
The Panta Rhei: Modernizing the Marquee

Megan Monroe(&) and Mauro Martino

IBM Research, Boston, MA, USA
madey.j@gmail.com

Abstract. Many multimedia visualizations abstract the underlying content into
aggregate displays, requiring user interaction in order to expose the original text,
images or video. The drawback of this approach is that unlike traditional,
numerical data, multimedia data is readily interpretable. Users can catch an
image or phrase out of the corner of their eye an immediately understand the
content. However, this passive discovery cannot take place when content is only
exposed through direct interaction. In this paper, we present the Panta Rhei, a
peripheral display designed to avoid this pitfall by surfacing original content
when the user is not actively engaged with the application. We provide the full
implementation details, including the many ways in which the underlying
parameters can be tuned to suit various objectives. Since the display can easily
support text, images or videos, our goal is to enable more widespread discussion
and experimentation involving this technique for multimedia visualization.

Keywords: Visualization � Animation � Passive � Engagement-versatile

1 Introduction

This work began as a larger project to visualize the news in real time. The goal was for
users to understand which events were trending, who was involved, and which stories
were sneaking under the radar. Accordingly, a number of visualization strategies were
employed to extract and link entities [8], to identify keywords and concepts [13, 14],
and to gauge sentiment [6]. However, there were two critical drawbacks to these
aggregate displays:

1. Without interaction, the display remained relatively unchanged until the next big
news story broke.

2. Without interaction, and with limited screen space, only one article was being
displayed in detail at any given time.

In this paper we present the Panta Rhei (Greek for “everything flows”), a
web-based animation that scrolls article titles across the browser window as an infinite,
mesmerizing stream. The Panta Rhei is triggered when there has been no interaction for
a set period of time. It demands no active attention or interaction, and yet was sur-
prisingly adept at triggering serendipitous discovery from the periphery during its
initial deployment [9].

The contribution of this paper is primarily technical. We detail the Panta Rhei’s
scrolling mechanism, which allows developers to feed in customized content without

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
R. Bernhaupt et al. (Eds.): INTERACT 2017, Part III, LNCS 10515, pp. 366–373, 2017.
DOI: 10.1007/978-3-319-67687-6_24



substantial code modifications. We test and report on the small number of underlying
parameters that can be tuned to achieve a wide array of functional and aesthetic
objectives, including piquing the user’s attention when the display is receiving only
peripheral attention.

2 Background

Many text and multimedia visualizations dedicate the majority of screen space to
computed abstractions of the underlying content [1, 3, 7]. Even so, the seeming con-
sensus is that the original content must be accessible to prevent misinterpretation [15].
This is typically accomplished through active interaction [10]. This work explores the
other side of this equation, mapping the exposure of original content to physical time
when interaction is not taking place or has become undirected.

The Panta Rhei is intended to serve as a periphery-passive or focus-passive display
in an engagement-versatile application. However, unlike Tanahashi’s Stock Lamp [12],
the Panta Rhei displays unabstracted content. When a particular image or phrase cat-
ches the user’s eye, they are seeing the actual thing that is interesting, not an abstracted
aggregate. The Panta Rhei is also unique in that it is designed to be reusable. It is
structured to allow developers to flexibly feed in any combination of text, images, and
videos. The display can simply be plugged into existing applications to make them
more engagement-versatile. Though its design adheres closely to related work
involving ambient displays [5, 11], the aesthetic details are beyond the scope of this
paper.

3 Implementation

The Panta Rhei modernizes the classic news ticker marquee with inspiration from
Steven Fortune’s sweepline algorithm [4]. The web-based implementation scrolls a
tightly-packed grid of heterogenous content across the browser window (or a specified
<div> of the browser window). Each item of content, referred to as a “tick”, is

Fig. 1. The beachLine sits just offscreen (note that the dotted line represents the end of the
screen) and works to ensure a steady stream of content. (1) Content scrolls steadily onto the
screen, moving from right to left (2) when a tick has scrolled fully onto the screen, the beachLine
is notified to backfill the empty space (3) a new tick is added to the beachLine, which is adjusted
by the width of that tick.

