
Chapter 6
Implementation Aspects

In this chapter we briefly outline some of the implementation aspects of DGFEMs
posed on general computational meshes consisting of polytopic elements. To this
end, we focus on three key topics: mesh generation, construction of the elemental
polynomial basis, and efficient numerical integration over polytopic elements.
Finally, we end this chapter by presenting some numerical examples to highlight the
sharpness of the a priori error bounds derived in Chap. 5 for both a steady advection-
diffusion-reaction problem and a (degenerate) evolution problem.

6.1 Mesh Generation

General meshes consisting of polytopic elements can be constructed in a number
of different ways; in particular, a Voronoi tessellation of the underlying geometry
may be generated, cf. [88, 165], for example. Alternatively, a flexible approach
for meshing complicated geometries, is to exploit some form of agglomeration
algorithm, whereby the underlying polytopic elements are formed by taking the
union of a set of elements from a given geometry-conforming fine mesh T fine

h .
We point out that T fine

h is typically constructed by employing standard shaped
elements, i.e., simplices or tensor-product elements; in this setting, the resulting
underlying FEM is often referred to as a composite FEM, cf. [8, 12, 106, 107], or an
agglomerated FEM, cf. [32, 34]. The construction of agglomerated meshes may be
undertaken using two key approaches: firstly, in the series of articles [8, 12, 106, 107]
a hierarchy of overlapping (so-called) reference and logical meshes, consisting of
standard-shaped elements, are constructed based on successive adaptive refinement
of elements which intersect the boundary @˝ of the computational domain ˝ . Once
a sufficiently fine logical mesh has been constructed, possibly by moving nodes
onto @˝ , a sequence of coarse geometry-conforming physical meshes, consisting
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88 6 Implementation Aspects

of general polytopic elements, may be constructed via agglomerating elements
which share the same parent within the underlying refinement tree. Secondly, the
fine mesh T fine

h may be constructed using a standard mesh generator, for example,
Triangle [157] or Tetgen [158], and then subsequently agglomerated into polytopes
using graph partitioning algorithms; for this purpose, in the numerical investigations
presented in this volume, we employMETIS [130], thoughwe stress that many other
such packages also exist.

6.2 Construction of Basis Functions on Polytopes

In the case when the computational mesh Th consists of standard element shapes,
the construction of the underlying finite element space Vp.Th/ is typically under-
taken by mapping each element � in Th to a given reference or canonical element,
denoted by �R. Thereby, on �R local spaces of polynomials may be constructed
in a simple manner, subject to the enforcement of any inter-element continuity
constraints, for example, in the case when C0-conforming elements are employed;
for further details, we refer to, for example, [78, 129, 160], and the references
cited therein. While this approach is used quite universally within most FEM
software packages, a disadvantage is that the calculation of high-order derivatives
of the computed numerical solution is rather cumbersome when non-affine element
mappings are employed. Moreover, in this setting, the order of approximation of the
underlying FEM may be adversely affected by mesh distortion, unless a sufficiently
rich local space is employed, cf. [17, 19].

The flexibility of the DGFEM allows for the elemental basis to be constructed
within the physical frame, without the need to map to a given reference/canonical
element, cf. [33], for example; indeed, this is an essential feature of DGFEMs
which allows them to admit general polytopic elements in a simple fashion. In
[33] basis functions are constructed on general meshes consisting of agglomerated
elements, based on employing a Gram-Schmidt orthogonalization process applied
to a given set of polynomial functions defined on each �, � 2 Th. An alternative
approach proposed in [54] is based on first defining polynomial spaces over a
suitably chosen bounding box of each element �, � 2 Th; then the element basis is
simply constructed by restricting this space to �. More precisely, given an element
� 2 Th, we write B� to denote its corresponding bounding box; selecting, for
example, B� to be the Cartesian bounding box, i.e., the sides of B� are aligned
with the Cartesian axes, then B� can be easily constructed, such that N� � NB� ,
cf. Figure 6.1 for the case of a polygonal element � in R

