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Abstract This chapter presents one of the recently proposed bio-inspired optimiza-

tion methods, namely, flower pollination algorithm (FPA). FPA for its capability

to adaptively search a large search space with maybe many local optima has been

employed to solve many real problems. FPA is used to handle the feature selection

problem in wrapper-based approach where it is used to search the space of feature

for an optimal feature set maximizing a given criteria. The used feature selection

methodology was applied in classification and regression data sets and was found to

be successful. Moreover, FPA was applied to handle the knapsack problem where dif-

ferent data sets with different dimensions were adopted to assess FPA performance.

On all the mentioned problems FPA was benchmarked against bat algorithm (BA),

genetic algorithm (GA), particle swarm optimization (PSO) and is found to be very

competitive.

Keywords Flower pollination algorithm ⋅ Bio-inspired optimization ⋅ Evolution-

ary computation ⋅ Feature selection ⋅ Knapsack problem

1 Introduction

This chapter presents the importance of flower pollination algorithm (FPA) for fea-

ture selection for regression and classification data and knapsack. In the current

applications of machine learning and pattern recognition techniques, there are thou-

sands of such features. The vast amounts of data generated today in biology offer

more detailed and useful information on one hand; on the contrary, it makes the data

analyzing process more difficult because not all the information is relevant. Select-

ing the important features of a given dataset is a complex problem. Feature selection
is a technique for solving classification and regression problems, and it identifies
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the significant feature subset and removes the unnecessary ones. This mechanism is

particularly useful when the size of feature subset is large, and not all of them are

required for describing the data features in experiments [1]. Hence, the use of fea-

ture selection method is crucial to reduce the enormous number of features. Feature

selection helps in understanding data, decreasing the computation time, reducing the

effect of the curse of dimensionality and enhancing the performance of prediction

model [2]. Furthermore, the feature selection process enhances the visualization and

the comprehensibility of the selected feature subset [3].

In real-world applications, due to different reasons not discussed here, many fea-

tures introduce noise, while others can be totally irrelevant or even misleading,

affecting prediction performance. In these cases, feature selection is a must [4]. Two

main criteria are employed to differentiate between the feature selection algorithms

as follows:

1. Search strategy: the method employed to generate feature subsets or feature com-

binations.

2. Subset quality (fitness): the criteria used to judge the quality of a feature subset.

There are two major approaches of feature selection methods: wrapper-based

approach (applying machine learning algorithms) and filter-based approach (using

statistical methods) [5]. The wrapper-based approach employs a machine learning

technique as part of the assessment operation that helps to obtain better results than

the filter-based [6], but it has a risk of over-fitting the model and can be computa-

tionally costly, and hence, a brilliant search method is required to minimize the com-

putational time [7]. In contrast, the filter-based approach explores for a feature sub-

set that optimizes a given data-dependent criterion rather than using classification-

dependent criteria as in the wrapper methods [8].

In general, the feature selection is expressed as multi-objective with these two

goals: (1) minimize the selected feature subset and (2) maximize the classification

precision (minimize the prediction error in the regression problems). Commonly,

these two goals are contradictory, and the optimal solution is a trade-off between

them. Several search methods have been employed, based mainly on greedy search;

however, these techniques have at least two drawbacks: stagnation in local optima

and big computational time [9]. Evolutionary computing (EC) and population-based

algorithms adaptively search the feature space by using a set of search agents that

interact in a social manner to reach the optimal solution [10]. EC methods are

inspired by the animal social and biological behavior in nature like (wolves, antlions,

dragonflies, spiders, and so on) in a group [11].

Most of the recent optimization techniques are nature-inspired, i.e. they have been

inspired from nature [12].
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2 Related Work

Feature selection methods are composed of two elements: the search strategy and

the evaluation technique (subset goodness). In the wrapper-based approach (alterna-

tive to the filter-based approach), the term wrapper refers to the assessment method.

Learning boolean is a filter feature selection method that exhaustively explores all

potential feature combinations and chooses the minimum feature subset [6].

Various heuristic techniques mimic the biological and physical conducts in nature,

and they have been introduced as robust techniques for the global optimization.

GA was the earliest evolutionary based technique proposed in the literature, later

enhanced relying on the evolution operator during the reproduction [13]. GA fea-

ture selection method using a fuzzy set as the fitness function has been introduced in

[14]. Wrapper-filter based feature selection methods combine GA with local search

methods [15].

In particle swarm optimization (PSO) methods, a solution is represented by a par-

ticle with specific properties like position, fitness, and speed [16]. A binary version

of PSO (BPSO) modifies the native PSO algorithm to deal with the binary optimiza-

tion problems [17]. Moreover, an expanded version of BPSO is implemented to deal

with feature selection [18]. The binary variant of bat algorithm (BBA) is employed

to feature selection, where the search area is described as an n-cube [19].

Ant colony optimization (ACO) uses Fisher discrimination rate to adopt the

heuristic information and rough set approach employed for feature selection [20].

Artificial fish swarm (AFS) algorithm mimics the stimulant reaction by controlling

the tail and fin [21]. Artificial bee colony (ABC) relies on the natural conduct of hon-

eybees that randomly produced employer bees are moved in the elite bee direction

[22]. The elite bee represents the optimal (near to optimal) solution [23]. Antlion

optimization algorithm (ALO) is a comparatively recent EC method, which simu-

lates the antlions hunting in nature [24].

Artificial neural networks (ANN) particularly single hidden layer feed-forward

neural networks (SLFN) are viewed as a standout amongst the most conventional

machine learning models used in regression and classification domains [25]. The

learning algorithm is considered the cornerstone of any neural network. Classical

gradient-based learning algorithms are suffering from over-fitting, local minima, and

they consume a long time to learn [26]. The back-propagation artificial neural net-

work (BP-ANN) has average learning velocity and is likely to get caught in the local

minima, leading to miserable performance and efficiency. The revised back propa-

gation artificial neural network (RBP-ANN) is applied to defeat the constraints of

BP-ANN and RBP-ANN [27].

