification algorithm IA can be implemented to run in time
polynomial in the size of IPS for updating conjecture, and the number of implicit
errors of guesses is bounded by polynomial in the cardinality of set IPS.

188 A. Midya et al.

10 Example Run

Given input at time-unit t1 is it1 = IPS = {s1 = abbcdd, s2 = aabbbccddd}.
Examining string se

2 = se
21s

e
22 . . . se

210 = aabbbccddd, Axiom sa
1 = sa

11s
a
12 . . . sa

16 =
abbcdd.

Defining Insertion Rule:

– (u, x, v)ins where u = a, v = bbcdd, Check whether any |x| ≤ r exists with
uxv ∈ sub(se

2)? No-go to part 2.
– (u, x, v)ins where u = a, v = bbcd, Check whether any |x| ≤ r exists with

uxv ∈ sub(se
2)? No-go to part 2.

– (u, x, v)ins where u = a, v = bbc, Check whether any |x| ≤ r exists with
uxv ∈ sub(se

2)? Yes- x = ab, go to part 3.

According to condition 2 of Subsect. 6.2, (|u| + |v|)ins ≤ |sa
j |, so for the next

insertion rule - u = a, x = ab are removed from the examining string and u is
removed from axiom. Therefore string becomes bbccddd and temporary axiom
will be bbcdd. Existing v = bbc will be considered as u (left context) for the next
insertion rule. (u, x, v)ins where u = bbc, v = dd, x = c.

Now according to condition 3 of Subsect. 6.2, (|u| + |x| + |v|)ins ≤ |E| but
(|u|+|v|)ins = |sa

j |, so in this new insertion rule existing v = dd will be considered
as a u (for last selector) of the new rule. Now the axiom is covered completely
and the rest part of the string will be considered as x of the next insertion rule.
(u, x, v)ins where u = dd, v = λ, x = d. Finally the insertion rules are

– (u, x, v)ins where u = a, v = bbc, x = ab
– (u, x, v)ins where u = bbc, v = dd, x = c
– (u, x, v)ins where u = dd, v = λ, x = d

Converting into Contextual Rule: For A1

– R1 : (sel1, (u1, v1))icg where sel1 = a, v1 = ab, u1 = λ,R2 : (sel2, (u2, v2))icg

where sel2 = bbc, v2 = c, u2 = λ,R3 : (sel3, (u3, v3))icg where sel3 = dd, v3 =
d, u3 = λ.

Next input set at time-unit t2 is it2 = IPS = {s3 = aaabcccd, s4 = aabccd}. s4
will be the new member of axiom set because s1, s4 both are of same lengths.
abbcdd, aabccd are considered as A1, A2 respectively.

Try to apply R1, R2, R3 on s3 but here we are not getting proper selectors
also, so we need to define the insertion rule again. But here defining insertion is
not possible from axiom A1, so we define he insertion rule from A2.

– (u, x, v)ins where u = a, v = abcc, x = a.
– (u, x, v)ins where u = abcc, v = d, x = c.

After converting into contextual rules: for A2-

– R1 : (sel1, (u1, v1))icg where sel1 = a, v1 = a, u1 = λ,R2 : (sel2, (u2, v2))icg

where sel2 = abcc, v2 = c, u2 = λ.

Polynomial Time Learner for Inferring Subclasses 189

Now we will check that from A2, generating S1 is possible or not. Here A2 is
correct axiom for s1. So the rules will be after converting into contextual rule-

– R3 : {(sel3, (u3, v3))icg where sel3 = aa, v3 = bb, u6 = λ | (i ≥ 1)}, R4 :
{(sel4, (u4, v4))icg where sel4 = bccd, v4 = d, u4 = λ | (i ≥ 1)}.

Input at time-unit t3 is it3 = IPS = {s5 = aabbccdd}.

– From A1, deriving s5 is possible because selectors are matching but needs to
make the correction.

– In the same way we can verify that from A2 it is possible to generate s5 or
not, using second set of rule. Selectors are not matching, so need to define
insertion rule. Here defining insertion rule is possible, it suggests that axiom
is correct for S5.

– In the same way we can define insertion rules and convert insertion rules into
contextual rule to reach S5 from A2.

– R5 : (sel4, (u4, v4))icg where sel4 = aa, v1 = b, u1 = λ,R6 : (sel5, (u5, v5))icg

where sel5 = bccd, v5 = d, u5 = λ.
– Now with this new existing set of rule for A2, generating S2 is possible.

Making Correction and Updating Rules

– Here we are making the correction of R1 (for A1) to generate S5. Now let v1
be V1V2 = ab where w = 2. Xsel1Q1sel2Z = aabbccdd where sel1 = a,Q1 =
a, sel2 = bbc,X = λ,Z = cdd.

– Q1 = a = V1, Here (f = z = 1 and s < w = 2). (According to Lemma 6)
– R1 is changed and it becomes R1 : (sel1, (u1, v1))icg where sel1 = a, v1 =

a, u1 = λ.

New the set of rule will be after making the correction-for A1 to generate S2, S5.

– R1 : (sel1, (u1, v1))icg where sel1 = a, v1 = a, u1 = λ
– R2 : (sel2, (u2, v2))icg where sel2 = bbc, v2 = c, u2 = λ
– R3 : (sel3, (u3, v3))icg where sel3 = dd, v3 = d, u3 = λ
– R4 : (sel4, (u4, v4))icg where sel4 = bbc, v4 = λ, u4 = b

From A2-possible to generate s2, s3, s5

– R1 : (sel1, (u1, v1))icg where sel1 = a, v1 = a, u1 = λ
– R2 : (sel2, (u2, v2))icg where sel2 = abcc, v2 = c, u2 = λ
– R3 : (sel3, (u3, v3))icg where sel4 = aa, v4 = b, u4 = λ
– R4 : (sel4, (u4, v4))icg where sel5 = bccd, v5 = d, u5 = λ

Controlling over Generalization and Finding Maximum Selectors. So
two sets of rules are here, one is for axiom A1 and another one is for axiom A2.
Now we will check that how many times each rule has been used in each string
and that controls the over generalization. Table 1 contains application of each
rule for A1, s2 = aabbbccddd, s5 = aabbccdd. Also Table 2 contains application of
each rule for A2, s2 = aabbbccddd, s3 = aaabcccd, s5 = aabbccdd.

190 A. Midya et al.

Table 1. Finding application of each rule for A1

Rules s2 s5

R1 = (a, (λ, a)) 1 1

R2 = (bbc, (λ, c)) 1 1

R3 = (dd, (λ, d)) 1 0

R4 = (bbc, (b, λ)) 1 0

For A1, we can merge (R1, R2), (R3, R4), So according to Lemmas 12, 13 and
14. R12 = (bbc+, (a, c)), R34 = (b+bc, (b, d)), we can write R12 = (b+c+, (a, c)),
R34 = (b+c+, (b, d)).

Table 2. Finding application of each rule for A2

RULE s2 s3 s5

R1 = (a, (λ, a)) 0 1 0

R2 = (abcc, (λ, c)) 0 1 0

R3 = (aa, (λ, b)) 2 0 1

R4 = (bccd, (λ, d)) 2 0 1

For A2, we can merge (R1, R2), (R3, R4), So according to Lemmas 12, 13 and
14 - R12 = (a+b+c+, (a, c)), R34 = (b+c+d+, (b, d)).

References

1. Marcus, G.F.: Negative evidence in language acquisition. Cognition 46, 53–85
(1993)

2. Oates, T., Desai, D., Bhat, V.: Learning k-reversible context-free grammars from
positive structural examples. In: Proceedings of the Nineteenth International Con-
ference on Machine Learning (2002)

3. Oates, T., Armstrong, T., Harris, J., Nejman, M.: On the relationship between
lexical semantics and syntax for the inference of context-free grammars. In: Pro-
ceedings of AAAI, pp. 431–436 (2004)

4. Giammarresi, D., Restivo, A.: Two dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997). doi:10.1007/978-3-642-59126-6 4

5. Rosenfeld, A., Sironmoney, R.: Picture languages - a survey. Lang. Des. 1, 229–245
(1993)

6. Haussler, D.: Insertion and iterated insertion as operations on formal languages.
Ph.D. Thesis, University of Colorado, Boulder (1982)

7. Kari, L.: Contextual insertions/deletions and computability. Inf. Comput. 1, 47–61
(1996)

http://dx.doi.org/10.1007/978-3-642-59126-6_4

Polynomial Time Learner for Inferring Subclasses 191

8. Oates, T., Armstrong, T., Bonache, L.B., Atamas, M.: Inferring grammars
for mildly context sensitive languages in polynomial-time. In: Sakakibara, Y.,
Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS, vol.
4201, pp. 137–147. Springer, Heidelberg (2006). doi:10.1007/11872436 12

9. Marcus, S.: Contextual grammars. Revue Roumane de Mathematiques Pures et
appliques 14(10), 1525–1534 (1969)

10. Emerald, J.D., Subramanian, K.G., Thomas, D.G.: Inferring subclasses of contex-
tual languages. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS, vol. 1891, pp. 65–74.
Springer, Heidelberg (2000). doi:10.1007/978-3-540-45257-7 6

11. Ilie, L.: Some recents results on contextual languages. TUCS Technical report No
96 (1997)

12. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
13. Ehrenfeucht, A., Paun, G., Rozenberg, G.: Contextual grammars and formal lan-

guages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Language, vol.
2, pp. 237–293. Springer, Heidelberg (1997). doi:10.1007/978-3-662-07675-0 6

14. Fernau, H., Freund, R., Holzer, M.: Representations of recursively enumerable array
languages by contextual array grammars. Fundamenta Informatica 64, 159–170
(2005)

15. Martin-Vide, C., Mateescu, A., Miguel-Verges, J., Paun, G.: Internal contextual
grammars: minimal, maximal, and scattered use of selectors. In: Kappel, M.,
Sgamir, E. (eds.) Bisfai 95 Conference on Natural Languages and AI, Jerusalem,
pp. 132–142 (1995)

16. Yokomori, T.: Polynomial-time identification algorithm of very simple grammars
from positive data. Theor. Comput. Sci. 1(298), 179–206 (2003)

17. Rama, R., Smitha, T.A.: Some results on array contextual grammars. Int. J. Pat-
tern Recogn. Artif. Intell. 14, 537–550 (2000)

http://dx.doi.org/10.1007/11872436_12
http://dx.doi.org/10.1007/978-3-540-45257-7_6
http://dx.doi.org/10.1007/978-3-662-07675-0_6

Trace Relations and Logical Preservation
for Continuous-Time Markov Decision Processes

Arpit Sharma(B)

Department of Electrical Engineering and Computer Science,
Indian Institute of Science Education and Research Bhopal, Bhopal, India

arpit@iiserb.ac.in

Abstract. Equivalence relations are widely used for comparing the
behavior of stochastic systems. This paper introduces several vari-
ants of trace equivalence for continuous-time Markov decision processes
(CTMDPs). These trace equivalences are obtained as a result of but-
ton pushing experiments with a black box model of CTMDP. For every
class of CTMDP scheduler, a corresponding variant of trace equivalence
has been introduced. We investigate the relationship among these trace
equivalences and also compare them with bisimulation for CTMDPs.
Finally, we prove that the properties specified using deterministic timed
automaton (DTA) specifications and metric temporal logic (MTL) for-
mulas are preserved under some of these trace equivalences.

Keywords: Scheduler · Trace equivalence · Bisimulation · Timed
automaton · Temporal logic

1 Introduction

Continuous-time Markov decision processes (CTMDPs) provide a mathematical
framework for modeling systems that exhibit both non-deterministic and sto-
chastic behavior. CTMDPs have applications in queueing systems, economics,
dynamic power management, epidemic and population processes. They have
been used as a semantic model for amongst others generalized stochastic Petri
nets [20] and interactive Markov chains [15]. Equivalence relations can be used
to compare the behavior of CTMDPs. For instance, bisimulation is a well-known
equivalence that preserves the validity of continuous stochastic logic (CSL) [21],
a timed probabilistic version of the branching-time temporal logic CTL [5].

This paper focuses on linear-time equivalences for CTMDPs and investigates
which kind of logical properties do they preserve. We use button pushing exper-
iments on a black box model of CTMDP (i.e., trace machine) to define several
variants of trace equivalence. Our machine is equipped with an action display, a
state label display, a timer and a reset button. Action and state label displays
enable the external observer to observe the trace of the current run of machine
M and timer provides the absolute time. An alternating sequence of actions
and state labels, denoted σ, and a sequence of time checks, denoted θ, form an
c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 192–209, 2017.
DOI: 10.1007/978-3-319-67729-3 12

Trace Relations and Logical Preservation for CTMDPs 193

outcome (or timed trace), i.e., (σ, θ), of the trace machine. Since schedulers are
used to resolve non-deterministic choices in CTMDPs, we always fix a class of
scheduler C and allow the machine to execute infinitely many runs for all possible
schedulers of that class. This process is repeated for every scheduler class C of the
trace machine M. Roughly speaking, two CTMDPs M1,M2 are trace equiva-
lent (w.r.t. class of scheduler C), denoted ≡C , if for every scheduler D ∈ C of M1

there exists a scheduler D′ ∈ C of M2 such that for all outcomes/timed traces
(σ, θ) we have P trace

M1,D(σ, θ) = P trace
M2,D′(σ, θ) and vice versa. Here, P trace

M1,D(σ, θ)
denote the probability of all timed paths that are compatible with the out-
come/timed trace (σ, θ) in M1 under scheduler D. We define six variants of trace
equivalence on the basis of increasing power of schedulers, namely stationary
deterministic (SD), stationary randomized (SR), history-dependent determinis-
tic (HD), history-dependent randomized (HR), timed history-dependent deter-
ministic (THD) and timed history-dependent randomized (THR) trace equiva-
lence. We compare these trace equivalences with bisimulation for CTMDPs [21].
We also study the connections among these equivalences.

Our main focus and motivation, however, is to investigate the preservation
of linear real-time objectives under the above mentioned trace equivalences. We
prove that if two CTMDPS are trace equivalent under (THD) class of sched-
ulers then they have the same probability of satisfying a DTA specification.
A model-checking algorithm that verifies a CTMDP against a DTA specification
has recently been developed [11]. In addition, we study MTL [10,23], a real-time
variant of LTL that is typically used for timed automata (and not for CTMDPs).
We define the semantics of MTL formulas over CTMDP paths and prove that
under (THR) trace equivalence probability of satisfying MTL formulas is pre-
served. Note that DTA and MTL have incomparable expressiveness [5,10,30].
Put in a nutshell, the major contributions of this paper are as follows:

– We define six variants of trace equivalence by experimenting with the trace
machines, investigate the relationship between them and compare these equiv-
alences with bisimulation for CTMDPs.

– We prove that THD and THR trace equivalences preserve DTA and MTL
specifications, respectively.

1.1 Related Work

In the discrete-time setting, various branching-time relations (e.g., weak and
strong variants of bisimulation equivalence and simulation pre-orders) [4–6,13,
17–19,25,26,28], trace relations [9,16,18,24,26,29] and testing relations [9,27,31]
have been defined.

For continuous-time Markov chains (CTMCs), several variants of weak and
strong bisimulation equivalence and simulation pre-orders have been defined in
[6]. Their compatibility to (fragments of) stochastic variants of CTL has been
thoroughly investigated, cf. [6]. In [7], Bernardo considered Markovian testing
equivalence over sequential Markovian process calculus (SMPC), and coined
the term T-lumpability [8] for the induced state-level aggregation, where T

194 A. Sharma

stands for testing. His testing equivalence is a congruence w.r.t. parallel compo-
sition, and preserves transient as well as steady-state probabilities. Bernardo’s
T-lumpability has been reconsidered in [30] where weighted lumpability (WL)
is defined as a structural notion on CTMCs. Note that DTA and MTL speci-
fications are preserved under WL [30]. In [32], several linear-time equivalences
(Markovian trace equivalence, failure and ready trace equivalence) for CTMCs
have been investigated. Testing scenarios based on push-button experiments have
been used for defining these equivalences. In [21], authors have defined strong
bisimulation relation for CTMDPs. This paper also proves that CSL properties
are preserved under bisimulation for CTMDPs. Trace semantics for interactive
Markov chains (IMCs) have been defined in [33]. In this paper, testing scenarios
using button pushing experiments have been used to define several variants of
trace equivalence that arise by varying the type of schedulers. Our definitions of
trace equivalence for CTMDPs here build on that investigated in [33] for IMCs.
We take a similar approach and use the button pushing experiments [33] with
trace machines to define trace equivalences.

Organisation of the Paper. Section 2 briefly recalls the main concepts of CTMDPs.
Section 3 defines trace equivalence relation. Sections 4 and 5 discuss the preserva-
tion of DTA properties and MTL-formulas, respectively. Finally, Sect. 6 concludes
the paper.

2 Preliminaries

This section presents the necessary definitions and basic concepts related to
continuous-time Markov decision processes (CTMDPs) that are needed for
an understanding of the rest of this paper. Let AP is a finite set of atomic
propositions.

Definition 1 (CTMDP). A continuous-time Markov decision process is a
tuple M = (S, s0, Act, P,E, L), where

– S is a finite set of states,
– s0 is the initial state,
– Act is a finite set of actions,
– P : S × Act × S → [0, 1] is a transition probability matrix, such that for any

state s ∈ S and action α ∈ Act, Σs′∈SP (s, α, s′) ∈ {0, 1},
– E : S × Act → R≥0 is an exit rate function, and
– L : S → 2AP is a labeling function.

A state s is called deadlock iff E(s, α) = 0 for all α ∈ Act. Let Act(s) denote
the set of enabled actions from state s, i.e., Act(s) = {α ∈ Act|E(s, α) > 0}.
Throughout this paper, we only consider CTMDPs that do not have any deadlock
states. A possible behavior of a CTMDP is obtained from the resolution of non-
deterministic and probabilistic choices. On entering a state s, an action α, say,
in Act(s) is non-deterministically selected. The probability to exit the state s via
action α within t time units is given by 1 − e−E(s,α)·t. The probability to move

Trace Relations and Logical Preservation for CTMDPs 195

Fig. 1. An example CTMDP M

from state s to s′ via action α within t time units equals P (s, α, s′)·(1−e−E(s,α)·t).
Let the rate of moving from s to s′ via action α be defined as R(s, α, s′) =
P (s, α, s′) · E(s, α). Similarly, for C ⊆ S, R(s, α,C) = Σs′∈CP (s, α, s′) · E(s, α).
Note that every CTMDP is in fact a CTMC when ∀s ∈ S, |Act(s)| = 1.

Example 1. Consider the CTMDP M shown in Fig. 1, where S = {s0, s1, s2, s3},
AP = {a, b}, Act = {α, β} and s0 is the initial state. The transition probabil-
ities are associated with the transitions. The exit rates are defined as follows:
E(s0, α) = 4, E(s1, β) = 3, E(s2, β) = 5, E(s3, α) = 7, E(s3, β) = 7. In s0, there
is a probabilistic choice on action α. In s3, there is a non-deterministic choice
between actions α and β.

Definition 2 (CTMDP timed paths). Let M = (S, s0, Act, P,E, L) be
a CTMDP. An infinite path π in M is a sequence s0

α0,t0−−−→ s1
α1,t1−−−→

s2 . . . sn−1
αn−1,tn−1−−−−−−−→ sn . . . where for each i ≥ 0, si ∈ S is a state, αi ∈ Act is

an action, and ti ∈ R>0 is the sojourn time in state si. A finite path π is a finite
prefix of an infinite path. The length of an infinite path π, denoted |π| is ∞; the
length of a finite path π with n + 1 states is n.

Let PathsM = PathsM
fin ∪ PathsM

ω denote the set of all paths in M that
start in s0, where PathsM

fin =
⋃

n∈N
PathsM

n is the set of all finite paths in
M and PathsM

n denote the set of all finite paths of length n that start in s0.
Let PathsM

ω is the set of all infinite paths in M that start in s0. For infinite
path π = s0

α0,t0−−−→ s1
α1,t1−−−→ s2 . . . and any i ∈ N, let π[i] = si, the (i + 1)st

state of π. Let δ(π, i) = ti be the time spent in state si. For any t ∈ R≥0 and
i, the smallest index s.t. t ≤ ∑i

j=0 tj , let π@t = π[i], the state occupied at

time t. For finite path s0
α0,t0−−−→ s1

α1,t1−−−→ s2 . . . sn−1
αn−1,tn−1−−−−−−−→ sn, which is a

finite prefix of an infinite path, π[i], δ(π, i) are only defined for i ≤ n, and for
i < n defined as in the case of infinite paths. For all t >

∑n−1
j=0 tj , let π@t = sn;

otherwise π@t is defined as in the case of infinite paths. Let δ(π, n) = ∞. Let π

196 A. Sharma

be a finite path of length n then time(π) =
∑n−1

i=0 ti. Trace of an infinite path

π = s0
α0,t0−−−→ s1

α1,t1−−−→ s2 . . . sn−1
αn−1,tn−1−−−−−−−→ sn . . . denoted Trace(π) is given as

L(s0)α0L(s1)α1 . . . L(sn−1)αn−1L(sn) Trace of a finite path π can be defined
in an analogous manner.

Example 2. Consider the CTMDP M shown in Fig. 1. An example timed path
in M is π = s0

α,3.7−−−→ s1
β,1.5−−−→ s3

α,1.4−−−→ s2 Here we have π[2] = s3 and
π@4 = s1. Trace(π) = {a}α{a}β{b}α{b} . . .

In order to construct a measurable space over PathsM
ω , we define the follow-

ing sets: Ω = Act × R≥0 × S and the σ-field J = (2Act × JR × 2S), where
JR is the Borel σ-field over R≥0 [2,3]. The σ-field over PathsM

n is defined as
JPathsM

n
= σ({S0 × M0 × . . . × Mn−1|S0 ∈ 2S ,Mi ∈ J , 0 ≤ i ≤ n − 1}).

A set B ∈ JPathsM
n

is a base of a cylinder set C if C = Cyl(B) = {π ∈
PathsM

ω |π[0 . . . n] ∈ B}, where π[0 . . . n] is the prefix of length n of the
path π. The σ-field JPathsM

ω
of measurable subsets of PathsM

ω is defined as
JPathsM

ω
= σ(∪∞

n=0{Cyl(B)|B ∈ JPathsM
n

}). In simple words, σ-fields are made
up of events, such that a probability measure can be assigned.

2.1 Schedulers

Non-determinism in a CTMDP is resolved by a scheduler. Schedulers are also
known as adversaries or policies1. More formally, schedulers are defined as
follows:

Definition 3 (Scheduler). A scheduler for CTMDP M = (S, s0, Act, P,E, L)
is a measurable function D : PathsM

fin → Distr(Act), such that for n ∈ N,

D(s0
α0,t0−−−→ s1

α1,t1−−−→ . . .
αn−1,tn−1−−−−−−−→ sn)(α) > 0 implies α ∈ Act(sn)

where Distr(Act) denotes the set of all distributions on Act.

Schedulers can be classified according to the way they resolve non-determinism
and the information that is available when making a decision. For example, the
next action can be chosen with probability one (deterministic schedulers) or at
random according to a specific probability distribution (randomized schedulers).
Similarly, non-determinism can be resolved by only considering the current
state (stationary schedulers) or complete (time-abstract/timed) history. More
formally, schedulers can be classified as follows:

Definition 4 (Classes of schedulers). A scheduler D for CTMDP M is

– stationary deterministic (SD) if D : S → Act such that D(s) ∈ Act(s)
– stationary randomized (SR) if D : S → Distr(Act) such that D(s)(α) > 0

implies α ∈ Act(s)

1 We only consider schedulers that make a decision as soon as a state is entered. Such
schedulers are called early schedulers.

Trace Relations and Logical Preservation for CTMDPs 197

– history-dependent deterministic (HD) if D : (S × Act)∗ × S → Act such that
we have D (s0

α0−→ s1
α1−→ . . .

αn−1−−−→
︸ ︷︷ ︸

time−abstract history

sn) ∈ Act(sn)

– history-dependent randomized (HR) if D : (S ×Act)∗ ×S → Distr(Act) such
that D (s0

α0−→ s1
α1−→ . . .

αn−1−−−→
︸ ︷︷ ︸

time−abstract history

sn)(α) > 0 implies α ∈ Act(sn)

– timed history-dependent deterministic (THD) if D : (S × Act × R>0)∗ × S →
Act such that D (s0

α0,t0−−−→ s1
α1,t1−−−→ . . .

αn−1,tn−1−−−−−−−→
︸ ︷︷ ︸

timed history

sn) ∈ Act(sn)

– timed history-dependent randomized (THR) schedulers have been already
defined in Definition 3

Let Adv(M) denote the set of all schedulers of M. Let AdvC(M) denote the
set of all schedulers of class C, e.g., AdvTHD(M) denote the set of all THD
schedulers of CTMDP M. Let PathsM

D denote the set of all infinite paths of M
under D ∈ Adv(M) that start in s0.

Definition 5 (Probability measure). Let M = (S, s0, Act, P,E, L) be a
CTMDP and D ∈ Adv(M). The probability measure PrD on JPathsM

n
is

the unique measure defined by induction on k in the following way. Let
PrD(Cyl(s0)) = 1 and for k > 0:

PrD(Cyl(s0, α0, I0, . . . , sk, α′, I ′, s′)) = P(s0,sk) ·D(π[0 . . . k])(α′) ·P (sk, α′, s′, I ′)

where P(s0,sk) = PrD(Cyl(s0, α0, I0, . . . , sk)), π[0 . . . k] is the prefix of any
infinite path π ∈ Cyl(s0, α0, I0, . . . , sk) and D(π[0 . . . k])(α′) is the probability
by which α′ is selected by scheduler D. Here, P (sk, α′, s′, I ′) = P (sk, α′, s′) ·(
eE(sk,α′)·a − eE(sk,α′)·b

)
for I ′ = [a, b].

Intuitively, the probability of the set of paths of length (n + 1) is defined as a
product between the probability of the set of paths of length n and the one-step
transition probability to go from (n + 1)-th state to (n + 2)-th state by executing
action α′ selected by the scheduler D.

Assumptions. Note that to avoid the issues related to probability measure of
randomized schedulers, we assume that every state in CTMDP M with multiple
outgoing actions need to have the same exit rate for all its enabled actions. More
formally, ∀s ∈ S : |Act(s)| > 1 =⇒ ∀α, α′ ∈ Act(s) : E(s, α) = E(s, α′). This
assumption is less limiting than may appear at first sight, since a more restrictive
class of MDP models, i.e., uniform2 CTMDPs are widely used for performance
and dependability evaluation.

2 A CTMDP in which the delay time distribution per state visit is the same for all
states.

198 A. Sharma

Example 3. Consider the CTMDP M shown in Fig. 1. Let E be the exit rate func-
tion3 defined as follows: E(s0, α) = 4, E(s1, β) = 3, E(s2, β) = 5, E(s3, α) = 7,
E(s3, β) = 7. Let D be a SR scheduler for M such that D(s3)(α) = 3

4 and
D(s3)(β) = 1

4 . Then we can compute the probability of set of paths B =
Cyl(s0, α, [0, 2], s1, β, [0, 4], s3, α, [1, 3], s2) of M under D as follows:

PrD(B) = (1 − e−(4·2)) · (1 − e−(3·4)) · 3
4

· (e−(7·1) − e−(7·3)) ≈ .0006836

3 Trace Equivalence Relations

This section proposes several variants of trace equivalence for CTMDPs. These
equivalences are obtained by performing push-button experiments with a trace
machine M. Consider the stochastic trace machine M shown in Fig. 2. The
machine is equipped with an action display, a state label display, a timer and a
reset button. Action display shows the last action that has been executed by the
trace machine. Note that this display is empty at the beginning of the experi-
ment. The state label display shows the set of atomic propositions that are true in
the current state of the machine M. The timer display shows the absolute time.
The reset button is used to restart the machine for another run starting from the
initial state. Consider a run of the machine (under scheduler D of class C) which
always starts from the initial state. The state label shows the label of the current
state and action display shows the last action that has been executed. Note that
the action display remains unchanged until the next action is executed by the
machine. The observer records the sequence of state labels, actions and time
checks where each time check is recorded at an arbitrary time instant between
the occurrence of two successive actions. The observer can press the reset but-
ton to stop the current run. Once the reset button is pressed, the action display
will be empty and the state label display shows the set of atomic propositions
that are true in the initial state. The machine then starts for another run and
the observer again records the sequence of actions, state labels and time checks.
Note that the machine needs to be executed for infinitely many runs to complete

action dislay label display timer

reset button

Fig. 2. Trace machine M
3 Note that the exit rate of s3 for both α and β is the same. This is in accordance with the
assumption that the exit rates need to be the same for any state s with |Act(s)| > 1.

Trace Relations and Logical Preservation for CTMDPs 199

the whole experiment. It is assumed that the observer can distinguish between
the consecutive execution of the same action. An outcome of this machine say
(σ, θ) = (< L(s0)α0L(s1)α1 . . . L(sn−1)αn−1L(sn) >,< t′0t

′
1 . . . t′n >) can be

interpreted as follows: for 0 ≤ m < n, action αm of machine is performed in the
time interval (ym, ym+1] where ym = Σm

i=0t
′
i.

Definition 6 (Compatible paths). Let (σ, θ) = (< L(s0)α0L(s1)α1 . . .
L(sn−1)αn−1L(sn) >,< t′0t

′
1 . . . t′n >) be an outcome of M under D ∈ Adv(M),

then a path π = s0
α0,t0−−−→ s1

α1,t1−−−→ s2 . . . sn−1
αn−1,tn−1−−−−−−−→ sn . . . ∈ PathsM

D is
said to be compatible with (σ, θ), denoted π
 (σ, θ), if the following holds:

Trace(π[0 . . . n]) = σ and Σi
j=0tj ∈ (yi, yi+1] for 0 ≤ i < n

where yi = Σi
j=0t

′
j.

The probability of all the paths compatible with an outcome is defined as follows:

Definition 7 (Probability of compatible paths). Let (σ, θ) be an outcome
of trace machine M under D ∈ Adv(M). Then the probability of all the paths
compatible with (σ, θ) is defined as follows:

P trace
M,D (σ, θ) = PrD({π ∈ PathsM

D |π
 (σ, θ)})

Informally, P trace
M,D is a function that gives the probability to observe (σ, θ) in

machine M under scheduler D.

Definition 8 (Set of observations). Let P trace
M,D be an observation of machine

M under D ∈ Adv(M). Then the set of observations for scheduler class C,
denoted OC(M), is defined as follows:

OC(M) = {P trace
M,D |D ∈ AdvC(M)}

Informally, OC(M) denote a set of functions where each function assigns a prob-
ability value to every possible outcome of the trace machine, i.e., (σ, θ).

Definition 9 (Trace equivalence). Two CTMDPs M1, M2 are trace equiv-
alent w.r.t. scheduler class C denoted M1 ≡C M2 iff OC(M1) = OC(M2).

This definition says that for every D ∈ AdvC(M1) there exists a scheduler D′ ∈
AdvC(M2) such that for all outcomes (σ, θ) we have P trace

M1,D(σ, θ) = P trace
M2,D′(σ, θ)

and vice versa.

Example 4. Consider the two CTMDPs shown in Fig. 3. Let all the states of M
and M′ have the same exit rate for every enabled action. It is easy to check that
these two CTMDPs are ≡SD. Note that they are not ≡SR. This is because there
exists a SR-scheduler D for M such that the trace (aαaβ)∗ has a probability
greater than 0, but this is not possible in M′ for any SR-scheduler D′. For similar
reason, M, M′ are not ≡HD, ≡HR, ≡THD and ≡THR.

200 A. Sharma

s0

{a}
s0

{a}
β, 1α, 1

s1

{a}
s2

{a}
α, 1

β, 1

α, 1 β, 1

Fig. 3. SD trace equivalent CTMDPs M (left) and M′ (right)

3.1 Relationship Between Trace Equivalence and Bisimulation

This section investigates the relationship of bisimulation to several variants of
trace equivalence defined in this paper. Informally, two states are bisimilar if
they are able to mimic each other’s behavior step-wise. Note that bisimulation
for CTMDPs preserves continuous stochastic logic (CSL) [21]. We first recall the
definition of bisimulation.

Definition 10 (Bisimulation [21]). Let M = (S, s0, Act, P,E, L) be a
CTMDP. An equivalence R ⊆ S × S is a strong bisimulation relation if
L(s) = L(s′) for all (s, s′) ∈ R and R(s, α,C) = R(s′, α, C) for all α ∈ Act
and all C ∈ S/R.

Two states s and s′ are strongly bisimilar (s ∼ s′) if there exists a strong
bisimulation relation R such that (s, s′) ∈ R. Strong bisimilarity is the union of
all strong bisimulation relations.

These conditions require that any two bisimilar states are equally labeled and
have identical cumulative rates to move to any equivalence class C via some action
α. This definition of bisimulation can be easily extended to compare the behavior
of two CTMDPs M1 (with state space S1) and M2 (with state space S2). This is
achieved by taking the disjoint union of state spaces (S = S1 � S2) and requiring
that initial states of two systems are bisimilar with respect to S.

s0

s1

s2
s0

s1

γ, 1

γ, 1

α, 1

β, 1

α, 1

β, 1

γ, 1

α, 1

β, 1

γ, 1

γ, 1

Fig. 4. CTMDPs M1 (left) and M2 (right)

Trace Relations and Logical Preservation for CTMDPs 201

s0

s1 s2

s3 s4 s5 s6

α, 0.5

α, 1 β, 1

α, 0.5

α, 1 β, 1

β, 1α, 1β, 1α, 1

s0

s1

s2 s3

α, 1

α, 1 β, 1

β, 1α, 1

Fig. 5. SR trace equivalent and bisimilar CTMDPs M (left) and M′ (right)

Example 5. Consider the CTMDPs M1 and M2 shown in Fig. 4. Let all the
states of M1 and M2 have the same labeling and the same exit rate for every
enabled action. It is easy to check that these two systems are bisimilar.

Theorem 1. The following holds:

– ∼�≡SD and ≡SD�∼
– ∼�≡SR and ≡SR⇒∼
– ∼�≡HD and ≡HD⇒∼

– ∼⇒≡HR and ≡HR⇒∼
– ∼�≡THD and ≡THD⇒∼
– ∼⇒≡THR and ≡THR⇒∼

Example 6. Consider the two CTMDPs shown in Fig. 4. Let all the states of
M1 and M2 have the same labeling and the same exit rate for every enabled
action. These two CTMDPs are bisimilar but they are neither SD nor SR trace
equivalent. Similarly, the two CTMDPs shown in Fig. 3 are SD trace equivalent
but they are not bisimilar.

Example 7. Consider the two CTMDPs shown in Fig. 5. Let all the states of
these CTMDPs have the same labeling and the same exit rate for every enabled
action. These two CTMDPs are bisimilar but they are neither HD nor THD
trace equivalent.