2. On this Cartesian
bounding box B� we may define a standard polynomial space Pp� .B�/ spanned by
a set of basis functions f�i;�g, i D 1; : : : ; dim.Pp� .B�//; note that tensor-product
polynomial spaces Qp� .B�/ may also be employed, though in the absence of non-
affine element mappings, the approximation order of both spaces will be identical.
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Fig. 6.1 Bounding box B� of
an element � 2 Th

κ

Bκ

Writing B� WD I1 �I2 �� � ��Id, whereIj WD .x j
1; x

j
2/, j D 1; : : : ; d, and selecting

�R WD .�1; 1/d to be the reference hypercube, the bounding box B� may be affinely
mapped to �R, via the mapping

x D J� Ox C c; (6.1)

where J� WD diag.h1; : : : ; hd/, c WD .m1; : : : ;md/
>, and Ox is a general point in �R.

Furthermore, hj, j D 1; : : : ; d, is half of the length of the jth-side of B� , respectively,
i.e., hj WD .x j

2 � x j
1/=2, j D 1; : : : ; d, and mj WD .x j

1 C x j
2/=2, j D 1; : : : ; d, is the

midpoint of Ij.
For convenience, on �R we employ tensor-product Legendre polynomials; to

this end, writing f OLi.Ox/g1
iD0 to denote the family of L2.�1; 1/-orthogonal Legendre

polynomials, cf. [156], for example, the space of polynomials Pp� .�R/ of total
degree pk over �R is given by

Pp� .�R/ WD spanf O�i;�gdim.Pp� .�R//

iD1 ;

where

O�i;�.Ox/ D OLi1 .Ox1/ OLi2 .Ox2/ � � � OLid .Oxd/; i1 C i2 C : : : C id � p�; ik � 0; k D 1; : : : ; d;

and Ox D .Ox1; Ox2; : : : ; Oxd/. Writing Li.x/ D OLi..x � mj/=hj/; under the transforma-
tion (6.1), the space of polynomials Pp� .B�/ of total degree pk over B� is given
by

Pp� .B�/ D spanf�i;�gdim.Pp� .B�//

iD1 ;

where

�i;�.x/ D Li1 .x1/Li2 .x2/ � � �Lid .xd/; i1 C i2 C : : : C id � p�; ik � 0; k D 1; : : : ; d;

and x D .x1; x2; : : : ; xd/. Thereby, the polynomial basis over the general polytopic
element � may be defined by simply restricting the support of f�i;�g, i D
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1; : : : ; dim.Pp� .B�// to �; i.e., the polynomial basis defined over � is given by
f�i;� j�g, i D 1; : : : ; dim.Pp� .B�//.

Remark 59 We stress that the choice of B� is arbitrary; indeed, alternative bounding
boxes, other than the Cartesian aligned one presented above, may be employed, pro-
vided that the construction of the underlying polynomial basis may be undertaken in
a simple fashion. For example, for anisotropic polytopic elements, it may be more
desirable to select a ‘rotated’ bounded box which is aligned with the principle axes
of the element.

6.3 Quadrature Rules

The design of efficient and accurate quadrature rules for general polytopes is a
challenging task; while several approaches have been proposed within the literature,
cf. below, this still remains an open and active area of research. Below we review
three prominent approaches which have been proposed; for further details, we refer
to [14].

6.3.1 Sub-Tessellation

The simplest, and perhaps most natural approach is to simply construct a sub-
tessellation of each polytopic element into standard element shapes, upon which
standard quadrature rules may be employed, cf. [54, 55, 125], for example. More
precisely, given � 2 Th, we first construct a non-overlapping sub-tessellation
�S WD f��g consisting of standard element shapes; here, a general hybrid sub-
tessellation consisting of quadrilateral and triangular elements in R2, or tetrahedral,
hexahedral, prismatic, and pyramidal elements in R

3, may be constructed. On
agglomerated meshes, the sub-tessellation will already be available; however, for
reasons of efficiency, one may still wish to construct an alternative sub-tessellation
which comprises of a minimal number of elements. As an example, if we consider
computing the DGFEM mass matrix, restricted to �, � 2 Th, then we have that

