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Abstract The bat algorithm (BA), a metaheuristic algorithm developed by
Xin-She Yang in 2010, has since been modified, and applied to numerous practical
optimization problems in engineering. This chapter is a survey of the BA, its
variants, some sample real-world optimization applications, and directions for
future research.
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1 Introduction

Real-world optimization problems do not conform to the requirements of calculus
or gradient based optimization methods that require functions to be continuous,
smooth and unimodal, with ever present derivatives and ideal constraints. In reality,
functions can be noisy, filled with discontinuities, have multiple optimums, and
their derivatives may be non-existent [1]. To solve such problems, researchers have
been increasingly looking to nature as the ultimate expert on optimization. A pi-
oneer in the field who conclusively demonstrated that practical problems of sig-
nificant complexity could be solved by nature inspired algorithms is Goldberg, who
solved an oil transportation problem that was not amenable to gradient based
optimization, and thought to be even less amenable to nature inspired methods, for
his PhD in the year 1983 [2]. Given their enormous popularity, nature inspired
algorithms are known by many names, including evolutionary computation, the
oldest name. Since an element of learning or heuristics is involved, and this
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heuristics is of higher level, they are also popularly known as metaheuristic algo-
rithms at present.

The genetic algorithm (GA) used by Goldberg belongs to the family of evolu-
tionary algorithms (EAs), which loosely model evolution in biology as an opti-
mization process. The 1990s onwards saw the development of another family of
nature based algorithms that modeled the collective behavior of social animals as an
optimization process. The ant colony optimization (ACO) [3], particle swarm
optimization (PSO) [4] and krill herd [5] algorithms belong to this family of swarm
intelligence (SI) algorithms. Nature inspired algorithms continued to be developed
at an even faster pace in the 2000s, and the year 2010 saw the emergence of the bat
algorithm (BA), an SI algorithm developed by Xin-She Yang [6]. This was fol-
lowed by the application of the BA to engineering applications in 2012 [7], and to
constrained optimization problems in 2013 [8]. A good reference to swarm intel-
ligence methods of the period is [9]. Since then, the BA has seen numerous variants
being developed, and these applied to solve many real-world problems.

In the search for an optimum in multimodal search or solution space, two
conflicting objectives need to be catered to: exploration or diversification, and
exploitation or intensification. Striking the right balance these two objectives can be
the difference between successfully locating the global optimum and not doing so.
In the initial stages of the search, all areas of the solution space have to be explored,
if the global optimum is not to be missed. On the other hand, once the most
promising areas have been located, further exploration would lead the search to
meander about aimlessly. Instead, the requirement at this later stage of the search is
to exploit or intensify the search in the narrowed down promising areas, so that the
optimum can be located. A good search algorithm must thus have operators for
exploration and exploitation.

1.1 Exploration or Diversification

Reference [6] contains a detailed description of the food location behavior of bats in
nature, and the modeling of this behavior to form the BA metaheuristic. Hence the
motivation here is to recapture the most essential details of the BA in the language
of general optimization theory. In summary, the BA mimics the collective behavior
of a colony of bats that use a phenomenon known as echolocation. Echolocation by
bats is characterized by the emission of pulses of some frequency f, loudness A and
emission rate R. The exploration capability of the BA is provided by its velocity and
position update equations, given by

Viðt+1Þ=ViðtÞ+ f i XiðtÞ−XbestðtÞ� � ð1Þ

f iðtÞ= fmin + randðÞ ðfmax − fminÞ ð2Þ
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Xiðt+1Þ=XiðtÞ+Viðt+1Þ ð3Þ

where t is the current iteration number, Vi, f i and Xi are the velocity, frequency, and
position, respectively, of the ith bat in the population of Nb bats, and Xbest is the bat
location (solution) that has the best fitness in the current population. randðÞ∈ ½0, 1�
is a randomly generated number from a uniform distribution in the interval [0,1].
fmax and fmin are the allowable maximum and minimum frequencies, which can
assume the default values of 0 and 100, but can be varied to suit the problem being
solved. At initialization ðt=0Þ, Vi is assumed to be 0.

