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Preface

Nature-inspired algorithms, especially those based on swarm intelligence, have
been successfully applied to solve a variety of optimization problems in real-world
applications, and thus their popularity has also increased significantly in recent
years. The applications of nature-inspired optimization algorithms have been very
diverse, from engineering optimization to feature selection and from scheduling to
vehicle routing. Consequently, significant progress has been made with several
thousand new research papers published in these areas in the past few years.

This edited book reviews and summarizes the state-of-the-art developments in
nature-inspired algorithms with an emphasis on applied optimization in real-world
applications. The algorithms covered in this book includes ant colony optimization,
bat algorithm, cuckoo search, directional bat algorithm, differential evolution,
firefly algorithm, flower pollination algorithm, genetic algorithm, particle swarm
optimization, simulated annealing and others. The application topics include clas-
sification, feature selection, computational geometry curve-fitting, economic load
dispatch, knapsack problems, mass damper tuning, modelling to generate alterna-
tives, hypercomplex representations, vehicle routing with time windows, wireless
networks, wireless butterfly networks and others.

In addition, some rigorous theoretical analyses of nature-inspired algorithms
have also been presented. An overview of mathematical tools used for analyzing
nature-inspired algorithms is presented to provide an informal but relatively
comprehensive summary. In addition, no free lunch theorems are reviewed in the
context of metaheuristic optimization, and a convergence analysis of the cuckoo
search algorithm has been carried out using Markov chain theory. All these can
form a solid foundation for the in-depth understanding of the working mechanisms
for such powerful algorithms.

It is worth pointing out that the developments in nature-inspired computing are
so rapid that it is estimated that there are more than 150 algorithms and variants in
the current literature. Thus, it is not possible and not our intention to review all
of them. Instead, we have focused on the diversity and different characteristics of
algorithmic structures and their capabilities in solving a wider range of problems in
various disciplines.
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Despite the success and popularity of nature-inspired algorithms, there are still
some questions and issues that require further research. In addition to the lack of a
rigorous mathematical framework for analyzing such algorithms, an important area
of research is parameter tuning and parameter control. As almost all algorithms
have algorithm-dependent parameters, their settings will largely influence the per-
formance of the algorithm under consideration. However, how to efficiently tune an
algorithm and vary/control its parameters is still unresolved. At the same time, it is
also difficult to achieve a fine balance of exploration and exploitation for a given
algorithm and a given set of problems. Furthermore, though no free lunch theorems
hold for averaged performance for all problem sets, free lunches can potentially
exist for a finite set of problems. After all, for a given type of problems, some
algorithms (especially those uses the landscape-specific knowledge of the problem
of interest) are more effective than others. Therefore, how to incorporate
problem-specific knowledge effectively requires further studies.

Though there are many case studies in real-world applications, the scales of such
applications are relatively moderate, and the number of design variables is typically
about a few dozens to a few hundred. In reality, many applications can have
thousands or even millions of design variables, such large-scale problems can be
very challenging to solve because they are usually computationally expensive. It is
not quite clear how to scale up the present techniques to tackle large-scale,
computationally extensive optimization problems. Therefore, there is a strong need
to review carefully the state-of-the-art developments concerning bio-inspired
computation, swarm intelligence and optimization techniques in general so as to
identify important research challenges, to inspire further research and to encourage
innovative approaches that can ultimately help to develop effective tools for solving
hard optimization problems in real-world applications.

This book is a timely attempt to achieve such objectives with emphasis on
applied optimization. As a timely snapshot of the latest developments, this book
will be interested by students, researchers and professionals in many disciplines,
and can thus serve as an ideal reference for graduates and researchers in computer
science, evolutionary computing, machine learning, computational intelligence and
engineering, as well as engineers in various disciplines and industrial applications.

I would like to thank the reviewers for their constructive comments on the
manuscripts of all the chapters during the peer-review process. I also would like to
thank the editors, especially Drs. Thomas Ditzinger and Ravi Vengadachalam, and
staff at Springer for their help and professionalism.

London, UK Xin-She Yang
August 2017
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Mathematical Analysis of Nature-Inspired
Algorithms

Xin-She Yang

Abstract Nature-inspired algorithms are a class of effective tools for solving opti-

mization problems and these algorithms have good properties such as simplicity,

flexibility and high efficiency. Despite their popularity in practice, a mathematical

framework is yet to be developed to analyze these algorithms theoretically. This work

intends to analyze nature-inspired algorithms both qualitatively and quantitatively.

We briefly outline the links between self-organization and algorithms, and then ana-

lyze algorithms using Markov chain theory, dynamic system and other methods.

This can serve as a basis for building a multidisciplinary framework for algorithm

analysis.

Keywords Algorithm ⋅ Bat algorithm ⋅ Cuckoo search ⋅ Differential evolution ⋅
Firefly algorithm ⋅ Flower pollination algorithm ⋅ Particle swarm optimization ⋅
Metaheuristics ⋅ Nature-inspired computation ⋅ Optimization ⋅ Self-organization ⋅
Swarm intelligence

1 Introduction

Optimization is important in many disciplines from engineering designs to busi-

ness scheduling. Most such optimization problems require sophisticated optimiza-

tion tools to solve, and there are a diverse spectrum of algorithms used in the lit-

erature, from traditional gradient-based algorithms and simplex methods to evolu-

tionary algorithms and nature-inspired metaheuristic algorithms [7, 37]. In recent

years, nature-inspired algorithms have become widely used for dealing with highly

nonlinear problems and tough optimization problems [20, 33–35, 37]. Most of such

nature-inspired algorithms are based on swarm intelligence, intending to mimic the

diverse characteristics in natural systems.

Though the literature in this area is quite vast, however, most studies are about

various applications of algorithms. There is little literature on theoretical analysis

X.-S. Yang (✉)
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2 X.-S. Yang

of these algorithms. In fact, there is a significant gap between theory and practice.

Most nature-inspired metaheuristic algorithms have successful applications in prac-

tice, but their theoretical analysis lags far behind. Apart from a few limited results

about the convergence and stability concerning particle genetic algorithms [28], par-

ticle swarm optimization [8] and others, no theoretical analysis has been carried out

about many other algorithms. It is often the case that we know these algorithms

can work well in practice, but we rarely understand why they work. As a result,

the applications can be a heuristic process itself and there is little information on

how to improve them. Such lack of understanding may hinder the development of

effective algorithms and some researchers even cast doubt on certain metaheuris-

tics. Therefore, there is a strong need to do more rigorous mathematical analysis of

nature-inspired algorithms.

Therefore, this book chapter will first introduce the fundamentals of algorithms

and optimization in Sect. 2, followed by the outlines of all major nature-inspired

algorithms in Sect. 3. Then, in Sect. 4, the emphasis will be on the analysis of

main characteristics of optimization algorithms and their links to self-organization.

Section 5 provides some preliminary framework for analyzing these algorithms

mathematically. Section 6 concludes with some discussions and open problems.

2 Algorithm, Optimization and Metaheuristics

Optimization problems tend to be nonlinear with complex objective landscapes.

The algorithms used for solving optimization can be traditional algorithms such

as gradient-based methods and quadratic programming, evolutionary algorithms,

heuristic or metaheuristic algorithms and various hybrid techniques.

2.1 The Essence of an Algorithm

An algorithm is a computational procedure. For example, Newton’s method for find-

ing the roots of a polynomial p(x) = 0 can be written as

xt+1 = xt −
p(xt)
p′(xt)

, (1)

where xt is the approximation at iteration t, and p′(x) is the first derivative of p(x).
This procedure typically starts with an initial guess x0. In most cases, as along as

p′ ≠ 0 and x0 is not too far away, this algorithm can work very well. But if x0 is too

far away from the true solution x∗ = limt→∞ xt, it may fail. This means that the final

solution can largely depend on where the initial solution is, which is especially true

for nonlinear multimodal functions.
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This method can be modified to solve optimization problems. For example, for

a single objective function f (x), the minimal and maximal values should occur at

stationary points f ′(x) = 0, which becomes a root-finding problem. Thus, the max-

imum or minimum of f (x) can be found by modifying the Newton’s method as the

following iterative formula:

xt+1 = xt −
f ′(xt)
f ′′(xt)

. (2)

For a D-dimensional problem with an objective f (𝐱) with independent variables

𝐱 = (x1, x2,… , xD), the above iteration formula can be generalized to a vector form

𝐱t+1 = 𝐱t − ∇f (𝐱t)
∇2f (𝐱t)

, (3)

where we have used the notation convention 𝐱t to denote the current solution vector

at iteration t (not to be confused with an exponent).

In general, an algorithm A can be written as

𝐱t+1 = A(𝐱t, 𝐱∗, p1,… , pK), (4)

which represents that fact that the new solution vector is a function of the existing

solution vector 𝐱t, some historical best solution 𝐱∗ during the iteration history and a

set of algorithm-dependent parameters p1, p2,… , pK . The exact function forms will

depend on the algorithm, and different algorithms are only different in terms of the

function form, number of parameters and the ways of using historical data.

2.2 Optimization

In general, an optimization problem can be formulated as

minimize f (𝐱), 𝐱 = (x1, x2,… , xD) ∈ ℝD
, (5)

subject to

hi(𝐱) = 0, (i = 1, 2,… , I), gj(𝐱) ≤ 0, (j = 1, 2,… , J), (6)

where hi and gj are the equality constraints and inequality constraints, respectively.

In most cases, the problem functions f (𝐱), hi(𝐱) and gj(𝐱) are all nonlinear, and such

nonlinear optimization problems can be challenging to solve. There are a wide class

of optimization techniques, including linear programming, quadratic programming,

convex optimization, interior-point method, trust-region method, conjugate-gradient

and many others [7, 26, 33].
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2.3 What’s Wrong with Traditional Algorithms

One may wonder what is wrong with traditional algorithms? A short answer is that

there is nothing wrong. Traditional algorithms work well for the types of problems

they can solve, but most traditional algorithms are local search.

∙ As traditional algorithms are mostly local search, there is no guarantee for global

optimality for most optimization problems, except for linear programming and

convex optimization. Consequently, the final solution will often depend on the

initial starting points (except for linear programming and convex optimization).

∙ Traditional algorithms tend to be problem-specific because they usually use some

information such as derivatives about the local objective landscape. Other methods

such as k-opt and branch and bound can heavily depend on the type of problems

in implementation.

∙ Traditional algorithms cannot solve highly nonlinear, multimodal problems effec-

tively, and they struggle to cope with problems with discontinuity, especially when

gradients are needed.

∙ Almost all traditional algorithms, except for hill-climbing with random restart, are

deterministic algorithms. The final solutions will be identical if starting with the

same initial points. No random numbers are used. Consequently, the diversity of

the obtained solutions can be limited.

2.4 Heuristics and Metaheuristics

In order to remedy the above disadvantages, contemporary algorithms tend to be

heuristic and metaheuristic. Heuristic algorithms use a trial-and-error approach in

generating new solutions, while metaheuristic algorithms are a higher-level heuris-

tics with the use of memory, solution history and other forms of ‘learning’ strategy.

Nowadays, most metaheuristic algorithms are nature-inspired algorithms and most

such algorithms are based swarm intelligence inspired by nature [13, 27, 37]. In

contrast with traditional algorithms, metaheuristics are mainly designed for global

search and tend to have the following advantages and characteristics:

∙ As they are global optimizers, it is more likely to find the true global optimality.

∙ They often treat problems as a black box without specific knowledge, thus they

can solve a wider range of problems.

∙ Metaheuristic algorithms are usually gradient-free methods and they do not use

any derivative information, and thus can deal with highly nonlinear problems and

problems with discontinuity.

∙ Stochastic components in terms of random numbers and random walks are often

used, and thus such algorithms are stochastic. Thus, no identical solutions can be

obtained, even starting with the same initial points, but the final solutions can be

sufficient close and they often enable the algorithm to escape any local modes

(thus less likely to get stuck in local regions).



Mathematical Analysis of Nature-Inspired Algorithms 5

Despite these advantages, nature-inspired algorithms do have some disadvan-

tages. In general, the computational efforts are higher than those for traditional algo-

rithms because more iterations are needed, which can become too computationally

expensive if the evaluation of a single objective requires a long time by a simulator

(e.g., by finite element methods). In addition, the final solutions obtained by such

algorithms cannot be repeated exactly, and multiple runs should be carried out to

ensure consistency and some meaningful statistical analysis.

2.5 Deterministic or Stochastic

A key feature of traditional algorithms is that they are mainly deterministic and no

randomness is used in generating new solutions. This can enhance the exploitation

ability, but lacks exploration capabilities. On the other hand, nature-inspired meta-

heuristic algorithms use a certain degree of randomness, and these algorithms have

stochastic components. A good degree of randomness will increase the exploration

ability, but may reduce the exploitation abilities.

Some questions arise naturally: Which is better? How much randomness should

an algorithm have? As we discussed earlier, both traditional deterministic algorithms

and stochastic metaheuristic algorithms have some advantages and disadvantages.

From the global optimization perspective, the advantages of stochastic algorithms far

outweigh their disadvantages. Both empirical observations and simulation suggest

that randomness can be largely beneficial to the overall performance of algorithms.

As to the right degree of randomness, it is very difficult to say because such ran-

domness can depend on the algorithmic structure, type of problems and the solution

quality desired for a given type of problems. In fact, this is still an open problem.

3 Nature-Inspired Optimization Algorithms

There are many nature-inspired algorithms, it is estimated that there are over a hun-

dred different algorithms and their variants [37]. Obviously, it is not possible to

include even a good fraction of these algorithms. Therefore, our emphasis is on the

algorithms that can be considered as representatives, especially those algorithms

based on swarm intelligence. In addition, instead of giving detailed descriptions and

background about each algorithm, our emphasis here is on the similarity and differ-

ences of different algorithms and the ways used for generating new solutions, selec-

tion of the best solutions and other major characteristics.
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3.1 Genetic Algorithms

The genetic algorithm (GA), first developed by John Holland [18], is an evolutionary

algorithm based on the Darwinian evolution of biological systems. Its main charac-

teristics are the three genetic operators: crossover, mutation, and selection [16, 37].

A set of solutions from a population that are encoded as binary or real strings, called

chromosomes. A new population of solutions are generated using such genetic oper-

ators.

Two child solutions can be generated from two parent solutions by crossover,

which essentially swaps one segment or multiple segments of one parent solution

with its counterparts. On the other hand, a new solution can be generated by mutat-

ing one bit or multiple bits of one solution. Mutation can be simply flipping between

0 and 1 for binary strings at one or more locations. The quality of a solution is deter-

mined by its fitness that is a normalized value associated with the function values

of the objective. In case of maximization problems, the fitness can be proportional

to the objective. Selection is done by choosing the most fittest solution according to

their fitness.

In general, crossover occurs more often, typically with a probability of 0.6–0.95,

while the rate of mutation is often lower, ranging from 0.001 to 0.05. Crossover can

help exploit and enhance the key characteristics in the population, thus can enhance

convergence. On the other hand, mutation can provide better diversity with a higher

ability for exploration to allow the population to explore the search space more effec-

tively. However, if the mutation rate is too high, it will generate solutions that may

be far from existing solutions, leading to a slower convergence rate.

As an interesting note, genetic algorithms usually do not have any explicit equa-

tions in terms of generating new solutions. It is a detailed procedure, though some

mathematical analysis can be done using binomial distributions and other tools [16].

3.2 Ant Colony Optimization

The ant colony optimization (ACO) was developed by Marco Dorigo in 1992 [6],

and ACO attempts to mimic the foraging behaviour of social ants in a colony. All

ants/agents use a chemical messenger, called pheromone, to communicate with other

ants, their interactions are local, based on local information. Pheromone is deposited

by each agent, and such chemical will also evaporate. The model for pheromone

deposition and evaporation may vary slightly, depend on the variants of ACO. How-

ever, in most cases, incremental deposition and exponential decay are used in the

literature.

From the implementation point of view, for example, a solution in a network opti-

mization problem can be a path or route. Each agent will explore the network paths

and deposit pheromone when it moves. The quality of this solution is related to the

pheromone concentration on the path. At the same time, pheromone will evaporate
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as time. At a junction with multiple routes, the probability of choosing a particular

route is determined by a decision criterion, depending on the normalized concentra-

tion of the route, the desirability of the route (for example, the distance of the overall

path), and relative fitness of this route, comparing with all others.

It is worth pointing out that ACO is a mixed of procedure and some simple equa-

tions such as pheromone deposition and evaporation as well as the path selection

probability.

3.3 Particle Swarm Optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in 1995

[20], which uses equations to simulate the swarming characteristics of birds and fish.

Both ACO and PSO are the primary examples of the so-called swarm intelligence

(SI).

For the ease of discussions below, let us use 𝐱i and 𝐯i to denote the position (solu-

tion) and velocity, respectively, of a particle or agent i. In PSO, there are n particles

as a population, thus i = 1, 2,… , n. There are two equations for updating positions

and velocities of particles, and they can be written as follows:

𝐯t+1i = 𝐯ti + 𝛼𝜖1[𝐠∗ − 𝐱ti] + 𝛽𝜖2[𝐱∗i − 𝐱ti], (7)

𝐱t+1i = 𝐱ti + 𝐯t+1i , (8)

where 𝜖1 and 𝜖2 are two uniformly distributed random numbers in [0, 1]. The learning

parameters 𝛼 and 𝛽 are usually in the range of [0, 2]. In the above equations, 𝐠∗ is

the best solution found so far by all the particles in the population, and each particle

has an individual best solution 𝐱∗i by itself during the entire past iteration history.

It is clearly seen that the above algorithmic equations are linear in the sense that

both equation only depends on 𝐱i and 𝐯i linearly. Selection is carried out by the

attractor or converged state 𝐠∗, which is also evolving. Randomization is done by

two uniformly distributed random numbers.

PSO has been applied in many applications, and it has been extended to solve

multiobjective optimization problems. However, there are some drawbacks because

PSO can often have so-called premature convergence in which the population may

get stuck locally with almost no diversity and thus lose its exploration ability. In

addition, the use of velocities can also have some disadvantages. For example, high

velocities (thus high energy) can destabilize the system, leading to slower conver-

gence. As a result, various variants and remedies have been attempted in the litera-

ture with some degree of success. For example, some variants introduced a so-called

inertia weight parameter, which is essentially equivalent to putting some mass on the

particles as to as stabilize them.
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3.4 Differential Evolution

Differential evolution (DE), developed by Storn and Price [25], uses a mutation oper-

ator in terms of the difference of two different solution vectors 𝐱p and 𝐱q. This muta-

tion vector is scaled by a parameter F ∈ [0, 2] and is then used to perturb an existing

solution 𝐱r to generate a new solution

𝐱k = 𝐱r + F(𝐱p − 𝐱q). (9)

In general, p, q, r should be different integers, corresponding to different solution

vectors in the population.

On the other hand, the mutated solutions can also be applied by a crossover opera-

tor, which is either binomial or exponential. In addition, the selection mechanism for

any new solution 𝐮t is to ensure to record the solutions that are better than previous

solutions in terms of fitness. For a minimization problem, we can write as

𝐱ti =
{

𝐮t if f (𝐮t) ≤ f (𝐱t−1i )
𝐱t−1i otherwise.

(10)

Since there are different ways of perturbing a solution in terms of the mutation oper-

ator, there are more than ten different variants [25].

3.5 Bat Algorithm

Bat algorithm (BA), developed by Xin-She Yang in 2010, uses some characteristics

of frequency-tuning and echolocation of microbats [34, 35]. It also uses the varia-

tions of pulse emission rate r and loudness A to control exploration and exploitation.

In the bat algorithm, main algorithmic equations are

fi = fmin + (fmax − fmin)𝛽, (11)

𝐯ti = 𝐯t−1i + (𝐱t−1i − 𝐱∗)fi, (12)

𝐱ti = 𝐱t−1i + 𝐯ti, (13)

where 𝛽 ∈ [0, 1] is a random vector drawn from a uniform distribution so that the fre-

quency can vary from fmin to fmax. In addition, these updating equations are also asso-

ciated with r and loudness A via a uniformly distributed random number 𝜀. Selection

is done by the current best solution 𝐱∗ found so far by all the virtual bats, which acts

a similar role as the 𝐠∗ in PSO.

From the above equations, we can see that both equations are linear in terms of 𝐱i
and 𝐯i. But, the control of exploration and exploitation is carried out by the variations
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of loudness A(t) from a high value to a lower value and the emission rate r from a

lower value to a higher value. That is

At+1
i = 𝛼At

i, rt+1i = r0i (1 − e−𝛾t), (14)

where 0 < 𝛼 < 1 and 𝛾 > 0 are two parameters. As a result, the actual algorithm

can have a weak nonlinearity. Consequently, BA can have a faster convergence rate

in comparison with PSO. BA has been extended to multiobjective optimization and

hybrid versions [35].

3.6 Firefly Algorithm

Firefly algorithm (FA), developed by Xin-She Yang in 2008, is an algorithm inspired

by the swarming and light-flashing behaviour of tropical fireflies [32]. FA uses a

nonlinear system by combing the exponential decay of light absorption and inverse-

square law of light variation with distance. The main algorithmic equation in FA

is

𝐱t+1i = 𝐱ti + 𝛽0e
−𝛾r2ij (𝐱tj − 𝐱ti) + 𝛼 𝜖

t
i , (15)

where 𝛼 is a scaling factor controlling the step sizes of the random walks, while 𝛾 is

a scale-dependent parameter controlling the visibility of the fireflies (and thus search

modes). In addition, 𝛽0 is the attractiveness constant when the distance between two

fireflies is zero (i.e., rij = 0). This system is a nonlinear system, which may lead to

rich characteristics in terms of algorithmic behaviour.

In fact, since FA is a nonlinear system, it has the ability to automatically subdivide

the whole swarm into multiple subswarms. This is because short-distance attraction

is stronger than long-distance attraction, and the division of swarm is related to the

mean range of attractiveness variations. After division into multi-swarms, each sub-

swarm can potentially swarm around a local mode. Consequently, FA is naturally

suitable for multimodal optimization problems. Furthermore, there is no explicit use

of the best solution 𝐠∗, thus selection is through the comparison of relative bright-

ness according to the rule of ‘beauty is in the eye of the beholder’. Perturbation is

done by a random walk with a scaling factor 𝛼.

It is worth pointing out that FA has some significant differences from PSO. Firstly,

FA is nonlinear, while PSO is linear. Secondly, FA has an ability of multi-swarming,

while PSO cannot. Thirdly, PSO uses velocities (and thus have some drawbacks),

while FA does not use velocities. Finally, FA has some scaling control by using

𝛾 , while PSO has no scaling control. All these differences enable FA to search the

design spaces more effectively for multimodal objective landscapes.
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3.7 Cuckoo Search

As a very different approach, Cuckoo search (CS), developed by Yang and Deb, is

another nonlinear system by using a power-law, scale-free search mechanism [39].