Z
�

wv dx D
X

�� 2�S

Z
��

wv dx �
X

��2�S

q��X
iD1

w.F�.�i//v.F�.�i// det.JF� .� i//wi;

where F� W �R ! �� is the mapping from the reference element �R to �� ,
with Jacobi matrix JF� , and .� i;wi/

q��

iD1 denotes the quadrature rule defined on �R.
Quadrature rules on standard element shapes which form the sub-tessellationmay be
constructed based on employing tensor-product Gauss quadratures on the reference
square or cube in R

2 or R3, respectively; for non-tensor-product elements, such
as simplices, for example, the resulting quadrature may be computed based on
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employing the Duffy transformation, whereby the reference tensor-product element
is mapped to the reference simplex, cf. [86, 129, 171]. For alternative quadratures
on non-tensor-product elements, we refer to, for example, [78, 87, 160], and the
references cited therein.

An alternative approach based on employing Stokes’ theorem in R
2 over

polygons has been studied in [161]. While this idea does not directly require a
sub-tessellation of the underlying element domain �, � 2 Th, a judicious choice
of parameters within the resulting formula, which ensures that all of the quadrature
points lie within �, essentially leads to a compound quadrature scheme defined on
an appropriate sub-tessellation of �.

We point out that while quadrature schemes based on employing a sub-
tessellation of each polytopic element are straightforward to implement, they tend
to be computationally expensive, in the sense that, depending on the cardinality
of the sub-tessellation, the number of required function evaluations may be very
large. This is particularly the case when the sub-tessellation employed is simply the
background fine mesh T fine

h used to construct a coarse agglomerated grid. Thereby,
it is desirable to attempt to minimise the resulting number of points; one such
approach is outlined in the next section.

6.3.2 Moment Quadratures

Quadrature rules such as those based on sub-tessellation outlined above can be
optimized based on employing a node elimination scheme, together with the least
squares Newton method, cf. [175]; for related work, we refer to [141]. In this way,
(near)-minimal quadrature schemes can be constructed. To illustrate this approach,
following [175], let � 2 Th be a polytopic element. Given a user-defined set of
functions V� D f�1; �2; : : : ; �ng, n � 1, defined over �, and a quadrature rule
.xj;wj/

q�

jD1 on �, q� � n, which is assumed to integrate all functions in V� exactly,
we arrive at the following system of equations:

Aw D I; (6.2)

where A is an n � q� matrix with entries Aij WD �i.xj/, i D 1; : : : ; n, j D 1; : : : ; q� ,
w WD .w1; : : : ;wq� /> is the vector of quadrature weights, and I is a vector of
dimension n, with entries Ii WD R

�
�i dx, i D 1; : : : ; n. We note that as in [175]

a weight function ! may also be included within the integral; for simplicity, here
we set ! 	 1.

The initial quadrature rule .xi;wi/
q�

iD1 may be selected in a number of different
ways; for example, the sub-tessellation approach outlined above may be exploited.
The essential idea to optimise the initial quadrature is to continuously eliminate
points until the solution of (6.2) can no longer be determined. More precisely,
for each quadrature point and weight, the corresponding significance index sj,
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j D 1; : : : ; q� , is computed; in [175] the following two expressions are proposed:

sj WD wj

nX
iD1

�2
i .xj/; or sj WD

nX
iD1

�2
i .xj/;

j D 1; : : : ; q� . Then, the quadrature point and weight .xk;wk/, for some k, 1 �
k � q� , which has the smallest significance factor is removed from the quadrature
rule, i.e., sk WD minq�

jD1 sj. The least-squares version of Newton’s method is then

applied to (6.2) to compute a new quadrature .xj;wj/
q��1
jD1 with .q� � 1/ points and

weights. This process is continuously repeated until the Newton algorithm fails
to converge; at the end of this process, an optimized quadrature rule which can
precisely integrate all of the functions present in the space V� will be computed.
An alternative approach proposed in [140] is to simply fix a set of quadrature
points, which may even be randomly located points, and solve (6.2) to determine
the corresponding weights.

While this approach is very appealing from a computational point of view,
this process must first be applied to all elements � in the computational mesh
Th, and the resulting quadrature scheme stored elementwise, before assembly of
the underlying matrix system can be undertaken. We also stress that while the
quadrature constructed using the above algorithm is exact for the set of functions
in V� , their accuracy in terms of integrating general functions is unclear; moreover,
for general polytopes, the resulting quadrature weights may be negative, cf. [140].