1.2 Exploitation or Intensification

The exploitation or local search is by means of a random walk. Two parameters, the
loudness AiðtÞ and the pulse emission rate RiðtÞ are updated at every iteration, for
every bat in the population. Depending on RiðtÞ, a local search is conducted, either
around the best solution or a randomly chosen solution:

Xi, new = Xi, oldðtÞ+ r2AiðtÞ if randðÞ>RiðtÞ
XrðtÞ+ r2AiðtÞ else

�
ð4Þ

where randðÞ∈ ½0, 1� and r2 ∈ ½− 1, 1� are uniformly distributed random numbers,
and r∈ 1, 2, . . . ,Nb½ �, r≠ i is a randomly chosen integer. In other words, XrðtÞ is a
randomly chosen solution in the current iteration, and different from the ith
solution.

The right balance between exploration and exploitation as the search progresses
is provided by adjusting the pulse emission rate RiðtÞ and loudness AiðtÞ
dynamically:

Riðt+1Þ=Rið0Þ 1− expð− γtÞ½ � ð5Þ

Aiðt+1Þ= αAiðtÞ ð6Þ

where Rið0Þ∈ ½0, 1� and AiðtÞ∈ ½1, 2�, both randomly generated, within their
respective limits. As a first choice, the default values that can be used are
γ = α=0.9, as in [6].
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1.3 Selection

In order to improve the solutions over the iterations, a fitness based, tournament
type of solution, in which the competitors are the old and new solutions is
implemented. The fitter solution replaces the less fit one, with a probability

AiðtÞ:XiðtÞ=Xi, newðtÞ if F Xi, newðtÞ� �
<F XiðtÞ� �

and randðÞ<AiðtÞ∀ i, i∈ 1, 2, . . . ,Nb½ �
ð7Þ

where randðÞ∈ ½0, 1� is a uniformly distributed random number, and F(X(t)) is the
fitness or cost function to be minimized.

The BA is shown to perform well on some benchmark unimodal and multimodal
functions in comparisons against the PSO and GA in [6].

2 Variants of the Bat Algorithm

Once the basic BA showed initial promise as a good metaheuristic algorithm, the
focus shifted towards improving it further and applying it to real-world optimization
problems for better results. Some of the modifications proposed to improve the
performance of the BA are outlined next.

2.1 Chaotic Bat Algorithm

The basic BA outlined in Sect. 1 used default values of the algorithm parameters,
and exponentially decreasing values for loudness Ai. For reasons yet to be studied,
using chaotic maps or sequences to update the loudness has been shown to produce
better performance on the complicated real-world problem solved in [10]. Instead of
using Eq. (6) to update the loudness, Ref. [10] updated the loudness using

Aiðt+1Þ= a AiðtÞ� �2
sin π AiðtÞ� � ð8Þ

where a is set to 2.3 and Aið0Þ∈ ½0, 1�, and is randomly generated. Equation (8)
describes the sinusoidal chaotic map or sequence of the variable Ai. Other chaotic
maps are given in [11], which proposed the chaotic BA (CBA) used in [10].
Another version of the CBA was proposed by Jordehi [12].
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2.2 Directional Bat Algorithm

Instead of updating the bat positions using Eqs. (1)–(3), the directional BA pro-
posed by Chakri et al. [13] probes the search space in two different directions: one
in the direction of the best bat, and the other a randomly selected one. The one with
better fitness is used to update the current bat position. When used along with a few
other modifications, this directional BA is claimed to improve the performance
when tested on a suite of benchmark functions.

2.3 θ-Modified Bat Algorithm

The central idea of the θ-modified BA is to use a polar framework, instead of the
Cartesian coordinate framework used by Eqs. (1)–(3) [14]. A second modification
is to dynamically update of the parameter α, instead of using a fixed value, as in the
basic BA described in Sect. 1. This is claimed to have produced the best results on
the stochastic multi-objective problems solved in [14].

2.4 The BA with Mutation

One of the earliest ideas was to equip the BA, which is an SI algorithm, with
operators from EAs.