In extreme learning machine (ELM) techniques, the output connections are tuned

by solving an optimization problem, i.e. finding the minimum of the cost function

by linearization [28]. Huang [29] introduced ELM in order to avoid some of the dif-

ficulties observed in gradient-based learning methods. ELM is used as a supervised
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learning method for SLFN neural networks [30, 31]. ELM is choosing the weights of

the input and hidden layers randomly rather than completely adapting all the internal

parameters. Moreover, ELM could analytically define the output layer weights [32].

3 Flower Pollination Algorithm (FPA) with Selected
Applications

FPA is metaheuristic optimization technique relying on the pollination operation of

flowering plants that introduced by Yang in 2012 [33]. Pollination is carried out

in two modes self pollination (local search) and cross pollination (global search).

Detailed information about the two ways of pollination as follow [34]:

1. Cross pollination happens from the pollen of a flower of a different plant at long

distance via pollinators that can fly a big distance (global pollination) [34]. In

the cross pollination, the pollinators convey the flower pollens and can fly long

distance to assure the pollination and proliferation of the optimal solution g∗.

The initial rule may be formulated as in Eq. (1):

Xt+1
i = Xt

i + L(Xt
i − g∗), (1)

where Xt
i represents the vector of a i solution at t iteration, g∗ demonstrates the

present best solution, and L describes the pollination strength that randomly

pulled from the Lèvy distribution.

2. Self pollination is implantation of one flower from the pollen of identical flower

or different flowers of the identical plant that usually happens when there is no

pollinator possible. The local pollination and flower constancy is expressed as

in the Eq. (2):

Xt+1
i = Xt

i + 𝜀(Xt
j − Xt

k), (2)

where Xt
j and Xt

k demonstrate two random solutions, and 𝜀 drawn from the uni-

form distribution.

Because of local pollination may have substantial fraction (p) in the aggregate

pollination actions (in our experiments, we used p = 0.5). A switching probability

p𝜀[0, 1] manages the local and global pollination. FPA search methodology can be

outlined as in the algorithm (1).



Applications of Flower Pollination Algorithm . . . 221

1: Inputs: N Total flower agents,

IterMax Total iterations number,

p Switch probability,

2: Outputs: The best solution (g∗) and its fitness value.

3: Initialize the N flowers population randomly.

4: Choose the best solution (g∗).

5: while Stopping criteria do not meet do
6: for all Flower i in the solution set do
7: if rand < p then
8: Design the L d-dimensional vector based on Lèvy distribution.

9: Employ the global pollination on i solution as in the equation (1).

10: else
11: Pull 𝜖 from the uniform distribution.

12: Select the j and k solutions randomly.

13: Execute the local pollination on the i solution by employing the j and k solutions as in

the equation (2).

14: end if
15: Assess the new solution.

16: if the new solution is better than the current one then
17: Substitute the current solution i by the new solution.

18: end if
19: end for
20: Upgrade the optimal solution g∗.

21: end while
22: Select the optimal solution and its fitness.

Algorithm 1: Flower pollination algorithm (FPA)

3.1 FPA Applied for Feature Selection

FPA is adopted here for exploiting the capabilities of filter and wrapper approaches

for feature selection. The filter approach can be described as data-oriented methods

that not directly related to classification performance. The wrapper-based approach

is more related to prediction performance, but it does not face redundancy and depen-

dency among the selected feature set.

We are seeking to find similarities and differences based on some evaluation cri-

teria that may help in finding weak and strength features of each. All swarm intelli-

gence methods regularly share the data between their multiple agents. Therefore, at

every iteration, all/some agents upgrade/modify their position relied on the data of

their own position and the other positions.

FPA is applied for feature selection in both classification and regression prob-

lems. For a vector with N features, the various feature selection would be 2N that

is the vast space of features to be searched exhaustively. Therefore, intelligent opti-

mization is applied to explore the search area adaptively for best feature subset. The

optimal feature subset is the one with least prediction error and a less number of
selected features as a common objective in literature. In classification problems, the

general fitness function for the proposed optimization algorithms is to maximize the
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classification accuracy over the validation set given the training set, as shown in Eq.

(3) while keeping the minimum number of features selected:

↓ Fitness = 𝛼(1 − P) + 𝛽

∣ R ∣
∣ C ∣

, (3)

where R indicates the size of chosen feature set, C demonstrates the total number

of features in the dataset, 𝛼 and 𝛽 depict the significance of classification perfor-

mance and the chosen feature set length, 𝛼 ∈ [0, 1] and 𝛽 = 1 − 𝛼, P is the classifi-

cation performance measured as in Eq. (4):

P =
Nc

N
, (4)

where Nc indicates the number of correctly classified instances, and N is the total

number of instances.

In the case of regression problems, the general fitness function for the proposed

optimization algorithms is to minimize the prediction error over the validation set

given the training set as in Eq. (5) while keeping a minimum number of features

selected.

↓ Fitness = 𝛼 ∗ E + 𝛽

∣ R ∣
∣ C ∣

, (5)

where E indicates the prediction error, 𝛼 and 𝛽 show the importance of prediction

error and selected feature subset respectively. E is defined as:

E =
M∑

i=1
|ai − ti|, (6)

where ai and ti are the actual model prediction value and target value for point i in

the validation set.

