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Abstract The cuckoo search (CS) algorithm is a powerful metaheuristic algorithm

for solving nonlinear global optimization problems. In this book chapter, we prove

the global convergence of this algorithm using a Markov chain framework. By ana-

lyzing the state transition process of a population of cuckoos and the homogene-

ity of the constructed Markov chains, we can show that the constructed stochastic

sequences can converge to the optimal state set. We also show that the algorithm

structure of cuckoo search satisfies two convergence conditions and thus its global

convergence is guaranteed. We then use numerical experiments to demonstrate that

cuckoo search can indeed achieve global optimality efficiently.

Keywords Cuckoo search ⋅Convergence rate ⋅Global convergence ⋅Markov chain

theory ⋅ Optimization ⋅ Swarm intelligence

1 Introduction

Nature-inspired algorithms have become widely used for optimization and compu-

tational intelligence [11, 12, 26–28, 30]. Many new optimization algorithms are

based on the so-called swarm intelligence with diverse characteristics in mimick-

ing natural systems. However, there is a significant gap between theory and practice.

Most metaheuristic algorithms have very successful applications in practice, but their

mathematical analysis lags far behind. In fact, apart from a few limited results about

the convergence and stability concerning particle swarm optimization, genetic algo-

rithms, simulated annealing and others [4, 10, 16], many algorithms do not have any
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theoretical analysis. Therefore, we may know they can work well in practice, but we

rarely understand why they work and how to improve them with a good understand-

ing of their working mechanisms.

In this work, we will try to prove the convergence of the cuckoo search (CS) so

as to gain insight into its search mechanisms. The rest of this paper is organized

as follows: we will introduce the details of the cuckoo search algorithm in Sect. 2,

followed by the introduction of the convergence criteria in Sect. 3 and the detailed

convergence analysis in Sect. 4. Then, we validate the cuckoo search algorithm by

numerical experiments and observe its convergence behaviour in Sect. 5. Finally, we

conclude by summarizing the main results in Sect. 6.

2 Cuckoo Search

Cuckoo search (CS) is one of the recent nature-inspired metaheuristic algorithms,

developed in 2009 by Xin-She Yang and Suash Deb [23]. CS is based on the brood

parasitism of some cuckoo species. In addition, this algorithm is enhanced by the so-

called Lévy flights [15], rather than by simple isotropic random walks. Recent studies

show that CS is potentially far more efficient than PSO and genetic algorithms [8,

24]. A relatively comprehensive review of the studies up to 2014 was carried out by

Yang and Deb [25].

2.1 Standard Cuckoo Search

Cuckoo behaviour is intriguing because of the so-called brood parasitism reproduc-

tion strategy. Some species such as the ani and Guira cuckoos lay their eggs in com-

munal nests, though they may remove others’ eggs to increase the hatching proba-

bility of their own eggs. Quite a number of species engage obligate brood parasitism

by laying their eggs in the nests of other host birds (often other species such as war-

blers). In addition, the eggs laid by cuckoos may be discovered and thus abandoned

with a probability, around 1/4 to 1/3, depending on species and the average number

of eggs in a nest.

For simplicity in describing the cuckoo search, we now use the following three

idealized rules [23]:

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen host nest.

2. The best nests with high-quality eggs will be carried over to the next generations.

3. The number of available host nests is fixed, and the egg laid by a cuckoo is dis-

covered by the host bird with a probability pa ∈ [0, 1]. In this case, the host bird

can either get rid of the egg, or simply abandon the nest and build a completely

new nest at a new location.
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As a further approximation, this last assumption can be approximated by a fraction

pa of the n host nests are replaced by new nests (with new random solutions). For a

maximization problem, the quality or fitness of a solution can simply be proportional

to the value of the objective function.

From the implementation point of view, we can use the following simple repre-

sentation, that each egg in a nest represents a solution, and each cuckoo can lay only

one egg (thus representing one solution), the aim is to use the new and potentially

better solutions (cuckoos) to replace a not-so-good solution in the nests. Obviously,

this algorithm can be extended to the more complicated case where each nest has

multiple eggs representing a set of solutions. For this present work, we will use the

simplest approach where each nest has only a single egg. In this case, there is no

distinction between an egg, a nest, or a cuckoo, as each nest corresponds to one egg

which also represents one cuckoo, corresponding to a single solution vector.