≡SD ≡HD ≡THD

≡SR ≡HR ≡THR

Fig. 6. Connections among six trace equivalences

202 A. Sharma

3.2 Relationship Between Trace Equivalences

Next, we study the relationship between several variants of trace equivalence
defined in Sect. 3. Connections among these equivalences can be understood
from Fig. 6. Here a directed edge from node labeled with ≡C1 to node labeled
with ≡C2 denotes implication, i.e., ≡C1⇒≡C2 . Similarly, an edge that connects
two nodes in both the directions denotes bi-implication, i.e., coincidence.

Theorem 2. The following holds:

– ≡SD�≡SR,≡SD�≡HD,≡SD�≡HR,≡SD�≡THD,≡SD�≡THR

– ≡SR�≡SD,≡SR�≡HD,≡SR�≡THD,≡SR⇒≡HR,≡SR⇒≡THR

– ≡HD�≡SD,≡HD�≡SR,≡HD⇒≡THD,≡HD⇒≡HR,≡HD⇒≡THR

– ≡HR�≡SD,≡HR�≡SR,≡HR�≡HD,≡HR�≡THD,≡HR⇒≡THR

– ≡THD�≡SD,≡THD�≡SR,≡THD⇒≡HD,≡THD⇒≡HR,≡THD⇒≡THR

– ≡THR�≡SD,≡THR�≡SR,≡THR�≡HD,≡THR⇒≡HR,≡THR�≡THD

Example 8. Consider the two CTMDPs shown in Fig. 5. Let all the states have
the same labeling in both the systems and the same exit rate for every enabled
action. These CTMDPs are SR trace equivalent but they are not SD trace equiv-
alent. Similarly, these two CTMDPs are neither HD nor THD trace equivalent.

Example 9. Consider the two CTMDPs shown in Fig. 4. These two CTMDPS
are HD trace equivalent but they are neither SD nor SR trace equivalent.

4 Deterministic Timed Automaton

In this section we show that THD trace equivalent CTMDPs preserve the prob-
ability of satisfying DTA specifications. Note that model-checking algorithms
that verify a CTMDP against a DTA specification have recently been developed
[11]. We first recall the definition of DTA [1].

Definition 11 (DTA). A deterministic timed automaton (DTA) is a tuple
A = (Σ,X , Q, q0, F,→) where:

– Σ is a finite alphabet,
– X is a finite set of clocks,
– Q is a nonempty finite set of locations with the initial location q0 ∈ Q,
– F ⊆ Q is a set of accepting (or final) locations,
– → ⊆ Q × Σ × CC(X) × 2X × Q is the edge relation satisfying:

(
q

a,g,X−−−−→ q′ and q
a,g′,X′
−−−−→ q′′ with g �= g′) implies g ∩ g′ = ∅.

Intuitively, the edge q
a,g,X−−−−→ q′ asserts that the DTA A can move from location

q to q′ when the input symbol is a and the guard g holds, while the clocks in
X should be reset when entering q′ (all other clocks keep their value). DTA
are deterministic as they have a single initial location, and outgoing edges of a

Trace Relations and Logical Preservation for CTMDPs 203

q0 qf
{b}, x > 1, ∅

{a}, x < 1, ∅

{a}, 1 < x < 2, {x}

Fig. 7. An example DTA A

location labeled with the same input symbol are required to have disjoint guards.
In this way, the next location is uniquely determined for a given location and a
given set of clock values. In case no guard is satisfied in a location for a given clock
valuation, time can progress. If the advance of time will never reach a situation
in which a guard holds, the DTA will stay in that location ad infinitum. Note
that DTA do not have location invariants. The semantics of a DTA is given by
an infinite-state transition system [1]. Next, we define the notion of paths, i.e.,
runs or executions of a DTA. This is done using some auxiliary notions. A clock
valuation η for a set X of clocks is a function η : X → R≥0, assigning to each
clock x ∈ X its current value η(x). The clock valuation η over X satisfies the
clock constraint g, denoted η |= g, iff the values of the clocks under η fulfill
g. For instance, η |= x − y > c iff η(x) − η(y) > c. Other cases are defined
analogously. For d ∈ R≥0, η+d denotes the clock valuation where all clocks of
η are increased by d. That is, (η+d)(x) = η(x)+d for all clocks x ∈ X . Clock
reset for a subset X ⊆ X , denoted by η[X := 0], is the valuation η′ defined
by: ∀x ∈ X.η′(x) := 0 and ∀x /∈ X.η′(x) := η(x). The valuation that assigns
0 to all the clocks is denoted by 0. An (infinite) path of DTA A has the form
ρ = q

a0,t0−−−→ q1
a1,t1−−−→ . . . such that η0 = 0, and for all j ≥ 0, it holds tj > 0,

ηj+tj |= gj , ηj+1 = (ηj+tj)[Xj := 0], where ηj is the clock evaluation on entering
qj . Here, gj is the guard of the j-th edge taken in the DTA and Xj the set of
clock to be reset on that edge. A path ρ is accepted by A if qi ∈ F for some i ≥ 0.
Since the DTA is deterministic, the successor location is uniquely determined;
for convenience we write q′ = succ(q, a, g).

Example 10. Consider the DTA A shown in Fig. 7, where Σ = {a, b}, Q =
{q0, qf}, X = {x}, F = {qf} and q0 is the initial location. An example timed

path is q0
a,1.4−−−→ q0

b,2.1−−−→ qf .

A path in a CTMDP M can be “matched” by a path through DTA A by
regarding sets of atomic propositions in M as input symbols of A. Such a path
is accepted, if at some point an accepting location in the DTA is reached:

Definition 12 (Path acceptance). Let CTMDP M = (S, s0, Act, P,E, L)
and DTA A = (2AP ,X , Q, q0, F,→). The CTMDP path π = s0

α0,t0−−−→ s1
α1,t1−−−→

204 A. Sharma

s2 . . . is accepted by A if there exists a corresponding DTA path

q0
L(s0),t0−−−−−→ succ

(
q0, L(s0), g0

)

︸ ︷︷ ︸
=q1

L(s1),t1−−−−−→ succ
(
q1, L(s1), g1

)

︸ ︷︷ ︸
=q2

. . .

such that qj ∈ F for some j ≥ 0. Here, η0 = 0, gi is the (unique) guard in qi

(if it exists) such that ηi+ti |= gi and ηi+1 = (ηi+ti)[Xi := 0], and ηi is the
clock evaluation on entering qi, for i ≥ 0. Let PathsM(A) = {π ∈ PathsM |
π is accepted by DTAA}.
Theorem 3. For any CTMDP M and DTA A, the set PathsM(A) is measur-
able [12,14].

The main result of this theorem is that PathsM(A) can be rewritten as the
combination of cylinder sets of the form Cyl = (s0, α0, I0,, αn−1, In−1, sn)
(Cyl for short) which are all accepted by DTA A. A cylinder set (Cyl) is accepted
by DTA A if all its paths are accepted by A.

Definition 13 (Probability of accepted paths). For CTMDP M, D ∈
Adv(M) and DTA A, let PrD(M |= A) = PrD(PathsM(A))

Definition 14 (Maximum probability of DTA). For CTMDP M and DTA
A, let Prmax(M |= A) = sup

D∈Adv(M)

PrD(M |= A)

In simple words, Prmax(M |= A) is the maximum probability of CTMDP M
satisfying a DTA A computed over all possible schedulers of M, i.e., Adv(M).
Prmin(M |= A) can be defined in an analogous manner. For CTMDPs, THD
schedulers suffice for computing Prmax(M |= A) and Prmin(M |= A) [11,22].

Theorem 4 (Preservation of DTA). Let M1, M2 be two CTMDPs such
that M1 ≡THD M2. Then for any DTA A we have:

Prmax(M1 |= A) = Prmax(M2 |= A)

Prmin(M1 |= A) = Prmin(M2 |= A)

In simple words, this theorem states that if two CTMDPs are THD trace equiv-
alent, then their maximum (resp. minimum) probability to satisfy any DTA
specification coincides.

Proof (Proof of Theorem 4). Let D1 be a THD scheduler for M1 such that
Prmax(M1 |= A) = PrD1(M1 |= A). In simple words, this means that the max-
imum probability of CTMDP M1 satisfying DTA A is obtained under THD
scheduler D1. Let Π be the set of all cylinder sets of M1 under scheduler
D1 that are accepted by DTA A. This means, PrD1(M1 |= A) = PrD1(Π).
Let �i ⊆ Π (1 ≤ i ≤ n) such that

⋃
1≤i≤n �i = Π and

⋂
1≤i≤n �i = ∅.

In simple words, Π is a disjoint union of the subsets �i (1 ≤ i ≤ n).
Note that each �i is a set of cylinder sets. Let each �i consists of exactly

Trace Relations and Logical Preservation for CTMDPs 205

those cylinder sets whose paths are compatible with some outcome (σ, θ) =
(< L(s0)α0L(s1)α1 . . . L(sn−1)αn−1L(sn) >,< t′0t

′
1 . . . t′n >) of machine M1

under D1 (for some n ∈ N). More formally, for any �i ∈ Π, ∀Cyl1, Cyl2 ∈ �i

and some (σ, θ) = (< L(s0)α0L(s1)α1 . . . L(sn−1)αn−1L(sn) >,< t′′0 t′′1 . . . t′′n >),
the following should hold:

∀π ∈ Cyl1,∀π′ ∈ Cyl2 =⇒ π
 (σ, θ) ∧ π′
 (σ, θ)

From the definition of THD trace equivalence (Definition 9) we know that for
every THD scheduler D1 of M1 there exists a scheduler D2 of M2 such that the
total probability of all the paths under D1 that are compatible with any outcome
(σ, θ) is same as the total probability of all the paths under D2 that are compat-
ible with (σ, θ). The same holds true in the other direction. This means that for
every set of cylinder sets �i in M1 (under D1) there exists a corresponding set
of cylinder sets �′

i in M2 (under D2) such that PrD1(�i) = Σ
|�i|
i=1PrD1(Cyli) =

Σ
|�′

i|
j=1PrD2(Cyl′j) = PrD2(�′

i). Note that the number of cylinder sets in �i and �′
i

could be different, i.e., it is possible that | �i | �= | �′
i |. From this we can conclude

that Prmax(M1 |= A) = PrD1(M1 |= A) = Σn
i=1PrD1(�i) = Σn

i=1PrD2(�′
i) =

PrD2(M2 |= A) = Prmax(M2 |= A). A similar proof can be given to show that
Prmin(M1 |= A) = Prmin(M2 |= A).

��
Corollary 1. THD trace equivalence preserves maximum and minimum tran-
sient state probabilities.

5 Metric Temporal Logic

In this section we show that THR trace equivalence for CTMDPs preserves the
probability of satisfying MTL specifications. Note that expressive power of MTL
is different from that of DTA. For example, the following property specified using
an MTL formula ♦[0,100]�[0,5]a cannot be expressed using deterministic timed
automata. On the other hand, the following DTA property cannot be expressed
using MTL: what is the probability to reach a given target state within the
deadline, while avoiding forbidden states and not staying too long in any of the
dangerous states on the way [30]. We now recall the syntax and semantics of
Metric Temporal Logic [10,23].

Definition 15 (Syntax of MTL). Let AP be a set of atomic propositions,
then the formulas of MTL are built from AP using Boolean connectives, and
time-constrained versions of the until operator U as follows:

ϕ ::= tt
∣
∣ a

∣
∣ ¬ϕ

∣
∣ ϕ ∧ ϕ

∣
∣ ϕ UI ϕ

where I ⊆ R≥0 is a non-empty interval with rational bounds, and a ∈ AP .

Next, we define the semantics of MTL formulas over CTMDP paths.

206 A. Sharma

Definition 16 (Semantics of MTL formulas). The meaning of MTL for-
mulas is defined by means of a satisfaction relation, denoted by |=, between
a CTMDP M, one of its paths π, MTL formula ϕ, and time t ∈ R≥0. Let

π = s0
α0,t0−−−→ s1 . . . sn−1

αn−1,tn−1−−−−−−−→ sn . . . be a finite or infinite path of M, then
(π, t) |= ϕ is defined inductively by:

(π, t) |= tt
(π, t) |= a iff a ∈ L(π@t)
(π, t) |= ¬ϕ iff not (π, t) |= ϕ
(π, t) |= ϕ1 ∧ ϕ2 iff (π, t) |= ϕ1 and (π, t) |= ϕ2

(π, t) |= ϕ1 UI ϕ2 iff ∃t′ ∈ t+I. ((π, t′) |= ϕ2 ∧ ∀t ≤ t′′ < t′. (π, t′′) |= ϕ1) .

The semantics for the propositional fragment is straightforward. Recall that
π@t denotes the state occupied along path π at time t. Path π at time t satisfies
ϕ1 UI ϕ2 whenever for some time point t′ in the interval I+t, defined as [a, b]+t =
[a+t, b+t] (and similarly for open intervals), ϕ2 holds, and at all time points
between t and t′, path π satisfies ϕ1. Let π |= ϕ if and only if (π, 0) |= ϕ.
Timed variant of standard temporal operator ♦ (“eventually”) is derived in the
following way: ♦Iϕ = tt UI ϕ. Similarly, timed variant of � (“globally”) is derived
as follows:

�Iϕ = ¬(♦I¬ϕ).

MTL can be used to specify various interesting properties, e.g., �[0,100](down →
♦[0,5]up), which says that whenever the system is down in the interval [0, 100],
it should be up again within 5 time units. Let PathsM(ϕ) = {π ∈ PathsM |
π |= ϕ}.

Theorem 5. For any CTMDP M and MTL formula ϕ, the set PathsM(ϕ) is
measurable [30].

In simple words, this theorem says that paths that satisfy an MTL formula ϕ
can be written as a set of cylinder sets.

Definition 17 (Probability of MTL paths). For CTMDP M, D ∈ Adv(M)
and MTL formula ϕ, let PrD(M |= ϕ) = PrD(PathsM(ϕ))

PrD(M |= ϕ) denote the probability of all paths of M under scheduler D that
satisfy an MTL formula ϕ.

Definition 18 (Maximum probability of MTL). For CTMDP M and MTL
formula ϕ, Prmax(M |= ϕ) = sup

D∈Adv(M)

PrD(M |= ϕ)

Prmin(M |= ϕ) can be defined in an analogous manner.

Theorem 6 (Preservation of MTL). Let M1, M2 be two CTMDPs such
that M1 ≡THR M2. Then for any MTL formula ϕ we have:

Prmax(M1 |= ϕ) = Prmax(M2 |= ϕ)

Prmin(M1 |= ϕ) = Prmin(M2 |= ϕ)

Trace Relations and Logical Preservation for CTMDPs 207

This theorem asserts that THR-trace equivalent CTMDPs have the same max-
imum (resp. minimum) probability of satisfying any MTL formula ϕ.

Proof (Proof of Theorem 6). Let D1 be a THR scheduler for M1 such that
Prmax(M1 |= ϕ) = PrD1(M1 |= ϕ). In simple words, this means that the
maximum probability of CTMDP M1 satisfying MTL formula ϕ is obtained
under THR scheduler D1. Let Π be the set of all cylinder sets of M1 under
scheduler D1 that satisfy MTL formula ϕ. The rest of the proof is similar to the
proof of Theorem 4, i.e., we can show that there exists a scheduler D2 in M2

such that PrD1(M1 |= ϕ) = PrD2(M2 |= ϕ). This can be done by reasoning
over the set of cylinder sets. ��

6 Conclusions

This paper presented several variants of trace equivalence on the basis of increas-
ing power of schedulers for CTMDPs. Button pushing experiments on a black box
model of CTMDP have been used to define these trace equivalences. We inves-
tigated the relationship among these trace relations and also compared them
with strong bisimulation for CTMDPs. Finally, we proved that trace equivalent
CTMDPs have the same probability of satisfying DTA and MTL properties. In
the future, we plan to study ready trace and failure trace semantics for CTMDPs.

Acknowledgments. A special thanks goes to Michele Loreti for valuable discussions
and suggestions.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Ash, R.B., Doleans-Dade, C.A.: Probability and Measure Theory. Academic Press,
Cambridge (2000)

3. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541
(2003)

4. Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In:
Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg
(1997). doi:10.1007/3-540-63166-6 14

5. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005)

7. Bernardo, M.: Non-bisimulation-based Markovian behavioral equivalences. J. Log.
Algebr. Program. 72(1), 3–49 (2007)

8. Bernardo, M.: Towards state space reduction based on t-lumpability-consistent
relations. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 64–78.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-87412-6 6

http://dx.doi.org/10.1007/3-540-63166-6_14
http://dx.doi.org/10.1007/978-3-540-87412-6_6

208 A. Sharma

9. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting trace and testing equivalences
for nondeterministic and probabilistic processes. LMCS, 10(1) (2014)

10. Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire
d’habilitation. Université Paris 7, Paris, France, January 2009

11. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Observing continuous-time MDPs
by 1-Clock timed automata. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS,
vol. 6945, pp. 2–25. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24288-5 2

12. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of
continuous-time Markov chains against timed automata specifications. In: LICS,
pp. 309–318. IEEE Computer Society (2009)

13. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is
sound and complete for pCTL*. Inf. Comput. 208(2), 203–219 (2010)

14. Fu, H.: Approximating acceptance probabilities of CTMC-paths on multi-clock
deterministic timed automata. In: HSCC, pp. 323–332. ACM (2013)

15. Hermanns, H. (ed.): Interactive Markov Chains: And the Quest for Quantified
Quality. LNCS, vol. 2428. Springer, Heidelberg (2002). doi:10.1007/3-540-45804-2

16. Huynh, D.T., Tian, L.: On some equivalence relations for probabilistic processes.
Fundam. Inf. 17(3), 211–234 (1992)

17. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277. IEEE Computer Society (1991)

18. Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations
for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990.
LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990). doi:10.1007/BFb0039071

19. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: POPL, pp.
344–352 (1989)

20. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets, 1st edn. Wiley, Hoboken (1994)

21. Neuhäußer, M.R., Katoen, J.-P.: Bisimulation and logical preservation for
continuous-time Markov decision processes. In: Caires, L., Vasconcelos, V.T. (eds.)
CONCUR 2007. LNCS, vol. 4703, pp. 412–427. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-74407-8 28

22. Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in
continuous-time Markov decision processes. In: Alfaro, L. (ed.) FoSSaCS
2009. LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00596-1 26

23. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidel-
berg (2008). doi:10.1007/978-3-540-85778-5 1

24. Parma, A., Segala, R.: Axiomatization of trace semantics for stochastic nondeter-
ministic processes. In: QEST, pp. 294–303 (2004)

25. Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer,
Heidelberg (2000). doi:10.1007/3-540-44618-4 25

26. Segala, R.: Modelling and verification of randomized distributed real time systems.
Ph.D. thesis. MIT (1995)

27. Segala, R.: Testing probabilistic automata. In: Montanari, U., Sassone, V. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996). doi:10.
1007/3-540-61604-7 62

28. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord.
J. Comput. 2(2), 250–273 (1995)

http://dx.doi.org/10.1007/978-3-642-24288-5_2
http://dx.doi.org/10.1007/3-540-45804-2
http://dx.doi.org/10.1007/BFb0039071
http://dx.doi.org/10.1007/978-3-540-74407-8_28
http://dx.doi.org/10.1007/978-3-540-74407-8_28
http://dx.doi.org/10.1007/978-3-642-00596-1_26
http://dx.doi.org/10.1007/978-3-642-00596-1_26
http://dx.doi.org/10.1007/978-3-540-85778-5_1
http://dx.doi.org/10.1007/3-540-44618-4_25
http://dx.doi.org/10.1007/3-540-61604-7_62
http://dx.doi.org/10.1007/3-540-61604-7_62

Trace Relations and Logical Preservation for CTMDPs 209

29. Sharma, A.: Weighted probabilistic equivalence preserves ω-regular properties. In:
Schmitt, J.B. (ed.) MMB&DFT. LNCS. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28540-0 9

30. Sharma, A., Katoen, J.-P.: Weighted lumpability on Markov chains. In: Clarke,
E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 322–339.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-29709-0 28

31. Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic automata.
In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 464–477. Springer, Heidelberg (2003). doi:10.1007/
3-540-45061-0 38

32. Wolf, V., Baier, C., Majster-Cederbaum, M.E.: Trace machines for observing
continuous-time Markov chains. ENTCS 153(2), 259–277 (2006)

33. Wolf, V., Baier, C., Majster-Cederbaum, M.E.: Trace semantics for stochastic sys-
tems with nondeterminism. Electr. Notes Theo. Comput. Sci. 164(3), 187–204
(2006)

http://dx.doi.org/10.1007/978-3-642-28540-0_9
http://dx.doi.org/10.1007/978-3-642-28540-0_9
http://dx.doi.org/10.1007/978-3-642-29709-0_28
http://dx.doi.org/10.1007/3-540-45061-0_38
http://dx.doi.org/10.1007/3-540-45061-0_38

SMT Solvers and Algorithms

Constructing Cycles in the Simplex Method
for DPLL(T)

Bertram Felgenhauer(B) and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Innsbruck, Austria
{bertram.felgenhauer,aart.middeldorp}@uibk.ac.at

Abstract. Modern SMT solvers use a special DPLL(T) variant of the
simplex algorithm to solve satisfiability problems in linear real arith-
metic. Termination is guaranteed by Bland’s pivot selection rule, but it
is not immediately obvious that such a rule is required. For the tra-
ditional simplex method non-termination is well-understood, but the
cycling examples from the literature do not immediately carry over to
the DPLL(T) variant. We present two SMT encodings of the problem of
finding cycles, using linear and nonlinear real arithmetic.

1 Introduction

The simplex algorithm (Dantzig 1947) is the most popular method for solving
linear programs, despite its worst-case exponential complexity. Termination of
the simplex algorithm is guaranteed by pivot selection strategies, like Bland’s
rule [6].

Dutertre and de Moura [9] proposed an adaptation of the simplex method
to decide quantifier-free linear arithmetic (QF LRA) that works well in a
DPLL(T) setting and which is used in SMT solvers like Yices [8] and Z3 [5].
The correctness of the decision procedure follows from termination of the algo-
rithm [10, Theorem 1], which relies on Bland’s pivot selection rule. The algorithm
is covered in the textbook [14] by Kroening and Strichman, where it is called
the general simplex algorithm. We prefer the name DPLL(T) simplex algorithm,
because the algorithm does not, in fact, generalize the simplex method. Teach-
ing a course on decision procedures using this book (as well as [7]) led to the
question whether Bland’s pivot selection rule is essential for termination. This
paper reports on our quest to answer this question.

The literature on the simplex method contains several cycling examples, e.g.
[2,4,13,20], but these typically do no carry over to the DPLL(T) setting without
further ado because they start from a feasible solution and the cycling behavior
is triggered by the objective function, which is absent in the DPLL(T) simplex
method.

We describe two new approaches to automatically find cycling examples.
The first approach targets the DPLL(T) simplex method. A sequence of piv-
oting steps is fixed such that the induced tableau cycles. This is followed by

This research was supported by Austrian Science Fund (FWF) project P27528.

c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 213–228, 2017.
DOI: 10.1007/978-3-319-67729-3 13

214 B. Felgenhauer and A. Middeldorp

the use of an SMT solver for linear real arithmetic to find bounds on the vari-
ables and an initial assignment for the variables such that the pivoting steps are
valid. This approach works well and is able to find small cycles which are useful
for didactic purposes. In the second approach the complete search is encoded
into nonlinear real arithmetic, both for the DPLL(T) simplex method and the
standard simplex method with Dantzig’s pivoting rule. The resulting SMT prob-
lems in quantifier-free nonlinear real arithmetic are nontrivial and could serve as
interesting benchmarks for SMT solvers. The code we produced while preparing
this paper is available online.1

The remainder of the paper is organized as follows. In the next section we
briefly recall the DPLL(T) simplex algorithm. In Sect. 3 we give two examples
showing that the algorithm may cycle if Bland’s pivot selection rule is violated.
The first one is found by our program. The second one originates from [2] and
relies on the fact that the constant vector in the linear program is zero and hence
the objective function of the dual linear program is constant, which ensures that
it cannot affect the cyclic behavior. In Sect. 4 we explain how to construct cycles
using an SMT solver for linear real arithmetic to find bounds on the variables and
the initial assignment, after the initial tableau and the sequence of pivoting steps
is fixed. Encoding the whole search for cycles as a satisfiability problem requires
solving nonlinear real arithmetic constraints. This is described in Sect. 5 for the
DPLL(T) simplex method as well as the original simplex method. In Sect. 6 we
comment on related work. In particular, we analyzed the examples from the
survey paper by Avis et al. [1], where we observed violations of Dantzig’s pivot
selection rule and a few typographical errors. We conclude in Sect. 7.

2 DPLL(T) Simplex Algorithm

The DPLL(T) simplex algorithm is a constraint solving method for linear arith-
metic over real (or rational) numbers x1, . . . , xn. The unknowns x1, . . . , xn are
divided into basic variables B and nonbasic variables N that are related as
follows:

xi =
∑

j∈N

aijxj (1)

for all i ∈ B. Here {1, . . . , n} = B � N and aij ∈ R for all i ∈ B and j ∈ N .
The coefficients aij form a |B| × |N | matrix which is called the tableau of the
problem. In addition, every variable xi with 1 � i � n is equipped with upper
and lower bounds ui and li:

− ∞ � li � xi � ui � +∞ (2)

The infinities signal the absence of a corresponding bound. Throughout the
algorithm, an assignment for the variables is maintained such that (1) is satisfied
and (2) holds for every i ∈ N . If (2) holds also for every i ∈ B then the algorithm
returns the current, satisfying, assignment. Otherwise i ∈ B is selected such
1 http://cl-informatik.uibk.ac.at/research/simplex/

http://cl-informatik.uibk.ac.at/research/simplex/

Constructing Cycles in the Simplex Method for DPLL(T) 215

that (2) is violated. Next a suitable j ∈ N is selected such that xi and xj can be
swapped in a pivoting operation. If there is no suitable j ∈ N then the algorithm
terminates and reports that the constraint problem is unsatisfiable. The index
j ∈ N is suitable if one of the following mutually exclusive conditions is satisfied:

(L+) xi < li, aij > 0, and xj < uj ,
(L−) xi < li, aij < 0, and lj < xj ,
(U+) ui < xi, aij > 0, and lj < xj ,
(U−) ui < xi, aij < 0, and xj < uj .

Once j ∈ N is selected, a pivoting step is performed: B′ = B ∪ {j} − {i},
N ′ = N ∪ {i} − {j}, and the coefficients in (1) are updated such that

xi′ =
∑

j′∈N ′
ai′j′xj′ (3)

holds for all i′ ∈ B′. This amounts to substituting

xj =
1
aij

⎛

⎝xi −
∑

j′∈N−{j}
aij′xj′

⎞

⎠

into the previous tableau. Next the value of xj is changed to li in cases (L+) or
(L−) and to ui in cases (U+) or (U−). This is followed by a recomputation of
the values of the new basic variables such that (3) remains true.

Example 1. Consider the tableau

x4

x5

(x1 x2 x3

2 2 −1
−1 1 3

)

with bounds

x1 � 0 x2 � 0 x3 � 0 x4 � 3 x5 � −2

and assignment x1 = x2 = x3 = x4 = x5 = 0. Both x4 and x5 violate their
respective bounds. We can pivot x4 with x1 or x2, but not with x3; in order to
increase the value of x4 we have to decrease the value of x3 (due to the negative
coefficient −1) but x3 is at its lower bound. So the nonbasic variable x3 is not
suitable for the basic variable x4 because x4 < l4, a43 < 0, but condition (L−)
above is violated. Likewise, x5 can be pivoted with x1, but not with x2 or x3.
So there are three different options for a pivoting step: (x4, x1), (x4, x2), and
(x5, x2).

In the simplex method, the selection of the pair (xi, xj) with i ∈ B and j ∈ N
is determined by a pivot selection rule and critical for ensuring termination
of the method. Different pivoting rules have been proposed in the literature
(e.g. [6,11,12,16]). Termination of the DPLL(T) simplex algorithm has been
established in [10] for Bland’s rule [6], which selects the smallest i ∈ B such that
xi violates its bounds and smallest suitable j ∈ N .

216 B. Felgenhauer and A. Middeldorp

Example 2. In the preceding example, the pair (x4, x1) is selected by Bland’s
rule, resulting in the new tableau

x1

x5

(x4 x2 x3

1
2 −1 1

2

− 1
2 2 5

2

)

and the assignment x1 = 3
2 , x2 = x3 = 0, x4 = 3, x5 = − 3

2 .

3 Two Cycles

We give two examples where the DPLL(T) simplex algorithm may loop if one
does not impose any constraints on pivots beyond suitability. The first one is
obtained by the method that we describe in the next section.

Example 3. We use four variables, x1 to x4, with the following constraints:

x3 = x1 + 2x2 −1 � x1 � 0 −5 � x3 � −4
x4 = 2x1 + x2 −4 � x2 � 0 −7 � x4 � 1

The resulting cycle is given in Fig. 1, with the pivoting element indicated in each
tableau. Note that after the first four steps (which are given in the left column),
the tableaux repeat, but the assignments are different. In fact, any nonbasic
variable that is at its lower bound will be at its upper bound fours steps later,
and vice versa. Figure 2 displays the trajectory of the (x1, x2) coordinates of the
eight assignments, along with the lines corresponding to the lower and upper
bounds of each variable. Every assignment lies at the intersection of two of these
lines, because in each step of the cycle, the two nonbasic variables are at one
of their bounds. Each pair of subsequent assignments lie on one of those lines,
determined by the nonbasic variable that is not pivoted in the corresponding
pivoting step. It is noteworthy that the trajectory alternates between left and
right turns, a behavior already observed by Beale [4]. The second step violates
Bland’s pivot selection rule as the basic variable x1, which precedes the selected
basic variable x4, also violates its bounds. The nonbasic variable x2 is suitable
for pivoting with x1, and the resulting pivoting step produces the tableau

x3

x1

(x2 x4

1
2 − 1

2
3
2 − 1

2

)

and assignment x1 = −1, x2 = − 3
2 , x3 = −4, and x4 = − 7

2 , which satisfies the
constraints. A simpler satisfying assignment is x1 = −1, x2 = −2, x3 = −5, and
x4 = −4.

Note that the selection of nonbasic variables follows Bland’s rule when using
the (natural) variable ordering x1 < x2 < x3 < x4. If one instead considers the

Constructing Cycles in the Simplex Method for DPLL(T) 217

variable ordering x4 < x1 < x2 < x3, then the selection of basic variables follows
Bland’s rule. However, the third pivoting step, which pivots the basic variable
x1 with the nonbasic variable x3, should pivot x1 with x4 instead, because x4

precedes x3 in this variable ordering. Consequently, both parts of Bland’s pivot
selection rule are required in order to ensure termination.

x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0
x3

x4

(x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 −9 −6

x1

x4

(x3 x2

1 −2

2 −3

) x1 x2 x3 x4

−4 0 −4 −8
x1

x4

(x3 x2

1 −2

2 −3

) x1 x2 x3 x4

3 −4 −5 2

x1

x2

(x3 x4

− 1
3

2
3

2
3

− 1
3

) x1 x2 x3 x4

− 10
3
− 1

3
−4 −7

x1

x2

(x3 x4

− 1
3

2
3

2
3

− 1
3

) x1 x2 x3 x4

7
3

− 11
3

−5 1

x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 −5−11−7
x3

x2

(x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

Fig. 1. The cycle of length 8 in Example 3.

The second example is an adaptation of an example attributed to Kuhn in [2].

Example 4. The linear program in [2, Example 2] (without the third row)
amounts to:

x4 = −2x1 + 1
3x2 − 2 x6 = x1 − 1

3x2 + 1 max u = 0x1 + 0x2

x5 = −9x1 + x2 − 3 x7 = 9x1 − x2 + 12 xi � 0

Using the transformation x3 := x4 + 2, x4 := x5 + 3, x5 := x6 − 1, x6 := x7 − 12
we obtain the following constraints:

x3 = −2x1 + 1
3x2 x5 = x1 − 1

3x2 x1 � 0 x3 � 2 x5 � −1
x4 = −9x1 + x2 x6 = 9x1 − x2 x2 � 0 x4 � 3 x6 � −12

With these constraints, a cycle of length 6 is obtained. However, some of the
beauty of the original example is lost, where after just two pivoting steps,
the tableau becomes identical to the initial tableau under a cyclic shift of the
variables.

In order to restore this symmetry, we have to assign lower bounds such that
all odd numbered variables have the same lower bound, and all even numbered

218 B. Felgenhauer and A. Middeldorp

x
1
=

0

x2 =0

x3 =−4

x
4
=

−
7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

Fig. 2. Trajectory of the assignments (x1, x2) in Example 3.

variables as well. A suitable choice is

x3 = −2x1 + 1
3x2 x5 = x1 − 1

3x2 x1, x3, x5 � 1
3

x4 = −9x1 + x2 x6 = 9x1 − x2 x2, x4, x6 � −3

The first two steps of the corresponding cycle of length 6 are given in Fig. 3,
after which a cyclic shift of the variables is obtained.

4 Constructing Cycles Using Linear Real Arithmetic

Our first approach to finding cycles in the DPLL(T) simplex method works by
fixing the initial tableau and a sequence of pivoting steps, and then setting up
an SMT problem to find bounds on the variables and an initial assignment such
that the pivoting steps cycle. If the resulting SMT problem is satisfiable then we
have found a cycle; otherwise we try again with a different initial tableau. The
procedure is outlined in Fig. 4.

Our goal is to obtain a cycle with simple pivoting steps, that is, we want the
tableau entries corresponding to the pivoting steps to be simple.2 In order to
2 We use max(|p|, |q|) as a measure of simplicity of a rational number p/q; the smaller

the measure the simpler the number.

Constructing Cycles in the Simplex Method for DPLL(T) 219

x3

x4

x5

x6

⎛
⎜⎜⎜⎝

x1 x2

−2 1
3

−9 1

1 − 1
3

9 −2

⎞
⎟⎟⎟⎠

x1 x2 x3

1
3

−3 − 5
3

x4 x5 x6

−6 4
3

9

x1

x2

x5

x6

⎛
⎜⎜⎜⎝

x3 x4

1 − 1
3

9 −2

−2 1
3

−9 1

⎞
⎟⎟⎟⎠

x1 x2 x3

4
3

9 1
3

x4 x5 x6

−3 − 5
3

−6

x3

x2

x5

x6

⎛
⎜⎜⎜⎝

x1 x4

−2 − 1
3

−9 −2

1 1
3

9 1

⎞
⎟⎟⎟⎠

x1 x2 x3

1
3

−2 1
3

x4 x5 x6

−3 − 2
3

0

...

Fig. 3. One third of a cycle of length 6 in Example 4.

1: fix sequence of pivoting steps
2: repeat
3: guess initial tableau
4: generate linear real arithmetic SMT problem for bounds and initial assignment
5: until SMT problem is satisfiable with a cycle of desired simplicity
6: print cycle based on model generated by SMT solver

Fig. 4. Constructing cycles using linear real arithmetic

control these entries we take a detour via full tableaux. The full tableau corre-
sponding to

xi =
∑

j∈N

aijxj

for i ∈ B is the |B|×n matrix with entries aij where aij for j ∈ B is defined as −1
if i = j and 0 otherwise. That is, the full tableau is obtained from the (shortened)
tableau by adjoining a negated identity matrix in the columns corresponding to
the basic variables.

