
An Efficient Computational Procedure
for Simultaneously Generating
Alternatives to an Optimal Solution
Using the Firefly Algorithm

Julian Scott Yeomans

Abstract In solving many “real world” mathematical programming applications, it
is often preferable to formulate numerous quantifiably good approaches that provide
distinct alternative solutions to the particular problem. This is because
decision-making frequently involves complex problems possessing incompatible
performance objectives and contain competing design requirements which prove
very difficult—if not impossible—to capture and quantify at the time that the sup-
porting decision models are actually formulated. There are invariably unmodelled
design issues, not apparent at the time of model construction, which can greatly
impact the acceptability of the model’s solutions. Consequently, it can prove
preferable to generate numerous alternatives providing contrasting perspectives to
the problem. These alternatives should be near-optimal with respect to the known
modelled objective(s), but be fundamentally dissimilar from each other in terms of
their decision variables. This solution approach has been referred to as modelling to
generate-alternatives (MGA). This chapter provides an efficient computational
procedure for simultaneously generating multiple different alternatives to an optimal
solution using the Firefly Algorithm. The efficacy and efficiency of this approach
will be illustrated using a two-dimensional, multimodal optimization test problem.

Keywords Firefly Algorithm ⋅ Biologically-inspired metaheuristic ⋅
Modelling-to-generate-alternatives

1 Introduction

Typical “real world” decision-making involves complex problems that possess
design requirements which are frequently very difficult to incorporate into their
supporting mathematical programming formulations and tend to be riddled with

J.S. Yeomans (✉)
OMIS Area, Schulich School of Business, York University, 4700 Keele Street,
Toronto, ON M3J 1P3, Canada
e-mail: syeomans@schulich.yorku.ca

© Springer International Publishing AG 2018
X.-S. Yang (ed.), Nature-Inspired Algorithms and Applied Optimization,
Studies in Computational Intelligence 744, https://doi.org/10.1007/978-3-319-67669-2_12

261



competing performance objectives [3, 11, 13]. While optimal solutions provide
provably best solutions to the mathematical constructions, they are generally not the
best solutions to the underlying real problems as there are invariably unquantified
issues and unmodelled objectives not apparent during the model formulation phase
[3, 11, 12]. Hence, it is generally considered desirable to generate a reasonable
number of very different alternatives that provide multiple, contrasting perspectives
to the specified problem [16]. These alternatives should preferably all possess good
(i.e. near-optimal) measures with respect to all of the modelled objective(s), but be
as fundamentally different as possible from each other in terms of the system
structures characterized by their decision variables. Several approaches collectively
referred to as modelling-to-generate-alternatives (MGA) have been developed in
response to this multi-solution creation requirement [2, 7–10, 12, 16].

The primary motivation behind MGA is to produce a manageably small set of
alternatives that are good with respect to all known objective(s) yet are as different
as possible from each other within the decision space. The resulting set of alter-
natives should provide diverse approaches that all perform similarly with respect to
the known modelled objectives, yet very differently with respect to any unmodelled
issues [7, 13]. Clearly the decision-makers must conduct subsequent evaluations to
ascertain which alternatives are most applicable to their specific circumstances.
Therefore, MGA methods must necessarily be regarded as decision support pro-
cesses in contrast to the explicit solution determination methods of optimization.

In this chapter, it is shown how to simultaneously generate sets of maximally
different alternatives by implementing a modified version of the nature-inspired
Firefly Algorithm (FA) [14, 15] by extending previous concurrent MGA approa-
ches [5–10]. For optimization, it has been demonstrated that the FA is more
computationally efficient than such metaheuristics as enhanced particle swarm
optimization, simulated annealing, and genetic algorithms [4, 15]. The MGA pro-
cedure extends the earlier efforts of Imanirad et al. [5–10] to now permit the
simultaneous generation of the desired number of alternatives in a single compu-
tational run. This new simultaneous FA-based MGA procedure is extremely
computationally efficient. This chapter illustrates the efficacy of the new FA
approach for simultaneously constructing multiple, good-but-very-different solution
alternatives on a 100-peak multimodal optimization test problem [12].