This algorithm uses a balanced combination of a local random walk and the global

explorative random walk, controlled by a switching parameter pa. The local random

walk can be written as

𝐱t+1i = 𝐱ti + 𝛽s⊗ H(pa − 𝜖)⊗ (𝐱tj − 𝐱tk), (1)

where 𝐱tj and 𝐱tk are two different solutions selected randomly by random permu-

tation, H(u) is a Heaviside function, 𝜖 is a random number drawn from a uniform

distribution, and s is the step size. Here 𝛽 is the small scaling factor. On the other

hand, the global random walk is carried out by using Lévy flights

𝐱t+1i = 𝐱ti + 𝛼 ⊗ L(s, 𝜆), (2)

where

L(s, 𝜆) ∼
𝜆𝛤 (𝜆) sin(𝜋𝜆∕2)

𝜋

1
s1+𝜆

, (s ≫ 0). (3)

Here 𝛼 > 0 is the step size scaling factor, which should be related to the scales of the

problem of interest. Here ‘∼’ denotes that the fact that the random numbers L(s, 𝜆)
should be drawn from the Lévy distribution on the right-hand side, which is approxi-

mated by a power-law distribution with an exponent 𝜆. In addition,⊗ is an entry-wise

operation.

The above equation is essentially the stochastic equation for a random walk. In

general, a random walk is a Markov chain whose next status/location only depends

on the current location (the first term in the above equation) and the transition proba-

bility (the second term). However, a substantial fraction of the new solutions should

be generated by far field randomization and their locations should be far enough from

the current best solution; this will make sure that the system will not be trapped in a

local optimum [23, 25].
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2.2 Cuckoo Search in Applications

Cuckoo search has been applied in many areas of optimization, engineering design,

data ming and computational intelligence with promising efficiency. For example, in

the engineering design applications, cuckoo search has superior performance over

other algorithms for a range of continuous optimization problems such as spring

design and welded beam design problems [8, 24, 25].

In addition, a modified cuckoo search by Walton et al. [21] has demonstrated to

be very efficient for solving nonlinear problems such as mesh generation. Vazquez

[20] used cuckoo search to train spiking neural network models. Yildiz [32] has

used cuckoo search to select optimal machine parameters in milling operation with

enhanced results. Then Durgun and Yildiz [7] used CS for the optimization of vehicle

components, while Zheng and Zhou [33] provided a variant of cuckoo search using

Gaussian process. In the context of data fusion and wireless sensor network, cuckoo

search has been shown to be very efficient [5, 6].

Among the diverse applications, an interesting performance enhancement has

been obtained by using cuckoo search to train neural networks as shown by Valian

et al. [18] and reliability optimization problems [19].

For complex phase equilibrium applications, Bhargava et al. [2] have shown that

cuckoo search offers a reliable method for solving thermodynamic calculations. Fur-

thermore, Moravej and Akhlaghi [13] have solved DG allocation problem in distri-

bution networks with good convergence rate and performance. Taweewat and Wuti-

wiwatchi have combined cuckoo search and supervised neural network to estimate

musical pitch with reduced size and higher accuracy [17].

As a further extension, Yang and Deb [31] developed a multiobjective cuckoo

search (MOCS) for design engineering applications. For multiobjective schedul-

ing problems, another progress was made by Chandrasekaran and Simon [3] using

cuckoo search algorithm, which demonstrated the superiority of their proposed

methodology. Recent studies have demonstrated that cuckoo search can performance

significantly better than other algorithms in many applications [8, 14, 29, 32, 33].

2.3 Simplified Cuckoo Search

In the cuckoo search algorithm, a set of two updating equations are used. One equa-

tion is mainly for global moves, while the other is mainly for local exploitation.