CS was based on the intriguing brooding parasitism of some cuckoo species and their

co-evolution with host bird species such as warblers. CS uses a combination of both

local and global search capabilities, controlled by a switching probability pa. There

are two algorithmic equations in CS, and one equation is

𝐱t+1i = 𝐱ti + 𝛼s⊗ H(pa − 𝜖)⊗ (𝐱tj − 𝐱tk), (16)

where 𝐱tj and 𝐱tk are two different solutions selected randomly by random permu-

tation, H(u) is a Heaviside function, 𝜖 is a random number drawn from a uniform

distribution, and s is the step size. This step is primarily local, though it can become

global search if s is large enough. However, the main global search mechanism is

realized by the other equation with Lévy flights:

𝐱t+1i = 𝐱ti + 𝛼L(s, 𝜆), (17)

where the Lévy flights are simulated (or drawn random numbers) by

L(s, 𝜆) ∼
𝜆𝛤 (𝜆) sin(𝜋𝜆∕2)

𝜋

1
s1+𝜆

, (s ≫ 0). (18)

Here 𝛼 > 0 is the step size scaling factor.

By looking at the equations in CS carefully, we can clearly see that CS is a nonlin-

ear system due to the Heaviside function, switch probability and Lévy flights. There

is no explicit use of global best 𝐠∗, but selection is done by ranking and elitism

where the current best is passed onto the next generation. In addition, the use of

Lévy flights can enhance the search capability because a fraction of steps generated

by Lévy flights are larger than those used in Gaussian. Thus, the search steps in CS

are heavy-tailed [22, 23].

In addition, from the implementation point of view, Lévy flights can be approxi-

mated by a power-law type of distribution, the search steps are also scale-free. From

empirical observations and simulations, CS can have scale-free, self-similar struc-

tural characteristics in terms of its moves and search regions [39]. Consequently, CS

can be very effective for nonlinear optimization problems and multiobjective opti-

mization [36, 41]. Cuckoo search has become powerful in solving many problems

such as software testing, scheduling, engineering optimization [40] and many others

[9, 10, 14, 21, 42, 46].

The above algorithms such as ACO, bat algorithm, PSO, cuckoo search and firefly

algorithms are all based on the swarming behaviour, and thus these algorithms are

often called swarm intelligence (SI) based algorithms. However, population-based

algorithms are not all SI-based. For example, both genetic algorithms and differential
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evolution are not SI-based, but they are population-based. Another population-based

algorithm is flower pollination algorithm that will be introduced next.

3.8 Flower Pollination Algorithm

Flower pollination algorithm (FPA) is a population-based algorithm, inspired by the

pollination characteristics of flowering plants [37, 44]. FPA intends to mimic some

key characteristics of biotic and abiotic pollination as well as the co-evolutionary

flower constancy between certain flower species and pollinators such as insects and

animals.

There are two main equations for this algorithm, and the global search is carried

out by

𝐱t+1i = 𝐱ti + 𝛾L(𝜆)(𝐠∗ − 𝐱ti), (19)

where 𝛾 is a scaling parameter, L(𝜆) is the random number vector drawn from a Lévy

distribution governed by the exponent 𝜆. Here 𝐠∗ is the best solution found so far,

which acts as a selection mechanism. The current solution 𝐱ti is modified by varying

step sizes because Lévy flights can have a fraction of large step sizes in addition to

many small steps. The local search is carried out by

𝐱t+1i = 𝐱ti + U(𝐱tj − 𝐱tk), (20)

which mimics local pollination and flower constancy. Here, U is a uniformly distrib-

uted random number. Furthermore, 𝐱tj and 𝐱tk are solutions representing pollen from

different flower patches.

The equations are linear in terms of solutions 𝐱ti , 𝐱
t
j and 𝐱tk, but there is a switch

probability p to activate which pollination activities (global or local). As a result,

the system becomes somehow quasi-linear. The randomization is achieved by three

components: Lévy flights, a uniform distribution and a switch probability. As a result,

FPA can typically have a higher explorative ability. At the same time, the local branch

provides a mechanism to remain a strong exploitation ability. Theoretical analysis

using Markov chain theory has shown that FPA can have guaranteed global con-

vergence under the right conditions [17]. FPA has been applied to solve many opti-

mization problems such as solar photovoltaic parameter estimation, economic and

emission dispatch, and EEG-based identification [1, 2, 24]. In addition, FPA has

been extended to multiobjective optimization [44].

3.9 Other Algorithms

Obviously, there are many other metaheuristic algorithms such as artificial bee

colony, gravitational search, artificial immune system and others. However, we will
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not discuss them due to page limits. Instead, our emphasis will be on the discus-

sion and analyses of algorithms to gain more insight into the search mechanisms of

various algorithms.

4 Why Nature-Inspired Algorithms Work

Though we know all the above algorithms we have discussed and other algorithms

can work well in practice and they are able to solve a diverse range of problems, we

rarely understand how they work exactly. To gain a truly comprehensive, in-depth

understanding of all algorithms, it requires a multidisciplinary approach by comb-

ing mathematical analysis, numerical analysis, computational complexity, dynami-

cal systems and other relevant tools. Therefore, we will not attempt such challenging

tasks here. Instead, we will focus on analyzing the basic characteristics of algorithms,

their components, search mechanisms and behaviour so as to gain a better insight into

such algorithms. After such qualitative analysis in this section, we will try to provide

some mathematical analyses in the next section.

4.1 Characteristics of Nature-Inspired Algorithms

First, let us look at nature-inspired algorithms by their basic steps, search character-

istics and algorithm dynamics.

∙ All algorithms use a population of multiple agents (e.g., particles, ants, bats, cuck-

oos, fireflies, bees, etc.), each agent corresponds to a solution vector. Among the

population, there is often the best solution 𝐠∗ in terms of objective fitness. Differ-

ent solutions in a population represent both diversity and different fitness.

∙ The evolution of the population is often achieved by some operators (e.g., muta-

tion, crossover), often in terms of some algorithmic formulas or equations. Such

evolution is typically iterative, leading to evolution of solutions with different

properties. When all solutions become sufficiently similar, the system can be con-

sidered as converged.

∙ The moves of an agent represents a zigzag piecewise path in the search space,

and such moves are quasi-deterministic. Thus, randomization techniques are often

used to generate new solution vectors or moves. Such randomization provides a

mechanism to perturb the states (or solutions) of the algorithm, which potentially

allows it to escape any local optima (thus minimizing the probability of getting

stuck locally).

∙ All algorithms try to carry out some sort of both local and global search. If the

search is mainly local, it increases the probability of getting stuck locally. If the

search focuses too much on global moves, it will slow down the convergence. Dif-

ferent algorithms may use different amount of randomization and different por-
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Table 1 Characteristics of

nature-inspired algorithms.
Components/characteristics Role or properties

Population Diversity and sampling

Randomization/perturbations Escape local optima

Selection and elitism Driving force for

convergence

Algorithmic equations Iterative evolution of

solutions

tion of moves for local or global search. However, it is not clear yet what the right

amount of randomness is and what the ratio of global search to local search should

be.

∙ Selection of the better or best solutions is carried out by the ‘survival of the fittest’

or simply elitism so that the best solutions 𝐠∗ are kept in the population in the

next generation. Such selection essentially acts a driving force to drive the diverse

population into a converged population with reduced diversity but with a more

organized structure.

These basic components, characteristics and their properties can be summarized in

Table 1, and this can form a basis for comparison with the characteristics of self-

organization to be discussed in the next subsection.

4.2 Self-organization

Another way of looking at nature-inspired algorithms is from the perspective of self-

organization. Loosely speaking, a complex system can self-organize when the size

of the system is sufficiently large with a high number of degrees of freedom, pertur-

bations and a driving mechanism, giving enough time for the system to evolve from

noise and far from equilibrium states [3, 19]. Mathematically speaking, a system

with multiple states Si can evolve with time t towards the self-organized states S∗,

driven by a driving mechanism M which can be written schematically as

Si
M
⟹ S∗. (21)

Now let us look at an algorithm using self-organization, an algorithm can indeed

be considered as a self-organization system, starting from a population of solutions

𝐱i(i = 1, 2,… , n) (states), evolving towards some optimal solution/state 𝐱∗. This is

driven by the selection mechanism in an algorithm A(p, t) with a set of parameter

p, evolving with pseudo-time t. In essence, an algorithm for minimization can also

written schematically as

f (𝐱i)
A(p,t)
⟹ fmin(𝐱∗). (22)
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Table 2 Self-organization and algorithms

Self-organization Characteristics Algorithm Properties

States Complexity Population Diversity and

sampling

Noise, perturbations Far from equilibrium Randomization Escape local optima

Selection mechanism Organization Selection Convergence

Re-organization State changes Iteration Evolution of solutions

Furthermore, we can systematically compare the similarities and differences between

self-organization and algorithms, which is summarized Table 2.

Despite these similarities, there are some crucial differences. First, for self-

organization, the exact avenue to self-organization may not be clear, but for algo-

rithms, the ways of solution generations are often clear. Second, for self-organization,

time is not an important factor per se, but for algorithms, the number of iterations

(pseudotime) is crucially important because an effective algorithm should be able to

find the optimal solutions using as least amount of computational efforts as possible.

Third, the structure in self-organization is important, while the converged solutions

themselves (not necessarily the structure) are most relevant. Finally, exact conditions

of self-organization may be physically maintained, but for algorithms, the conditions

for convergence can often lead to undesired premature convergence, and it is still not

clear yet how to avoid such premature convergence in algorithms.

4.3 Exploration and Exploitation

Another way of analyzing algorithms is to look at their exploration and exploitation

abilities. Exploration provides diversification, which allows the algorithm to search

different regions in the design space and thus increases the probability of finding the

true global optimality.

Exploration is often achieved by randomization or random numbers in terms of

some predefined probability distributions [5]. In most cases, random numbers drawn

from a uniform distribution or a Gaussian distribution are used. Exploration can be

consideration as a global, explorative mechanism. For example, cuckoo search has a

strong ability of exploration due to the use of Lévy flights. PSO uses two uniformly

distributed random numbers to enable its exploration.

On the other hand, exploitation uses local information such as gradients to search

local regions more intensively, and such intensification can enhance the rate of con-

vergence. Exploitation can make the population less diverse, and strong local guid-

ance can even make the population relatively uniform in terms of solution variations.

For example, in PSO and bat algorithm, the best solution 𝐠∗ is used to exploit the

current best solution and its locality in the design space.



Mathematical Analysis of Nature-Inspired Algorithms 15

Too much exploration and too little exploitation can slow down the convergence

of an algorithm, while too much exploitation and too little exploration can sacri-

fice the possibility of finding true global solutions. Therefore, there is a fine balance

between exploration and exploitation, which may depend on the algorithmic struc-

ture and type of problems.

4.4 Crossover, Mutation and Selection

Alternatively, we can also analyze the algorithm components in terms of their role.

Borrowing the terminologies from genetic algorithms, we can look at mutation,

crossover and selection.

Most algorithms use mutation. For example, differential evolution uses a vec-

torized mutation operator (𝐱j − 𝐱k), and firefly algorithm uses an isotropic random

walk. All other algorithms such as PSO and bat algorithm use vectorized mutation

in a similar way as that in differential evolution. However, cuckoo search and flower

pollination algorithm use Lévy flights in terms of non-isotropic random walks, which

makes the algorithms more efficient due to the power-law, scale-free search proper-

ties of Lévy flights.

Crossover is a mechanism that can enhance the mixing ability of the population,

but not all algorithms use crossover. For example, differential evolution uses bino-

mial and exponential crossover, but PSO, bat algorithm, cuckoo search and others

do not use crossover explicitly. However, many variants of PSO, cuckoo search and

flower pollination algorithm introduced some form of crossover, and they achieved

enhanced performance.

Selection is a driving mechanism to ensure convergence among the populations.

All algorithms have to have some good selection mechanisms. Genetic algorithms

use elitism and survival of the fittest, while PSO uses both the best solution 𝐠∗ and

individual best 𝐱∗i as selection. Firefly algorithm uses the brightest fireflies implicitly

as an attraction mechanism. Other algorithms such as cuckoo search do not use 𝐠∗,

while flower pollination algorithm uses 𝐠∗ explicitly. The use of 𝐠∗ is something like

a double-edged sword. If the selection mechanism is too strong, the diversity of the

population can be limited. For example, in PSO, the use of both 𝐠∗ and individual

best solutions may be too strong for some problems, and the solutions can get stuck

at some local regions, leading to potential premature convergence in this case. On

the other hand, if the selection is weak, many solutions are not well-selected, and

the convergence may be significantly slowed down. Again it needs a fine balance of

selection strength as well as a good combination of crossover and mutation.

4.5 Biased Monto Carlo

From the sampling point of view, nature-inspired algorithms share some similarity

with the well-known Monte Carlo method. In many algorithms, the initialization is
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done by random sampling of the search space, often using some uniformly distrib-

uted random numbers, and the initial population generated by such randomization is

essentially the same as those by Monte Carlo. In addition, a solution vector can also

be considered as a sampling point in the design space, and in this sense, the set of

solutions during iterations form a sampling set.

However, there are some crucial differences. The samples generated by Monte

Carlo sampling and its many variants tend to be distributed relatively uniformly in

the design space and sometimes they are far away from each other in case of low dis-

crepancy random numbers, while samples generated by nature-inspired algorithms

will gradually aggregate towards some preferred regions based on the fitness of the

solutions. Thus, the overall sampling process in algorithms is biased towards some

promising regions where the optima and global optima may lie. The biased moves

are guided by the fitness and the local information from the objective landscape.

For example, the current best solution 𝐠∗ in PSO acts a local guide to attract biased

moves. In this sense, we can consider all nature-inspired algorithms as information-

guided biased Monte Carlo.

4.6 Random Walks

From probability theories, we know that the moves to generate solutions can be con-

sidered as random walks, modifying an existing solution 𝐱N at step N by a perturba-

tion 𝐰N . Mathematically speaking, a random walk can be written as

𝐱N+1 = 𝐱N + 𝐰N , (23)

where 𝐰N is a vector of random numbers (steps) drawn from a known probability

solution. If 𝐰N is drawn from a Gaussian distribution, then the random walks are

isotropic. The movements in this case are often referred to as normal diffusion or

Brownian motion. The expected distance moved (R) can be estimated by

R(N) ∝
√
N, (24)

which has a square-root scaling property.

If the steps are drawn from a fat-tailed distribution such as Lévy distribution or

Cauchy distribution, the diffusion becomes anomalous. In general, the above scaling

property becomes

R(N) ∝ Nq
, q > 0. (25)

If q ≥ 1∕2, the diffusion is called super-diffusion [22]. Both Lévy distribution and

Cauchy distribution for step sizes can have a fraction of large steps, which will lead

to super-diffusion. This means that averaged distance increases faster than that for

normal diffusion, which can potentially lead to a higher search efficiency if used

properly in algorithms. For example, for Lévy flights, we have
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q = 3 − 𝜆

2
, (26)

where 1 < 𝜆 ≤ 2 is the exponent of the power-law approximation to Lévy distribu-

tion

L(w) ∼ |w|−1−𝜆, (27)

where ∼ denotes to draw random numbers from a distribution on the right-hand side.

In fact, cuckoo search and flower pollination algorithm have used such fat-tailed Lévy

flights for global search.

4.7 No Free Lunch Theorems

Though there are many algorithms in the literature, different algorithms can have

different advantages and disadvantages and thus some algorithms more suitable to

solve certain types of problems than others. However, it is worth pointing out that

there is no single algorithm that can be most efficient to solve all types of problems

as dictated by the no-free-lunch (NFL) theorems [30]. Their rigorous proof requires

some simplifications and assumptions. Two noticeable assumptions are (1) the set

of points/solutions visited by an algorithm must be close under permutation and (2)

the points found in the iteration history are non-revisiting in subsequent iterations.

In addition, the performance measure is based on the averaged performance over all

possible functions and problems.

An informal way of looking at the no-free-lunch theorem is as follows: For any

univariate objective function 𝜙(x) in a domain [a, b], the mean of the function is

𝜇 = 1
b − a ∫

b

a
𝜙(x)dx. (28)

Using the mean value theorem, we have

1
b − a ∫

b

a
𝜙(x)dx = 𝜙(c), c ∈ (a, b), (29)

which suggests that the mean is a constant𝜙(c). If𝜙(x) can take any values and forms

(including random values), we can treat 𝜙(x) as a random variable. Then, 𝜇 = 𝜙(c)
is the expectation. In a special case if all functions 𝜙(x) are scaled to [0, 1], then

it can be expected that 𝜇 = 1∕2. Since 𝜇 is a constant, this means that the averaged

objective landscape of all possible functions𝜙(x) becomes ‘flat’, which in turn means

that there is no selection pressure for evolution of solutions. Consequently, it is no

surprise that any algorithm (including a random search) can have equal efficiency.

However, in practice, we do not need to solve all problems.

Even the no-free-lunch theorems hold under certain conditions, but these con-

ditions may not be rigorously true for actual algorithms. For example, one condi-
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tion for proving these theorems is the so-called no-revisiting condition. That is, the

points during iterations form a path, and these points are distinct and will not be

visited exactly again, though their nearby neighbourhood can be revisited. This con-

dition is not strictly valid because almost all algorithms for continuous optimization

will revisit some of their points in history. Such minor violation of assumptions can

potentially leave room for free lunches. It has also been shown that under the right

conditions such as co-evolution, certain algorithms can be more effective [31].

In addition, as we can see from Chap. 2 (of this book) by T. Joyce and J.M. Here-

mann on the review of no-free-lunch (NFL) theorems, free lunches may exist for

a finite set of problems, especially those algorithms that can exploit the objective

landscape structure and knowledge of optimization problems to be solved. If the per-

formance is not averaged over all possible problems, then free lunches can exist. In

fact, for a given finite set of problems and a finite set of algorithms, the comparison is

essentially equivalent to a zero-sum ranking problem. In this case, some algorithms

can perform better than others for solving a certain type of problems. In fact, almost

all research papers published about comparison of algorithms use a few algorithms

and a finite set (usually under 100 benchmarks), such comparisons are essentially

ranking. However, it is worth pointing out that for a finite set of benchmarks, the

conclusions (e.g., ranking) obtained can only apply for that set of benchmarks, they

may not be valid for other sets of benchmarks and the conclusions can be significantly

different. If interpreted in this sense, such comparison studies and their conclusions

are consistent with NFL theorems.

5 Mathematical Analysis

The above analyses are mainly qualitative, but they can give some insight into the

fundamental forms of search mechanisms and their role and properties. However,

more insights can be gained by looking at algorithms mathematically. There are dif-

ferent ways of analyzing algorithms with mathematical rigour, but such analyses may

have stringent assumptions that can be also unrealistic in some cases. Loosely speak-

ing, mathematical framework can be dynamic systems, fixed-point theory, Markov

chain theory, self-organization, filtering and others. To build a solid mathemati-

cal framework to analyze algorithms may require a long-term, multidisciplinary

approach, thus we will not be too ambitious here. Instead, we would like to high-

light a few approaches so as to inspire more research in this area.

5.1 Fixed-Point Theory

Numerical analysis often places emphasis on the iterative nature of an algorithm

A(𝐱t) and tries to figure out how the solution 𝐱t sequence may evolve as a

http://dx.doi.org/10.1007/978-3-319-67669-2_2
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pseudo-time iteration counter t. From the discussion in Sect. 2, we know that an

algorithm can be written as

𝐱t+1 = A(𝐱t, 𝐱∗, p1,… , pK), (30)

for t ≥ 0. As the iteration continues, it is possible that

lim
t→∞

𝐱t+1 = 𝐱∞, (31)

where 𝐱∞ is a fixed point. Obviously, if 𝐱∞ does not exist, we can say the algorithm

diverges. In a special case when 𝐱∞ = 𝐱∗, we can safely say that the algorithm has

found the true optimal solution. But if 𝐱∞ ≠ 𝐱∗, it may indicate that the iteration

sequence becomes prematurely converged.

It is worth pointing out that the above solutions usually have some randomness

and noise for metaheuristic algorithms, and, therefore, the above equation should be

interpreted as the mean. That is

< lim
t→∞

𝐱t+1 >=< 𝐱∞ > . (32)

The general fixed-point theory dictates how an iterative formula may evolve and

lead to a fixed point in the search space [26]. It is worth pointing out that there may

be multiple fixed points, and each iteration sequence may only find one fixed point

at a time, though it is possible for some algorithms such as the firefly algorithm to

find multiple fixed points simultaneously.

For a population of solutions in any nature-inspired algorithms, the population

interact with each other and may lead to potentially multiple fixed points, depending

on the algorithm dynamics of each algorithm. It can be expected that the ultimate 𝐠∗
(not the best at each iteration) acts as a fixed point in PSO, while there are multiple

fixed points in the firefly algorithm. Therefore, we can hypothesize that there is a

single fixed point in BA, PSO, simulated annealing, FPA and bee algorithm, while

multiple fixed points can exist in FA, CS, ACO and genetic algorithms if the con-

ditions are right. However, it is not clear yet what these conditions can be and how

to maintain these conditions in practice. In addition, these conditions may also be

problem dependent. It is highly necessary to carry out more research in this area.

5.2 Dynamic System

The first analysis of PSO using a dynamic system theory was carried out by Clerc

and Kennedy [8], and they linked the governing equations of PSO with the dynamic

behaviour of particles under different parameter settings. Using matrix algebra, we

can rewrite Eqs. (7) and (8) as the following dynamic system:
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⎛⎜⎜⎝
𝐱i

𝐯i

⎞⎟⎟⎠

t+1

=
⎛⎜⎜⎝

1 1

−(𝛼𝜖1 + 𝛽𝜖2) 1

⎞⎟⎟⎠
⎛⎜⎜⎝
𝐱i

𝐯i

⎞⎟⎟⎠

t

+
⎛⎜⎜⎝

0

𝛼𝜖1𝐠∗ + 𝛽𝜖2𝐱∗i

⎞⎟⎟⎠
. (33)

They did not use the eigenvalues of the above system because the matrices con-

tain random numbers. Instead, they made additional assumptions and their analysis

suggested that the PSO system is governed by the eigenvalues of a system matrix

𝜆1,2 = 1 − 𝛾

2
±

√
𝛾
2 − 4𝛾
2

, (34)

which leads a bifurcation at 𝛾 = 𝛼 + 𝛽 = 4. This kind of analysis can indeed provide

some insight into the working mechanism and main characteristics, but it may be

difficult to provide a full picture of the system because of simplifications used in the

analysis.