In nature, mutation introduces new genetic material into the existing gene pool,
thereby helping to maintain the diversity of the population. The mutation operator
in EAs plays the same role of maintaining the diversity of the search space. Its
operation can be explained quite simply with the help of the binary genetic algo-
rithm (BGA) in [1], since the solutions or chromosomes or strings in a BGA consist
of just 1’s and 0’s. If the string length of the individual solution or chromosome or
string is lenstr and the population consists of Np number of individuals, the total
number of bits in the population is Np × strlen. If the probability of mutation is equal
to 1 ̸ðNp × strlenÞ, applying the mutation operator to this population involves flip-
ping one randomly chosen bit in the population: if this bit is a 1, it is changed to 0
and vice versa.In multimodal search space, mutation applied correctly can help the
search break out of being trapped in local minima. In real valued or continuous GA,
mutation is slightly more complex to implement. The interested reader is referred to
[15] for more details.

On some problems, the BA could be lacking in exploratory capability, [16]
introduced the BA with mutation, to successfully produce better results on a variant
of the basic economic dispatch problem, which is to be discussed in Sect. 3 of this
chapter. The BA with mutation for a different application can be found in [17]. An
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enhanced BA with four different types of mutation for self-adaptive learning
mechanism (SALM) can be found in [18].

2.5 The BA with Mutation and Crossover

As a logical next step, another evolutionary operator of crossover was also intro-
duced in [19]. Crossover between two parent individuals produces a new offspring
or solution that could be potentially fitter than the parents, thereby progressing the
search towards the optimum.

2.6 The BA with DE Mutation and Crossover

Differential evolution (DE) is an evolutionary algorithm whose performance was
found to be superior to the simple GA on complicated real-world problems [20, 21],
by virtue of the kind of mutation and crossover that the DE uses, and known as DE
mutation and crossover. Reference [22] explored the hybridization of the bat
algorithm with differential evolution, to obtain better results.

2.7 The BA with DE Mutation and Lévy Flights Trajectory
(DLBA)

The basic BA is equipped with differential evolution (DE) mutation, and Lévy
flights trajectory, to improve its performance. The DLBA is shown to perform
better than the basic BA on a suite of unimodal and multimodal benchmark
functions in [23].

2.8 The Double-Subpopulation Lévy Flight Bat Algorithm

In this variant [24], the bat population is divided into two subpopulations, internal
and external. The internal subpopulation aims at better exploitation, by employing
the current speed and global optimal values for updating the speed, and a Lévy
flight model. The external subpopulation aims at better exploration, employing DE
mutation and crossover, whenever the population diversity reaches a minimum
value called the diversity threshold.
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2.9 BA with Habitat Selection and Self-adaptive
Compensation for Doppler Effect in Echoes

In this variant [25], the position of a bat in the population can display both quantum
and mechanical behavior. In quantum behavior, it can appear anywhere in the
whole search space with a certain probability. In physical behavior, the frequency
update equation has a term that compensates the Doppler effect of change of
frequency as the target moves relative to its source.

3 Application of the Bat Algorithm to the Economic
Dispatch Problem

3.1 Problem Formulation

Whenever a new algorithm is proposed, its performance is first tested by applying it
on unconstrained, unimodal and multimodal benchmark test functions. In contrast,
most real-world problems are constrained, and often, even the existence of a
solution that satisfies all the constraints is not known beforehand. Details like how
violations of the constraints are handled during the solution process too can often be
far from clear to beginners. Hence it is instructive to go through the solution
procedure for solving a complicated real-world problem by applying the BA. We
choose to demonstrate this by going through the steps involved in solving the
economic dispatch (ED) problem in electrical power systems engineering [10]. The
cost function in this problem is nonlinear, multimodal, with discontinuities, subject
to numerous inequality and equality constraints as outlined below.

3.1.1 Objective Function

The cost function is assumed to be quadratic, and minimization of the fuel cost of
Ng number of power plants in the system is the objective here:

min
P∈RNg

F = ∑
Ng

j=1
FjðPjÞ= ∑

Ng

j=1
ðaj + bjPj + cjP2

j Þ ð9Þ

where Fj(Pj) is the fuel cost of the jth generating unit in $/hr, Pj is the power
generated by the jth generating unit in MW, and aj, bj and cj are cost coefficients of
the jth generator.