Whether it is global or local is largely determined by the step sizes of the moves of

new solutions from the existing solutions in the population. However, since Lévy

flights can have both small steps and occasionally large steps, it can carry out both

local and global moves simultaneously. Thus, it is difficult to put into a fixed cat-

egory. However, in order to simplify the analysis and also to emphasize the global

search capability, we now use a simplified version of cuckoo search. That is, we use

only the global branch with a random number r ∈ [0, 1], compared with a discov-

ery/switching probability pa. Now we have
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⎧
⎪
⎨
⎪
⎩

𝐱(t+1)i ← 𝐱(t)i if r < pa,

𝐱(t+1)i ← 𝐱(t)i + 𝛼 ⊗ L(s, 𝜆) if r > pa.
(4)

Obviously, due to the stochastic and iterative nature of the cuckoo search algo-

rithm, we have to focus on the key steps. Therefore, we use the following steps to

represent the simplified cuckoo search [22]:

∙ Step 1. Generate randomly an initial population of n nests at the positions, 𝐗 =
{𝐱01, 𝐱

0
2, ..., 𝐱

0
n}, then evaluate their objective values and record the initial best 𝐠0t .

∙ Step 2. Generate new solutions/moves by

𝐱(t+1)i = 𝐱(t)i + 𝛼 ⊗ L(s, 𝜆). (5)

∙ Step 3. Draw a uniformly distributed random number r from [0, 1]. Update 𝐱(t+1)i
if r > pa. Then, evaluate the new solutions and update the new global best 𝐠∗t at

iteration t.
∙ Step 4. Stop if the stopping criterion is satisfied and output the global best 𝐠∗t .

Otherwise, go to step (2).

Though this is a simplified version of cuckoo search, it captures all the main char-

acteristics of the standard cuckoo search. Thus, the proof of its global convergence

will be equivalent to the proof of the global convergence of the original algorithm.

3 Markov Chains and Convergence Criteria

For the ease of analysis and notations, let us first use <𝛺s, f > to denote the opti-

mization problem with an objective f in the search space 𝛺s. This problem is to be

solved by a stochastic search algorithm A. The solution obtained at the t-th iteration

can be written as

𝐱t+1 = A(𝐱t, 𝜉), (6)

where 𝛺s is the feasible solution space. 𝜉 denotes the set of the visited solutions of

algorithm A during the iterative process.

Loosely speaking, the infimum of the search in the Lebesgue measure space can

be defined as

𝜙 = inf
(
t ∶ 𝜈(x ∈ 𝛺s

|
|
|
f (x) < t] > 0

)
, (7)

where 𝜈[X] denotes the Lebesque measure on the set X. In essence, Eq. (7) represents

the non-empty set in the search space, and the region or regions for optimal solutions

can be defined as
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R
𝜖,M =

⎧
⎪
⎨
⎪
⎩

{x ∈ 𝛺s|f (x) < 𝜙 + 𝜖} if 𝜙 is finite,

{x ∈ 𝛺s|f (x) < −C} if 𝜙 = −∞,

(8)

where 𝜖 > 0 and C ≫ 1 is a sufficiently large positive number. Loosely speaking, the

set R
𝜖,M is a set that can be belong to different regions in the search space, depending

on the objective landscapes. As long as this set is accessible, for any solution or a

point falling into R
𝜖,M during the iteration, we can say that algorithm A has reached

the optimal set and thus found the globally optimal solution or its best approximation.

The two conditions for convergence are as follows [9, 10]:

∙ 1 If f (A(x, 𝜉)) ≤ f (x) and 𝜉 ∈ 𝛺s, we have

f (A(x, 𝜉)) ≤ f (𝜉). (9)

Here we focus on minimization problems. For maximization problems, the inequal-

ity is reversed, but the rest are the same.

∙ 2 For any set S ∈ 𝛺s with 𝜈(S) > 0, we have

∞∏

k=0
(1 − uk(S)) = 0, (10)

where uk(S) corresponds to the probability measure on S at the kth iteration of the

algorithm A.

Before we proceed, let us use the results about the global convergence of an algo-

rithm, based on existing studies without repeating the proofs [9, 10]:

Theorem 1 If the objective f is measurable and its feasible solution space𝛺s forms
a measurable subset in ℜn, then algorithm A can indeed satisfy the above two con-
ditions with the search sequence {xk}∞k=0, which will lead to

lim
k→∞

P(xk ∈ R
𝜖,M) = 1. (11)

That means that algorithm A will converge globally with a probability one. Here

P(xk ∈ R
𝜖,M) is the probability measure of the kth solution onR

𝜖,M at the kth iteration.

