
Chapter 4
DGFEMs for Pure Diffusion Problems

In this chapter we study the stability and hp-version a priori error analysis of the
DGFEM discretization of a pure diffusion problem; referring back to (2.1), (2.3),
this corresponds to the case when a is positive definite, b � 0, and c � 0. In
particular, we develop the underlying theory for two different sets of shape assump-
tions, which the polytopic elements forming the computational mesh Th must
satisfy. In the first instance, we assume that the number of faces each element �,
� 2 Th, possesses remains uniformly bounded under mesh refinement, but without
the restriction of shape-regularity in the classical sense, cf. Assumption 25 below;
see, also, [54]. We will then pursue the analysis in the case when this assumption is
violated, i.e., when polytopic elements are permitted to have an arbitrary number of
faces under mesh refinement; however, in this setting, a generalized shape-regularity
assumption must be satisfied, cf. Assumption 30 below. This latter condition was
first considered in [56]. The outline of this chapter is as follows. Upon recalling
the diffusion model problem, we introduce the corresponding DGFEM in Sect. 4.1;
the latter is based on the general scheme outlined in Sect. 2.4. For simplicity
of presentation, here we focus on the symmetric version of the interior penalty
DGFEM, though we stress that the analysis presented here naturally generalizes
to both the IIP- and NIP-DGFEMs, as well as other DGFEMs proposed within
the literature. Then, in Sects. 4.2 and 4.3 we pursue the error analysis under the
two different mesh assumptions, respectively. Moreover, for the analysis of the
second case, when elements with an arbitrary number of faces are permitted, we also
prove the necessary trace inverse estimate, along with a polynomial approximation
result. Finally, in Sect. 4.4 we discuss the relationship between these different mesh
assumptions and conclude on the generality of polytopic meshes covered by our
analysis.
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4.1 Model Problem and Discretization

Given an open bounded Lipschitz domain ˝ in R
d, d 2 N, with boundary @˝ , we

consider the following PDE boundary-value problem: find u such that

� r � .aru/ D f in ˝; (4.1)

u D gD on @˝D; (4.2)

n � .aru/ D gN on @˝N: (4.3)

Here, f 2 L2.˝/, a D ˚
aij
�d
i;jD1

, with aij 2 L1.˝/ and aij D aji, for i; j D 1; : : : ; d,

and, at each x in N̋ ,
dX

i;jD1

aij.x/�i�j � � j�j2 > 0; (4.4)

where � is a positive constant, for any vector � D .�1; : : : ; �d/ in R
d. Here, the

boundary of the computational domain ˝ is subdivided into the two disjoint subsets
@˝D and @˝N whose union is @˝ , with @˝D nonempty and relatively open in @˝ .
The well-posedness of the boundary value problem (4.1)–(4.3), under the uniform
ellipticity condition (4.4) can be deduced, based on employing the Lax-Milgram
Theorem; see, for example, [42, 64].

As in Chap. 3, we write Th to denote a subdivision of the computational domain
˝ � R

d, d > 1, into disjoint open polytopic elements � constructed such that N̋ D
[�2Th N�. Recalling that Fh denotes the set of open .d � 1/-dimensional simplicial
element faces associated with the computational mesh Th, employing the notation
introduced in Chap. 2, we write Fh D FI

h [ FB
h , where FI

h denotes the set of
interior element faces, andFB

h is the set of boundary element faces. For simplicity,
we assume thatTh respects the decomposition of @˝ in the sense that each F 2 FB

h
belongs to the interior of exactly one of @˝D or @˝N. Hence, we write FD

h ;FN
h �

FB
h to denote the subsets of boundary faces belonging to @˝D; @˝N, respectively.
To facilitate hp-adaptivity, to each element � 2 Th, we associate a local

polynomial degree p� � 1, and collect the p� , � 2 Th, in the vector p WD . p� W
� 2 Th/. With this notation, we define the finite element space Vp.Th/ with respect
to Th and p by

Vp.Th/ WD fu 2 L2.˝/ W uj� 2 Pp� .�/; � 2 Thg;

where, we recall that Pp.�/ denotes the space of polynomials of total degree p
on �. By construction, the local elemental polynomial spaces employed within the
definition of Vp.Th/ are defined in the physical space, without the need to map from
a given reference or canonical frame, as is typically the case for classical FEMs; we
refer to Chap. 6 concerning implementation aspects of the elementwise polynomial
basis.
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Following the derivation presented in Sect. 2.3, we recall the (SIP) DGFEM
bilinear form