The used features are the same as the number of features in a given dataset. All

features are limited in the range [0, 1], where the feature value approaches to 1; its

corresponding feature is a candidate to be selected in classification. In individual fit-

ness calculation, the feature is a threshold to decide whether a feature will be selected

at the evaluation stage. Therefore, a static threshold of 0.5 is used as in the Eq. (7):

yij =

{
0 if xij < 0.5
1 Otherwise,

(7)

where xij is a D—dimensional point in the search space of features and yij is the

binary value∈ 0, 1 corresponding to selecting/unselecting feature j in solution i from

the solution set.
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3.2 FPA Applied for Knapsack Problem

Given a set of n elements with each element has a profit pj and a weight wj and a

Knapsack of capacity C the objective is to find the most profitable solution without

violating knapsack weight capacity [35]. A vector describing whether an element is

selected or not can be represented in binary form with an n-dimensional vector with

individual elements xi ∈ 0, 1. So, the problem can be mathematically formulated as:

Maximimize
n∑

j=1
pjxj, (8)

subject to

n∑

j=1
wjxj ⩽ C. (9)

The knapsack problem is an NP-hard problem which requires a very intelligent

optimization to search the huge search space of possibilities. FPA is adopted in this

work to solve a set of Knapsack problems with variant dimensions to prove the

searching capability of the FPA. Death penalty [36] is adopted to handle the con-

straint of the knapsack while the total fitness is calculated as in Eq. (8) but with

using negative sign to standardize the maximization into minimization.

4 Experimental Results and Discussion

The global and optimizer-specific parameter setting is outlined in Table 1. All the

parameters are set either according to domain-specific knowledge as the 𝛼 and 𝛽

parameters of the used fitness function, or based on trial and error on small simula-

tions and common in literature such as the rest of parameters.

In this study, the wrapper approach is used to find a feature subset supervised

by the prediction performance. Hence, an intelligent search method is necessary for

searching the feature space. In the case of classification datasets, the used classifier

in the fitness function as given in Eq. (3) is KNN [37]. KNN is utilized in the exper-

iments based on trial and error basis where the best choice of K is selected (K = 5)
as the best performing on all the datasets.

4.1 Assessment Indicators

Each algorithm has been applied K ∗ M times with random positioning of the search

agents except for the full features selected solution that was compelled to be a posi-
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Table 1 The parameter setting for experiments

Parameter Value(s)

K for cross validation 10

M total number of runs 20

Number of search agents 8

Number of iterations (dimension < 100) 100

Number of iterations (dimension ≥ 100) 200

Problem dimension Number of features in the dataset

Search range in binary methods {0, 1}

Search range in continuous methods [0, 1]

𝛼 in the fitness function 0.99

𝛽 in the fitness function 0.01

tion for one of the search agents. Compelling the full features solution ensures that

all consequent feature subsets; if selected as the global best solution, are fitter than

it. Repeated runs of the optimization algorithms were applied to test their conver-

gence capability. We have applied two types of indicators (measures) to compare the

various algorithms.

1. Firstly, this group of indicators is applied directly to the fitness function obtained

based on the validation set and used to characterize the algorithm performance

as follows:

∙ Mean fitness: is an average value of all the solutions in the final sets obtained

by an optimizer in a number of individual runs [38].

∙ Median fitness: is used to assess the average performance tolerating noise per-

formance of the optimizer over all the M runs [38].

∙ Best fitness: is the minimum value of the fitness function that acquired by the

optimizer in M independent applications [38].

∙ Worst fitness: is the maximum fitness function value (or worst obtained fit-

ness value) acquired by an optimization method in M independent applica-

tions [38].

∙ Statistical standard deviation (std): is a representation of the variation of the

obtained best solutions found for running a stochastic optimizer for M differ-

ent runs. Std is used as an indicator for the optimizer capability to converge

to same/similar optimal solution [38].

2. The second group of indicators is applied to assess the performance of the entire

prediction model as follows:

∙ Average classification error: depicts how precise the classifier of the chosen

feature subset, as shown in the Eq. (10):
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Perf = 1
M

M∑

j=1

1
N

N∑

i=1
Unmatch(Ci,Li), (10)

where M represents the total number of runs for the optimization method, N
describes the total instances in the test subset; Ci depicts the classifier output

label of the i data instance. Li denotes the source class label of the i data

instance, and Unmatch specifies the function that yields 0 if the two labels are

equivalent and yields 1 otherwise.

∙ Mean square error (MSE): is measuring the mean square error of the differ-

ence between actual output and the predicted one as given in Eq. (11):

MSE =
∑n

i=1(predi − obsi)2

n
, (11)

∙ Root mean square error (RMSE): is measuring the difference among actual

output and the predicted ones as given in Eq. (12):

RMSE =

√∑n
i=1(obsi − predi)2

n
, (12)

where obsi and predi are the observed and predicted values respectively. 𝜇 rep-

resents the mean of the noticed values, n demonstrates the total of examples,

and i depicts the example number in a given dataset.

∙ Average selection size: demonstrates the average size of the chosen feature

subset to the aggregate amount of features as in the Eq. (13):

Selection_Size = 1
M

M∑

i=1

size(gi∗)
Nt

, (13)

where Nt represents the total number of features in a given dataset.

∙ Average feature reduction: demonstrates the mean size of the reduced features

to the aggregate amount of features as in the Eq. (14):

Reduction = 1 − 1
M

M∑

i=1

size(gi∗)
Nt

, (14)

∙ Average Fisher score (F-score): assesses the feature subset that has large dis-

tances between the data samples in various classes, while the distances among

data instances in the same class are as minimum as possible [39]. F-score is

computed for individual features given the class labels and for M independent

applications of an algorithm; as shown in Eq. (15):
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Fj =
∑c

k=1 nk(𝜇
j
k − 𝜇

j)2

(𝜎j)2
, (15)

where Fj is the Fisher score for feature j, 𝜇j
is the mean of the entire dataset.

(𝜎j)2 is the standard deviation of the whole dataset, nk denotes the size of the

k class, and 𝜇

j
k indicates the mean of k class.