For the bat algorithm, we can rewrite the algorithmic equations as

⎛⎜⎜⎝
𝐱i

𝐯i

⎞⎟⎟⎠

t+1

=
⎛⎜⎜⎝
1 1

fi 1

⎞⎟⎟⎠
⎛⎜⎜⎝
𝐱i

𝐯i

⎞⎟⎟⎠

t

+
⎛⎜⎜⎝
0

fi

⎞⎟⎟⎠
, (35)

where fi = fmin + (fmax − fmin)𝛽. A quick look seems to show that this system is very

similar to (33), but we have not considered the variations of the pulse emission rate

r and loudness A in the above equations. The similarity allows to do some similar

analysis, but the incompleteness of this system to capture the full functionalities of

the bat algorithm means that the analysis may not provide much useful information

in practice. In principle, we can use the similar method to analyze other algorithms,

however, it becomes difficult to extend to a generalized system. For example, in FA,

CS and ACO, the nonlinearity makes it difficult to figure out the eigenvalues because

the matrix will depend on the current solution, randomization and other factors. Fur-

thermore, nonlinearity in algorithms such as FA also means that the characteristics

can be much richer than simple linear dynamics such as PSO. Thus, this method may

become intractable in practice, and some linearization and approximations may be

needed.

5.3 Markov Chain Theory

As we mentioned earlier, algorithms can be considered as biased Monte Carlo since

the solutions generated by an algorithm is a statistical sampling method such as

Monte Carlo [12]. In general, Monte Carlo methods are closely associated with

Markov chains. A Markov chain is a chain whose next state will depend only on

the current state and the transition probability.
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The solution set generated by an algorithm essentially form a system of Markov

chains and thus it is natural that Markov chain theory can provide a generalized

framework for analyzing nature-inspired algorithms. For example, Suzuki carried

a simple analysis of genetic algorithms using Markov chain theory [28], while He

et al. used a discrete-time Markov chain approach and have proved that the flower

pollination algorithm can have guaranteed global convergence [17].

At an even higher level, we can view algorithm systems as systems of multi-

ple, interacting Markov chains that evolve with time. For example, a generalized

approach has been designed using a Markov chain Monte Carlo for global optimiza-

tion [15]. In practice, this approach may converge slower than nature-inspired algo-

rithms, and one of the reasons is that the selection mechanism is relatively weak in

generalized Markov chain model. Despite this, this methodology can provide a quite

general framework for optimization.

Mathematically speaking, Markov chain theory can provide some significant

insight into the algorithms. The largest eigenvalue of a proper Markov chain is unity,

while the second largest eigenvalue 𝜆2 of the transition probability matrix essentially

controls the rate of convergence of the Markov chain. However, it is very challenging

to find this eigenvalue in practice. Even some estimates can be difficult. Therefore,

the information and insight we can obtain is limited in practice, which may also limit

its practical use.

5.4 Computational Complexity

Computational complexity can be estimated for each algorithm, and this can help to

under the computational efforts needed. For example, most algorithm such as PSO,

FPA and bat algorithm, has a complexity of O(nT) where n is the population size and

T is the total number of iterations. Firefly algorithm has a computational complexity

of O(n2T). Since n is relatively small compared with T , this usually does not increase

the computation efforts substantially. In general, the computational complexity of

nature-inspired algorithms is low.

On the other hand, the complexity of problems to be solved can be very high,

even non-deterministic polynomial-time (NP) hard. For example, the well-known

travelling salesman problems are NP-hard. Even nature-inspired algorithms are rel-

atively simple, and studies have indicated that they can solve complex problems and

even NP-hard problems. It still remains a bit mystery how such algorithms with low

algorithmic complexity can solve highly complex problems and be able to find good

solutions and even optimal solutions in practice.

5.5 Filter Theory

In telecommunications and signal processing, signals are processed and filtered so

as to gain certain desired properties [37, 38, 45]. If we consider the solutions during
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iterations are signals, the action of an algorithm is to filter out undesired signals

(solutions) and let desired signals (good solutions including the best solution) to

pass through the system. As filtering occurs at multiple stages during iterations, the

final well-filtered solutions are essentially the converged solution set.

In this sense, the design of algorithms is equivalent to the design of filters. There-

fore, for linear algorithms such as PSO and bat algorithm, it is possible to use filter

theory and signal processing techniques to analyze them. Though we have not seen

such studies in the literature, it is no doubt future research will investigate this route

further.

5.6 Self-organization

In the earlier discussion about self-organization, we have compared the similarity and

differences between algorithms and self-organized systems, which was summarized

in Table 2.

The self-organization theory is complex, which cannot directly transferred to ana-

lyze the characteristics of algorithms. Though comparison can provide some quali-

tative insight, it lacks crucial details about how the self-organized states in physical

systems and/or algorithmic systems emerge, under what conditions and how quickly

such converged states can be reached. Key information and properties may need to

obtain by other means, unless new theory about self-organization emerges in the near

future.

5.7 Statistical Analysis and Other Approaches

There are other approaches using statistical analysis and time series theory. However,

it may not be easy to put some studies into a fixed category, though their results can

be equally useful [29].

For example, Zaharie carried out a variance analysis of population and the effect

of crossover in differential evolution [47]. The variance of the population var(Pt) at

time t is governed by

var(Pt) = Q(F, pm, t) var(P0), (36)

where F is a constant and pm is the effective mutation probability. This relationship

links the variance of the current population Pt of n solutions with that of the initial

population P0 [47]. In addition, we have

Q(F, pm, t) =
[
1 − 2F2pm −

pm(2 − pm)
n

]t
, (37)

which defines a critical value of F when Q = 1.
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Indeed, variance analysis provides some information about the diversity of the

population during the iterations. However, this kind of analysis requires that the sys-

tem is linear, and thus it cannot directly be extended to analyze nonlinear systems

such as the firefly algorithm.

5.8 Multidisciplinary Approach

The above analyses clearly indicate that a particular method can only look at the

algorithms from one perspective. Different approaches and perspectives can provide

different insights, potentially complementary to each other. Therefore, multidisci-

plinary approaches are needed to analyze algorithms from multiple angles so as to

provide a fuller picture, including convergence analysis, stability analysis, sensitivity

analysis and robustness analysis as well as parallelism in implementation.

It can be expected that a multidisciplinary framework can be formulated to ana-

lyze algorithms comprehensively, and such a framework requires all the above dis-

ciplines and methodologies to work together. It is hoped that this work can inspire

more research in this area.

6 Conclusions

In this book chapter, we have attempted to analyze nature-inspired algorithms from

both qualitative and quantitative perspectives. On the one hand, we have character-

ized algorithms using different components and the comparison of their role and

properties with those of self-organized systems. On the other hand, we have tried to

analyze algorithms using fixed point theory, dynamical system theory and Markov

chain Monte Carlo framework. All these have provided some useful insights into the

working mechanisms of algorithms.

Even with the above approaches, there are still many issues that need to be

addressed in further research. Firstly, the mathematical framework need to be for-

mulated in a more rigorous way so as to provide more detailed guides on how to ana-

lyze algorithms with mathematical rigour. Secondly, convergence analysis, stability

analysis and sensitivity analysis should be closely linked with parameter tuning and

parameter control of algorithm-dependent parameters of an algorithm [11]. Ideally,

algorithms should be able to self-tune themselves to suit for a given type of prob-

lems [43]. Thirdly, robustness should also be studied so as to find suitable methods

for solving optimization problems with noise and uncertainties in data and material

properties. Fourthly, further studies should also focus on how to balance exploration

and exploitation in algorithms so as to gain in-depth understanding. Finally, more

large-scale case studies should be carried out to solve a diverse range of challenging

problems in real-world applications.
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A Review of No Free Lunch Theorems,
and Their Implications for Metaheuristic
Optimisation

Thomas Joyce and J. Michael Herrmann

Abstract The No Free Lunch Theorem states that, averaged over all optimisation

problems, all non-resampling optimisation algorithms perform equally well. In order

to explain the relevance of these theorems for metaheuristic optimisation, we present

a detailed discussion on the No Free Lunch Theorem, and various extensions includ-

ing some which have not appeared in the literature so far. We then show that under-

standing the No Free Lunch theorems brings us to a position where we can ask about

the specific dynamics of an optimisation algorithm, and how those dynamics relate

to the properties of optimisation problems.

Keywords No Free Lunch (NFL) ⋅ Optimisation ⋅ Search ⋅ Metaheuristics

1 Introduction

In science, computing, and engineering it is common to encounter situations in which

a function can be evaluated on any inputs, and one wants to find the inputs that pro-

duce the highest (or equivalently, lowest) output. When the number of possible inputs

is too large for it to be feasible to simply try them all, then one must instead rely on

some strategy for finding a satisfactory solution. There are many such strategies, and

here we look at a subset of these strategies called metaheuristic optimisers. Meta-

heuristic optimisers can be though of as simple, broadly applicable strategies for

finding inputs to functions that result in desirable outputs.

There is a large literature on metaheuristic optimisers, and much work goes in to

developing more effective optimisation algorithms and refining existing approaches.

However, a fundamental result in optimisation, the No Free Lunch Theorem, shows

that, all non-resampling optimisation algorithms perform equally, averaged over all

problems. Understanding this result is of central importance for anyone working in
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optimisation, and in this chapter we give a detailed overview of the No Free Lunch

(NFL) Theorems for optimisation, covering both the original theorems, and a number

of extensions and refinements. We then examine how the results should influence

research into meatheuristic optimisation.

2 Preliminaries

We start by introducing the central definitions and notation used throughout the

chapter, most importantly functions and data. Functions are used as formal repre-

sentations of the problems we want to solve, and data allows us to represent partial

knowledge of these functions.

2.1 Functions

In this chapter we consider functions f ∶ X → Y , where X and Y are finite sets with

|X| = n and |Y| = m. We assume that neither X nor Y are empty. We denote the set

of all such functions F , with |F | = mn
.

As we need to represent functions frequently throughout the chapter we intro-

duce a concise representation scheme. Without loss of generality assume that X =
{1, 2,… , n}, then for any f ∈ F we can write an ordered list of y values y1, y2,… , yn
where yi = f (i). This ordered list of y values uniquely and fully describes f . When

there is no ambiguity (e.g. in the case where Y = {0, 1}) we will sometimes omit the

commas between elements.

Example 1 (Function) Let X = {1, 2, 3} and Y = {0, 1}. We can then write out all

f ∈ F : 000, 001, 010, 011, 100, 101, 110, 111. For example, 110 corresponds to the

case where f (1) = 1, f (2) = 1 and f (3) = 0.

In the optimisation literature there are many terms used to refer to the function

being optimised. It is called variously the “cost function”, “fitness function”, “tar-

get function”, “objective function”, “test function”, “problem” and even simply “the

function”. Here we generally use (problem) function. We now introduce some exten-

sions to the basic function.

Definition 1 (Bijection) A function f ∶ X → Y is a bijection iff ∀ x1, x2 ∈ X, x1 ≠
x2 ⟹ f (x1) ≠ f (x2) and ∀ y ∈ Y , ∃ x ∈ X such that f (x) = y.

Definition 2 (Permutation) A permutation is a bijection from a set onto itself. That

is, 𝜙 ∶ X → X is a permutation iff 𝜙 is a bijection.

Definition 3 (Function Permutation) Let 𝜙 be a permutation 𝜙 ∶ X → X, and let

f ∶ X → Y be an arbitrary function. We call f
𝜙

a function permutation where we
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Fig. 1 Function permutation example, f = 2, 5, 2, 3, 7 (left) is permuted by 𝜙 = 2, 5, 4, 1, 3, result-

ing in f
𝜙

= 5, 7, 3, 2, 2 (right)

define f
𝜙

(x) = f (𝜙(x)). A function permutation can be thought of as re-ordering the

output values. The resulting function has the same outputs, but they now correspond

to different inputs.

Example 2 (Function Permutation) Let f ∶ {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5, 6, 7} with

f = 2, 5, 2, 3, 7 and let 𝜙 be a permutation 𝜙 = 2, 5, 4, 1, 3, then f
𝜙

= 5, 7, 3, 2, 2. See

Fig. 1 for a graphical representation of this example.

2.2 Data

When optimising a function f ∶ X → Y we assume we know X and Y , but only know

some (or none) of the values y = f (x). We represent such partial knowledge as a

function d ∶ X → Y ∪ {?} which we call data. The question mark “?” represents an

x value for which the f (x) value is unknown. For all x values where we know y = f (x)
let d(x) = f (x), for all other values of x we let d(x) = ?. In other words, if for some

x ∈ X we have d(x) = ? then we currently do not know f (x). Let D be the set of all

possible data for functions in F . It follows that |D| = (m + 1)n. We refer to the data

where ∀ x ∈ X, d(x) = ? as “no data”, as this represents the situation in which we

know nothing about the problem function.

Example 3 (Data) Let X = {1, 2, 3, 4} and Y = {0, 1}. Assume we have partial

knowledge of some f ∈ F . In particular, we know that f (2) = 1 and f (4) = 1. We can

represent this data as a function d where d(1) = ?, d(2) = 1, d(3) = ? and d(4) = 1.

As discussed in Sect. 2.1, this can be represented more succinctly as: ?1?1. Note that,

assuming the data is accurate, there are four possible functions consistent with the

data: 0101, 0111, 1101 and 1111.

3 Optimisation Algorithms

We have introduced functions, and data, to represent the problems we want to solve,

and partial knowledge of these problems, respectively. We now introduce a represen-
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tation of optimisation algorithms themselves. We first introduce a sampling policy,

which is the decision making component of the optimisation algorithm.

3.1 Sampling Policy

The situation discussed throughout this chapter is the following: there is a function

f ∶ X → Y which can be evaluate at any x ∈ X, and the current knowledge of the f is

represented by data d. A sampling policy is a rule for deciding where to sample next,

based on the current data. In other words, given the current data it specifies which

of the potentially numerous x we should evaluate f at next.

Definition 4 (Sampling Policy) A sampling policy s is a function s ∶ D → X, where

D is the set of all possible data, as defined in Sect. 2.2.

Example 4 (Sampling Policy) Let X = {1, 2} and Y = {0, 1}. An example sampling

policy s is: s(??) = 1, s(0?) = 2, s(1?) = 1, s(?0) = 1, s(?1) = 1. We do not need to

specify s(00), s(01), s(10), or s(11), as we are only concerned with the behaviour of

the sampling policy when some points remain unsampled.

Definition 5 (Non-Repeating Sampling Policy) A non-repeating sampling policy s
is a function s ∶ D → X s.t. if s(d) = x then either d(x) = ? or |d| = m.

Example 5 (Non-Repeating Sampling Policy) Let X = {1, 2} and Y = {0, 1}. Then

the set of possible data D = {??, ?0, ?1, 0?, 1?, 10, 01, 00, 11} and s(??) = 1, s(?0) =
1, s(?1) = 1, s(0?) = 2, s(1?) = 2, is a non-repeating sampling policy.

Here, we will consider deterministic non-repeating sampling policies, unless oth-

erwise stated, and when there is no ambiguity we will just call them sampling

policies.

3.2 Optimisation Algorithms

So far we have defined sampling policies, which decide where to sample given data.

However, we can add to our data by evaluating the problem function f at some x
and updating d by setting d(x) = f (x). Essentially, an optimisation algorithm is the

repeated use of a sampling policy, adding to our data each time we make a sample,

until a termination condition is reached. For the time being we fix our termination

condition to: terminate iff we have sampled f at every x ∈ X. Given this fixed termi-

nation condition an optimisation algorithm is fully specified by a choice of sampling

policy.

Definition 6 (Optimisation Algorithm) An optimisation algorithm A based on sam-

pling policy s is iterated use of that sampling policy and data updating:
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1. Set d to be the initial data (generally “no data”, but see Sect. 3.3).

2. If there are no unsampled x ∈ X, then terminate.

3. Sample at x = s(d) and add the result to the data d, i.e. set d(x) = f (x).
4. Go to step 2.

3.3 On-Policy and Off-Policy Behaviour

One useful observation on the behaviour of deterministic optimisation algorithms is

the existence of what can be thought of as on-policy and off-policy behaviour. This

distinction is important for later proofs, and so we make it clear here.

The on-policy behaviour of an algorithm is the the behaviour on inputs potentially

seen when the algorithm is run until termination starting with no information about
f . The on-policy behaviour is generally not the full behaviour, as there are data inputs

that will never be seen in the normal execution of the algorithm, regardless off the

function f being sampled. This is clarified in the following example:

Example 6 (On-Policy Behaviour) Consider the sampling policy described in Exam-

ple 5. s(??) = 1, and so an optimisation algorithm using this sampling policy will

initially sample f (1), and thus the data ?0 and ?1 will never be seen, as those data

are the possible results from evaluating f (2) first. It is not that f (2) will never be

evaluated, rather that if we follow the policy, f (2) will never be evaluated first.

Off-policy behaviour is the sampling policy restricted to exactly those data inputs

that do not appear in the on-policy behaviour. Thus together the off-policy and

on-policy behaviours describe the full behaviour. Broadly speaking, the on-policy

behaviour is all the behaviour that is possible in the normal running of the optimiser,

and off-policy behaviour is that that results from starting the optimisation algorithm

with some initial (off-policy) knowledge of the problem function. In this chapter we

restrict attention to on-policy behaviour unless explicitly stated.

3.4 Representing Optimisation Algorithm Behaviour

When discussing optimisation algorithms it is often helpful to consider their behav-

iour represented as a behaviour graph, which we now define:

Definition 7 (Behaviour Graph) An optimisation algorithm’s behaviour can be rep-

resented as a directed graph, in which nodes represent data and the edges show all

potential transitions between data resulting from sampling the problem function in

accordance with the optimiser’s sampling policy. We call such a graph the behaviour

graph of the optimiser. See Fig. 2 for an example of a behaviour graph.
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Fig. 2 Left: The on-policy behaviour of the optimisation algorithm using the sampling policy from

Example 5. The yellow circular nodes represent data, the blue rectangular nodes show the sampling

policy’s decision based on data. Right: The same tree shown more compactly by removing the

explanatory details. The tree still contains the same information and is the format we will generally

use, for compactness

We now show that if we restrict attention to on-policy behaviour of deterministic,

non-resampling optimisation algorithms, then the behaviour graph is in fact a tree.

This is a key observation and is used variously throughout the rest of the chapter.

Theorem 1 (Optimisation Algorithm Tree Representation) A deterministic non-
resampling optimisation algorithm’s on-policy behaviour can be uniquely repre-
sented as a directed graph. In fact this directed graph is a balanced tree.

Proof From the definition of on-policy behaviour we start the optimisation with no

data about the function, which we represent as the root node of the tree. The algo-

rithm’s sampling policy determines which x should be sampled given no data, say x1.

When the algorithm performs the sample at x1 there are |Y| = m possible results, and

each of these results necessarily leads to different data (as the data is just a descrip-

tion of the result). Thus, we can potentially transition to any of m new data nodes by

appending the result to the data, setting d(x1) = f (x1).
At this point, either the node we are at represents data with no unknown values,

in which case the algorithm halts and we are at a leaf, or the node contains at least

one value for which d(x) = ?. In this second case the sampling policy will select one

of these x to be sampled (as it is non-resampling), and again m possible results exist,

we follow one of the possible edges (dependent on the results of the sample) and

then repeat the process until we do eventually reach a leaf.

We now show that all paths do eventually lead to a leaf. Whenever an x is sampled

an unknown f (x) becomes known. As the algorithm terminates exactly when all f (x)
are known, and there are only n = |X| unknown f (x) at the start, and as, because the

sampling policy is non-resampling, the algorithm only ever samples x for which f (x)
is unknown, then the algorithm necessarily terminates after exactly n samples, and

we reach a leaf.
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We now show that no two paths arrive at the same node. First we note that all

paths through the tree start at the root node. Assume we have two paths that at some

point separate. If they were to rejoin they must both eventually arrive at the same data

set. However, the very fact that they separated means that for some x they produced

different f (x) values. Thus, their data can never be the same, and they will never

rejoin at a node. It follows that the graph is a tree.

Finally, as every path necessarily terminates after exactly n steps, and every non-

leaf node leads to exactly the same number m of immediate children, it follows that

the tree is balanced.

Theorem 2 (Tree Representation Details) The tree representing the on-policy
behaviour of an optimiser for functions mapping X → Y where |X| = n and |Y| = m
has n + 1 layers. If we label these layers 0, 1,… , n starting from the root then layer
i contains mi nodes, and the tree contains 1 + m + m2 +⋯ + mn nodes in total. The
final layer consists of mn leaves with exactly one representing each of the mn func-
tions f ∈ F = YX.

Proof Each node represents particular data d ∈ D . The root node is always d s.t. ∀ x
∈ X, d(x) = ?. Call this root node layer 0. Each node on the i-th layer, for i ∈
{0,… , n}, will represent data with exactly n − i unsampled x values. Thus, the n-

th layer will consist of leaves, and will be the final layer.

Every non-leaf node leads to exactly m = |Y| immediate children. We have also

seen in the proof of Theorem 1 that no node is the child of more that one node. Thus,

as in layer zero there is 1 node in layer 1 there will be m, in layer 2 there will be m2

nodes, and in layer i there will be mi
nodes for i ranging from 0 to n.

On the n-th layer there are mn
leaves, each containing data describing a different

f ∈ F . As |F | = mn
every f ∈ F must correspond to a leaf.

In Fig. 3 we show example on-policy trees for three different domains. It can

be seen that even for |X| = 4 and |Y| = 2 the tree becomes fairly large. Although

trees are possible for any finite X and Y , we will generally not be able to show them

explicitly.

3.5 Paths down Trees

We have seen that the on-policy behaviour of an optimisation algorithm can be rep-

resented as a balanced tree (Theorem 1). We now show that running an optimiser on

a particular function corresponds to taking a particular path down the optimiser’s

tree. Figure 4 provides a graphical example of these paths down trees.

Theorem 3 (Paths Down Trees) When the on-policy behaviour of an optimisation
algorithm is represented as a rooted tree, then paths down that tree biject with the
functions f ∈ F , and the path shows the choices that the algorithm will make when
optimising the corresponding f .
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Fig. 3 The example policies, represented as trees. Top left: A policy for functions from X = {1, 2}
to Y = {0, 1}. Top right: A policy for functions from X = {1, 2, 3} to Y = {0, 1}. Bottom: A policy

for functions from X = {1, 2, 3, 4} to Y = {0, 1}

Fig. 4 Two example paths taken by the optimisation algorithm down its behaviour tree. The left

path shows the route when the algorithm is run on f = 001 and the right path shows the behaviour

on f = 011

Proof Recall that every leaf is the result of optimising one f ∈ F . The existence of

the bijection follows directly from the fact that the graph structure is a tree, and there

is thus only a single path from the route to each leaf.
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4 No Free Lunch

The original No Free Lunch (NFL) theorem for optimisation [1, 2] states that no

optimisation algorithm can outperform any other under any metric over all problems.