Bd.wh; vh/ WD
X

�2Th

Z

�

arwh � rvh dx

�
Z

FI
h [FD

h

.ffarwhgg � ŒŒvh�� C ffarvhgg � ŒŒwh�� � �ŒŒwh�� � ŒŒvh��/ ds;

and linear functional

`.vh/ WD
X

�2Th

Z

�

fvh dx �
Z

FD
h

gD.arvh � n � �vh/ ds C
Z

FN
h

gNvh ds;

for wh; vh 2 Vp.Th/. Thereby, the corresponding DGFEM is given by: find uh 2
Vp.Th/ such that

Bd.uh; vh/ D `.vh/ (4.5)

for all vh 2 Vp.Th/.
The well-posedness and stability properties of the above method depend on the

choice of the discontinuity-penalization function � . These are analyzed in the next
two sections based on employing different assumptions on the elements present in
the computational meshTh. Clearly, we expect that the choice of � will be sensitive
to the size of each face F, F 2 Fh, relative to the size of the element(s) which form
F. In order to focus on the treatment of general polytopic subdivisions, throughout
this chapter, we make the simplifying assumption that the entries of a are constant
on each element �, � 2 Th, i.e.,

a 2 ŒV0.Th/�
d�d
sym : (4.6)

We note that the proceeding results follow immediately, with only very minor
changes, in the case when a 2 ŒVq.Th/�

d�d
sym , where q WD .q� W � 2 Th/,

such that q� 2 N0 for all � 2 Th. The extension of the analysis to general
positive (semi-)definite diffusion tensors will be treated later on in Chap. 5 when we
consider the DGFEM discretization of general second-order PDEs with nonnegative
characteristic form.

4.2 Error Analysis I: Bounded Number of Element Faces

We study the stability and a priori error analysis of the DGFEM (4.5) under the
following assumption, which guarantees that the number of faces each element
possesses remains bounded under mesh refinement.
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Assumption 25 (Limited Number of Faces) For each element � 2 Th, we define

C� WD card
n
F 2 Fh W F � @�

o
:

We assume there exists a positive constant CF, independent of the mesh parameters,
such that

max
�2Th

C� � CF:

We stress that no shape-regularity condition is required to be satisfied by Th for the
analysis in this section to hold.

4.2.1 Well-Posedness of the DGFEM

Firstly, we write
p
a 2 ŒV0.Th/�

d�d
sym to denote the unique (positive definite) square-

root of the symmetric matrix a and Na� WD jpaj22j� , � 2 Th, where j � j2 denotes the
matrix norm subordinate to the l2-vector norm on R

d, cf. [124]. With this notation,
we define the discontinuity-penalization function � W Fh ! R in the following
manner.

Definition 26 Assuming that (4.6) holds, the discontinuity-penalization function
� W Fh ! R arising in (4.5) is given by

�.x/ WD

8
ˆ̂
<

ˆ̂:

C� max
�2f�C ;��

g

n
CINV. p� ; �;F/

Na�p2
� jFj

j�j
o
; x 2 F 2 FI

h ; F � @�C \ @��;

C�CINV. p� ; �;F/
Na�p2

� jFj
j�j ; x 2 F 2 FD

h ; F � @�:

(4.7)

Here, CINV is the constant arising in the inverse inequality derived in Lemma 11,
cf. (3.14), and C� is a positive constant independent of p� , jFj, and j�j.

In accordance with the mesh terminology introduced in Sect. 3.1, we note that
the value of the discontinuity-penalization function � on a given elemental interface
is independently determined on each constituent .d � 1/-dimensional simplicial
mesh face which forms the given interface. In this way, � is independent of any
local mesh size or polynomial degree quasi-uniformity assumption, as well as any
local regularity condition on the location of hanging nodes on the boundary of each
element �, � 2 Th. In particular, for standard simplicial and tensor product meshes,
which contain hanging nodes, the independent piecewise constant definition of the
discontinuity-penalization function allows for the treatment of irregular hanging
nodes, i.e., nodes which are arbitrarily positioned on the element interface, in a
simple manner. This is in contrast to the usual error analysis of DGFEMs on meshes
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consisting of standard element shapes, whereby irregular hanging nodes are not
permitted, since the discontinuity-penalization function definition typically relies on
the face, and the corresponding interface which it belongs to, to be of comparable
size to that of the element, cf. [124].