2 Firefly Algorithm for Optimization

While this section provides only an abridged outline of the steps involved in the FA
process [4–6], more comprehensive explanations appear in [14, 15]. The FA is a
biologically-inspired, population-based metaheuristic. Each firefly in the population
represents one potential solution to a problem and the population of fireflies should
initially be distributed uniformly and randomly throughout the solution space. The
solution approach employs three idealized rules. (i) All fireflies within the popu-
lation are considered “unisex”, so that any one firefly could potentially be attracted

262 J.S. Yeomans



to any other firefly irrespective of their sex. (ii) The brightness of a firefly is
determined by the overall landscape of the objective function. Namely, for a
maximization problem, the brightness is simply considered to be proportional to the
value of the objective function. (iii) The relative attractiveness between any two
fireflies is directly proportional to their respective brightness. This implies that for
any two flashing fireflies, the less bright firefly will always be inclined to move
towards the brighter one. However, attractiveness and brightness both decrease as
the relative distance between the fireflies increases. If there is no brighter firefly
within its visible neighborhood, then the particular firefly will move about ran-
domly. Based upon these three rules, the basic operational steps of the FA can be
summarized within the following pseudo-code [15].

Objective Function F(X), X = (x1, x2,… xd) 

Generate the initial population of n fireflies, Xi, i = 1, 2,…, n 

Light intensity Ii at Xi is determined by F(Xi) 

Define the light absorption coefficient γ

while (t < MaxGeneration) 

for i = 1: n , all n fireflies 

for j = 1: n ,all n fireflies (inner loop) 

if (Ii < Ij), Move firefly i towards j; end if

Vary attractiveness with distance r via e- γr

end for j

end for i

Rank the fireflies and find the current global best solution G*

end while
Postprocess the results

In the FA, there are two important issues to resolve: the variation of light
intensity and the formulation of attractiveness. For simplicity, it can always be
assumed that the attractiveness of a firefly is determined by its brightness which in
turn is associated with its encoded objective function value. In the simplest case, the
brightness of a firefly at a particular location X would be its calculated objective
value F(X). However, the attractiveness, β, between fireflies is relative and will vary
with the distance rij between firefly i and firefly j. In addition, light intensity
decreases with the distance from its source, and light is also absorbed in the media,
so the attractiveness needs to vary with the degree of absorption. Consequently, the
overall attractiveness of a firefly can be defined as

An Efficient Computational Procedure … 263



β= β0 expð− γr2Þ

where β0 is the attractiveness at distance r = 0 and γ is the fixed light absorption
coefficient for the specific medium. If the distance rij between any two fireflies i and
j located at Xi and Xj, respectively, is calculated using the Euclidean norm, then the
movement of a firefly i that is attracted to another more attractive (i.e. brighter)
firefly j is determined by

Xi =Xi + β0 exp ð− γðrijÞ2Þ ðXi −XjÞ+ aεi.

In this expression of movement, the second term is due to the relative attraction
and the third term is a randomization component. Yang [15] indicates that α is a
randomization parameter normally selected within the range [0,1] and εi is a vector
of random numbers drawn from either a Gaussian or uniform (generally [−0.5,0.5])
distribution. It should be explicitly noted that this expression represents a random
walk biased toward brighter fireflies and if β0 = 0, it becomes a simple random
walk. The parameter γ characterizes the variation of the attractiveness and its value
determines the speed of the algorithm’s convergence. For most applications, γ is
typically set between 0.1 to 10 [4, 15]. For all computational approaches for the FA
considered in this study, the variation of attractiveness parameter γ was fixed at 5
while the randomization parameter α was initially set at 0.6, but is then gradually
decreased to a value of 0.1 as the procedure approaches its maximum number of
iterations (see [15]).

In any given optimization problem, for a very large number of fireflies n >> k,
where k is the number of local optima, the initial locations of the n fireflies should
be distributed relatively uniformly throughout the entire search space. As the FA
proceeds, the fireflies begin to converge into all of the local optima (including the
global ones). Hence, by comparing the best solutions among all these optima, the
global optima can easily be determined. Yang [15] proves that the FA will approach
the global optima when n → ∞ and the number of iterations t, is set so that t ≫ 1.
In reality, the FA has been found to converge extremely quickly with n set in the
range 20–50 [4, 14].

Two important limiting or asymptotic cases occur when γ → 0 and when γ →
∞. For γ → 0, the attractiveness is constant β = β0, which is equivalent to having a
light intensity that does not decrease. Thus, a firefly would be visible to every other
firefly anywhere within the solution domain. Hence, a single (usually global)
optima can easily be reached. If the inner loop for j in the pseudo-code is removed
and Xj is replaced by the current global best G*, then this implies that the FA
reverts to a special case of the accelerated particle swarm optimization (PSO) al-
gorithm. Subsequently, the computational efficiency of this special FA case is
equivalent to that of enhanced PSO. Conversely, when γ → ∞ , the attractiveness
is essentially zero along the sightline of all other fireflies. This is equivalent to the
case where the fireflies randomly roam throughout a very thick foggy region with
no other fireflies visible and each firefly roams in a completely random fashion.