This same methodology has been used by He et al. to prove the global convergence

of the flower pollination algorithm [9]. In this book chapter, we will use essentially

the same procedure to prove the global convergence of cuckoo search by first proving

the constructed Markov chains are proper and the conditions of convergence are

satisfied.
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4 Global Convergence Analysis

In order to simplify the presentations and analysis, let us first introduce some formal

definitions and some preliminary results.

4.1 Preliminaries

Now we start to define the state and state space to be used later for proving the global

convergence of the cuckoo search. For simplicity of notations, we use the standard

non-bold case symbols for vectors and variables in the rest of this chapter.

Definition 1 The positions of a cuckoo/nest and its corresponding global best solu-

tion g in the search history forms the states of cuckoos: y = (x, g) where x, g ∈ 𝛺s
and f (g) ≤ f (x) (for minimization). The set of all the possible states forms the state

space, denoted by

Y = {y = (x, g)|x, g ∈ 𝛺s, f (g) ≤ f (x)}. (12)

The state and state space of the cuckoo population or group can be defined as

follows:

Definition 2 The states of all n cuckoos/nests form the states of the group, denoted

by q = (y1, y2, ..., yn). All the states of all the cuckoos form a state space for the group,

denoted by

Q = {q = (y1, ..., yi, ..., yn), yi ∈ Y , 1 ≤ i ≤ n}. (13)

As Q contains all the states found during the iterations, it also contains the histor-

ical global best solution g∗ for the whole population as well as all individual best

solutions gi(1 ≤ i ≤ n) in history. Obviously, the global best solution of the whole

population is the best among all gi, so that f (g∗) = min(f (gi)), 1 ≤ i ≤ n.

Furthermore, the state transition for the positions of cuckoos representing solu-

tions can be defined as follows. For ∀y1 = (x1, g1) ∈ Y and ∀y2 = (x2, g2) ∈ Y , the

state transition from y1 to y2 can be denoted by

Ty(y1) = y2. (14)

4.2 Markov Chain Model for Cuckoo Search

One of the main tasks here is that we have to build a Markov chain model for cuckoo

search algorithm, and the first step is to prove a theorem to be used later.
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Theorem 2 The transition probability from state y1 to y2 in the cuckoo search is

P(Ty(y1) = y2) = P(x1 → x′1)P(g1 → g′1)P(x
′
1 → x2)P(g′1 → g2), (15)

where P(x1 → x′1) is the transition probability at Step 2 in cuckoo search, and P(g1 →
g′1) is the transition probability for the historical global best at this step. P(x′1 → x2)
is the transition probability at Step 3, while P(g′1 → g2) is the transition probability

of the historical global best.

Proof In the simplified cuckoo search, the state transition from y1 to y2 only has

one middle transition state (x′1, g
′
1), which means that x1 → x′1, g1 → g′1, x

′
1 → x2 and

g′1 → g2 are valid simultaneously. Then, the probability for P(Ty(y1) = y2) is

P(Ty(y1) = y2) = P(x1 → x′1)P(g1 → g′1)P(x
′
1 → x2)P(g′1 → g2). (16)

From Eq. (5), the transition probability for x1 → x′1 is

P(x1 → x′1) =

{
1

|g−x1|
if x′1 ∈ [x1, x1 + (x1 − g)],

0 if x′1 ∉ [x1, x1 + (x1 − g)].
(17)

Since x and g are higher-dimensional vectors, the mathematical operations here

should be interpreted as vector operations, while the | ⋅ | means the volume of the

hypercube.

The transition probability of the historical best solution is

P(g1 → g′1) =
{

1 f (x′1) ≤ f (g1),
0 f (x′1) > f (g1).