However, the valve point effect superimposes ripples on this quadratic cost
curve, thereby making it multimodal, and the cost curve becomes
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min
P∈RNg

F = ∑
Ng

j=1
FjðPjÞ= ∑

Ng

j=1
ðaj + bjPj + cjP2

j Þ+ ej sinðfjðPmin
j −PjÞÞ

			 			 ð10Þ

where ej and fj are the constants of the valve-point effect of generators.
If there are multiple fuel options, the fuel cost of the jth generator is given by

FjðPjÞ=
aj1 + bj1Pj + cj1P2

j , fuel 1,P
min
j <Pj ≤Pj1

aj2 + bj2Pj + cj2P2
j , fuel 2,Pj1 <Pj ≤Pj2

⋮
ajk + bjkPj + cjkP2

j , fuel k,Pjk − 1 <Pj ≤Pmax
j

8>><
>>:

ð11Þ

A generator with k fuel options has k discrete regions.

3.1.2 Optimization Constraints

The power generated has to obviously satisfy the minimum and maximum power
generation limits:

Pmin
j ≤Pj ≤Pmax

j ð12Þ

While the above inequality constraints are relatively easier to satisfy, the more
difficult-to-satisfy equality constraint is that the solution or total power generated
PG must satisfy the total load demand PD plus the total losses PL in the system:

∑
Ng

j=1
Pj =PD +PL ð13Þ

where PL represents the line losses which is calculated using B-coefficients, given
by

PL = ∑
Ng

j=1
∑
Ng

i=1
PjBjiPi + ∑

Ng

j=1
B0jPj +B00 ð14Þ

where Pi and Pj are the real power injection at ith and jth buses, respectively, and
the Bij’s are the loss coefficients which can be assumed to be constant under normal
operating conditions.

3.1.3 Practical Operating Constraints of Generators

.
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3.1.4 Prohibited Operating Zones (POZ)

The prohibited zones arise due to practical operational constraints on generators.
The feasible operating zones of unit j can be described as follows:

Pj ∈
Pmin
j ≤Pj ≤Pl

j, 1

Pu
j, k− 1 ≤Pj ≤Pl

j, k
Pu
j, nj ≤Pj ≤Pmax

j

8<
: , k=2, 3, . . . nj, j=1, 2, . . . n ð15Þ

where nj is the number of prohibited zones of the jth generator. Pl
j, k,P

u
j, k are the

lower and upper power outputs of the kth prohibited zone of the jth generator,
respectively.

3.1.5 Ramp Rate Limits

The physical limitations of starting up and shutting down of generators imposeramp
rate limits, which are modeled as follows. The increase in generation is limited by

Pj −P0
j ≤URj ð16Þ

Similarly, the decrease is limited by

P0
j −Pj ≤DRj ð17Þ

where P0
j is the previous output power, URj and DRj are the up-ramp limit and the

down-ramp limit, respectively, of the jth generator.
Combining (16) and (17) with (12) results in the change of the effective oper-

ating or generation limits to

Pj ≤Pj ≤Pj ð18Þ

where

Pj =maxðPmin
j ,P0

j −DRjÞ ð19Þ

Pj =minðPmax
j ,P0

j +URjÞ ð20Þ

Combining this with (15), the ED problem can be formulated as
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min
P∈RNg

F = ∑
Ng

j=1
FjðPjÞ= ∑

Ng

j=1
ðaj + bjPj + cjP2

j Þ

+ ej sin fjðPmin
j −PjÞ

h i			 			
ð21aÞ

s.t. ∑
Ng

j=1
Pj =PD +PL

maxðPmin
j ,P0

j −DRjÞ≤Pj ≤Pl
j, 1

Pu
j, k− 1 ≤Pj ≤Pl

j, k, k=2, 3, . . . nj, j=1, 2, . . .Ng

Pu
j, nj ≤Pj ≤minðPmax

j ,P0
j +URjÞ

ð21bÞ

3.2 Implementation of the BA to ED Problem

Step 0: The 0th or the first step consists of initialization, which is executed as
follows:

• For every solution (or bat or generating unit), generate randomly
within the specified limits the generation values.