264 J.S. Yeomans



This case corresponds to a completely random search method. As the FA operates
between these two asymptotic extremes, it is possible to adjust the parameters α and
γ so that the FA can outperform both a random search and the enhanced PSO
algorithms [4].

The computational efficiencies of the FA will be exploited in the subsequent
MGA solution approach. As noted, within the two asymptotic extremes, the pop-
ulation in the FA can determine both the global optima as well as the local optima
concurrently. This concurrency of population-based solution procedures holds huge
computational and efficiency advantages for MGA purposes [16]. An additional
advantage of the FA for MGA implementation is that the different fireflies essen-
tially work independently of each other, implying that FA procedures are better than
PSO and genetic algorithms for MGA because the fireflies will tend to aggregate
more closely around each local optimum [4, 15]. Consequently, with a judicious
selection of parameter settings, the FA will simultaneously converge extremely
quickly into both local and global optima [4, 14, 15].

3 Modelling to Generate Alternatives

Most optimization methods appearing in the mathematical programming literature
have focused almost entirely on the production of single optimal solutions to
single-objective problem formulations or, equivalently, on the generation of non-
inferior sets of solutions to multi-objective instances [2, 5, 6, 11, 13]. While such
algorithms may efficiently generate solutions to the derived complex mathematical
models, whether these outputs actually establish “best” approaches to the under-
lying real problems is debatable [2, 3, 11, 12]. In most “real world” applications,
there are innumerable system requirements and objectives that are never included or
apparent in the decision formulation stage [3, 13]. Furthermore, it may never be
possible to explicitly incorporate all of the subjective components because there are
frequently many incompatible, competing, design interpretations and, perhaps,
adversarial stakeholders involved. Therefore most of the subjective aspects of a
problem necessarily remain unquantified and unmodelled in the construction of the
resultant decision models. This occurs frequently in situations where final decisions
are constructed based not only upon clearly stated and modelled objectives, but also
upon more fundamentally subjective socio-political-economic goals and stake-
holder preferences [16]. Numerous “real world” examples describing these types of
incongruent modelling dualities are discussed in [1, 2, 12, 17].

When unquantified objectives and unmodelled issues are suspected, then
non-conventional approaches should be undertaken that not only search the feasible
region for noninferior solutions, but also explore the feasible region for obviously
inferior alternatives to the formulated problem. In particular, any search for good
alternatives to problems known or suspected to contain unmodelled objectives must
focus not only on the non-inferior solution set, but also necessarily on an explicit
exploration of the problem’s inferior decision space.

An Efficient Computational Procedure … 265



To illustrate the implications of an unmodelled objective on a decision search,
assume that the optimal solution for a quantified, single-objective, maximization
decision problem is X* with corresponding objective value Z1*. Now suppose that
there exists a second, unmodelled, maximization objective Z2 that subjectively
reflects some unquantifiable “political acceptability” component. Let the solution
Xa, belonging to the noninferior, 2-objective set, represent a potential best com-
promise solution if both objectives could somehow have been simultaneously
evaluated by the decision-maker. While Xa might be viewed as the best compro-
mise solution to the real problem, it would appear inferior to the solution X* in the
quantified mathematical model, since it must be the case that Z1a ≤ Z1*. Conse-
quently, when unmodelled objectives are factored into the decision making process,
mathematically inferior solutions for the modelled problem can prove optimal to the
underlying real problem. Therefore, when unmodelled objectives and unquantified
issues might exist, different solution approaches are needed in order to not only
search the decision space for the noninferior set of solutions, but also to simulta-
neously explore the decision space for inferior alternative solutions to the modelled
problem. Population-based solution methods such as the FA permit concurrent
searches throughout a feasible region and thus prove to be particularly adept pro-
cedures for searching through a problem’s decision space.