The theorem first appears in Wolpert and Macready’s 1995 paper “No Free Lunch

Theorems for Search” [1], but became more widely known through the same authors

1997 paper, “No Free Lunch Theorems for Optimization” [2]. There are many for-

mulations of the result in the literature, with different emphasis. Here we present a

representative selection, starting with Wolpert and Macready’s own characterisation:

1. The average performance of any pair of algorithms across all possible problems

is identical [2].

2. For all possible metrics, no search algorithm is better than another when its

performance is averaged over all possible discrete functions [3].

3. On average, no algorithm is better than random enumeration in locating the

global optimum [4].

4. The histogram of values seen, and thus any measure of performance based on it

is independent of the algorithm if all functions are considered equally likely [5].

5. No algorithm performs better than any other when their performance is averaged

over all possible problems of a particular type [6].

6. With no prior knowledge about the function f ∶ X → Y , in a situation where any

functional form is uniformly admissible, the information provided by the value

of the function in some points in the domain will not say anything about the

value of the function in other regions of its domain [7].

As this selection shows, NFL allows a broad range of assertions. We will now

formally state and prove the NFL theorem, after two preliminary definitions.

Definition 8 (Traces) The trace of an optimisation algorithm A running on a func-

tion f is the ordered list of (x, y) pairs sampled (where y = f (x)). We write TA(f ) for

the trace of algorithm A running on function f . We also define T (k)
A (f ) to be the trace

after k function evaluations. As we restrict attention to non-resampling optimiser, it

follows that if n is the size of the domain of f then T (n)
A (f ) = TA(f ). We call TA(f ) the

(full) trace and T (k)
A (f ) a partial trace for any k < n. Let TA be the set of all the traces

that algorithm A produces on functions mapping X (where |X| = n) to Y , that is:

TA = ∪f∈F ∪n
k=0 T (m)

A (f )

We also define a trace of just the inputs TA(f )X and a trace of just the outputs

TA(f )Y as ordered lists of just the x and y values respectively from the full trace. We

call these the input trace and the output trace. The output trace is sometimes called

the performance vector or range trace in the literature. Similarly, we define TA,X and

TA,Y all possible input traces and all possible output traces, respectively.

Example 7 (Traces) Let X = {1, 2, 3} and Y = {0, 1} and let A be an optimisa-

tion algorithm using sampling policy s, with s(???) = 2, s(?0?) = 3 and s(?1?) = 3
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Fig. 5 The yellow nodes show the behaviour tree for an optimisation algorithm (using the sampling

policy defined in Example 7) on functions between {1, 2, 3} and {0, 1}. The green squares attached

to each yellow node show the corresponding output trace at that point. If we let A be the algorithm

represented by the tree, then it can see that, for example, TA(010),Y = 100 by reading the trace at the

010 leaf

(A is shown graphically in Fig. 5). Let f ∶ X → Y with f = 010. Then TA( f ) =
{(2, 1), (3, 0), (1, 0)}, T (2)

A ( f ) = {(2, 1), (3, 0)}, TA( f )X = {2, 3, 1} and TA( f )Y =
{1, 0, 0}, TA,Y = {{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0},

{1, 1, 1}, {0, 0}, {0, 1}, {1, 0}, {1, 1}, {0}, {1}, {}}.

As noted in [8] optimisation algorithms have no “intrinsic purpose” and their

behaviour needs to be qualified by some external metric. A metric provides a way to

evaluate an algorithm’s performance. We now make this idea of a metric precise.

Definition 9 (Optimisation Metric) An optimisation metric M is a function that

maps output traces to ℝ. A metric can be thought of as assigning a value, or score,

to an output trace, M ∶ TY → ℝ.

An alternative but equivalent way to think of a metric is as a function M∗
from

an algorithm, a function, and a number of samples t ∈ ℕ, to a rating of how well

the algorithm performs on that function after that many samples, that is, M∗ ∶ A ×
F × ℕ → ℝ where M∗(A, f , t) = M(T (t)

A(f ),Y ).

Example 8 (Optimisation Metrics) A simple metric for measuring minimisation per-

formance is a function that returns the minimum Y value in the trace (i.e. the smallest

y value sampled so far). In fact, although simple, this metric is often used to com-

pare optimisers, especially in cases where the true global minimum of the function

is unknown.

We are now in a position to formally state and prove NFL. We follow the style of

proof used by English [8–10], as this is in our opinion clearest, and naturally yields
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various generalisations to the theorem. It involves explicit reference to the repre-

sentation of optimisers as trees. Another particularly clear approach to the proof is

using the “fundamental matrix” method from [11]. We have chosen a tree based

method because, in our opinion, it makes the sequential decision aspect of the algo-

rithm producing a trace (see Definition 8) more explicit. However, we strongly rec-

ommend [11] to any readers wanting an alternative approach.

Theorem 4 (NFL) All optimisation algorithms produce the same set of traces
when run over all possible functions between two finite sets. More formally, let
YX = {f | f ∶ X → Y}, where X and Y are arbitrary finite sets. For all optimisation
algorithms A,B, {TA( f ),Y | f ∈ YX} = {TB( f ),Y | f ∈ YX}.

Proof As we have shown in Sect. 3.4, the behaviour of an optimisation algorithm is

uniquely representable as a tree. This tree has |Y||X| leaves and the trace at each leaf

is unique. However, by a counting argument there are only |Y||X| possible distinct

traces of length |X| = n. Therefore, every optimisation algorithm produces the same

set of traces, namely every possible trace exactly once.

It is worth noting that the proof above is very succinct, this is in part due to the

reference to the proof that the behaviour of an optimisation algorithm is uniquely

representable as a tree, but also partly a result of the decision tree proof style.

5 Basic No Free Lunch Extensions

We now present some additional results and observations that are of interest in them-

selves, and will also be used in refinements of NFL below. Theorem 4 showed that

every algorithm is equivalent when full traces are considered. We first generalise to

the case where we stop the optimisation after k steps, then we generalise further to

the case of arbitrary stopping conditions. After this we give a proof that the NFL

result still holds if we allow stochastic sampling policies.

5.1 k-Step No Free Lunch

In real applications, optimisation algorithms are not usually run until the entire

domain has been sampled. In the original no free lunch papers by Wolpert et al.

[1, 2] they show that the no free lunch theorem still applies if algorithms are run

for some fixed number of steps. We restate this theorem here and prove it using tree

representations. We first define a multi-set, which is used in the theorem.

Definition 10 (Multi-set) A multi set is a set in which elements can occur multiple

times. Another way to think of a multi-set is as a set in which each element has an

associated count.



38 T. Joyce and J.M. Herrmann

Theorem 5 (k-step NFL) All optimisation algorithms produce the same set of traces
when run over all possible functions between two finite sets for k steps. More for-
mally, let YX = {f | f ∶ X → Y}, where X and Y are arbitrary finite sets. For any
optimisation algorithms A,B, {T (k)

A (f )Y | f ∈ YX} = {T (k)
B (f )Y | f ∈ YX}. In fact they

produce the same multi-set, in that every possible trace appears the same number of
times, with the exact value depending on k and |X|.

Proof If we prune the full behaviour tree after k steps the resulting tree will have

|Y|k leaves. Each leaf has corresponds to a unique output trace and these traces are

of length k. Thus, as there are only |Y|k possible output partial traces of length k,

each partial trace must be present exactly once in the leaves. This is the case for all

optimisation algorithms.

Because we have pruned the tree after k steps, each leaf in the pruned tree (and

thus each partial output trace) will result when optimising multiple problem func-

tions. However, as the full behaviour tree was a balanced tree, it follows that each

partial trace will be obtain the same number of times when all possible functions are

considered.

We defined the behaviour tree for an optimiser in Sect. 3.4. We now define a simi-

lar but distinct tree representation, the trace tree. Essentially the behaviour tree show

both the x and y values of the algorithms samples, the trace tree in contrast only

shows the y values.

Definition 11 (Trace Tree) Let A be an optimisation algorithm for functions f ∶
X → Y . The trace tree for A is the behaviour tree with the nodes labelled with the

trace, rather than the data.

An example trace tree is given in Fig. 6. It is the trace tree of the optimisation

algorithm in Example 5, the behaviour tree of which is shown in Fig. 5. An example

of a trace tree for a restricted number of steps is shown in Fig. 7.

We now show that trace tree only depends on the range and the size of the domain

of the functions being optimised. The detail that we lose when we switch from behav-

iour trees to trace trees is exactly the detailed that differentiated the optimisers.

Fig. 6 The behaviour tree showing only the trace values. When considering just the traces, all

algorithms have the same behaviour tree (see Theorem 6). What differentiates algorithms is that for

different algorithms a given function will produce different paths in this tree
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Fig. 7 The tree in Fig. 6 after k = 2 steps. As |Y| = |{0, 1}| = 2 there are |Y|k = 22 = 4 leaves,

each having one of the four possible two bit traces

Theorem 6 (Identical Trace Trees) All optimisation algorithms for functions map-
ping X to Y produce the same trace tree. In fact, all optimisation algorithms for
functions mapping Z to Y also produce the same trace tree, as long as |Z| = |X|.

Proof Consider an optimisation algorithm A for functions f ∶ X → Y . We will show

that A’s trace tree does not depend on any of the specific details of A, and thus would

be the same for any optimisation algorithm for functions f ∶ X → Y .

From the definition of a trace tree we know that the algorithm’s trace tree has

the same structure as the algorithm’s behaviour tree. In particular, as we are only

considering non-resampling optimisers we know that the trace tree will have |X| + 1
layers, and that each node in the tree will be either a leaf or the parent of exactly |Y|
other nodes.

Now we simply observe that if we consider a non-leaf node in the trace tree

then we can detail the node’s children without knowledge of A. Suppose the node

we are considering has trace y1, y2,… , yk, then its |Y| children will have the traces

y1, y2,… , yk, y for each y ∈ Y .

Next we note that the only influence the domain X has on the trace tree is in

setting the number of layers to be |X| + 1, thus it is only the size of the domain that

is important and the trace tree will be the same for any domain of that size.

Corollary 1 The leaves of the trace tree are all possible problem functions.

This was shown in Theorem 2 but is restated as a corollary above, as it is important

in the proofs to follow.

Continuing our generalisations of NFL to early stopping scenarios, we now con-

sider the more general situation in which the optimisation process can terminate

based on the results so far, rather than simply after a fixed number of steps. As we

will see, a no free lunch result still pertains.
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5.2 Stopping Condition No Free Lunch

A stopping condition is a rule for when to stop the optimiser. We make the concept of

stopping condition formal and then we show that the set of traces over all functions

is algorithm independent for any stopping condition. In other words, an NFL result

still holds.

Definition 12 (Stopping condition) A stopping condition is a function mapping out-

put traces to either 0 or 1, S ∶ TY → {0, 1}. The stopping condition can be thought of

as looking at the results of the optimisation algorithm so far and deciding whether to

continue searching. After each function evaluation an optimisation algorithm using

a stopping condition S evaluates S on its current output trace TY and then stop iff

S(TY ) = 1.

Using the above definition we now state and prove a no free lunch result for arbi-

trary stopping conditions.

Theorem 7 (stopping-condition NFL) For any stopping condition S, all optimisa-
tion algorithms produce the same set of traces when run over all possible functions
between two finite sets. More formally, let YX = {f | f ∶ X → Y}, where X and Y are
arbitrary finite sets. For any optimisation algorithms A,B, {TA|S(f )Y | f ∈ YX} =
{TB|S(f )Y | f ∈ YX}, where TA|S(f )Y is the output trace generated by algorithm A
using stopping condition S running on function f .

Proof From Theorem 1, we know that the behaviour of an algorithm can be repre-

sented by a tree. A stopping condition can be seen as a pruning of this tree. Whereas

in the k-step NFL proof we cut each branch after the same number of steps, a stopping

condition can potentially prune branches after differing numbers of steps.

As we have seen above in Theorem 6, all algorithms produce the same trace tree

(see Fig. 6). The stopping condition leads to a pruning of this trace tree, specifically

we prune all the children from any leaf with a trace T such that S(T) = 1.

A particular stopping condition, then, leads to a particular pruning. As the trace

tree and the pruning are both algorithm independent the resulting pruned trace tree

will be the same for all algorithms, and thus its leaves (the final traces produced)

will be the same. It follows that, for any optimisation algorithms A,B, {TA|S(f )Y | f ∈
YX} = {TB|S(f )Y | f ∈ YX}.

5.3 Stochastic No Free Lunch

We now state and prove the basic no free lunch result for stochastic optimisation algo-

rithms. The stochastic case was also considered in Wolpert and Macready’s original

papers [1, 2].
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Definition 13 (Stochastic Optimiser) A stochastic optimisation algorithm is an opti-

miser that uses a stochastic sampling policy to choose where it samples. Previously

a sampling policy was a function mapping s ∶ D → X. In the case of a stochastic

optimiser the sampling policy is instead a function s ∶ D → PX where PX is a prob-

ability distribution over X. To select the next x to sample given data d a sample is

drawn from the distribution s(x).

Theorem 8 (stochastic NFL) Let YX = {f | f ∶ X → Y}, where X and Y are arbi-
trary finite sets. For any stochastic optimisation algorithms A,B, if we sample f uni-
formly at random from YX then P(TA(f ) = t) = P(TB(f ) = t) = 1

|Y||X|
for all full length

traces t ∈ T .

Proof Let A be a stochastic optimisation algorithm. This stochastic behaviour is

equivalent to sampling a deterministic algorithm from some probability distribu-

tion over algorithms, then running that. However, we know from the original no

free lunch result that regardless of the deterministic algorithm chosen, each trace is

equally probable when each function is equally probable, thus each trace has proba-

bility
1

|Y||X|
regardless of the stochastic optimiser used.

6 Refined and Generalised No Free Lunches

Since their original publication the NFL theorems have been augmented and spe-

cialised in various ways. In this section we survey these extensions, providing intu-

itive explanations of the results, as well as proofs and examples. We start with two

definitions that are used in the extensions.

Definition 14 (CUP) Let G be a set of functions mapping X to Y . We say G is closed

under permutation, or CUP, iff for any permutation 𝜙 ∶ X → X, f ∈ G ⟹ f
𝜙

∈ G.

Definition 15 (Permutation Closure) Let G be a set of function mapping X to Y .

We define Gcup as the smallest set containing G that is closed under permutation.

6.1 Optimisation Algorithms Are Bijections

In this section we show that an optimisation algorithm can be seen as defining a func-

tion mapping F to itself, and that this function is a bijection, and thus a permutation.

We also look at the behaviour of an optimiser when run on a particular function f ,

and we will see that the output trace produced can be interpreted as a function per-

mutation of the input f . Results relating optimisation algorithms to permutations are

worked through in detail in [12]. We start with a definition:
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Definition 16 (Shuffle Permutation) 𝜋 ∶ YX → YX
is a shuffle permutation if it is

a bijection and, if 𝜋(f ) = g then there exists a permutation 𝜙 ∶ X → X such that

∀x ∈ X, f (x) = g(𝜙(x)). That is, g is a function permutation (see Definition 3) of

f . Intuitively, a shuffle permutation maps a function to new function with the same

output values, but rearranged to correspond to different inputs.

Now we will show the sense in which an optimisation algorithm can be thought of

as a map from F to itself. Recall that without loss of generality we assume that X =
{1, 2,… , n}. Recall also that TA(f )Y is the full output trace of optimiser A running on

function f . Thus TA(f )Y is an ordered list of n output (i.e. y ∈ Y) values. Given this

trace a new function, g, can be defined as g(i) = TA(f )Y (i), where TA(f )Y (i) is the i-th
value of the output trace (i.e. the i-th y value encountered during the optimisation).

We now show that any optimisation algorithm naturally implies a map from YX

to itself, and in fact this map is a shuffle permutation.

Theorem 9 (Optimisation Algorithms Imply Shuffle Permutations) Let A be an
arbitrary optimisation algorithm, then TA(.)Y is a bijection TA(.)Y ∶ YX → YX. Fur-
ther this bijections is a shuffle permutation.

Proof That the implied map is a bijection follows from Theorem 1. Next we note

that from their definition the optimisers are non-resampling and eventually sample

every point. It follows that for any input function the output trace is just a reordering

of the function’s y values. Thus, the bijection is a shuffle permutation.

6.2 Representation Invariance

The representation of a problem is generally considered important for optimisation.

However, an interesting corollary of NFL is that the representation doesn’t matter

when considering the ensemble of all possible problems. In other words, there is

a representational no free lunch: No representation scheme is better than any other

under any metric for any optimisation algorithm when average performance over all

problems is considered. This representation invariance was made explicit in [13].

Theorem 10 (Representation Invariance [13]) Given a function h ∶ X → Y we can
re-represent the problem by introducing a set C and a surjective map g ∶ C → X and
then considering a new function f ∶ C → Y where f (c) = h(g(c)). As C is surjective
then we know |C| ≥ |X|. Then for any optimisers A,B,

|C| = |X| ⟹ {TA(h)Y |h ∈ YX} = {TB(h)Y |h ∈ YX} = {TA(f )Y |f ∈ YC}

|C| > |X| ⟹ {TA(f )Y |f ∈ YC} = {TB(f )Y |f ∈ YC}
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A full proof can be found in [13], however, it can be seen that the case when

|C| = |X| follows directly from Theorem 6.

6.3 Sharpened No Free Lunch

The Sharpened No Free Lunch Theorem (SNFL) was first presented in [14]. Whereas

the original no free lunch theorem is a statement about algorithms on the set of all

functions, SNFL shows that the result still holds even when we restrict consideration

to certain subsets of function. In particular, SNFL states that all optimisation algo-

rithms are equivalent over any subset of functions closed under permutation (see

Definition 14).

Theorem 11 (SNFL [14]) Let G ⊆ YX be closed under permutation, then for any
optimisation algorithms A,B, {TA(f )Y | f ∈ G} = {TB(f )Y | f ∈ G}.

Proof We have seen in Theorem 9 that the output trace produced when an optimiser

is run on a function f is always some permutation of f . In the same theorem we also

saw that for any optimisation algorithm A, for any two functions f , g ∈ F f ≠ g ⟹
TA(f )Y ≠ TA(g)Y . From these two facts it follows that if the input set is permutation

closed, then, regardless of the optimisation algorithm used, the set of output traces

will be this same set of functions. In other words, any optimisation algorithm is a

permutation on any permutation closed set of functions. {TA(f )Y | f ∈ G} = G for

any optimisation algorithm A. It follows that {TA(f )Y | f ∈ G} = {TB(f )Y | f ∈ G}.

Many researchers have examined the realism of the closed under permutation

condition for real problems. In particular, Igel and Toussaint [15] show that the

proportion of subsets of functions that are closed under permutation tends to zero

double-exponentially as the size of the domain of the functions increases.

6.4 Focused No Free Lunch

The Focused No Free Lunch Theorem (FNFL) is an extension of SNFL (see

Sect. 6.3). Essentially it shows that, when only considering a restricted set of opti-

misation algorithms, a (potentially very small) subset of the permutation closure of

a test function is enough for NFL to hold. This result was first presented in [3]. Intu-

itively, because of the restriction to a subset of algorithms a more focused result is

possible as there are fewer requirements to satisfy.

Theorem 12 (FNFL [3]) Let 𝛽 be a set of test functions, 𝛽 = {f1, f2,… , fm}, and
let A be a set of optimisation algorithms, A = {A1,A2,… ,An}. Then there exists a
“focused set” FA (𝛽), with 𝛽 ⊆ FA (𝛽) ⊆ 𝛽CUP such that all algorithms inA produce
the same set of traces over FA (𝛽). Moreover, this focused set FA can potentially be
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much smaller than 𝛽CUP (note 𝛽CUP is just the permutation closure of 𝛽, see Defini-
tion 15).

The proof can be found in [3], here we omit the proof and instead include some

simple illustrative examples.

Example 9 (Simple FNFL Example) Consider optimising functions mapping

between {1, 2, 3, 4, 5} and {0, 1}. Let 𝛽 = {01010}, call this function f1 (i.e. f1 =
01010). Consider two optimisation algorithms: A, which inspects the function from

left to right, and B, which inspects the function from right to left. TA(f1)Y = 01010 =
TB(f1)Y , and thus FA (𝛽) for A = {A,B} is just {01010}.

Example 10 (Second FNFL Example) Again consider optimising functions map-

ping between {1, 2, 3, 4, 5} and {0, 1}. Let 𝛽 = {00110}, let f1 = 00110. Consider

two optimisation algorithms, A, which inspects the function from left to right, and B,

which inspects the function from right to left. TA(f1)Y = {00110, 01100} = TB(f1)Y ,

and thus FA (𝛽) for A = {A,B} is {00110, 01100}.

6.5 Almost No Free Lunch

Another important extension to the no free lunch theorem is the so called Almost No

Free Lunch Theorem. The Almost No Free Lunch Theorem (ANFL) shows that if a

stochastic optimiser (Definition 13) performs well on a given function then there is

a function of similar complexity on which it performs badly [16].

Theorem 13 (ANFL [16]) Let H be a randomised optimisation strategy, X = {1,… ,

2k}, Y = {1,… ,m} and f ∶ X → Y. Define c = 2k∕3. Then there exist at least mc−1

functions g ∶ X → Y that differ from f on at most c inputs, such that the probability
that H finds the optimum of g within c steps is less than or equal to c−1.

A proof is given in [16]. Functions of similar complexity here means any of eval-

uation time, circuit size representation, and Kolmogorov complexity.

Example 11 Let k = 6 and m = 2. Then X = {1, 2, 3,… , 64} and Y = {0, 1}. In this

case ANFL asserts that there are at least 23 = 8 functions g ∶ X → Y that agree with

f on all but at most 4 inputs such that H finds the optimum of g within 4 steps with

probability bounded above by
1
4
.

6.6 Restricted Metric No Free Lunch

In this section we introduce a Restricted Metric No Free Lunch Theorem (RNFL)

as an extension of the FNFL. Towards the end of [8] English notes the need for an

NFL theory for the case of restricted metrics. There has been some work towards
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Fig. 8 Four example metrics showing mappings of traces to values. The values are determined as

follows (clockwise from top left): (1) number of samples until a zero is found. (2) number of zeros

in first two samples. (3) number of zeros in the whole trace. (4) value based on how many zeros are

found, and how quickly they are found

this goal, for example in [17] they restrict attention to maximisation and show that

the correspondence between NFL holding and the set of functions considered being

closed under permutation breaks down when only considering optimisers running for

k-steps. Specifically, they show that under a maximisation metric, the set of functions

being closed under permutation is not necessary for NFL type results. This is an

example of a restricted metric free lunch in an k-step optimisation setting.