• For units with POZ, if the randomly generated value falls within the
POZ, fix it at the nearest limit that is violated.

• If a unit has ramp-rate limits, the power output is uniformly dis-
tributed between the effective lower and upper limits.

Generate Nb number of bats or solutions, each comprising Ng number of gen-
erating units:

p11 p12 ⋯ p1Ng

p21 p22 ⋯ p2Ng

⋮
pNb
1 pNb

2 ⋯ pNb
Ng

2
664

3
775=

P1

P2

⋮
PNb

2
664

3
775 ð22Þ

Step 1: Calculate the fitness values of all the bats using the objective or fitness
function F, in (21a).

Step 2: For ith bat, define pulse frequency f i using (2).
Step 3: Update the velocity and position (which is a vector of generation values)

of each bat using (1) and (3), respectively.
Step 4: Generate a new solution by random walk using (4).
Step 5: Select the fitter of the old and new solutions, with a probability AiðtÞ,

using (7).
Step 6: Update the values of Ri and Ai using (5) and (6), respectively.
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Step 7: Check if the effective generation limits and POZ limits are violated. Fix
the generation at the limit that is violated. This takes care of the
inequality constraints. After this is done, any violation of the power
balance equality constraint (13) is dealt with by using a penalty factor
approach. By this approach, (21a) is modified to

min
P∈RNg

L=F + λ ∑
Ng

j=1
Pj − ðPD +PLÞ

					
					 ð23Þ

where λ is the penalty coefficient, and a fixed large, positive real number.
Step 8: Repeat steps 1–7 until the maximum number of iterations is reached.

4 Application of the Bat Algorithm to Real-World
Problems

Given that the BA is a good metaheuristic algorithm capable of solving complicated
optimization problems, it was not long before it was applied to practical real-world
problems. These are classified as falling into one of the areas below.

4.1 Structural Optimization

One of the first problems solved by using the BA is the welded beam design
problem [26]. The problem has four design variables and two objectives: to min-
imize both the overall fabrication cost and the end deflection. The noteworthy
aspect of the problem is that, since multiple solutions of the same objective function
value exist, and an efficient algorithm or optimizer must discover all the solutions
that form the Pareto front. The BA successfully solved this problem. Probably the
next real-world problem to be solved by the BA is the design of a brushless DC
wheel motor [27]. The objective here is to maximize the efficiency, with five design
variables, six constraints and seventy-eight nonlinear equations. Other problems in
this category that were successfully solved are (a) the design of steel truss struc-
tures, a problem of medium to high dimensionality [28], (b) optimal design of steel
frames for minimum weight [29], and (c) the design of a shell and tube heat
exchanger to optimize the bi-objective fitness function comprising cost and effec-
tiveness [30].
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4.2 Classification and Feature Selection

Reference [31] solves the problem of classification of high dimensional microarray
data sets by a functional link artificial neural network (FLANN) classifier. The BA
is used to optimize the weights of the FLANN. The BA has also been used to find
both the optimal structure as well as the weights and biases of a neural network
used for data classification [32]. In [33], a neural network used for data classifi-
cation is trained using a BA with multiple co-operative sub-populations, and a
chaotic map to preserve the diversity of solutions. Such co-operation, in the place of
the usual competition between solutions, is claimed to perform better, for this
particular application.

In [34], the multispectral satellite image classification using the BA is shown to
be a better performer than the bat-K-means clustering, GA, and PSO methods, both
in terms of classification efficiency and time complexity.

Feature selection methods aim to provide as simple a classification model as
possible, since feature selection is a high dimensional problem affected by the curse
of dimensionality. Using a wrapper approach that consists of a heuristic search of a
subspace of all possible feature combinations, and a fitness function that is the
classifier’s performance, [35] uses a binary BA to maximize classifier performance.
Reference [36] proved the ability of the BA to solve a high dimensional, combi-
natorial optimization problem involving feature selection by modifying the con-
tinuous valued basic BA into a binary BA. The solution space comprised Boolean
hypercube, and the most informative features had to be selected.