Full tableaux allow an elegant description of pivoting steps: From the tableau
A, where the basic variable xi being pivoted corresponds to a column equal to
a negated unit vector −ek (we use ek to denote the unit vector of length |N |
whose k-th entry equals 1), we use row operations to move to the tableau RA,
where R differs from the identity matrix in the i-th column. The matrix R is
chosen such that the column corresponding to the variable entering the basis in
RA equals −ek.

Example 5. The full tableau corresponding to the initial tableau in Example 3
is

x3

x4

(x1 x2 x3 x4

1 2 −1 0
2 1 0 −1

)

220 B. Felgenhauer and A. Middeldorp

The first pivoting step corresponds to subtracting 2 times the first row from the
second row and multiplying the first row by −1 in the full tableau, i.e.,

(−1 0
−2 1

) (
1 2 −1 0
2 1 0 −1

)
=

(−1 −2 1 0
0 −3 2 −1

)

Now if we assume that there is a cycle with initial full tableau A and pivoting
steps given by R1 to Rn, then from

RnRn−1 · · ·R1A = A

we may conclude that RnRn−1 · · ·R1 = I by focusing on the variables that
are initially basic. Conversely, given RnRn−1 · · ·R1 = I with Ri of the shape
described above, we can construct a corresponding initial tableau under the
additional assumption that the variable entering the basis in the j-th pivoting
step is xj . In that case, the j-th column a•j of A satisfies

RjRj−1 · · ·R1a•j = −ek

where k is the index of the column of Rj that differs from the identity matrix.
Consequently,

a•j = RnRn−1 · · ·R1a•j = −RnRn−1 · · ·Rj+1ek

This gives us the desired control over the pivoting elements, whose inverse can
be found on the diagonals of the Ri in the non-unit columns.

Example 6. The following four matrices satisfy R4R3R2R1 = I:

R1 =
(−1 0

−2 1

)
R2 =

(
1 − 2

3
0 1

3

)
R3 =

(
3 0
2 1

)
R4 =

(
1 −2
0 −1

)

We have

−R4R3R2e1 =
(

1
2

)
−R4R3e2 =

(
2
1

)
−R4e1 =

(−1
0

)
−e2 =

(
0

−1

)

and the resulting full tableau
(

1 2 −1 0
2 1 0 −1

)

is the one underlying Example 3.

For the SMT encoding, we generate variables for the lower and upper bounds
li and ui and the assignments xri after each round r (using r = 0 for the initial
assignment). For each round, we assert that the assignment satisfies the initial
tableau, that the nonbasic variables that remain nonbasic do not change their
value, that the pivoting step is suitable, and that the new nonbasic variable is
assigned its lower bound in cases (L+) and (L−) of the suitability conditions

Constructing Cycles in the Simplex Method for DPLL(T) 221

or its upper bound in cases (U+) and (U−). Finally we assert that the final
assignment equals the initial one.

We automated the above process for the case of two constraints, with pivoting
steps alternating between the first and the second row. All but two of the matrices
Ri are generated randomly, picking coefficients from the set of simple numbers
{p/q | |p|, |q| < 4}. The final two matrices are computed from the constraint
RnRn−1 . . . R1 = I: Denoting the unknown coefficients of R2 and R1 by a, b, c,
and d, the constraint can be written as

(RnRn−1 . . . R3)−1 = R2R1 =
(

1 a
0 b

)(
c 0
d 1

)
=

(
c + ad a
bd b

)

From this we can read off a, b, d, and c, in that order, provided that b �= 0.
As a final refinement, we let the number of rounds be 2n instead of n. This

means that we perform the sequence of pivoting steps twice. This is useful
because the assignment of the nonbasic variables may alternate between lower
and upper bounds. Indeed exactly this happens in Example 3. The resulting set
of constraints is passed to an SMT solver (in our case, Yices [8]).

We rely on the SMT solver to produce simple numbers for the assignments,
which, as evidenced by Example 3, works well enough. In order to obtain this
simple cycle, the termination condition in Fig. 4 takes simplicity into account.
The individual SMT problems are very simple; generating a problem and solv-
ing it with Yices takes well under 0.01 s on a Core i7-4600U (2.1 GHz) CPU,
with most of the time spent in the OS rather than doing productive work. For
Example 3 we filtered out unsatisfiable problems, and discarded all answers that
contain numbers greater than 11; an average run succeeded after about 2000
iterations and took under 15 s to complete on the mentioned hardware.

5 Constructing Cycles Using Nonlinear Real Arithmetic

The approach outlined in Sect. 4 is slightly unsatisfactory, because it involves
guessing. We also tried using support for nonlinear real arithmetic (NRA) to
delegate this task to the SMT solver. We tried this for both the DPLL(T) simplex
method and the standard simplex method using Dantzig’s pivot selection rule.

5.1 DPLL(T) Simplex

For the DPLL(T) simplex method, we fix a sequence of pivoting steps. Here we
include the information which of the bounds the basic variable being pivoted
violates. Then we introduce variables for the entries of the initial tableau, the
lower and upper bounds, and the assignments after each round. As in Sect. 4, we
assert that each assignment satisfies the initial tableau, and that the basic vari-
able chosen in each step violates its selected bound. In order to ensure suitabil-
ity, we encode that the nonbasic variable changes in the right direction; formally,

222 B. Felgenhauer and A. Middeldorp

if xj denotes the value before the pivoting step and x′
j the value after the pivoting

step, we assert that

(xj < uj ∧ xj < x′
j) ∨ (xj > lj ∧ xj > x′

j)

This way we avoid having to compute the entries of the intermediate tableaux.
With this approach we obtain the following examples using Yices (version 2.5.2)
and Z3 (version 4.5.0):3

Example 7. The DPLL(T) simplex method cycles with the constraints

x3 = x1 + 2x2 − 5
8 � x1 � − 9

16 −4 � x2 � 1

x4 = −x1 − 1
2x2 − 9

2 � x3 � −4 0 � x4 � 4

and initial assignment x1 = − 5
8 , x2 = −4, x3 = − 69

8 , and x4 = 21
8 . This example

was obtained using Yices. Z3 produces the following cycling problem:

x3 = x1 + 8x2
1
2 � x1 � 2 1

8 � x2 � 2

x4 = −x1 − x2 6 � x3 � 13 − 17
4 � x4 � 1

8

with initial assignment x1 = 1
2 , x2 = 1

8 , x3 = 3
2 , and x4 = − 5

8 .

The numbers obtained this way are not nearly as nice as those obtained by
the approach based on linear real arithmetic. We tried tweaking the result by
fixing some of the bounds or tableau entries, but found that it’s hard to steer
Yices and Z3 towards nice solutions.

5.2 Standard Simplex

This section is concerned with the standard simplex method, which is used for
solving linear optimization problems of the shape

minimize
∑

j∈N

cjxj

subject to xi +
∑

j∈N

aijxj = bi for i ∈ B

xi � 0 for i ∈ N ∪ B

where we again distinguish between basic variables xi (i ∈ B) and nonbasic
variables xj (j ∈ N). The simplex method maintains a tableau consisting of the
coefficients aij , bi, and cj for i ∈ B and j ∈ N satisfying the condition bi � 0 for
i ∈ B, which ensures that the assignment xj = 0 for j ∈ N and xi = bi for i ∈ B
satisfies the constraints. If no cj (j ∈ N) is negative then the optimum has been

3 While CVC4 [3] (snapshot version 2017-06-14) also has support for NRA, it cannot
produce models, making it unfit for our purposes.

Constructing Cycles in the Simplex Method for DPLL(T) 223

reached; otherwise, we select a nonbasic variable xj corresponding to a negative
cj , and look for a basic variable xi such that aij is positive. (If there is no such
basic variable then the problem is unbounded.) These two constraints determine
the suitable pivoting pairs. To pivot xi and xj , we use the substitution

xj =
1
aij

⎛

⎝bi − xi −
∑

j′∈N−{j}
aij′xj′

⎞

⎠

in the given tableau and the objective function. There are several pivot selec-
tion rules for the standard simplex method. One is Bland’s rule, which ensures
termination; it picks the smallest (nonbasic) variable index among the negative
values cj , and the smallest index among the basic variables that are suitable for
pivoting with the selected nonbasic variable.

Here we focus on Dantzig’s traditional pivoting rule, which tries to reduce the
value of the objective function as quickly as possible. This is the oldest pivoting
rule, and it is of interest to us because it fails to ensure termination. To this end,
the nonbasic variable xj is selected such that the value cj is as small as possible
(ties are broken by variable index). The basic variable xi is selected such that
bi
aij

is minimized. Again, ties are broken in favor of smaller variable indices.
For the standard simplex method, we first tried a very naive encoding in an

attempt to find cycles of length 6. However, the trick from Sect. 5.1, to express
all constraints in terms of the initial tableau, does not work here, because pivot
selection depends on the objective function (which has to be expressed in terms
of the nonbasic variables) and the pivoting elements in the tableau. Therefore,
as a first attempt, we introduced variables for all tableau entries for each rounds
in the assumed cycle, which were defined in terms of the pivoting element and
the preceding tableau. As a simplification, which is inspired by Avis et al. [1],
we assume that bi = 0 for i ∈ B, so the minimization of bi

aij
has no effect.

This turned out to be too much for Yices and Z3, perhaps because of the
large number of functions and variables (for 6 pivoting steps and 6 variables in
the tableau, the encoding requires 98 real variables for coefficients and tableau
entries) and we did not obtain any cycling tableau from this encoding.

In the end we adopted an approach by Zörnig [20], which avoids divisions
and requires fewer variables (26 instead of 98 for a cycle of length 6 with 6
variables). In this approach, all constraints are expressed in terms of the initial
tableau using subdeterminants. We demonstrate this by an example, where we
try to find a cycling tableau with two constraints and six variables x1, . . . , x6

where the basic variables follow the cycle

x5, x6 → x1, x6 → x1, x2 → x3, x2 → x3, x4 → x5, x4 → x5, x6 → · · ·
We can express the initial tableau by

Ax =

⎛

⎝
a11 a12 a13 a14 1 0
a21 a22 a23 a24 0 1
c1 c2 c3 c4 0 0

⎞

⎠x =

⎛

⎝
0
0
z

⎞

⎠

224 B. Felgenhauer and A. Middeldorp

where x = (x1, x2, x3, x4, x5, x6)T , z is the value of the objective function, and
we have already set bi = 0 for i ∈ {1, 2}. In order to obtain the tableau with
basic variables xi, xj , we have to perform row operations that result in the cor-
responding columns to become unit vectors; this can be expressed as

A′x =

⎛

⎝
a1i a1j 0
a2i a2j 0
ci cj 1

⎞

⎠
−1 ⎛

⎝
a11 a12 a13 a14 1 0
a21 a22 a23 a24 0 1
c1 c2 c3 c4 0 0

⎞

⎠x =

⎛

⎝
0
0
z

⎞

⎠

Following Zörnig, let Dij and Dijk be defined as

Dij =
∣∣∣∣
a1i a1j
a2i a2j

∣∣∣∣ Dijk =

∣∣∣∣∣∣

a1i a1j a1k
a2i a2j a2k
ci cj ck

∣∣∣∣∣∣

Using what is essentially Cramer’s rule, the k-th column of the tableau A′ equals
⎛

⎝
a′
1k

a′
2k

c′
k

⎞

⎠ =
1

Dij

⎛

⎝
Dkj

Dik

Dijk

⎞

⎠

Now, for the pivoting step from xi, xj to xk, xj to be valid, the following con-
straints need to be satisfied:

– a′
1,k > 0: Dij and Dkj have equal signs, and Dij �= 0.

– c′
k < 0: Dijk and Dij have opposite signs.

– c′
k is minimal, and ties are broken by smaller variable index: if Dij > 0

(Dij < 0), then Dijk′ > Dijk (Dijk′ < Dijk) for k′ < k and Dijk′ � Dijk

(Dijk′ � Dijk) for k′ > k.
– no variable with smaller index can enter the basis: if j < k then a′

2,k < 0, i.e.,
Dij and Dik have opposite signs.

Analogous conditions can be derived for pivoting steps from xi, xj to xi, xk. In
fact by the first constraint, we will always have Dij > 0, because D56 = 1 > 0 in
the initial tableau. Using this encoding the following example is obtained using
Yices; Z3 did not produce an answer within 600 s.

Example 8. The following optimization problem cycles when using the standard
simplex method with Dantzig’s pivot selection rule:

minimize −6x1 + 46x2 + 7x3 + 97
32x4

subject to −x5 = 1
2x1 − 4x2 − 3

4x3 − 25
64x4

−x6 = 4x2 + x3 + 1
2x4

x1, . . . , x6 � 0

Constructing Cycles in the Simplex Method for DPLL(T) 225

With some manual tweaking (by fixing some of the values of the tableau in the
SMT encoding), we obtain the following, nicer optimization problem:

minimize − 3
4x1 + 4x2 + x3 + 5

13x4

subject to −x5 = 1
3x1 − 2x2 − 2

3x3 − 1
3x4

−x6 = 2x2 + x3 + 6
13x4

x1, . . . , x6 � 0

The cycle is given in Fig. 5.

−x5

−x6

min:

⎛
⎜⎝

x1 x2 x3 x4

1
3

−2 − 2
3

− 1
3

0 2 1 6
13

− 3
4

4 1 5
13

⎞
⎟⎠ −x3

−x2

⎛
⎜⎝

x5 x6 x1 x4

3 3 1 5
13

− 3
2

−1 − 1
2

1
26

3 1 1
4

− 2
13

⎞
⎟⎠

−x1

−x6

⎛
⎜⎝

x5 x2 x3 x4

3 −6 −2 −1

0 2 1 6
13

9
4

− 1
2

− 1
2

− 19
52

⎞
⎟⎠

−x3

−x4

⎛
⎜⎝

x5 x6 x1 x2

18 13 6 −10

−39−26−13 26

−3 −3 − 7
4

4

⎞
⎟⎠

−x1

−x2

⎛
⎜⎝

x5 x6 x3 x4

3 3 1 5
13

0 1
2

1
2

3
13

9
4

1
4

− 1
4

− 1
4

⎞
⎟⎠ −x5

−x4

⎛
⎜⎝

x3 x6 x1 x2

1
18

13
18

1
3

− 5
9

13
6

13
6

0 13
3

1
6

− 5
6

− 3
4

7
3

⎞
⎟⎠

Fig. 5. The cycle of length 6 in Example 8.

In contrast to the encoding in Sect. 4, the SMT encodings for this section
were produced manually. This is made feasible by the fact that the SMT-LIB
format supports function definitions. For example, we defined an abbreviation
for the determinant of a 3 × 3 matrix:

(def ine− fun det3
((c11 Real) (c12 Real) (c13 Real)
(c21 Real) (c22 Real) (c23 Real)
(c31 Real) (c32 Real) (c33 Real))

Real
(− (+ (∗ c11 c22 c33) (∗ c12 c23 c31) (∗ c13 c21 c32))

(+ (∗ c11 c23 c32) (∗ c12 c21 c33) (∗ c13 c22 c31))))

6 Related Work

Perhaps the closest related work is Zörnig’s paper [20], which explores the idea of
employing a computer program for finding cycles in the standard simplex method.

226 B. Felgenhauer and A. Middeldorp

Zörnig uses LINGO (a commercial program for nonlinear optimization) for this
purpose. His work goes into a different direction from ours. Whereas we are mainly
interested in the DPLL(T) simplex method, Zörnig explores several pivot selection
rules and also synthesizes a cycle of odd length. The latter requires working with
more than 2 constraints, cf. [20, Eq. (5.6)].

There is a rich body of literature about loops in the standard simplex method,
starting with Hoffmann [13] and Beale [4]. A survey of cycles with visualizations
of the trajectories was produced by Avis et al. [1]. As far as we know, all of these
examples have been found manually. As part of this work, we reconstructed the
cycles presented in the latter paper. Below we make a few observations.

– The example attributed to Beale does not appear in [4], where instead the
following cycling tableau is given:

minimize − 3
4x1 + 20x2 − 1

2x3 + 6x4

subject to 1
4x1 − 8x2 − x3 + 9x4 + x5 = 0
1
2x1 − 12x2 − 1

2x3 + 3x4 + x6 = 0

– There are sign errors in the objective functions of Beale’s example (+150x2

should be −150x2) and Marshall and Suurballe’s example [15] (which should
read z = 0 + x3 − 7x4 − 1x5 − 2x6).

– The examples by Sierksma [17], Yudin and Gol’shtein [19], and Solow [18]
violate Dantzig’s pivot selection rule; in the last case, only the tie-breaking
rule for the basic variable is violated. Solow’s cycle is similar to Kuhn’s in that
it is based on two pivoting steps that result in a cyclic shift of the variables.
After four steps, the first tableau of Fig. 6 is reached. Then x1 is pivoted with
x5. In the sixth step, x2 is pivoted with x6, but by Dantzig’s rule we should
select x1 as the new basic variable instead of x6.

−x5

−x6

min:

⎛
⎜⎝

x1 x2 x3 x4

2 1 −3 −1

−7 −3 7 2

−2 −2 8 2

⎞
⎟⎠ −x1

−x2

⎛
⎜⎝

x5 x6 x3 x4

−3 −1 2 1

7 2 −7 −3

8 2 −2 −2

⎞
⎟⎠

−x1

−x6

⎛
⎜⎝

x5 x2 x3 x4

1
2

1
2

− 3
2

− 1
2

7
2

1
2

− 7
2

− 3
2

1 −1 5 1

⎞
⎟⎠

...

Fig. 6. One third of Solow’s cycle of length 6 [18]

Constructing Cycles in the Simplex Method for DPLL(T) 227

7 Conclusion

In this paper we have presented a new approach for finding cycles in the simplex
method, both for the traditional method and, for the first time, for the DPLL(T)
variant which is used in SMT solvers to solve quantifier-free linear arithmetic
constraint problems.

Any cycle in the simplex method induces a cycle in the dual simplex method
by switching to the dual optimization problem. The absence of an objective func-
tion means that this observation does not immediately carry over to the DPLL(T)
simplex method. However, if a cycling tableau has shape xB +AxN = 0, which is
the case for all examples collected by Avis et al. [1], then dualization produces a
constant objective function, and in this case, the cycle can be reproduced in the
DPLL(T) simplex method. We have seen this in Example 4. It is noteworthy that
this approach cannot produce Example 3, which relies on the fact that every vari-
able comes with two constraints. In fact, Beale [4] observed that any cycle in the
standard simplex method with two constraints requires at least 6 steps, and corre-
spondingly, 6 variables, because each bound xi � 0 produces one of the potential
lines the trajectory can move along. Our 4 variable example works because for
each variable, we get a pair of two parallel lines that can be used on the trajec-
tory. Beale’s first observation remains valid; indeed our cycle length 8 is greater
than 6.

While working on Zörnig’s encoding for the standard simplex we noticed that
sometimes small changes (like switching from a strict inequality to a nonstrict
one) resulted in Yices taking a longer time than we were willing to wait; we did
not study this phenomenon systematically, but this suggests that these encodings
are interesting benchmarks for nonlinear real arithmetic.

Acknowledgements. We thank the reviewers for their constructive feedback.

References

1. Avis, D., Kaluzny, B., Titley-Péloquin, D.: Visualizing and constructing cycles in
the simplex method. Oper. Res. 56(2), 512–518 (2008). doi:10.1287/opre.1070.0474

2. Balinski, M.L., Tucker, A.W.: Duality theory of linear programs: a construc-
tive approach with applications. SIAM Rev. 11(3), 347–377 (1969). doi:10.1137/
1011060

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

4. Beale, E.M.L.: Cycling in the dual simplex algorithm. Naval Res. Logistics Q. 2,
269–275 (1955). doi:10.1002/nav.3800020406

5. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

6. Bland, R.G.: New finite pivoting rules for the simplex method. Math. Oper. Res.
2(2), 103–107 (1977). doi:10.1287/moor.2.2.103

http://dx.doi.org/10.1287/opre.1070.0474
http://dx.doi.org/10.1137/1011060
http://dx.doi.org/10.1137/1011060
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1002/nav.3800020406
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1287/moor.2.2.103

228 B. Felgenhauer and A. Middeldorp

7. Bradley, A.R., Manna, Z.: The Calculus of Computation—Decision Procedures
with Applications to Verification. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74113-8

8. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 49

9. Dutertre, B., Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). doi:10.1007/11817963 11

10. Dutertre, B., de Moura, L.: Integrating simplex with DPLL(T). Technical report
SRI-CSL-06-01, SRI International (2006)

11. Goldfarb, D., Reid, J.K.: A practicable steepest-edge simplex algorithm. Math.
Program. 12(1), 361–371 (1977). doi:10.1007/BF01593804

12. Harris, P.M.J.: Pivot selection methods of the Devex LP code. Math. Program.
5(1), 1–28 (1973). doi:10.1007/BF01580108

13. Hoffman, A.J.: Cycling in the simplex algorithm. Technical report, 2974. National
Bureau of Standards (1953)

14. Kroening, D., Strichman, O.: Decision Procedures—An Algorithmic Point of View.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-74105-3

15. Marshall, K., Suurballe, J.: A note on cycling in the simplex method. Naval Res.
Logistics Q. 16(1), 121–137 (1969). doi:10.1002/nav.3800160110

16. Pan, P.Q.: A largest-distance pivot rule for the simplex algorithm. Eur. J. Oper.
Res. 187(2), 393–402 (2008). doi:10.1016/j.ejor.2007.03.026

17. Sierksma, G.: Linear and Integer Programming, 2nd edn. Marcel Dekker Inc., New
York City (1996)

18. Solow, D.: Linear Programming: An Introduction to Finite Improvement Algo-
rithms. North-Holland, Amsterdam (1984)

19. Yudin, D.B., Gol’shtein, E.G.: Linear programming. In: Israel Program of Scientific
Translations (1965)

20. Zörnig, P.: Systematic construction of examples for cycling in the simplex method.
Comput. Oper. Res. 33(8), 2247–2262 (2006). doi:10.1016/j.cor.2005.02.001

http://dx.doi.org/10.1007/978-3-540-74113-8
http://dx.doi.org/10.1007/978-3-540-74113-8
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1007/11817963_11
http://dx.doi.org/10.1007/BF01593804
http://dx.doi.org/10.1007/BF01580108
http://dx.doi.org/10.1007/978-3-540-74105-3
http://dx.doi.org/10.1002/nav.3800160110
http://dx.doi.org/10.1016/j.ejor.2007.03.026
http://dx.doi.org/10.1016/j.cor.2005.02.001

Tableaux with Partial Caching for Hybrid PDL
with Satisfaction Statements

Agathoklis Kritsimallis(B)

Larissa, Greece
agiskr@gmail.com

Abstract. We give a novel deterministic tableau-based satisfiability
algorithm for Hybrid Propositional Dynamic Logic (i.e. PDL with nom-
inals) with satisfaction statements (HPDL@). It builds and-or graphs in
which it detects unfulfilled eventualities and unifies nodes (due to nom-
inals) on-the-fly. There are two kinds of nodes: sentential nodes that
represent partial descriptions of worlds of a model and unification nodes
that deal with nominals. The main technical achievement of this work
is the determination of the necessary information that a sentential node
should have so that caching is feasible. Each saturated sentential node
is available for reuse until it becomes out of date, due to loop depen-
dencies. Thus, the algorithm runs in double exponential time. However,
for iteration-free formulas, loops do not occur and thus, it works in
exponential time. Nevertheless, despite the iteration operator, thanks
to partial caching, the algorithm has the potential to achieve acceptable
performance.

1 Introduction

The satisfiability problem of Propositional Dynamic Logic (PDL) [5,12] is
ExpTime-complete. Various decision procedures have been given such as best-
case exponential [22], working in multiple stages [19,23], on-the-fly [6] and with
analytic cut-rule for the converse [6,19], most of them based on and-or tableaux
[7]. The algorithm of [10] and its extension for the converse [11] reveal the crucial
role that global caching plays to the achievement of an optimal algorithm.

The origin of Hybrid Logics [2,4] goes back to Arthur Prior’s work on
tense logic [24]. In the literature, various extensions of the basic modal logic
with nominals have been studied. They usually include satisfaction statements,
the universal modality, the difference modality and the converse modality.
In [3,13,25], prefixed tableau systems are given for such logics.

Nominals are also met in description logics as (named) instances of concepts.
The algorithm in [8] concerns hybrid logics with coalgebraic semantics (which
can be instantiated for ALCO). Nominals are handled through @-constraints
which correspond to sets of satisfaction statements that concern appropriate
and-subgraphs of a tableau. In the algorithms of [17] and [18] for SHIO and
SHOQ, respectively, an on-demand cut rule is used. It is restricted to formulas
that are imposed by the nominals and it requires the re-expansion of nodes.
c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 229–247, 2017.
DOI: 10.1007/978-3-319-67729-3 14

230 A. Kritsimallis

We refer to the extension of PDL with nominals as hybrid PDL (HPDL) and
we denote HPDL with satisfaction statements as HPDL@. Hybrid PDL with the
universal modality was introduced in [20,21]. Similarly to PDL, the satisfiability
problem of HPDL@ is ExpTime-complete [1,14]. A best-case exponential algorithm
for HPDL with the difference modality and the converse is given in [14].

The issues that arise with HPDL@ are the same with PDL, such as fulfillment
of eventualities, caching and working on-the-fly. In addition to them, we have
to consider the nominals which make things even more complex. It is clear that
any unifications of nodes that may take place due to nominals affect the fulfilling
paths of eventualities, as well as the required cached information for a node.

In [15], a tableau-based satisfiability algorithm for HPDL is given which suc-
ceeds to handle eventualities and nominals. It is a NExpTime algorithm and
it processes graphs of exponential size. In these graphs, only and-branching is
permitted, whereas whenever disjunctions occur, backtracking is used. The liter-
ature [8–11,17–19] has shown that caching is very important in devising optimal
algorithms. Since the approach of [15] works on graphs and not on sets of for-
mulas, in our view, it does not seem possible to be extended to exploit caching.
The authors of [15] state that devising worst-case optimal decision procedures
for modal logics with nominals and eventualities is an open problem.

Here, we give a novel deterministic tableau-based satisfiability algorithm for
HPDL@. It defines a tableau as a variant of an and-or graph in which there are
two kinds of nodes: sentential nodes that represent partial descriptions of worlds
of a model and unification nodes that deal with nominals which appear in more
than one sentential node. To avoid world cycles of eventualities within a node,
inspired by the approach of [15], the algorithm examines in advance the way that
the eventualities are reduced by the usual static rules. Without being necessary
to examine global properties of a tableau in multiple subsequent passes, the
algorithm detects unfulfilled eventualities on-the-fly and unifies sentential nodes
(due to some nominal), based on the local information of a unification node.

The main technical achievement of this work is the determination of the
necessary information that a sentential node should have so that its reuse is
possible. This allows us to partially cache the saturated sentential nodes, ensure
the termination of the algorithm and restrict the expansion of a tableau in a
more effective way. The nodes of the branch under expansion are cached so that
we can block its possible infinite expansion due to the iteration operator. Nodes
of earlier defined branches are also cached. In general, each saturated sentential
node is available for possible reuse, but the moment that it becomes out of date
due to loop dependencies, its reuse is not allowed anymore.

The algorithm runs in double exponential time, as loop dependencies restrict
the caching of nodes. On the other hand, in the case of iteration-free formulas,
loops do not occur and thus, all the nodes are free from dependencies. Therefore,
all the saturated sentential nodes are cached and the algorithm works in single
exponential time. Moreover, in the general case, despite the iteration operator,
since all the saturated nodes which are not involved in a loop are cached, the
algorithm has the potential to achieve acceptable performance.

Tableaux with Partial Caching for Hybrid PDL with Satisfaction Statements 231

Due to lack of space and due to the technical nature of the algorithm, detailed
proofs of correctness are available in the extended version of this paper [16].

The paper is organized as follows. In Sect. 2, we give the syntax and the
semantics of HPDL@ and we introduce all the necessary concepts related to the
reduction sets of α/β formulas. In Sect. 3, we present our algorithm along with
an example and in Sect. 4, we conclude our work.

2 Preliminaries

HPDL@ extends PDL with nominals and satisfaction statements. Nominals desig-
nate atomic properties, but with the difference that they uniquely identify states.
The satisfaction statements @xϕ express that the single state which satisfies the
nominal x should also satisfy the formula ϕ. We consider countable disjoint
sets of atomic propositions and of nominals, denoted as AtF and N, respectively,
designating their union by At. We also consider a countable set AtP of atomic
programs. In what follows, p, q range over atomic formulas, x, y, z over nominals
and a, b, c over atomic programs. The formal syntax of HPDL@ is presented below.

Ls � ϕ := p | x | ¬ϕ | [A]ϕ | @xϕ La � A := a | ϕ | AA | A + A | A∗

We adopt a slightly different notation from the one usually met in the litera-
ture and we write AA for A;A,A + A for A ∪ A, and ϕ for ϕ?, when ϕ acts as a
program. The possibility operator 〈 〉 and the propositional connectives are not
taken as primitive, but they can be defined as usual.

Definition 1. A frame F is a structure 〈W, (a�)a∈AtP〉 where W is a set of
states and � is a transition function assigning to each atomic program a a
binary relation a� ⊆ W × W . A model M is a structure 〈F , ρ〉 where F is a
frame and ρ : At −→ 2W is an interpretation function of atomic formulas with
the restriction that ∀x ∈ N |ρ(x)| = 1. The interpretation function ρ and the
transition function � are extended to all the formulas ϕ (through the function
[[]]Fρ : Ls −→ 2W) and to all the programs A, respectively, as shown in Table 1.

Table 1. The interpretation of the HPDL@ language

[[p]]Fρ = ρ(p)
a�⊆ W × W

[[x]]Fρ = ρ(x)
ϕ� = {(w, w) | w∈ [[ϕ]]Fρ}

[[@xϕ]]Fρ =

{
W if ρ(x) ⊆ [[ϕ]]Fρ
∅ if ρ(x) � [[ϕ]]Fρ

A+B−� =
A� ∪ B�

[[¬ϕ]]Fρ = W \ [[ϕ]]Fρ
AB−� =

A� B�

[[[A]ϕ]]Fρ = {w∈W | ∀w′ ∈ W (w
A� w′ ⇒ w′ ∈ [[ϕ]]Fρ)} A∗

−� =
⋃

n≥0

(
A�
)n

Due to the iteration operator, we are interested in formulas of the form
¬[A1] · · · [Ak][A∗]ϕ, for some k ≥ 0. We call them eventualities and their set is
designated by Ev. In Table 2, we follow the Smullyan’s unifying notation which
classifies the conjunctive cases as α-formulas and the disjunctive as β-formulas.

232 A. Kritsimallis

Table 2. The α and β-formulas

Definition 2. The decomposition set D(ϕ) of an α/β eventuality ϕ is a set of
triples (P, T , ϑ) where P, T ⊆ Ls are sets of formulas and ϑ is a formula. It
contains the triple

(
∅, ∅, ϕ

)
and it is closed under the following decomposition

rules, where a rule (P,T ,ϑ)
(P′,T ′,ϑ′) is applied iff ϑ is an eventuality and ϑ /∈ P:

(
P, T , β

)
(
P ∪ {β}, T , β1

)
(
P, T , β

)
(
P ∪ {β}, T , β2

)
(
P, T , α

)
(
P ∪ {α}, T ∪ {α2}, α1

)

The finalized decomposition set FD(ϕ) is the set of all the pairs (T , ϑ) such that
there is a triple (P, T , ϑ) in D(ϕ) such that no decomposition rule can be applied
to it and at the same time, ϑ is not in P.

Definition 3. The (family of) reduction sets Rϕ
1 , . . . ,Rϕ

n ⊆ Ls of an α/β for-
mula ϕ, for some n ≥ 1 (called the reduction degree of ϕ), are defined as follows:

– If ϕ is an α non-eventuality, then Rϕ
1 = {α1, α2} is its only reduction set.

– If ϕ is a β non-eventuality, then the family of its reduction sets consists of
the singletons Rϕ

1 = {β1} and Rϕ
2 = {β2}.

– If ϕ is an eventuality, then for each pair (T , ϑ) ∈ FD(ϕ) and for i = 1, . . . , n,
where n is equal to the cardinality of FD(ϕ), we define Rϕ

i = T ∪ {ϑ}.

Definition 4. The binary relation �· relates formulas ϕ and ψ and we write
ϕ �· ψ iff all the following conditions hold:

– ϕ is an α/β formula of the form ¬[A]χ and ψ is in one of its reduction sets.
– If ϕ is an α non-eventuality, then ψ = α1.
– If ϕ is a β non-eventuality, then ψ ∈ {β1, β2}.
– If ϕ is an eventuality, then there is a pair (T , ϑ) ∈ FD(ϕ) such that ϑ = ψ

(notice that the set T ∪ {ϑ} is a reduction set of ϕ).

3 The Tableau-Based Satisfiability Algorithm

3.1 Basic Definitions

The following technical definitions facilitate the presentation of the algorithm.

Definition 5. A label l is a pair 〈Φ, rd〉, where Φ is a set of formulas and rd

is a reduction function which assigns to the α/β eventualities of Φ one of the
values 1 and 0 such that for each α/β eventuality ϕ ∈ Φ, if rd(ϕ) = 1, then at
least one of the reduction sets of ϕ is a subset of Φ.

Tableaux with Partial Caching for Hybrid PDL with Satisfaction Statements 233

The active set actF of a label l = 〈Φ, rd〉 consists of all the formulas of Φ
such that they are: (i) formulas of the form p,¬p, x,¬x,@xϕ,¬@xϕ, [a]ψ,¬[a]ψ,
or (ii) α/β non-eventualities for which none of their reduction sets is a subset
of Φ, or (iii) α/β eventualities ϕ such that rd(ϕ) = 0.

The reduced set rdF of a label l = 〈Φ, rd〉 consists of the α/β formulas ϕ of
Φ such that: (i) if ϕ is a non-eventuality, then at least one of its reduction sets
is a subset of Φ and (ii) if ϕ is an eventuality, then rd(ϕ) = 1.

A partial label is a label such that its active set contains α/β formulas. A
saturated label is a label which is not a partial one.

Finally, if l is a label, then l̃ is also a label such that Φ
˜l = Φl \ rdFl and

for all the α/β eventualities ϕ of Φ
˜l, rd˜l(ϕ) = rdl(ϕ) (thus, actF

˜l = actFl and
rdF

˜l = ∅). Moreover, if L is a set of labels, then L̃ is the set {l̃ | l ∈ L}.

Intuitively speaking, a label constitutes the main element of a sentential
node and its active formulas are used as the principal formulas of the rules of
the algorithm. In the case of an α/β eventuality ϕ of a label l = 〈Φ, rd〉, despite
the possible existence of one or more of its reduction sets as subsets of Φ, we
consider it as active, until we examine all the ways to fulfill it. This is indicated
by the reduction function which assigns to ϕ the value 1.

