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Abstract An evolutionary and discrete variant of the Bat Algorithm (EDBA) is pro-

posed for solving the Vehicle Routing Problem with Time Windows, or VRPTW. The

EDBA developed not only presents an improved movement strategy, but it also com-

bines with diverse heuristic operators to deal with this type of complex problems.

One of the main new concepts is to unify the search process and the minimization

of the routes and total distance in the same operators. This hybridization is achieved

by using selective node extractions and subsequent reinsertions. In addition, the new

approach analyzes all the routes that compose a solution with the intention of enhanc-

ing the diversification ability of the search process. In this study, several variants of

the EDBA are shown and tested in order to measure the quality of both metaheuristic
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algorithms and their operators. The benchmark experiments have been carried out

by using the 56 instances that compose the 100 customers Solomon’s benchmark.

Two statistical tests have also been carried out so as to analyze the results and draw

proper conclusions.

Keywords Bat algorithm ⋅ Discrete bat algorithm ⋅ Vehicle routing problem with

time windows ⋅ VRPTW ⋅ Combinatorial optimization ⋅ Traveling salesman

problem

1 Introduction

The rapid advance of technology has made the logistic management increasingly

important in ever-increasingly connected societies, which has led transport networks

to be very demanding. To meet such demands, companies have to be innovative

in designing their logistic networks, and a competitive logistic network can make

the difference between some companies and others. Consequently, the development

of efficient methods for proper logistics and routing planning is a hot topic in the

research community.

To model and optimize a logistic network, all relevant issues have to be addressed

in an appropriate way using appropriate techniques. In this case, we focus our atten-

tion here on one of these areas: artificial intelligence. In fact, route planning problems

and their resolution is one of the most recurrent topics related to artificial intelli-

gence. More specifically, the problems arisen in this field are normally named as

routing problems, and they fall into the combinatorial optimization category. The

most studied problems in this field are the Vehicle Routing Problem (VRP) and the

Traveling Salesman Problem (TSP). Besides the basic TSP and VRP, many varia-

tions of these problems can be found in the literature. In this chapter, the attention is

focused on one of these variants: the Vehicle Routing Problem with Time Windows,

or VRPTW. Briefly speaking, in the VRPTW, each client imposes a time window for

the start and the end of the service. This problem will be explained in greater detail

later.

A few solution methods can be found in the literature to deal with this kind of

problems properly. The most well-known approaches for this purpose are probably

the exact methods [1], heuristics and metaheuristics. Here, we focus our attention

on metaheuristic methods. For example, some classical examples of local search-

based methods are Simulated Annealing [2] and Tabu Search [3]. On the other hand,

population-based techniques such as the Ant Colony Optimization [4], Genetic Algo-

rithms (GA) [5, 6], and Particle Swarm Optimization [7] are some of the most used

alternatives.

Although classical techniques can somehow manage to solve certain class of such

problems, they are not sufficiently effective, and thus the development of novel meta-

heuristics for tackling optimization problems, especially for routing problems, is a

hot topic in this area of research. Consequently, many different methods have been
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proposed in recent years. Some examples of these methods are the Imperialist Com-

petitive Algorithm, proposed by Atashpaz-Gargari and Lucas in 2007 [8], the Arti-

ficial Bee Colony, presented by Karaboga and Basturk in 2007 [9], and the bat algo-

rithm developed by Yang in 2010 [11]. To the interested readers, some additional

successful methods will be described in following sections.

For the current study, the method that we have selected for addressing the above

mentioned VRPTW is the Bat Algorithm (BA). This metaheuristic is a nature-

inspired algorithm, based on the echolocation behavior of micro-bats, which was

proposed by Yang in 2010 [10]. From the review of some of the recent literature [11,

12], the BA has been successfully applied to wide variety of optimization fields and

problems since its proposal. Furthermore, recent works such as [13, 14] confirm that

BA still attracts a lot of interest from the scientific community. In this sense, despite

the fact that the BA has been applied to many different optimization problems up to

date, it has not been applied yet to the well-known VRPTW. Thus, this motivates

us to carry out this current work. The detailed explanation of BA will be given in

following sections.

It is worth highlighting that we have used some novel route optimization operators

for enhancing the performance of the developed algorithm. These operators, which

will be described in following sections, perform selective extractions of nodes in an

attempt of minimizing the number of routes of the current solution. At this moment,

these operators have only been used once in the literature, inside a Firefly Algorithm

[15]. For this reason, this is the first time in the literature that such heuristic functions

are used in the BA for routing problems.

For the purpose of proving that the implemented Evolutionary Discrete Bat Algo-

rithm (EDBA) is a promising approach to solve the VRPTW, an experiment com-

posed by 56 different instances has been conducted in this work. The results obtained

by some variants of the EDBA are compared. In addition, two different statistical

tests have been conducted with the results obtained: the non-parametric Friedmans

test for multiple comparisons, and the post-hoc Holm’s test.