(18)

From Step 3 in the simplified cuckoo search algorithm, we know that a random

number r ∈ [0, 1] is compared with the discovery probability pa = 0.25 = 1∕4. If

r > pa, then the position/solution of a cuckoo can be changed randomly; otherwise,

it remains unchanged. Therefore, the transition probability for x′1 → x2 is

P(x′1 → x2) =
{

1 − pa if r > pa,
pa if r ≤ pa

=

{
3
4

if r > pa,
1
4

if r ≤ pa.
(19)

The transition probability for the historical best solution is

P(g′1 → g2) =
{

1 f (x2) ≤ f (g1),
0 f (x2) > f (g1).

(20)

Furthermore, the group transition probability in the cuckoo search can be defined

as Tq(qi) = qj for ∀qi = (yi1, yi2, ..., yin) ∈ 𝛺s and ∀qj = (yj1, yj2, ..., yjn) ∈ 𝛺s.
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Theorem 3 In the simplified cuckoo search, the group transition probability from
qi to qj in one step is

P(Tq(qi) = qj) =
n∏

k=1
P(Ty(yik) = yjk). (21)

Proof If the group states can be transferred from qi to qj in one step, then all the states

will be transferred simultaneously. That is, Ty(yi1 = yj1,Ty(yi2) = yj2, ..., Ty(yin) =
yjn, and the group transition probability can be written as the joint probability

P(Tq(qi) = qj) = P(Ty(yi1) = yj1)P(Ty(yi2) = yj2)⋯P(Ty(yin) = yjn)

=
n∏

k=1
P(Ty(yik) = yjk). (22)

Theorem 4 The state sequence {q(t); t ≥ 0} in the cuckoo search is a finite homo-
geneous Markov chain.

Proof First, let us assume that all search spaces for a stochastic algorithm are finite.

Then, x and g in any cuckoo/nest state y = (x, g) are also finite, so that the state

space for cuckoos/nests are finite. Since the group state q = (y1, y2, ..., yn) consists of

n positions of the n cuckoos/nests where n is positive and finite, so group states q are

also finite.

From the previous theorems, we know that the group transition probability

P(Tq(q(t − 1)) = q(t), (23)

for ∀q(t − 1) ∈ Q and ∀q(t) ∈ Q is the group transition probability P(Ty(yi(t − 1)) =
yi(t)) for 1 ≤ i ≤ n. From Eq. (16), we have the transition probability for any cuckoo

is

P(Ty(y(t − 1)) = y(t)) = P(x(t − 1) → x′(t − 1))P(g(t − 1) → g′(t − 1))

× P(x′(t − 1) → x(t))P(g′(t − 1) → g(t)), (24)

where P(x(t − 1) → x′(t − 1)), P(g(t − 1) → g′(t − 1)), P(x′(t − 1) → x(t)) and

P(g′(t − 1) → g(t)) are all only depend on x and g at t − 1. Therefore, P(Tq(q(t −
1)) = q(t)) also only depends on the states yi(t − 1), 1 ≤ i ≤ n at time t − 1. Conse-

quently, the group state sequence {q(t); t ≥ 0} has the property of a Markov chain.

Finally, P(x(t − 1) → x′(t − 1)), P(g(t − 1) → g′(t − 1)), P(x′(t − 1) → x(t)) and

P(g′(t − 1) → g(t)) are all independent of t, so is P(Ty(y(t − 1)) = y(t)). Thus,

P(Tq(q(t − 1)) = q(t) is also independent of t, which implies that this state sequence

is also homogeneous.
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In summary, the group state sequence {q(t); t ≥ 0} is a finite, homogeneous

Markov chain.

4.3 Global Convergence of Cuckoo Search

For the globally optimal solution gb for an optimization problem <𝛺s, f >, the opti-

mal state set is defined as R = {y = (x, g)|f (g) = f (gb), y ∈ Y}. In addition, for the

globally optimal solution gb to an optimization problem <𝛺s, f >, the optimal group

state set can be defined as

H = {q = (y1, y2, ..., yn)|∃yi ∈ R, 1 ≤ i ≤ n}. (25)

With the above results and definitions, we are now ready to prove the following

theorems:

Theorem 5 Given the position state sequence {y(t); t ≥ 0} in cuckoo search, the
state set R of the optimal solutions corresponding to optimal nests/cuckoos form a
closed set on Y.