∙ Wilcoxon: introduced by Wilcoxon [40] as a non-parametric test. The test allo-

cates rank to all the scores considered as one group and afterward sums the

ranks of every group. The null hypothesis originates from the same popula-

tion, so any difference in the two rank sums come only from the testing error.

The rank sum test is regularly depicted as the non-parametric version of the

T-test for two independent groups.

∙ T-test: is a statistical significance that decides whether or not the difference

between two classes’ averages most likely reflects a real difference in the pop-

ulation from which the groups were sampled; as in the Eq. (16) [41].

t =
x̄ − 𝜇0

S√
n

(16)

where 𝜇0 is the average of the t-distribution and
S√
n

is its standard deviation.

∙ Average computational time: is the run time for a given optimization algorithm

in millisecond that calculated over the different runs as given in Eq. (17):

To =
1
M

M∑

i=1
RunTimeo,i, (17)

where M demonstrates the total number of runs for the optimizer O, and

RunTimeo,i is the computational time in millisecond for optimizer o at run

number i.

4.2 Datasets

All datasets were collected to have a variety of features and instances as delegates of

various problem types, which the introduced methods will be examined on. Besides,

we selected a set of respectively high dimensional data to ensure the performance

of optimization algorithms in huge search spaces. Each dataset is split by cross-

validation [42] mode for evaluation, which K−1 folds are employed for the training,

validation, and testing sets. Each set is repeated M times, hence, each optimizer is
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estimated K ∗ M times for individual dataset. Each dataset is equally sized into train-

ing, validation, and testing. Training part is used to train the used classifier through

optimization and at the final evaluation. Validation part used to assess the perfor-

mance of the classifier at the optimization time. Testing part is employed to determine

the finally selected features given the trained classifier. The classification and regres-

sion models are used to ensure the quality of the selected features and are assessed

on the validation set inside the fitness function during the optimization process [6].

In the case of regression datasets, the regression model used in the fitness function

as in Eq. (5) is extreme learning machine (ELM) with a different number of hidden

layers and sigmoid basis function. ELM used for regression purposes and is adopted

to evaluate the fitness function. ELM has seven nodes in input layer representation

and one hundred hidden nodes (based on trial and error basis); because ELM needs

more hidden nodes than the classical gradient training algorithms [28].

Table 2 outlines twenty-one datasets used in classification problems. The datasets

are acquired from the UCI machine learning repository [43, 44]. Table 3 displays the

ten datasets applied in the regression experiments. The used datasets are picked from

the UCI machine learning repository [43].

4.3 FPA for Feature Selection Using Classification Data

In classification data category, the classifier used in fitness function as in Eq. (3) is

KNN [37]. KNN is applied in the experiments based on trial and error basis where the

best choice of K is selected (K = 5) as the best performing on all the datasets. The

aggregate purpose of this part is to declare the bio-inspired optimization methods

for feature selection approaches that minimize the selected feature set and maximize

the classification performance from applying the whole features and conventional

feature selection methods in the classification problem.

Table 4 outlines the average statistical mean fitness of FPA [45], BA [46], GA,

and PSO optimization algorithms for all 21 classification datasets that calculated

over the 20 runs. We can observe that all used optimization methods outperform

the full features selected that proves the capability of wrapper-based method in fea-

ture selection problem. We can also highlight that the CS performs in general better

than the other optimizers that demonstrate the ability of CS adaptively to explore the

area for the optimal feature combination. For evaluating the stability of the stochas-

tic algorithms in the study and converge to the same optimal solution. We measure

the standard deviation, and the results are depicted in the Table 5. We can see that,

although the FPA depends on Lèvy distribution that has infinite variance it still keeps

comparable std measure.
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Table 2 List of datasets used in classification data

DS Name No. of features No. of samples

1 Breastcancer 9 699

2 BreastEW 30 569

3 Clean1 166 476

4 Clean2 166 6598

5 CongressEW 16 435

6 Exactly 13 1000

7 Exactly2 13 1000

8 HeartEW 13 270

9 IonosphereEW 34 351

10 KrvskpEW 36 3196

11 Lymphography 18 148

12 M-of-n 13 1000

13 PenglungEW 325 73

14 Semeion 265 1593

15 SonarEW 60 208

16 SpectEW 22 267

17 Tic-tac-toe 9 958

18 Vote 16 300

19 WaveformEW 40 5000

20 WineEW 13 178

21 Zoo 16 101

Table 3 List of datasets used in regression data

DS Name No. of features No. of samples

1 CASP 9 45730

2 CBM 17 11934

3 CCPP 4 47840

4 ENB2012_Y1 8 768

5 ENB2012_Y2 8 768

6 ForestFire 12 517

7 Housing 13 506

8 RelationNetwork 22 53413

9 Slump_test 10 103

10 Yacht_hydrodynamics 6 308
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Table 4 Mean fitness of 20 runs

DS Full BA FPA GA PSO

1 0.026 0.022 0.021 0.022 0.027

2 0.053 0.024 0.022 0.025 0.030

3 0.214 0.140 0.136 0.150 0.148

4 0.048 0.038 0.037 0.038 0.038

5 0.090 0.036 0.033 0.043 0.048

6 0.336 0.161 0.072 0.219 0.296

7 0.284 0.237 0.234 0.240 0.242

8 0.196 0.132 0.123 0.138 0.133

9 0.160 0.109 0.105 0.111 0.127

10 0.091 0.037 0.031 0.036 0.050

11 0.281 0.136 0.116 0.161 0.165

12 0.155 0.037 0.025 0.081 0.114

13 0.203 0.175 0.152 0.193 0.180

14 0.044 0.030 0.030 0.034 0.029
15 0.338 0.128 0.132 0.136 0.164

16 0.161 0.136 0.126 0.141 0.136

17 0.259 0.222 0.219 0.224 0.229

18 0.087 0.033 0.029 0.034 0.041

19 0.231 0.202 0.200 0.206 0.223

20 0.067 0.015 0.007 0.015 0.019

21 0.265 0.102 0.076 0.132 0.125

Avg. 0.171 0.102 0.092 0.113 0.122

Table 6 outlines the average classification error of the selected feature subset from