Definition 6. Let l be a label and ϕ ∈ Φl an eventuality. The set reach(ϕ, l)
is defined as the set of formulas ψ ∈ Φl such that there is a sequence of formulas
ψ1, . . . , ψk of Φl, with k ≥ 1, such that (i) ψ1 = ϕ and ψk = ψ, (ii) for i =
1, . . . , k − 1, ψi ∈ (rdFl ∩ Ev) and ψi �· ψi+1 and there is a reduction set R of ψi

such that ψi+1 ∈ R and R ⊆ Φl and (iii) ψk is either an active eventuality of
l, or a non-eventuality formula of l.

Definition 7. A history h for a label l0, over a set L of saturated labels, is a
triple 〈Λ, r,�〉:

– The set Λ ⊆ L̃ of nominal labels of h is a set of saturated labels such that for
each l ∈ Λ, there is at least one nominal x ∈ N such that x ∈ actFl.

– The reachability function r : Ev ∩ actFl0 −→ (L̃ × Ev) ∪ {∅} ∪ {FL} assigns
to each active eventuality of l0 a pair of a label and one of that label’s active
eventualities or the empty set or the constant FL (Fulfilling Label).

– The fulfillment relation �⊆ (Λ×Ev)× ((L̃×Ev)∪{FL}) relates pairs of labels
and their active eventualities, either with pairs of the same form, or with FL.

Intuitively, a history h = 〈Λ, r,�〉 concerns the label of a sentential node
and records information for an appropriate and-subgraph of a tableau. Due to
or-branching, there are many and-subgraphs for a label and as a result, we should
consider the corresponding number of histories. Roughly speaking, a history can
be seen as a combination and extension of the information that is maintained
in [10] and [8] (i.e. the potential rescuers function and the nominal constraints,
respectively). The set Λ records the nominal saturated labels of an and-subgraph,
while the function r and the relation � record the fulfilling paths of eventualities.
These paths concern saturated labels with nominals. We use r to remember the

234 A. Kritsimallis

most recent label that an eventuality reaches in such a path, while � records
the rest of it. Since labels are merged due to nominals, thanks to r and �,
we record the changes in the fulfilling paths and detect unfulfilled eventualities
on-the-fly. If a tableau concerns a PDL formula, Λ and � are of no use.

Definition 8. Let h = 〈Λ, r,�〉 be a history, defined over a set L of saturated
labels, for a label l. The history h is normal iff for each x ∈ N, there is at
most one label l ∈ Λ such that x ∈ actFl, concise iff for any labels l1, l2 ∈
Λ, actFl1 ⊂ actFl2 and deterministic iff for each label l ∈ Λ, for each active
eventuality ϕ of l, the cardinality of {P | (l, ϕ) � P} is not greater than 1.

We say that h is cyclic iff either there is an active eventuality ϕ of l such that
r(ϕ) = ∅, or there is a pair (l1, ϕ1) in the domain of � such that (l1, ϕ1) �+

(l1, ϕ1). An acyclic history is a history which is not cyclic.

The criterion for unifications of labels of nodes is the information of a his-
tory. A normal history requires no unifications of labels. We work with concise
histories so that there is no need for explicit unifications of unnecessary labels
and with deterministic histories in order to examine deterministic fulfilling paths
of eventualities. Notice that the cyclic histories indicate unfulfilled eventualities.

Definition 9. If h = 〈Λ, r,�〉 is a history, then Det(h) is the set of all the
deterministic histories 〈Λ, r,�′〉 such that �′ is a subset of � and for each
label l ∈ Λ, for each active eventuality ϕ of l, for only one value P of the set
{P | (l, ϕ) � P}, we have that (l, ϕ) �′ P .

Definition 10. We call a set H of histories a hybrid set iff its histories are
normal, acyclic and deterministic.

Definition 11. A sentential node ν of a rooted directed graph G, over a set L
of saturated labels, is a triple 〈lν ,Hν ,Dν〉, where:

– lν is a label,
– Hν is a hybrid set of histories, defined over L, for the label lν ,
– Dν is a set of sentential nodes of G, called dependency set and its elements

dependency nodes, such that they are ancestors of ν (i.e. closer to the root).

We refer to the pair (Hν ,Dν) as the status of ν, denoted as stsν , and we may
equivalently write 〈lν , stsν〉. We call a sentential node partial iff its label is
partial and saturated or state iff its label is saturated.

We use the sentential nodes to unfold the properties that their formulas
require. A history in a hybrid set reveals the existence of an and-subgraph which
suggests the satisfiability of the corresponding label. Since loops are very likely to
occur in a tableau, the fulfillment of eventualities of a node and the set of nominal
labels that corresponds to it might depend on ancestor nodes. A dependency set
is used to record these ancestor nodes.

Definition 12. A unification node u of a rooted directed graph G, over a set L
of saturated labels is a quintuple 〈lu, hu, D̃u,Hu,Du〉, where:

Tableaux with Partial Caching for Hybrid PDL with Satisfaction Statements 235

– lu is a saturated label,
– hu is a concise and a deterministic history, defined over L, for lu,
– D̃u is a set of sentential nodes of G called the initial dependency set of u,
– Hu is a hybrid set of histories, defined over L, for the label lu,
– Du is a set of sentential nodes of G, called the final dependency set of u.

We refer to the pair (Hu,Du) as the status of u, denoted as stsu, and we may
equivalently write 〈lu, hu, D̃u, stsu〉.

A unification node is always a descendant of a state and its label is the label
of this state. States are considered as and-nodes and they can be seen as roots
of and-subgraphs of a tableau. A unification node combines the information of
the sentential children of a state so that its history gathers all the nominal satu-
rated labels of an and-subgraph and records the fulfilling paths of eventualities.
Labels with common nominals are merged based on the history of a unification
node. New unification nodes are defined to incorporate the new nodes and this
continues until we reach a unification node with a normal history.

Definition 13. A tableau for a formula ϕ is a directed graph G =
(V,Ef , Eb, Ec), where V is a set of sentential and unification nodes and Ef , Eb

and Ec are sets of forward, backward and cyclic edges, respectively, which may
be labelled with a formula of the form ¬[a]χ or with a nominal. Its root is a
sentential node whose label is the pair 〈{ϕ}, rd〉, where rd is the reduction func-
tion which assigns to all the values of its domain the value 0. For simplicity of
notation, we assume that E is the set of all the edges of G and we equivalently
write G = (V,E).

Remark 1 (Notational Conventions). When we do not know or are not interested
in the type of a node of a tableau G = (V,E), we just write v ∈ V . When we
refer to the attributes of a label lν of a node ν, we may write actFν , rdFν and
Φν , without further disambiguation. To deal with the undefined attributes of the
nodes of a tableau, we let the ‘undefined value’ be denoted by ⊥. For the status
value stsv of some node v, we write stsv = ⊥ when both of its attributes are
undefined. Finally, for some value v of a set B, we denote as fv : A → B the
function which assigns to all the values of its domain the value v.

3.2 Tableau Construction

In this section, we present the way that the algorithm constructs a tableau and
we describe all the required procedures. The algorithm expands the nodes in a
depth-first, left-to-right fashion and defines their statuses in a postorder manner.

The procedure isSat takes as input the formula whose satisfiability we want
to examine. First, we initialize an empty graph G which gradually evolves into the
tableau for the input formula. Moreover, we initialize a cache set C of sentential
state nodes of G which is used to restrict the tableau expansion. Then, we define
the root node of G whose label contains only the input formula, while its status
is left undefined. Next the procedure constructTableau is used which, roughly
speaking, builds a tableau and defines the status of the root node. If the hybrid

236 A. Kritsimallis

Procedure isSat(ϕ0)
Input: A formula ϕ0 ∈ Ls.
Output: Whether the formula ϕ0 is satisfiable or not.
1 Define a global variable G to hold a graph (V, E) such that V := ∅ and E := ∅
2 Define a global variable C to hold a set of sentential state nodes of G: C := ∅
3 Define the sentential node ν = 〈lν , stsν〉: lν := 〈{ϕ0}, rd0〉, stsν := ⊥
4 constructTableau(⊥, ⊥, ν)
5 if (Hν �= ∅) then return true else return false

set of the root node is the empty set, isSat concludes that the input formula is
unsatisfiable, otherwise, that it is satisfiable.

The procedure constructTableau is the backbone of our algorithm, as it
handles all the cases that occur. It accepts as input two nodes, v0 and v1, and an
edge tag t. In the case that v0 = ⊥, v0 is already a node of the tableau, whereas
v1 is treated as a candidate child of v0. We first examine what type of node v1
is. Lines 2–18 concern a sentential node, whereas lines 20–25 a unification one.

First, we consider the case of a sentential node ν1. In the case that ν1 is
a state, we initially search the cache set C for another state ν′

1 with the same
active set of formulas as that of ν1. If this is the case, we ignore ν1. According
to line 31, if ν′

1 is a forward ancestor of v0, then a cyclic edge is defined between
the nodes v0 and ν′

1. If not, then ν′
1 belongs to an earlier defined branch and a

backward edge is defined. Now, in the case that we cannot reuse another state
or ν1 is not a state, ν1 is added to the graph as a forward child of v0 (see line 6
(see footnote 1)). Moreover, if ν1 is a state, it is also added to the cache set C
(see line 7).

After the addition of ν1, if it has no local inconsistencies (see line 8), it is
expanded and then, its status is calculated. Lines 10–11 concern a partial node
and lines 13–14 a non-leaf state (note that the names of the involved procedures
indicate what they do). In the case of a leaf state (lines 16–17), its status is
calculated at once by distinguishing cases on whether it has nominals or not.

After the definition of the status of ν1, if it is a state, all the nodes of C
which are dependent on it are removed from C (see line 18). As the dependent
states are not updated to consider stsν1 , the algorithm cannot reuse them.

In the case of a unification node u1, since we do not cache this type of nodes,
it is immediately added to the tableau, as a child of v0. Recall that we use the
unification nodes to detect labels that should be merged. Thus, we distinguish
three cases based on hu1 = 〈Λ, r,�〉. Intuitively speaking, if hu1 is cyclic, then
an unfulfilled eventuality has been detected and thus, the status of u1 is defined
as the pair (∅, ∅). In the case of a normal and acyclic history, all the necessary
unifications have taken place. The node u1 is a leaf and its status stsu1 is defined

1 The procedure calls backwEdge(G, v0, t, v1) and cyclEdge(G, v0, t, v1) define a back-
ward and a cyclic edge (v0, v1) (labelled with t), respectively. The procedure call
addNode(G, v0, t, v1) extends G with v1 (i.e. V := V ∪ {v1}) and if v0 �= ⊥, then it
defines the forward edge (v0, v1) (i.e. Ef := Ef ∪ {(v0, v1)}) and labels it with t.

Tableaux with Partial Caching for Hybrid PDL with Satisfaction Statements 237

as the pair (Hu1 ,Du1) in which the hybrid set Hu1 is the singleton {hu1} and
the final dependency set Du1 is the same as the initial D̃u1 . In the case of a
non-normal history, the procedure unify creates a sentential node as a child of
u1 by merging labels of Λ (more than one) due to a specific nominal of theirs.
Then, the procedure calcStsUnification calculates the status of u1.

In the sequel, we present the procedures which expand a partial, a state and
a unification node and those which calculate their statuses. But before that,
we introduce the procedures hybrid and dependency which are involved in the
calculation of the statuses of the previous three types of nodes.

Procedure constructTableau(v0, t, v1)
Input: A node v0 ∈ V ∪ {⊥}, an edge tag t (i.e. some formula ¬[a]χ or a nominal),

potentially undefined, and a node v1 /∈ V which is either sentential (denoted

as ν1 = 〈lν1 , stsν1〉), or unification (denoted as u1 = 〈lu1 , hu1 , D̃u1 , stsu1〉.
Output: -
1 if (v1 is a sentential node ν1) then
2 if (ν1 is a state and ∃ν′

1 ∈ C such that actFν′
1

= actFν1) then

3 if ((ν′
1,v0)∈E+

f) then cyclEdge(G,v0, t, ν
′
1) else backwEdge(G,v0, t, ν

′
1)

4 Extend rdFν′
1

with rdFν1 : Φν′
1
:= Φν′

1
∪ rdFν1 and rdν′

1
:= rd1

5 else
6 Extend G with ν1: addNode(G, v0, t, ν1)
7 Extend C with ν1: if (ν1 is a state) then C := C ∪ {ν1}
8 if (∃ϕ ∈ Φν1 such that ¬ϕ ∈ Φν1) then stsν1 := (∅, ∅)
9 else if (ν1 is a partial node, i.e. there is an α/β formula in actFν1) then

10 applyStaticRule(ν1)
11 stsν1 := calcStsPartial(ν1)

12 else if (there is a formula in ν1 of the form ¬[a]χ, @xϕ or ¬@xϕ) then
13 applyNonStaticRules(ν1)
14 stsν1 := calcStsState(ν1)

15 else /* ν1 is a leaf state with no active eventualities */

16 stsν1 := if (∃ϕ∈actFν1 ∩ N) then ({h}, ∅), where h := 〈{l̃ν1}, ∅, ∅〉
17 else ({h}, ∅), where h := 〈∅, ∅, ∅〉
18 if (ν1 is a state) then foreach (ν ∈ C s.t. ν1 ∈ Dν) do C := C \ {ν}
19 else /* v1 is a unification node u1 =〈lu1 , hu1 , D̃u1 , stsu1〉 with hu1=〈Λ, r, �〉 */
20 Extend G with u1: addNode(G, v0, t, u1)
21 if (hu1 is a cyclic history) then stsu1 := (∅, ∅)
22 else if (hu1 is not normal due to some x, i.e. |{l′ ∈Λ | x∈actFl′}|>1) then
23 unify(u1, x)
24 stsu1 := calcStsUnification(u1)

25 else stsu1 :=
({hu1}, D̃u1

)
/* hu1 is normal and acyclic */

The procedures hybrid and dependency accept as input two tableau nodes,
denoted as v and ν. The node v can be of any type, whereas ν is sentential and
it is also a child of v. As their names indicate, hybrid returns a hybrid set of
histories and dependency a set of sentential nodes. Both sets concern ν and they
are used for the definition of the status of the parent v.

238 A. Kritsimallis

There are two cases depending on the edge that connects the nodes v and
ν. If ν is a forward or a backward child of v, then hybrid returns the hybrid
set of ν and dependency returns its dependency set. In the case of a backward
edge, ν is a node of a previously defined branch. So, no matter whether the edge
is forward or backward, since the algorithm defines the statuses of nodes in a
postorder manner, the status of ν has already been calculated. If ν is a cyclic
child of v, according to lines 2–4 of constructTableau, a loop has been formed
and ν is also a forward ancestor state of v whose status has not been calculated
yet. In this case, hybrid defines a single history which, intuitively speaking,
clearly declares that the fulfillment of any eventualities that may be involved
depends on ν which does not have the required information to help us decide on
their fulfillment yet. In the same case, dependency returns the singleton {ν} to
record the created loop dependency. Intuitively, since the status of ν is undefined
at that moment, all the nodes of the loop are transitively dependent on ν.

Procedure hybrid(v, ν)
Input: A tableau node v and a sentential node ν which is a child of v.
Output: A hybrid set of histories.
1 if (ν is a forward or a backward child of v) then return Hν

2 else /* ν is a cyclic child of v and it is a state */
3 Definition The history h = 〈Λ, r, �〉 is defined as follows:

4 − Λ := if (ν has some nominal) then {l̃ν} else ∅
5 − The reachability function r for lν : ∀ϕ ∈ Ev ∩ actFν , r(ϕ) := (l̃ν , ϕ)
6 − � := ∅
7 return {h}

Procedure dependency(v, ν)
Input: A tableau node v and a sentential node ν which is a child of v.
Output: A dependency set of state nodes.
1 if ((v, ν) ∈ Ef ∪ Eb) then return Dν else return {ν}

The algorithm reuses the states of a tableau by taking advantage of their
statuses. On the other hand, it may stop reusing nodes due to loop dependencies.
Loops are formed as usual due to the iteration operator and nodes become
dependent on ancestor nodes because at the moment that a loop is formed, the
latter nodes do not have the required information yet. Recall how the procedures
hybrid and dependency work and that a cyclic edge indicates the existence of a
loop. So, intuitively speaking, each loop has a dependency node such that every
other node of the loop is dependent on it. From the moment that the status of
such a dependency node is calculated, the corresponding dependent nodes are
considered out of date, as they do not become aware of this status value. As a
result, the algorithm removes them from the cache set. The empty dependency

Tableaux with Partial Caching for Hybrid PDL with Satisfaction Statements 239

set of a state indicates that it is not involved in any loop and that it is not
dependent on any node. Hence, it remains in the cache set the whole time.

The Procedures for a Partial Node (see lines 9–11 of constructTableau). The
procedure applyStaticRule expands a partial node ν with as many sentential
children as the reduction degree of an active α/β formula ϕ of ν. The set of
formulas of each child is defined by adding to that of ν, one of the reduction sets
of ϕ. The reduction function is defined (see line 5) so that the principal formula
is considered as reduced and all the new α/β eventualities as active.

After the expansion of a partial node ν, the procedure calcStsPartial cal-
culates its status. It uses the histories and the dependency nodes of its children as
they are determined by the procedures hybrid and dependency, respectively. By
using the auxiliary procedure reachableLabels, it defines reachability functions
for the active eventualities of ν to record their fulfilling paths.

Procedure applyStaticRule(ν)
Input: A partial node ν.
Output: -
1 Let ϕ be an α/β formula in actFν and Rϕ

1 , . . . , Rϕ
k its reduction sets with k ≥ 1.

2 for (i := 1 to k) do
3 Define the sentential node νi = 〈〈Φi, rdi〉, stsi〉 as follows:
4 − Φi := Φν ∪ Rϕ

i

5 − For each α/β ψ ∈ Ev ∩ Φi, rdi(ψ) :=

⎧⎪⎨
⎪⎩
rdν(ψ) if ψ ∈ Φν \ {ϕ}
1 if ψ = ϕ

0 if ψ ∈ Rϕ
i \ Φν

6 − stsi := ⊥
7 constructTableau(ν, ⊥, νi)

Procedure calcStsPartial(ν)
Input: A partial node ν.
Output: The status of ν.
1 Let ψ1, . . . , ψm be the active eventualities of ν, with m ≥ 0.
2 Let H be an empty set of histories.
3 foreach (child node ν′ of ν (i.e. (ν, ν′) ∈ E)) do
4 foreach (history 〈Λ, r, �〉 ∈ hybrid(ν, ν′)) do
5 for (j := 1 to m) do Γj := reachableLabels(lν′ , r, ψj)
6 foreach (tuple (P1, . . . , Pm) such that, for j = 1, . . . , m, Pj ∈ Γj) do
7 The reachability function r′ for lν : for (j :=1 to m) do r′(ψj):=Pj

8 H := H ∪ {〈Λ, r′, �〉}

9 return
(
H,

⋃
(ν,ν0)∈E

dependency(ν, ν0)
)

240 A. Kritsimallis

The procedure reachableLabels determines how the fulfillment of an even-
tuality ϕ of a label l evolves. This is achieved through the relation �· and the
set reach(ϕ, l) (see Definition 6) and through a reachability function r for l.

Procedure reachableLabels(l, r, ϕ)
Input: A label l, a reachability function r for l and an eventuality ϕ of Φl.
Output: Either a set of pairs of labels and eventualities, or the singleton {FL}.
1 Γ := reach(ϕ, l)
2 if (∃ψ ∈ Γ (ψ /∈ Ev or (ψ ∈ Ev and r(ψ) = FL))) then return {FL} else

return
⋃

ψ∈Γ

{r(ψ)}

The Procedures for a State Node (see lines 12–14 of constructTableau). The
procedure applyNonStaticRules expands a state ν with the appropriate senten-
tial children. It creates a node for each formula ¬[a]χ of ν and for each nominal
x such that there is a formula in ν of the form @xψ or ¬@xψ.

Procedure applyNonStaticRules(ν)
Input: A state node ν.
Output: -
1 foreach (ϕ ∈ {¬[a]χ | ¬[a]χ ∈ Φν} ∪ {x | ∃ψ ∈ Φν(ψ = @xϕ or ψ = ¬@xϕ)}) do
2 if (there is no sentential child νc of ν such that hybrid(ν, νc) = ∅) then
3 Define the sentential node ν′ = 〈〈Φ, rd〉, sts〉 as follows:
4 − Φ := if (ϕ is some formula ¬[a]χ) then {¬χ} ∪ {ϑ | [a]ϑ ∈ actFν}
5 else if (ϕ is some x) then {x}∪{ψ | @xψ ∈ Φν}∪{¬ψ | ¬@xψ ∈Φν}
6 − rd := rd0

7 − sts := ⊥
8 constructTableau(ν, ϕ, ν′)
9 else break the for loop

After the expansion of a state ν with the appropriate sentential children,
the procedure calcStsState calculates its status. If the hybrid sets that corre-
spond to these sentential children do not imply unsatisfiability, the procedure
expandStWithUnifNodes expands ν with the appropriate unification nodes.

Procedure calcStsState(ν)
Input: A state node ν with at least one sentential child node.
Output: The status of ν.
1 Let ν1, . . . , νk be the sentential children of ν, with k ≥ 1.
2 if (∃i ∈ {1, . . . , k} such that hybrid(ν, νi) = ∅) then return (∅, ∅) else

return expandStWithUnifNodes(ν)

Tableaux with Partial Caching for Hybrid PDL with Satisfaction Statements 241

Procedure expandStWithUnifNodes(ν)
Input: A state node ν.
Output: A status value for ν.
1 Let ν1, . . . , νk be the sentential children of ν, with k ≥ 1, such that there is

0 ≤ n ≤ k such that for i = 1, . . . , n, the edge (ν, νi) is labelled with a formula
¬[a]χ and for i = n + 1, . . . , k the edge (ν, νi) is labelled with a nominal x.

2 foreach (tuple (h1, . . . , hk) such that for i = 1, . . . , k, hi ∈ hybrid(ν, νi)) do
3 h :=filterHist(lν , defConciseHist(lν , defCombinedHist(ν, (h1, . . . , hk))))
4 foreach (h′ ∈ Det(h)) do

5 Define the unification node u = 〈lu, hu, D̃u, stsu〉:
6 lu := lν , hu := h′, D̃u :=

(⋃
1≤i≤k

dependency(ν, νi)
) \ {ν}, stsu := ⊥

7 constructTableau(ν, ⊥, u)

8 return
(⋃

(ν,u0)∈E

Hu0 ,
⋃

(ν,u0)∈E

Du0

)

The procedure expandStWithUnifNodes defines a status value for a state ν.
Since the satisfiability of a state requires the satisfiability of all of its sentential
children, for each possible combination of histories of their hybrid sets (see line
2), the procedure defines a new history for ν. According to line 3, the procedure
defCombinedHist combines them into a single history, defConciseHist makes it
concise and filterHist removes the label l̃ν from it under the condition that l̃ν

has no nominals. Additionally, we consider the set of deterministic histories that
correspond to the defined history. Intuitively speaking, our goal is to determine
a history which gathers all the necessary information for an and-subgraph whose
root is ν. Thus, we define the appropriate unification node (see line 6) so that
we can examine if any labels of this and-subgraph should be merged.

The procedure defCombinedHist takes as input a state ν and a tuple of
histories and it returns a single history 〈Λ, r,�〉 for lν . It combines the input
histories into a single history 〈Λ, r,�〉 so that Λ gathers all the saturated labels
with some nominal and r and � record the fulfilling paths of the eventualities
of ν. Depending on whether there is a nominal in lν , or not, the procedure
distinguishes two cases on how each attribute of 〈Λ, r,�〉 is defined.

Procedure defCombinedHist(ν,(h1, . . . , hk))
Input:A state ν and a tuple

(〈Λ1, r1, �1〉, . . . , 〈Λk, rk, �k〉) of histories, with k≥1.
Output: A history h = 〈Λ, r, �〉 for lν .
1 Let ν1, . . . , νn be all the children of ν with 0≤n≤k and ϑ1, . . . , ϑn all the active

formulas of ν such that for i = 1, . . . , n, ϑi =¬[ai]χi and (ν, νi) ∈ E is labelled
with ϑi and hi ∈hybrid(ν, νi).

2 Definition The history h = 〈Λ, r, �〉 for lν is defined as follows:

3 Λ := if (∃ϕ ∈actFν(ϕ∈N)) then {l̃ν}∪Λ1 ∪ · · · ∪Λk else Λ1 ∪ · · · ∪Λk

4 if (l̃ν ∈ Λ) then foreach (ϕ ∈ (Ev ∩ actFν)) do (r(ϕ) := (l̃ν , ϕ))
5 else for (i := 1 to n) do if (ϑi ∈ Ev) then r(¬[ai]χi) := ri(¬χi)

6 � := if (l̃ν ∈Λ) then
{(

(l̃ν , ϑi), ri(¬χi)
) | ϑi ∈Ev and 1≤ i≤n

} ∪ ⋃
1≤i≤k

�i

else
⋃

1≤i≤k

�i

7 return 〈Λ, r, �〉

242 A. Kritsimallis

The procedure defConciseHist takes as input a history h = 〈Λ, r,�〉 for
some saturated label l0, possibly not a concise one, and it processes it so that
it is definitely concise. Recall that h is not concise iff there are labels l1, l2 ∈ Λ
such that actFl1 ⊂ actFl2 . So, if there are such labels l1, l2 in Λ, it eliminates
the unnecessary label l1 from h. It is immediate that there is at least one nominal
which belongs to both labels and consequently, they should be merged.

Procedure defConciseHist(l0, h)
Input: A saturated label l0 and a (not necessarily concise) history 〈Λ, r, �〉 for l0.
Output: A redefined concise history 〈Λ, r, �〉 for l0.
1 while (there are labels l1, l2 ∈ Λ such that actFl1 ⊂ actFl2) do
2 Definition The history 〈Λ, r, �〉 for l0 is redefined as follows:
3 Λ := Λ \ {l1}
4 foreach (ϕ ∈ (Ev∩ actFl0) such that r(ϕ) = (l1, ψ)) do r(ϕ) := (l2, ψ)
5 � := � \{((l, ϕ), P

) ∈�| l = l1}
6 while (there are related pairs (l, ϕ) � (l′, ϕ′) such that l′ = l1) do

7 � :=
(

� \{((l, ϕ), (l′, ϕ′)
)}) ∪ {((l, ϕ), (l2, ϕ

′)
)}

8 return 〈Λ, r, �〉

The procedure filterHist modifies the reachability function and the fulfill-
ment relation of a history h = 〈Λ, r,�〉 which has been defined for a saturated
label l0 with no nominals. Any pairs of labels and eventualities in which l̃0 occurs
within h are modified so that the specific label does not appear anymore. Roughly
speaking, having in mind that h concerns the label l0, if l̃0 occurs within h (e.g.
there are ϕ,ψ in actFl0 such that r(ϕ) = (l̃0, ψ) or r(ϕ) �+ (l̃0, ψ)), a loop
may have been formed. Recall that our concern is to maintain paths for the
eventualities in which nominal saturated labels appear so that we can record the
changes that unifications of labels impose. Since l0 has no nominals, the pairs in
which it appears should be modified appropriately. Of course, since a loop may
have been formed, we might obtain a cyclic history.

Procedure filterHist(l0, h)
Input: A saturated label l0 and a history h = 〈Λ, r, �〉 for l0.
Output: A redefined history h = 〈Λ, r, �〉 for l0.
1 if (l0 is a label with no nominals) then
2 foreach (ϕ ∈ Ev ∩ actFl0) do /* redefinition of r */
3 if (there is ϕ1, . . . , ϕk with k ≥ 1 s.t. ϕ1 =ϕ and (for i = 1, . . . , k − 1,

r(ϕi)=(l̃0, ϕi+1)) and (r(ϕk) =FL or r(ϕk) = (l, ψ) s.t. l �= l̃0)) then
4 r(ϕ) := r(ϕk)
5 else r(ϕ) := ∅
6 if (∀ϕ ∈ Ev ∩ actFl0(r(ϕ) �= ∅)) then /* redefinition of � */

7 � := � ∪{((l1, ψ1), r(ψ)
) | (l1, ψ1) � (l̃0, ψ)

}
8 � := � \{((l1, ψ1), (l2, ψ2)

) ∈�| l2 = l̃0
}

9 return 〈Λ, r, �〉

Tableaux with Partial Caching for Hybrid PDL with Satisfaction Statements 243

The Procedures for a Unification Node (see lines 22–24 of constructTableau).
The procedure unify takes as input a unification node u such that its concise
history hu = 〈Λu, ru,�u〉 is not normal and a nominal which proves that. This
nominal belongs to more than one label of Λu and we denote their set as L.
Intuitively speaking, the labels of L, as well as the labels of Λu \ L which have
a common nominal with those of L, should all be satisfied by the same state of
a model. Thus, unify expands the set L with the appropriate labels (see lines
2–3) and then, it merges all of them into a new node (see line 4).

Procedure unify(u, x)

Input: A node u=〈lu, hu, D̃u, stsu〉, where hu=〈Λu, ru, �u〉, and a nominal x.
Output: -
1 L := {l∈Λu | x∈actFl} /* L is a set of saturated labels such that |L| > 1 */
2 while (∃l ∈ (Λu \ L) such that ∃y ∈ actFl such that y ∈ ⋃

l′∈L

actFl′) do

3 L := L ∪ {l ∈ (Λu \ L) | ∃y ∈ actFl such that y ∈ ⋃
l′∈L

actFl′}

4 Define the node ν = 〈〈Φν , rdν〉, stsν〉: Φν :=
⋃
l∈L

Φl, rdν := ∅, stsν := ⊥
5 constructTableau(u, x, ν)

The procedure calcStsUnification takes as input a unification node u and
it returns its status. A unification node with an acyclic and a non-normal history
has a single sentential child which is the result of unify. If the hybrid set that
corresponds to this child of u does not imply unsatisfiability, the procedure
expandUnWithUnifNodes expands u with the appropriate unification nodes.

Procedure calcStsUnification(u)
Input: A unification node u.
Output: The status of u.
1 Let ν be the sentential child of u.
2 if (hybrid(u,ν)=∅) then return (∅,∅) else returnexpandUnWithUnifNodes(u)

The procedure expandUnWithUnifNodes expands a unification node u with
the appropriate unification nodes in order to calculate its status. The information
of u concerns an ancestor state which has the same label as that of u. Moreover,
the information of the history hu concerns an and-subgraph whose root is that
state. Since the sentential child of u, denoted as ν, is the result of unifications of
labels of that and-subgraph, we should combine the new information that occurs
from ν with hu. This is achieved by defining the appropriate unification nodes
as children of u. This process continues, until we meet a normal history and no
other unifications of labels are necessary. Each unification child is a step closer
to a normal history than its parent due to the unifications that take place.

244 A. Kritsimallis

Procedure expandUnWithUnifNodes(u)

Input: A unification node u = 〈lu, hu, D̃u, stsu〉, where hu = 〈Λu, ru, �u〉.
Output: A status value for u.
1 Let ν be the sentential child of u.
2 foreach (〈Λ0, r0, �0〉 ∈ hybrid(u, ν)) do
3 h := filterHist(lu, defConciseHist(lu, 〈Λu ∪ Λ0, ru, �u ∪ �0〉))
4 foreach (h′ ∈ Det(h)) do

5 Define the node u′ = 〈lu′ , hu′ , D̃u′ , stsu′〉: lu′ := lu, hu′ := h′,

D̃u′ := D̃u ∪ {ν′ ∈dependency(u, ν) | lν′ �=lu}, stsu′ := ⊥
6 constructTableau(u, ⊥, u′)

7 return
(⋃

(u,u0)∈E

Hu0 ,
⋃

(u,u0)∈E

Du0

)

Theorem 1 (Soundness, Completeness, Complexity). A formula ϕ is
satisfiable iff the procedure call isSat(ϕ) returns true. The algorithm runs in
double exponential time in the general case, but, in the case of iteration-free
formulas, it runs in single exponential time. (see [16] for proofs).

An Example of a Tableau (see Fig. 1). Sentential nodes are presented within a
rectangle, whereas unification nodes are not restricted to some shape. Partial
nodes are presented within dashed rectangles. Backward edges are depicted as
dashed arrows, whereas cyclic edges as dotted arrows. Assuming the steps of

Fig. 1. The tableau for the satisfiable set of formulas {¬[a][a∗]p, [a]x, [a]p, @xq}

Tableaux with Partial Caching for Hybrid PDL with Satisfaction Statements 245

the algorithm to be numbered, and each step being either about creating a
node, or defining the status of a node, we write vi.j for the node which becomes
created at step i and gets its status defined at step j. For any node vi.j , we
simply refer to it by writing vi and if it is sentential, we refer to its label as li.
We present only the set of formulas of a label without its reduction function.
The reachability function of a history is represented as a set of mappings (e.g.
{ϕ �→ (l, ψ), χ �→ FL, . . . }) and the fulfillment relation as a set of appropriate
related values, e.g. {(l̃1, ψ1) � (l̃2, ψ2), (l̃2, ψ2) � FL, . . . }. Finally, we omit
the dependency sets of the nodes when they are the empty set.

The tableau of Fig. 1 concerns the satisfiable set of formulas {¬[a][a∗]p, [a]x,
[a]p,@xq}. All the states remain in the cache set from the moment that they
are created to the end of the construction of the tableau. Notice how the states
ν7 and ν9 are reused. The eventuality ¬[a][a∗]p is fulfilled through the nodes
ν1, ν2, ν5, ν6 and ν7 (see also ν9, ν10 and ν7). The only bad loop that is formed
is for ¬[a][a∗]p, between ν9 and ν10 (notice that Dν10 = {ν9}), and it is detected
by the cyclic history of u14. The satisfaction statement @xq of ν1 leads to the
definition of ν22. So, the nominal x occurs in states ν5 and ν22 and thus, the
unification node u24 merges them into ν25. For more examples, we refer the
reader to [16].

4 Conclusions and Further Work

We have presented a novel tableau-based satisfiability algorithm for HPDL@ and
we have given all the necessary details that can lead to an implementation. It
defines a variant of an and-or graph, as for each non-leaf state, there are the
appropriate unification nodes which take care of the nominal labels of a non-
normal history. The algorithm detects unfulfilled eventualities on-the-fly and
unifies labels based on the history of a unification node (either implicitly through
defConciseHist or explicitly through unify). Definitions 3 and 2 enclose the
usual static rules in a single one, so that world cycles of eventualities are avoided.

Partial caching ensures the termination of the algorithm and restricts the
expansion of a tableau more effectively. The status of a sentential node repre-
sents the necessary information so that its reuse is possible. A history is a data
structure which holds information for an appropriate and-subgraph of a tableau.
Each state is available for possible reuse until the status of one of its dependency
nodes (if it has any) is defined. After that moment, it cannot be reused as it is
considered out of date. Our algorithm runs in double exponential time. However,
in the case of iteration-free formulas, loops are not formed. All the states are
reused the whole time and thus, it works in single exponential time.