The Panta Rhei: Modernizing the Marquee 367



contained in a <div> and can thus be comprised of any web element (image, video,
text). This paper will focus on text, and consequently, a right-to-left scrolling such that
the beginning of the text leads onto the screen. The display is powered by a data
structure called the beachLine, a set of points that descends vertically from the top of
the screen to the bottom. Each of these points keeps track of a tick that is currently in
the process of scrolling onto the screen. Conceptually, the beachLine sits just out of
view, beyond the rightmost edge of the screen, and is updated every time a tick scrolls
fully into view (see Fig. 1).

New ticks are added to the display in a just-in-time fashion. That is, ticks are
created such that their leftmost edge is flush against the rightmost edge of the screen
and they immediately begin their scroll across the display. When a tick is created, it is
armed with two future actions. First, the tick will notify the beachLine when it has
scrolled fully onto the screen. This is the beachLine’s cue to backfill the space that the
tick is leaving in its wake. Second, the tick is set to remove itself from the page entirely
once its rightmost edge has scrolled beyond the left side of the screen. This prevents the
visualization from queuing up undue memory usage. These three stages of a tick’s
lifecycle are depicted in Fig. 2.

3.1 Updating the beachLine

The beachLine is comprised of a set of points that descend vertically down the screen,
each consisting of an x-coordinate, a y-coordinate, and the id of the tick that generated
it. However, as it is shown in Fig. 1, it is easier to think of the beachLine as a series of
vertical facings against which new content can be aligned. These facings can simply be
extrapolated from the points.

When a newly created tick has scrolled fully onto the screen, it notifies the
beachLine by submitting its y-coordinate (i.e. its vertical position on the screen). This
initiates a two-phase process in which the beachLine first locates and determines the

Fig. 2. (1) A new tick is created with its leftmost edge flush against the rightmost edge of the
screen (2) once the tick has scrolled fully onto the screen it notifies the beachLine to add new
content (3) when the tick has scrolled fully beyond the leftmost edge of the screen it removes
itself from the page entirely.

368 M. Monroe and M. Martino



height of the facing on which that y-coordinate falls. This height is served to the
developer, who in turn supplies any <div>, or tick, that does not exceed the allotted
height. Thus, developers can employ a variety of content and layout strategies by
customizing only a single function, getNewTick(), which is shown in Fig. 4. They can
return a tick that exactly fits the space. They can return a smaller, vertically centered
tick. They can add multiple ticks. Or no ticks at all.

The new content, consisting of zero or more ticks, is then is fed back to the
beachLine to be incorporated into its point system. This is done by increasing the
x-coordinates of the beachLine points by the width of the new ticks, and adding points
as necessary. The four possible reconfigurations of the beachLine that can result from
adding a new tick are shown in Fig. 3. What is critical to note about these updates is
that, while the y-coordinates of each beachLine point represents a true y-position on the
screen, the x-coordinates continue to increase monotonically as new ticks are added to
the beachLine. Thus, the x-coordinate of a beachLine point represents only its relative
x-position compared to the other points on the beachLine. Each new tick is also added
to a pool of activeTicks, which indicates that the beachLine is expecting to eventually
receive its backfill request. Ticks are removed from the pool as these requests are
received.

3.2 Maintaining the beachLine

The continual updating of the beachLine eventually results in an extremely ragged
edge, with vertical facings too short for the intended content. To account for this, two
operations are performed on the beachLine each time a backfill/update call is made.

Shoring the beachLine: As discussed in the previous section, developers do not need
to fully fill an open facing when it becomes available. However, the space that is not
filled (now its own facing) becomes an empty section of the screen without an active
backfill timer. If left unchecked, these unused facings slowly consume the entire screen.

Because the x-coordinates of the beachLine points are relative, we do not know the
absolute position of the beachLine at all times. However, we can infer it momentarily
when a backfill request is initiated because such a request means that the rightmost
edge of a tick, and thus its corresponding beachLine facing, is flush with the rightmost
edge of the screen (see Stage 2 of a tick’s lifecycle in Fig. 2). By obtaining the
x-coordinate of this beachLine point, we can infer which sections of the screen have
gone unfilled because their x-coordinates will be lower, meaning that these facings

Fig. 3. Given a vertical facing on the beachLine, which is defined by two consecutive points
(left), a new tick can be added in any of the four ways shown on the right.