The original NFL theorem and its successors consider arbitrary performance met-

rics, or equivalently all performance metrics. Here we show how a restriction on the

set of metrics considered—a choice of a single metric for instance—yields NFL

results on subsets of functions. This is similar to FNFL, except as well as consid-

ering restricted sets of algorithms and functions it also considers a restricted set of

metrics. The key idea is that we compare the multi-sets of scores assigned to traces

rather than the multi-sets of traces themselves. The sets of scores often has fewer

unique elements (and can never have more) an d thus there are more situations in

which no free lunch results hold. Figure 8 shows how metrics can reduce the set of

traces to a smaller set of scores.

Theorem 14 (RNFL) Let 𝛽 be a set of test functions, 𝛽 = {f1, f2,… , fm}, let A be a
set of optimisation algorithms,A = {A1,A2,… ,An}, and letM be a set of optimisa-
tion metrics, M = {m1,m2,… ,mk}. Then there exists a “restricted set” RA ,M (𝛽),
with 𝛽 ⊆ RA ,M (𝛽) ⊆ FA (𝛽) ⊆ 𝛽CUP such that all algorithms in A have the same
average performance over RA ,M (𝛽). A restricted set RA ,M (𝛽) always exists, regard-
less of the choice of 𝛽, A and M . In some cases it is identical to the focus set FA (𝛽)
from the FNFL Theorem, but it can also be strictly smaller than the focus set.

Proof We give a proof by providing an example in which the restricted set is smaller

than the focused set. The fact that a restricted set always exists follows from the

fact a focused set always exists, thus we need only to show that the restricted set

is potentially a subset of the focused set. Let X = {1, 2, 3, 4, 5, 6}, Y = {0, 1}, 𝛽 =
{101001, 001011, 001111}, A = {A1,A2} where A1 deterministically samples from

left to right and A2 deterministically samples f (2), f (4), f (6), f (1), f (3), f (5) in that
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Fig. 9 On the left is a visualisation of a FNFL result for 𝛽 = {f1, f2, f3, f4} and A = {A1,A2}.

Over this set of four functions both optimisers produce the same set of traces, namely {t1, t2, t3, t4}.

On the right we show that a RNFL can hold when a FNFL does not. For 𝛽 = {f1, f2, f3, f4} and

A = {A1,A3} FNFL does not hold as A1 produces the traces {t1, t2, t3, t4} where as A3 produces

{t2, t3, t5, t6}. However, if we set M = {m1} then a RNFL result holds, as both sets of traces lead

to the same set of scores, {r1, r2, r3, r4}

order. Finally, let M = {m1} where m1 just returns the number of samples until the

first 1 is found.

If follows from the definitions of the algorithms that, when run on the functions

in 𝛽, A1 produces the traces {101001, 001011, 001111} and A2 produces the traces

{001110, 001011, 011011}. These sets of traces are not equal, and when we put these

sets of traces through the metric m1 they result in the multi-set of values {1, 3, 3} and

{3, 3, 2}, respectively, which are also not equal.

If we define RA ,M (𝛽) = {101001, 001011, 001111, 010010} then running A1 on

the functions in RA ,M (𝛽) produces the traces {101001, 001011, 001111, 010010}
and similarly running A2 produces the traces {001110, 001011, 011011, 100001}.

These sets of traces are still not equal, thus RA ,M (𝛽) is not the “focus set” from the

FNFL. However, when we put these sets of traces through the metric m1 they result

in the same multi-set of values {1, 2, 3, 3}. Thus, RA ,M (𝛽) is a “restricted set” and

we are done. See Fig. 9 for a visualisation of the proof.

6.7 Multi-objective No Free Lunch

So far we have considered metrics that map to a scalar. However, within the optimi-

sation literature there is much work on so-called multi-objective optimisation prob-

lems, where the metric assigns a vector rather than a scalar. A natural question to ask

is whether no free lunch results generalise to these situations. The answer is yes [18,

19]. The proof used in [18] works by defining a bijection between multi-objective

problems and scalar problems. A further multi-objective result in [18] is that a no
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free lunch holds over the set of all multi-objective functions with any particular shape

of Pareto front.

However, as they show in [20], in the case of multi-objective optimisation real

world constraints (such as the algorithm only having finite memory) can readily

result in algorithms with differing performances. The key idea is that, in scalar opti-

misation keeping track of the current best solution is straight forward, whereas in

multi-objective optimisation problems, where one is searching from the Pareto front,

it becomes more practically difficult to store the current best (in this case a set of

points making up the Pareto front) efficiently, and so even fairly weak restrictions on

the algorithm can mean that practically it is necessary to instead store some sort of

approximation of the Pareto front.

Thus, theoretically NFL holds for multi-objective functions, but when it comes

to implementation multi-objective optimisers more often need to violate the NFL

assumptions for reasons of pragmatism.

6.8 Block Uniform Distributions

In [10] English presents an intuitive necessary and sufficient condition for NFL. He

defined block uniform distributions, and proved that NFL holds if and only if func-

tions are sampled from a block uniform probability distribution. We state the theorem

below, and a proof can be found in the paper.

Definition 17 (Block-uniform distribution) A probability distribution over the set

of functions {f ∶ X → Y} is block uniform iff ∀ f , ∀ 𝜙, P(f ) = P(f
𝜙

), where 𝜙 is a

function permutation (see Definition 3) (Fig. 10).

Theorem 15 (NFL iff Block Uniform) For any metric, all optimisation algorithms
have the same expected performance if and only if there is a block uniform proba-
bility distribution over functions.

Fig. 10 An example of a block uniform probability distribution over functions f ∶ {1, 2, 3} →
{0, 1}. There are four “blocks”, corresponding to the four constituent permutation closed subsets

of functions. The figure is not to scale
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6.8.1 𝜺-Block Uniform

In [21] Everitt investigates what happens when a distribution is almost block uni-

form. He proves that the amount of free lunch available increases at most linearly

with increasing 𝜀, where 𝜀 characterises the distance of a distribution from block-

uniform.

Thus, beyond the statement of Theorem 15, the amount of free lunch available is

bounded by the distance of the probability distribution over functions from a block

uniform distribution.

6.9 Infinite and Continuous Lunches

It should be noted that in this exploration of the NFL we have not considered infinite

domains and continuous extensions. However, work to this end can be found in the

literature [22–24]. This decision is in part due to the fact that the algorithms in which

we are interested will be running on finite sets of possible inputs, and in part because

optimisation algorithms in general use run on finite procession machines.

7 Comparing Optimisers After No Free Lunch

In the above sections we have covered in detail the original NFL results, and various

extensions. It is evident that, as emphasised in [25], the existence and importance of

free lunches is far from a straight forward question, and the opinions of researchers

vary. This said, we now try to briefly summarise what the results, when considered

as a whole, seem to really mean for algorithm comparison and evaluation:

1. The no free lunch results preclude meaningful comparison of optimisation algo-

rithm’s exploration behaviour without reference to specific problems.

2. However, almost all restrictions on the set of problem functions result in possible

free lunches.

3. Similarly, but more generally, almost all probability distributions over problem

functions result in possible free lunches.

4. More specifically, block-uniform distributions capture exactly the scenarios

where no free lunch results hold for any metric.

5. However, when we are interested in no free lunch results with respect to partic-

ular metrics, and for limited numbers of samples, then free lunches are possible

even under block-uniform distributions.

6. When free lunches are possible, their prominence tends to depend crucially on

the optimisation metric used.

7. When free lunches are possible, the algorithms that achieve them are aligned
with the probability distribution over problem functions.
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8. When considering more than just the exploration behaviour of an algorithm,

algorithms can be ranked. For example, some optimisers are simpler, some are

faster and some tend to resample less than others.

Pragmatically the results mean that benchmarking alone cannot be used to evalu-

ate an algorithm, but must be used in combination with clear underlying assumptions

on the distribution of problem functions. The benchmark functions must be repre-

sentative of the problems and there must be some smoothness, in the sense that being

good at a problem means that the algorithm is likely to be good at similar problems.

8 Metaheuristic Optimisation After NFL

In this chapter we have explored in detail NFL results, and seen how they preclude

superiority of any particular optimisation algorithm in many settings. However, there

are many real problems that need solving through optimisation, and many popular,

successful metaheuristic optimisers in common use, such as [26, 27]. The questions

then, are firstly how can the NFL results be reconciled with the existence of effective

optimisation methods, and secondly, how can we use a thorough understanding of

NFL to improve research into and development of metaheursitc optimisers?

Optimisation algorithms are able to perform better than others in situations where

free lunches exist, which can most generally be understood as situations in which

block uniform distributions over functions, as discussed in Sect. 6.8, do not per-

tain. Just as a compression algorithm cannot universally compress, but must exploit

expected input structure to compress well on average, so an optimisation algorithm

cannot work well on all possible inputs, but must exploit expected input structure to

optimise well on average over the inputs it receives. Luckily, in reality, problems tend

to exhibit certain structure, such as local smoothness, or symmetries, and optimisers

that exploit this structure can do better on average, for that class of problems, than

those that do not. Successful metaheuristic optimisers then, are those that effectively

exploit common problem structure.

However, despite a general awareness of the existence of the NFL theorems, it is

still sometimes the case that new optimisers are presented as a panacea. Of course,

the NFL results tell us specifically that this can never be true.

Instead, we must try to characterise the dynamics of optimisation algorithms, to

understand their search behaviour, so that we can better understand which algorithms

should be used for which problems, and how the algorithms hyper-parameters influ-

ence the search dynamics. This sort of investigation has been undertaken for PSO for

example [28, 29], where the effects of the hyper-parameters on the search behaviour

are considered in detail.

Pursuing a Bayesian understanding of metaheuristic optimisation is another poten-

tial approach to the problem of characterising optimisers and understanding which

sorts of functions they work best for. Recently, Serafino has been emphasising

the important close relationship between Bayesian optimisation and no free lunch
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results [7, 30]. Roughly speaking, in a Bayesian framing of optimisation the standard

NFL result becomes the claim that informative induction can not be done without

prior assumptions. In fact, this is a widely known maxim, the necessity of an induc-

tive bias voiced by various researchers: “A basic insight of machine learning is that

prior knowledge is a necessary requirement for successful learning” [31], in other

words, “[Y]ou can’t do inference … without making assumptions” [32]. Making this

relationship more precise, Streeter has shown in [33] that NFL applies only when a

certain form of Bayesian learning is impossible.

Metaheursitic optimisation algorithms essentially make implicit assumptions

about the kinds of problem function they will be used on, and we should aim to make

these implicit assumptions as explicit as possible when either developing an opti-

miser, or investigating one’s behaviour. However, uncovering the particular biases

and affinities of an optimisation algorithm has proven to be very difficult, and it is

not clear how one can represent these alignments in a general way. As metaheuristic

optimisation continues to develop, it will be necessary for understanding of these

problems to develop, too.
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Global Convergence Analysis of Cuckoo
Search Using Markov Theory

Xing-Shi He, Fan Wang, Yan Wang and Xin-She Yang

Abstract The cuckoo search (CS) algorithm is a powerful metaheuristic algorithm

for solving nonlinear global optimization problems. In this book chapter, we prove

the global convergence of this algorithm using a Markov chain framework. By ana-

lyzing the state transition process of a population of cuckoos and the homogene-

ity of the constructed Markov chains, we can show that the constructed stochastic

sequences can converge to the optimal state set. We also show that the algorithm

structure of cuckoo search satisfies two convergence conditions and thus its global

convergence is guaranteed. We then use numerical experiments to demonstrate that

cuckoo search can indeed achieve global optimality efficiently.

Keywords Cuckoo search ⋅Convergence rate ⋅Global convergence ⋅Markov chain

theory ⋅ Optimization ⋅ Swarm intelligence

1 Introduction

Nature-inspired algorithms have become widely used for optimization and compu-

tational intelligence [11, 12, 26–28, 30]. Many new optimization algorithms are

based on the so-called swarm intelligence with diverse characteristics in mimick-

ing natural systems. However, there is a significant gap between theory and practice.

Most metaheuristic algorithms have very successful applications in practice, but their

mathematical analysis lags far behind. In fact, apart from a few limited results about

the convergence and stability concerning particle swarm optimization, genetic algo-

rithms, simulated annealing and others [4, 10, 16], many algorithms do not have any
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theoretical analysis. Therefore, we may know they can work well in practice, but we

rarely understand why they work and how to improve them with a good understand-

ing of their working mechanisms.

In this work, we will try to prove the convergence of the cuckoo search (CS) so

as to gain insight into its search mechanisms. The rest of this paper is organized

as follows: we will introduce the details of the cuckoo search algorithm in Sect. 2,

followed by the introduction of the convergence criteria in Sect. 3 and the detailed

convergence analysis in Sect. 4. Then, we validate the cuckoo search algorithm by

numerical experiments and observe its convergence behaviour in Sect. 5. Finally, we

conclude by summarizing the main results in Sect. 6.

2 Cuckoo Search

Cuckoo search (CS) is one of the recent nature-inspired metaheuristic algorithms,

developed in 2009 by Xin-She Yang and Suash Deb [23]. CS is based on the brood

parasitism of some cuckoo species. In addition, this algorithm is enhanced by the so-

called Lévy flights [15], rather than by simple isotropic random walks. Recent studies

show that CS is potentially far more efficient than PSO and genetic algorithms [8,

24]. A relatively comprehensive review of the studies up to 2014 was carried out by

Yang and Deb [25].

2.1 Standard Cuckoo Search

Cuckoo behaviour is intriguing because of the so-called brood parasitism reproduc-

tion strategy. Some species such as the ani and Guira cuckoos lay their eggs in com-

munal nests, though they may remove others’ eggs to increase the hatching proba-

bility of their own eggs. Quite a number of species engage obligate brood parasitism

by laying their eggs in the nests of other host birds (often other species such as war-

blers). In addition, the eggs laid by cuckoos may be discovered and thus abandoned

with a probability, around 1/4 to 1/3, depending on species and the average number

of eggs in a nest.

For simplicity in describing the cuckoo search, we now use the following three

idealized rules [23]:

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen host nest.

2. The best nests with high-quality eggs will be carried over to the next generations.

3. The number of available host nests is fixed, and the egg laid by a cuckoo is dis-

covered by the host bird with a probability pa ∈ [0, 1]. In this case, the host bird

can either get rid of the egg, or simply abandon the nest and build a completely

new nest at a new location.
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As a further approximation, this last assumption can be approximated by a fraction

pa of the n host nests are replaced by new nests (with new random solutions). For a

maximization problem, the quality or fitness of a solution can simply be proportional

to the value of the objective function.

From the implementation point of view, we can use the following simple repre-

sentation, that each egg in a nest represents a solution, and each cuckoo can lay only

one egg (thus representing one solution), the aim is to use the new and potentially

better solutions (cuckoos) to replace a not-so-good solution in the nests. Obviously,

this algorithm can be extended to the more complicated case where each nest has

multiple eggs representing a set of solutions. For this present work, we will use the

simplest approach where each nest has only a single egg. In this case, there is no

distinction between an egg, a nest, or a cuckoo, as each nest corresponds to one egg

which also represents one cuckoo, corresponding to a single solution vector.

This algorithm uses a balanced combination of a local random walk and the global

explorative random walk, controlled by a switching parameter pa. The local random

walk can be written as

𝐱t+1i = 𝐱ti + 𝛽s⊗ H(pa − 𝜖)⊗ (𝐱tj − 𝐱tk), (1)

where 𝐱tj and 𝐱tk are two different solutions selected randomly by random permu-

tation, H(u) is a Heaviside function, 𝜖 is a random number drawn from a uniform

distribution, and s is the step size. Here 𝛽 is the small scaling factor. On the other

hand, the global random walk is carried out by using Lévy flights

𝐱t+1i = 𝐱ti + 𝛼 ⊗ L(s, 𝜆), (2)

where

L(s, 𝜆) ∼
𝜆𝛤 (𝜆) sin(𝜋𝜆∕2)

𝜋

1
s1+𝜆

, (s ≫ 0). (3)

Here 𝛼 > 0 is the step size scaling factor, which should be related to the scales of the

problem of interest. Here ‘∼’ denotes that the fact that the random numbers L(s, 𝜆)
should be drawn from the Lévy distribution on the right-hand side, which is approxi-

mated by a power-law distribution with an exponent 𝜆. In addition,⊗ is an entry-wise

operation.

The above equation is essentially the stochastic equation for a random walk. In

general, a random walk is a Markov chain whose next status/location only depends

on the current location (the first term in the above equation) and the transition proba-

bility (the second term). However, a substantial fraction of the new solutions should

be generated by far field randomization and their locations should be far enough from

the current best solution; this will make sure that the system will not be trapped in a

local optimum [23, 25].
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2.2 Cuckoo Search in Applications

Cuckoo search has been applied in many areas of optimization, engineering design,

data ming and computational intelligence with promising efficiency. For example, in

the engineering design applications, cuckoo search has superior performance over

other algorithms for a range of continuous optimization problems such as spring

design and welded beam design problems [8, 24, 25].

In addition, a modified cuckoo search by Walton et al. [21] has demonstrated to

be very efficient for solving nonlinear problems such as mesh generation. Vazquez

[20] used cuckoo search to train spiking neural network models. Yildiz [32] has

used cuckoo search to select optimal machine parameters in milling operation with

enhanced results. Then Durgun and Yildiz [7] used CS for the optimization of vehicle

components, while Zheng and Zhou [33] provided a variant of cuckoo search using

Gaussian process. In the context of data fusion and wireless sensor network, cuckoo

search has been shown to be very efficient [5, 6].

Among the diverse applications, an interesting performance enhancement has

been obtained by using cuckoo search to train neural networks as shown by Valian

et al. [18] and reliability optimization problems [19].

For complex phase equilibrium applications, Bhargava et al. [2] have shown that

cuckoo search offers a reliable method for solving thermodynamic calculations. Fur-

thermore, Moravej and Akhlaghi [13] have solved DG allocation problem in distri-

bution networks with good convergence rate and performance. Taweewat and Wuti-

wiwatchi have combined cuckoo search and supervised neural network to estimate

musical pitch with reduced size and higher accuracy [17].

As a further extension, Yang and Deb [31] developed a multiobjective cuckoo

search (MOCS) for design engineering applications. For multiobjective schedul-

ing problems, another progress was made by Chandrasekaran and Simon [3] using

cuckoo search algorithm, which demonstrated the superiority of their proposed

methodology. Recent studies have demonstrated that cuckoo search can performance

significantly better than other algorithms in many applications [8, 14, 29, 32, 33].

2.3 Simplified Cuckoo Search

In the cuckoo search algorithm, a set of two updating equations are used. One equa-

tion is mainly for global moves, while the other is mainly for local exploitation.

Whether it is global or local is largely determined by the step sizes of the moves of

new solutions from the existing solutions in the population. However, since Lévy

flights can have both small steps and occasionally large steps, it can carry out both

local and global moves simultaneously. Thus, it is difficult to put into a fixed cat-

egory. However, in order to simplify the analysis and also to emphasize the global

search capability, we now use a simplified version of cuckoo search. That is, we use

only the global branch with a random number r ∈ [0, 1], compared with a discov-

ery/switching probability pa. Now we have
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⎧
⎪
⎨
⎪
⎩

𝐱(t+1)i ← 𝐱(t)i if r < pa,

𝐱(t+1)i ← 𝐱(t)i + 𝛼 ⊗ L(s, 𝜆) if r > pa.
(4)

Obviously, due to the stochastic and iterative nature of the cuckoo search algo-

rithm, we have to focus on the key steps. Therefore, we use the following steps to

represent the simplified cuckoo search [22]:

∙ Step 1. Generate randomly an initial population of n nests at the positions, 𝐗 =
{𝐱01, 𝐱

0
2, ..., 𝐱

0
n}, then evaluate their objective values and record the initial best 𝐠0t .

∙ Step 2. Generate new solutions/moves by

𝐱(t+1)i = 𝐱(t)i + 𝛼 ⊗ L(s, 𝜆). (5)

∙ Step 3. Draw a uniformly distributed random number r from [0, 1]. Update 𝐱(t+1)i
if r > pa. Then, evaluate the new solutions and update the new global best 𝐠∗t at

iteration t.
∙ Step 4. Stop if the stopping criterion is satisfied and output the global best 𝐠∗t .

Otherwise, go to step (2).

Though this is a simplified version of cuckoo search, it captures all the main char-

acteristics of the standard cuckoo search. Thus, the proof of its global convergence

will be equivalent to the proof of the global convergence of the original algorithm.

3 Markov Chains and Convergence Criteria

For the ease of analysis and notations, let us first use <𝛺s, f > to denote the opti-

mization problem with an objective f in the search space 𝛺s. This problem is to be

solved by a stochastic search algorithm A. The solution obtained at the t-th iteration

can be written as

𝐱t+1 = A(𝐱t, 𝜉), (6)

where 𝛺s is the feasible solution space. 𝜉 denotes the set of the visited solutions of

algorithm A during the iterative process.

Loosely speaking, the infimum of the search in the Lebesgue measure space can

be defined as

𝜙 = inf
(
t ∶ 𝜈(x ∈ 𝛺s

|
|
|
f (x) < t] > 0

)
, (7)

where 𝜈[X] denotes the Lebesque measure on the set X. In essence, Eq. (7) represents

the non-empty set in the search space, and the region or regions for optimal solutions

can be defined as
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R
𝜖,M =

⎧
⎪
⎨
⎪
⎩

{x ∈ 𝛺s|f (x) < 𝜙 + 𝜖} if 𝜙 is finite,

{x ∈ 𝛺s|f (x) < −C} if 𝜙 = −∞,

(8)

where 𝜖 > 0 and C ≫ 1 is a sufficiently large positive number. Loosely speaking, the

set R
𝜖,M is a set that can be belong to different regions in the search space, depending

on the objective landscapes. As long as this set is accessible, for any solution or a

point falling into R
𝜖,M during the iteration, we can say that algorithm A has reached

the optimal set and thus found the globally optimal solution or its best approximation.

The two conditions for convergence are as follows [9, 10]:

∙ 1 If f (A(x, 𝜉)) ≤ f (x) and 𝜉 ∈ 𝛺s, we have

f (A(x, 𝜉)) ≤ f (𝜉). (9)

Here we focus on minimization problems. For maximization problems, the inequal-

ity is reversed, but the rest are the same.

∙ 2 For any set S ∈ 𝛺s with 𝜈(S) > 0, we have

∞∏

k=0
(1 − uk(S)) = 0, (10)

where uk(S) corresponds to the probability measure on S at the kth iteration of the

algorithm A.