The first issue encountered when analyzing the DGFEM (4.5) is that this
formulation is not well-defined for functions in H1.˝/. Indeed, square-integrable
functions, i.e., those that belong to L2.˝/, do not have a well-defined trace on Fh

and hence the terms ffrvgg are not well-defined for v 2 H1.˝/. Hence, unless
we assume that the analytical solution of (4.1) possesses additional regularity,
we cannot directly exploit Galerkin orthogonality. At first sight, this may not
appear to be a pertinent issue in the context of a priori error bounds, whereby
local solution regularity is routinely assumed to be sufficiently high. However, the
presence of ffrvggjF, for a face F, in the bilinear form, results in terms of the form
ffr.u�˘u/ggjF, where ˘u 2 Vp.Th/ is some approximation of u; this must then be
estimated optimally to establish an (optimal) a priori error bound. Unfortunately, as
the proof of Lemma 23 shows, to derive hp-approximation estimates for the H1.F/-
seminorm on polytopic meshes in the spirit of (3.30), we would additionally need
an hp-approximation estimate on simplicial elements in theW1;1-norm, (cf. (3.23))
which is neither available nor practical for it would increase further the solution
regularity requirements artificially.

To overcome this issue, we introduce suitable extensions of the bilinear form
Bd.�; �/ and linear functional `.�/. To this end, we write˘ L2 W ŒL2.˝/�d ! ŒVp.Th/�

d

to denote the orthogonal L2-projection onto the finite element space ŒVp.Th/�
d.

Thereby, following [100, 147], we define the bilinear form

QBd.w; v/ WD
X

�2Th

Z

�

arw � rv dx (4.8)

�
Z

FI
h [FD

h

.ffa˘ L2 .rw/gg � ŒŒv�� C ffa˘ L2 .rv/gg � ŒŒw�� � �ŒŒw�� � ŒŒv�� ds/;

(4.9)

and linear functional

Q̀.v/ WD
X

�2Th

Z

�

fv dx �
Z

FD
h

gD.a˘ L2 .rv/ � n � �v/ ds C
Z

FN
h

gNv ds

for all v;w 2 V WD H1.˝/ C Vp.Th/. Then the DGFEM formulation (4.5) may be
rewritten in the following equivalent manner: find uh 2 Vp.Th/ such that

QBd.uh; vh/ D Q̀.vh/ (4.10)

for all vh 2 Vp.Th/.
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Of course, for all w; v 2 Vp.Th/, we have QBd.w; v/ D Bd.w; v/ and Q̀.v/ D `.v/,
i.e., (4.10) and (4.5) give rise to the same DGFEM. However, the bilinear form
QBd.�; �/ is inconsistent due to the discrete nature of the projection operator ˘ L2 ;
thereby, Galerkin orthogonality no longer holds. Nevertheless, this formulation
enables us to pursue the analysis without requiring W1;1-norm approximation
estimates, as we shall see below.Moreover, we are able to deduce both the coercivity
and continuity of the (extended) bilinear form QBd.�; �/ on V � V .

We introduce the associated DGFEM energy norm given by

jkvjk2
DG WD

X

�2Th

kp
arvk2

L2.�/
C
Z

FI
h [FD

h

� jŒŒv��j2 ds: (4.11)

Here, and in the following, we shall often make use of the arithmetic-geometric
mean inequality, written in the following form:

ab � a2� C b2

4�
; (4.12)

which holds for any a; b 2 R and � > 0.

Lemma 27 Given that Assumption 25 holds, with � defined as in Definition 26,
where C� is a sufficiently large positive constant, the bilinear form QBd.�; �/ is
coercive and continuous over V � V , i.e.,

QBd.v; v/ � Ccoerjkvjk2
DG for all v 2 V ; (4.13)

and

QBd.w; v/ � CcontjkwjkDG jkvjkDG for all w; v 2 V ; (4.14)

respectively, where Ccoer and Ccont are positive constants, independent of the local
mesh sizes h� and local polynomial degree orders p� , � 2 Th.

Proof The proof is based on employing standard arguments, cf. [79], for example;
in particular, the analysis exploits the inverse inequality stated in Lemma 11 for
general polytopic elements. Firstly, to prove (4.13), we note that, for any v 2 V , we
have the following identity

QBd.v; v/ D jkvjk2
DG � 2

Z

FI
h [FD

h

ffa˘ L2 .rv/gg � ŒŒv�� ds: (4.15)

We now proceed by bounding the second term on the right-hand side of (4.15). To
this end, given F 2 FI

h , such that F � @�C \ @��, �˙ 2 Th, upon application of
the Cauchy–Schwarz inequality and the arithmetic-geometric mean inequality, we
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deduce that
Z

F
ffa˘ L2 .rv/gg � ŒŒv�� ds � 1

2

�
k 1p

�
a˘ L2 .rvC/kL2.F/Ck 1p

�
a˘ L2 .rv�/kL2.F/

�

�kp
�ŒŒv��kL2.F/

� �

�
k 1p

�
a˘ L2 .rvC/k2

L2.F/
C k 1p

�
a˘ L2 .rv�/k2

L2.F/

�

C 1

8�
kp

�ŒŒv��k2
L2.F/

:

Employing the inverse inequality stated in Lemma 11, the definition of the
discontinuity-penalization function � , the assumption on the diffusion tensor,
cf. (4.6), and the stability of the L2-projector ˘ L2 in the L2-norm, namely that
k˘ L2vkL2.�/ � kvkL2.�/, for v 2 ŒV �d , � 2 Th, gives

Z

F
ffa˘ L2 .rv/gg � ŒŒv�� ds

� �

 

CINV. p�C; �C;F/
Na�Cp2

�C
jFj

j�Cj k 1p
�

p
a˘ L2 .rv/k2

L2.�C/

CCINV. p�� ; ��;F/
Na��p2

�� jFj
j��j k 1p

�

p
a˘ L2 .rv/k2

L2.��/

�
C 1

8�
kp

�ŒŒv��k2
L2.F/

� �

C�

�
kp

arvk2
L2.�C/

C kp
arvk2

L2.��/

�
C 1

8�
kp

�ŒŒv��k2
L2.F/

: (4.16)

Similarly, for F 2 FD
h , where F � @�, � 2 Th, we get

Z

F
ffa˘ L2 .rv/gg � ŒŒv�� ds � �

C�

kp
arvk2

L2.�/
C 1

4�
kp

�ŒŒv��k2
L2.F/

: (4.17)

Inserting (4.16) and (4.17) into (4.15), we deduce that

QBd.v; v/ �
�

1 � 2CF

C�

�

�X

�2Th

kp
arvk2

L2.�/
C
�

1 � 1

2�

� X

F2FI
h [FD

h

kp
�ŒŒv��k2

L2.F/
;

since the number of elemental faces is uniformly bounded by Assumption 25. Hence
the bilinear form QBd.�; �/ is coercive over V � V if C� > 2CF� for some � > 1=2.

The proof of continuity of QBd.�; �/ follows immediately, based on employing the
Cauchy-Schwarz inequality, together with analogous arguments to establish upper
bounds on the face terms, cf. (4.16) and (4.17) above.

The above analysis extends well-known results derived for meshes consisting
of standard element shapes to the case when general polytopes are admitted. We
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stress that the proof is based on exploiting the new inverse inequality derived in
Lemma 11, in order to provide a suitable upper bound on the face terms arising
in the DGFEM (4.5), cf., also, (4.10), assuming that Assumption 25 holds. This
approach has the crucial advantage of permitting very general polytopic meshes in
the sense that shape-regularity of the underlying mesh Th is not directly required.

4.2.2 A Priori Error Analysis

We now embark on the error analysis of the hp-version DGFEM (4.5), cf.,
also, (4.10). To this end, we quote the following abstract error bound, which is an
instance of Strang’s Second Lemma [64, 163], whereby the error is controlled by
the sum of a quasi-optimal approximation term and a residual term.

Lemma 28 Let u 2 H1.˝/ be the weak solution of (4.3) and uh 2 Vp.Th/ the
DGFEM solution defined by (4.5). Under the hypotheses of Lemma 27, the following
abstract error bound holds

jku � uhjkDG �
�

1 C Ccont

Ccoer

�
inf

vh2Vp.Th/
jku � vhjkDG

C 1

Ccoer
sup

wh2Vp.Th/nf0g
j QBd.u;wh/ � Q̀.wh/j

jkwhjkDG : (4.18)

Proof Employing the triangle inequality gives

jku � uhjkDG � jku � vhjkDG C jkvh � uhjkDG (4.19)

for all vh 2 Vp.Th/. Thereby, we simply need to bound jkvh � uhjkDG; to this end,
we exploit the coercivity and continuity of QBd.�; �/ on V � V , cf. Lemma 27, to
obtain

jkvh � uhjk2
DG � 1

Ccoer

QBd.vh � uh; vh � uh/

D 1

Ccoer
. QBd.vh � u; vh � uh/ C QBd.u � uh; vh � uh//

� Ccont

Ccoer
jku � vhjkDGjkvh � uhjkDG

C 1

Ccoer
. QBd.u; vh � uh/ � Q̀.vh � uh//:

Thereby, dividing both sides by jkvh � uhjkDG, and noting that vh 2 Vp.Th/ is
arbitrary, upon substitution into (4.19), we deduce the statement of the lemma.
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The abstract error bound of Lemma 28 may now be employed to establish an
hp-version a priori error bound for the DGFEM (4.5), based on exploiting the
approximation results stated in Lemma 23. To this end, we assume that, given
the polytopic mesh Th, there exists a shape-regular covering T

]
h D fK g, cf.