Therefore, the rest of the paper is organized as follows. Section 2 presents the

related background with an emphasis on routing problems and nature-inspired meta-

heuristics for their resolution. After that, in Sect. 3, the philosophy of the basic BA is

detailed. Then, in Sect. 4, a brief description of the VRPTW can be found. Then, the

proposed EDBA and our route optimization operators are described in Sect. 5. Fur-

thermore, in Sect. 6, the experimentation performed for the validation of the study

is detailed. Finally, the paper concludes with with suggestions for further work in

Sect. 7.

2 Background

Nowadays, route planning is one of the most studied fields. Problems arisen in this

field are usually known as vehicle routing problems, which are a particular case of

problems of combinatorial optimization. Probably, the most used and well-known
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routing problems are the Traveling Salesman Problem [16] and the Vehicle Routing

Problem [17], which are the focus of a huge amount of studies in the literature [18,

19]. In addition, the VRPTW is the main problem of our attention here and is also

one of the most cited and used, as can be seen in different works such as [20] and

[21].

The reasons for the popularity and importance of these problems are two folds:

the scientific aspect, and the social one. On the one hand, being NP-Hard, most of

the problems arising in this field have an extraordinary complexity, and thus their

solutions pose a major challenge for the scientific community. On the other hand,

routing problems are usually built to address a real-world situation related to logistics

or transportation, which is directly linked to the profit of a business service.

Even the problems are challenging to solve, several approaches can be found in

the literature to tackle this kind of problems. The exact methods [1, 22], heuristics

and metaheuristics have all been attempted. For example, as can be seen in the work

by Braysy and Gendreau in 2005 [23], metaheuristics are a good approach for solving

the VRPTW.

To be more specific within the category of metaheuristics, nature-inspired meth-

ods are among the most used approaches for tackling this sort of problems in the

current literature [24]. In this sense, some of these recently proposed approaches

that can be classified in this category are the Bat Algorithm (BA), Firefly Algorithm

(FA), and Cuckoo Search (CS). The first one, and the one that is used in this work,

is the BA. This metaheuristic was proposed by Yang in 2010 [10], and it is based on

the echolocation behavior of microbats, which can find their prey and discriminate

different kinds of insects even in complete darkness. Recent literature reviews and

surveys [11, 12] show that BA has been successfully applied to different optimiza-

tion fields and problems since its proposal. Focusing in routing problems, several

recently published papers have shown that the BA is a promising technique also in

this field. For example, in [25], which was published in 2015, an adapted variant of

this algorithms for solving the well-known Capacitated VRP. The Adapted BA devel-

oped in that study allows a large diversity of the population and a balance between

global and local search.

A more recent work is proposed in [26] by Zhou et al. in which the same Capaci-

tated VRP is faced. In their paper, a hybrid BA with path relinking is described. This

approach is constructed based on the framework of the continuous BA, in which the

greedy randomized adaptive search procedure and path relinking are effectively inte-

grated. Additionally, with the aim of improving the performance of the technique,

the random subsequences and single-point local search are operated with a certain

probability.

Regarding the second of above mentioned methods, that is FA, proposed by Yang

in 2008 [27]. This a nature-inspired algorithm is based on the flashing behavior of

fireflies, which acts as a signaling system to attract other fireflies. This metaheuristic

algorithm has been also applied to a wide range of optimization fields and problems

since its proposal [28, 29]. Like the BA, this method has also shown a promising
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performance for routing problems. In [30], for example, the first application of the

FA was presented for solving the TSP. In order to do that, the authors adapted the

FA, which was firstly proposed for tackling continuous problems, enhancing it with

an evolutionary and discrete behavior.

Another interesting example of application is the one presented in [31], in which

a hybrid variant of the FA is proposed to solve a time-dependent VRP with multi-

alternative graph, in order to reduce the fuel consumption. The developed variant of

FA is a Gaussian Firefly Algorithm. The most interesting part of that paper is the real-

world case study, focused on a distribution company, established in Esfahan, Iran.

More recently, FA has been compared with other nature-inspired heuristics for a bi-

objective variant of the classical VRP problem with pickup and delivery deadlines,

multiple concurrent vehicles and selectivity of nodes. Interestingly, in their work,

the quality of routes is determined by the Pareto trade-off between the profit gained

by the delivery of goods along the routes and a measure of fairness in the share of

the revenues of the transport company [32].