Before we proceed, let us use the results about the global convergence of an algo-

rithm, based on existing studies without repeating the proofs [9, 10]:

Theorem 1 If the objective f is measurable and its feasible solution space𝛺s forms
a measurable subset in ℜn, then algorithm A can indeed satisfy the above two con-
ditions with the search sequence {xk}∞k=0, which will lead to

lim
k→∞

P(xk ∈ R
𝜖,M) = 1. (11)

That means that algorithm A will converge globally with a probability one. Here

P(xk ∈ R
𝜖,M) is the probability measure of the kth solution onR

𝜖,M at the kth iteration.

This same methodology has been used by He et al. to prove the global convergence

of the flower pollination algorithm [9]. In this book chapter, we will use essentially

the same procedure to prove the global convergence of cuckoo search by first proving

the constructed Markov chains are proper and the conditions of convergence are

satisfied.
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4 Global Convergence Analysis

In order to simplify the presentations and analysis, let us first introduce some formal

definitions and some preliminary results.

4.1 Preliminaries

Now we start to define the state and state space to be used later for proving the global

convergence of the cuckoo search. For simplicity of notations, we use the standard

non-bold case symbols for vectors and variables in the rest of this chapter.

Definition 1 The positions of a cuckoo/nest and its corresponding global best solu-

tion g in the search history forms the states of cuckoos: y = (x, g) where x, g ∈ 𝛺s
and f (g) ≤ f (x) (for minimization). The set of all the possible states forms the state

space, denoted by

Y = {y = (x, g)|x, g ∈ 𝛺s, f (g) ≤ f (x)}. (12)

The state and state space of the cuckoo population or group can be defined as

follows:

Definition 2 The states of all n cuckoos/nests form the states of the group, denoted

by q = (y1, y2, ..., yn). All the states of all the cuckoos form a state space for the group,

denoted by

Q = {q = (y1, ..., yi, ..., yn), yi ∈ Y , 1 ≤ i ≤ n}. (13)

As Q contains all the states found during the iterations, it also contains the histor-

ical global best solution g∗ for the whole population as well as all individual best

solutions gi(1 ≤ i ≤ n) in history. Obviously, the global best solution of the whole

population is the best among all gi, so that f (g∗) = min(f (gi)), 1 ≤ i ≤ n.

Furthermore, the state transition for the positions of cuckoos representing solu-

tions can be defined as follows. For ∀y1 = (x1, g1) ∈ Y and ∀y2 = (x2, g2) ∈ Y , the

state transition from y1 to y2 can be denoted by

Ty(y1) = y2. (14)

4.2 Markov Chain Model for Cuckoo Search

One of the main tasks here is that we have to build a Markov chain model for cuckoo

search algorithm, and the first step is to prove a theorem to be used later.
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Theorem 2 The transition probability from state y1 to y2 in the cuckoo search is

P(Ty(y1) = y2) = P(x1 → x′1)P(g1 → g′1)P(x
′
1 → x2)P(g′1 → g2), (15)

where P(x1 → x′1) is the transition probability at Step 2 in cuckoo search, and P(g1 →
g′1) is the transition probability for the historical global best at this step. P(x′1 → x2)
is the transition probability at Step 3, while P(g′1 → g2) is the transition probability

of the historical global best.

Proof In the simplified cuckoo search, the state transition from y1 to y2 only has

one middle transition state (x′1, g
′
1), which means that x1 → x′1, g1 → g′1, x

′
1 → x2 and

g′1 → g2 are valid simultaneously. Then, the probability for P(Ty(y1) = y2) is

P(Ty(y1) = y2) = P(x1 → x′1)P(g1 → g′1)P(x
′
1 → x2)P(g′1 → g2). (16)

From Eq. (5), the transition probability for x1 → x′1 is

P(x1 → x′1) =

{
1

|g−x1|
if x′1 ∈ [x1, x1 + (x1 − g)],

0 if x′1 ∉ [x1, x1 + (x1 − g)].
(17)

Since x and g are higher-dimensional vectors, the mathematical operations here

should be interpreted as vector operations, while the | ⋅ | means the volume of the

hypercube.

The transition probability of the historical best solution is

P(g1 → g′1) =
{

1 f (x′1) ≤ f (g1),
0 f (x′1) > f (g1).

(18)

From Step 3 in the simplified cuckoo search algorithm, we know that a random

number r ∈ [0, 1] is compared with the discovery probability pa = 0.25 = 1∕4. If

r > pa, then the position/solution of a cuckoo can be changed randomly; otherwise,

it remains unchanged. Therefore, the transition probability for x′1 → x2 is

P(x′1 → x2) =
{

1 − pa if r > pa,
pa if r ≤ pa

=

{
3
4

if r > pa,
1
4

if r ≤ pa.
(19)

The transition probability for the historical best solution is

P(g′1 → g2) =
{

1 f (x2) ≤ f (g1),
0 f (x2) > f (g1).

(20)

Furthermore, the group transition probability in the cuckoo search can be defined

as Tq(qi) = qj for ∀qi = (yi1, yi2, ..., yin) ∈ 𝛺s and ∀qj = (yj1, yj2, ..., yjn) ∈ 𝛺s.
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Theorem 3 In the simplified cuckoo search, the group transition probability from
qi to qj in one step is

P(Tq(qi) = qj) =
n∏

k=1
P(Ty(yik) = yjk). (21)

Proof If the group states can be transferred from qi to qj in one step, then all the states

will be transferred simultaneously. That is, Ty(yi1 = yj1,Ty(yi2) = yj2, ..., Ty(yin) =
yjn, and the group transition probability can be written as the joint probability

P(Tq(qi) = qj) = P(Ty(yi1) = yj1)P(Ty(yi2) = yj2)⋯P(Ty(yin) = yjn)

=
n∏

k=1
P(Ty(yik) = yjk). (22)

Theorem 4 The state sequence {q(t); t ≥ 0} in the cuckoo search is a finite homo-
geneous Markov chain.

Proof First, let us assume that all search spaces for a stochastic algorithm are finite.

Then, x and g in any cuckoo/nest state y = (x, g) are also finite, so that the state

space for cuckoos/nests are finite. Since the group state q = (y1, y2, ..., yn) consists of

n positions of the n cuckoos/nests where n is positive and finite, so group states q are

also finite.

From the previous theorems, we know that the group transition probability

P(Tq(q(t − 1)) = q(t), (23)

for ∀q(t − 1) ∈ Q and ∀q(t) ∈ Q is the group transition probability P(Ty(yi(t − 1)) =
yi(t)) for 1 ≤ i ≤ n. From Eq. (16), we have the transition probability for any cuckoo

is

P(Ty(y(t − 1)) = y(t)) = P(x(t − 1) → x′(t − 1))P(g(t − 1) → g′(t − 1))

× P(x′(t − 1) → x(t))P(g′(t − 1) → g(t)), (24)

where P(x(t − 1) → x′(t − 1)), P(g(t − 1) → g′(t − 1)), P(x′(t − 1) → x(t)) and

P(g′(t − 1) → g(t)) are all only depend on x and g at t − 1. Therefore, P(Tq(q(t −
1)) = q(t)) also only depends on the states yi(t − 1), 1 ≤ i ≤ n at time t − 1. Conse-

quently, the group state sequence {q(t); t ≥ 0} has the property of a Markov chain.

Finally, P(x(t − 1) → x′(t − 1)), P(g(t − 1) → g′(t − 1)), P(x′(t − 1) → x(t)) and

P(g′(t − 1) → g(t)) are all independent of t, so is P(Ty(y(t − 1)) = y(t)). Thus,

P(Tq(q(t − 1)) = q(t) is also independent of t, which implies that this state sequence

is also homogeneous.
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In summary, the group state sequence {q(t); t ≥ 0} is a finite, homogeneous

Markov chain.

4.3 Global Convergence of Cuckoo Search

For the globally optimal solution gb for an optimization problem <𝛺s, f >, the opti-

mal state set is defined as R = {y = (x, g)|f (g) = f (gb), y ∈ Y}. In addition, for the

globally optimal solution gb to an optimization problem <𝛺s, f >, the optimal group

state set can be defined as

H = {q = (y1, y2, ..., yn)|∃yi ∈ R, 1 ≤ i ≤ n}. (25)

With the above results and definitions, we are now ready to prove the following

theorems:

Theorem 5 Given the position state sequence {y(t); t ≥ 0} in cuckoo search, the
state set R of the optimal solutions corresponding to optimal nests/cuckoos form a
closed set on Y.

Proof For ∀yi ∈ R,∀yj ∉ R, the probability for Ty(yj) = yi isP(Ty(yj) = yi) = P(xj →
x′i)P(gj → g′j)P(x

′
j → xi)P(g′j → gj). Since for ∀yi ∈ R and ∀yj ∉ R, it holds that

f (gi) ≥ f (gj) = f (gb) = inf(f (a)), a ∈ 𝛺s.

From Eqs. (18–20), we have P(gj → g′j)P(g
′
j → gi) = 0, which leads to P(Ty(yj) =

yi) = 0. This condition implies that R is closed on Y .

Theorem 6 Given the group state sequence {q(t); t ≥ 0} in cuckoo search, the opti-
mal group state set H is closed on the group state space Q.

Proof From Eq. (21), the probability

P(Tq(qj) = qi) =
n∏

k=1
P(Ty(yjk) = yik), (26)

for ∀qi ∈ H,∀qj ∈ H and Tq(qj) = qi. Since ∀qi ∈ H and ∀qj ∉ H, in order to sat-

isfy Tq(qj) = qi, there exists at least one cuckoo whose position will transfer from

the inside of R to the outside of R. That is, ∃Ty(yjk) = yik, yjk ∈ R, yik ∉ R, 1 ≤ k ≤ n.

From the previous theorem, we know that R is closed on Y , which means that

P(Ty(yjk) = yik) = 0. Therefore,

P(Tq(qj) = qi) =
n∏

k=1
P(Ty(yjk) = yik) = 0.

From the definition of a closed set, we can conclude that the optimal set H is also

closed on Q.
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Theorem 7 In the group state space Q for cuckoos/nests, there does not exist a non-
empty closed set B so that B ∩ H = ∅.

Proof Reductio ad absurdum. Assuming that there exists a close set B so that B ∩
H = ∅ and that f (gj) > f (gb) for qi = (gb, gb, ..., gb) ∈ H and ∀qj = (yj1, yj2, ..., yjn) ∈
B, then Eq. (21) implies that

P(Tq(qj) = qi) =
n∏

k=1
P(Ty(yjk) = yik). (27)

For each P(Ty(yj) = yi), it holds that P(Ty(yj) = yi) = P(xj → x′j)P(gj → g′j)P(x
′
j →

xi)P(g′j → gi). Since P(g′j → gi) = 1,P(gj → g′j),P(xj → x′j)P(x
′
j → xi) > 0, then

P(Ty(yj) = yi) ≠ 0, implying that B is not closed, which contradicts with the assump-

tion. Therefore, there exists no non-empty closed set outside H in Q.

Using the above definitions and results, it is straightforward to arrive another the-

orem:

Theorem 8 Assuming that a Markov chain has a non-empty set C and there does
not exist a non-empty closed set D so that C ∩ D = ∅, then

lim
n→∞

P(xn = j) = 𝜋j,

only if j ∈ C, and limn→∞ P(xn = j) = 0 only if j ∉ C.

Now using the above three theorems, it is straightforward to show

Theorem 9 When the number of iteration approaches infinity, the group state
sequence will converge to the optimal state/solution set H.

This is the foundation for proving the global convergence theorem, which states

Theorem 10 The cuckoo search with the Markov chain model outlined earlier has
guaranteed global convergence.

Proof Since the iteration process in cuckoo search always keeps/updates the current

global best solution for the whole population, which ensures that it satisfies the first

convergence condition. In addition, the previous theorem means that the group state

sequence will converge towards the optimal set after a sufficiently large number of

iterations or infinity. Thus, the probability of not finding the globally optimal solu-

tion is asymptotically 0, which satisfies the second convergence condition. Conse-

quently, from Theorem 1, we can conclude that cuckoo search has guaranteed global

convergence towards its global optimality.
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5 Validation by Numerical Experiments

All new algorithms should be validated using various benchmarks to test their basic

performance, rate of convergence and other properties. However, since the cuckoo

search has been tested in the literature with a diverse range of benchmarks and design

case studies, the numerical experiments we have done here are mainly to see if the

global convergence can be reached easily and the rate of convergence. For this pur-

pose, we have selected five benchmark functions with different modalities and objec-

tive landscapes:

The first function is the Ackley function [1]

f (𝐱) = −20 exp
[
− 1

5

√
√
√
√1

d

d∑

i=1
x2i
]
− exp

[1
d

d∑

i=1
cos(2𝜋xi)

]
+ 20 + e, (28)

which has a global minimum f∗ = 0 at (0, 0, ..., 0). This function is highly nonlinear

and multimodal.

De Jong’s functions is unimodal and convex, which can be written as

f (𝐱) =
n∑

i=1
x2i , −5.12 ≤ xi ≤ 5.12, (29)

whose global minimum is obviously f∗ = 0 at (0, 0, ..., 0). It is also commonly

referred to as the sphere function.

Rosenbrock’s function

f (𝐱) =
d−1∑

i=1

[
(xi − 1)2 + 100(xi+1 − x2i )

2
]
, (30)

has a narrow valley where lies its global minimum f∗ = 0 at 𝐱∗ = (1, 1, ..., 1) in the

domain −5 ≤ xi ≤ 5 where i = 1, 2, ..., d.

Xin-She Yang’s forest-like function

f (𝐱) =
( d∑

i=1
|xi|

)
exp

[
−

d∑

i=1
sin(x2i )

]
, −2𝜋 ≤ xi ≤ 2𝜋, (31)

has a global minimum f∗ = 0 at (0, 0, ..., 0). This function is highly nonlinear and

multimodal, and its first derivatives do not exist at the optimal point due to the mod-

ulus |.| factor.

Zakharov’s function

f (𝐱) =
d∑

i=1
x2i +

( d∑

i=1

ixi
2

)2
+
( d∑

i=1

ixi
2

)4
, (32)
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Fig. 1 Convergence of 5

test functions using cuckoo

search

is nonlinear and has its global minimum f (𝐱∗) = 0 at 𝐱∗ = (0, 0, ..., 0) in the domain

−5 ≤ xi ≤ 5.

All these functions have the global minimum fmin = 0, and such simplicity allows

to test the accuracy of an algorithm with various dimensions. For this reason, we set

d = 8 for all these five functions.

For the implementation of cuckoo search algorithm, we have used n = 25, 𝜆 =
1.5, pa = 0.25 and a fixed number of iterations t = 1000. The convergence graphs

for all these functions are summarized and shown in Fig. 1 where the vertical axis is

plotted using the logarithm scale. From the figure, it is clearly seen that the cuckoo

search can converge quickly and the best objective values decrease in an almost expo-

nential manner, except for Rosenbrock’s function which has a narrow valley. How-

ever, as the search has gone through some part of the valley during iterations, its

objective values once again decrease almost exponentially with a higher slope.

6 Conclusions

Cuckoo search is an efficient optimization algorithm with a wide range of applica-

tions. We have used the Markov chain theory and proved the global convergence of

the simplified version of cuckoo search. Then, we have used a few benchmark func-

tions with diverse properties to show that CS can indeed converge very quickly. In

fact, cuckoo search has been used in many applications and the rate of convergence

is usually very good in practice.

The current results are mainly for a simplified variant, derived from the standard

cuckoo search. It can be expected that this methodology can be used to prove both

standard cuckoo search algorithm and its variants. Therefore, it will be useful if fur-

ther research can focus on the extension of the proposed methodology to analyze the

convergence of other variants of the cuckoo search algorithm and other metaheuristic

algorithms.
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In addition, though we can show the cuckoo search will converge in the probabilis-

tic sense, there is no information about how quickly it can convergence. Therefore,

further research can also try to figure out the rate of convergence and its link to the

algorithmic structure, parameter setting and even the modal shapes of the objective

landscapes. After all, the rate of convergence is crucially important from the imple-

mentation point of view.

Furthermore, as the setting of parameters in an algorithm can affect the perfor-

mance of the algorithm significantly, and consequently affect the rate of convergence.

It would be useful to find the relationship between parameter values and the conver-

gence rate, and then to control the rate of convergence by fine tuning the algorithm-

dependent parameters.
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Abstract An evolutionary and discrete variant of the Bat Algorithm (EDBA) is pro-

posed for solving the Vehicle Routing Problem with Time Windows, or VRPTW. The

EDBA developed not only presents an improved movement strategy, but it also com-

bines with diverse heuristic operators to deal with this type of complex problems.

One of the main new concepts is to unify the search process and the minimization

of the routes and total distance in the same operators. This hybridization is achieved

by using selective node extractions and subsequent reinsertions. In addition, the new

approach analyzes all the routes that compose a solution with the intention of enhanc-

ing the diversification ability of the search process. In this study, several variants of

the EDBA are shown and tested in order to measure the quality of both metaheuristic
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algorithms and their operators. The benchmark experiments have been carried out

by using the 56 instances that compose the 100 customers Solomon’s benchmark.

Two statistical tests have also been carried out so as to analyze the results and draw

proper conclusions.

Keywords Bat algorithm ⋅ Discrete bat algorithm ⋅ Vehicle routing problem with

time windows ⋅ VRPTW ⋅ Combinatorial optimization ⋅ Traveling salesman

problem

1 Introduction

The rapid advance of technology has made the logistic management increasingly

important in ever-increasingly connected societies, which has led transport networks

to be very demanding. To meet such demands, companies have to be innovative

in designing their logistic networks, and a competitive logistic network can make

the difference between some companies and others. Consequently, the development

of efficient methods for proper logistics and routing planning is a hot topic in the

research community.

To model and optimize a logistic network, all relevant issues have to be addressed

in an appropriate way using appropriate techniques. In this case, we focus our atten-

tion here on one of these areas: artificial intelligence. In fact, route planning problems

and their resolution is one of the most recurrent topics related to artificial intelli-

gence. More specifically, the problems arisen in this field are normally named as

routing problems, and they fall into the combinatorial optimization category. The

most studied problems in this field are the Vehicle Routing Problem (VRP) and the

Traveling Salesman Problem (TSP). Besides the basic TSP and VRP, many varia-

tions of these problems can be found in the literature. In this chapter, the attention is

focused on one of these variants: the Vehicle Routing Problem with Time Windows,

or VRPTW. Briefly speaking, in the VRPTW, each client imposes a time window for

the start and the end of the service. This problem will be explained in greater detail

later.

A few solution methods can be found in the literature to deal with this kind of

problems properly. The most well-known approaches for this purpose are probably

the exact methods [1], heuristics and metaheuristics. Here, we focus our attention

on metaheuristic methods. For example, some classical examples of local search-

based methods are Simulated Annealing [2] and Tabu Search [3]. On the other hand,

population-based techniques such as the Ant Colony Optimization [4], Genetic Algo-

rithms (GA) [5, 6], and Particle Swarm Optimization [7] are some of the most used

alternatives.

Although classical techniques can somehow manage to solve certain class of such

problems, they are not sufficiently effective, and thus the development of novel meta-

heuristics for tackling optimization problems, especially for routing problems, is a

hot topic in this area of research. Consequently, many different methods have been
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proposed in recent years. Some examples of these methods are the Imperialist Com-

petitive Algorithm, proposed by Atashpaz-Gargari and Lucas in 2007 [8], the Arti-

ficial Bee Colony, presented by Karaboga and Basturk in 2007 [9], and the bat algo-

rithm developed by Yang in 2010 [11]. To the interested readers, some additional

successful methods will be described in following sections.

For the current study, the method that we have selected for addressing the above

mentioned VRPTW is the Bat Algorithm (BA). This metaheuristic is a nature-

inspired algorithm, based on the echolocation behavior of micro-bats, which was

proposed by Yang in 2010 [10]. From the review of some of the recent literature [11,

12], the BA has been successfully applied to wide variety of optimization fields and

problems since its proposal. Furthermore, recent works such as [13, 14] confirm that

BA still attracts a lot of interest from the scientific community. In this sense, despite

the fact that the BA has been applied to many different optimization problems up to

date, it has not been applied yet to the well-known VRPTW. Thus, this motivates

us to carry out this current work. The detailed explanation of BA will be given in

following sections.

It is worth highlighting that we have used some novel route optimization operators

for enhancing the performance of the developed algorithm. These operators, which

will be described in following sections, perform selective extractions of nodes in an

attempt of minimizing the number of routes of the current solution. At this moment,

these operators have only been used once in the literature, inside a Firefly Algorithm

[15]. For this reason, this is the first time in the literature that such heuristic functions

are used in the BA for routing problems.

For the purpose of proving that the implemented Evolutionary Discrete Bat Algo-

rithm (EDBA) is a promising approach to solve the VRPTW, an experiment com-

posed by 56 different instances has been conducted in this work. The results obtained

by some variants of the EDBA are compared. In addition, two different statistical

tests have been conducted with the results obtained: the non-parametric Friedmans

test for multiple comparisons, and the post-hoc Holm’s test.

Therefore, the rest of the paper is organized as follows. Section 2 presents the

related background with an emphasis on routing problems and nature-inspired meta-

heuristics for their resolution. After that, in Sect. 3, the philosophy of the basic BA is

detailed. Then, in Sect. 4, a brief description of the VRPTW can be found. Then, the

proposed EDBA and our route optimization operators are described in Sect. 5. Fur-

thermore, in Sect. 6, the experimentation performed for the validation of the study

is detailed. Finally, the paper concludes with with suggestions for further work in

Sect. 7.

2 Background

Nowadays, route planning is one of the most studied fields. Problems arisen in this

field are usually known as vehicle routing problems, which are a particular case of

problems of combinatorial optimization. Probably, the most used and well-known
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routing problems are the Traveling Salesman Problem [16] and the Vehicle Routing

Problem [17], which are the focus of a huge amount of studies in the literature [18,

19]. In addition, the VRPTW is the main problem of our attention here and is also

one of the most cited and used, as can be seen in different works such as [20] and

[21].

The reasons for the popularity and importance of these problems are two folds:

the scientific aspect, and the social one. On the one hand, being NP-Hard, most of

the problems arising in this field have an extraordinary complexity, and thus their

solutions pose a major challenge for the scientific community. On the other hand,

routing problems are usually built to address a real-world situation related to logistics

or transportation, which is directly linked to the profit of a business service.

Even the problems are challenging to solve, several approaches can be found in

the literature to tackle this kind of problems. The exact methods [1, 22], heuristics

and metaheuristics have all been attempted. For example, as can be seen in the work

by Braysy and Gendreau in 2005 [23], metaheuristics are a good approach for solving

the VRPTW.