The primary motivation behind MGA is to produce a manageably small set of
alternatives that are quantifiably good with respect to the known modelled objec-
tives yet are as different as possible from each other in the decision space. The
resulting alternatives are likely to provide truly different choices that all perform
somewhat similarly with respect to the modelled objective(s) yet very differently
with respect to any unknown unmodelled issues. By generating a set of
good-but-different solutions, the decision-makers can explore desirable qualities
within the alternatives that may prove to satisfactorily address the various
unmodelled objectives to varying degrees of stakeholder acceptability.

In order to properly motivate an MGA search procedure, it is necessary to supply
a more mathematically formal definition of the goals of the MGA process [7, 12,
16]. Suppose the optimal solution to an original mathematical model is X* with
objective value Z* = F(X*). The following model can then be solved to generate an
alternative solution, X, that is maximally different from X*:

Maximize ΔðX,X*Þ= ∑
i

Xi −X*
i

�
�

�
�

Subject : to
X ∈D
FðXÞ−Z*
�
�

�
�≤ T

ð½P1�Þ

where Δ represents some difference function (for clarity, shown as an absolute
difference in this instance) and T is a targeted tolerance value specified relative to
the problem’s original optimal objective Z*. T is a user-supplied value that deter-
mines how much of the inferior region is to be explored in the search for acceptable
alternative solutions. This difference function concept can be extended into a
measure of difference between a set of alternatives by replacing X* in the objective

266 J.S. Yeomans



of [P1] and calculating the overall sum (or some other function) of the differences of
the pairwise comparisons between each pair of alternatives—subject to the condi-
tion that each alternative is feasible and falls within the specified tolerance
constraint.

4 FA-Based Simultaneous MGA Computational
Algorithm

The MGA method to be introduced produces a pre-determined number of
near-optimal, maximally different alternatives, by modifying the value of the bound
T in [P1] and using an FA to solve the corresponding, maximal difference problem.
Each solution within the FA’s population contains one potential set of p different
alternatives. By exploiting the co-evolutionary solution structure within the popu-
lation of the algorithm, the Fireflies collectively evolve each solution toward sets of
different local optima within the solution space. In this process, each desired
solution alternative undergoes the common search procedure of the FA. However,
the survival of solutions depends not only upon how well the solutions perform
with respect to the modelled objective(s), but also by how far away they are from all
of the other alternatives generated in the decision space.

A direct process for generating alternatives with the FA is to iteratively solve the
maximum difference model [P1] by incrementally updating the target T whenever a
new alternative needs to be created and then re-running the algorithm. This iterative
approach parallels the seminal Hop, Skip, and Jump (HSJ) MGA algorithm [2] in
which, once an initial problem formulation has been optimized, supplementary
alternatives are systematically produced one-by-one via an incremental adjustment
of the target constraint to force the sequential generation of suboptimal solutions.
While this approach is straightforward, it requires a recurrent execution of the
optimization algorithm [5, 6, 16].

To improve upon the stepwise alternative approach of the HSJ algorithm, a
concurrent MGA technique was subsequently designed based upon the concept of
co-evolution [5–7, 9]. In the co-evolutionary approach, pre-specified stratified
subpopulation ranges within the algorithm’s overall population were established
that collectively evolved the search toward the creation of the stipulated number of
maximally different alternatives. Each desired solution alternative was represented
by each respective subpopulation and each subpopulation underwent the common
processing operations of the FA. The survival of solutions in each subpopulation
depended simultaneously upon how well the solutions perform with respect to the
modelled objective(s) and by how far away they are from all of the other alterna-
tives. Consequently, the evolution of solutions in each subpopulation toward local
optima is directly influenced by those solutions contained in all of the other sub-
populations, which forces the concurrent co-evolution of each subpopulation

An Efficient Computational Procedure … 267



towards good but maximally distant regions within the decision space according to
[P1] [16].

By employing this co-evolutionary concept, it became possible to implement an
MGA procedure that concurrently produced alternatives possessing objective
function bounds analogous to those created by the sequential, iterative HSJ-styled
approach. In contrast, while each alternative produced by an HSJ procedure is
maximally different only from the overall optimal solution (together with its bound
on the objective value which is at least x% different from the best objective (i.e. x =
1%, 2%, etc.)), the concurrent procedure generated alternatives that are no more
than x% different from the overall optimal solution but with each one of these
solutions being as maximally different as possible from every other generated
alternative that was produced. Co-evolution is also much more efficient than
sequential HSJ in that it exploits the inherent population-based searches of FA
procedures to concurrently create its entire set of maximally different solutions
using only a single population [7, 9].