the optimization methods of test set averaged over the 20 runs. From the table, FPA

obtains the best results on average, thus demonstrating the capability of FPA to find

optimal feature combinations ensuring proper test performance. Regarding the size

of selected features on the original size, Table 7 outlines the kept feature ratio to

the total number of features. We can notice that FFA gets the best selection feature

subset results in general. The performance over the test data is to some extent com-

patible with the results from the F-score calculated over the selected features by the

different optimizers; as shown in the Table 8. GA has obtained the best F-score val-

ues overall. Table 9 outlines the average computational time of different optimization

algorithms. From the table, FPA has the best computational time in comparison to

all other algorithms.
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Table 5 Std of fitness values for 20 runs

DS Full BA FPA GA PSO

1 0.013 0.008 0.009 0.009 0.007
2 0.018 0.006 0.008 0.008 0.010

3 0.047 0.027 0.027 0.029 0.046

4 0.003 0.003 0.004 0.002 0.003

5 0.028 0.016 0.009 0.014 0.016

6 0.033 0.118 0.034 0.103 0.029
7 0.040 0.017 0.016 0.012 0.013

8 0.039 0.024 0.015 0.019 0.020

9 0.005 0.027 0.025 0.027 0.025

10 0.012 0.008 0.005 0.009 0.007

11 0.067 0.044 0.035 0.028 0.045

12 0.019 0.036 0.035 0.046 0.054

13 0.005 0.126 0.102 0.112 0.108

14 0.008 0.003 0.006 0.006 0.005
15 0.041 0.030 0.041 0.036 0.048

16 0.045 0.027 0.027 0.037 0.024
17 0.030 0.011 0.012 0.017 0.021

18 0.031 0.013 0.015 0.015 0.015

19 0.013 0.013 0.011 0.008 0.010

20 0.000 0.019 0.012 0.015 0.021

21 0.029 0.077 0.059 0.052 0.065

Avg. 0.025 0.031 0.024 0.029 0.028

4.4 FPA for Feature Selection Using Regression Data

In regression data, the regression model used in fitness function as in Eq. (5) is

extreme learning machine (ELM). The aggregate purpose of this section is to intro-

duce bio-inspired optimization algorithms for feature selection approach that reduce

the number of selected feature subset and reduce the prediction error from apply-

ing the whole feature set and conventional feature selection techniques in regression

problems.

Table 10 outlines the average statistical mean fitness of BA, CS, DA, FFA, FPA,

MAKHA, GA, and PSO optimization algorithms for all ten regression datasets that

calculated over the 20 runs. We can highlight that the FPA performs in general bet-

ter than the other optimizers that prove the capability of FPA adaptively to explore

the search area for best feature subset. For evaluating the stability of the stochas-

tic algorithms in the study and converge to the same optimal solution. The standard
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Table 6 Average classification error of 20 runs

DS Full BA FPA GA PSO

1 0.043 0.043 0.044 0.042 0.045

2 0.046 0.056 0.059 0.063 0.067

3 0.212 0.204 0.212 0.205 0.197
4 0.050 0.046 0.044 0.048 0.048

5 0.080 0.079 0.064 0.068 0.074

6 0.311 0.185 0.069 0.253 0.314

7 0.261 0.252 0.247 0.253 0.252

8 0.189 0.212 0.214 0.210 0.220

9 0.194 0.177 0.177 0.167 0.170

10 0.091 0.047 0.033 0.041 0.058

11 0.231 0.241 0.225 0.257 0.223
12 0.153 0.045 0.027 0.092 0.124

13 0.289 0.275 0.274 0.311 0.297

14 0.050 0.042 0.039 0.042 0.042

15 0.324 0.266 0.269 0.261 0.282

16 0.236 0.201 0.191 0.185 0.187

17 0.263 0.261 0.260 0.257 0.275

18 0.113 0.079 0.070 0.067 0.066
19 0.239 0.223 0.221 0.224 0.236

20 0.079 0.071 0.077 0.071 0.086

21 0.286 0.133 0.144 0.178 0.144

Avg. 0.178 0.149 0.141 0.157 0.162

deviation results are depicted in the Table 11. We can see that, although the FPA

depends on Lèvy distribution that has infinite variance it still keeps comparable std

measure.

Table 12 describes the mean RMSE of the selected feature subset from the opti-

mization algorithms of test data averaged over the 20 runs. From the table, FFA

obtains the best results on average, thus demonstrating the capability of FFA to find

optimal feature combinations ensuring proper test performance. Regarding the size

of selected features on the original size, Table 13 outlines the kept feature ratio to

the total number of features. We can highlight that GA obtains the best selection
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Table 7 Average selection size of 20 runs

DS BA FPA GA PSO

1 0.506 0.506 0.556 0.506
2 0.441 0.448 0.456 0.493

3 0.461 0.482 0.483 0.468

4 0.491 0.515 0.502 0.516

5 0.424 0.299 0.396 0.403

6 0.513 0.462 0.556 0.556

7 0.308 0.299 0.256 0.171
8 0.521 0.496 0.487 0.556

9 0.399 0.343 0.395 0.422

10 0.451 0.454 0.488 0.451
11 0.401 0.481 0.395 0.451

12 0.513 0.496 0.624 0.581

13 0.403 0.444 0.426 0.416

14 0.462 0.488 0.478 0.481

15 0.398 0.420 0.415 0.409

16 0.379 0.434 0.414 0.429

17 0.654 0.605 0.605 0.593
18 0.340 0.299 0.271 0.347

19 0.542 0.533 0.583 0.497
20 0.393 0.342 0.470 0.410

21 0.347 0.424 0.375 0.382

Avg. 0.445 0.441 0.459 0.454

features size results overall. Table 14 outlines the average computational time of dif-

ferent optimization algorithms. From the table, DA has the best computational time

in comparison to all other algorithms.