To be more specific within the category of metaheuristics, nature-inspired meth-

ods are among the most used approaches for tackling this sort of problems in the

current literature [24]. In this sense, some of these recently proposed approaches

that can be classified in this category are the Bat Algorithm (BA), Firefly Algorithm

(FA), and Cuckoo Search (CS). The first one, and the one that is used in this work,

is the BA. This metaheuristic was proposed by Yang in 2010 [10], and it is based on

the echolocation behavior of microbats, which can find their prey and discriminate

different kinds of insects even in complete darkness. Recent literature reviews and

surveys [11, 12] show that BA has been successfully applied to different optimiza-

tion fields and problems since its proposal. Focusing in routing problems, several

recently published papers have shown that the BA is a promising technique also in

this field. For example, in [25], which was published in 2015, an adapted variant of

this algorithms for solving the well-known Capacitated VRP. The Adapted BA devel-

oped in that study allows a large diversity of the population and a balance between

global and local search.

A more recent work is proposed in [26] by Zhou et al. in which the same Capaci-

tated VRP is faced. In their paper, a hybrid BA with path relinking is described. This

approach is constructed based on the framework of the continuous BA, in which the

greedy randomized adaptive search procedure and path relinking are effectively inte-

grated. Additionally, with the aim of improving the performance of the technique,

the random subsequences and single-point local search are operated with a certain

probability.

Regarding the second of above mentioned methods, that is FA, proposed by Yang

in 2008 [27]. This a nature-inspired algorithm is based on the flashing behavior of

fireflies, which acts as a signaling system to attract other fireflies. This metaheuristic

algorithm has been also applied to a wide range of optimization fields and problems

since its proposal [28, 29]. Like the BA, this method has also shown a promising
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performance for routing problems. In [30], for example, the first application of the

FA was presented for solving the TSP. In order to do that, the authors adapted the

FA, which was firstly proposed for tackling continuous problems, enhancing it with

an evolutionary and discrete behavior.

Another interesting example of application is the one presented in [31], in which

a hybrid variant of the FA is proposed to solve a time-dependent VRP with multi-

alternative graph, in order to reduce the fuel consumption. The developed variant of

FA is a Gaussian Firefly Algorithm. The most interesting part of that paper is the real-

world case study, focused on a distribution company, established in Esfahan, Iran.

More recently, FA has been compared with other nature-inspired heuristics for a bi-

objective variant of the classical VRP problem with pickup and delivery deadlines,

multiple concurrent vehicles and selectivity of nodes. Interestingly, in their work,

the quality of routes is determined by the Pareto trade-off between the profit gained

by the delivery of goods along the routes and a measure of fairness in the share of

the revenues of the transport company [32].

The third of the algorithms previously mentioned is the CS, developed by Yang

and Deb in 2009 [33]. It was inspired by the obligate brood parasitism of some

cuckoo species by laying their eggs in the nests of other host birds (of other species

such as warblers). The CS has also been modified to solve routing problems, as can

be seen, for example, in the work published in 2014 by Ouaarab et al. [34]. In that

paper, the authors presented the first adaptation of the CS to the well-known TSP,

creating a discrete variant of the CS with promising results. The authors also tested

their proposed discrete CS against a set of benchmarks of symmetric TSP from the

well-known TSPLIB library.

More examples of the CS applied to the VRP can be found in the literature. In [35],

for example, a discrete CS algorithm for the capacitated VRP is presented. The main

novelty of this method is not only its application itself, but also the Taguchi-based

Parameter Setting developed for the parameter optimization. Besides that, in 2016,

the reputable Information Sciences journal published a paper in which four different

soft computing methods were applied for solving also the Capacitated VRP [36]. One

of these approaches was an advanced CS, which introduced new adjustments and

features for improving its efficiency. Another example is the paper presented by Chen

and Wang in 2016 [37], in which a hybrid CS was proposed for the solving the VRP

in logistics distribution systems. This novel algorithm was based on the combination

of Optical Optimization, Particle Swarm Optimization and CS. Specifically, in their

method, optical optimization was introduced to initialize population for obtaining a

group of initial values with high quality, which were then optimized according to

PSO. After each iterative operation for keeping the optimal individual, CS was used

to optimize the rest of the individuals.

Another metaheuristic is a music-inspired Harmony Search (HS). This technique

was firstly proposed by Geem et al. in 2001 as a phenomenon-mimicking metaheuris-

tic [38], inspired by the improvisation process of jazz musicians. There are a wide

range of applications of HS in the literature [39–41]. The HS has also been applied
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to routing problems several times, showing also a promising performance. The paper

presented by Geem et al. in 2005 collected some of the most interesting works up to

that date on this topic [42]. Another research related to the HS was the one that can

be found in [43], which presented a discrete variant of the HS in order to solve the

challenging the Selective Pick-Up and Delivery VRP with Delayed Drop-Off. Addi-

tionally, the recent work by Bounzidi and Riffi in 2014 described the adaptation of

the HS for solving the TSP.

Another meta-heuristic mentioned in this background section is the Gravitational

Search algorithm (GS), proposed by Rashedi et al. in 2009 [44], and it was based

on the metaphor of gravitational interaction between masses. GS has also been used

in many applications [45–47]. Concerning routing problems, Nodehi et al. in 2016

[48] presented a randomized GS algorithm for the solving of the TSP. The GS imple-

mented in this work was based on randomized search concepts using two of the four

main parameters of velocity and gravitational force in physics. The performance of

the developed method was compared with some additional well-known methods,

such as the Genetic Algorithm, showing a promising performance.

Regarding VRP problems, the work [49] explored the application of a discrete

variant of the GS to the Open VRP. Being firstly proposed to solve continuous prob-

lems, the main challenge of the authors of that paper was to adapt all the character-

istics of the basic variant of the GS to the discrete optimization. As has been men-

tioned, the problem to solve in this case is the Open VRP, which is a variant in which

vehicles are not required to return to the depot. Finally, the paper by Hosseinabad et

al. in 2017 [50] presented another approach of the GS to solve the Capacitated VRP

with enhanced performance.

There are many challenging issues related to VRPTW, and the number of pub-

lications related to this problem is increasing. In [51], for example, Desaulniers et

al. presented a set of exact algorithms to tackle the electric VRPTW. On the other

hand, Belhaiza et al. proposed in their work [52] a hybrid variable neighborhood

tabu search approach for solving the VRPTW. A multiple ant colony system was

developed for the VRPTW with uncertain travel times by Toklu et al. [53]. Finally,

an a hybrid generational algorithm for the periodic VRPTW can be found in [54]. In

relation to the above mentioned nature-inspired methods and the VRPTW, in [15], an

evolutionary discrete firefly algorithm was proposed for the resolution of this prob-

lem, using the same operators in the experimentation. An additional paper is the one

presented by [55], in which a hybrid variant of the HS was presented to deal with

the VRPTW.

Since the literature in this area is expanding, it is not possible to review all the

relevant work. Interested readers can refer to literature reviews in [11] about the BA,

[29] about FA, and [56] about the CS. On the other hand, for additional information

about the VRPTW and its solution methods, the work presented in [57, 58] is highly

recommended. As mentioned in the introduction, this present work is the first time

in the literature that the BA is applied to the VRPTW. In the rest of this chapter, we

will describe our proposed approach in greater detail.
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Algorithm 1: Pseudo code of the basic BA

1 Define the objective function f (x);
2 Initialize the bat population X = x1, x2, ..., xn;

3 for each bat xi in the population do
4 Initialize the pulse rate ri, velocity vi and loudness Ai;

5 Define the pulse frequency fi at xi;
6 end
7 repeat
8 for each bat xi in the population do
9 Generate new solutions through Equations (1), (2) and (3);

10 if rand>ri then
11 Select one solution among the best ones;

12 Generate a local solution around the best one;

13 end
14 if rand<Ai and f (xi)<f (x∗) then
15 Accept the new solution;

16 Increase ri and reduce Ai;

17 end
18 end
19 until termination criterion not reached;

20 Rank the bats and return the current best bat of the population;

3 Bat Algorithm

In this section, the basic variant of the BA is fully described before we proceed to

introduce further modifications and enhancements. As we have briefly mentioned in

previous sections, the BA is a nature-inspired metaheuristic, whose main idea is to

imitate the echolocation features of microbats with some idealized rules outlined as

follows [10]:

∙ All bats use echolocation to detect the distance and can differentiate between an

obstacle and a prey (bad or good solutions, respectively).

∙ All bats fly randomly with a velocity vi at position xi with a varying frequency

from fmin to fmax, loudness Ai and pulse emission rate r.
∙ In the real-world, the loudness and emission rates of bats can vary in many dif-

ferent ways. Here, we assume that the loudness varies monotonically from A0 to a

lower (quieter) value Amin, while r varies from a lower value to a higher value.

The main steps of this BA are summarized as the pseudocode as shown in Algo-

rithm 1. Taking a quick look at this pseudo-code, it can be seen that the first six lines

correspond to the initialization process. First, the objective function is defined, and

the initial population is initialized. Each bat of the population represents a possible

solution to the addressed problem, in this case, the VRPTW. After that, velocity vi,
frequency fi, pulse rate ri and loudness Ai parameters are initialized and defined.

After this initialization phase, the main evolution of solutions in the algorithm are

executed. At each generation, each bat of the swarm moves through the search space
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by updating its velocity and position. More specifically, the following equations are

used for this movement:

fi = fmin + (fmax − fmin)𝛽 (1)

vti = vt−1i + [xt−1i − x∗]fi (2)

xti = xt−1i + vti (3)

where 𝛽 is a uniformly distributed random number in [0,1], and x∗ represents the cur-

rent best solution of the whole population. In addition, vti and xti denote the velocity

and position, respectively, of a bat i at time step t. Furthermore, the results of Eq. (1)

is used to control the pace and range of bats movement.

If a solution is selected among the best ones, a new solution for each bat is gen-

erated using a random walk

xnew = xold + 𝜀At
(4)

where 𝜀 is a randomly generated number within the interval [−1, 1], and At
is the

average loudness of the swarm at time step t. Finally, the rate ri and the loudness Ai
of each bat are updated, only if the conditions shown in the line 14 of Algorithm 1

are met. This update is performed as follows:

rt+1i = r0i [1 − exp(−𝛾t)] (5)

At+1
i = 𝛼At

i (6)

where 𝛼 and 𝛾 are constants. Thereby, for any 0<𝛼 <1 and 𝛾 >0 we have

At
i → 0, rti → r0i , as t → ∞ (7)

In most cases in the literature, 𝛼 = 𝛾 is used in order to simplify the implementa-

tion of the method. In the present study, 𝛼 = 𝛾 = 0.98 is used. We have selected this

value after an empirical experiment using a range of values from 0.90 to 0.99.

4 Vehicle Routing Problem with Time Windows

As we have pointed out in Sect. 2, the VRPTW is an extension of the classic and

widely studied VRP. In addition to the basic constraints inherent from the VRP, each

client that composes a VRPTW instance has an associated time window [ei,li]. More

specifically, this time window has a lower limit ei and an upper limit li which must

be respected by the vehicle that will attend the demand of the client. This means that

the service in every customer must be performed after ei and before li.
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Obviously, a route is not feasible if a vehicle tries to serve any customer after the

upper limit of this range. On the other hand, a route would be feasible if the vehicle

reaches a client before its lower limit. In this last special situation, the client cannot

be served before this limit, so that the vehicle should be waiting until ei to start the

delivery.

Besides that, the central depot, which is the starting and ending point of all the

routes and vehicles, has also a time window, which restricts the period of the whole

activity. Apart from this temporal window, the problem can also take into account the

customer’s service time. This parameter is the time that the vehicle needs to spend

on the client in order to perform the delivery properly. This is a factor to be taken into

account to calculate if the vehicle arrives on time to the next customer. Furthermore,

the variant that we are using in this paper is the VRPTW with hard time windows. In

this sense, there is also another variant that enables noncompliance with some time

window (with a penalization in the objective function).

Being one of the most famous variant of the VRPs, this problem has been widely

studied both in the past [20, 21], and nowadays [59, 60]. One reason why the

VRPTW is so interesting is its dual nature, since it is considered as a two phase

problem. The first of these phases concerns the vehicle routing, while the second

one regards the planning phase or customer scheduling.

An additional reason for its popularity is its easy adaptation to the real-world

applications. The great majority of distribution chains, customers have strong tem-

poral constraints that have to be fulfilled, and the VRPTW perfectly fits with this

kind of real-world situations.

Regarding the mathematical formulation of VRPTW, it can take several forms,

using a different amount of variables [61, 62]. One of the most interesting formula-

tions can be found in [63].

5 Our Proposed Approach for Solving the VRPTW

In this section, the description of our EDBA for the VRPTW is provided (Sect. 5.1).

A more detailed description of the proposed novel route optimization operator will

be given in Sect. 5.2.

5.1 An Evolutionary Discrete Bat Algorithm

Before starting with the description of our proposed method, it is worth mention-

ing that the original BA was firstly developed for solving continuous optimization

problems, and thus the standard BA cannot be directly applied to solve any discrete

problem such as the VRPTW. Hence, some modifications in the structure of the basic

BA should be performed in order to prepare it to solve the VRPTW.
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First, in the EDBA, each bat of the swarm represents a possible and feasible solu-

tion for the VRPTW. Since the VRPTW is a minimization problem, the most attrac-

tive bats are those with a lower objective function value. Regarding the philosophy

of both ri and Ai parameters, it has remained exactly in the same form as that in the

standard BA. Furthermore, with the intention of simplifying the complexity of the

algorithm, the parameter fi has not been considered.

Furthermore, the “velocity”, vi, has been modified. In the continuous variant of

the BA, this parameter is calculated as has been shown in Eq. (2). However, this

formula cannot be used in the same way for solving a discrete problem such as the

VRPTW. Thus, we have related vi to a distance measure between the bat i and the

best bat of the swarm. It is worth pointing out that all the quantities are treated as

unitless, and thus there is no need to worry about the unit of velocity. Obviously,

the true physical quantities have units and the solutions will be given the right units

when the final solutions are interpreted. Thus, all the quantities in BA are considered

as mathematical values without units. For this purpose, we have adapted vi using the

well-known Hamming Distance in the following way:

vti = Random[1,HammingDistance(xti, x∗)] (8)

This means that the vi of a bat i at time step t is a random number, which follows a

discrete uniform distribution between 1 and the difference between this i and the best

bat of the swarm. This difference is represented by the Hamming Distance, which is

the number of non-corresponding elements in the sequence. A detailed example of

this application can be found in [15].

Additionally, regarding the new bats generation, in the classic variant of the Bat

Algorithm the movement of the bats is performed using the Eq. (3). Similar with the

vi parameters, this equation cannot be applied directly to a discrete problem such as

the VRPTW. Thus, a modification has been proposed, and the movement of a bat i
is determined by the following equation:

xti ← MovementFunction(xt−1i , vti) (9)

In other words, every bat examines at every generation a vi number of its neigh-

bors, and it chooses the best one as its current movement. Explained in other way,

the bat i conducts a vi number of movements, and it chooses the best one. In the

proposed EDBA, a single operator to simulate the movement of bats is used. This

operator is described in the next section.

Furthermore, regarding the local search procedure represented in Lines 10–12 of

Algorithm 1, whether rand > ri, one solution is randomly chosen among the best

ones (in our performed experiments, one bat among the 10 best ones; or less, if vi
is lower than 10), and a local solution is generated around this one, using the well-

known 2-opt* operator. After that, if the new solution is accepted, it replaces the

current bat.
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Algorithm 2: Pseudocode of the route minimization operator.

input : Solutioncurrent, optimizeRoutes, proximityReinsertion
1 ejectionPool = initEjectionPool(Solutioncurrent);
2 Solutionnew = removeEmptyRoutes(Solutioncurrent);
3 if optimizeRoutes then
4 optimizeRoutes(Solutionnew) ;

5 end
6 if proximityReinsertion then
7 reinsert(ejectionPool,Solutionnew) ;

8 end
9 if ejectionPool≠⊘ then

10 Solutionnew = parallelReconstruction(ejectionPool,Solutionnew) ;

11 end
12 if Solutionnew better than Solutioncurrent then
13 Solutioncurrent = Solutionnew ;

14 end
output: Solutioncurrent

Finally, regarding the termination criterion, each technique finishes its execution

when it reaches the generation (iteration) 101, or when there are 20 generations with-

out any improvement in the best solution found.

5.2 Description of the Bat Movement Operator

In this section the operator used to simulate the movement of the bats is described.

This operator is responsible for creating the neighbor solutions generated when a bat

is performed its movement (Line 9 of the Algorithm 1).

Using the inspiration by the concept of “ejection chains” [64], a family of opera-

tors (whose objective is the reduction of the number of routes) have been presented

in a previous work related to the Firefly algorithm [65]. These operators combine the

“ejection chains” technique with other simple measures (such as the size of a route

and the proximity of the customers with respect to the “center of gravity of a route”).

The proposed operators were designed to increase the diversification ability of the

traditional node and arc interchange based operators.

Using the results obtained in our previous work focused on Firefly Algorithm

[65], in the present work we center our attention only on one operator: the “Random

Route Elimination Operator—RrE-opt”. As the name suggests, the operator is based

on the removal of a route at random and the subsequent reinsertion of the clients of

that route in the remaining routes. The main objective is to reduce the number of

routes. This is the first criterion of the classical evaluation function for VRPTW.

Figure 1 illustrates a simple worked example of the RrE-opt operator. Further-

more, Algorithm 2 shows the description of this operator:
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Fig. 1 Example of the RrE-opt operator

∙ In the first step, a route is selected at random and it is removed from the cur-

rent solution. The clients that were part of the removed route configure the

ejectionPool. In the next steps the aim is to reinsert the customers in the remaining

routes.

∙ After the route removal, two optional processes can be performed:

– A local route optimization using the well-known Or-opt operator. The objective

of this process is the reordering of the remaining routes to facilitate the reinser-

tion of the customers of the ejectionPool. Other optimization operators could

be used but the Or-opt operator has been chosen for its speed and efficiency.

– The reinsertion of the customers by proximity in the closest route. This process

checks all clients that are in the ejectionPool and tries to insert them into the

geographically most surrounded route. In this way, the total distance traveled

tries to be reduced. This is the second criterion of the VRPTW evaluation func-

tion. To perform this reinsertion in an efficient way, the use of neighbor lists is

recommended [66].

∙ The last step is to use a parallel initialization heuristic to reinsert clients that are

still in the ejectionPool. In this step the heuristic of Campbell and Savelsbergh

[67] is used for its speed and simplicity of implementation.

This new operator performs a more complex process than traditional VRPTW

operators, but in spite of being more expensive in runtime, this operator has a great

ability to reduce the number of routes during the search process. Reducing the num-

ber of routes in the context of VRPTW is often done as an independent process.

With the proposed new operator, this process is implicitly integrated into the search

process.

In the experimentation section below, four variants of the proposed EDBA will be

compared. These variants will allow the evaluation of the two optional processes of

the operator for the reduction of the number of routes. Its nomenclature will be: OR

(only Optimize Routes process), PR (only Proximity Reinsertion process), FULL

(both optional processes) and NONE (no optional process).
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6 Experimentation

In this section the details of the experimentation conducted are described. The exper-

imentation has two clear objectives: first, to show the use of the proposed EDBA

algorithm; and second, to analyze the behavior of the new operator to reduce the

number of routes for the VRPTW.

For the experimentation, Solomon’s VRPTW benchmark has been used [68]. This

set of problems consists of 56 instances of 100 customers classified into 6 categories

(C1, C2, R1, R2, RC1 y RC2). The categories differ in the geographical distribu-

tion of the customers, the capacity of the vehicles and the compatibility of the time

windows.

There are other VRPTW benchmarks with larger problems instances (such as

Gehring & Homberger’s
1
), but the objective of the work presented focuses on the

use of the EDBA and the analysis of the new optimization operator for the VRPTW.

For this reason, Solomon’s benchmark is adequate and representative.

All the tests conducted in this work have been performed on an Intel Core i5-

6200U CPU @ 2.40 GHz with 8 GB of RAM. The algorithms have been programed

in Java and double precision is used for all numeric variables and parameters. The

used operating systems has been Windows 7.

The evaluation function used is the classic hierarchical one that prioritizes first

the number of routes (the minimum the best) and then the total travel distance (again

the lower the best).

The experimentation has been performed with 4 variants of the proposed EDBA.

Such variants differ in the use (or not) of the optional processes included in the

optimization operator presented in Sect. 5.2. They are identified as: EDBA-OR (only

Optimize Routes process), EDBA-PR (only Proximity Reinsertion process), EDBA-

FULL (both optional processes) and EDBA-NONE (no optional process).

The parameterization for the EDBA used in the experimentation is the following:

∙ The swarm of bats (population) is composed of 25 individuals.

∙ The initial population is initialized at random.

∙ The termination criterion is: a maximum of 100 iterations or 20 iterations without

improvement.

∙ New solutions are generated with the new operator described in Sect. 5.2.

∙ The local solution around the best new solution is generated using the well-known

2-opt* operator.

∙ 𝛼 and 𝛽 have been initialized to with 0.98.

∙ r0i for each bat of the population has been initialized with a random value between

0.0 and 0.40.

∙ A0 has been set with a random value between 0.70 and 1.0 for each bat.

∙ vi has been initialized with a random value between 0.0 and the Hamming Distance

between a bat and the best solution found.

1
https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/.

https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/
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Table 1 Results obtained by EDBA-OR

Class T AVGV SDV AVGD SDD

C1 7921 10.978 0.093 1512.744 35.109

C2 14625 3.200 0.209 779.528 43.174

R1 9350 14.367 0.162 1529.738 6.871

R2 18043 3.164 0.041 1211.082 12.836

RC1 4525 14.925 0.112 1915.900 15.860

RC2 12862 3.750 0.153 1467.878 15.434

Table 2 Results obtained by EDBA-PR

Class T AVGV SDV AVGD SDD

C1 266 12.889 0.091 2270.032 102.794

C2 1054 4.563 0.217 1817.001 148.536

R1 192 18.167 0.152 2193.207 41.194

R2 1421 4.704 0.087 1965.860 79.367

RC1 112 19.219 0.157 2645.416 32.932

RC2 728 5.594 0.120 2206.801 10.821

Table 3 Results obtained by EDBA-FULL

Class T AVGV SDV AVGD SDD

C1 1375 10.967 0.105 1531.749 39.450

C2 4737 3.725 0.079 889.098 22.066

R1 1212 14.533 0.137 1634.549 30.242

R2 7040 3.237 0.064 1297.255 20.965

RC1 696 15.100 0.184 1960.489 35.536

RC2 4123 3.825 0.121 1566.401 39.975

Finally, in order to calculate proper statistics, each variant of the EDBA has been

executed 10 times.

The results of the experimentation are shown in Tables 1, 2, 3 and 4. All the tables

have the same structure: one row for each class of the Solomon’s benchmark (sum-

marizing the results of all the instances of a class) and five columns. Each column

corresponds to the average runtime for all the instances of each class (T, in seconds),

and average (AVG) and standard deviation (SD) for the number of vehicles (V) and

the total cumulative travel distance (D).