Definition 17, which satisfies Assumption 18. Furthermore, we assume that uj� 2
Hl� .�/, for some l� > 1 C d=2, for each � 2 Th, so that, by Theorem 21, EujK 2
Hl� .K /, where K 2 T ]

h , with � � K . Thereby, defining Q̆p by Q̆pj� WD Q̆ p� ,
for � 2 Th, upon application of Lemma 23, together with Assumption 25, we
deduce that

inf
vh2Vp.Th/

jku � vhjk2
DG � jku � Q̆ pujk2

DG

�
X

�2Th

0

@kp
ar.u � Q̆ p�u/k2

L2.�/
C 2

X

F�@�n@˝N

�k.u � Q̆ p�u/j�k2
L2.F/

1

A

� C
X

�2Th

h2.s��1/
�

p2.l��1/
�

0

@Na� C h�dC2
�

p�

X

F�@�n@˝N

Cm. p�; �;F/� jFj
1

A kEuk2
Hl� .K /

;

(4.20)

with s� D minfp� C 1; l�g and C a positive constant, which depends on the shape-
regularity of the covering T

]
h , but is independent of the discretization parameters;

also, from Lemma 23, we recall that

Cm. p; �;F/ D min
n hd�
sup�F[ �� j�F

[ j ;
1

p1�d

o
:

We now proceed to bound the residual term arising in (4.18). To this end,
we first note that applying integration by parts elementwise, together with the
identity (2.20), and noting that u is the analytical solution of (4.1), we get

ˇ
ˇ
ˇ QBd.u;wh/ � Q̀.u;wh/

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
Z

FI
h [FD

h

ffa.ru � ˘ L2 .ru//gg � ŒŒwh�� ds
ˇ
ˇ
ˇ

�
� Z

FI
h [FD

h

��1jffa.ru � ˘ L2 .ru//ggj2 ds
�1=2jkwhjkDG:

We write Q̆ p to denote the vector-valued hp-projection operator obtained by apply-
ing the operator Q̆ p componentwise. Thereby, adding and subtracting Q̆ p.ru/,
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gives

Z

FI
h [FD

h

��1jffa.ru � ˘ L2 .ru//ggj2 ds

�
Z

FI
h [FD

h

2��1.jffa.ru � Q̆ p.ru//ggj2 C jffa.˘ L2 . Q̆ p.ru/ � ru//ggj2/ ds

� I C II:

Using, as above, the approximation estimate (3.27) yields

I � C
X

�2Th

Na2
�

h2.s��1/
�

p2.l��1/
�

h�d
�

p�1
�

0

@
X

F�@�n@˝N

Cm. p�; �;F/��1jFj
1

AkEuk2
Hl� .K /

:

Similarly, employing the inverse inequality (3.13), the L2-stability of the projector
˘ L2 , and the approximation estimate (3.26), gives

II � C
X

�2Th

Na2
�

h2.s��1/
�

p2.l��1/
�

j�j�1

p�2
�

0

@
X

F�@�n@˝N

CINV. p�; �;F/��1jFj
1

A kEuk2
Hl� .K /

:

Combining the above bounds, we deduce:

sup
wh2Vp.Th/nf0g

j QBd.u;wh/ � Q̀.u;wh/j
jkwhjkDG

� �
I C II

�1=2

� C

 
X

�2Th

Na2
�

h2.s��1/
�

p2.l��1/
�

�
0

@
X

F�@�n@˝N

�
Cm. p�; �;F/

h�d
�

p�1
�

C CINV. p�; �;F/
j�j�1

p�2
�

�
��1jFj

1

A

� kEuk2
Hl� .K /

!1=2

: (4.21)

On the basis of the bounds (4.20) and (4.21), we state the following hp-version a
priori error bound for the DGFEM (4.5).

Theorem 29 Let Th D f�g be a subdivision of ˝ � R
d, d D 2; 3, consisting of

general polytopic elements satisfying Assumptions 18 and 25, with T ]
h D fK g an
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associated covering ofTh consisting of shape-regular d-simplices, cf. Definition 17.
Let uh 2 Vp.Th/, with p� � 1 for all � 2 Th, be the correspondingDGFEM solution
defined by (4.5), where the discontinuity-penalization function � is given by (4.7). If
the analytical solution u 2 H1.˝/ to (4.1)–(4.3) satisfies uj� 2 Hl� .�/, l� > 1Cd=2,
for each � 2 Th, such that EujK 2 Hl� .K /, whereK 2 T