The Panta Rhei: Modernizing the Marquee 369



have already scrolled onscreen. Thus, when a backfill request is received, these empty
facings can be reclaimed by pushing their x-coordinates up to match facing being
backfilled, a process referred to as “shoring” the beachLine.

Cleaning the beachLine: Once the beachLine has been shored, adjacent sections can
be merged together to form larger facings, a process referred to as “cleaning” the
beachLine. This process is dictated by a single parameter that tells the beachLine how
close the x-coordinates of adjacent facings must be in order to be merged, which can be
tuned to produce larger or smaller facings. When two facings are merged, the new
facing assumes the larger of the two x-coordinates, which prevents ticks from over-
lapping, and the tick id associated with lower x-coordinate is removed from the acti-
veTicks pool in order to prevent a duplicate backfill. Shored facings will always be
merged when they are adjacent to the facing that generated the backfill request, since
their x-coordinates will be equal. Thus, the core Panta Rhei algorithm is a
self-perpetuating process of updating, shoring, and cleaning the beachLine. The
pseudocode for this entire process is presented in Fig. 4.

4 Extensions and Control

While the process of updating, shoring, and cleaning the beachLine provides the core
Panta Rhei functionality, there are some additional details and features of the imple-
mentation that allow developers to better control the display. While this list is not
meant to be exhaustive, much of the Panta Rhei’s additional functionality (precision
tick slotting, handling screen resizing) is derived from either a slight modification to or
a combination of the following strategies.

Override Backfills: For a number of reasons, it is necessary to backfill a section of the
screen even if there is no corresponding entry in the activeTicks pool. This can be done
by incorporating an “override” id into the checkActiveTicks() function that will always
allow the backfillTick() function to proceed. In particular, this tactic is used to initialize
the display.

Pausing and Restarting: Pausing the Panta Rhei’s scrolling is accomplished with two
actions. First, the activeTicks pool is emptied, ensuring that no new content will be
added to the display when the backfill timers fire. Second, the animation assigned to
each tick is halted and removed. Restarting the display then, requires an analogous
process. First, every tick on the screen is reissued an animation that will complete its
scrolling and remove it from the display. Second, any tick that is intersecting the
rightmost edge of the display is reissued a backfill timer that will go off when the
remainder of the tick has scrolled onto the screen.

Splitting the Stream: This feature was originally requested so that news headlines
pertaining to multiple entities could be compared. Splitting the stream is accomplished
by adding points of the form {x: -1, y: y-positionOfSplit, id: “split”\}
to the beachLine. A “split” point acts like a pillar, shoved into a riverbed - content is
forced to flow around it. The shoring and cleaning functions are updated to skip over any
beachLine points with the “split” id and, similarly, the getFacing() function returns a

370 M. Monroe and M. Martino



facing of 0 height if its parameter lands on a “split” facing. To remove a split, the id of
the corresponding beachLine point needs only to be set to null. The negative x-value
then ensures that the facing will be reclaimed during the next beachLine shoring.

Fig. 4. The self-perpetuating backfillTick() function drives the display using the beachLine and
the activeTicks pool.

The Panta Rhei: Modernizing the Marquee 371



Discovery: Our goal was for the Panta Rhei to function in the periphery, enabling
serendipitous discovery without requiring interaction. This is accomplished with a
patiently-paced animation, a non-intrusive color scheme, and a visual randomness to
how the content is packed into the stream. However, the display can also demand the
user’s attention more actively when necessary. A particular headline, displayed in a
unique color, in isolation, or in a rigid grid that defies the typical heterogeneity of the
display all succeeded in our initial testing at piquing the user’s attention even when
they are not paying direct attention to the display. These three tactics are shown in
Fig. 5.