While a concurrent approach exploits the population-based nature of the FA’s
solution approach, the co-evolution process occurs within each of the stratified
subpopulations. The maximal differences between solutions in different subpopu-
lations is based upon aggregate subpopulation measures. Conversely, in the fol-
lowing simultaneous MGA algorithm, each solution in the population contains
exactly one entire set of alternatives and the maximal difference is calculated only
for that particular solution (i.e. the specific alternative set contained within that
solution in the population). Hence, by the evolutionary nature of the FA search
procedure, in the subsequent approach, the maximal difference is simultaneously
calculated for the specific set of alternatives considered within each specific solu-
tion—and the need for concurrent subpopulation aggregation measures is
circumvented.

The steps in the simultaneous co-evolutionary alternative generation algorithm
are as follows:

Initialization Stage: In this preliminary step, solve the original optimization
problem to determine the optimal solution, X*. As with prior solution approaches
[5]–[10] and without loss of generality, it is entirely possible to forego this step and
construct the algorithm to find X* as part of its solution processing. However, such
a requirement increases the number of computational iterations of the overall
procedure and the initial stages of the processing focus upon finding X* while the
other elements of each population solution remain essentially “computational
overhead”. Based upon the objective value F(X*), establish P target values.
P represents the desired number of maximally different alternatives to be generated
within prescribed target deviations from the X*.

Note: The value for P has to have been set a priori by the decision-maker.

Step 1. Create the initial population of size K in which each solution is divided
into P equally-sized partitions. The size of each partition corresponds to
the number of variables for the original optimization problem. Ap repre-
sents the pth alternative, p = 1,…,P, in each solution.

268 J.S. Yeomans



Step 2. In each of the K solutions, evaluate each Ap, p = 1,…,P, with respect to the
modelled objective. Alternatives meeting their target constraint and all
other problem constraints are designated as feasible, while all other
alternatives are designated as infeasible. A solution can only be designated
as feasible if all of the alternatives contained within it are feasible.

Step 3. Apply an appropriate elitism operator to each solution to rank order the
best individuals in the population. The best solution is the feasible solution
containing the most distant set of alternatives in the decision space (the
distance measure is defined in Step 5). Note: Because the best solution to
date is always retained in the population throughout each iteration of the
FA, at least one solution will always be feasible. A feasible solution for the
first step can always consists of P repetitions of X*.

This step simultaneously selects a set of alternatives that respectively satisfy
different values of the target T while being as far apart as possible (i.e. maximally
different as defined in [P1]) from the other solutions generated. By the
co-evolutionary nature of the FA, the alternatives are simultaneously generated in
one pass of the procedure rather than the P implementations suggested by the
necessary increments to T in problem [P1].

Step 4. Stop the algorithm if the termination criteria (such as maximum number of
iterations or some measure of solution convergence) are met. Otherwise,
proceed to Step 5.

Step 5. For each solution k = 1,…, K, calculate Dk, a distance measure between all
of the alternatives contained within solution k.

As an illustrative example for determining a distance measure, calculate

Dk = ∑
i=1 to P

∑
j=1 to P

ΔðAi,AjÞ.

This represents the total distance between all of the alternatives contained within
solution k. Alternatively, the distance measure could be calculated by some other
appropriately defined function.

Step 6. Rank the solutions according to the distance measure Dk objective—
appropriately adjusted to incorporate any constraint violation penalties for
infeasible solutions. The goal of maximal difference is to force alternatives
to be as far apart as possible in the decision space from the alternatives of
each of the partitions within each solution. This step orders the specific
solutions by those solutions which contain the set of alternatives which are
most distant from each other.

Step 7. Apply appropriate FA “change operations” to the each of the solutions and
return to Step 2.

An Efficient Computational Procedure … 269



5 Computational Testing of Simultaneous MGA
Algorithm

As alluded to in the earlier sections, non-mathematically orientated, “real world”
planners generally prefer to be able to select from a set of “near-optimal” alter-
natives that significantly differ from each other in terms of the system structures
characterized by their decision variables. The ability of the FA MGA procedure to
simultaneously produce such maximally different alternatives will be demonstrated
using a non-linear optimization problem taken from [12]. The mathematical for-
mulation for this multimodal problem is:

MaximizeFðx, yÞ= sinð19πxÞ+ x
1.7

+ sinð19πyÞ+ y
1.7

+ 2

0.0≤ x≤ 1.0 0.0≤ y≤ 1.0

The non-linear, feasible region contains 100 peaks separated by valleys in which
the amplitudes of both the peaks and valleys increase as the values of the decision
variables increase from the (0,0) toward (1,1). For the design parameters employed
in this formulation, the best solution of F(x, y) = 5.146 occurs at point (x, y) =
(0.974, 0.974) [12].