4.5 FPA for Knapsack Problem

In this section, FPA is used and benchmarked against BA, GA, and PSO on the

binary Knapsack problem. A set of 20 benchmark problems were in the study having

different dimensionality and capacities as in Table 15.
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Table 8 Average F-score of 20 runs

DS BA FPA GA PSO

1 0.735 0.710 0.752 0.680
2 0.218 0.245 0.234 0.242

3 0.009 0.009 0.009 0.008
4 0.008 0.008 0.008 0.009

5 0.205 0.178 0.212 0.212

6 0.001 0.001 0.001 0.001
7 0.001 0.001 0.001 0.000
8 0.084 0.078 0.082 0.089

9 0.032 0.027 0.034 0.036

10 0.021 0.021 0.021 0.020
11 0.132 0.179 0.150 0.142

12 0.031 0.031 0.030 0.028
13 0.310 0.342 0.326 0.319

14 0.009 0.010 0.010 0.010

15 0.019 0.019 0.019 0.018
16 0.021 0.024 0.024 0.025

17 0.005 0.005 0.005 0.005
18 0.174 0.152 0.145 0.175

19 0.135 0.138 0.136 0.117
20 0.448 0.425 0.503 0.491

21 12.207 12.876 10.636 12.690

Avg. 0.705 0.737 0.635 0.729

Functions F1–F20 are expected to evaluate the exploitation capability of a given

algorithm. We can see in Table 16 that the performance of the FPA optimization

algorithm on the average outperforms the other methods. Such result proves the

exploitation capability of the FPA algorithm. The same conclusion can be derived

by remarking the median performance presented in Table 17 where the FPA still out-

perform the BA, GA, and PSO algorithms.

Table 18 depicts the best performance indicator for running individual optimizers

over 20 runs. Such indicator targets the optimistic users. We can see from the tables

that the FPA outperforms the GA and PSO. Table 19 depicts the worst fitness indica-

tor for both simple and composite benchmark functions. Such indicator is expected

to assess the worst performance of a given optimizer and hence target the pessimistic
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Table 9 Average computational time (milliseconds) of 20 runs for other optimizers

DS BA FPA GA PSO

1 74.968 68.312 48.753 74.576

2 75.343 63.957 55.524 73.486

3 71.724 74.145 39.352 68.027

4 3081.594 2886.748 1722.827 3219.031

5 72.385 59.438 32.316 47.470

6 75.994 75.511 57.433 83.390

7 111.914 109.125 59.681 90.601

8 68.224 61.606 47.014 63.682

9 68.015 68.651 61.015 75.368

10 434.304 417.282 395.025 406.907

11 57.241 48.661 33.788 50.591

12 95.730 83.870 61.417 98.346

13 50.366 53.329 23.921 45.931

14 551.344 550.024 305.656 565.127

15 72.873 71.880 3979.521 72.161

16 69.113 68.056 45.926 61.559

17 103.918 99.622 75.024 99.064

18 70.820 71.250 56.363 67.409

19 914.644 885.766 795.628 966.532

20 41.435 33.260 19.982 37.951

21 48.605 41.365 26.276 39.603

Avg. 295.741 280.565 378.211 300.324

Table 10 Mean fitness of 20 runs

DS Full BA FPA GA PSO

1 6.104 5.491 5.495 5.692 5.605

2 0.008 0.004 0.003 0.007 0.006

3 17.090 4.621 4.763 5.156 5.073

4 5.143 3.041 2.792 3.399 3.389

5 7.906 3.287 3.173 3.211 3.208

6 131.740 57.736 56.612 58.683 57.327

7 8.828 4.122 3.906 4.617 4.912

8 0.189 0.049 0.052 0.056 0.051

9 7.566 3.262 3.411 4.071 3.872

10 10.431 1.766 1.964 3.884 3.122

Avg. 19.500 8.338 8.217 8.878 8.656
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Table 11 Std of fitness values for 20 runs

DS Full BA FPA GA PSO

1 0.009 0.168 0.006 0.084 0.091

2 0.000 0.003 0.002 0.000 0.000
3 0.001 0.136 0.100 0.058 0.047

4 1.140 0.433 0.143 0.868 0.235

5 0.742 0.306 0.094 0.100 0.043
6 96.463 28.073 27.392 28.576 28.008

7 1.034 0.327 0.321 0.269 0.580

8 0.174 0.000 0.002 0.003 0.003

9 0.332 0.326 0.161 0.116 0.178

10 0.553 0.305 0.320 1.277 2.372

Avg. 10.045 3.008 2.854 3.135 3.156

Table 12 Average RMSE of 20 runs

DS Full BA FPA GA PSO

1 6.123 5.830 5.837 5.824 5.834

2 0.007 0.006 0.005 0.006 0.007

3 12.784 7.846 8.775 5.298 6.302

4 4.560 3.923 2.933 3.419 4.110

5 4.232 3.800 3.207 3.325 4.432

6 92.045 178.521 203.068 59.166 59.853

7 7.664 5.070 4.672 5.086 6.176

8 0.058 0.054 0.054 0.056 0.056

9 5.847 5.485 5.496 5.559 5.627

10 9.442 3.371 3.780 4.095 4.583

Avg. 14.276 21.391 23.783 9.183 9.698

users’ satisfaction. We can see from the table that the worst performance of the FPA

still outperform the other algorithms and proves the capability of using such FPA for

pessimistic applications.