The third of the algorithms previously mentioned is the CS, developed by Yang

and Deb in 2009 [33]. It was inspired by the obligate brood parasitism of some

cuckoo species by laying their eggs in the nests of other host birds (of other species

such as warblers). The CS has also been modified to solve routing problems, as can

be seen, for example, in the work published in 2014 by Ouaarab et al. [34]. In that

paper, the authors presented the first adaptation of the CS to the well-known TSP,

creating a discrete variant of the CS with promising results. The authors also tested

their proposed discrete CS against a set of benchmarks of symmetric TSP from the

well-known TSPLIB library.

More examples of the CS applied to the VRP can be found in the literature. In [35],

for example, a discrete CS algorithm for the capacitated VRP is presented. The main

novelty of this method is not only its application itself, but also the Taguchi-based

Parameter Setting developed for the parameter optimization. Besides that, in 2016,

the reputable Information Sciences journal published a paper in which four different

soft computing methods were applied for solving also the Capacitated VRP [36]. One

of these approaches was an advanced CS, which introduced new adjustments and

features for improving its efficiency. Another example is the paper presented by Chen

and Wang in 2016 [37], in which a hybrid CS was proposed for the solving the VRP

in logistics distribution systems. This novel algorithm was based on the combination

of Optical Optimization, Particle Swarm Optimization and CS. Specifically, in their

method, optical optimization was introduced to initialize population for obtaining a

group of initial values with high quality, which were then optimized according to

PSO. After each iterative operation for keeping the optimal individual, CS was used

to optimize the rest of the individuals.

Another metaheuristic is a music-inspired Harmony Search (HS). This technique

was firstly proposed by Geem et al. in 2001 as a phenomenon-mimicking metaheuris-

tic [38], inspired by the improvisation process of jazz musicians. There are a wide

range of applications of HS in the literature [39–41]. The HS has also been applied
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to routing problems several times, showing also a promising performance. The paper

presented by Geem et al. in 2005 collected some of the most interesting works up to

that date on this topic [42]. Another research related to the HS was the one that can

be found in [43], which presented a discrete variant of the HS in order to solve the

challenging the Selective Pick-Up and Delivery VRP with Delayed Drop-Off. Addi-

tionally, the recent work by Bounzidi and Riffi in 2014 described the adaptation of

the HS for solving the TSP.

Another meta-heuristic mentioned in this background section is the Gravitational

Search algorithm (GS), proposed by Rashedi et al. in 2009 [44], and it was based

on the metaphor of gravitational interaction between masses. GS has also been used

in many applications [45–47]. Concerning routing problems, Nodehi et al. in 2016

[48] presented a randomized GS algorithm for the solving of the TSP. The GS imple-

mented in this work was based on randomized search concepts using two of the four

main parameters of velocity and gravitational force in physics. The performance of

the developed method was compared with some additional well-known methods,

such as the Genetic Algorithm, showing a promising performance.

Regarding VRP problems, the work [49] explored the application of a discrete

variant of the GS to the Open VRP. Being firstly proposed to solve continuous prob-

lems, the main challenge of the authors of that paper was to adapt all the character-

istics of the basic variant of the GS to the discrete optimization. As has been men-

tioned, the problem to solve in this case is the Open VRP, which is a variant in which

vehicles are not required to return to the depot. Finally, the paper by Hosseinabad et

al. in 2017 [50] presented another approach of the GS to solve the Capacitated VRP

with enhanced performance.

There are many challenging issues related to VRPTW, and the number of pub-

lications related to this problem is increasing. In [51], for example, Desaulniers et

al. presented a set of exact algorithms to tackle the electric VRPTW. On the other

hand, Belhaiza et al. proposed in their work [52] a hybrid variable neighborhood

tabu search approach for solving the VRPTW. A multiple ant colony system was

developed for the VRPTW with uncertain travel times by Toklu et al. [53]. Finally,

an a hybrid generational algorithm for the periodic VRPTW can be found in [54]. In

relation to the above mentioned nature-inspired methods and the VRPTW, in [15], an

evolutionary discrete firefly algorithm was proposed for the resolution of this prob-

lem, using the same operators in the experimentation. An additional paper is the one

presented by [55], in which a hybrid variant of the HS was presented to deal with

the VRPTW.

Since the literature in this area is expanding, it is not possible to review all the

relevant work. Interested readers can refer to literature reviews in [11] about the BA,

[29] about FA, and [56] about the CS. On the other hand, for additional information

about the VRPTW and its solution methods, the work presented in [57, 58] is highly

recommended. As mentioned in the introduction, this present work is the first time

in the literature that the BA is applied to the VRPTW. In the rest of this chapter, we

will describe our proposed approach in greater detail.
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Algorithm 1: Pseudo code of the basic BA

1 Define the objective function f (x);
2 Initialize the bat population X = x1, x2, ..., xn;

3 for each bat xi in the population do
4 Initialize the pulse rate ri, velocity vi and loudness Ai;