]
h with � � K , then

jku � uhjk2
DG � C

X

�2Th

h2.s��1/
�

p2.l� �1/
�

.Na� C G�.F;CINV;Cm; p�// kEuk2
Hl� .K /

;

with s� D minfp� C 1; l�g,

G�.F;CINV;Cm; p�/ WD Na2
�p�h

�d
�

X

F�@�n@˝N

Cm. p�; �;F/��1jFj

CNa2
�p

2
� j�j�1

X

F�@�n@˝N

CINV. p�; �;F/��1jFj

Ch�dC2
� p�1

�

X

F�@�n@˝N

Cm. p�; �;F/� jFj;

where C is a positive constant, which depends on the shape-regularity of T ]
h , but is

independent of the discretization parameters.
The above result generalizes well-known a priori bounds for DGFEMs defined on

standard element shapes, cf. [124, 152], in two key ways. Firstly, meshes comprising
of polytopic elements are admitted; secondly, elemental faces are allowed to
degenerate. For d D 3, this also implies that positive measure interfaces may have
degenerating (one-dimensional) edges. Thereby, this freedom is relevant to standard
(simplicial/hexahedral) meshes with hanging nodes in the sense that no condition
is required on the location of hanging nodes on the element boundaries. If, on the
other hand, the diameter of the faces of each element � 2 Th is of comparable
size to the diameter of the corresponding element, for uniform orders p� D p � 1,
h D max�2Th h� , s� D s, s D minfp C 1; lg, l > 1 C d=2, then the bound of
Theorem 29 reduces to

jku � uhjkDG � C
hs�1

pl�3=2
kukHl.˝/;

cf. [54]. This coincides with the analogous result derived in [124] for standard
meshes consisting of simplices or tensor-product elements. It is easy to check that
the above a priori error bound is optimal in h and suboptimal in p by half an order,
as expected, cf. [101].
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4.3 Error Analysis II: Shape-Regular Polytopic Meshes

In this section, we pursue the error analysis on meshes which may potentially violate
Assumption 25 in the sense that the number of faces that the elements possess may
not be uniformly bounded under mesh refinement. We note that this may arise when
sequences of coarser meshes are generated via element agglomeration of a given fine
mesh T fine

h , cf. Sect. 6.1 and [15]. To this end, recalling Definition 7, we introduce
the following assumption on the mesh Th.

Assumption 30 (Arbitrary Number of Faces) For any � 2 Th, there exists a set
of non-overlapping d-dimensional simplices f�F

[ gF�@� � F �
[ contained in �, such

that for all F � @�, the following condition holds

h� � Cs
dj�F

[ j
jFj ; (4.22)

where Cs is a positive constant, which is independent of the discretization parame-
ters, the number of faces that the element possesses, and the measure of F.

In Fig. 4.1 we present two potential polygons in R
2 which satisfy the above

mesh regularity assumption. We note that Assumption 30 does not place any
restriction on either the number of faces that an element �, � 2 Th, may possess,
or the relative measure of its faces compared to the measure of the element itself.
Indeed, shape-irregular simplices �F

[ , with base jFj of small size compared to the
corresponding height, defined by dj�F

[ j=jFj, are admitted. However, the height must
be of comparable size to h� , cf. the polygon depicted in Fig. 4.1a. Furthermore, we
note that the union of the simplices �F

[ does not need to cover the whole element �,
as in general it is sufficient to assume that

[

F�@�

N�F
[ 	 N�I (4.23)

cf. the polygon given in Fig. 4.1b.

(b)(a)

Fig. 4.1 (a) Polygon with many tiny faces; (b) Star-shaped polygon
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Remark 31 We note that meshes consisting of elements which are (unions of)
uniformly star-shaped polytopes satisfy Assumption 30. Moreover, it is clear
that Assumption 30 is the natural generalization of the classical shape-regularity
assumption, usually stated for simplicial and tensor product meshes, cf. [64] and
Definition 2, to polytopic elements; in this setting, �� WD minF�@� dj�F

[ j=jFj denotes
the radius of the largest inscribed ball.

Given Assumption 30 holds, we now develop an inverse estimate and polynomial
approximation result on the boundary of each element � in the computational mesh
Th. To this end, we have the following two results, respectively.

Lemma 32 Let � 2 Th; then assuming Assumption 30 is satisfied, for each v 2
Pp.�/, the following inverse inequality holds

kvk2
L2.@�/

� CsCinv;1d
p2

h�

kvk2
L2.�/

: (4.24)

Here, Cs is defined in (4.22), and is independent of v, j�j= sup�F[ �� j�F
[ j, jFj, and p,

cf. Assumption 30; moreover, Cinv;1 is given in Lemma 6, and is independent of v, p,
and h� .

Proof The proof is based on applying Lemma 6 over each simplex �F
[ contained

within �, together with (4.22) and (4.23); thereby, we get

kvk2
L2.@�/

�
X

F�@�

Cinv;1p
2 jFj
j�F

[ j kvk2

L2.�F[ /

�
X

F�@�

CsCinv;1d
p2

h�

kvk2

L2.�F[ /

� CsCinv;1d
p2

h�

kvk2
L2.�/

;

with �F
[ 2 F �

[ as in Definition 7.