6.3.3 Integration of Homogeneous Functions

Lasserre’s method for integrating homogeneous functions over convex polytopes
was first introduced in [134]; this technique was subsequently extended to general
non-convex polytopes in the recent article [63]. The essential idea here is to
exploit Stokes’ theorem, together with Euler’s homogeneous function theorem.
More precisely, given a polytopic element � 2 Th, and a sufficiently regular function
f , defined over �, we wish to evaluate

Z
�

f dx:

Assuming that f is a positively homogeneous function of degree q, i.e.,

f .�x/ D �q f .x/;

for � > 0, then assuming f is continuously differentiable, Euler’s homogeneous
function theorem states that

q f .x/ D x � rf .x/: (6.3)
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Moreover, given any vector-valued function g, again assumed to be sufficiently
smooth, Stokes’ theorem states that

Z
�

.r � g/f dx D
Z

@�

.g � n�/f ds �
Z

�

g � rf dx; (6.4)

where n� denotes the unit outward normal vector to the boundary @� of �. Thereby,
selecting g D x in (6.4) and employing (6.3), we deduce that

Z
�

f dx D 1

d C q

Z
@�

.x � n�/f dsI (6.5)

i.e., the integral over � is reduced to an integration over the boundary @�. Writing
@� D SnF

iD1 Fi, where Fi, i D 1; : : : ; nF , denote the planar .d � 1/-dimensional
facets which form the boundary of �, Eq. (6.5) may be rewritten in the following
equivalent form

Z
�

f dx D 1

d C q

nFX
iD1

Z
Fi

.x � nFi/f ds; (6.6)

where nFi denotes the restriction of the unit outward normal vector n� to the facet
Fi, i D 1; : : : ; nF.

We note that this process can be repeated in order to yield a formula which
involves integration on lower dimensional facets. For example, given Fi, for some
(fixed) i, 1 � i � nF, we write

@Fi D fFij D Fi \ Fj W Fi \ Fj ¤ ;; i ¤ jg

to denote the set of .d�2/-dimensional facets of �, i.e., Fij is an edge of a polyhedron
inR3 which lies on the boundary of the face Fi. Furthermore, we define nFij to be the
unit normal vector to Fij which lies in the plane Fi. Given an arbitrary point xi 2 Fi

and a .d � 1/-dimensional orthonormal basis feijgd�1
jD1 on the facet Fi, i.e., any x 2 Fi

may be written in the form

x D xi C
d�1X
kD1

˛keik;

for some scalars ˛k, k D 1; : : : ; d � 1. Then, upon application of (6.4) to a given
facet Fi, 1 � i � nF, with g D x � xi, we deduce that

Z
Fi

f ds D 1

d C q � 1

0
@ X

Fij�@Fi

Z
Fij

..x � xj/ � nFij/f ds C
Z
Fi

.xi � rf / ds

1
A ; (6.7)
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cf. [63, 134]. In R2, we note that the first term on the right-hand side of (6.7) simply
involves evaluations of the integrand at the points which form the underlying face
(edge) Fi, 1 � i � nF. Thereby, for the integration of polynomial functions, repeated
application of (6.7) yields an (exact) integration rule which only requires evaluation
of f and its partial derivatives at the vertices of �, � 2 Th. In R

3, proceeding
as above, we first rewrite the integral over Fij to be an integral over its .d � 2/-
dimensional facets (points), and an integral involving the derivative of f over Fij;
thereby, again for polynomial functions, recursive application of this formula then
only requires the evaluation of f and its partial derivatives at the vertices of � in
order to precisely evaluate the integral of f over �, � 2 Th. For further details and
implementation of this approach in the context of DGFEMs, we refer to [14]. To give
an example of the potential performance improvement of employing this approach
in comparison to the use of quadrature schemes defined on a sub-tessellation of
each polytopic element � in the mesh Th, in Fig. 6.2 we compare the time taken
to assemble the local element stiffness matrix for the Poisson equation in two-
dimensions, cf. the DGFEM bilinear form given in Sect. 4.1, cf. also Sect. 2.3. Here,
the polygonalmeshes are constructed using PolyMesher [165], cf. above. For clarity,
in Fig. 6.2a we plot the time taken to assemble the element stiffness matrix via exact
integration of homogeneous functions on a series of uniform polygonal meshes for
polynomial degrees p between 1 and 6. Figure 6.2b then presents a comparison of
these results with the corresponding timings based on employing quadrature on a
sub-tessellation. Here, the sub-tessellation is constructed by inserting one internal
point within each element �, � 2 Th, located at the element centroid, and connecting
this point to each pair of nodes defining the faces of �; thereby, the number of
elements within the sub-tessellation is equal to the number of faces that each element
� 2 Th possesses.