5 Define the pulse frequency fi at xi;
6 end
7 repeat
8 for each bat xi in the population do
9 Generate new solutions through Equations (1), (2) and (3);

10 if rand>ri then
11 Select one solution among the best ones;

12 Generate a local solution around the best one;

13 end
14 if rand<Ai and f (xi)<f (x∗) then
15 Accept the new solution;

16 Increase ri and reduce Ai;

17 end
18 end
19 until termination criterion not reached;

20 Rank the bats and return the current best bat of the population;

3 Bat Algorithm

In this section, the basic variant of the BA is fully described before we proceed to

introduce further modifications and enhancements. As we have briefly mentioned in

previous sections, the BA is a nature-inspired metaheuristic, whose main idea is to

imitate the echolocation features of microbats with some idealized rules outlined as

follows [10]:

∙ All bats use echolocation to detect the distance and can differentiate between an

obstacle and a prey (bad or good solutions, respectively).

∙ All bats fly randomly with a velocity vi at position xi with a varying frequency

from fmin to fmax, loudness Ai and pulse emission rate r.
∙ In the real-world, the loudness and emission rates of bats can vary in many dif-

ferent ways. Here, we assume that the loudness varies monotonically from A0 to a

lower (quieter) value Amin, while r varies from a lower value to a higher value.

The main steps of this BA are summarized as the pseudocode as shown in Algo-

rithm 1. Taking a quick look at this pseudo-code, it can be seen that the first six lines

correspond to the initialization process. First, the objective function is defined, and

the initial population is initialized. Each bat of the population represents a possible

solution to the addressed problem, in this case, the VRPTW. After that, velocity vi,
frequency fi, pulse rate ri and loudness Ai parameters are initialized and defined.

After this initialization phase, the main evolution of solutions in the algorithm are

executed. At each generation, each bat of the swarm moves through the search space
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by updating its velocity and position. More specifically, the following equations are

used for this movement:

fi = fmin + (fmax − fmin)𝛽 (1)

vti = vt−1i + [xt−1i − x∗]fi (2)

xti = xt−1i + vti (3)

where 𝛽 is a uniformly distributed random number in [0,1], and x∗ represents the cur-

rent best solution of the whole population. In addition, vti and xti denote the velocity

and position, respectively, of a bat i at time step t. Furthermore, the results of Eq. (1)

is used to control the pace and range of bats movement.

If a solution is selected among the best ones, a new solution for each bat is gen-

erated using a random walk

xnew = xold + 𝜀At
(4)

where 𝜀 is a randomly generated number within the interval [−1, 1], and At
is the

average loudness of the swarm at time step t. Finally, the rate ri and the loudness Ai
of each bat are updated, only if the conditions shown in the line 14 of Algorithm 1

are met. This update is performed as follows:

rt+1i = r0i [1 − exp(−𝛾t)] (5)

At+1
i = 𝛼At

i (6)

where 𝛼 and 𝛾 are constants. Thereby, for any 0<𝛼 <1 and 𝛾 >0 we have

At
i → 0, rti → r0i , as t → ∞ (7)

In most cases in the literature, 𝛼 = 𝛾 is used in order to simplify the implementa-

tion of the method. In the present study, 𝛼 = 𝛾 = 0.98 is used. We have selected this

value after an empirical experiment using a range of values from 0.90 to 0.99.

4 Vehicle Routing Problem with Time Windows

As we have pointed out in Sect. 2, the VRPTW is an extension of the classic and

widely studied VRP. In addition to the basic constraints inherent from the VRP, each

client that composes a VRPTW instance has an associated time window [ei,li]. More

specifically, this time window has a lower limit ei and an upper limit li which must

be respected by the vehicle that will attend the demand of the client. This means that

the service in every customer must be performed after ei and before li.
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Obviously, a route is not feasible if a vehicle tries to serve any customer after the

upper limit of this range. On the other hand, a route would be feasible if the vehicle

reaches a client before its lower limit. In this last special situation, the client cannot

be served before this limit, so that the vehicle should be waiting until ei to start the

delivery.

Besides that, the central depot, which is the starting and ending point of all the

routes and vehicles, has also a time window, which restricts the period of the whole

activity. Apart from this temporal window, the problem can also take into account the

customer’s service time. This parameter is the time that the vehicle needs to spend

on the client in order to perform the delivery properly. This is a factor to be taken into

account to calculate if the vehicle arrives on time to the next customer. Furthermore,

the variant that we are using in this paper is the VRPTW with hard time windows. In

this sense, there is also another variant that enables noncompliance with some time

window (with a penalization in the objective function).

Being one of the most famous variant of the VRPs, this problem has been widely

studied both in the past [20, 21], and nowadays [59, 60]. One reason why the

VRPTW is so interesting is its dual nature, since it is considered as a two phase

problem. The first of these phases concerns the vehicle routing, while the second

one regards the planning phase or customer scheduling.