Lemma 33 Let � 2 Th andK 2 T
]
h the corresponding simplex such that � � K ,

cf. Definition 17. Suppose that v 2 H1.˝/ is such that EvjK 2 Hl� .K /, for some
l� > 1=2. Then, given that Assumption 30 is satisfied, the following bound holds

kv � Q̆ pvkL2.@�/ � CI;5
hs��1=2

�

pl��1=2
kE vkHl� .K /; (4.25)

where s� D minfp C 1; l�g and CI;5 is a positive constant which depends on Cs

from (4.22) and the shape-regularity of K , but is independent of v, h� , p, and the
number of faces per element.
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Proof Exploiting Assumption 30, and in particular (4.22) and (4.23), together with
the multiplicative trace inequality stated in Lemma 22, the arithmetic-geometric
mean inequality, cf. (4.12) with � D p=h� , and the approximation result (3.26) given
in Lemma 23, we deduce that

kv � Q̆ pvk2
L2.@�/

�
X

F�@�

CtjFj
�

1

j�F
[
j kv � Q̆ pvk2

L2.�F[ /

C
h�F[

j�F
[ j kv � Q̆ pvkL2.�F[ /kr.v � Q̆ pv/kL2.�F[ /

!

� Ct Cs d
X

F�@�

�
1

h�

kv � Q̆ pvk2

L2.�F[ /

C kv � Q̆ pvkL2.�F[ /kr.v � Q̆ pv/kL2.�F[ /

�

� Ct Cs d
X

F�@�

�
p C 1

h�

kv � Q̆ pvk2

L2.�F[ /
C hk

4p
kr.v � Q̆ pv/k2

L2.�F[ /

�

� Ct Cs d

�
p C 1

h�

kv � Q̆ pvk2
L2.�/

C hk
4p

kr.v � Q̆ pv/k2
L2.�/

�

� 9

4
Ct Cs d C

2
I;3
h2s��1

�

p2l��1
kE vk2

Hl� .K /
:

The statement of the lemma now follows immediately with CI;5 D 3CI;3
p
Ct Cs d=2:

Remark 34 Crucially, the constants arising in the inverse inequality and approxi-
mation result derived in Lemmas 32 and 33, respectively, are independent of the
number of faces that a given element possesses. Here, the proofs are based on
applying inverse inequalities and approximation estimates, respectively, on each
individual face F in such a manner to get a bound relative to each (anisotropic)
simplex �F

[ related to the corresponding face F, F � @�, rather than with respect to
the element � itself. Thereby, the resulting individual contributions may be summed
to deduce the required inequality on �. This process can be taken to the limit, in the
sense of allowing jFj to tend to zero; in this manner, elements with curved faces can
be treated. We refer to [58, 153] for some recent results on the respective inverse
and approximation estimates for general curved elements constructed in this spirit.

4.3.1 Stability and A Priori Error Analysis

In this section we develop the stability and a priori error analysis of the
DGFEM (4.5) assuming now that Assumption 30 holds. To this end, we first
deduce the following coercivity and continuity bounds for the bilinear form QBd.�; �/
over V � V .
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Lemma 35 Given that Assumption 30 holds, we define the discontinuity-
penalization function � W Fh ! R by

�.x/ WD

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

C� max
�2f�C;��g

n
Cinv;1

Na�p2
�

h�

o
; x 2 F 2 FI

h ; F D @�C \ @��;

C�Cinv;1

Na�p2
�

h�

; x 2 F 2 FD
h ; F � @�;

(4.26)

where C� is a sufficiently large positive constant, which is independent of the
number of faces per element. Then, the bilinear form QBd.�; �/ is coercive and
continuous over V � V , i.e.,

QBd.v; v/ � Ccoerjkvjk2
DG for all v 2 V ; (4.27)

and

QBd.w; v/ � CcontjkwjkDG jkvjkDG for all w; v 2 V ; (4.28)

respectively, where Ccoer and Ccont are positive constants independent of the
discretization parameters and the number of faces per element.

Proof Recalling the second term on the right-hand side of (4.15) in the proof of
Lemma 27, upon application of the arithmetic-geometric mean inequality (4.12),
the proof of Lemma 32, and the L2-stability of ˘ L2 , we deduce that

Z

FI
h [FD

h

ffa˘ L2 .rv/gg � ŒŒv�� ds

� �
X

�2Th

X

F�@�

Na�k 1p
�

p
a˘ L2 .rv/k2

L2.F/
C 1

4�

X

F2FI
h [FD

h

kp
�ŒŒv��k2

L2.F/

� �
X

�2Th

X

F�@�

��1 Na�Cinv;1p
2
�

jFj
j�F

[
j k

p
a˘ L2 .rv/k2

L2.�F[ /
C 1

4�

X

F2FI
h [FD

h

kp
�ŒŒv��k2

L2.F/

� �Csd

C�

X

�2Th

kp
arvk2

L2.�/
C 1

4�

X

F2FI
h [FD

h

kp
�ŒŒv��k2

L2.F/
: (4.29)