Besides the iteration-free formulas, thanks to partial caching, the algorithm
has the potential to achieve acceptable performance. All the nodes of a loop are
reused until the status of their dependency node is defined. So, if loop-nodes do
not reappear after that moment, the algorithm runs in exponential time. Now,
suppose that there are only loops of sentential nodes in which their dependency
nodes are not dependent on any node. Since the dependency nodes are reused

246 A. Kritsimallis

the whole time, even if a state of a loop is recreated, the initial loop cannot be
re-formed and its newly redefined states remain in the cache set. Therefore, such
loops do not seem to be a problem. Of course, further work is required to address
how the algorithm behaves in practice through an experimental evaluation.

To the best of our knowledge, it is the first deterministic tableau-based sat-
isfiability algorithm for HPDL@ which defines a variant of an and-or graph, works
on-the-fly and exploits the (partial) caching of nodes.

To make the algorithm optimal, we should ensure that it has the ability to
reuse all the saturated sentential nodes the whole time. To achieve this, we should
devise an update mechanism for the loop dependencies so that the cached states
remain up to date. Dependencies are created due to loops, in which the statuses
of ancestor nodes have not been calculated yet. Eventually, the status of such a
dependency node is calculated. To reuse the nodes which are dependent on it, we
should somehow recalculate their statuses by considering this new status. Such
update mechanisms have been used in the algorithm of [10] for PDL. Further
work is required to extend our approach to incorporate such mechanisms.

Acknowledgments. I would like to thank Prof. Chrysafis Hartonas for helpful com-
ments and suggestions on an earlier version of this paper. I would also like to thank
the anonymous reviewers for their constructive comments on the paper.

References

1. Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid
temporal logics. Logic J. IGPL 8(5), 653–679 (2000)

2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Benthem, J.V., Wolter,
F. (eds.) Handbook of Modal Logic, pp. 821–868. Elsevier, Amsterdam (2007)

3. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Logic Comput.
17(3), 517–554 (2007)

4. Braüner, T.: Hybrid Logic and its Proof-Theory. Springer, Heidelberg (2011).
doi:10.1007/978-94-007-0002-4

5. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

6. Giacomo, G.D., Massacci, F.: Combining deduction and model checking into
tableaux and algorithms for converse-PDL. Inf. Comput. 162, 117–137 (2000)

7. Goré, R.: And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and
CPDL. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol.
8562, pp. 26–45. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 3

8. Goré, R., Kupke, C., Pattinson, D., Schröder, L.: Global caching for coalgebraic
description logics. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173,
pp. 46–60. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14203-1 5

9. Goré, R., Nguyen, L.A.: Exptime tableaux for ALC using sound global caching. J.
Autom. Reason. 50(4), 355–381 (2013)

10. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp.
437–452. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2 32

http://dx.doi.org/10.1007/978-94-007-0002-4
http://dx.doi.org/10.1007/978-3-319-08587-6_3
http://dx.doi.org/10.1007/978-3-642-14203-1_5
http://dx.doi.org/10.1007/978-3-642-02959-2_32

Tableaux with Partial Caching for Hybrid PDL with Satisfaction Statements 247

11. Goré, R., Widmann, F.: Optimal and cut-free tableaux for propositional dynamic
logic with converse. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173,
pp. 225–239. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14203-1 20

12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
13. Hoffmann, G.: Lightweight hybrid tableaux. J. Appl. Log. 8(4), 397–408 (2010)
14. Kaminski, M., Schneider, T., Smolka, G.: Correctness and worst-case optimality

of Pratt-style decision procedures for modal and hybrid logics. In: Brünnler, K.,
Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 196–210. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22119-4 16

15. Kaminski, M., Smolka, G.: A goal-directed decision procedure for hybrid PDL. J.
Autom. Reason. 52(4), 407–450 (2014)

16. Kritsimallis, A.: Tableaux with partial caching for hybrid PDL with satisfaction
statements (ext. ver.) (2017). https://www.academia.edu/32581641/Tableaux
with Partial Caching for Hybrid PDL with Satisfaction Statements

17. Nguyen, L.A.: Exptime tableaux with global state caching for the description logic
SHIO. Neurocomputing 146, 249–263 (2014)

18. Nguyen, L.A., Golińska-Pilarek, J.: An exptime tableau method for dealing with
nominals and qualified number restrictions in deciding the description logic SHOQ.
Fundamenta Informaticae 135(4), 433–449 (2014)

19. Nguyen, L.A., Sza�las, A.: An optimal tableau decision procedure for converse-PDL.
In: KSE 2009, pp. 207–214. IEEE (2009)

20. Passy, S., Tinchev, T.: PDL with data constants. Inf. Process. Lett. 20, 35–41
(1985)

21. Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Inf. Comput. 93(2),
263–332 (1991)

22. Pratt, V.R.: Models of program logics. In: Proceedings of 20th Symposium on
Foundations of Computer Science, pp. 115–122. IEEE (1979)

23. Pratt, V.R.: A near-optimal method for reasoning about action. J. Comput. Syst.
Sci. 20(2), 231–254 (1980)

24. Prior, A.: Past, Present and Future. Oxford University Press, Oxford (1967)
25. Tzakova, M.: Tableau calculi for hybrid logics. In: Murray, N.V. (ed.) TABLEAUX

1999. LNCS, vol. 1617, pp. 278–292. Springer, Heidelberg (1999). doi:10.1007/
3-540-48754-9 24

http://dx.doi.org/10.1007/978-3-642-14203-1_20
http://dx.doi.org/10.1007/978-3-642-22119-4_16
https://www.academia.edu/32581641/Tableaux_with_Partial_Caching_for_Hybrid_PDL_with_Satisfaction_Statements
https://www.academia.edu/32581641/Tableaux_with_Partial_Caching_for_Hybrid_PDL_with_Satisfaction_Statements
http://dx.doi.org/10.1007/3-540-48754-9_24
http://dx.doi.org/10.1007/3-540-48754-9_24

PTrie: Data Structure for Compressing
and Storing Sets via Prefix Sharing

Peter Gjøl Jensen, Kim Guldstrand Larsen, and Jǐŕı Srba(B)

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

srba@cs.aau.dk

Abstract. Sets and their efficient implementation are fundamental in
all of computer science, including model checking, where sets are used as
the basic data structure for storing (encodings of) states during a state-
space exploration. In the quest for fast and memory efficient methods
for manipulating large sets, we present a novel data structure called
PTrie for storing sets of binary strings of arbitrary length. The PTrie
data structure distinguishes itself by compressing the stored elements
while sharing the desirable key characteristics with conventional hash-
based implementations, namely fast insertion and lookup operations. We
provide the theoretical foundation of PTries, prove the correctness of
their operations and conduct empirical studies analysing the performance
of PTries for dealing with randomly generated binary strings as well
as for state-space exploration of a large collection of Petri net models
from the 2016 edition of the Model Checking Contest (MCC’16). We
experimentally document that with a modest overhead in running time,
a truly significant space-reduction can be achieved. Lastly, we provide
an efficient implementation of the PTrie data structure under the GPL
version 3 license, so that the technology is made available for memory-
intensive applications such as model-checking tools.

1 Introduction

Formal verification techniques are being increasingly employed in many differ-
ent industrial applications, including both hardware and software systems. In
the hardware industry such techniques have been adopted by most of the major
leading companies and a widespread adoption in the software industry is under
way. Formal techniques have become essential for certain safety-critical appli-
cations for example in the avionics and aerospace industry but also in other
areas—like the development of operating systems, control systems for railways
and numerous other applications. The performance of the respective verification
tools depends to a large extent on fast and memory efficient implementations of
the underlying data structures used in the verification algorithms. This is in par-
ticular due to the state-space explosion problem that all modern model checkers
must deal with. Such tools are not only constrained by the time requirements
but also by the physical limitations like the amount of memory resources of the
hardware that the implementation is targeted for.
c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 248–265, 2017.
DOI: 10.1007/978-3-319-67729-3 15

PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing 249

A common data structure used in model checking and many other appli-
cations is a set. We revisit the state-of-the-art implementation approaches for
storing sets that offer the basic operations of inserting an element to the set,
removing an element from the set and a membership check. This simple set
interface is sufficient for the applications in many explicit model checkers, while
the symbolic approaches may require more complex operations like intersection
and union that are, however, more expensive in implementation. In order to
compete with the foremost hash-based approaches for storing sets, we develop a
particular tree-based representation of a set called PTrie that is optimized both
for speed and memory. PTrie is designed for storing binary strings of arbitrary
length but via binary encoding/decoding techniques it can be used as a general
set-implementation. An early implementation of PTrie was briefly mentioned in a
tool paper by Jensen et al. [15], indicating encouraging performance results. Since
then the data structure was further developed, extensively tested and matured
so that it became competitive with the industrial leading implementations.

Although generic data structures for sets already exist in the standard-library
of C++, Google’s google::dense hash set (and google::sparse hash set)
implementations perform significantly faster (or have a smaller memory foot-
print) than other reasonable alternatives as documented e.g. in [22,23]. PTrie
are designed as an almost general replacement of such library implementations
and yield a sensible trade off between time and space consumption by utiliz-
ing the inherent prefix-sharing whenever beneficial. The main characteristic of
the structure is the partial (lazy) construction of the trie—hence the name Par-
tial Trie (PTrie)—that is optimized for storing a large number of binary strings
of varying size. At the same time the PTrie data structure utilizes the prefix-
sharing of the binary strings, often resulting in significant compression of the
stored data, sometime up to 70% compared to the Google’s hash-based imple-
mentation . In the present paper, we formally define the syntax and semantics of
PTries, give the algorithms for the interface operations, prove their correctness
and provide an open-source implementation that is thoroughly tested against
other approaches.

Related Work. While tries were introduced already in the 1960’s [11], their pri-
mary focus was on reducing search time in large sets of text-strings. Different
variants of tries have been developed during the years, such as Radix tree [12,18]
designed for storing more than single characters on edges or trie-based hashmaps
for both the sequential and concurrent setting [1,19]. Our work differs by having
a very conservative approach to the expansion of the trie in order to achieve both
speed and overall memory reductions. Notably, the burst tries [13] do not make
use of a B-Tree-style pointer scheme and do not enforce removal of the prefix,
resulting in an overhead in memory-consumption and not reduction as in PTries.
The HAT-tries [1] enforce the use of hashes for elements in buckets, which is not
necessary in our data structure. Moreover, neither [13] nor [1] provide a for-
mal definition of their algorithms or the semantics, and they do not present the
delete-operation (or “inverse burst”), which we provide. Also Bagwells work on
HAMT [2] is mostly using trie-structures in combination with hashes of data

250 P.G. Jensen et al.

and comes with added memory-footprint rather than memory reduction. In
our experiments, we compare the PTrie performance only with Google’s dense-
hash/sparsehash implementations as other popular trie libraries [5,20,25] are
not competitive with Google hash libraries for the model checking application
domain that relies on fast and memory efficient implementation of sets.

Various forms of trees (Red/Black trees, binary trees, heaps) are conven-
tionally also used for implementing sets and map-like data structures but such
implementations are generally regarded inferior in terms of performance [6,7].
Binary Decision Diagrams (BDD) [3] are another efficient way of storing binary
strings, however with a very high average computational cost (as documented
e.g. in [15]) for the basic single-element operations such as insert and delete.

In the domain of model-checking, Laarman et al. [17] introduced a tree-style
compressing data-structure for multi-core model checking, a method that com-
presses inserted data on-the-fly by utilizing sub-string sharing between integer
strings, encoded into a tree structure. A similar technique has been used by the
tool DIVINE [21], leading to great memory reductions, however, at the cost of
performance. While both papers demonstrate promising results, we argue that
these works are orthogonal as they both rely on efficient map and set implemen-
tations. Furthermore, these methods come with a number of restrictions making
them less suitable as general set and map implementations. Other model checking
specific compression-techniques like Delta-compression [9] have been proposed
but suffer from even a greater impact on running-time as well as lacking gen-
eral applicability. The explicit-state model checker LoLa [24] implements a basic
prefix sharing scheme for the state-compression, but has yet to provide this as
a stand-alone library with accompanying benchmarks and does not include the
essential performance enhancements used in PTrie.

2 Definition of PTrie

Let B = {0, 1} be a binary alphabet and let B∗ be the set of all binary strings
over B where ε is the empty string. If w = b1b2 . . . bn and w′ = b′

1b
′
2 . . . b′

m then
w ◦ w′ = b1b2 . . . bnb′

1b
′
2 . . . b′

m is the concatenation of the two strings (we shall
often write just ww′ instead of w ◦ w′). For a binary string w = b1b2 . . . bn, the
length of w is defined as |w| = n where by definition |ε| = 0, and we use the
substring notation w[i,j] where 1 ≤ i, j ≤ n such that w[i,j] = bibi+1 . . . bj if i ≤ j
and w[i,j] = ε if i > j.

Let Bn be the set of all binary strings of length n and let Θn = {ww′ | w ∈
B∗, w′ ∈ {•}∗, |ww′| = n} be the set of all extended binary strings of length n,
i.e. binary strings that can be suffixed with a sequence of wild characters •.
The semantics of an extended binary string w is the set of all binary strings it
represents �w� and it is inductively defined as follows (where b ∈ B ∪ {•} and
w ∈ (B ∪ {•})∗).

PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing 251

�ε� = {ε}

�b ◦ w� =

{
{b ◦ w′ | w′ ∈ �w�} if b ∈ B
{0 ◦ w′, 1 ◦ w′ | w′ ∈ �w�} if b = •

In the rest of this paper, we assume an implicitly given integer constant ι > 0
called the byte size and an integer constant κ ≥ 2 called the bucket size.

Definition 1 (PTrie Syntax). A PTrie is a tuple P = (F,L,E,�, λ, β) where

1. F is a finite set of forwarding vertices,
2. L is a finite set of leaf vertices such that F ∩ L = ∅,
3. E ⊆ F × (F ∪ L) is a finite set of edges such that (F ∪ L,E) is a tree,
4. � ∈ F is the root vertex of the tree (F ∪ L,E),
5. λ : E → Θι is a labeling function assigning an extended binary string of length

ι to each edge such that
(a) �λ(u, v)� ∩ �λ(u, v′)� = ∅ for all (u, v), (u, v′) ∈ E where v �= v′, and
(b) λ(u, v) ∈ Bι for all (u, v) ∈ E where v ∈ F ,

6. β : L ∪ F → 2B∗
is a bucket function such that

(a) 0 < |β(u)| ≤ κ for all u ∈ L,
(b) |w| ≥ ι for all w ∈ β(u) where u ∈ L,
(c) w[1,ι] ∈ �λ(u, v)� for all w ∈ β(v) where (u, v) ∈ E and v ∈ L, and
(d) |w| < ι for all u ∈ F and all w ∈ β(u).

A PTrie example is given in Fig. 1a. We note particularly the difference
between forwarding and leaf vertices. The bucket at a forwarding vertex contains
the suffix of the string to be appended to the labels on the path from the root to
the vertex (for example vertex c contains the bucket with the suffixes {1, 00} that
represent the strings 010 ◦ 1 and 010 ◦ 00). However, the bucket at a leaf vertex
must first specify the concrete binary string that matches the extended binary
string on its incoming edge, followed by the suffix of the string (for example the
vertex b represents the strings 111 and 111 ◦ 0 as the first three bits of each string
in the bucket of b must match the extended binary string 11•).

Before we introduce the main algorithms of the data structure, let us formally
define the semantics of a PTrie as a set of strings that the PTrie represents.

Definition 2 (PTrie Semantics). Let P = (F,L,E,�, λ, β) be a PTrie. The
semantics of P, denoted by �P� ⊆ B∗, is defined inductively as follows in the
height of the tree so that �P� = ��� and

�u ∈ L� = β(u)

�u ∈ F � = β(u) ∪
⋃

(u,v)∈E, v∈F

{λ(u, v) ◦ w | w ∈ �v�} ∪
⋃

(u,v)∈E, v∈L

�v� .

252 P.G. Jensen et al.

Fig. 1. Running example

3 Operations on PTrie

Let us assume a given PTrie P = (F,L,E,�, λ, β) and a binary string w. We
shall now explain the algorithms for the basic set operations

– Member(P, w) for checking the existence of w in P,
– Insert(P, w) for adding w into P, and
– Delete(P, w) for removing w from P.

PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing 253

The algorithms will use the following functions for manipulating PTries:
Find(P, u, w) for searching from the vertex u for the binary string w, Split(P, v)
for subdividing a vertex once its bucket size becomes larger than κ, and its
inverse Merge(P, v) for reducing the size of the PTrie by merging two vertices.
We also define the parent function (used by the Split and Merge algorithms)
as P : F ∪ L → F such that P (v) = u where u ∈ V is the unique vertex such
that (u, v) ∈ E and by agreement P (�) = �.

3.1 Member Algorithm

The algorithm for checking whether a binary string is already stored in a PTrie
is presented in Algorithm 2 which is based on Algorithm 1 that searches for the
presence of a binary string in a PTrie. This algorithm is also used for the insertion
and deletion algorithms.

Algorithm 1 implements a search from a given vertex u following a given
binary string as long as possible, until either a leaf-vertex is reached or no further

Algorithm 1. Find(P, u, w)
Data: A PTrie P = (F, L, E, �, λ, β), a vertex u ∈ V and a binary string w
Result: (v, w′) where w′ is a suffix of w that cannot be any further matched by

a (unique) path starting from u and labeled with the longest possible
prefix of w and v ∈ V is the vertex where this mismatch happens

1 begin
2 if |w| < ι then
3 return (u, w)
4 Eu = {(u, v) ∈ E | w[1,ι] ∈ �λ(u, v)�};
5 if Eu = ∅ then
6 return (u, w)
7 else
8 Let {(u, v)} = Eu // note that |Eu| ≤ 1 due to Definition 1, case 5a
9 if v ∈ L then

10 return (v, w)
11 else
12 return Find(P, v, w[ι+1,|w|])

Algorithm 2. Member(P, w)
Data: A PTrie P = (F, L, E, �, λ, β) and a binary string w
Result: tt if w ∈ �P�, else ff

1 begin
2 (v, w′) ← Find(P, �, w);
3 if w′ ∈ β(v) then
4 return tt
5 else
6 return ff

254 P.G. Jensen et al.

match is possible and the algorithm returns the reached vertex and the suffix of
the string w that could not be uniquely matched in the PTrie. This algorithm
closely mimics the inductive definition of the semantics of PTrie in Definition 2.

Theorem 1. Algorithm2 run on an input PTrie P and a binary string w ter-
minates and returns tt if and only if w ∈ �P�.

3.2 Insert Algorithm

We shall now focus on inserting a binary string w into a PTrie P as described
in Algorithm 3. We start by matching the prefix of w from the root of the PTrie
(line 2) to the vertex v from which we cannot follow the prefix of w any further.
Either the vertex v is a forwarding vertex and if the unmatched suffix w′ of w
is shorter than ι, we insert it into the bucket of v at line 8 and we are done. If
w′ is on the other hand longer than ι, we need to create a new leaf vertex u and

Algorithm 3. Insert(P, w)
Data: A PTrie P = (F, L, E, �, λ, β) and a binary string w
Result: P′ where �P′� = �P� ∪ {w} and P

′ satisfies all conditions of Definition 1.
1 begin
2 (v, w′) ← Find(P, �, w);
3 if w′ ∈ β(v) then
4 return P

5 else
6 if v ∈ F then
7 if |w′| < ι then
8 β(v) ← β(v) ∪ {w′};
9 return (F, L, E, �, λ, β)

10 else
11 � ←

argmax
�′∈Θι where w′

[1,ι]∈��′�

{
0 if ∃u ∈ F ∪ L s.t. ��′� ∩ �λ(v, u)�
= ∅
|��′�| otherwise

12 Make a fresh leaf vertex u;
13 L ← L ∪ {u};
14 E ← E ∪ {(v, u)};
15 λ(v, u) ← �;
16 β(u) ← {w′};
17 return (F, L, E, �, λ, β)

18 else
19 β(v) ← β(v) ∪ {w′};
20 if |β(v)| ≤ κ then
21 return (F, L, E, �, λ, β)
22 else
23 return Split((F, L, E, �, λ, β), v)

PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing 255

Algorithm 4. Split(P, v)
Data: A PTrie P = (F, L, E, �, λ, β) and a vertex v ∈ L such that β(v) > κ.
Result: P′ such that �P� = �P′� and P

′ satisfies all conditions of Definition 1
1 begin
2 if |�λ(P (v), v)�| = 1 then
3 F ← F ∪ {v}; L ← L \ {v};
4 β(v) ← {w[ι+1,|w|] | w ∈ β(v) and |w| < 2ι};
5 B ← {w[ι+1,|w|] | w ∈ β(v) and |w| ≥ 2ι};
6 if B = ∅ then
7 return (F, L, E, �, λ, β)
8 else
9 Make a fresh leaf vertex u;

10 L ← L ∪ {u}; E ← E ∪ {(v, u)}; λ(v, u) ← •ι; β(u) ← B;
11 if |β(u)| ≤ κ then
12 return (F, L, E, �, λ, β)
13 else
14 return Split((F, L, E, �, λ, β), u)

15 else
16 Let w ◦ •m = λ(P (v), v) such that w ∈ {0, 1}∗ and m > 0.
17 �0 ← w0 ◦ •m−1; �1 ← w1 ◦ •m−1;
18 B0 = {w ∈ β(v) | w[1,ι] ∈ ��0�}; B1 = {w ∈ β(v) | w[1,ι] ∈ ��1�};
19 if B0
= ∅ and B1
= ∅ then
20 Make a fresh leaf vertex u;
21 L ← L ∪ {u}, E ← E ∪ {(P (v), u)};
22 λ(P (v), v) ← �0; λ(P (v), u) ← �1;
23 β(v) ← B0; β(u) ← B1;
24 return (F, L, E, �, λ, β)

25 else
26 if B0
= ∅ then
27 λ(P (v), v) ← �0;
28 else
29 λ(P (v), v) ← �1;
30 return Split((F, L, E, �, λ, β), v)

store w′ in its bucket at line 16. The point is to label the edge (v, u) with the
most general and non-conflicting label � selected at line 11. In the second case
where v is a leaf vertex, we add the suffix w′ of w into the bucket at line 19 and
should the size of the bucket exceed the maximum size κ, we call the function
Split at line 23 to balance the PTrie.

An example of inserting two strings is given in Fig. 1b. The insertion of the
string 010 ◦ 000 causes the creation of the sibling g for the vertex d and splitting
of the label ••• into 0•• and 1••. The insertion of 111◦011 implies that the leaf
vertex b turns into a forwarding vertex while we create a fresh leaf vertex h and
adjust the buckets accordingly.

Theorem 2. Algorithm3 run on an input PTrie P and a binary string w ter-
minates and returns a PTrie P

′ such that �P′� = �P� ∪ {w}.

256 P.G. Jensen et al.

3.3 Delete Algorithm

We here discuss the algorithm for removing a binary string w from a PTrie P as
described in Algorithm 5. As with the insertion algorithm, the Delete algorithm
may call the function Merge defined in Algorithm 6—a function that attempts
to revert divisions previously made by the Split algorithm.

Algorithm 5. Delete(P, w)
Data: A PTrie P = (F, L, E, �, λ, β) and a binary string w
Result: P′ where �P′� = �P� \ {w} and P

′ satisfies all conditions of Definition 1
1 begin
2 (v, w′) ← Find(P, �, w);
3 if w′
∈ β(v) then
4 return P

5 else
6 β(v) ← β(v) \ {w′};
7 if v ∈ F then
8 if v has no children then
9 if v = � then

10 return (F, L, E, �, λ, β)
11 if |β(v)| > κ then
12 return (F, L, E, �, λ, β)
13 L ← L ∪ {v}; F ← F \ {v};
14 β(v) ← {λ(P (v), v) ◦ w | w ∈ β(v)};
15 return Merge((F, L, E, �, λ, β), v)

16 else
17 if v has exactly one child u and u ∈ L then
18 return Merge((F, L, E, �, λ, β), u)
19 else
20 return (F, L, E, �, λ, β)

21 else
22 return Merge((F, L, E, �, λ, β), v)

Initially we try to match the prefix of w to a unique path from the root of
the PTrie (line 2 of Delete) and we let v be the vertex reached at the end of this
prefix and w′ be the unmatched suffix of w. If w did not exist in the PTrie, we
return the unaltered PTrie at line 4. Otherwise we remove w′ from the bucket
of v. Either v ∈ L, and we attempt to reduce the PTrie (line 22), or we are in
the more complex situation where v ∈ F . If v ∈ F and v has no children (as
illustrated by vertex g in Fig. 1a) then we can turn v into a leaf node (line 13)
and attempt to reduce the size of the PTrie (line 15). However, as � has to stay
in F , we return P if v = � (line 10). If |β(v)| > κ then turning v into a leaf-node
would violate condition 6a in Definition 1 and we therefore return the PTrie as
it is (line 12). If v ∈ F and v has only a single child such that this child is not
a forwarding vertex, and merging v with its child will not violate condition 6a

PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing 257

Algorithm 6. Merge(P, v)
Data: A PTrie P = (F, L, E, �, λ, β) and a vertex v ∈ L
Result: P′ s.t. �P� = �P′� and P

′ satisfies all conditions of Definition 1
1 begin
2 if λ(P (v), v) = •ι then
3 if |β(v)| = 0 and |β(P (v))| > κ then
4 E ← E \ {(P (v), v)}; L ← L \ {v};
5 return (F, L, E, �, λ, β)

6 if P (v) = � then
7 return P

8 else
9 u ← P (v); � ← λ(u, v);

10 if |β(v)| + |β(u)| ≤ κ then
11 E ← (E ∪ {(P (u), v)}) \ {(P (u), u), (u, v)}; F ← F \ {u};
12 λ(P (u), v) ← �;
13 β(v) ← {� ◦ w | w ∈ β(v) ∪ β(u)};
14 return Merge((F, L, E, �, λ, β), v)

15 else
16 return (F, L, E, �, λ, β)

17 else
18 Let b1 . . . bn•m = λ(P (v), v);
19 � ← b1 . . . bn−1•m+1;
20 V ← {(P (v), u) ∈ E | u
= v and �λ(P (v), u)� ∩ ���
= ∅};
21 if V = ∅ then
22 λ(P (v), v) ← �;
23 return Merge((F, L, E, �, λ, β), v)

24 else
25 if V = {u} for some u ∈ L and |β(v)| + |β(u)| ≤ κ then
26 λ(P (v), v) ← �;
27 β(v) ← β(v) ∪ β(u) ;
28 E ← E \ {(P (u), u)}; L ← L \ {u};
29 return Merge((F, L, E, �, λ, β), v)

30 else
31 return P

in Definition 1, then we also attempt to merge (line 18). Otherwise just return
PTrie without further modifications (line 20).

An example of removing two different strings from our running example is
presented in Fig. 1b. The removal causes the leaf vertex e to get an empty bucket
implying that it gets removed. This change in turn propagates to the vertex a
that is also removed and its bucket content is merged with that of f .

Theorem 3. Algorithm5 given a PTrie P and a binary string w terminates and
returns a PTrie P

′ such that �P′� = �P� \{w}.

258 P.G. Jensen et al.

4 Implementation

The PTrie interface is implemented as an open source C++ library and it is avail-
able at https://github.com/petergjoel/ptrie under the GPL version 3 license.
Apart from the implementation of all the basic set operations on PTries as
described in this paper (implemented in ptrie::set), two other flavors of PTries
exist: one providing unique and non-changing identifiers for inserted elements
(ptrie::stable set) and one providing the functionality of a map, combined
with non-changing identifiers (ptrie::map)1. The source code provides further
documentation and information.

�

a

b

c

c′

d

d′

e

e′

f

f ′

g

g′

h β(h) = {000, 111}

h′ β(h′) = {000, 111}

000
000 000 000 000 000 •••

001
001 001 001 001 001 •••

Fig. 2. A worst-case scenario for PTries with ι = 3 and κ = 2 containing 4 binary
strings {000 ◦ 000 ◦ 000 ◦ 000 ◦ 000 ◦ 000 ◦ 000, 000 ◦ 000 ◦ 000 ◦ 000 ◦ 000 ◦ 000 ◦ 111, 100 ◦
100 ◦ 100 ◦ 100 ◦ 100 ◦ 100 ◦ 000, 100 ◦ 100 ◦ 100 ◦ 100 ◦ 100 ◦ 100 ◦ 111}

Let us now settle some implementation details. We currently use the bucket
size κ = 64 and the byte size ι = 8, following conventions for standard byte-sizes.
As modern architectures do not support addressing nor allocation of memory
areas of less than a single byte, our implementation of PTries allows only the
insertion of binary strings with bit-lengths that are a multiple of ι. Further-
more, to avoid frequent splits and re-merging of PTries, the Delete and Merge
algorithms initiate the balancing of PTrie only once the buckets become smaller
than κ

3 , as opposed to the constant κ used in the pseudocode. The experimental
evaluations point towards a slightly worse memory utilization at the exchange
of less frequent re-balancing of the PTrie.

Regarding the memory for storing vertices of a PTrie, forwarding vertices are
implemented as directly indexed tables with 64-bit indexes and with some addi-
tional book-keeping information they occupy 2064 bytes. Leaf vertices are, on the
other hand, lightweight constructions taking up only 16 bytes. The current imple-
mentation of PTrie prefixes all inserted binary strings with their length (using
two additional bytes). In our experience, such an addition generally improves the
performance and reduces memory-consumption. Moreover, as we aim at making
the PTries fast, the speed optimization can occasionally imply an increased mem-
ory consumption for some very specific sets of binary strings, as demonstrated
in Fig. 2, where just a few strings create a long sequence of memory-demanding
forwarding vertices. This implies that long, almost similar, binary strings which
differ only at the beginning and at the end will make the PTrie perform badly
in terms of memory.
1 Both these extension come with a smaller overhead in run-time and memory. Also,

currently neither of these extensions support Delete.

https://github.com/petergjoel/ptrie

PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing 259

Hence, depending on the specific application domain, the concrete encoding
of the states into binary strings can have an effect on the PTrie performance. As a
heuristic attempt to improve prefix-sharing of Petri net markings (an experiment
discussed in detail in the next section), we first statically order places in the
models by the number of incoming and outgoing arcs. Each such marking is
then encoded according to a number of schemes in order to minimize its length.
The schemes all fall in one of three categories: either only non-empty places
are stored (with the least amount of bits), or a bit-vector is used to represent
non-empty places in the fixed ordering of places, or we use a combination of
the two previous schemes. To determine which way a marking was encoded, we
prefix the encoding with a 8-bit header describing the exact encoding scheme
that is employed. Details of the encoding-scheme can be found at https://bit.
ly/AlignedEncodercpp.

5 Experimental Evaluation

We conducted two series of experiments comparing our PTrie implemen-
tation against google::sparse hash set and google::dense hash set by
Google2, generally regarded as the state-of-the-art [22,23] space-efficient and
time-efficient, respectively, implementations of sets based on hashing. We
employ jemalloc [10] for memory allocation and MurmurHash64A3 as hash-
function for the hash-map implementations. In our evaluation we omit the
std::unordered set implementation from the standard library of C++14 as it
was consistently outperformed by the Google implementations (see [22,23] for
further benchmarks).

In the first round of experiments, we test the speed and memory requirements
of insertion, deletion and lookups, simulating a workload using pseudo-random
64-bit integers (with the same seed so that the same sequence of numbers is
inserted/deleted/checked in all test setups). In the second round of experiments,
we modify the verification-tool verifypn [14]4 that is distributed as a part of
the Petri net verification tool TAPAAL [4,8], and we conduct an exhaustive
exploration of the full state-space of large Petri net models used at the MCC’16
competition [16]. All experiments were conducted on AMD Opteron 6376 Proces-
sors and limited to 120 GB of RAM and 4 days of computation.

5.1 Simulated Workload

We conduct three sets of experiments called Insert, Insert+50%Delete and
Insert+50%Member, all scaled by the number 2E of pseudorandomly generated
and inserted elements into the set implementation. In the Insert experiment,
we iteratively insert 2E binary numbers encoded as 64-bit unsigned integers.

2 Both available at https://github.com/sparsehash/sparsehash.
3 Available at https://github.com/aappleby/smhasher/wiki/MurmurHash2.
4 Available at https://code.launchpad.net/verifypn.

https://bit.ly/AlignedEncodercpp
https://bit.ly/AlignedEncodercpp
https://github.com/sparsehash/sparsehash
https://github.com/aappleby/smhasher/wiki/MurmurHash2
https://code.launchpad.net/verifypn

260 P.G. Jensen et al.

In the Insert+50%Delete and Insert+50%Member experiments, after each inser-
tion, we choose with 50% probability whether to execute a Delete or Member
operation, respectively. In Insert+50%Delete, we randomly draw for deletion an
element that was previously inserted, but we do not check whether the element
was already removed or not. This implies that with 33% probability it tries to
remove a nonexisting element. In Insert+50%Member, we randomly select an
element for which we do an Member operation, such that about one half of the
existence checks are with a positive answer.

Table 1. Time in seconds for the simulated workload experiments

E ptrie dense sparse ptrie/dense ptrie/sparse

Insert

28 437.2 386.0 569.1 113% 77%

29 869.0 757.1 1111.3 115% 78%

30 1749.2 1540.2 2326.7 114% 75%

31 3572.0 3081.7 4785.6 116% 75%

32 7184.6 6126.6 9963.6 117% 72%

Average 2762.4 2378.3 3751.2 115% 75%

Insert+50%Delete

28 751.5 744.1 742.7 101% 101%

29 1516.8 1494.3 1461.9 102% 104%

30 3038.5 3032.1 2997.8 100% 101%

31 6392.3 5837.4 6150.1 110% 104%

32 13356.1 11701.0 13115.5 114% 102%

Average 5011.1 4561.8 4893.6 105% 102%

Insert+50%Member

28 709.6 591.2 771.0 120% 92%

29 1468.4 1219.3 1583.8 120% 93%

30 2829.1 2363.0 3195.4 120% 89%

31 5839.8 4707.6 6597.3 124% 89%

32 12244.2 9473.2 13676.5 129% 90%

Average 4618.2 3670.8 5164.8 123% 90%

The results measuring the speed of operations are presented in Table 1. For
pure insertions, PTries are on average about 15% slower than dense hash but
25% faster than sparse hash. When we add deletions, PTries are only about 5%
slower than dense hash and essentially comparable with sparse hash (on aver-
age just 2% slower). In the last experiment where we add frequent queries on the
presence of a string in the set, dense hash becomes 23% faster but on the other
hand PTries are by 10% faster than sparse hash. In summary, sparse hash is

PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing 261

in general slower or equal in speed with PTrie, while dense hash is the fastest
of the three data structures.

However, we can see in Table 2 a significant reduction of the memory-
footprint in all of the experiments (Insert+50%Member is not included as its
memory usage is identical with pure inserts). PTries deliver about 70% of the
memory reduction compared to dense hash and between 42–57% reduction com-
pared to sparse hash (depending on whether deletions are included or not).

In conclusion, PTrie is the most memory efficient data structure that is faster
or at worst equal in speed with sparse hash. The fastest set implementation is
dense hash, however, at the cost of a large memory overhead. We remark that
the drop in relative memory-reduction in the Insert experiment when E = 32 is
due to the creation of a large number of forwarding vertices—this occurs with
high probability for truly random strings when E is a multiple of 8.