An additional reason for its popularity is its easy adaptation to the real-world

applications. The great majority of distribution chains, customers have strong tem-

poral constraints that have to be fulfilled, and the VRPTW perfectly fits with this

kind of real-world situations.

Regarding the mathematical formulation of VRPTW, it can take several forms,

using a different amount of variables [61, 62]. One of the most interesting formula-

tions can be found in [63].

5 Our Proposed Approach for Solving the VRPTW

In this section, the description of our EDBA for the VRPTW is provided (Sect. 5.1).

A more detailed description of the proposed novel route optimization operator will

be given in Sect. 5.2.

5.1 An Evolutionary Discrete Bat Algorithm

Before starting with the description of our proposed method, it is worth mention-

ing that the original BA was firstly developed for solving continuous optimization

problems, and thus the standard BA cannot be directly applied to solve any discrete

problem such as the VRPTW. Hence, some modifications in the structure of the basic

BA should be performed in order to prepare it to solve the VRPTW.
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First, in the EDBA, each bat of the swarm represents a possible and feasible solu-

tion for the VRPTW. Since the VRPTW is a minimization problem, the most attrac-

tive bats are those with a lower objective function value. Regarding the philosophy

of both ri and Ai parameters, it has remained exactly in the same form as that in the

standard BA. Furthermore, with the intention of simplifying the complexity of the

algorithm, the parameter fi has not been considered.

Furthermore, the “velocity”, vi, has been modified. In the continuous variant of

the BA, this parameter is calculated as has been shown in Eq. (2). However, this

formula cannot be used in the same way for solving a discrete problem such as the

VRPTW. Thus, we have related vi to a distance measure between the bat i and the

best bat of the swarm. It is worth pointing out that all the quantities are treated as

unitless, and thus there is no need to worry about the unit of velocity. Obviously,

the true physical quantities have units and the solutions will be given the right units

when the final solutions are interpreted. Thus, all the quantities in BA are considered

as mathematical values without units. For this purpose, we have adapted vi using the

well-known Hamming Distance in the following way:

vti = Random[1,HammingDistance(xti, x∗)] (8)

This means that the vi of a bat i at time step t is a random number, which follows a

discrete uniform distribution between 1 and the difference between this i and the best

bat of the swarm. This difference is represented by the Hamming Distance, which is

the number of non-corresponding elements in the sequence. A detailed example of

this application can be found in [15].

Additionally, regarding the new bats generation, in the classic variant of the Bat

Algorithm the movement of the bats is performed using the Eq. (3). Similar with the

vi parameters, this equation cannot be applied directly to a discrete problem such as

the VRPTW. Thus, a modification has been proposed, and the movement of a bat i
is determined by the following equation:

xti ← MovementFunction(xt−1i , vti) (9)

In other words, every bat examines at every generation a vi number of its neigh-

bors, and it chooses the best one as its current movement. Explained in other way,

the bat i conducts a vi number of movements, and it chooses the best one. In the

proposed EDBA, a single operator to simulate the movement of bats is used. This

operator is described in the next section.

Furthermore, regarding the local search procedure represented in Lines 10–12 of

Algorithm 1, whether rand > ri, one solution is randomly chosen among the best

ones (in our performed experiments, one bat among the 10 best ones; or less, if vi
is lower than 10), and a local solution is generated around this one, using the well-

known 2-opt* operator. After that, if the new solution is accepted, it replaces the

current bat.
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Algorithm 2: Pseudocode of the route minimization operator.

input : Solutioncurrent, optimizeRoutes, proximityReinsertion
1 ejectionPool = initEjectionPool(Solutioncurrent);
2 Solutionnew = removeEmptyRoutes(Solutioncurrent);
3 if optimizeRoutes then
4 optimizeRoutes(Solutionnew) ;

5 end
6 if proximityReinsertion then
7 reinsert(ejectionPool,Solutionnew) ;

8 end
9 if ejectionPool≠⊘ then

10 Solutionnew = parallelReconstruction(ejectionPool,Solutionnew) ;

11 end
12 if Solutionnew better than Solutioncurrent then
13 Solutioncurrent = Solutionnew ;

14 end
output: Solutioncurrent

Finally, regarding the termination criterion, each technique finishes its execution

when it reaches the generation (iteration) 101, or when there are 20 generations with-

out any improvement in the best solution found.

5.2 Description of the Bat Movement Operator

In this section the operator used to simulate the movement of the bats is described.

This operator is responsible for creating the neighbor solutions generated when a bat

is performed its movement (Line 9 of the Algorithm 1).