Proof For ∀yi ∈ R,∀yj ∉ R, the probability for Ty(yj) = yi isP(Ty(yj) = yi) = P(xj →
x′i)P(gj → g′j)P(x

′
j → xi)P(g′j → gj). Since for ∀yi ∈ R and ∀yj ∉ R, it holds that

f (gi) ≥ f (gj) = f (gb) = inf(f (a)), a ∈ 𝛺s.

From Eqs. (18–20), we have P(gj → g′j)P(g
′
j → gi) = 0, which leads to P(Ty(yj) =

yi) = 0. This condition implies that R is closed on Y .

Theorem 6 Given the group state sequence {q(t); t ≥ 0} in cuckoo search, the opti-
mal group state set H is closed on the group state space Q.

Proof From Eq. (21), the probability

P(Tq(qj) = qi) =
n∏

k=1
P(Ty(yjk) = yik), (26)

for ∀qi ∈ H,∀qj ∈ H and Tq(qj) = qi. Since ∀qi ∈ H and ∀qj ∉ H, in order to sat-

isfy Tq(qj) = qi, there exists at least one cuckoo whose position will transfer from

the inside of R to the outside of R. That is, ∃Ty(yjk) = yik, yjk ∈ R, yik ∉ R, 1 ≤ k ≤ n.

From the previous theorem, we know that R is closed on Y , which means that

P(Ty(yjk) = yik) = 0. Therefore,

P(Tq(qj) = qi) =
n∏

k=1
P(Ty(yjk) = yik) = 0.

From the definition of a closed set, we can conclude that the optimal set H is also

closed on Q.
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Theorem 7 In the group state space Q for cuckoos/nests, there does not exist a non-
empty closed set B so that B ∩ H = ∅.

Proof Reductio ad absurdum. Assuming that there exists a close set B so that B ∩
H = ∅ and that f (gj) > f (gb) for qi = (gb, gb, ..., gb) ∈ H and ∀qj = (yj1, yj2, ..., yjn) ∈
B, then Eq. (21) implies that

P(Tq(qj) = qi) =
n∏

k=1
P(Ty(yjk) = yik). (27)

For each P(Ty(yj) = yi), it holds that P(Ty(yj) = yi) = P(xj → x′j)P(gj → g′j)P(x
′
j →

xi)P(g′j → gi). Since P(g′j → gi) = 1,P(gj → g′j),P(xj → x′j)P(x
′
j → xi) > 0, then

P(Ty(yj) = yi) ≠ 0, implying that B is not closed, which contradicts with the assump-

tion. Therefore, there exists no non-empty closed set outside H in Q.

Using the above definitions and results, it is straightforward to arrive another the-

orem:

Theorem 8 Assuming that a Markov chain has a non-empty set C and there does
not exist a non-empty closed set D so that C ∩ D = ∅, then

lim
n→∞

P(xn = j) = 𝜋j,

only if j ∈ C, and limn→∞ P(xn = j) = 0 only if j ∉ C.

Now using the above three theorems, it is straightforward to show

Theorem 9 When the number of iteration approaches infinity, the group state
sequence will converge to the optimal state/solution set H.

This is the foundation for proving the global convergence theorem, which states

Theorem 10 The cuckoo search with the Markov chain model outlined earlier has
guaranteed global convergence.

Proof Since the iteration process in cuckoo search always keeps/updates the current

global best solution for the whole population, which ensures that it satisfies the first

convergence condition. In addition, the previous theorem means that the group state

sequence will converge towards the optimal set after a sufficiently large number of

iterations or infinity. Thus, the probability of not finding the globally optimal solu-

tion is asymptotically 0, which satisfies the second convergence condition. Conse-

quently, from Theorem 1, we can conclude that cuckoo search has guaranteed global

convergence towards its global optimality.
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5 Validation by Numerical Experiments

All new algorithms should be validated using various benchmarks to test their basic

performance, rate of convergence and other properties. However, since the cuckoo

search has been tested in the literature with a diverse range of benchmarks and design

case studies, the numerical experiments we have done here are mainly to see if the

global convergence can be reached easily and the rate of convergence. For this pur-

pose, we have selected five benchmark functions with different modalities and objec-

tive landscapes:

The first function is the Ackley function [1]

f (𝐱) = −20 exp
[
− 1

5

√
√
√
√1

d

d∑

i=1
x2i
]
− exp

[1
d

d∑

i=1
cos(2𝜋xi)

]
+ 20 + e, (28)

which has a global minimum f∗ = 0 at (0, 0, ..., 0). This function is highly nonlinear

and multimodal.