Table 20 depicts the standard deviation of individual optimizer’s output best solu-

tion through the 30 runs. Such indicator is expected to assess the repeatability of

the obtained solutions and the convergence to same/similar optima. We can see
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Table 13 Average selection size of 20 runs

DS BA FPA GA PSO

1 0.463 0.500 0.500 0.500

2 0.471 0.461 0.471 0.539

3 0.417 0.500 0.250 0.333

4 0.438 0.375 0.438 0.542

5 0.458 0.438 0.438 0.521

6 0.458 0.403 0.417 0.528

7 0.410 0.436 0.359 0.410

8 0.568 0.553 0.689 0.561

9 0.567 0.533 0.467 0.567

10 0.250 0.222 0.250 0.361

Avg. 0.450 0.442 0.428 0.486

Table 14 Average computational time (in milliseconds) of 20 runs

DS BA FPA GA PSO

1 1516.553 1685.297 1625.241 1600.838

2 1385.868 1408.185 895.429 1465.862

3 1377.098 1395.069 1330.866 1188.551
4 774.341 787.606 750.926 616.100
5 778.917 860.789 753.356 401.869
6 847.260 847.406 789.993 866.437

7 551.635 574.881 469.265 450.445
8 2181.821 2254.263 2361.871 2330.990

9 807.589 825.084 838.978 813.069

10 730.932 693.650 705.527 746.888

Avg. 1095.201 1133.223 1052.145 1048.105

from Table 20 that the standard deviation for the FPA outperforms the other opti-

mizers which proves that FAP has much exploration capability it can still converge

to same/similar optimal and hence can be considered as a candidate optimizer for

repeatable results.
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Table 15 Used problem sets and the corresponding dimension of each problem

Function no. No. Dims Function no. No. Dims

F1 10 F11 4

F2 5 F12 13

F3 6 F13 11

F4 7 F14 18

F5 8 F15 7

F6 7 F16 16

F7 15 F17 5

F8 24 F18 14

F9 4 F19 17

F10 18 F20 20

Table 16 Mean fitness for the different used optimizers on the different problems

Function no. BA FPA GA PSO

F1 −307.750 −𝟑𝟎𝟗 −288.200 −300.200
F2 −49.800 −𝟓𝟏 −50 −50.600
F3 −146.900 −𝟏𝟓𝟎 −138.750 −142.250
F4 −105.450 −𝟏𝟎𝟕 −103.200 −105.250
F5 −895.500 −𝟗𝟗𝟖𝟎𝟎 −892.600 −896.200
F6 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −1728.800 −1733.550
F7 −1457.800 −𝟏𝟒𝟓𝟖 −1442.750 −1449
F8 −13519668.200 −𝟏𝟑𝟓𝟑𝟓𝟔𝟕𝟒.𝟑𝟓𝟎 −13138630.650 −13406262.400
F9 −1656.400 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑
F10 −5957.550 −𝟓𝟗𝟓𝟗 −5891 −5950.600
F11 −1713.950 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗
F12 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑 −6863.100 −6932.600
F13 −5479.850 −𝟓𝟒𝟖𝟔 −5401.050 −5443.450
F14 −9002.750 −𝟗𝟎𝟐𝟑 −8908 −8925.600
F15 −3332.400 −𝟑𝟑𝟒𝟓 −3335 −𝟑𝟑𝟒𝟓
F16 −9760.100 −𝟗𝟕𝟕𝟑 −9577.700 −9729.750
F17 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑
F18 −6628 −𝟔𝟔𝟑𝟔 −6580.600 −6613.450
F19 −6696.650 −𝟔𝟕𝟎𝟏 −6448.100 −6627.600
F20 −8715.600 −𝟖𝟕𝟑𝟖 −8339.500 −8674.300
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Table 17 Median fitness for the different used optimizers on the different problems

Function No. BA FPA GA PSO

F1 −309 −309 −284 −𝟑𝟎𝟗
F2 −𝟓𝟏 −𝟓𝟏 −𝟓𝟏 −𝟓𝟏
F3 −𝟏𝟓𝟎 −𝟏𝟓𝟎 −𝟏𝟓𝟎 −𝟏𝟓𝟎
F4 −𝟏𝟎𝟕 −𝟏𝟎𝟕 −105 −𝟏𝟎𝟕
F5 −𝟗𝟎𝟎 −𝟗𝟎𝟎 −888 −𝟗𝟎𝟎
F6 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓
F7 −𝟏𝟒𝟓𝟖 −𝟏𝟒𝟓𝟖 −1443 −1449.500
F8 −13520148.500 −𝟏𝟑𝟓𝟒𝟗𝟎𝟗𝟒 −13109204.500 −13421603
F9 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑
F10 −𝟓𝟗𝟓𝟗 −𝟓𝟗𝟓𝟗 −5927 −𝟓𝟗𝟓𝟗
F11 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗
F12 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑 −6929 −𝟔𝟗𝟑𝟑
F13 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔
F14 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑
F15 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓
F16 −𝟗𝟕𝟕𝟑 −𝟗𝟕𝟕𝟑 −9688 −𝟗𝟕𝟕𝟑
F17 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑
F18 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔
F19 −𝟔𝟕𝟎𝟏 −𝟔𝟕𝟎𝟏 −6481 −𝟔𝟕𝟎𝟏
F20 −𝟖𝟕𝟑𝟖 −𝟖𝟕𝟑𝟖 −8328 −𝟖𝟕𝟑𝟖

Tables 21 and 22 depict The P-value for two of the common significance tests that

are expected to assess the significance of output enhance using the proposed vari-

ants. The used significance tests are two-sided Wilcoxon test and T-test. We can see

that the P-value for Wilcoxon and T-test are around 0 and hence neglecting the null

hypothesis and hence proves the significance of the proposed variant that it is found

to be significant using FPA rather than BA, GA, and PSO algorithms.
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Table 18 Best fitness for the different used optimizers on the different problems