Using the inspiration by the concept of “ejection chains” [64], a family of opera-

tors (whose objective is the reduction of the number of routes) have been presented

in a previous work related to the Firefly algorithm [65]. These operators combine the

“ejection chains” technique with other simple measures (such as the size of a route

and the proximity of the customers with respect to the “center of gravity of a route”).

The proposed operators were designed to increase the diversification ability of the

traditional node and arc interchange based operators.

Using the results obtained in our previous work focused on Firefly Algorithm

[65], in the present work we center our attention only on one operator: the “Random

Route Elimination Operator—RrE-opt”. As the name suggests, the operator is based

on the removal of a route at random and the subsequent reinsertion of the clients of

that route in the remaining routes. The main objective is to reduce the number of

routes. This is the first criterion of the classical evaluation function for VRPTW.

Figure 1 illustrates a simple worked example of the RrE-opt operator. Further-

more, Algorithm 2 shows the description of this operator:
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Fig. 1 Example of the RrE-opt operator

∙ In the first step, a route is selected at random and it is removed from the cur-

rent solution. The clients that were part of the removed route configure the

ejectionPool. In the next steps the aim is to reinsert the customers in the remaining

routes.

∙ After the route removal, two optional processes can be performed:

– A local route optimization using the well-known Or-opt operator. The objective

of this process is the reordering of the remaining routes to facilitate the reinser-

tion of the customers of the ejectionPool. Other optimization operators could

be used but the Or-opt operator has been chosen for its speed and efficiency.

– The reinsertion of the customers by proximity in the closest route. This process

checks all clients that are in the ejectionPool and tries to insert them into the

geographically most surrounded route. In this way, the total distance traveled

tries to be reduced. This is the second criterion of the VRPTW evaluation func-

tion. To perform this reinsertion in an efficient way, the use of neighbor lists is

recommended [66].

∙ The last step is to use a parallel initialization heuristic to reinsert clients that are

still in the ejectionPool. In this step the heuristic of Campbell and Savelsbergh

[67] is used for its speed and simplicity of implementation.

This new operator performs a more complex process than traditional VRPTW

operators, but in spite of being more expensive in runtime, this operator has a great

ability to reduce the number of routes during the search process. Reducing the num-

ber of routes in the context of VRPTW is often done as an independent process.

With the proposed new operator, this process is implicitly integrated into the search

process.

In the experimentation section below, four variants of the proposed EDBA will be

compared. These variants will allow the evaluation of the two optional processes of

the operator for the reduction of the number of routes. Its nomenclature will be: OR

(only Optimize Routes process), PR (only Proximity Reinsertion process), FULL

(both optional processes) and NONE (no optional process).
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6 Experimentation

In this section the details of the experimentation conducted are described. The exper-

imentation has two clear objectives: first, to show the use of the proposed EDBA

algorithm; and second, to analyze the behavior of the new operator to reduce the

number of routes for the VRPTW.

For the experimentation, Solomon’s VRPTW benchmark has been used [68]. This

set of problems consists of 56 instances of 100 customers classified into 6 categories

(C1, C2, R1, R2, RC1 y RC2). The categories differ in the geographical distribu-

tion of the customers, the capacity of the vehicles and the compatibility of the time

windows.

There are other VRPTW benchmarks with larger problems instances (such as

Gehring & Homberger’s
1
), but the objective of the work presented focuses on the

use of the EDBA and the analysis of the new optimization operator for the VRPTW.

For this reason, Solomon’s benchmark is adequate and representative.

All the tests conducted in this work have been performed on an Intel Core i5-

6200U CPU @ 2.40 GHz with 8 GB of RAM. The algorithms have been programed

in Java and double precision is used for all numeric variables and parameters. The

used operating systems has been Windows 7.

The evaluation function used is the classic hierarchical one that prioritizes first

the number of routes (the minimum the best) and then the total travel distance (again

the lower the best).

The experimentation has been performed with 4 variants of the proposed EDBA.

Such variants differ in the use (or not) of the optional processes included in the

optimization operator presented in Sect. 5.2. They are identified as: EDBA-OR (only

Optimize Routes process), EDBA-PR (only Proximity Reinsertion process), EDBA-

FULL (both optional processes) and EDBA-NONE (no optional process).

The parameterization for the EDBA used in the experimentation is the following:

∙ The swarm of bats (population) is composed of 25 individuals.

∙ The initial population is initialized at random.

∙ The termination criterion is: a maximum of 100 iterations or 20 iterations without

improvement.

∙ New solutions are generated with the new operator described in Sect. 5.2.

∙ The local solution around the best new solution is generated using the well-known

2-opt* operator.

∙ 𝛼 and 𝛽 have been initialized to with 0.98.

∙ r0i for each bat of the population has been initialized with a random value between

0.0 and 0.40.

∙ A0 has been set with a random value between 0.70 and 1.0 for each bat.