Reference [37] considers image thresholding as a constrained optimization
problem, and determines the optimal one- or multi-level, fuzzy entropy based
thresholds that are maximized using the BA. The BA is used to optimize the
parameters of support vector machine, to reduce classification errors in classifica-
tion problems in [38].

4.3 Electrical Power Systems

The BA has been applied to solve a large number of problems in electrical power
systems. Reference [10] solves the ED problem in electrical power systems engi-
neering, using the chaotic BA (in Sect. 2.1), an enhanced version of the basic BA.
The problem herein has a cost function that is nonlinear, multimodal, has discon-
tinuities, and has to satisfy numerous inequality and equality constraints as outlined
in Sect. 3. Reference [39] solves the same ED problem using chaotic BA as in [10],
but using a pseudo-code based algorithm to deal with the power balance equality
constraint, instead of the penalty factor approach in [10]. Reference [16] solved an
advanced version of the ED problem using the BA with mutation, described in
Sect. 2.4. Another application of the BA to the ED problem can be found in [40].
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The optimal power flow problem whose objective is to minimize the losses in the
presence of power balance equality constraints, and inequality constraints like limits
on voltages, real and reactive powers at buses is solved using the BA, without and
with an unified power flow controller, a flexible ac transmission system device, in
[41].

The objective of load frequency control (LFC) in an electrical power system is to
minimize frequency oscillations and tie-line flows due to sharp load changes.
Reference [19] solves the multi-area LFC problem using the BA with mutation and
crossover, described in Sect. 2.5. A PD-PID controller tuned by the BA is used for
solving the multi-area LFC in [42]. The LFC of a two-area system is achieved by
using a dual mode gain scheduling of PI controllers, which are tuned by using the
BA in [43]. Reference [44] contains the LFC of a two-area system with super-
conducting magnetic energy storage (SMES) units using model predictive control
(MPC) is solved by using the BA, to choose the parameters of the MPC and SMES.

The problem of tuning the parameters of the power system stabilizer (PSS) to
minimize system oscillations due to load changes and disturbances is solved using
the BA, and compared against the other approaches of the conventional PSS
(CPSS) and GA based PSS (GAPSS) in [45]. It found the BA based PSS to be the
best performer. The same problem of tuning the parameters of the PSS to minimize
oscillations due to disturbances, but for a nonlinear model of the power system
comprising single machine connected to an infinite-bus through a transmission line
is solved in [46]. It uses the integral of time weighted errors as the cost function.

The optimal phasor measurement unit (PMU) placement to ensure observability
of the power system is an NP-hard, combinatorial optimization problem. This
problem is solved using a binary bat algorithm hybridized with Taguchi method
(TBBA) in [47]. Reference [48] solves the problem of parameter estimation in a
power system based on PMU recorded data using a hybridized algorithm com-
prising the BA and DE, and found that this hybridized algorithm performs better
than the other algorithms therein.

Reference [49] uses the binary bat algorithm (in which the solution vector
comprises just 1’s and 0’s) to extract wavelet based fault features for predicting low
speed bearing faults. The maximum power point tracking (MPPT) problem, whose
objective is to maximize the power output of a photovoltaic array solar panel, is
solved by employing a PI controller that is tuned using the BA in [50]. Reference
[14] solved the distribution feeder reconfiguration problem, using θ-modified BA
(in Sect. 2.3), another enhanced version of the basic BA.

The problem of improvement of power quality has been successfully solved
using the BA. The cost function comprising multiple objectives of minimization of
total harmonic distortion, initial investment cost, and total fundamental power
losses, subject to multiple inequality constraints is minimized by optimal design of
a passive power filter, using the BA, in [51].

For the optimal speed control of a brushless dc motor using an online adaptive
neuro-fuzzy inference system (ANFIS) controller, the learning parameters of the
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ANFIS controller are tuned using the BA in [52]. The position control of a
piezoelectric actuator is complicated by the nonlinear and multi-valued mapping
between the input and output of the actuator, due to the presence of highly non-
linear hysteresis. Hence a neural network (NN) controller trained by using the BA is
proposed in the place of conventional controllers and claimed to perform better in
[53].