As a final remark, we note that this approach may also be extended to integrate
functions which may be represented as the sum of homogeneous functions; in par-
ticular, the integral may be computed without explicit knowledge of the individual
terms which form this sum. However, this leads to the introduction of evaluation
points within the interior of �, � 2 Th, and even points which may lie outside �;
in the simplest case, for example, for star-shaped polytopes, this can be viewed as
undertaking a subdivision, relative to a point lying in the ball for which � is star-
shaped, cf. [63], for further details.

6.4 Numerical Experiments

In this section we present two computational examples to numerically to highlight
the practical performance of the DGFEMs studied in Chap. 5 on general polytopic
meshes; see also [54–56] for further numerical experiments.



6.4 Numerical Experiments 95

No of Elements ×104

0 1 2 3 4 5 6 7

T
im

e 
(s

ec
on

ds
)

0

1

2

3

4

5

6
p=1
p=2
p=3
p=4
p=5
p=6

(b)

(a)

No of Elements 10
4

0 1 2 3 4 5 6 7

T
im

e 
(s

ec
on

ds
)

0

20

40

60

80

100

120

140

160

180
Sub-tessellation
Exact Integration
p=1
p=2
p=3
p=4
p=5
p=6

Fig. 6.2 Time required to assemble the element stiffness matrix for the Poisson equation in two-
dimensions: (a) Exploiting exact integration of homogeneous functions; (b) Comparison between
quadrature employed on a sub-tessellation and exact integration

6.4.1 Example 1: Advection-Diffusion-Reaction Problem

We consider the discretization of the advection-diffusion-reaction problem: find u
such that

� r � .aru/ C r � .bu/ C cu D f in .0; 1/2; (6.8)



96 6 Implementation Aspects

where a D ıI2, ı D � e�20r , r2 D x2 C y2, � > 0, b D .2 � y2; 2 � x/>, and
c D .1Cx/.1Cy/2; f is then selected so that the analytical solution to (6.8), subject
to appropriate inhomogeneous boundary conditions, is given by

u.x; y/ D 1 C sin.�.1 C x/.1 C y/2=8/;

cf. [123].
We study the asymptotic behaviour of the DGFEM (5.8) on a sequence

of successively finer square and polygonal meshes for different values of the
polynomial degree p in both the diffusion-dominated and advection-dominated
regimes. In each case we consider two types of polygonal meshes: grids generated
using PolyMesher [165], cf. Fig. 6.3a, as well as grids stemming from the
agglomeration of a given (fixed) fine meshT fine

h . In the latter case, we employ a fine
mesh consisting of 262;144 elements; the corresponding coarse agglomerated mesh
Th is then constructed by exploiting the graph partitioning package METIS [130].
We note that for METIS to partition the fine mesh T fine

h , the logical structure of
T fine

h is first stored in the form of a graph, where each node represents an element
domain of T fine

h , and each link between two nodes represents a face shared by
the two elements represented by the graph nodes. The resulting partition of T fine

h
constructed by METIS is produced with the objective of minimizing the number of
neighbours among each of the resulting partitions, or more precisely, the resulting
polygonal elements. In Fig. 6.3b we show the resulting polygonal mesh generated
by METIS with 256 elements.