∙ vi has been initialized with a random value between 0.0 and the Hamming Distance

between a bat and the best solution found.

1
https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/.

https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/
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Table 1 Results obtained by EDBA-OR

Class T AVGV SDV AVGD SDD

C1 7921 10.978 0.093 1512.744 35.109

C2 14625 3.200 0.209 779.528 43.174

R1 9350 14.367 0.162 1529.738 6.871

R2 18043 3.164 0.041 1211.082 12.836

RC1 4525 14.925 0.112 1915.900 15.860

RC2 12862 3.750 0.153 1467.878 15.434

Table 2 Results obtained by EDBA-PR

Class T AVGV SDV AVGD SDD

C1 266 12.889 0.091 2270.032 102.794

C2 1054 4.563 0.217 1817.001 148.536

R1 192 18.167 0.152 2193.207 41.194

R2 1421 4.704 0.087 1965.860 79.367

RC1 112 19.219 0.157 2645.416 32.932

RC2 728 5.594 0.120 2206.801 10.821

Table 3 Results obtained by EDBA-FULL

Class T AVGV SDV AVGD SDD

C1 1375 10.967 0.105 1531.749 39.450

C2 4737 3.725 0.079 889.098 22.066

R1 1212 14.533 0.137 1634.549 30.242

R2 7040 3.237 0.064 1297.255 20.965

RC1 696 15.100 0.184 1960.489 35.536

RC2 4123 3.825 0.121 1566.401 39.975

Finally, in order to calculate proper statistics, each variant of the EDBA has been

executed 10 times.

The results of the experimentation are shown in Tables 1, 2, 3 and 4. All the tables

have the same structure: one row for each class of the Solomon’s benchmark (sum-

marizing the results of all the instances of a class) and five columns. Each column

corresponds to the average runtime for all the instances of each class (T, in seconds),

and average (AVG) and standard deviation (SD) for the number of vehicles (V) and

the total cumulative travel distance (D).

Table 1 presents the results obtained by EDBA-OR. This variant of the algo-

rithm is characterized by using only the route optimization process. This means that

once the ejectionPool is generated, the routes that remain in the solution are opti-

mized (using the Or-opt operator) to facilitate the reinsertion of the customers of the
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Table 4 Results obtained by EDBA-NONE

Class T AVGV SDV AVGD SDD

C1 1338 12.867 0.093 2183.340 64.583

C2 3385 4.575 0.112 1766.683 131.954

R1 1162 18.217 0.173 2206.293 26.755

R2 4461 4.854 0.138 1878.603 32.055

RC1 624 19.175 0.190 2702.481 109.543

RC2 2680 5.500 0.088 2293.172 66.782

removed route. According to the experimentation conducted, this variant obtained

the best results (both in vehicles and traveled distance) for all the classes except C1.

For the Class C1, this variant obtained the best results in terms of distance and the

number of vehicles is only about 0.1% worse than the best one. The results obtained

are consistent since the standard deviation for both vehicles and for distance does not

exceed 6.5%. The results obtained confirm that the local optimization of the routes

before reinserting the clients of the ejectionPool allows to obtain better solutions.

However, the runtime time is significantly higher than the other variants.

In Table 2 the results of EDBA-PR are presented. In this case only nearest reinser-

tion process is performed. After the removal of the random selected route and before

the final parallel initialization, the customers in the ejectionPool try to be reinserted

in the geographically closest path. This variant is the fastest. However, together with

the EDBA-NONE variant, it reports the worst results being 35.5% and 62% worse

(than the best results) in terms of number of vehicles and total distance traveled.

EDBA-FULL results are shown in Table 3. In this case both processes are per-

formed (route optimization and proximity reinsertion processes are carried out). This

has obtained the second best results. The average percentage differences in number

of vehicles and total distance traveled (for all classes) are 3.85% and 5.7%, respec-

tively. In addition, it is the one that obtains the best result in number of vehicles for

the class C1. Furthermore, analyzing standard deviations, it can be seen that the val-

ues obtained are the lowest. This implies that this method is more robust. One last

important fact is the runtime. This variant obtains values significantly better than

those obtained by the EDBA-OR variant.

Finally, Table 4 shows the results of EDBA-NONE. In this variant the customers

of the removed route are reinserted directly using the parallel construction heuristic

without any extra process. This variant, like EDBA-PR, gets poor results that are

(on average for all classes) 36% worse in number of vehicles and 56% worse in dis-

tance traveled. On the other hand, the execution times are slightly higher than the

EDBA-PR variant, but smaller than any of the two variants that get the best results.

Finally, analyzing the standard deviations of the obtained results can be said that the

algorithm is consistent (like the rest of variants).