Table 2. Memory in megabyte for the simulated workload experiments

E ptrie dense sparse ptrie/dense ptrie/sparse

Insert and Insert+50%Member

28 2033.6 6151.7 4239.6 33% 48%

29 3197.6 12295.7 8455.9 26% 38%

30 6115.7 24583.7 16923.0 25% 36%

31 10827.6 49159.7 33908.2 22% 32%

32 37839.6 98311.7 67757.7 39% 56%

Average 12002.8 38100.5 26256.9 29% 42%

Insert+50%Delete

28 1935.8 6157.7 3032.3 31% 64%

29 3383.8 12301.6 5966.5 28% 57%

30 6960.7 24589.6 12057.8 28% 58%

31 13488.9 49165.6 24914.0 27% 54%

32 37493.6 98317.6 68195.0 38% 55%

Average 12652.6 38106.4 22833.1 31% 57%

5.2 Real Workload by Petri Net Model Checking

In order to test the PTrie performance on a realistic scenario, we integrate PTrie
as a part of a Petri net model checker. We replace the state-storage of the ver-
ification algorithm used by verifypn with the respective set implementations
(by using an encoding of Petri net markings to binary strings as discussed in the
implementation section). We then conduct an exhaustive state-space search on
the P/T nets from the MCC’16 competition. To reduce the impact of auxiliary
datastructures used by the algorithm, we conduct the search with two different
search-strategies (breadth first and depth first), and we report the minimum of

262 P.G. Jensen et al.

the memory and time-consumption from either of these searches. We consider
in total 94 Petri nets with a nontrival but feasible state-space size. More con-
cretely, we selected all nets with more than 106 and less than 1010 reachable
markings. Out of these 94 nets, PTrie-based variant completed 89 test-cases, ran
out of memory on 4 models and timed out on a single instance. The dense hash-
based model checker completed only a subset of the test-cases solved by PTrie
and exceeded the memory-bound for additional 9 nets. A similar performance
was achieved by sparse hash that also completed only a subset of problems
solved by PTrie but exceeded the memory for 7 additional nets. In the summary
tables we consider so only 80 state-space searches that were completed by all
three set-implementations.

In Table 3 we can see that PTries are on average as fast as the fastest
hash-map implementation via dense hash with only a 3% overhead on average,
while PTries provide significant 14% speedup compared to sparse hash. There
seems to be no correlation between the number of states/markings (equivalent
to the number of insert operations) and the relative performance achieved. With
respect to memory usage, the experiments confirm the effectiveness of PTrie as

Table 3. Time in seconds for the 5 best, 5 median and 5 worst Petri net models,
ordered by the performance of ptrie relative to dense hash. Legend for the models:
a = Angiogenesis-PT-05, b = PolyORBNT-PT-S05J20, c = Diffusion2D-PT-D05N010,
d= SmallOperatingSystem-PT-MT0128DC0032, e = SmallOperatingSystem-PT-MT0
128DC0064, f= ARMCacheCoherence-PT-none, g= TCPcondis-PT-05, h= Auto
Flight-PT-01b, i = SimpleLoadBal-PT-10j = ResAllocation-PT-R020C002, k = Param
ProductionCell-PT-5, l = ParamProductionCell-PT-0, m = SwimmingPool-PT-04,
n= SwimmingPool-PT-03 and o = IOTPpurchase-PT-C05M04P03D02.

Model ptrie dense sparse ptrie/dense ptrie/sparse 106 states 106 operations

a 408.7 517.8 680.5 79% 60% 42.7 486.9

b 12882.8 15888.9 19163.1 81% 67% 693.8 2151.2

c 2337.9 2839.3 3693.7 82% 63% 131.1 5553.7

d 244.6 292.3 526.6 84% 46% 113.3 863.5

e 589.2 693.6 1141.2 85% 52% 261.2 2010.6

f 69451.0 68601.0 70879.3 101% 98% 320.6 22339.6

g 16.4 16.1 20.6 102% 79% 3.0 24.9

h 318.7 312.8 389.7 102% 82% 48.9 354.4

i 5011.5 4917.2 5812.8 102% 86% 406.0 3051.2

j 69.5 67.9 78.3 102% 89% 11.5 66.8

k 25.7 20.4 21.3 126% 121% 1.7 6.7

l 41.4 32.8 33.8 126% 123% 2.8 13.2

m 439.9 345.7 647.9 127% 68% 164.4 1047.5

n 78.3 60.9 112.4 129% 70% 32.2 199.3

o 263.9 163.6 185.2 161% 143% 17.4 108.4

Avg 4608.4 4482.2 5380.0 103% 86% 289.3 3195.2

PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing 263

Table 4. Memory in megabytes for the 5 best, 5 median and 5 worst Petri net
models, ordered by the perforamce of PTrie relative to sparse hash. Legend for the
models: a = DNAwalker-PT-06track28RL, b = DNAwalker-PT-04track28LL, c = DNA
walker-PT-07track28RR, d= DNAwalker-PT-05track28LR, e = DNAwalker-PT-12ring
LLLarge, f = Kanban-PT-0010, g = BridgeAndVehicles-PT-V50P50N20, h= Bridge
AndVehicles-PT-V50P20N10, i = BridgeAndVehicles-PT-V50P50N10, j = AutoFlight-
PT-05a, k = ParamProductionCell-PT-0, l = IOTPpurchase-PT-C05M04P03D02,
m = ParamProductionCell-PT-5, n = ParamProductionCell-PT-3 and o = Param
ProductionCell-PT-4.

Model ptrie dense sparse ptrie/dense ptrie/sparse 106 states 106 operations

a 2815.6 16481.6 15063.5 17% 19% 435.3 2983.9

b 2817.6 16481.5 15063.6 17% 19% 432.9 2961.9

c 2855.6 16481.6 15063.6 17% 19% 432.9 2961.9

d 2883.6 16481.6 15063.6 18% 19% 435.3 2983.9

e 14707.6 65901.4 60223.4 22% 24% 1885.4 15271.5

f 16579.6 35751.6 33971.6 46% 49% 1005.9 12032.2

g 21283.5 44344.2 43515.5 48% 49% 896.3 3363.7

h 7539.6 20667.6 15373.6 37% 49% 347.6 1271.7

i 7541.6 20667.5 15375.5 37% 49% 347.6 1271.7

j 1463.6 5203.6 2965.6 28% 49% 68.2 1286.2

k 133.7 169.6 129.6 79% 103% 2.8 13.2

l 879.7 1303.6 763.6 68% 115% 17.4 108.4

m 105.7 91.6 81.6 115% 130% 1.7 6.7

n 93.6 87.5 71.6 107% 131% 1.5 5.9

o 147.7 169.6 111.6 87% 132% 2.4 9.8

Avg 5150.6 13339.3 11056.9 39% 47% 289.3 3195.2

seen in Table 4. In general we observe a significant memory footprint reduction
by up to 81% compared to sparse hash and on average by 53%. The reduc-
tions in the case of dense hash are as expected even higher. We can notice
that higher relative memory reduction occurs when we use PTries for models
with a larger number of reachable states/markings, confirming that PTries are
particularly beneficial for memory demanding applications like model checking.
We can observe that for some instances of prefix-sharing, PTries are particu-
larly effective as demonstrated by the “DNAwalker”-cases (using less than 7
bytes per stored marking versus 36 for sparse hash), while ineffective for the
“ParamProductionCell”-cases (using more than 64 bytes per marking versus 49
for sparse hash). Here we experience the situation described in Fig. 2 caused by
the ordering of places in the binary encoding of markings and by the fact that
there is large number of places where the number of tokens hardly ever changes
during the computation.

264 P.G. Jensen et al.

6 Conclusion

We presented PTrie, a novel data structure for compressing sets of binary strings
while providing fast operations for element addition/removal and containment
checks. Compared to the state-of-the-art alternatives that either trade memory
savings for time (google::sparse hash set), or focus on optimizing the speed
of operations (google::dense hash set), our data structure improves the per-
formance of sparse hash both in terms of memory as well as time. Compared
to dense hash, we are on average 5–23% slower on random strings, while only
3% slower when storing strings coming from a real application domain, and at
the same time we provide 60–70% of memory reduction.

In the future work, we plan to provide an efficient parallelization of the PTries
for the use in multi-core architectures, and extend the set of basic operators
with intersection, union and difference. Even though these additional operations
are not necessary for explicit model checking applications, they may find other
application domains and tree-based design of PTries seems to be suitable for this
purpose. Finally, a research of tree-walking algorithms for PTries, facilitating
complex searches through the elements of the set, are of high interest too.

Acknowledgements. We acknowledge the support from Sino-Danish Basic Research
Center IDEA4CPS, the Innovation Fund Denmark center DiCyPS, and the ERC
Advanced Grant LASSO. The third author is partially affiliated with FI MU in Brno.

References

1. Askitis, N., Sinha, R.: HAT-trie: a cache-conscious trie-based data structure for
strings. In: Proceedings of the Thirtieth Australasian Conference on Computer
Science, vol. 62, pp. 97–105. Australian Computer Society Inc. (2007)

2. Bagwell, P.: Ideal hash trees. Es Grands Champs, vol. 1195 (2001)
3. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE

Trans. Comput. C–35(8), 677–691 (1986)
4. Byg, J., Jørgensen, K.Y., Srba, J.: TAPAAL: editor, simulator and verifier of timed-

arc petri nets. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp.
84–89. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04761-9 7

5. Jones, D.C.: HAT-trie implementation. https://github.com/dcjones/hat-trie.
Accessed 19 Apr 2017

6. cplusplus.com. C++ map implementation reference. http://www.cplusplus.com/
reference/map/map/. Accessed 20 Jan 2017

7. cplusplus.com. C++ set implementation reference. http://www.cplusplus.com/
reference/set/set/. Accessed 20 Jan 2017

8. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5 36

9. Evangelista, S., Pradat-Peyre, J.-F.: Memory efficient state space storage in explicit
software model checking. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp.
43–57. Springer, Heidelberg (2005). doi:10.1007/11537328 7

http://dx.doi.org/10.1007/978-3-642-04761-9_7
https://github.com/dcjones/hat-trie
http://www.cplusplus.com/reference/map/map/
http://www.cplusplus.com/reference/map/map/
http://www.cplusplus.com/reference/set/set/
http://www.cplusplus.com/reference/set/set/
http://dx.doi.org/10.1007/978-3-642-28756-5_36
http://dx.doi.org/10.1007/11537328_7

PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing 265

10. Evans, J.: A scalable concurrent malloc (3) implementation for FreeBSD. In: Pro-
ceedings of the BSDCan Conference Ottawa (2006)

11. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
12. Gwehenberger, G.: Anwendung einer binären verweiskettenmethode beim aufbau

von listen/use of a binary tree structure for processing files. IT Inf. Technol. 10(1–
6), 223–226 (1968)

13. Heinz, S., Zobel, J., Williams, H.E.: Burst tries: a fast, efficient data structure for
string keys. ACM Trans. Inf. Syst. 20, 192–223 (2002)

14. Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability
analysis of P/T nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53401-4 16

15. Jensen, P.G., Larsen, K.G., Srba, J., Sørensen, M.G., Taankvist, J.H.: Memory
efficient data structures for explicit verification of timed systems. In: Badger, J.M.,
Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 307–312. Springer, Cham
(2014). doi:10.1007/978-3-319-06200-6 26

16. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Chiardo, G., Hamez, A.,
Jezequel, L., Miner, A., Meijer, J., Paviot-Adet, E., Racordon, D., Rodriguez, C.,
Rohr, C., Srba, J., Thierry-Mieg, Y., Tri.nh, G., Wolf, K.: Complete Results for the
2016 Edition of the Model Checking Contest, June 2016. http://mcc.lip6.fr/2016/
results.php

17. Laarman, A., van de Pol, J., Weber, M.: Parallel recursive state compression for
free. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp. 38–56.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22306-8 4

18. Morrison, D.R.: Patriciapractical algorithm to retrieve information coded in
alphanumeric. J. ACM (JACM) 15(4), 514–534 (1968)

19. Prokopec, A., Bronson, N.G., Bagwell, P., Odersky, M.: Concurrent tries with effi-
cient non-blocking snapshots. ACM SIGPLAN Not. 47(8), 151–160 (2012). ACM

20. Renaud, M.: Trie (aka. prefix tree). https://github.com/m-renaud/trie. Accessed
19 Apr 2017

21. Ročkai, P., Štill, V., Barnat, J.: Techniques for memory-efficient model checking
of C and C++ code. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol.
9276, pp. 268–282. Springer, Cham (2015). doi:10.1007/978-3-319-22969-0 19

22. Timonk. Big memory, part 3.5: Google sparsehash! (2011). https://research.
neustar.biz/2011/11/27/big-memory-part-3-5-google-sparsehash/. Accessed 20
Jan 2017

23. Welch, N.: Hash table benchmarks. http://incise.org/hash-table-benchmarks.html.
Accessed 20 Jan 2017

24. Wolf, K.: Running LoLA 2.0 in a model checking competition. In: Koutny, M.,
Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Con-
currency XI. LNCS, vol. 9930, pp. 274–285. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53401-4 13

25. Yang, J.: An implementation of two-trie and tail-trie using double array. https://
github.com/jianingy/libtrie. Accessed 19 Apr 2017

http://dx.doi.org/10.1007/978-3-662-53401-4_16
http://dx.doi.org/10.1007/978-3-319-06200-6_26
http://mcc.lip6.fr/2016/results.php
http://mcc.lip6.fr/2016/results.php
http://dx.doi.org/10.1007/978-3-642-22306-8_4
https://github.com/m-renaud/trie
http://dx.doi.org/10.1007/978-3-319-22969-0_19
https://research.neustar.biz/2011/11/27/big-memory-part-3-5-google-sparsehash/
https://research.neustar.biz/2011/11/27/big-memory-part-3-5-google-sparsehash/
http://incise.org/hash-table-benchmarks.html
http://dx.doi.org/10.1007/978-3-662-53401-4_13
http://dx.doi.org/10.1007/978-3-662-53401-4_13
https://github.com/jianingy/libtrie
https://github.com/jianingy/libtrie

Security

Inferring Secrets by Guided Experiments

Quoc Huy Do(B), Richard Bubel, and Reiner Hähnle

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{do,bubel,haehnle}@cs.tu-darmstadt.de

Abstract. A program has secure information flow if it does not leak any
secret information to publicly observable output. A large number of static
and dynamic analyses have been devised to check programs for secure
information flow. In this paper, we present an algorithm that can carry
out a systematic and efficient attack to automatically extract secrets
from an insecure program. The algorithm combines static analysis and
dynamic execution. The attacker strategy learns from past experiments
and chooses as its next attack one that promises maximal knowledge
gain about the secret. The idea is to provide the software developer with
concrete information about the severity of an information leakage.

Keywords: Information flow · Symbolic execution · Static analysis

1 Introduction

Information flow security is concerned with the development of methods that
ensure that programs do not leak secret information, i.e., that it is not possible
to learn secret information by looking at publicly accessible output.

To ensure that programs have secure information flow relative to a given
information flow policy, a large number of static analyses have been devised
(see [22] for a survey). Most of these approaches are qualitative, in the sense
that they try to establish that a program is secure and they reject programs
as insecure otherwise. In case of a leak (even if allowed by a given declassifica-
tion policy) they do not provide details about how much information is leaked.
Quantitative information flow analysis [1–3,14,20,23] complements qualitative
analyses by measuring the amount of leaked information. Developers can use
this feedback to decide whether the leakage is acceptable or not.

Our aim is to support detection and comprehension of information flow leaks
during software development. In previous work [8] we presented an approach to
generate demonstrator code for leakages in the form of failing tests. These tests
could be examined and debugged by a developer to fix the leak. The generated
tests merely demonstrated that a program does not respect a given information
flow policy, but it was not possible to extract actual secrets. Extracting a secret
or at least narrowing down the number of possible values of a secret information
helps in two ways: (i) the software developer obtains additional information
about the nature of the leak and (ii) it becomes easier to judge the severity of a
leak and to assign its fix an appropriate priority.
c© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 269–287, 2017.
DOI: 10.1007/978-3-319-67729-3 16

270 Q.H. Do et al.

The work presented in this paper applies techniques developed for quantified
information flow analysis to guide the systematic creation of an (as small as
possible) set of experiments/attacks to be conducted to gain maximal knowledge
about a secret. The set of experiments is built incrementally. New experiments
are added only if they are non-redundant and lead to a “maximal” knowledge
gain. This sets our approach apart from previous work [3,14,20] that uses a
random set of experiments (or simply states the existence of such a set), i.e. we
are able to obtain a tighter characterisation of secrets than before.

We introduce a novel approach for automatic generation of a “good” exper-
iment set to exploit information flow leaks. The main contributions are: (i) an
algorithm that combines static analysis and dynamic analysis. Symbolic exe-
cution is used to statically analyse a program’s behaviour, to compute path
conditions and symbolic states. Based on this information, knowledge about a
secret is incrementally increased by devising knowledge-maximizing experiments
that in turn refine the static analysis results. These experiments are obtained
by (ii) maximizing information leakage relative to metrics that depend on public
input. The result of our algorithm is a (iii) logical characterisation of a secret.
Hence, a model finder can be used to extract the remaining candidates for the
secret, and in the best case, the secret itself as the only remaining model.

The paper is structured as follows: In Sect. 2 we give the necessary back-
ground to make the paper self-contained. Section 3 is about our approach and its
design. Section 4 describes the generation of the input values for the experiments
with a focus on efficiency. An experimental evaluation is presented in Sect. 5. We
finish with related work (Sect. 6) and conclusions/future work (Sect. 7).

2 Background

The programming language used throughout the paper is a simple, deterministic
and imperative language with global variables of a 32-bit integer type (we denote
their domain with Z32). We consider here only programs where termination is
guaranteed for all inputs. Our actual implementation supports a rich subset of
sequential Java, including method calls, objects with integer fields, and integer-
typed arrays (see Sect. 5.1).

In the remaining paper we use p to denote a program and Var = {x1, . . . , xn}
to denote an ordered set of all program variables occurring in p.

2.1 Characterization of Insecurity Using Symbolic Execution

Symbolic execution (SE) is a versatile static analysis technique [13]. SE “runs”
a program with symbolic (input) values instead of concrete ones.

Example 1. The program in Listing 1.1 uses l, h as program variables. For
values of l below 100, the computed value stored in l represents the result of
comparing the initial values of l and h, where l is assigned 3, 0, −3 for l being
equal, less than, and greater than h, respectively. For values of l of 100 and
above, the value 2 is assigned to l.

Inferring Secrets by Guided Experiments 271

Starting SE at line 1 in an initial state where l and h have symbolic input
values l0 and h0, respectively (short: l : l0, h : h0) causes a split into two SE
paths. The first branch deals with the case where the branch condition l0 < 100
holds and the second branch with the complementary case. We continue symbolic
execution on the first branch with the if-statement in line 2. This causes another
split with branch conditions l0

.= h0 and l0 � .= h0. Continuing again with the first
branch, we symbolically execute the assignment of value 3 to l in line 3. ��

Symbolic execution creates an SE tree representing all possible concrete exe-
cution paths. Each node corresponds to a code location and contains the symbolic
state at that point: a mapping from program variables to their symbolic value
and a path condition. The path condition is the conjunction of all branch con-
ditions up to the current point of execution. The initial state of any execution
path through a node with path condition pc must necessarily satisfy pc.

Listing 1.1. Running example

1 if (l < 100) {
2 if (l == h)
3 l = 3;
4 else
5 if (l < h) l = 0;
6 else l = -3;
7 } else l = 2;

Path conditions and symbolic values are
always expressed relative to the initial sym-
bolic values present in the initial symbolic
state. In the following, instead of introducing
a new constant symbol v0 to refer to the initial
value of a program variable v, we simply use
the program variable v itself. This means pro-
gram variables occurring in path conditions
and symbolic values refer always to their ini-
tial value.

We use SETp to refer to the SE tree of program p and Np to refer to the
number of symbolic execution paths of SETp. For each leaf node of an SE path i
(1 ≤ i ≤ Np) the corresponding path condition is denoted with pci and the
symbolic value of variable v ∈ Var in the final state of path i is denoted with the
expression fv

i . Later we need to express symbolic values or path conditions over a
different variable signature: Let V = {x1, . . . , xn}, V ′ = {x′

1, . . . , x
′
n} be ordered,

disjoint sets of program variables with the same cardinality; we write pci[V ′/V],
meaning that each xi in pci has been replaced by x′

i. In case of two disjoint
variables sets V1, V2 we write pci[V ′

1 , V ′
2 / V1, V2] instead of pci[V ′

1/V1][V ′
2/V2].

Similar for the symbolic values fv
i .

There are several approaches to deal with loops and recursive method calls
in SE to achieve a finite SE tree. We follow the approach presented in [11],
which uses specifications, namely, method contracts and loop invariants. In case
of sound and complete specifications this approach is fully precise. In case of
incomplete specifications, completeness (but not soundness) is sacrificed. In brief,
the effect of loops and method calls is encoded as part of the path condition and
the introduction of fresh symbolic values.

The approach presented in this paper extends our previous work [8] in which
SE is used to compute path conditions and the final symbolic values of program
variables to obtain a logic characterisation of insecurity. We recapture the most

272 Q.H. Do et al.

important ideas: Let L,H be a partitioning of Var . The noninterference policy
H ��L forbids any information flow from the initial value of high (confidential/se-
cret) program variables H to low (public) variables L. In [7] self-composition is
used as a means to formalize, in terms of a logic formula, whether or not a pro-
gram is secure relative to a given noninterference policy. The negation of such
a security formula is true for insecure programs, i.e. any model of the negated
formula describes a pair of program runs that leak information. We use this idea
as follows: Given two SE paths i and j with path conditions pci, pcj and final
symbolic values fv

i , fv
j , v ∈ Var . The insecurity formula

Leak(i, j) ≡ (
∧

v∈L

v
.= v′) ∧ pci ∧ (pcj [Var ′/Var]) ∧

∨

v∈L

fv
i � .= (fv′

j [Var ′/Var]) (1)

has a model (an assignment of values to program variables satisfying (1)) if
there are two program runs, one taking path i and the other one path j (i = j
possible), that end in final states differing in the value of at least one low variable,
even though their initial states coincided on the low input. Our target programs
are deterministic, hence, this can only be the case if the value of high variables
influenced the final value of the low variables. To check whether a program is
insecure, we compare all pairs of symbolic execution paths:

∨

1≤i≤j≤Np

Leak(i, j) (2)

An SE path that contributes to an information leak is called a risky path.
The set of all risky paths is denoted by Risk . Details on how to support other
information flow policies than noninterference can be found in [8].

2.2 Quantitative Information Flow Analysis

We recall some measures for quantifying information leaks [3,15,23,25]. Given
a program p and a noninterference policy H ��L, let O ⊆ L (usually: O = L)
be a subset of low variables whose value can be observed by an attacker after
termination of p. We assume that before running p, the attacker knows about
the values of low variables (or can even manipulate them); and that the initial
values of variables in H and L are independent (i.e. from an attacker’s perspective
knowledge about L does not entail any knowledge about H).

Let L,H denote the finite sets of all possible values of L and H , e.g., for
two unrestricted integer program variables H = {h1, h2}, H is the Cartesian
product Z32 × Z32 of their domain. Similarly, let O be the set of all possible
output values of O. Let the function Op : L → 2O that computes the set of
all possible output values of O for a given low input be defined as follows:
Op : l �→ {o | o final values of O after executing p(l, h), for each h ∈ H}.

Each low input value l defines a random variable Oout(l) corresponding to
the observed output values in the set Op(l) after running program p with fixed
low level input l. We denote with Oout(L) the function from L to the space of

Inferring Secrets by Guided Experiments 273

random variables as defined above. The random variables corresponding to the
initial values of H are denoted with Hin.

Conventionally, the amount of information that is leaked from H to O can be
measured by quantifying the amount of unknown information about H ’s value
(the secret) w.r.t. the attacker before running the program (the attacker’s initial
uncertainty about the secret) and after observing the output value of O (the
attacker’s remaining uncertainty about the secret). Then we have:

information leaked = initial uncertainty − remaining uncertainty

To measure uncertainty different notions of entropy are in use, for instance,
Shannon entropy [5,21], min entropy [23], and guessing entropy [3,15]. To quan-
tify information leakage, we adapt the definition given in [25].

Given random variables X,Y with sample spaces X and Y, respectively. The
Shannon entropy of X is defined as H(X) = −∑

x∈X
P(X = x)log(P(X = x)).

The conditional Shannon entropy of X given Y is defined as

H(X |Y) =
∑

y∈Y

P(Y = y)
∑

x∈X

P(X = x |Y = y)log(P(X = x |Y = y))

Intuitively, H(X) is the average number of bits required to encode the values
of X and H(X |Y = y) quantifies the average number of bits needed to describe
the outcome of X under the condition that the value of Y is known.

Shannon entropy and its conditional variant are used to quantify information
leakage as follows: the initial uncertainty of the attacker about the input value
of H is interpreted as Shannon entropy of Hin, while the remaining uncertainty
of the attacker about Hin when Oout(L) is known is interpreted as conditional
entropy. Then information leakage can be computed as ShELp(L) = H(Hin) −
H(Hin |Oout(L)) that is the mutual information of Hin and Oout(L).

While Shannon entropy is a natural approach to quantify leakage, it fails to
reflect the vulnerability that high values might be guessed correctly in a single
try. Consider the two programs

p1 ≡ if (h%8==0)l=h else l=1), p2 ≡ l=h&0777

taken from [23]. Using Shannon entropy, the mutual information leakage of pro-
gram p1 is smaller than that of p2, i.e., p1 is considered to be more secure than p2.
However, the risk of leaking the complete value of H in a single run is significantly
higher for p1 than for p2. Smith [23] proposed min entropy as an alternative met-
ric to address this problem. Min entropy H∞(X) of a random variable X equals
−logV(X) where V(X) = maxx∈XP(X = x). Intuitively, the min entropy of a
random variable X represents the highest probability that X can be guessed
in a single try. Using min entropy to measure information leakage is similar to
Shannon entropy: the initial uncertainty is interpreted as min entropy of Hin

and the remaining uncertainty is the conditional min entropy of Hin given Oout.
The final leakage metric considered in this paper is guessing entropy. Intu-

itively, the guessing entropy of a random variable X is the average number of

274 Q.H. Do et al.

questions of the kind: “Is the value of X equal to x?” that are needed to infer
the value of X. The derivation of the computation of the guessing entropy-based
leakage is similar to the previous ones. Details of min and guessing entropy-based
leakage can be found in the technical report [9].

3 Automatic Inference of a Program’s Secrets

This section describes our attacker model and presents the core logic of our
algorithm to automatically infer a program’s secrets.

3.1 Attacker Model and Overview

We assume that the attacker knows the source code and can run the program
multiple times to observe public outputs. The notation p,L,H , etc. is as above.

Fig. 1. Structure of the algorithm to infer secrets

Figure 1 shows an
overview of our app-
roach. First, the source
code is analysed stati-
cally by symbolic exe-
cution to identify exe-
cution paths, called
risky paths, that might
cause information leak-
age (directly or indi-
rectly). Based on this
analysis a number of
experiments are per-
formed to infer the secret. An experiment is a program run with concrete input
together with the outcome. To perform an experiment the algorithm selects suit-
able low input based on knowledge about risky execution paths and knowledge
accumulated in previous runs. The algorithm terminates when one of the follow-
ing conditions holds: (i) all secrets have been inferred unambiguously; (ii) it can
be determined that no new knowledge can be inferred; (iii) a specified limit of
concrete program runs is reached.

We assume that high variables are not modified by or in between runs. We
use hs ∈ H to refer to a secret, i.e.. concrete (to us unknown) values of H .

3.2 Knowledge Representation of High Input

We fix a program p, a noninterference policy H ��L, and a set O ⊆ L of observ-
able low variables. The concrete value sets L, H, Op(·) are as before. To gain
knowledge about a secret, a series of experiments is performed.

Definition 1. A pair 〈l, o〉hs
with l ∈ L, o ∈ Op(l) is called an experiment for

p and hs denoting the high input value used in the run. As long as it is clear
from the context, we omit the subscript hs.

Inferring Secrets by Guided Experiments 275

Let E = {〈lj , oj〉 | 1 ≤ j ≤ m} be a set of experiments for a program p. Symbolic
execution of p yields a precise logical description of all reachable final states, see
Sect. 2. Recall that Np is the number of all feasible (i.e., with satisfiable path
condition) symbolic execution paths. For each symbolic execution path i, we
obtain its path condition pci and the final symbolic values fv

i of any program
variable v. Let O′ be an ordered set of fresh program variables such that for any
v ∈ O there is a corresponding v′ ∈ O′ and the cardinality of O and O′ is equal,
i.e. |O| = |O′|. The formula

Info(L,H , O′) =
∨

1≤i≤Np

InfoPathi(L,H , O′) (3)

where InfoPathi(L,H , O′) = pci ∧ ∧
v′∈O′ v′ = fv

i “records” the information
about final values contained in a symbolic execution path. It is true whenever
the variables in L, H , O′ are assigned values l, h, o such that executing p in
an initial state 〈l, h〉 terminates in a final state where the variables in O have
values o. For a concrete experiment 〈l, o〉 formula (3) is instantiated to

Info〈l,o〉(H) = Info(l,H , o) = Info(L,H , O′)[l, o/L, O′] (4)

This formula is true at the time of running the experiment, because (i) the
taken execution path must be contained in one of the symbolic execution paths,
and (ii) the observed output values must be equal to those obtained by evaluating
the symbolic values with the concrete initial values of the low and high variables.

We write Info〈l,o〉(H) to emphasize that the truth value of the formula only
depends on the assignment of concrete values to the program variables in H . The
formula Info〈l,o〉(H) constrains the possible high values and can be seen as the
information about hs that can be learned from experiment 〈l, o〉. The knowledge
about hs gained from all experiments in a set E is then

KE (H) = K ∅(H) ∧
∧

〈l,o〉∈E

Info〈l,o〉(H) (5)

where K ∅(H) is the initial knowledge about hs that is known before performing
any experiment, for example, domain restrictions. If nothing is known about hs,
then the initial knowledge K ∅(H) is simply true. The set of all models of KE (H)
contains by construction also the actual secret hs (a simple inductive argument
with base case that K ∅(H) is satisfied by hs).

We want to design a set of experiments that reduces, as much as possible,
the number of possible concrete values for H that satisfy (5). The smaller this
number is, the more we succeeded to narrow down the possible values for the
secret. In particular, if only one possible value remains, we know the secret.

Some notation: the set of all values of a variable set X that satisfy a formula
ϕ(X) is denoted by Sat(ϕ). Hence, Sat(KE (H)) is the set of all values of H that
satisfy KE(H). As usual we use |S| to denote the cardinality of a set S.

276 Q.H. Do et al.

Data: p: program to be attacked (with the high input already set); noninterference policy

H
�L; O ⊆ L: observable low variables; K∅(H): initial knowledge about H ; maxE:
maximum number of experiments

Result: KE(H): the accumulated knowledge about H obtained by executing the
experiments E

E ← ∅;
K ← K∅(H);
while |E| < maxE do

(l, leakage) ← findLowInput(E , K);
if leakage > 0 then

execute p with low input l;
o ← values of O when p terminates;

E ← E ∪ 〈l, o〉;
K ← K ∧ Info〈l,o〉(H);

if |SatH (K)| = 1 then
exit while;

end

else
exit while;

end

end

Algorithm 1. Secret inference

Example 2. Consider again the program from Listing 1.1 with l as low variable
and h as high variable. Assume the value of h is 10. Initially, the knowledge
about the value of h is its domain −231 ≤ h < 231.

Given two experiment sets X = {〈5, 0〉, 〈3, 0〉, 〈8, 0〉}, Y = {〈5, 0〉, 〈17,−1〉}.
The knowledge about the secret input value of h that can be gained from X and
Y is KX({h}) = 8 < h < 231 and K Y ({h}) = 5 < h < 17, respectively. Even
though |X| > |Y |, it is the case that |Sat(KY ({h}))| � |Sat(KX ({h}))|, hence
the knowledge about the secret value of h obtained from Y is higher than the
one obtained from X. ��

We want to accumulate maximal knowledge about a secret with as few exper-
iments as possible. In particular, we do not want to perform experiments that
do not create any knowledge gain. Avoiding redundant experiments is essential
to achieve performance.

Definition 2. An experiment 〈l, o〉 is called redundant for KE(H) if the fol-
lowing holds: ∀h.(KE (h) → Info〈l,o〉(h)).

A redundant experiment 〈l, o〉 gains no new information about a secret hs

for knowledge KE (H), because KE (h) ∧ Info〈l,o〉(h) ≡ KE (h).

3.3 Algorithm for Inferring High Input

Algorithm 1 implements the core of our approach. The result is a logical formula
that represents the accumulated knowledge about the high variables the algo-
rithm was able to infer. The result can be used as input to an SMT solver or
another model finder to compute concrete models representing possible secrets.

Algorithm 1 receives as input the program p, the symbolic execution result
for p, i.e. p’s SE tree together with all path conditions and symbolic values in the

Inferring Secrets by Guided Experiments 277

final symbolic execution state, the attacker’s initial knowledge, etc. In particular,
the formula Info〈l,o〉(H) can be computed.

First, the set of already performed experiments E is initialized with the empty
set and the accumulated knowledge K is initialized with the initial knowledge of
the attacker. At the beginning of each loop iteration K contains the accumulated
knowledge of all experiments executed up to now, i.e. K = KE (H). In the first
loop statement the low input l for a new experiment is determined by method
findLowInput(E ,K) based on the set of experiments E and the knowledge K
accumulated so far. That method returns also a measure of the leakage expected
to be observed by executing p with the provided low input. The method returns
0 as leakage only if all low input values would result in redundant experiments.
In its most basic implementation the method returns simply random values and
a positive value for leakage. We discuss more refined implementations in Sect. 4.

If the expected leakage is positive (i.e. something new can be learned), pro-
gram p is executed with the computed low input l and the set of experiments
is extended by the pair 〈l, o〉 where o are the values of the observable variables
when p terminates. In the next step we update the accumulated knowledge by
adding the conjunct Info〈l,o〉(H). Afterwards, we check whether the accumulated
knowledge uniquely determines the values of the high variables. If this is the case
we know the exact secret and return. Otherwise, we enter another loop itera-
tion until the maximal number of experiments maxE is reached. If the expected
leakage is zero, no useful low input can be found and the algorithm terminates.

4 Finding Optimal Low Input

We aim to provide a more useful implementation of method findLowInput(E)
than the trivial one sketched above. The main purpose of the method is to
determine optimal low input values that lead to a maximal gain of knowledge
about the values of the high variables. We use the security metrics discussed in
Sect. 2.2 to guide this process and show how these can be effectively computed
by employing symbolic execution and parametric model counting. We refer to
the technical report [9] for all proofs of theorems.

4.1 Risky Paths and Reachable Paths

We start with a set of experiments E (|E | = m) and the accumulated knowledge
about the high variables in form of the logic formula KE (H). We assume the
initial knowledge about secret K ∅(H) is correct (hs satisfies K ∅(H)), hence hs

also satisfies KE (H). Our aim is to find the low level input lm+1 for a new
experiment that is most promising for maximal knowledge gain. Next we show
how to avoid generation of low input that would lead to a redundant experiment.