De Jong’s functions is unimodal and convex, which can be written as

f (𝐱) =
n∑

i=1
x2i , −5.12 ≤ xi ≤ 5.12, (29)

whose global minimum is obviously f∗ = 0 at (0, 0, ..., 0). It is also commonly

referred to as the sphere function.

Rosenbrock’s function

f (𝐱) =
d−1∑

i=1

[
(xi − 1)2 + 100(xi+1 − x2i )

2
]
, (30)

has a narrow valley where lies its global minimum f∗ = 0 at 𝐱∗ = (1, 1, ..., 1) in the

domain −5 ≤ xi ≤ 5 where i = 1, 2, ..., d.

Xin-She Yang’s forest-like function

f (𝐱) =
( d∑

i=1
|xi|

)
exp

[
−

d∑

i=1
sin(x2i )

]
, −2𝜋 ≤ xi ≤ 2𝜋, (31)

has a global minimum f∗ = 0 at (0, 0, ..., 0). This function is highly nonlinear and

multimodal, and its first derivatives do not exist at the optimal point due to the mod-

ulus |.| factor.

Zakharov’s function

f (𝐱) =
d∑

i=1
x2i +

( d∑

i=1

ixi
2

)2
+
( d∑

i=1

ixi
2

)4
, (32)
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Fig. 1 Convergence of 5

test functions using cuckoo

search

is nonlinear and has its global minimum f (𝐱∗) = 0 at 𝐱∗ = (0, 0, ..., 0) in the domain

−5 ≤ xi ≤ 5.

All these functions have the global minimum fmin = 0, and such simplicity allows

to test the accuracy of an algorithm with various dimensions. For this reason, we set

d = 8 for all these five functions.

For the implementation of cuckoo search algorithm, we have used n = 25, 𝜆 =
1.5, pa = 0.25 and a fixed number of iterations t = 1000. The convergence graphs

for all these functions are summarized and shown in Fig. 1 where the vertical axis is

plotted using the logarithm scale. From the figure, it is clearly seen that the cuckoo

search can converge quickly and the best objective values decrease in an almost expo-

nential manner, except for Rosenbrock’s function which has a narrow valley. How-

ever, as the search has gone through some part of the valley during iterations, its

objective values once again decrease almost exponentially with a higher slope.

6 Conclusions

Cuckoo search is an efficient optimization algorithm with a wide range of applica-

tions. We have used the Markov chain theory and proved the global convergence of

the simplified version of cuckoo search. Then, we have used a few benchmark func-

tions with diverse properties to show that CS can indeed converge very quickly. In

fact, cuckoo search has been used in many applications and the rate of convergence

is usually very good in practice.

The current results are mainly for a simplified variant, derived from the standard

cuckoo search. It can be expected that this methodology can be used to prove both

standard cuckoo search algorithm and its variants. Therefore, it will be useful if fur-

ther research can focus on the extension of the proposed methodology to analyze the

convergence of other variants of the cuckoo search algorithm and other metaheuristic

algorithms.
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In addition, though we can show the cuckoo search will converge in the probabilis-

tic sense, there is no information about how quickly it can convergence. Therefore,

further research can also try to figure out the rate of convergence and its link to the

algorithmic structure, parameter setting and even the modal shapes of the objective

landscapes. After all, the rate of convergence is crucially important from the imple-

mentation point of view.

Furthermore, as the setting of parameters in an algorithm can affect the perfor-

mance of the algorithm significantly, and consequently affect the rate of convergence.

It would be useful to find the relationship between parameter values and the conver-

gence rate, and then to control the rate of convergence by fine tuning the algorithm-

dependent parameters.
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