In order to create the set of different alternatives, extra target constraints that
varied the value of T by up to 1.5% between successive alternatives were placed
into the original formulation in order to force the generation of solutions maximally
different from the initial optimal solution (i.e. the values of the bound were set at
1.5, 3, 4.5%, etc. for the respective alternatives). The MGA maximal difference
algorithm described in the previous section was run to produce the optimal solution
and the 10 maximally different solutions shown in Table 1 and illustrated in Fig. 1.

Table 1 Objective values
and solutions for the 11
maximally different
alternatives

Increment 1.5% Increment
between alternatives
F(x,y) x y

Optimal 5.14 0.97 0.97
Alternative 1 5.11 0.97 0.98
Alternative 2 5.06 0.98 0.87
Alternative 3 5.01 0.87 0.76
Alternative 4 4.98 0.87 0.98
Alternative 5 4.92 0.76 0.98
Alternative 6 4.90 0.87 0.66
Alternative 7 4.77 0.45 0.87
Alternative 8 4.73 0.98 0.34
Alternative 9 4.66 0.13 0.97

Alternative 10 4.65 0.98 0.13

270 J.S. Yeomans



As described earlier, most “real world” optimization applications tend to be
riddled with incongruent performance requirements that are exceedingly difficult to
quantify. Consequently, it is preferable to create a set of quantifiably good alter-
natives that provide very different perspectives to the potentially unmodelled per-
formance design issues during the policy formulation stage. The unique
performance features captured within these dissimilar alternatives can result in very
different system performance with respect to the unmodelled issues, hopefully
thereby addressing some of the unmodelled issues into the actual solution process.

The example in this section underscores how a co-evolutionary MGA modelling
perspective can be used to simultaneously generate multiple alternatives that satisfy
known system performance criteria according to the prespecified bounds and yet
remain as maximally different from each other as possible in the decision space. In
addition to its alternative generating capabilities, the FA component of the MGA
approach simultaneously performs extremely well with respect to its role in func-
tion optimization. It should be explicitly noted that the cost of the overall best
solution produced by the MGA procedure is indistinguishable from the one
determined in [12].

The computational example has demonstrated several important findings with
respect to the simultaneous FA-based MGA method: (i) The co-evolutionary
capabilities within the FA can be exploited to generate more good alternatives than
planners would be able to create using other MGA approaches because of the
evolving nature of its population-based solution searches; (ii) By the design of the
MGA algorithm, the alternatives generated are good for planning purposes since all
of their structures will be maximally different from each other (i.e. these differences
are not just simply different from the overall optimal solution as in an HSJ-style
approach to MGA); and, (iv) The approach is computationally efficient since it need

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y
va
lu
e

x value

Fig. 1 Dispersion of the maximally different alternatives throughout the decision space

An Efficient Computational Procedure … 271



only be run a single time in order to generate its entire set of multiple, good solution
alternatives (i.e. to generate n solution alternatives, the MGA algorithm needs to run
exactly once irrespective of the value of n).

6 Conclusions

“Real world” decision-making problems generally possess multidimensional per-
formance specifications that are compounded by incompatible performance objec-
tives and unquantifiable modelling features. These problems usually contain
incongruent design requirements which are very difficult—if not impossible—to
capture at the time that supporting decision models are formulated. Consequently,
there are invariably unmodelled problem facets, not apparent during the model
construction, that can greatly impact the acceptability of the model’s solutions to
those end users that must actually implement the solution. These uncertain and
competing dimensions force decision-makers to integrate many conflicting sources
into their decision process prior to final solution construction. Faced with such
incongruencies, it is unlikely that any single solution could ever be constructed that
simultaneously satisfies all of the ambiguous system requirements without some
significant counterbalancing involving numerous tradeoffs. Therefore, any ancillary
modelling techniques used to support decision formulation have to somehow
simultaneously account for all of these features while being flexible enough to
encapsulate the impacts from the inherent planning uncertainties.