A risky path is a symbolic execution path which might contribute to an
information leakage (see Sect. 2.1).

Definition 3. Let p be a program and Np be the number of all symbolic paths
of p. A symbolic path i (1 ≤ i ≤ Np) is called a risky path for a noninterference

278 Q.H. Do et al.

policy H �� O iff ∃k.(1 ≤ k ≤ Np ∧ Leak(i, k)) is satisfiable. The set of all risky
paths of p is denoted with Risk.

The set of risky paths gives rise to a condition for redundant experiments. If
a given low input never leads to the execution of a risky path, then it does not
contribute to an information leakage and thus the experiment is redundant. The
following theorem characterizes this intuition formally:

Theorem 1. InRisk(L) denotes the formula ∃h.
(
KE (h)∧∧

i/∈Risk ¬pci[h /H]
)
.

If for some l ∈ L the formula InRisk(l) is false then the experiment 〈l, o〉 is
redundant for KE (H).

Example 3. The SE tree of the program in Listing 1.1 has four paths with path
conditions pc1 = l < 100 ∧ l = h, pc2 = l < 100 ∧ l < h, pc3 = l <
100 ∧ l > h and pc4 = l ≥ 100. The set of risky paths is Risk = {1, 2, 3}. The
fourth path is not a risky path as it does not contribute to any leak. We have
InRisk({l}) = ∃h.¬(l ≥ 100) ≡ l < 100 indicating that only low input values
less than 100 may lead to any information gain. ��
Definition 4. An SE path i is called a reachable path for KE(H) iff the fol-
lowing formula is satisfiable:

KE(H) ∧ pci (6)

RE denotes the set of all reachable paths for KE (H).

Example 4. (Example 3 cont’d) Assume the initial knowledge about the value of
h is −231 ≤ h < 231 and the secret value of h is 1000. We execute the program in
Listing 1.1 with l = 98. The execution terminates in a state where l has been
set to 0. Using this experiment, we obtain as accumulated knowledge about h:
−231 ≤ h < 231 ∧ ((98 = h ∧ 3 = 0) ∨ (98 < h ∧ 0 = 0) ∨ (98 > h ∧ −3 = 0))
≡ 98 < h < 231. With this knowledge about h, the risky path 3 becomes
unreachable because the formula 98 < h < 231∧l < 100∧l > h is unsatisfiable.
��
Theorem 2. For all experiments 〈l, o〉, it holds that KE (H) ∧ Info〈l,o〉(H) ≡
KE (H) ∧ ∨

i∈RE InfoPathi(l,H , o).

Theorem 2 shows that all unreachable paths can be ignored while construct-
ing the knowledge about hs. Moreover, it allows us to consider only reachable
paths when deducing optimal low input, which we explain in the next sections.

4.2 Quantifying Leakage by Symbolic Execution

We denote the number of assignments of values to the variables in H that satisfy
KE (H) by SE = |Sat(KE (H))|. We assume that the actual value of H satisfies
KE (H), i.e. KE (H) is correct.

Inferring Secrets by Guided Experiments 279

Definition 5. For a formula g, let V be the set of all program variables occur-
ring in g and let V = X ∪̇ Y be a partitioning. Function CX [Y](g) is called
parametric counting function iff it returns the number of assignments to the
variables of X that satisfy g (i.e. the number of models) as a function of Y .

Example 5. Given V = {l,h} and g = 0 ≤ h < 100∧h ≥ l∧0 ≤ l < 100. Then
the number of models of h satisfying g depends on l and can be determined for
any value of l satisfying 0 ≤ l < 100 by C{h}[{l}](g) = 100 − l. ��

We want to extend the experiment set E by adding a new experiment 〈l, o〉
such that the observable leakage (knowledge gain on high variables) is as high as
possible. The following theorem provides an iterative method to compute the
different leakage measures from Sect. 2.2 based on counting the models
of KE (H).

Theorem 3. Let E be an experiment set and KE (H) the knowledge about the
high variables. If the probability distribution of the values for H is uniform,
the Shannon entropy-based ShELp(L), the min entropy-based MELp(L), and the
guessing entropy-based GELp(L) leakages can be computed as follows:

ShELp(L) = log(SE) − 1
SE

∑

o∈Op(L)

(
CH [L](g(L,H , o))log(CH [L](g(L,H , o)))

)

GELp(L) =
SE + 1

2
− 1

2SE

∑

o∈Op(L)

(
CH [L](g(L,H , o))(CH [L](g(L,H , o)) + 1)

)

MELp(L) = log(CO′ [L](∃h.g(L, h,O′))) (O′ as defined in Sect. 3.2)

where g(L,H , O) = KE(H) ∧ InRisk(L) ∧ ∨
i∈RE InfoPathi(L,H , O).

Intuitively, the theorem states that given the current stage of the experi-
ment with KE(H) providing the initial uncertainty, the theorem expresses a
characterization of leakages by observing the low outputs.

When pci and the symbolic observable output values f
O

i are linear expres-
sions over integers, the computation of CH [L](. . .) and CO′ [L](. . .) can be reduced
to counting the number of integer points in parametric and non-parametric poly-
topes for which efficient approaches (and tools) exist [24].

4.3 Method findLowInput

Algorithm 2 shows detailed pseudo code of method findLowInput . It computes
the optimal low input values for a given leakage metric together with the com-
puted leakage. First, the set of reachable paths RE is determined by checking
the reachability of all paths using formula (6). If no reachable paths exist or all
reachable paths are not risky, the algorithm exits and returns 0 as leakage value
(in that case the low input values are irrelevant). Otherwise, the optimal low
input values for the leakage metric are computed.

280 Q.H. Do et al.

Data: Set of performed experiments E , current knowledge KE (H)

Result: (l, leakage): optimal low input value and corresponding leakage

RE ← findAllReachablePaths(KE(H));

if |RE | > 0 ∧ RE ∩ Risk
= ∅ then
QLeak(L) ← appropriatly instantiated entropy formula;

l ← findL2Maximize(QLeak(L));

if l = null then

l ← random value that does not appear in E ;
end

leakage ← QLeak(l);

else

l ← null;
leakage ← 0;

end

Algorithm 2. Implementation of method findLowInput

Here QLeak(L) is one of ShELp(L), GELp(L), MELp(L) according to the chosen
security metric. The low input values are determined by solving the optimization
problem: argmax l∈L

QLeak(l). In case of ShELp(L) and GELp(L) this is equivalent
to minimizing the sum expression in the corresponding formula of Theorem 3.

4.4 Choosing a Suitable Security Metric

Choosing the right security metric for a given program plays an important role
for finding optimal low input values. The choice influences the computational
complexity of the optimization problem as well as the quality of the found low
input. It turns out that computing the Shannon and guessing entropy-based
metrics is significantly more expensive than the min entropy-based metric. The
reason is that min entropy-based leakage merely requires to estimate the cardi-
nality of the observable output values, while the two others require to enumerate
each possible output value (but can find better low level input).

Consequently, the Shannon and guessing entropy-based leakage metrics are
only feasible for programs whose observable output (i) either depends only on
the chosen SE path, but not on the actual values of the low or high variables (i.e.
each SE path assigns only constant values to the observable variables); (ii) or the
output values depend only on the low input (i.e. for a specific concrete low input,
their concrete value can be determined by evaluating the corresponding symbolic
value f). For all other programs, determining the possible concrete output values
is too expensive in practice. We illustrate (for space reasons only for case (i)
described above) how the Shannon and guessing entropy-based leakage metrics
can be used.

Let i be a reachable path with path condition pci and symbolic output values
fO
i . By assumption (i), the symbolic values in fO

i are constants (i.e. independent
of any program variables), so they can be evaluated to concrete values oi. We
may assume that the output values for all SE paths i �= j differ, hence oi �= oj
(otherwise, paths i, j are merged into one with path condition pci ∨ pcj). Fur-
ther, Op(L) = {oi|i ∈ RE}, because we only consider reachable paths. Hence, we
can conclude that for all i, j ∈ RE with i �= j the formula InfoPathi(L,H , oj)
is equivalent to false and InfoPathi(L,H , oi) simplifies to pci. We use this to

Inferring Secrets by Guided Experiments 281

simplify the definition of g in Theorem 3 to g(L,H , oi) ≡ KE (H)∧pci. The com-
putation of ShELp(L) and GELp(L) becomes now significantly cheaper, because
the cardinality of the set of possible observable outputs is bound by the number
of reachable paths and only path conditions need to be considered.

Example 6. (Example 3 Cont’d) For our running example we already identified
the set of risky paths as Risk = {1, 2, 3} and obtained InRisk(l) = l < 100.
A closer inspection of the program reveals the following: as long as our only
knowledge about h is that its value is within an interval [a, b] then choosing the
arithmetic middle b+a

2 for the input value of l is the best choice.
The initial knowledge about h is that its value is between −231 and 231 − 1,

hence, the best choice is 0 or −1. We show that the solution computed automat-
ically by our algorithm reaches the same conclusion. To avoid redundant experi-
ments, we know already that l must be chosen such that l < 100 (= InRisk(l)).
Let ϕ denote −231 ≤ h < 231 ∧ l < 100. From the symbolic output values, we
obtain O{l} ⊆ {3, 0,−3} and:

g(l,h, 3) = ϕ ∧ h = l g(l,h, 0) = ϕ ∧ h > l g(l,h,−3) = ϕ ∧ h < l

g(l,h,l′) = ϕ ∧ (
(l = h ∧ l′ = 3) ∨ (l < h ∧ l′ = 0) ∨ (l > h ∧ l′ = −3)

)

where l′ is a new program variable representing the final value of l. Model
counting (we used the tool Barvinok [24]) yields the following functions:

C{h}[l](g(l,h, 3)) =

{
1, if − 231 ≤ l < 100
0, otherwise

C{h}[l](g(l,h, 0)) =

⎧
⎪⎨

⎪⎩

231 − 1 − l, if − 231 ≤ l < 100
0, if l ≥ 100
232, otherwise

C{h}[l](g(l,h,−3)) =

{
231 + l, if − 231 ≤ l < 100
0, otherwise

C{l′}[l](∃h.g(l,h,l′)) =

⎧
⎪⎨

⎪⎩

3, if − 231 < l < 100
2, if l = −231

1, otherwise

From the final function we see that the maximum leakage measured by
the min entropy-based metric is log 3 for all values of low input in the range
(−231, 100). This restricts the choice of a suitable value for l only slightly. Com-
putation of the maximal leakage for the Shannon and guessing entropy-based
metrics requires more effort. Using the optimizers Bonmin and Couenne1 with
the first three functions, we get as result l = 0 which meets our intuition.
1 www.coin-or.org/Bonmin and projects.coin-or.org/Couenne.

http://www.coin-or.org/Bonmin
http://projects.coin-or.org/Couenne

282 Q.H. Do et al.

Listing 1.2. Listing 1.1 with specification annotations

1 public class RelaxPC {
2 public int l; cprivate int h;
3 /*! l | h ; !*/
4 /*@ requires -2147483648 <= h && h < 2147483648; @*/
5 public void check(){
6 if (l < 100) { ... } ...
7 }
8 }

Moreover, the maximum Shannon entropy leakage when choosing l = 0 is
approximately 1, i.e. 1 bit of h is revealed. For this program, the Shannon
and guessing entropy-based metrics perform significantly better than the min
entropy-based metric. The latters’ successive application generates a series of
experiments that performs binary search to uncover the secret. ��

5 Implementation and Experiments

5.1 Implementation

We implemented the approach described above on top of the KEG tool [8].
KEG is used to create failing tests for insecure Java programs. The information
flow policy specification is provided in terms of source code annotations. KEG
supports noninterference and delimited information release policies. For loops
and (recursive) methods KEG supports loop invariants and method contracts.
Beside primitive types, object types are also supported.

Listing 1.2 shows the annotated Java code from Listing 1.1. Line 3 contains
a class level specification that forbids any information flow from the high vari-
able h to the low variable l. The check method’s precondition in line 4 specifies
the initial knowledge about h. The program is given to our tool which performs
the analysis explained in the previous sections and illustrated in Fig. 1. Our
implementation supports the computations described in Sect. 4 and outputs the
corresponding optimisation problems as AMPL [10] specifications. This makes
it possible to use any optimizer supporting the AMPL format. Currently, KEG
uses a combination of two open source optimizers, Bonmin and Couenne, as
well as the commercial optimizer Local Solver [4]. For model counting we use
Barvinok [24]. The latter only supports counting for parametric polytopes, which
restricts the use of the secret inference feature to programs with linear path con-
dition and symbolic output expressions. This restriction does not affect KEG’s
other features, including leak detection and leak demonstrator generation.

5.2 Experiments

For the running example, KEG detects an information flow leak for the specified
noninterference policy. In case the high variable has a value greater than 99, KEG
stops after one experiment and returns 99<h< 2147483648 as the accumulated

Inferring Secrets by Guided Experiments 283

knowledge, which is all that can be learned. However, if h is less or equal than
99, KEG automatically extracts the exact value of h after only 31 experiments
when using the Shannon or guessing entropy-based metric.

In addition, we evaluated our approach on a sample of insecure programs
under the assumption that for any program the attacker knows nothing about
the secret except that it is a 32 bit integer. Loop specifications and method
contracts are supplied for programs containing unbounded loops and recursive
method invocations. The tool has been configured to terminate its attack when it
was either able to infer the values of the high variables, the maximum achievable
knowledge has been reached, or the number of experiments exceeded the limit
of 32. The evaluation was performed on an Intel Core i5-480M processor with
4GB RAM and Ubuntu 14.04 LTS. The results are shown in Table 1.

Table 1. Case study statistics

File name #SP/RP High input Shannon entropy Min entropy Guessing entropy

#RB/E T(s) #RB/E T(s) #RB/E T(s)

PassChecker 2/2 2135451222 0/32 159 0/32 13.3 0/32 139.3

RelaxPC 4/3 -1208665253 32/31 31.7 1/32 6.9 32/31 29.4

MultiLows 6/3 395444738 32/20 22.6 1/32 7.5 32/22 24.3

ODependL 4/3 -13484756 1/1 0.9 1/1 0.2 1/1 0.3

ODependL 4/3 95464630 32/31 29.8 1/32 6.7 32/31 29.6

ODependLH 6/5 -941087637 n/a n/a 32/1 0.7 n/a n/a

ODependLH 6/5 23269332 n/a n/a 1/1 0.7 n/a n/a

LoopPlus 3/2 -552256949 n/a n/a 1/1 0.2 n/a n/a

LoopPlus 3/2 1707132530 n/a n/a 32/1 1.3 n/a n/a

EWallet 3/2 692935244 n/a n/a 21/32 10.1 n/a n/a

#(SP/RP): nr of Symbolic Paths/Risky Paths
#(RB/E): nr of Revealed Bits/necessary Experiments T(s): Time for experiments (seconds)
(available at www.se.tu-darmstadt.de/research/projects/albia/download/secret-inferring/)

Discussion. Table 1 shows that using min entropy to guide experiment gener-
ation is in most cases the fastest option, but it lags often behind the other
entropies regarding the amount of inferred information, because it considers

Fig. 2. Bits revealed per experiment

merely the number of output val-
ues. The Shannon and guessing
entropy-based metrics can only
be used for analysing the pro-
grams PassChecker, RelaxPC,
MultiLows, and ODependL, bec-
ause only those fall into the
class of programs character-
ized in Sect. 4.4. For these pro-
grams (exception PassChecker)
the Shannon and guessing entropy-
based metrics turn out to be very
effective. Both reveal almost 1
bit per experiment.

https://www.se.tu-darmstadt.de/research/projects/albia/download/secret-inferring/

284 Q.H. Do et al.

Figure 2 compares for program RelaxPC the number of bits revealed after
each experiment for each of the supported metrics and with a simple exhaustive
brute force attack (the latter could be lucky and hit the secret in one of the first
32 attempts). For this program we can see that in case of the min entropy-based
metric the first experiment (which chose 0 as low level input) manages to reveal
about one bit of information, namely that the secret’s value is below 0 and stalls
afterwards. The reason is that under the assumption of a uniform distribution
the min entropy-based metric considers any possible choice of l between −231

and 99 to be equally good. Consequently, the min entropy-based metric does not
perform significantly better than a brute force attack. The Shannon and guessing
entropy-based metrics perform best, extracting almost one bit per experiment
and reveal the complete secret after 31 steps.

The program PassChecker is a simple password checker, leaking only whether
the given input is equal to the secret or not. The amount of leakage does not
depend on the low input and all entropy-based approaches perform equally bad
as random experiments or exhaustive brute-force attacks.

For programs whose observable output depends on high variables (ODe-
pendLH, LoopPlus and EWallet), Shannon and guessing entropy are practically
infeasible as the range of observable values is too large. However, min entropy is
still applicable and quite effective, as it leads to the generation of low input for
paths on which the observable output depends on the high input. Observe that
LoopPlus and EWallet contain unbounded loops and recursive method calls.

The programs ODependL, ODependLH and LoopPlus witness the fact that
successful secret inference may also depend on the values of high variables. The
reason is that in these programs the high variable influences the taken symbolic
execution path and the final output values, which renders the set of reachable
paths value-dependent on high variables. Hence, the quality of the generated
experiments depends as well on the high variables.

6 Related Work

An information-theoretic model for an adaptive side-channel attack is proposed
in [15]. The idea of the attacker strategy is to choose at each step the query that
minimizes the remaining entropy. This is achieved by enumerating all possible
queries to choose the best one, which is rather expensive. In contrast our app-
roach quantifies the potential leakage as a function of low input, and hence, we
can use efficient available optimizers to find the optimal input value.

Pasareanu et al. [19] propose a non-adaptive side-channel attack to find low
input that maximizes the amount of leaked information. In contrast to our app-
roach, only path conditions are considered, but not symbolic states. Hence, they
cannot measure leakage caused by explicit information flow. The authors of [12]
define a quantitative policy which specifies an upper bound for permitted infor-
mation leakage. The model checker CBMC is used to generate low input that
triggers a violation of the policy. Both of [12,19] use channel capacity, that is
measured via the number of possible observable output values, as their leakage

Inferring Secrets by Guided Experiments 285

metric. Thus their generated low input is often not the optimal one: for example,
in case of Listing 1.2, we are able to generate a sequence of low inputs for l, each
of which extracts nearly 1 bit of information, allowing to find the exact secret
after 31 experiments. Their approach can only return a single, arbitrary input
for l ∈ (−231, 100), hence, using it for an attack would not perform better than
brute force. Both approaches require a bound on the number of loop iterations or
the recursion depth, whereas we can deal with unbounded loops and recursion.

Low input as a parameter of quantitative information flow (QIF) analysis is
also addressed in [18,25]. In [25], the authors only analyze the bounding problem
of QIF for low input, but do not provide a method to determine a bound for the
leakage and they do not discuss how to find the input maximizing the leakage.

In [14] a precise quantitative information flow analysis based on calculating
cardinalities of equivalence classes is presented. The author assumes an optimally
chosen set of experiments, but does not describe how to construct such a set.

The authors of [6] model attacker knowledge as a probability distribution of
the secret and show how to update such knowledge after each experiment. In [3],
the authors briefly discuss the correlation between the set of experiments and the
attacker’s knowledge. However, none of these papers describes how to construct
an optimal experiment set that maximizes the leakage. Other approaches in
quantitative information flow [16,17,20] do not address low input in their analy-
ses and consider only channel capacity with the same drawbacks as discussed
earlier.

7 Conclusion and Future Work

We presented an approach and a tool to automatically infer secrets leaked by an
information flow-insecure program. It features a novel, adaptive algorithm that
(i) combines static and dynamic analysis, (ii) uses leakage metrics that depend
on low input (which, to the best of our knowledge, sets it apart from any existing
work) to guide experiment generation and (iii) provides a logic characterisation
of the search space for the secret that can be put into a model finder to extract
the secrets. The approach can deal with programs containing unbounded loops
and recursive methods. The viability of the method has been demonstrated with
a number of representative benchmark programs that clearly illustrate its poten-
tial and its current limitations. The latter are mainly derived from restrictions
in current parametric model counting tools so that any progress in this area will
directly benefit our approach as well. We plan to integrate specification gener-
ation techniques to reduce the need for user-provided annotations such as loop
invariants. We will also look at non-uniform distributions of secret values.

References

1. Alvim, M., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring information
leakage using generalized gain functions. In: 2012 IEEE 25th Computer Security
Foundations Symposium (CSF), pp. 265–279, June 2012

286 Q.H. Do et al.

2. Alvim, M.S., Scedrov, A., Schneider, F.B.: When not all bits are equal: worth-
based information flow. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol.
8414, pp. 120–139. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54792-8 7

3. Backes, M., Kopf, B., Rybalchenko, A.: Automatic discovery and quantification
of information leaks. In: 30th Symposium on Security and Privacy, pp. 141–153
(2009)

4. Benoist, T., Estellon, B., Gardi, F., Megel, R., Nouioua, K.: Localsolver 1.x: a
black-box local-search solver for 0–1 programming. 4OR 9, 299–316 (2011)

5. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007)

6. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Quantifying information flow with
beliefs. J. Comput. Secur. 17(5), 655–701 (2009)

7. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol.
3450, pp. 193–209. Springer, Heidelberg (2005). doi:10.1007/978-3-540-32004-3 20

8. Do, Q.H., Bubel, R., Hähnle, R.: Exploit generation for information flow leaks in
object-oriented programs. In: Federrath, H., Gollmann, D. (eds.) ICT Systems
Security and Privacy Protection. IFIPAICT, vol. 455. Springer, Cham (2015).
doi:10.1007/978-3-319-18467-8 27

9. Do, Q.H., Bubel, R., Hähnle, R.: Inferring secrets by guided experiments. Technical
report, TU Darmstadt (2017)

10. Gay, D.M.: The AMPL modeling language: an aid to formulating and solving opti-
mization problems. In: Al-Baali, M., Grandinetti, L., Purnama, A. (eds.) Numeri-
cal Analysis and Optimization. PROMS, vol. 134. Springer, Cham (2015). doi:10.
1007/978-3-319-17689-5 5

11. Hentschel, M., Hähnle, R., Bubel, R.: Visualizing unbounded symbolic execution.
In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 82–98. Springer,
Cham (2014). doi:10.1007/978-3-319-09099-3 7

12. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Proceed-
ings of the 26th Annual Computer Security Applications Conference, pp. 261–269.
ACM (2010)

13. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

14. Klebanov, V.: Precise quantitative information flow analysis–a symbolic approach.
Theor. Comput. Sci. 538, 124–139 (2014)

15. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel
attacks. In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, CCS 2007, pp. 286–296. ACM (2007)

16. Malacaria, P., Chen, H.: Lagrange multipliers and maximum information leakage in
different observational models. In: Proceedings of the 3rd ACM SIGPLAN Work-
shop on Programming Languages and Analysis for Security, pp. 135–146. ACM
(2008)

17. Meng, Z., Smith, G.: Calculating bounds on information leakage using two-bit
patterns. In: Proceedings of the ACM SIGPLAN 6th Workshop on Programming
Languages, Analysis for Security, PLAS 2011, pp. 1:1–1:12. ACM (2011)

18. Ngo, T.M., Huisman, M.: Quantitative security analysis for programs with
low input and noisy output. In: Jürjens, J., Piessens, F., Bielova, N. (eds.)
ESSoS 2014. LNCS, vol. 8364, pp. 77–94. Springer, Cham (2014). doi:10.1007/
978-3-319-04897-0 6

http://dx.doi.org/10.1007/978-3-642-54792-8_7
http://dx.doi.org/10.1007/978-3-540-32004-3_20
http://dx.doi.org/10.1007/978-3-319-18467-8_27
http://dx.doi.org/10.1007/978-3-319-17689-5_5
http://dx.doi.org/10.1007/978-3-319-17689-5_5
http://dx.doi.org/10.1007/978-3-319-09099-3_7
http://dx.doi.org/10.1007/978-3-319-04897-0_6
http://dx.doi.org/10.1007/978-3-319-04897-0_6

Inferring Secrets by Guided Experiments 287

19. Pasareanu, C.S., Phan, Q., Malacaria, P.: Multi-run side-channel analysis using
symbolic execution and Max-SMT. In: IEEE 29th Computer Security Foundations
Symposium, CSF 2016, pp. 387–400. IEEE Computer Society (2016)

20. Phan, Q.-S., Malacaria, P., Tkachuk, O., Păsăreanu, C.S.: Symbolic quantitative
information flow. SIGSOFT Softw. Eng. Notes 37(6), 1–5 (2012)

21. Robling Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Boston
(1982)

22. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

23. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00596-1 21

24. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting
integer points in parametric polytopes using Barvinok’s rational functions. Algo-
rithmica 48(1), 37–66 (2007)

25. Yasuoka, H., Terauchi, T.: On bounding problems of quantitative information flow.
J. Comput. Secur. 19(6), 1029–1082 (2011)

http://dx.doi.org/10.1007/978-3-642-00596-1_21

ECBC: A High Performance Educational
Certificate Blockchain with Efficient Query

Yuqin Xu1, Shangli Zhao1, Lanju Kong1, Yongqing Zheng1,2,
Shidong Zhang1, and Qingzhong Li1(&)

1 School of Computer Science and Technology, Shandong University,
Jinan, China

xuyuqin_sdu@163.com, jnzsl163@126.com,

{klj,zyq,zsd,Lqz}@sdu.edu.cn
2 Dareway Software Co., Ltd., Jinan, China

Abstract. Currently, most digital infrastructures for educational certificate
management cannot guarantee data security and system trust. Using blockchain
can solve this problem. However, there are still some defects with the existing
blockchains that cannot be applied. Most of them are dependent on tokens, and
limited by throughput and latency, moreover, no one can support certificate
query with precise and high efficiency. In order to solve these problems, this
paper presents educational certificate blockchain (ECBC) which can support low
latency and high throughput, and provide a method to speed up queries. To
reduce latency and increase throughput, consensus mechanism of ECBC uses
the cooperation of peers to create blocks in place of the competition. ECBC
builds a tree structure (MPT-Chain) which can not only provide an efficient
query for a transaction, but also support historical transactions query of an
account. MPT-Chain only needs short time to update and can speed up block
verification. In addition, ECBC is designed with transaction format to protect
user’s privacy. The experiment shows that ECBC has better performance of
throughput and latency, supporting quick query.

Keywords: Consensus mechanism � Blockchain scalability � Quick query

1 Introduction

The certificate is a manifestation of student’s learning ability, it helps students to find a
satisfactory job, of course, it can prevent us from getting a job if we provide a forged
certificate. However, the validation process for certificates is lengthy and complex,
which makes it possible to forge [1]. Therefore, it is imperative to establish a reliable
digital infrastructure for certificates. In China, the website XueXinWang [2], as a
certificate digital infrastructure, provides a lot of convenience. For example, it verifies
the authenticity of the certificate quickly. But it also has many shortcomings, using
central storage to save data cannot guarantee data security, under attack; the data may
be lost, altered or leaked. In addition, the centralized system cannot guarantee system
trust.

© Springer International Publishing AG 2017
D.V. Hung and D. Kapur (Eds.): ICTAC 2017, LNCS 10580, pp. 288–304, 2017.
DOI: 10.1007/978-3-319-67729-3_17

Blockchain can guarantee data security and solve the problem of system trust [3]
which is first raised in bitcoin [3, 4]. So using blockchain to achieve certificate system
for the management of certificates will be reliable, safe and trustworthy. However, the
existing blockchain for the management of certificates still show many shortcomings.

First of all, the existing blockchains are mostly dependent on tokens, but the
certificates management does not require tokens. Secondly, consensus mechanisms
(e.g. POW) waste a lot of computing resources, in addition, its throughput and latency
cannot meet the requirements of certificate system [5, 6]. Thirdly, storing data trans-
parently will lead to the disclosure of personal privacy [7]. Finally, only the ethereum
[8] provides an index structure called MPT can achieve a quick query for the latest
status of account, but cannot support the efficient query for history transactions of an
account [9]. Querying the history records of a certificate holder is very important,
because people always want to be able to query a person’s education experience.

Based on the discussion above, this paper proposes an educational certificate
blockchain (ECBC) to manage educational certificates. In order to improve perfor-
mance, consensus mechanism does not need peer to compete to calculate the block’s
link value. The link value of the block needs to be generated by the cooperation of
peers, and no one can know the link value of the block in advance. ECBC has the
following advantages that it avoids waste of computing resources, has no fork, does not
depend on tokens, and can meet the requirements of throughput and latency.

ECBC treats the issuance or revocation of a certificate as a transaction, which will
be written into the blockchain, and designs transaction format to prevent privacy leaks.
The privacy data of users is encrypted, which ensures that even if someone maliciously
obtains the blockchain data, it is not possible to obtain users’ information. Using
Patricia tree [10] can quickly locate query results. Merkle tree [11, 12] is used to ensure
that data accepted from others is not corrupt and not replaced, and even can check that
others do not spoof or publish false data. Based on these, ECBC combines the features
of Patricia tree and merkle tree, constructing a tree structure (MPT-Chain) to speed up
query and ensure the correctness of query results in a distributed network.

In order to support querying history records efficiently, MPT-Chain extends the leaf
nodes so that the leaf nodes can store the logical relationship of the account transaction
chain. In addition, the node of MPT-Chain stores intermediate value for merkle root
calculation, which can be used to speed up the MPT-Chain update and block
verification.

The main contributions of this paper are as follows:

1. A consensus mechanism is proposed for blockchain, without bifurcation, and
achieves high throughput and low latency.

2. This paper proposes a tree structure (MPT-CHAIN), which takes little time to
update, supports query account transaction chain and speeds up block verification.

The remainder of the paper is organized as follows: Sect. 2 introduces related work
which had done lots of work for certificate management and the performance of
blockchain. In Sect. 3, educational certificate blockchain architecture is introduced.
Section 4 describes consensus mechanism for creating blocks in detail. Section 5
introduces the MPT-Chain of ECBC. And Sect. 6 shows efficiency analysis and
experiments.

ECBC: A High Performance Educational Certificate Blockchain 289

2 Related Works

Prior to us, the Massachusetts Institute of Technology Media Laboratory (MIT Media
Lab) has been noted problems of the existing digital infrastructures for educational
certificate. They tried to use blockchain to solve the problem of system trust and data
security, and designed a set of tools to display and validate educational certificates [1].
The overall design of the certificate architecture is simple. When the issuer signs an
educational certificate, its hash value would be stored in the bitcoin’s blockchain.

It is undeniable that the MIT Media Lab’s solution can solve the problem of data
security and system trust, but the educational certificate stored in the bitcoin’s block-
chain, which makes certificates administration more complex and relies on tokens.
Bitcoin development has been severely constrained by its throughput and latency, the
low performance is fatal for certificates management [6, 13].

In Bitcoin, the way that a transaction actually works “under the hood” is that it
consumes a collection of objects called unspent transaction outputs (“UTXOs”) created
by one or more previous transactions, and then produces one or more new UTXOs,
which can then be consumed by future transactions. A user’s balance is thus not stored
as a number; rather, it can be computed as the total sum of the denominations of
UTXOs that they own [14].

UTXOs are stateless, and so are not well-suited to applications more complex than
asset issuance and transfer that are generally stateful, such as various kinds of smart
contracts. It would be very difficult to understand the logical relationship between
transactions, because the relationship between the user and transactions is confused in
UTXO model if we treat a transaction as the issuance or cancellation of a certificate.

The use of certificates is frequent in the certificate management process. But there is
no strategy can support efficient query in bitcoin. Traversing data is not feasible, which
will be more and more slowly while data increasing. The recent rise of the Ethereum to
do some of this work, but for the management of certificates is not enough. They put
forward an account model which can manage transactions better than UTXO model.
Besides, Ethereum sets up three index trees (MPT) to speed up query, one for getting
transaction, and one for getting account’s balance, the remaining one is for receipt. All
of them are for latest state of account, cannot support to find transaction chain of an
account. But querying the history records of a certificate holder is very important.

3 ECBC Architecture

In this section, Educational Certificate Blockchain Architecture is introduced. ECBC
uses blockchain to organize schools, regulators, students, and employers. It facilitates
the review of the certificate data by the regulatory authority and also protects the
security of certificate data and improves system trust.

The p2p-based educational certificate network consists of peers and entities:

Definition 1. Peer. Peer represents schools and regulators. It is versatile can be
involved in creating blocks in the network. Each peer has an identity authentication,
can use public key for encrypting messages and private key for signing blocks. It can
ensure the security of message and blocks cannot be forged.

290 Y. Xu et al.

Definition 2. Quorum. Quorum refers to a peer who has the right to participate in the
consensus process. The consensus mechanism of ECBC will dynamically will
dynamically select some peers to become quorums which can generate blocks through
cooperative consensus algorithms.

Definition 3. Entity. Entity represents students, and employers. ECBC provides light
client for entities to verify and query the certificate, some entities are the holder of
educational certificates, can get public and private key to protect user privacy. Entity
can submit query request, and verify the correctness of the query results through block
header.

Peers use consensus mechanism presented in this paper to generate a block, its
basic structure is shown in Fig. 1. The block structure consists of a block header and a
number of transactions. The block header includes link value of previous block, the
link value of this block, the creator, the block height, the timestamp and the merkle root
of MPT-Chain. The link value of the block is created in the peers’ consensus process
by all the peers’ cooperation. Each block (except the genesis block) contains the link
value of the previous block, thus forming a blockchain. In addition, the merkle root of
MPT-Chain can guarantee the correctness of query results and the consistency of MPT-
Chain in the network.

The issuance or revocation of a certificate as a transaction will be written into
blockchain, which is initiated by an issuer (such as school). Transaction format is
designed in accordance with open badges specification [15], which includes IssuerID
that can represent the issuer, and holderID can anonymously identify the certificate
holder, the major, the type of certificate, the type of operation, the encrypted

Block Header Block Header Block Header Block Header Block Header

Use public key of
holder to encryptUse privite key of

holder to decrypt

Receiver-added:

{
Personal Id: 123456789
Name: Jim
National :Han
Sex : Male
Birthday: 20000101
Learning Time: 20100101-
20140101
Picture: DataURL
} Receiver-added:

"Sho4v345in6is5td6oej6f5vi
698f793jg840ng93yh "

IssuerID: " 0001 "

HolderID: "1adf7893c8 "

IssueData: GTM time

CertTypeID: " 0 "

MajorID: " 010 "

OptionTypeID: " 1 "

Fig. 1. ECBC architecture

ECBC: A High Performance Educational Certificate Blockchain 291

information concerning the privacy data, and the timestamp. The Operation Type is
used to indicate whether the certificate was issued or revoked, because the data for the
blockchain can only append. Blockchain as a distributed ledger, its data is open and
transparent, which requires us to protect personal privacy [16]. Asymmetric encryption
algorithm can guarantee data privacy, but also can cause the transaction cannot be
verified. Therefore, we will use the asymmetric encryption algorithm encrypts the part
of the transaction data which is related to user privacy, but does not affect the trans-
action verification, such as personal ID, name, date of birth, learning time, personal
photos and so on.