5 Conclusion

The Panta Rhei is a reusable, peripheral display that surfaces original content com-
prised of text, images, or any other element that can be placed within a web-based
<div>. It’s initial deployment within a corporate communications team, tasked with
tracking online media, yielded a surprising array of immediate and actionable insights.
“Most of our tools don’t bring light to a story until it is trending, so since [this article]
was not trending yet we had not noticed it on any other tool in the room,” a team
member reported of one particular instance when she spotted a headline in which the
purchase price of a recent acquisition had been misprinted. The responsible publication
was immediately contacted to have the misprint corrected. Going forward, the Panta
Rhei will be subjected to more formal testing in order to quantify its ability to generate
such insights with more empirical rigor.

References

1. Collins, C., Carpendale, S., Penn, G.: Docuburst: visualizing document content using
language structure. In: Proceedings of the Eurographics/IEEE-VGTC Symposium on
Visualization (EuroVis), vol. 28, no. 3, pp. 1039–1046 (2009)

2. D3.js - Data Driven Documents. http://d3js.org/. Accessed 23 Mar 2016
3. Eler, D.M., Nakazaki, M.Y., Paulovich, F.V., Santos, D.P., Andery, G.F., Oliveira, M.C.F.,

Neto, J.B., Minghim, R.: Visual analysis of image collections. Vis. Comput. 25(10), 923–
937 (2009)

4. Fortune, S.: A sweepline algorithm for voronoi diagrams. In: Proceedings of the
Second ACM Symposium on Computational Geometry, pp. 313–322 (1986)

Fig. 5. The Panta Rhei can draw attention to a particular tick using color (top), uniformity
(middle), or isolation (bottom). (Color figure online)

372 M. Monroe and M. Martino

http://d3js.org/


5. Jafarinaimi, N., Forlizzi, J., Hurst, A., Zimmerman, J.: Breakaway: an ambient display
designed to change human behavior. In: CHI EA ’05 CHI ’05 Extended Abstracts on Human
Factors in Computing Systems, pp. 1945–1948 (2005)

6. Pang, B., Lee, L.: Opinionmining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2),
1–135 (2008)

7. Rao, D., McNamee, P., Dredze, M.: Newslab: exploratory broadcast news video analysis. In:
IEEE Symposium on Visual Analytics Science and Technology, pp. 123–130 (2007)

8. Rao, D., McNamee, P., Dredze, M.: Entity linking: finding extracted entities in a knowledge
base. In: Poibeau, T., Saggion, H., Piskorski, J., Yangarber, R. (eds.) Multi-source,
Multilingual Information Extraction and Summarization. Theory and Applications of Natural
Language Processing, pp. 93–115. Springer, Heidelberg (2012). doi:10.1007/978-3-642-
28569-1_5

9. Rosenman, M.F.: Serendipity and scientific discovery. J. Creative Behav. 22, 132–138
(1988)

10. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: IEEE Symposium on Visual Languages, pp. 336–343 (1996)

11. Skog, T., Ljungblad, S., Holmquist, L.E.: Between aesthetics and utility: designing ambient
information visualizations. In: Proceedings of the 9th Annual IEEE Conference on
Information Visualization, INFOVIS 2003, pp. 233–240 (2003)

12. Tanahashi, Y., Ma, K.L.: Stock lamp: an engagement-versatile visualization design. In:
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, CHI 2015, pp. 595–604 (2015)

13. Viégas, F.B., Wattenberg, M., Feinberg, J.: Tag clouds and the case for vernacular
visualization. In: ACM Interactions, vol. XV, no. 4, July/August (2008)

14. Viégas, F.B., Wattenberg, M., Feinberg, J.: Participatory visualization with wordle. IEEE
Trans. Vis. Comput. Graph. 15(6), 1137–1144 (2009)

15. Yatani, K., Novati, M., Trusty, A., Truong, K.N.: Review spotlight: a user interface for
summarizing user-generated reviews using adjective-noun word pairs. In: CHI 2011
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 1541–1550 (2011)

The Panta Rhei: Modernizing the Marquee 373

http://dx.doi.org/10.1007/978-3-642-28569-1_5
http://dx.doi.org/10.1007/978-3-642-28569-1_5

	The Panta Rhei: Modernizing the Marquee
	Abstract
	1 Introduction
	2 Background
	3 Implementation
	3.1 Updating the beachLine
	3.2 Maintaining the beachLine

	4 Extensions and Control
	5 Conclusion
	References