To summarize, Table 5 shows the comparison of all variants and the difference

with respect to the EDBA-OR (which reported the best results).
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Table 6 Average ranking obtained by the Friedman’s test

Algorithm AVGV AVGD

EDBA-OR 1.1667 1

EDBA-FULL 1.8333 2

EDBA-PR 3.5 3.5

EDBA-NONE 3.5 3.5

Once the results of the experimentation have been presented, two statistical tests

(using the number of vehicles and traveled distance) have been made. These tests

are based on the guidelines suggested by Derrac et al. [69]. The objective of this

task is to ensure that comparisons between the different variants of the EDBA are

fair and objective. First, the non-parametric Friedman’s test for multiple comparison

was conducted. This test aims to check for significant differences between the four

variants of the EDBA.

Table 6 shows the average ranking obtained for each variant (the lower the value,

the better the performance of the variant). The test has been conducted for both crite-

ria of the objective function: number of vehicles and total traveled distance. Regard-

ing the number of vehicles, the resulting Friedman statistic has been 15.2. Taking

into account that the confidence interval has been stated at the 99.5% confidence

level, the critical point in a 𝜒

2
distribution with 3 degrees of freedom is 12.838.

Because 15.2 > 12.838, it can be concluded that there are significant differences

among the results reported by the four compared algorithms, being EDBA-OR the

one with the lowest rank. Finally, for this Friedman’s test, the computed p-value has

been 0.001653. On the other hand, in relation to the distance, the resulting Friedman

statistic has been 16.2. In this case, taking the same confidence interval, the differ-

ences are again significant; and the EDBA-OR variant is the one that reports the

best results. In this case, the computed p-value is 0.001032. These results confirm

the superiority of the EDBA-OR variant.

Once discovered significant differences in the number of vehicles, it is appropriate

to compare technique by technique. For this reason, a post-hoc Holm’s test, using

EDBA-OR as reference (which ranks first in number of vehicles), has been made. The

results of this test are shown in Table 7. As can be seen, for EDBA-PR and EDBA-

NONE adjusted and unadjusted p-values are simultaneously less than or equal to

0.05. Therefore, it can be confirmed statistically that the difference in the number

of routes for EDBA-PR and EDBA-NONE with respect to EDBA-OR is significant.

The same does not happen between the EDBA-FULL and EDBA-OR variants.

Table 7 Adjusted and unadjusted p-values of Holm’s test for the number of vehicles

Algorithm Adjusted p Unadjusted p

EDBA-PR 0.005235 0.001745

EDBA-NONE 0.005235 0.001745

EDBA-FULL 0.371093 0.371093
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Table 8 Adjusted and unadjusted p-values of Holm’s test for the total traveled distance

Algorithm Adjusted p Unadjusted p

EDBA-PR 0.002389 0.000796

EDBA-NONE 0.002389 0.000796

EDBA-FULL 0.179712 0.179712

To conclude our statistical analysis, new Holm’s tests has been performed. In this

case the test is related to the traveled distance. The results of this test are depicted in

Table 8. In this case, related to the traveled distance, there are significant differences

between EDBA-PR and EDBA-NONE with respect to EDBA-OR.

Finally, as a conclusion of the experimentation and the subsequent statistical

analysis of the results, it can be ensured that the EDBA-OR variant is the one that

obtains the best results. These results are statistically better than those obtained by

the EDBA-PR and EDBA-NONE variants. On the contrary, the results obtained by

the EDBA-FULL variant are worse than those obtained by EDBA-OR. But the dif-

ference in results is not statistically significant.

7 Conclusions

We have presented in this work an Evolutionary Discrete Bat Algorithm for solving

the famous Vehicle Routing Problem with Time Windows. The developed method

presents some originality, such as the use of the Hamming distance to measure the

distance between two bats (solutions) of the swarm, and the application of some

recently proposed optimization operators, which have been firstly used in a BA.

Specifically, these operators perform selective extractions of nodes in an attempt

to minimize the number of routes in the current solution.

With the intention of validating that the proposed EDBA and the used route opti-

mization operators are effective for solving the VRPTW, the results obtained by

the EDBA has been compared with the ones obtained by different variants of the

technique. For this experimentation, the 56 instances of the well-known Solomon’s

VRPTW benchmark have been used. Furthermore, two different statistical tests have

been performed in order to enrich the conclusions: the non-parametric Friedmans test

for multiple comparisons, and the post-hoc Holm’s test.

The opportunities for future work related to the research presented in this paper

are broad. For example, more complex benchmarks and further comparison of the

performance of the proposed EBFA with other metaheuristics can be carried. In addi-

tion, it may be useful to apply the route optimization heuristic operators described

in this work to other techniques (including classic techniques) such as the Genetic

Algorithm or the Tabu Search, in order to test their efficiency. Furthermore, it can be

expected that the proposed approach and operators can also used to solve travelling

salesman problems and other combinatorial optimization problems.
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