4 Consensus Mechanism of ECBC

In this section, we will describe consensus mechanism of ECBC in detail. ECBC is a
permission chain; the peer who wants to into the network must have permission. Each
peer represents a trustworthy organizations or units, of course, we cannot rule out these
peers which may become Byzantium peer. In bitcoin, the peers can join unlimited,
which may lead to high possibility of byzantine peers [5, 6]. Therefore, the fault
tolerance of POW is 51% of all the peers. The joining of peers must be permitted and
peers’ credibility is high, this characteristic for designing a consensus mechanism has
brought different view. We reduce the fault tolerance of the network to one-third, and
design a consensus mechanism which is scalable, high efficient, while ensures security
and credibility. Creating block is a process of rotary, so we only describe a round of
creation.

4.1 Dynamic Quorums

In order to ensure block creation secure and reliable, each block wants to take effect
should reach a consensus by all the peers in the network. However, the number of peers
in the network is increasing. All the peers are involved in consensus process, which is a
waste of computing resources. So we select some peers called quorums to reach a
consensus, but fixed quorums may cause security problems. For avoiding the occurrence
of this phenomenon, we dynamically pick out quorums. Use computing power (P), and
the number of times who had been as quorum (T) to calculate peer’s comprehensive
value (C_V). Calculation formula of C_V is as follows:

C V ¼ P=
ffiffiffi

T
p

ð1Þ

To ensure that quorum is changed dynamically, the number of times who had been
as quorum is used as a limiting factor. Suppose the number of peers in the network is
N(N = 3f + 1), where f represents the number of Byzantine nodes that may exist in the
network. Sort the peers from big to small according to C_V, select the first 2f + 1 of
this sequence to be quorum. The time complexity of this algorithm is O N � log Nð Þð Þ,
time overhead is negligible for ECBC.

292 Y. Xu et al.

Quorums selected will reach a consensus on a block. A round of consensus process
may create a block or may not. After a round of consensus process, the number of
consensus round increases affirmatively and the block height may not. Each consensus
round will correspond to a set of quorums that called view, when a round of consensus
process ends, due to changes in T, resulting in view change.

4.2 Cooperation Consensus Algorithm

Cooperation consensus algorithm does not depend on computing power of the peer, but
requires quorums to work together. It can be divided into three steps: The first step is
quorums reach a consensus for the block’s link value; the second step is to select
primary peer which can create block in this round; the third step is quorums vote for
block created by the primary peer.

In first step, each quorum generates a random number, and uses its private key to
sign the random number, then sends it to others. When a quorum receives all the
random numbers from other, using random numbers, the merkle root of transactions in
the block, the link value of previous block and time stamp calculate hash value as the
link value of this block. Link value is used to guarantee that block is not easily falsified.
If anyone wants to modify any transaction value in the block, all previous blocks’ link
value need to be changed accordingly.

If the random number sent to others by the quorum is inconsistent, the link value
will be different for different quorum. This phenomenon will lead to multiple primary
peers in a consensus process, will also be multiple blocks. So this consensus process is
no doubt a failure. Byzantine peers pay a small price can lead to a significant increase
in the failure rate of consensus. To prevent such attacks, it is necessary to check the
random number when the quorum receives a random number. The quorum packaged
all random numbers into a set, and then broadcast it to others. All the quorum check
random numbers by the set, if the one is not the same, the random number generator
will be removed from quorums.

And then, select a quorum as primary peer to create block through random num-
bers. The primary peer is selected by the average of all the random numbers, whose
random number is closest to the average and it broadcasted random number in the
earliest time will be selected as primary peer. The primary peer can construct block and
broadcast it to all the peers in the network. Constructing a complete block consists of
packing the transaction into the block and calculating the MPT-Chain’s merkle root in
the block header. The calculation of merkle root will be highlighted in the next section.

When a quorum receives the block by the primary peer, and then verifies the
correctness of the block, including the index root, transactions, block height, merkle
root of MPT-Chain and then vote for the block. If a block can get votes more than half
of the total number of quorum, which is f + 1. Then this block can be written in the
blockchain, the height of blockchain and consensus round increases. Otherwise, con-
sensus round increases.

ECBC: A High Performance Educational Certificate Blockchain 293

Considering that information may be lost in the process of transmission or quorum
failure (such as earthquake and other natural disasters), which will cause messages
cannot be transferred. We set time threshold to prevent such situations. If the waiting
time is more than time threshold and others still does not receive the random number,
block or vote by the quorum, we can come to the conclusion that the quorum cannot
communicate. In order to prevent the infinite wait for random number in the consensus
process, the quorum cannot communicate should be removing from quorums. When
the block and enough votes cannot receive until waiting time is more than time
threshold, the consensus process will be failure.

294 Y. Xu et al.

4.3 Basic Properties of Cooperation Consensus

Given that cooperation consensus is a new blockchain creation rule, it is imperative to
first show that all peers eventually adopt or accept a certain block uniformly. For any
block B, we define CB is the creator of block B. The definition wB is the time of B when
it was first accepted or abandoned. In addition, H wBð Þ is defined as the height of
blockchain when the time is wB.

Proposition 1.1. (The Convergence of History). Pr wB\1ð Þ ¼ 1. In other words,
every block is eventually either fully abandoned or fully adopted.

To prove the proposition, we make use of the following claim.

Claim 1.2. 8ðwBÞ\1. For any block B, wB is always less than infinity.

Proof. It can be seen from the algorithm of Cooperative consensus that the growth
speed of educational certificate block chain is mainly influences by network delay.
Let D be the delay diameter of the network. Assume that block B is either adopted or
abandoned by all peers when time is WB. That is to say, at time WB, block B has votes
which are not more than half of the quorums and a round of cooperation consensus has
not ended. All peers in consensus network will continue to wait until the block receives
votes more than half of the quorums, or the waiting time exceeds the time threshold.
The time threshold is set to eliminate that a round of consensus cannot reach the
termination of the state caused by the network delay.

Proof of Proposition 1.1. If wB ¼ 1 then there are no new blocks added to block-
chain. The probability of this case must be zero. As by Claim 1.2 we know that 8ðwBÞ
is finite.

Proposition 1.3. (Resilience from 50% attacks). The 50% attack here is for the con-
sensus network. If CB is a byzantine peer and block B contains illegal transactions,
When this round of consensus for block B is completed, H wBð Þ is not incremented.
That is, all peers will abandon block B, the 50% attack initiated by the byzantine peer is
a failure.

Proof. In consensus network, the upper bound of the number of byzantine peers is f,
and the total number of peers is 2f + 1. If a byzantine peer becomes the primary peer
construct block B and join all the byzantine peers in the network together to cheat. The
maximum number of votes that block B can get is f, but the block that wants to join
into blockchain must obtain votes at least f + 1. However, for a block that cannot pass
validation, it is not possible to get votes that exceed f + 1. Therefore, we can conclude
that in consensus network, 50% attacks which initiated by the byzantine peer always
fail.

5 MPT-Chain of ECBC

ECBC not only solves the problem of data security and system trust, but also provides
users with efficient query services. With the block height increasing, the number of
transactions is also growing rapidly. The speed of linear query cannot meet user’s

ECBC: A High Performance Educational Certificate Blockchain 295

requirement. This paper proposes a tree structure called MPT-Chain to speed up query,
which combines the features of Patricia tree and merkle tree. MPT-Chain can ensure
the consistency of distributed index and the correctness of query results.

Using Patricia tree as index can quickly locate the user’s query results. And the
update of Patricia tree does not need to spend too much computing resources, just need
to modify the leaf node. Still, if primary peer broadcast index along with the block,
huge data transmission may block the network. If the peers using transactions build
index locally, this may cause the byzantine peer to return the wrong query result.
Traversing data set is an only way to verifying the result.

Merkle tree is used to ensure that the data accepted from others is not corrupt and
replaced, and can check that others do not spoof or publish false data. The merkle proof
it provides is the basis of SPV (simple pay verification) [18], which can support the
validation of the data in the light client. Based on these, this paper combines merkle
tree and Patricia tree, constructs MPT-Chain which makes ECBC can guarantee the
consistency of indexes in the distributed network and the correctness of query results.

5.1 Node Structure of MPT-Chain

MPT-Chain is a tree structure which contains four different types of nodes. The node
structure is shown in Fig. 2. The structure of the root node consists of two parts: branch
pointer and value. Branch pointer stores the pointer point to the branch node. Value
field stores merkle root of the MPT-Chain, which stored in the block header will be
changed when creates a block. The branch node is a list, its length is 17. HolderID in
hexadecimal encoding format is used as search key, so all the branch node has 16 keys
for storing the child pointer. The key in the branch node lists all possibilities of
character, which reduces the trouble of dynamic updates. When search path reaches this
branch node, the index number of the key represents the value of the search code. The
value field of branch node stores merkle root of the merkle tree when taking the branch
node as the root. Starting from the leaf node, calculated layer-by-layer until it reaches
the branch node, stored merkle hash calculated in the value field.

The leaf node is a list that can be dynamically changed in length. It consists of two
parts: tx-pointer and value. The tx-pointer stores the pointer point to the transaction that
can dynamically append when the holderID related transactions are increasing. The leaf

Fig. 2. Node structure of MPT-Chain

296 Y. Xu et al.

node will add a new tx-pointer when a new transaction of the holderID is written into
blockchain. The value field stored in leaf node is a hash that can be calculated by
constructing the merkle tree of the transactions, which is pointed by tx-pointer in the
leaf node. An extended node is an extension of a leaf node. It is used to solve the
problems when a holderID encoding is a prefix for others, extend the leaf node of the
holderID to an extended node in order to extend the encoding. When a leaf node
extends to an extended node, the leaf node needs to be added a field to store the branch
pointer. The value field stored in leaf node is a hash that can be calculated by the hash
of the transaction pointed by tx-pointer and the value of the branch node pointed by
branch pointer.

The value field in the branch node, the leaf node and the extended node is inter-
mediate value of the merkle root. When primary node creates a new block, it needs to
update the MPT-Chain; the update process will require the recalculation of the value
field of the MPT-Chain’s nodes. So the node of MPT-Chain stores intermediate value
of the merkle root, which will be reused when the branch is not updated and can
prevent the waste of computing resources. In addition, it can also shorten the block
creation time.

5.2 The Example of MPT-Chain Structure

Users can query the certificates by holderID, and check the personal information by
decrypting the Receiver-added information to confirm whether the owner of the cer-
tificate is consistent with the person who provides holderID. It is inspired by a
zero-knowledge proof [17]. The requirement of users for the query is different, such as
some users may only need to query a certificate, and some users may query all the
holder’s certificates.

The MPT implemented by the Ethereum is only the latest state query. It cannot
support the history transactions of account. And with the application of blockchain in
many fields, the index structure that can only retrieve the latest state will not meet the
requirement of query and verification. Therefore, this paper proposes a MPT-Chain
based on node structure which is extended from MPT. The leaf node of MPT-Chain
contains multiple tx-points. These pointers will point to all transactions related to
holderID, which constitute the holderID’s transaction chain. Based on above, the tree
structure proposed by this paper calls MPT-Chain.

Table 1. Example of transactions

Transaction 0 1 2 3 4

IssuerID 0001 0231 0032 0671 0001
HolderID 0517 89ca7f 05173 4a22f 0517
IssueData 20130601 20160601 20160601 20160601 20160607
CertTypeID 1 2 1 1 2
OptionTypeID 0 0 0 0 0
MajorID 001 022 402 013 001
Receiver-added Ciphertext Ciphertext Ciphertext Ciphertext Ciphertext

ECBC: A High Performance Educational Certificate Blockchain 297

In ECBC, holderID is an anonymous id that does not map the real world, and
uniquely identifies a certificate holder. This paper builds the MPT-Chain to speed up
query by using holderID as the search key. For ease of understanding, we have listed
five educational certificate transactions that are shown in Table 1 and given the
structure of MPT-Chain in Fig. 3. MPT-Chain stores the pointer of transaction in the
tx-pointer of the leaf nodes. When using holderID to query, MT-Chain reads the
holderID bit by bit and matches holderID starting from the root to the leaf node or the
extended node.

Figure 3 use gray to represent the search path by using holderID in Table 1, and
shows a tx-pointer that points to a transaction in the blockchain. It is assumed that the
transactions in Table 1 exist in the blockchain in a graphical way. According to the data
in Table 1, transaction 0 is a pre-transaction for transaction 4, the logical relationship
can be learned by the structure of the leaf nodes or extended nodes, which is the
difference between the MPT of ethereum. In addition, the latest Merkle root of
MPT-Chain is also stored in the block header of the latest block; this relationship is
expressed in Fig. 3 using dashed lines.

The update of MPT-Chain and the calculation of its Merkle root will affect the
verification time of the block, thus affecting the transaction throughput. So, this paper
chooses Patricia tree to speed up query, because as the data increases, the update of
Patricia tree takes less time. Moreover, the value field of the branch node, the leaf node,
and the extended node in MPT-Chain, which can be re-used in the calculation process,
in order to shorten the block validation time.

When the primary peer starts creating a block, it first determines which transactions
are stored in this block, and then updates the MPT-Chain based on these transactions to
compute merkle root. After that, the primary peer stores merkle root of MPT-Chain in

Fig. 3. MPT-Chain structure

298 Y. Xu et al.

the block header. The primary peer broadcasts the block created to the network, other
peers receive the block and check it. The other peers need to check the correctness of
the transactions contained in the block and the data in the block header, including the
calculation of merkle root for MPT-Chain. Using the transactions contained in the
block to update MPT-Chain stored locally, calculate merkle root, compared it to the
merkle root stored in block that is created by primary peer.

6 Efficiency Analysis and Experimental

This section discusses efficiency from the point of throughput, network delay and
information transmission, and the theoretical analysis is proved by the experimental
results.

The primary measure of ECBC’s scalability is the number of transactions per
second (TPS). The TPS is the rate of growth of the blockchain, multiplied by the size of
blocks, and divided by the average size of a transaction. Thus,

TPS k; bð Þ ¼ k � b � K ð2Þ

ECBC is a chain without fork, so block creation rate is the rate of growth of the
blockchain defined as k, b is the size of blocks and K is the average number of
transactions per KB.

6.1 Delay and the Size of Blocks

As we have already seen, the delay in the network is a highly significant factor that
impacts the rate of creation block. A measurement study which was recently presented
by Decker and Wattenhofer [19] addresses the issue. They have set up a node on the
Bitcoin network that connected to as many accessible nodes as possible. Since each
such node announces new blocks to its neighbours, it is possible to record these events
and estimate the time it takes blocks to propagate.

The experiment of Decker and Wattenhofer depicts this linear effect quite clearly.
The interesting point is that the linear dependence on the block size, which is char-
acteristic of a single link, also holds in aggregate for the entire network [19]. This paper
adopts a linear model of the delay:

D50% bð Þ ¼ Dprop þDbw � b ð3Þ

The time it takes to get to 50% of the network’s peers is quite accurately described
by the best fit of such a linear relation to the data. Notice that Dprop is a measure of
aggregate propagation delay, and Dbw is an aggregate measure in units of seconds per
KB. The fit parameters are: Dprop is 1.8 s, and Dbw is 0.066 s per KB.

Through the above analysis, we can conclude that the growth rate of the chain is
mainly affected by the network delay and the block size. We get k ¼ k D; bð Þ, D is used
to represent the network delay. From the experimental results of Decker and

ECBC: A High Performance Educational Certificate Blockchain 299

Wattenhofer, we find that, in the ideal case, the network delay is proportional to the size
of the transmitted data, that is D ¼ D bð Þ, so we conclude that k ¼ k bð Þ.

In the ECBC, a round of consensus, the three types of information needs to be
transmitted between peers, which include random number, block and vote. The size of
random number and vote is small, the network delay caused by random number and
vote is smaller than block, so we can draw a conclusion that TPS most depends on the
block size.

6.2 Estimate of the Achievable TPS

In ECBC, JSON format is used to build transactions. By testing, the value of K is about
16. The next important thing is that we need to do a measure with network delay and
block size. In ECBC, after a round of consensus, it does not always create block which
can be added to the blockchain. Maybe, this round of the consensus is futile. If a round
of consensus time is too long, but the result is futile. There is no gain for increasing the
throughput, on the other hand, this phenomenon reduces throughput. Therefore, we
make a trade-off between transaction latency and block size. The block size we select is
200 KB, and set the time threshold for the consensus process. Time threshold for the
random number and the vote is 2 s, the block’s time threshold is 20 s.

In theory, the growth rate of the block is about 1/16 block per second when the
network is in good condition, so TPS � 200 if K = 16 and b = 200. This value is the
theoretical estimate by using Decker and Wattenhofer’s experimental data. Moreover,
the experiment in this paper verifies the theoretical data by constructing an actual
network environment. The peers in ECBC need permission to enter and the number of
peers relative to the bitcoin is less than bitcoin which peers from the world and can be
arbitrarily joined.

6.3 Experimental Results

At present, relatively mature blockchain technology has been open source which is
convenience for our work, and we would like to appreciate these generous researchers
and developers. Refer to some of the mature open source code, such as ethereum and
hyperledger [20], some of the blockchain common technology which has been
implemented is also applicable in ECBC. Such as network communication, signature,
encryption and so on. Their contributions help us reduce our workload and speed up
validation of theory this paper proposed.

ECBC learns membership management service module from hyperledger and
achieves a peer who want to join needs to be allowed by network. Block data and
MPT-Chain use levelDB to store, which is an efficient key-value database. This paper
tested with 5, 50, 100, and 200 peers when we examined transaction latency and
throughput of ECBC. In the case of good network conditions, we confirmed our
theoretical analysis through experimental data. Hardware configuration of the peer is
the same. The server is E5620 @ 2.40 GHz, 24 GB of memory, CentOS operating
system, and Gigabit Ethernet directly between the peers.

300 Y. Xu et al.

The experimental data used in this paper is more than 1.6 million transactions from
more than 500 blocks in ECBC. We compare creation time of block and transactions
throughput with Bitcoin, which is significantly better than Bitcoin. Figure 4 shows
transactions throughput, it can reach three hundred per second. Statistics show that the
number of graduates is about 7 million in 2016 China, the throughput of ECBC is able
to meet the requirements of certificates management. Figure 5 indicates creation time
of block. According to the experimental data, we can see that transaction latency is
about 10 s that entities can bear.

Fig. 4. Transaction throughput

Fig. 5. Creation time of block

ECBC: A High Performance Educational Certificate Blockchain 301

It is no doubt that MPT-Chain can speed up the query. But like other indexes,
MPT-Chain also needs extra storage space. But it makes the query more efficient,
which allows us to ignore the storage space occupied. Moreover, the storage resource is
much cheaper than the computing resources. In Sect. 5.2, the MPT-Chain structure can
support the holderID-based transaction query. However, its structure is not only
available for accurate query, but also for range query. For example, select bachelor’s
degree certificates issued by a school. The above example can construct a composite
search code (<IssuerID, CertTypeID>) and establish MPT-Chain based on the com-
posite search code.

Fig. 6. Query time of MPT-Chain (10 transactions)

Fig. 7. Query time of MPT-Chain (100 transactions)

302 Y. Xu et al.

The experiment uses more than 1.6 million transactions to prove the efficiency of
MPT-Chain, not only tests the accurate query efficiency based on holderID, but also
builds multiple composite search keys (e.g. <IssuerID, CertTypeID>) to test the range
query efficiency. Range query can be used for regulatory and statistical data. This paper
uses multiple query statements to count the query time and calculate the average of
query time. Figures 6 and 7 show the accurate query (e.g. select the historical trans-
actions by holderID) and range query time respectively, when the query returns 10
transactions and 100 transactions. According to the experimental data, when using
MPT-Chain as the query index, the query time is a millisecond-level user can tolerate.

MPT-Chain can speed up block validation because it stores intermediate values for
calculating merkle root. The validation process of block needs to verify the correctness
of the merkle root; the intermediate values can be reused. This paper also proves that
MPT-Chain can speed up block validation by experiment; the update speed of
MPT-Chain is faster than MPT. Moreover, when using account model, verification of
the transaction may need to rely on the historical transaction of the account. Mean-
while, the contribution of MPT-Chain to the transaction throughput will become even
greater, because of the high efficiency query of history record.

Through the above experimental results, we believe that the ECBC proposed in this
paper can be applied to educational certificate management as a digital infrastructure. It
not only can meet the requirements of delay and throughput, and supports millisecond
query time for providing more convenient and efficient service. Therefore, we believe
that, ECBC is a quiet useful educational certificate infrastructure, its application for real
life can bring convenience to people’s lives.

7 Conclusions

This paper had proposed an educational certificate blockchain, called ECBC, which can
be used as an educational certificate infrastructure. It is permission chain that realized
data security, system trust and provides management and query service for educational
certificate. ECBC has a high throughput and low latency that can meet the needs of
educational certificate management in real-world and has designed transaction format
to protect personal privacy. The query index is called MPT-CHAIN, which can support
high efficiency query, speed up block verification, and takes short time to update. We
had proved our theoretical analysis and the feasibility of ECBC by using experimental
data. In conclusion, it is believed ECBC proposed in this paper is a practical blockchain
application which can be used as digital infrastructure to manage educational certifi-
cates and provide better service for user. Of course, our theory can not only be applied
to the educational certificate. It can be applied to more fields, for example, proof of
identity, proof of professional qualifications. The more areas to provide services are
also what we are expanding.

Acknowledgment. This work is partially supported by National Key Research and Develop-
ment Plan No. 2016YFB1000602, the Science and Technology Development Plan Project of
Shandong Province No. 2016GGX101034, TaiShan Industrial Experts Programme of Shandong
Province No. tscy20160404.

ECBC: A High Performance Educational Certificate Blockchain 303

References

1. MIT Media Lab, educational certificates. http://certificates.media.mit.edu/
2. China Higher Educational Student Information Network (XueXinwang). http://www.chsi.

com.cn/
3. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted (2009)
4. Bitcoin wiki. Scalability (2015). https://en.bitcoin.it/wiki/Scalability
5. Eyal, I., Gencer, A.E., Sirer, E.G, Renesse, R.V.: Bitcoin-NG: a scalable blockchain protocol

(2015). http://arxiv.org/abs/1510.02037
6. Luu, L., Narayanan, V., Baweja, K., Zheng, C., Gilbert, S., Saxena, P.: SCP: a

computationally-scalable Byzantine consensus protocol for blockchains. Cryptology ePrint
Archive, Report 2015/1168

7. Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: using blockchain to protect
personal data. In: Security and Privacy Workshops, pp. 180–184. IEEE (2015)

8. Ethereum Project. https://www.ethereum.org/
9. Ethereum MPT. https://github.com/ethereum/wiki/wiki/Patricia-Tree
10. Jiang, J.: Implementing the PATRICIA data structure for compression algorithms with finite

size dictionaries. In: International Conference on Data Transmission - Advances in Modem
and Isdn Technology and Applications, pp. 123–127. IEEE Xplore (1992)

11. Dan, W., Sirer, E.G.: Optimal parameter selection for efficient memory integrity verification
using Merkle hash trees. In: IEEE International Symposium on Network Computing and
Applications, pp. 383–388 (2004)

12. Jakobsson, M., Leighton, T., Micali, S., Szydlo, M.: Fractal Merkle tree representation and
traversal. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 314–326. Springer,
Heidelberg (2003). doi:10.1007/3-540-36563-X_21

13. Sompolinsky, Y., Zohar, A.: Accelerating Bitcoin’s transaction processing. Fast money
grows on trees, not chains. In: Financial Cryptography, Puerto Rico (2015)

14. Thoughts on UTXOs by Vitalik Buterin, Co-Founder of Ethereum. https://medium.com/
@ConsenSys/thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53

15. Open Badges Specification. https://openbadges.org/
16. Yves-Alexandre, D.M., Erez, S., Samuel, S.W., Alex, S.P.: openPDS: protecting the privacy

of metadata through safeanswers. PLoS ONE 9(7), e98790 (2014)
17. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen

ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1_35

18. Gervais, A., Capkun, S., Karame, G.O., et al.: On the privacy provisions of Bloom filters in
lightweight bitcoin clients. In: ACM Computer Security Applications Conference, pp. 326–
335. ACM (2014)

19. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In: 13th IEEE
International Conference on Peer-to-Peer Computing (P2P), Trento, Italy, September 2013

20. IBM Hyperledger Project. https://www.hyperledger.org/

304 Y. Xu et al.

http://certificates.media.mit.edu/
http://www.chsi.com.cn/
http://www.chsi.com.cn/
https://en.bitcoin.it/wiki/Scalability
http://arxiv.org/abs/1510.02037
https://www.ethereum.org/
https://github.com/ethereum/wiki/wiki/Patricia-Tree
http://dx.doi.org/10.1007/3-540-36563-X_21
https://medium.com/%40ConsenSys/thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53
https://medium.com/%40ConsenSys/thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53
https://openbadges.org/
http://dx.doi.org/10.1007/3-540-46766-1_35
https://www.hyperledger.org/

Author Index

Bagga, Divyanshu 51
Bubel, Richard 269
Butler, Michael 100

Demaille, Akim 155
Dghaym, Dana 100
Di Pierro, Alessandra 70
Do, Quoc Huy 269

Felgenhauer, Bertram 213

Hähnle, Reiner 269
Hennicker, Rolf 13
Hoang, Thai Son 100

Jensen, Peter Gjøl 248

Kong, Lanju 288
König, Jürgen 118
Kritsimallis, Agathoklis 229
Kubo, Keisuke 136
Kumar, S. Arun 51

Larsen, Kim Guldstrand 248
Li, Qingzhong 288

Madeira, Alexandre 13
Malik, Saleem 174
Marmsoler, Diego 79
Michaud, Thibaud 155

Middeldorp, Aart 213
Midya, Abhisek 174

Nomura, Akira 136

Ogata, Kazuhiro 3

Pani, Alok Kumar 174

Riesco, Adrián 3

Sharma, Arpit 192
Snook, Colin 100
Srba, Jiří 248

Thomas, D.G. 174

Umeo, Hiroshi 136
Uustalu, Tarmo 32

Veltri, Niccolò 32

Wehrheim, Heike 118

Xu, Yuqin 288

Zhang, Shidong 288
Zhao, Shangli 288
Zheng, Yongqing 288

	Preface
	Organization
	Abstract of Invited Talks
	From Hoare Logic to Owicki-Gries and Rely-Guarantee for Interruptible eChronos and Multicore seL4 (Extended Abstract)
	Tweaking the Odds: Parameter Synthesis in Markov Models (Abstract)
	Directions to and for Verified Software
	Contents
	Logics
	A Formal Proof Generator from Semi-formal Proof Documents
	1 Introduction
	2 Proof Score Approach to Systems Verification
	3 Achilles' Heel and a Possible Remedy
	4 The CafeInMaude Proof Assistant
	5 The CafeInMaude Proof Generator
	6 Related Work
	7 Concluding Remarks and Ongoing Work
	References

	Institutions for Behavioural Dynamic Logic with Binders
	1 Introduction
	1.1 Motivation
	1.2 Overview of the Proposal

	2 Dynamic Logics with Binders
	2.1 D"3223379 -Logic
	2.2 D"3223379 -Logic

	3 Behavioural Institution
	4 Black-Box Functor
	5 Institution of Crucial Actions
	6 Conclusion and Future Work
	References

	The Delay Monad and Restriction Categories
	1 Introduction
	2 -Complete Pointed Classifying Monads
	2.1 Classifying Monads
	2.2 -Joins
	2.3 Uniform Iteration

	3 The Delay Monad
	4 The Quotiented Delay Monad
	5 A Different Monad Structure on D
	6 D Is the Initial -Complete Pointed Classifying Monad
	6.1 D Delivers Free cppos
	6.2 -Complete Pointed Classifying Monad Structure on D and Initiality

	7 Other Monads of Non-termination
	7.1 A Non-example: Maybe Monad
	7.2 Conditional Monad
	7.3 Countable Powerset Monad
	7.4 State Monad Transformer

	8 Conclusions
	References

	Logical Characterisation of Parameterised Bisimulations
	1 Introduction
	2 Background
	2.1 Parameterised Bisimulations

	3 Parameterised Hennessy-Milner Logic
	3.1 Image-Finiteness
	3.2 Testing Preorders Logically

	4 Extending Parameterised HML with Fixed Point Operators
	4.1 Preservation Under Bisimulations
	4.2 Characteristic Formula

	5 Applications
	6 Conclusion and Future Work
	References

	A Probabilistic Semantics for the Pure -Calculus
	1 Introduction
	2 Domain Equation
	2.1 The Hilbert Space 2
	2.2 The Probabilistic Domain D
	2.3 Semantic Equations

	3 Related and Future Work
	References

	Software Components and Concurrency
	Towards a Calculus for Dynamic Architectures
	1 Introduction
	2 A Model of Dynamic Architectures
	2.1 Foundations: Ports, Valuations, and Components
	2.2 Modeling Component Behavior
	2.3 Modeling Dynamic Architectures
	2.4 From Configuration Traces to Behavior Traces

	3 Specifying Component Behavior
	3.1 Behavior Trace Assertions
	3.2 Semantics: Behavior Traces
	3.3 Semantics: Configuration Traces

	4 A Calculus for Dynamic Architectures
	4.1 Introduction Rules
	4.2 Elimination Rules
	4.3 Soundness and Completeness

	5 Verifying Properties of Dynamic Architectures
	5.1 Dynamic Blackboard Architectures: Specification
	5.2 Dynamic Blackboard Architectures: Verification

	6 Related Work
	7 Conclusion
	References

	Class-Diagrams for Abstract Data Types
	1 Introduction
	2 Background
	2.1 Event-B
	2.2 iUML-B
	2.3 Theory Plug-In

	3 Class-Diagrams for Abstract Data Types
	4 Example. An Interlocking System
	4.1 Requirements
	4.2 Development

	5 Summary
	6 Conclusion
	References

	Value-Based or Conflict-Based? Opacity Definitions for STMs
	1 Introduction
	2 Notation
	3 Value and Conflict Opacity
	4 Constraint Opacity
	5 Checking for Constraint Opacity with Z3
	6 Related Work and Conclusion
	References

	Smaller-State Implementations of 2D FSSP Algorithms
	1 Introduction
	2 Firing Squad Synchronization Problem
	2.1 FSSP on 2D Cellular Arrays
	2.2 Lower-Bound and Optimality in 2D FSSP Algorithms

	3 Beyer-Shinahr Algorithm
	4 Smaller-State Zebra Implementations
	4.1 Zebra Mapping on Square Arrays
	4.2 Zebra Mapping on Rectangular Arrays

	5 Summary
	References

	Automata
	Derived-Term Automata of Weighted Rational Expressions with Quotient Operators
	1 Introduction
	2 Notations
	2.1 Rational Series
	2.2 Extended Weighted Rational Expressions
	2.3 Rational Polynomials
	2.4 Weighted Automata

	3 Rational Expansions
	3.1 Rational Expansions
	3.2 Expansion of a Rational Expression

	4 Expansion-Based Derived-Term Automaton
	5 Transposition and Right Quotient
	6 Related Work
	7 Conclusion
	A Proofs
	A.1 Proof of Proposition1
	A.2 Proof of Lemma1
	A.3 Proof of Lemma2
	A.4 Proof of Proposition6
	A.5 Proof of Theorem1
	A.6 Proof of Theorem2
	A.7 Proof of Proposition8

	References

	Polynomial Time Learner for Inferring Subclasses of Internal Contextual Grammars with Local Maximum Selectors
	1 Introduction
	2 Basic Classes of Contextual Languages
	3 Subclasses of the Class of Internal Contextual Grammars with Local Maximum Selectors
	4 Power of the Subclasses
	5 Identification of Subclasses of Internal Contextual Languages with Local Maximum Selectors and Correctness
	6 Pseudocode of Our Algorithm
	6.1 Finding Axiom - Pseudocode-Step: 1
	6.2 Defining Insertion Rule and Converting It into Contextual Rule - Pseudocode-Steps: 2, 7, 8
	6.3 Making Correction and Updating Rules - Pseudocode-Steps: 9--15

	7 Controlling over Generalization - Pseudocode-Steps: 16--20
	7.1 Finding Maximal Use of Selectors - Step 21

	8 Characteristic Sample
	9 Time Complexity of Our Algorithm
	10 Example Run
	References

	Trace Relations and Logical Preservation for Continuous-Time Markov Decision Processes
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Schedulers

	3 Trace Equivalence Relations
	3.1 Relationship Between Trace Equivalence and Bisimulation
	3.2 Relationship Between Trace Equivalences

	4 Deterministic Timed Automaton
	5 Metric Temporal Logic
	6 Conclusions
	References

	SMT Solvers and Algorithms
	Constructing Cycles in the Simplex Method for DPLL(T)
	1 Introduction
	2 DPLL(T) Simplex Algorithm
	3 Two Cycles
	4 Constructing Cycles Using Linear Real Arithmetic
	5 Constructing Cycles Using Nonlinear Real Arithmetic
	5.1 DPLL(T) Simplex
	5.2 Standard Simplex

	6 Related Work
	7 Conclusion
	References

	Tableaux with Partial Caching for Hybrid PDL with Satisfaction Statements
	1 Introduction
	2 Preliminaries
	3 The Tableau-Based Satisfiability Algorithm
	3.1 Basic Definitions
	3.2 Tableau Construction

	4 Conclusions and Further Work
	References

	PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing
	1 Introduction
	2 Definition of PTrie
	3 Operations on PTrie
	3.1 Member Algorithm
	3.2 Insert Algorithm
	3.3 Delete Algorithm

	4 Implementation
	5 Experimental Evaluation
	5.1 Simulated Workload
	5.2 Real Workload by Petri Net Model Checking

	6 Conclusion
	References

	Security
	Inferring Secrets by Guided Experiments
	1 Introduction
	2 Background
	2.1 Characterization of Insecurity Using Symbolic Execution
	2.2 Quantitative Information Flow Analysis

	3 Automatic Inference of a Program's Secrets
	3.1 Attacker Model and Overview
	3.2 Knowledge Representation of High Input
	3.3 Algorithm for Inferring High Input

	4 Finding Optimal Low Input
	4.1 Risky Paths and Reachable Paths
	4.2 Quantifying Leakage by Symbolic Execution
	4.3 Method findLowInput
	4.4 Choosing a Suitable Security Metric

	5 Implementation and Experiments
	5.1 Implementation
	5.2 Experiments

	6 Related Work
	7 Conclusion and Future Work
	References

	ECBC: A High Performance Educational Certificate Blockchain with Efficient Query
	Abstract
	1 Introduction
	2 Related Works
	3 ECBC Architecture
	4 Consensus Mechanism of ECBC
	4.1 Dynamic Quorums
	4.2 Cooperation Consensus Algorithm
	4.3 Basic Properties of Cooperation Consensus

	5 MPT-Chain of ECBC
	5.1 Node Structure of MPT-Chain
	5.2 The Example of MPT-Chain Structure

	6 Efficiency Analysis and Experimental
	6.1 Delay and the Size of Blocks
	6.2 Estimate of the Achievable TPS
	6.3 Experimental Results

	7 Conclusions
	Acknowledgment
	References

	Author Index