Function no. BA FPA GA PSO

F1 −𝟑𝟎𝟗 −𝟑𝟎𝟗 −𝟑𝟎𝟗 −𝟑𝟎𝟗
F2 −𝟓𝟏 −𝟓𝟏 −𝟓𝟏 −𝟓𝟏
F3 −𝟏𝟓𝟎 −𝟏𝟓𝟎 −𝟏𝟓𝟎 −𝟏𝟓𝟎
F4 −𝟏𝟎𝟕 −𝟏𝟎𝟕 −𝟏𝟎𝟕 −𝟏𝟎𝟕
F5 −𝟗𝟎𝟎 −𝟗𝟎𝟎 −𝟗𝟎𝟎 −𝟗𝟎𝟎
F6 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓
F7 −𝟏𝟒𝟓𝟖 −𝟏𝟒𝟓𝟖 −1456 −1456
F8 −𝟏𝟑𝟓𝟒𝟗𝟎𝟗𝟒 −𝟏𝟑𝟓𝟒𝟗𝟎𝟗𝟒 −13407977 −13518963
F9 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑
F10 −𝟓𝟗𝟓𝟗 −𝟓𝟗𝟓𝟗 −𝟓𝟗𝟓𝟗 −𝟓𝟗𝟓𝟗
F11 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗
F12 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑
F13 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔
F14 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑
F15 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓
F16 −𝟗𝟕𝟕𝟑 −𝟗𝟕𝟕𝟑 −𝟗𝟕𝟕𝟑 −𝟗𝟕𝟕𝟑
F17 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑
F18 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔
F19 −𝟔𝟕𝟎𝟏 −𝟔𝟕𝟎𝟏 −𝟔𝟕𝟎𝟏 −𝟔𝟕𝟎𝟏
F20 −𝟖𝟕𝟑𝟖 −𝟖𝟕𝟑𝟖 −𝟖𝟕𝟑𝟖 −𝟖𝟕𝟑𝟖

5 Conclusions

This work assesses the performance of FPA on two application domains namely

feature selection and knapsack. For feature selection, FPA can overcome the perfor-

mance of BA, GA, and PSO for its capability to adaptively search the search space

with many local optima avoiding premature convergence. In the domain of knapsack

also FPA is found to be very competitive to PSO, GA, and BA with the tolerable dif-

ference in run time and better optimization performance.

On the basis of future performance, we have five ideas that can be investigated in

addition to the work presented here:

1. The proposed FPA method will be assessed using complex datasets that have a

huge number (thousands) of input features.

2. Add more statistics evaluation measures such as (sensitivity, specificity, and F-

measure).
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Table 19 Worst fitness for the different used optimizers on the different problems

Function no. BA FPA GA PSO

F1 −284 −𝟑𝟎𝟗 −239 −247
F2 −47 −𝟓𝟏 −47 −47
F3 −119 −𝟏𝟓𝟎 −119 −119
F4 −93 −𝟏𝟎𝟕 −91 −93
F5 −858 −𝟗𝟎𝟎 −883 −888
F6 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −1682 −1706
F7 −1454 −𝟏𝟒𝟓𝟖 −1427 −1441
F8 −13482886 −𝟏𝟑𝟒𝟗𝟒𝟖𝟔𝟒 −12914151 −13125716
F9 −1531 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑
F10 −5930 −𝟓𝟗𝟓𝟗 −5729 −5797
F11 −1618 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗
F12 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑 −6350 −6925
F13 −5363 −𝟓𝟒𝟖𝟔 −5054 −5058
F14 −8618 −𝟗𝟎𝟐𝟑 −8448 −8338
F15 −3093 −𝟑𝟑𝟒𝟓 −3145 −𝟑𝟑𝟒𝟓
F16 −9515 −𝟗𝟕𝟕𝟑 −8633 −9565
F17 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑
F18 −6476 −𝟔𝟔𝟑𝟔 −6436 −6185
F19 −6641 −𝟔𝟕𝟎𝟏 −5819 −6249
F20 −8442 −𝟖𝟕𝟑𝟖 −7823 −8355

3. Employ bio-inspired optimization methods for solving the challenging problems

and in different applications like big data, bioinformatics, and biomedical.

4. Use more machine learning techniques for wrapper-based fitness evaluation

such as support vector machine (SVM), random forest (RF), and support vector

regression (SVR).

5. Propose a multi-objective fitness function that uses bio-inspired algorithms to

the find optimal feature subset.
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Table 20 Standard deviation of fitness for the different used optimizers on the different problems

Function no. BA FPA GA PSO

F1 5.590 0 19.718 17.307

F2 1.881 0 1.777 1.231

F3 9.542 0 14.917 13.772

F4 3.845 0 4.753 3.810

F5 10.092 0 6.451 5.540

F6 0 0 13.513 6.485

F7 0.894 0 7.873 4.645

F8 21138.405 16426.210 124654.021 95227.213

F9 29.516 0 0 0
F10 6.485 0 77.911 36.165

F11 22.584 0 0 0
F12 0 0 162.916 1.789

F13 27.504 0 146.101 101.379

F14 90.561 0 169.130 191.947

F15 56.349 0 44.721 0
F16 57.691 0 284.099 57.424

F17 0 0 0 0
F18 35.777 0 72.917 100.847

F19 14.420 0 240.613 152.194

F20 72.796 0 261.054 121.372

Table 21 P-value for T-test of FPA compared to other optimizers

Optimzer_1 Optimzer_2 P-value

FPA BA 1.835600e-02

FPA GA 0.000

FPA PSO 0.000

Table 22 P-value for Wilcoxon of FPA compared to other optimizers

Optimzer_1 Optimzer_2 P-value

FPA BA 2.000000e-06

FPA GA 0.000

FPA PSO 0.000
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