Using the BA, [54] solves the problem of optimal sizing of the battery energy
storage (BES) in a microgrid, taking the fixed and running cost of the distributed
generators and running cost of the BES per day as the cost function, subject to
power balance equality constraint and a number of inequality constraints including
charging and discharging rates of the BES, and operating reserve constraint.

Using the BA, [55] solves the problem of optimal spot pricing in a deregulated
electricity market, using the fuel cost as the cost function, and power flows as
inequality constraints that have to be satisfied optimally.

Using four different types of mutation for self-adaptive learning mechanism
(SALM) along with the basic BA to produce the enhanced BA, for finding the
linear supply function equilibrium of generating companies in a competitive elec-
tricity market is solved in [18].

4.4 Applications in Other Areas

In the field of arrays in electronic engineering, the design of a linear array antenna
to minimize the side lobe level, mutual coupling effect, and null control is solved
using the BA in [56]. In the field of process control, the NP-hard problem of
minimizing the total production cost, of a process with five different tasks with their
own costs is solved using the BA with mutation to improve the exploratory
capability in [57].

In aerospace engineering, the challenging, high dimensional optimization
problem of three-dimensional path planning for an unmanned combat air vehicle
(UCAV), whose objective is to find the minimum cost path, subject to numerous
constraints, is solved using the BA with DE mutation and crossover in [58].

In the field of petroleum engineering, the problem of minimizing drilling costs
by predicting the rate of penetration (ROP) is solved using the BA. First, the data of
simultaneous effect of six variables on the ROP is used to develop a mathematical
relationship between the ROP and these variables. Next, the BA is used to deter-
mine the optimal values of these variables in [59]. Maximization of net present
value (NPV) by optimal placement of wells for oil production is solved by the BA,
and compared with the other algorithms of GA and PSO, in [60].

In the field of nuclear engineering, a fitness factor that involves maximization of
the multiplication factor and minimization of the power peaking factor of a nuclear
reactor core is maximized using the BA in [61].

Reference [62] solves the problem of minimizing the energy consumption of a
heating, ventilation, and air conditioning (HVAC) system. Using a cubic cost curve
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to define the total power consumption of the daily optimal chiller loading (DOCL),
the minimum DOCL subject to cooling load balance equality constraint, and
lower/upper limits on chillers as inequality constraints is solved by the BA.

The examples and case studies cited herein are merely a typical sample of the
real-world problems solved by the BA. Given the popularity of the BA, the
interested reader of any background is probably quite likely to find applications of
interest within their own fields.

5 Conclusion

As one of the better performing metaheuristic algorithms, the bat algorithm has
been applied to solve numerous challenging real-world problems that are not that
easily solvable by conventional calculus-based methods.

There is immense scope for further research on the bat algorithm. The BA has
been applied to numerous continuous optimization problems. However, its appli-
cation to solving combinatorial optimization problems like the traveling salesman
problem have been far fewer in number. Another area in which the BA has been
relatively untested is the solution of large scale optimization problems.

At present, the user has to tune the parameters of loudness AiðtÞ and pulse
emission rate RiðtÞ to suit the problem being solved. An alternate, ideal solution
would be to equip the algorithm with self-tuning capabilities so that these param-
eters are automatically adjusted to suit the problem being solved. This too has not
attracted enough research at present.

Since metaheuristic algorithms work on the Darwinian principle of selection of
the fittest, other types of selection like rank based selection could be experimented
with, instead of the knockout or tournament type of selection described in this
chapter.

Given that numerous metaheuristic algorithms exist at present, another direction
for further research would be the hybridization of the bat algorithm with the
operators of other metaheuristic algorithms, so that the hybrid would combine the
best features of the algorithms being combined.

Another kind of hybridization that could be explored profitably is that between
the bat algorithm and gradient based methods, eliminating the limitations and
combining the strengths of these two contrasting types of optimization methods.

Some steps have been taken in many of the directions indicated here. However,
fundamental research that addresses these difficult, core issues in optimization
theory requires research at a different level altogether, rather than simple compar-
isons of performance between some x and y algorithms on some specific problem or
set of problems. In that sense, it is hoped that this chapter can inspired more
research in the foreseeable future.
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