In this chapter, an MGA procedure was presented that demonstrated how the
population structures of a computationally efficient FA could be exploited to
simultaneously generate multiple, maximally different, near-best alternatives. In this
MGA capacity, the approach produces numerous solutions possessing the requisite
structural characteristics, with each generated alternative guaranteeing a very dif-
ferent perspective to the problem. Since FA techniques can be modified to solve a
wide variety of problem types, the practicality of this MGA approach can clearly be
extended into numerous disparate planning applications. These extensions will be
studied in future research.

References

1. Baugh, J.W., Caldwell, S.C., Brill, E.D.: A mathematical programming approach for
generating alternatives in discrete structural optimization. Eng. Optim. 28(1), 1–31 (1997)

2. Brill, E.D., Chang, S.Y., Hopkins, L.D.: Modelling to generate alternatives: the HSJ approach
and an illustration using a problem in land use planning. Manag. Sci. 28(3), 221–235 (1982)

3. Brugnach, M., Tagg, A., Keil, F., De Lange, W.J.: Uncertainty matters: computer models at
the science-policy interface. Water Resour. Manage 21, 1075–1090 (2007)

4. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using firefly
algorithm. Comput. Struct. 89(23–24), 2325–2336 (2011)

272 J.S. Yeomans



5. Imanirad, R., Yang, X.S., Yeomans, J.S.: A computationally efficient, biologically-inspired
modelling-to-generate-alternatives method. J. Comput. 2(2), 43–47 (2012)

6. Imanirad, R., Yang, X.S., Yeomans, J.S.: A Co-evolutionary, Nature-Inspired Algorithm for
the Concurrent Generation of Alternatives. J. Comput. 2(3), 101–106 (2012)

7. Imanirad, R., Yeomans, J.S.: Modelling to generate alternatives using biologically inspired
algorithms. In: Yang, X.S. (ed.), Swarm Intelligence and Bio-Inspired Computation: Theory
and Applications Elsevier, Amsterdam, Netherlands, pp. 313–333 (2013)

8. Imanirad, R., Yang, X.S., Yeomans, J.S.: Modelling-to-generate-alternatives via the firefly
algorithm. J. Appl. Oper. Res. 5(1), 14–21 (2013)

9. Imanirad, R., Yang, X.S., Yeomans, J.S.: A concurrent modelling to generate alternatives
approach using the firefly algorithm. Int. J. Decis. Support Syst. Technol. 5(2), 33–45 (2013)

10. Imanirad, R., Yang, X.S., Yeomans, J.S.: A biologically-inspired metaheuristic procedure for
modelling-to-generate-alternatives. Int. J. Eng. Res. Appl. 3(2), 1677–1686 (2013)

11. Janssen, J.A.E.B., Krol, M.S., Schielen, R.M.J., Hoekstra, A.Y.: The effect of modelling
quantified expert knowledge and uncertainty information on model based decision making.
Environ. Sci. Policy 13(3), 229–238 (2010)

12. Loughlin, D.H., Ranjithan, S.R., Brill, E.D., Baugh, J.W.: Genetic algorithm approaches for
addressing unmodeled objectives in optimization problems. Eng. Optim. 33(5), 549–569
(2001)

13. Walker, W.E., Harremoes, P., Rotmans, J., Van der Sluis, J.P., Van Asselt, M.B.A., Janssen,
P., Krayer von Krauss, M.P.: Defining uncertainty—a conceptual basis for uncertainty
management in model-based decision support. Integr. Assess. 4(1), 5–17 (2003)

14. Yang, X.S.: Firefly algorithms for multimodal optimization. Lecture Notes Comput. Sci.
5792, 169–178 (2009)

15. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms 2nd Ed. Luniver Press, Frome UK
(2010)

16. Yeomans, J.S., Gunalay, Y.: Simulation-optimization techniques for modelling to generate
alternatives in waste management planning. J. Appl. Oper. Res. 3(1), 23–35 (2011)

17. Zechman, E.M., Ranjithan, S.R.: An evolutionary algorithm to generate alternatives (EAGA)
for engineering optimization problems. Eng. Optim. 36(5), 539–553 (2004)

An Efficient Computational Procedure … 273


	12 An Efficient Computational Procedure for Simultaneously Generating Alternatives to an Optimal Solution Using the Firefly Algorithm
	Abstract
	1 Introduction
	2 Firefly Algorithm for Optimization
	3 Modelling to Generate Alternatives
	4 FA-Based Simultaneous MGA Computational Algorithm
	5 Computational Testing of Simultaneous MGA Algorithm
	6 Conclusions
	References