Inserting (4.29) into (4.15) we get

QBd.v; v/ �
�

1 � 2�Csd

C�

� X

�2Th

kp
arvk2

L2.�/
C
�

1 � 1

2�

� X

F2FI
h [FD

h

kp
�ŒŒv��k2

L2.F/
:



54 4 DGFEMs for Pure Diffusion Problems

Hence, the bilinear form QBd.�; �/ is coercive over V � V if C� > 2Cs�d for some
� > 1=2. Note that C� depends on Cs, but is independent of the number of faces per
element. The continuity of QBd.�; �/ follows analogously.

Finally, we derive an hp-version a priori error bound for the DGFEM (4.5),
assuming that Assumption 30 holds. For brevity, we focus on the terms defined on
the faces of the elements in the computational mesh, since they must be treated in
a different manner to the analysis presented in Sect. 4.2. Thereby, employing (4.25)
in Lemma 33, we deduce that

Z

FI
h [FD

h

�ŒŒv � Q̆ pv��2 ds � 2
X

�2Th

X

F�@�n@˝N

� jFkv � Q̆ pvk2
L2.F/

� 2
X

�2Th

�
max

F�@�n@˝N

� jF
�
kv � Q̆ pvk2

L2.@�/

� C
X

�2Th

�
max

F�@�n@˝N

� jF
�h2s��1

�

p2l��1
kE vk2

Hl� .K /
; (4.30)

where C is a positive constant, which is independent of the number of faces per
element. Bounds on the remaining terms defined on FI

h [ FD
h can be derived in a

completely analogous fashion; for brevity the details are omitted. Hence, we arrive
at the following a priori estimate.

Theorem 36 Let Th D f�g be a subdivision of ˝ � R
d, d D 2; 3, consisting of

general polytopic elements satisfying Assumptions 18 and 30, with T
]
h D fK g an

associated covering ofTh consisting of shape-regular d-simplices, cf. Definition 17.
Let uh 2 Vp.Th/, with p� � 1 for all � 2 Th, be the correspondingDGFEM solution
defined by (4.5), where the discontinuity-penalization function is given by (4.26). If
the analytical solution u 2 H1.˝/ to (4.1)–(4.3) satisfies uj� 2 Hl� .�/, l� > 3=2,
for each � 2 Th, such that EujK 2 Hl� .K /, whereK 2 T

]
h with � � K , then

jku � uhjk2
DG � C

X

�2Th

h2.s��1/
�

p2.l� �1/
�

.Na� C G�.h�; p�// kEuk2
Hl� .K /

;

where, s� D minfp� C 1; l�g,

G�.h�; p�/ WD Na2
�p�h

�1
� max

F�@�n@˝N

� j�1
F C Na2

�p
2
�h

�1
� max

F�@�n@˝N

� j�1
F

Cp�1
� h� max

F�@�n@˝N

� jF;

and C is a positive constant, independent of the discretization parameters and the
number of faces per element.
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Fig. 4.2 As the small faces
degenerate further, this
element will not satisfy
Assumption 30 but it is
p-coverable and, of course,
has a fixed number of faces

4.4 Mesh Assumptions for General Polytopic Elements

We conclude this chapter by discussing the relationship (or lack thereof) between the
different mesh assumptions presented so far, each allowing for a proof of stability
and convergence of the underlying DGFEM (4.5). On the one hand, Assumption 25
restricts the number of faces that each element in the mesh may possess; this
assumption is necessary when applying the inverse estimate presented in Lemma 11
in a facewise fashion to establish stability of the DGFEM, cf. Lemma 27. On the
other hand, Assumption 30, which removes this restriction on the number of element
faces, is sufficient to deduce the inverse estimate stated in Lemma 32. Although one
may be tempted at first sight to conclude that the latter setting includes the former,
this is not necessarily the case. To substantiate this, consider the polygonal element
depicted in Fig. 4.2; this cannot satisfy Assumption 30, with increasing degeneration
of the small faces, yet it is p-coverable as these small faces degenerate for increasing
p. Also the quadrilateral of Fig. 3.6 does not satisfy Assumption 30 as it fails the
shape-regularity condition.

The above example shows that the two settings are applicable to different element
shapes and, together, can allow for an extremely general class of admissible element
shapes for which the above theory is valid. Furthermore, the two approaches may
easily be combined within the same mesh allowing for mesh configurations and
elements of unprecedented generality to be used to define provably convergent
DGFEMs.
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