We first study the diffusion-dominated case; to this end, we set � D 1. In Fig. 6.4
we investigate the convergence of the DGFEM on sequences of finer square and
polygonal meshes with polynomial degrees p between 1 and 4. In each case we

Fig. 6.3 Example 1. Polygonal meshes consisting of 256 elements generated based on employing:
(a) Voronoi tessellation generated by PolyMesher [165]; (b) Agglomeration using METIS [130]
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Fig. 6.4 Example 1. Convergence of the DGFEM with h-refinement for � D 1: (a) ku� uhkL2.˝/;
(b) jku � uhjkDG

plot the error, measured in terms of both the L2.˝/ and DGFEM norm, against
the square root of the number of degrees of freedom in the underlying finite element
spaceVp.Th/. Here, we clearly observe that ku�uhkL2.˝/ and jku � uhjkDG converge
to zero at the optimal ratesO.hpC1/ andO.hp/, respectively, as the mesh size h tends
to zero for each fixed p. The latter set of numerical results confirm the optimality
of Theorem 46 in the diffusion-dominated setting, cf. Remark 47. Moreover, from
Fig. 6.4 we observe that the accuracy of the DGFEM is very similar on all three
sets of meshes employed here, given the same number of degrees of freedom,
though in general we observe a slight improvement in jku � uhjkDG when the
polygonal elements generated by Polymesher are employed, in comparison to the
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Fig. 6.5 Example 1. Convergence of the DGFEM with p-refinement for � D 1

corresponding quantity computed based on exploiting either square or agglomerated
meshes. In Fig. 6.5 we investigate the convergence behaviour of the DGFEM under
p-refinement, for a given fixed mesh. For each mesh, we plot jku � uhjkDG against
the polynomial degree p on a linear-log scale; in each case we clearly observe
exponential convergence of the DGFEM.

Secondly, we consider the convergence of the DGFEM in the advection-
dominated regime, whereby, we now set � D 10�6. In Fig. 6.6 we plot ku�uhkL2.˝/

and jku � uhjkDG against the square root of the number of degrees of freedom in
the underlying finite element space Vp.Th/ on a sequence of uniform square and
polygonal meshes for fixed p. In this case, we observe that while the L2.˝/ norm of
the error converges to zero at the optimal rate O.hpC1/, the DGFEM norm behaves
like O.hpC1=2/, as h tends to zero, for each fixed p; in the latter case, this is indeed
the optimal rate predicted by Theorem 46, cf. Remark 48. As above, we again
observe a slight improvement in the computed error when the Voronoi meshes
generated by PolyMesher are employed, as opposed to square or agglomerated
meshes. Figure 6.7 plots jku � uhjkDG against the polynomial degree p for a given
set of fixed uniform meshes; as above, we observe exponential convergence of the
DGFEM under p-refinement.

For further numerical experiments, and in particular, for comparisons between
both standard (conforming) Galerkin FEMs and DGFEMs employing local tensor-
product polynomial bases (Qp-basis), we refer to the articles [54, 55].

6.4.2 Example 2: Degenerate Evolution Equation

Computational experiments for the space-time DGFEM (5.54), cf., also, (5.56), have
been presented in the recent article [56] for the case when a is positive definite,
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Fig. 6.6 Example 1. Convergence of the DGFEM with h-refinement for � D 10�6: (a) ku �
uhkL2.˝/; (b) jku � uhjkDG

i.e., when (5.52) holds. Thereby, to test the necessity of this hypothesis in terms of
generalizing the a priori error bounds derived in Sect. 5.3 to degenerate parabolic
PDEs, we consider the following example: find u D u.t; x; y/ such that

@tu � x2@2
xxu � x@yu D f in ˝ WD J � D; (6.9)

where J D .0; 1/ and D D .0; 1/2. We note that (6.9) can be written in the general
form (2.1), cf., also, (5.1); indeed, setting x WD .t; x; y/> and r WD .@t; @x; @y/

>, we
select a22 D x2, aij D 0 for i; j D 1; 2; 3, i; j ¤ 2, b D .1; 2x; �x/>, and c D �2.
Furthermore, we stress that the PDE (6.9) is not hypoelliptic on the plane fx D 0g
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Fig. 6.7 Example 1. Convergence of the DGFEM with p-refinement for � D 10�6

which is contained in J�@D and may, therefore, lead to singularities in the analytical
solution u in the vicinity of the boundary, depending on the choice of the boundary
conditions imposed and/or the selection of f .

In this section, the forcing function f is selected so that, upon supplementing (6.9)
with appropriate inhomogeneous Dirichlet boundary conditions and initial condi-
tion, the analytical solution is given by

u.t; x; y/ D e�5..x�1=2/2C.y�1=2/2/ sin.x � t C 2y/:

In Fig. 6.8 we investigate the convergence of the space-time DGFEM on sequences
of finer (space-time) hexahedral (rectangular in space) and prismatic (polygonal
prism base in space) meshes, for polynomial degrees p between 1 and 4. In
each case we plot the error measured in terms of both the L2..0; 1/IL2.D// and
L2..0; 1/IH1.D;Th// norms with respect to the third root of the number of degrees
of freedom in the underlying space-time finite element space Vp.U ITh/. Here, we
employ spatial meshes consisting of 16, 64, 256, 1024, and 4096 elements, with 8,
16, 32, 64, and 128 time-steps, respectively. Firstly, from Fig. 6.8b we observe that
ku � uhkL2..0;1/IH1.D;Th// converges to zero at the optimal rate O.hp/ as the space-
time mesh size h tends to zero for each fixed p; this is in accordance with the
rate predicted by Corollary 56, though we stress that in this generalized setting,
the conditions of Theorem 55 (and, therefore, of Corollary 56) are not fulfilled.
Secondly, from Fig. 6.8a we observe some deterioration in the rate of convergence
of the space-time DGFEM with respect to the L2..0; 1/IL2.D// norm, cf. the
discussion at the end of Sect. 5.3; indeed these numerics seem to indicate a loss
of (roughly) between half and one order in h, as the mesh is refined for each fixed p.

Finally, we investigate the computational efficiency of employing the space-
time DGFEM (5.54) with different space-time elemental polynomial bases on
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Fig. 6.8 Example 2. Convergence of the space-time DGFEM with h-refinement on cubic (square
elements in space) and prismatic (polygonal elements in space) meshes: (a) ku � uhkL2..0;1/IL2.D//;
(b) ku � uhkL2..0;1/IH1.D;Th//

both hexahedral and prismatic meshes. In particular, writing �n WD In � � to
denote a given space-time element, where � 2 Th is a spatial element and In,
n D 1; : : : ;Nt, is a given time interval, we consider the following three choices for
the (elementwise) polynomial space, denoted by Rp.�n/: (1) Rp.�n/ WD Pp.�n/,
i.e., polynomials of total degree p are employed on each element, cf. Sect. 5.3; (2)
Rp.�n/ WD Pp.In/ � Pp.�/, i.e., polynomials of total degree p are employed in
time and space, and these are tensorized to form a space-time basis defined on �n;
(3) Rp.�n/ WD Pp.In/ � Qp.�/, i.e., polynomials of total degree p are employed
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in time, while tensor-product polynomials of degree p in each coordinate direction
are exploited in space; these spaces are then tensorized to form a space-time basis
defined on �n. These schemes will be denoted, respectively, by DG(P), DG(QP), and
DG(Q).

In Fig. 6.9 we investigate the convergence behaviour of these three schemes
under p-refinement for fixed h; for brevity, we only consider space-time prismatic
meshes for the first scheme, i.e., for DG(P). Here, we have employed 64 spatial
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Fig. 6.9 Example 2. Comparison of the space-time DGFEMs: DG(P), DG(QP), and DG(Q)
under p-refinement with 64 spatial elements and 16 time-steps: (a) ku � uhkL2..0;1/IL2.D//; (b)ku � uhkL2..0;1/IH1.D;Th//
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elements and 16 time-steps. Firstly, we observe exponential convergence for all
three choices of the elemental polynomial bases, in the sense that, on the linear-
log scale, the convergence plots become straight lines as p is increased. Moreover,
we observe that, under p-refinement, DG(P) is more efficient than both DG(QP) and
DG(Q), in the sense that the error, computed in terms of both the L2..0; 1/IL2.D//

and L2..0; 1/IH1.D;Th// norms is smaller, for a given number of degrees of
freedom, when the former scheme is employed.
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