Table 1 presents the results obtained by EDBA-OR. This variant of the algo-

rithm is characterized by using only the route optimization process. This means that

once the ejectionPool is generated, the routes that remain in the solution are opti-

mized (using the Or-opt operator) to facilitate the reinsertion of the customers of the



On Efficiently Solving the Vehicle Routing Problem . . . 83

Table 4 Results obtained by EDBA-NONE

Class T AVGV SDV AVGD SDD

C1 1338 12.867 0.093 2183.340 64.583

C2 3385 4.575 0.112 1766.683 131.954

R1 1162 18.217 0.173 2206.293 26.755

R2 4461 4.854 0.138 1878.603 32.055

RC1 624 19.175 0.190 2702.481 109.543

RC2 2680 5.500 0.088 2293.172 66.782

removed route. According to the experimentation conducted, this variant obtained

the best results (both in vehicles and traveled distance) for all the classes except C1.

For the Class C1, this variant obtained the best results in terms of distance and the

number of vehicles is only about 0.1% worse than the best one. The results obtained

are consistent since the standard deviation for both vehicles and for distance does not

exceed 6.5%. The results obtained confirm that the local optimization of the routes

before reinserting the clients of the ejectionPool allows to obtain better solutions.

However, the runtime time is significantly higher than the other variants.

In Table 2 the results of EDBA-PR are presented. In this case only nearest reinser-

tion process is performed. After the removal of the random selected route and before

the final parallel initialization, the customers in the ejectionPool try to be reinserted

in the geographically closest path. This variant is the fastest. However, together with

the EDBA-NONE variant, it reports the worst results being 35.5% and 62% worse

(than the best results) in terms of number of vehicles and total distance traveled.

EDBA-FULL results are shown in Table 3. In this case both processes are per-

formed (route optimization and proximity reinsertion processes are carried out). This

has obtained the second best results. The average percentage differences in number

of vehicles and total distance traveled (for all classes) are 3.85% and 5.7%, respec-

tively. In addition, it is the one that obtains the best result in number of vehicles for

the class C1. Furthermore, analyzing standard deviations, it can be seen that the val-

ues obtained are the lowest. This implies that this method is more robust. One last

important fact is the runtime. This variant obtains values significantly better than

those obtained by the EDBA-OR variant.

Finally, Table 4 shows the results of EDBA-NONE. In this variant the customers

of the removed route are reinserted directly using the parallel construction heuristic

without any extra process. This variant, like EDBA-PR, gets poor results that are

(on average for all classes) 36% worse in number of vehicles and 56% worse in dis-

tance traveled. On the other hand, the execution times are slightly higher than the

EDBA-PR variant, but smaller than any of the two variants that get the best results.

Finally, analyzing the standard deviations of the obtained results can be said that the

algorithm is consistent (like the rest of variants).

To summarize, Table 5 shows the comparison of all variants and the difference

with respect to the EDBA-OR (which reported the best results).
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Table 6 Average ranking obtained by the Friedman’s test

Algorithm AVGV AVGD

EDBA-OR 1.1667 1

EDBA-FULL 1.8333 2

EDBA-PR 3.5 3.5

EDBA-NONE 3.5 3.5

Once the results of the experimentation have been presented, two statistical tests

(using the number of vehicles and traveled distance) have been made. These tests

are based on the guidelines suggested by Derrac et al. [69]. The objective of this

task is to ensure that comparisons between the different variants of the EDBA are

fair and objective. First, the non-parametric Friedman’s test for multiple comparison

was conducted. This test aims to check for significant differences between the four

variants of the EDBA.

Table 6 shows the average ranking obtained for each variant (the lower the value,

the better the performance of the variant). The test has been conducted for both crite-

ria of the objective function: number of vehicles and total traveled distance. Regard-

ing the number of vehicles, the resulting Friedman statistic has been 15.2. Taking

into account that the confidence interval has been stated at the 99.5% confidence

level, the critical point in a 𝜒

2
distribution with 3 degrees of freedom is 12.838.

Because 15.2 > 12.838, it can be concluded that there are significant differences

among the results reported by the four compared algorithms, being EDBA-OR the

one with the lowest rank. Finally, for this Friedman’s test, the computed p-value has

been 0.001653. On the other hand, in relation to the distance, the resulting Friedman

statistic has been 16.2. In this case, taking the same confidence interval, the differ-

ences are again significant; and the EDBA-OR variant is the one that reports the

best results. In this case, the computed p-value is 0.001032. These results confirm

the superiority of the EDBA-OR variant.

Once discovered significant differences in the number of vehicles, it is appropriate

to compare technique by technique. For this reason, a post-hoc Holm’s test, using

EDBA-OR as reference (which ranks first in number of vehicles), has been made. The

results of this test are shown in Table 7. As can be seen, for EDBA-PR and EDBA-

NONE adjusted and unadjusted p-values are simultaneously less than or equal to

0.05. Therefore, it can be confirmed statistically that the difference in the number

of routes for EDBA-PR and EDBA-NONE with respect to EDBA-OR is significant.

The same does not happen between the EDBA-FULL and EDBA-OR variants.

Table 7 Adjusted and unadjusted p-values of Holm’s test for the number of vehicles

Algorithm Adjusted p Unadjusted p

EDBA-PR 0.005235 0.001745

EDBA-NONE 0.005235 0.001745

EDBA-FULL 0.371093 0.371093
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Table 8 Adjusted and unadjusted p-values of Holm’s test for the total traveled distance

Algorithm Adjusted p Unadjusted p

EDBA-PR 0.002389 0.000796

EDBA-NONE 0.002389 0.000796

EDBA-FULL 0.179712 0.179712

To conclude our statistical analysis, new Holm’s tests has been performed. In this

case the test is related to the traveled distance. The results of this test are depicted in

Table 8. In this case, related to the traveled distance, there are significant differences

between EDBA-PR and EDBA-NONE with respect to EDBA-OR.

Finally, as a conclusion of the experimentation and the subsequent statistical

analysis of the results, it can be ensured that the EDBA-OR variant is the one that

obtains the best results. These results are statistically better than those obtained by

the EDBA-PR and EDBA-NONE variants. On the contrary, the results obtained by

the EDBA-FULL variant are worse than those obtained by EDBA-OR. But the dif-

ference in results is not statistically significant.

7 Conclusions

We have presented in this work an Evolutionary Discrete Bat Algorithm for solving

the famous Vehicle Routing Problem with Time Windows. The developed method

presents some originality, such as the use of the Hamming distance to measure the

distance between two bats (solutions) of the swarm, and the application of some

recently proposed optimization operators, which have been firstly used in a BA.

Specifically, these operators perform selective extractions of nodes in an attempt

to minimize the number of routes in the current solution.

With the intention of validating that the proposed EDBA and the used route opti-

mization operators are effective for solving the VRPTW, the results obtained by

the EDBA has been compared with the ones obtained by different variants of the

technique. For this experimentation, the 56 instances of the well-known Solomon’s

VRPTW benchmark have been used. Furthermore, two different statistical tests have

been performed in order to enrich the conclusions: the non-parametric Friedmans test

for multiple comparisons, and the post-hoc Holm’s test.

The opportunities for future work related to the research presented in this paper

are broad. For example, more complex benchmarks and further comparison of the

performance of the proposed EBFA with other metaheuristics can be carried. In addi-

tion, it may be useful to apply the route optimization heuristic operators described

in this work to other techniques (including classic techniques) such as the Genetic

Algorithm or the Tabu Search, in order to test their efficiency. Furthermore, it can be

expected that the proposed approach and operators can also used to solve travelling

salesman problems and other combinatorial optimization problems.
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1 Introduction

Many phenomena in nature have unique characteristics that can be utilized and con-

verted into a mathematical model or even an algorithm to solve real-world problems.

Over the last few decades, researchers have developed many nature-inspired algo-

rithms so as to attempt to find the best solutions for various optimization problems.

Examples are genetic algorithm (GA) [1], artificial bee colony (ABC) [2], particle

swarm optimization (PSO) [3], gray wolf algorithm (GWA) [4], firefly algorithm

(FA) [5], bat algorithm (BA) [6], and cuckoo search (CS) [7]. These algorithms have

been successfully applied to a wide range of optimization problems and are widely

used in the literature of metaheuristics for the last two decades [8, 9]. On the other

hand, nature still has many other phenomena that can be utilized to solve differ-

ent types of problems. One phenomenon is flowering plant reproduction strategy

through pollination, which inspired Yang in 2012 to propose a new algorithm called

the flower pollination algorithm (FPA) [10].

FPA is a swarm-based optimization technique that has attracted the attention of

many researchers in several optimization fields due to its impressive characteristics.

FPA has very fewer parameters and has shown a robust performance when applied

in various optimization problems. In addition, FPA is a flexible, adaptable, scalable,

and simple optimization method. Therefore, FPA, compared with other metaheuris-

tic algorithms, shows good results for solving various real-life optimization prob-

lems from different domains such as electrical and power system [11–15], signal

and image processing [16–18], wireless sensor networking [19–21], clustering and

classification [22, 23], global function optimization [24], computer gaming [25],

structural and mechanical engineering optimization [26–28], and many others [29,

30].

Procedurally, FPA is a population-based optimization technique, initiated with

a set of provisional or random solutions. At each iteration, either one of the two

operators is carried out for each individual population member: local pollination

operator and global pollination operator. In a local pollination operator, the decision

variables of the current solution attract the other two randomly selected solutions

from two population members. In a global pollination operator, the decision variables

of the current solution attract to the globally best solution found. The switch operator

is responsible for exchanging the improvement loop either locally or globally. This

process repeats until a predefined stopping criterion is met.

In recent years, the procedural optimization framework of FPA at its initial ver-

sion has undergone modification or hybridization to enhance its performance with

relation to different types of problem landscapes. Therefore, the original form of

FPA is first presented in this review paper in terms of its theoretical aspects. Then,

several FPA versions are reviewed and analyzed critically by presenting modified
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Fig. 1 Distribution of

published research articles

on FPA

and hybridized versions in detail, including the multi-objective and parameter-less

variants. Figure 1 summarizes these variants and their foundations as a pie chart. In

addition, the limitations of FPA will also be discussed. Critical analysis concerning

the FPA optimization framework is presented to provide new opportunities for inter-

ested readers to carry out more research about FPA. Furthermore, some important

applications of FPA are comprehensively summarized. Finally, this review chapter

concludes with recommending possible future work on FPA.

The Materials and Methods reviewed here have been selected based on their modi-

fications and relevance. Figure 2 shows the main sources of these materials and meth-

ods. In the figure, the selected literature and studies are classified, based loosely on

the publishers such as IEEE Explorer, ScienceDirect, SpringerLink, Taylor & Fran-

cis, and others. There are other ways of presenting the data. For example, Fig. 3

shows the distribution of publications, Materials and Methods, based on the year of

publication. As the time progressed, the interest in FPA increased and attracted the

attention of the research community in the last 5 years.

Therefore, this chapter is organized as follows. Section 2 describes the flower

pollination foundation with Sect. 2.2 describing the flower pollination algorithm.

Section 3 provides in detail all the major variants of FPA. Some applications are

briefly outlined in Sect. 4, and and critical analysis of FPA is carried out in Sect. 5.

Finally, the conclusion will be drawn with some recommendation in Sect. 6.
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Fig. 2 Number of publications of FPA algorithm per databases

Fig. 3 Number of publications of FPA algorithm per year

2 Flower Pollination and Flower Pollination Algorithm

The majority of plants are flowering plants and there are more than 250,000 species

of flowering plants around the world, where pollination represents the main repro-

duction strategy of the plants [31, 32]. Pollination is a process of transferring pollen

from one flower to another by wind or pollinators such as insects, butterflies, bees,
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birds and bats. Flowering plants have evolved to produce nectar to attract pollinators

and to ensure pollination [33]. In addition, some pollinators and plant species such

as hummingbirds and ornithophilous flowering plants form some co-evolutionary

flower constancy [31, 32]. Based on the main characteristics of pollination, the

flower pollination algorithm has been developed [10].

2.1 FPA in Optimization Context: Nature’s Inspiration

Before we describe the flower pollination algorithm in detail, let us briefly review

the basic form of pollination in flowering plants. Pollination takes two basic forms:

biotic or abiotic.

1. Biotic pollination: The main form of pollination is biotic pollination, also called

cross-pollination, by pollinators such as insects and birds and others. Almost 90%

of flowering plants use this form of pollination. As pollinators move and even fly

with various paces and speeds, the motion of pollen can be quite long distant.

Such pollination can also be considered as global pollination with potential Lévy

flights properties [10, 34, 90]. If pollen is encoded as a solution vector, this action

can be equivalent to global search.

2. Abiotic pollination: Another form of pollination is abiotic pollination, also called

self-pollination, which does not require pollinators. It is estimated that about 10%

of floral plants take this form of pollination. As the pollination tends to be local

and self-pollination, it can be achieved by wind and diffusion [10, 33]. The dis-

tance travelled by such local motion is typically short, and such action can thus

be considered as local search.

3. Flower constancy: Sometimes, it is advantageous for both plants and pollinators

such as hummingbirds to form a partnership to save energy with guaranteed suc-

cess. Consequently, flower constancy has been evolved. In this case, pollinators

only visit a fixed set of flower types without wasting energy for exploring new

flower types, while the flower plants evolve to provide sufficient nectar reward to

pollinators so as to encourage frequent visits by pollinators and thus maximize

their reproduction success [31, 33].

The above characteristics have been used to design an optimization algorithm, called

flower pollination algorithm (FPA) [10]. The main characteristics and the algorithm

components of FPA can be summarized in Table 1, which shows the relationship or

equivalence between optimization terms and flower context.

With these components and characteristics, we can now describe the standard

flower pollination algorithm in detail.
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Table 1 Pollination and its optimization components

Flower pollination Optimization components (in FPA)

Pollinators (insects, butterflies, birds) Moves/modification of variables

Biotic Global search

Abiotic Local search

Lévy flight Step sizes (obeying a power law)

Pollen/flowers Solution vectors

Flower constancy Similarity in solution vectors

Evolution of flowers Iterative evolution of solutions

Optimal flower reproduction Optimal solution set

2.2 Flower Pollination Algorithm

FPA is a nature-inspired algorithm that mimics the main pollination behavior of

flowering plants. The four idealization rules were used by Yang in 2012 [10] and

they can be summarized as follows:

Rule 1 Global pollination involves biotic and cross-pollination where pollinators

carry the pollen based on Lévy flights.

Rule 2 Local pollination involves abiotic and self-pollination.

Rule 3 Flower constancy can be considered as a reproduction probability that is

proportional to the similarity between any two flowers.

Rule 4 Switch probability p ∈ [0, 1] can be controlled between local pollination

and global pollination due to some external factors, such as wind. Local pollina-

tion has a significant fraction p in overall pollination activities.

To illustrate the mechanism of the FPA based on these four rules, three key steps

can be described in the following three subsections.

2.2.1 Global Search of FPA (Biotic)

As mentioned above, pollinators such as birds and bats can transfer pollen over long

distances during biotic pollination, ensuring the diversity and the fittest pollination

for reproduction. Therefore, the first (Rule 1) and third (Rule 3) FPA rules can be

mathematically formulated as follows:

xt+1i = xti + L(g∗ − xti) (1)
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where xti is the pollen or solution vector at iteration t and g∗ is the best solution

found among all solutions at the current iteration. The parameter L is the strength

of pollination, which is essentially a step size. Because pollinators move over long

distances with various distance intervals, the Lévy flight can an efficient simulator for

this characteristic [10]; that is, L can be drawn from a Lévy distribution as follows:

L ∼
𝜆𝛤 (𝜆) sin(𝜋𝜆∕2)

𝜋

1
s1+𝜆

, (s ≪ 0) (2)

where 𝛤 (𝜆) denotes the standard gamma function and this distribution is valid for

large steps s > 0. Normally, it is recommended that 𝜆 = 1.5 can be used [10].

2.2.2 Local Search of FPA (Abiotic)

As abiotic pollination occurs by wind or diffusion without any pollinators, the local

pollination (Rule 2) and flower constancy (Rule 3) can be represented as follows:

xt+1i = xti + 𝜀 (xtj − xtk) (3)

where xtj and xkj are pollen from different flowers of the same plant type. This equation

essentially mimics the flower constancy in a limited neighborhood. Mathematically

speaking, if xtj and xkj are from the same species that can be selected from the same

population, the equation becomes a local random walk if we draw 𝜀 from a uniform

distribution in [0, 1], and the new solution vector generated will not be too far away

from existing solutions.

2.2.3 Switch Probability in FPA

Though we have simulated both biotic and abiotic pollination, we have not consid-

ered the percentage and frequency of each pollination type. To mimic this feature,

we use a switch probability (Rule 4), where the value of p determines whether the

solution modification follows either local or global pollination. Though a naive value

of p = 0.5 can be used, a more realistic and effective value of p = 0.8 gives better

performance (than p = 0.5) for most applications [10].

Figure 4 shows the flowchart of FPA. Three key steps can be summarized in the

FPA pseudocode shown in Algorithm 1.
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Fig. 4 Flower pollination algorithm flowchart

3 Recent FPA Variants

Though the standard FPA works well for many applications [10], it can still be

improved. Given the complex nature of real-world optimization problems, the basic

structure of FPA has been modified to enhance its performance. The modifica-

tion has been done in many parts of the FPA structure, which will be discussed

in Sect. 3.1. Furthermore, several FPA hybridization schemes, which will be dis-

cussed in Sect. 3.2, have also been introduced to accelerate the convergence and to

improve the balance between exploration and exploitation. Multi-objective optimiza-

tion problems are also a category of problems. Therefore, Sect. 3.3 describes the
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Algorithm 1 Flower Pollination Algorithm pseudo-code

1: Objective min f (x), x ∈ ℜd

2: Initialize a population of n flowers/pollen with random solutions

3: Fins the best solution g∗ in the initial population

4: Define a switch probability p ∈ [0, 1]
5: Calculate all f (x) for n solutions

6: t=0
7: while t ≤ MaxGeneration do
8: for i = 1, ..., n do
9: if rnd ≤ p then

10: Draw a (d-dimensional) step vector L which obeys a Lévy distribution

11: Global pollination via xt+1i = xti + L ∗ (g∗ − xti)
12: else
13: Draw from a uniform distribution 𝜀 ∈ [0,1]

14: Randomly choose j and k among all solutions

15: Do local pollination via xt+1i = xti + 𝜀 (xtj − xtk)
16: end if
17: Calculate all new f (xt+1)
18: if f (xt+1) ≤ f (xt) then
19: xt = xt+1
20: end if
21: end for
22: Find the current best solution g∗ among all xti
23: t = t + 1
24: end while

multi-objective version of FPA. Finally, it will be useful if an easy-to-use FPA can

be built to deal with parameterless structure, which is discussed in Sect. 3.4.

3.1 Modified Versions of FPA

One way of modifications in FPA structure is to deal with problem complexity or high

dimensionality. Initially, the researchers realized that FPA uses two search branches

and their fitness values are closely linked to the problem landscape. A possible mod-

ification is to reduce some attributes in the search space. Others try to discretize FPA

to produce binary FPA to solve combinatorial problems. Various modifications will

be explained below.

3.1.1 Modified FPA Based on Operators

Yamany et al. [35] proposed a modified FPA based on an attribute reduction approach.

The main objective of their proposed algorithm is to handle a possible large search

space. The proposed approach suggests a minimum number of attributes and obtains

a comparable or even the best classification accuracy by using all attributes and
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conventional attribute reduction techniques. The strategy of the proposed algorithm

improves three new initialization phases, which are driven by forward selection and

backward selection. Their proposed technique utilized eight datasets from the UCI

machine learning benchmarks and obtained a better performance than other meta-

heuristic algorithms such as GA and PSO.

Zhou et al. [27] proposed an elite opposition-based flower pollination algorithm

(EOFPA), which is a new variant for solving function optimization and structure

designs. EOFPA showed an improvement in the balance of exploration and exploita-

tion. The authors tested their proposed algorithm using 18 standard benchmark func-

tions, which yielded impressive results.

For economic load dispatch problems in power generation system, Putra et al.

[14] proposed a modified FPA (MFPA), which used a dynamic switching probability,

the application of real-coded GA (RCGA) as mutation for global and local search,

and the differentiation between temporary local search and optimal solution. MFPA

was then evaluated for 10 benchmarks of power systems, and their experimental

results showed a lower fuel cost than that found by the standard FPA as well as other

similarly applicable solutions for similar economic dispatch problems. In another

study, Regalado et al. [36] proposed an MFPA for fuel cost value and time required

for obtaining a global optimal solution, and the MFPA tested under the IEEE 30-

bus test system showed superior results over standard FPA and other metaheuristic

optimization algorithms.

To reduce the real power loss and to improve bus voltages, Namachivayam et

al. [37] introduced an MFPA for network reconfiguration and optimal placement

of shunt capacitors. The proposed algorithm involved the adaptation of the local

search of standard FPA and enhanced the global search by using dynamic switching

probability approach. Their proposed algorithm (MFPA) was evaluated using 118-

bus, 69-bus, and 33-bus radial distribution test feeders, yielding better results than

other metaheuristic algorithms, such as HSA, simulated annealing (SA), and IBPSO.

The modified flower pollination algorithm (MFPA) variant proposed by Dubey

et al. [38] solved the economic dispatch problems in large power systems where the

technique involved two improving phases. The first phase was the addition of a scal-

ing factor to enhance the local pollination of FPA, while the second improvement was

the addition of an intensive exploitation step in tuning the best FPA solution. MFPA

was then tested using several mathematical benchmarks as well as four large power

systems, and MFPA performance was compared with recent methods for economic

dispatch problems, revealing the successful outcomes of their proposed algorithm.

3.1.2 Binary FPA

The original FPA was designed to solve continuous optimization problems. To solve

discrete and combinatorial optimization problems, proper modifications are needed.

Rodrigues et al. [39] developed a binary flower pollination algorithm (BFPA) for

feature selection and tested the BFPA on six datasets, and BFPA provided better

results than Particle Swarm Optimization (PSO), harmony search (HS), and firefly
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algorithm (FA). Later, Rodrigues et al. [16] applied BFPA to address the problem

of reducing the number of required sensors for person identification based on EEG

signals. BFPA was used to select the optimal subset of channels that provides the

highest accuracy. BFPA experiments results showed recognition rates of up to 87%

based on the Optimum-Path Forest classifier.

Shilaja et al. [40] suggested a technique called CEED to solve 20 photovoltaic

and 5 thermal power generation problems. The CEED technique was a combination

of Economic Dispatch Euclidean Affine Flower Pollination Algorithm and BFPA. In

addition, testing the proposed CEED technique through IEEE 30 bus and IEEE 57

bus systems provided better results than existing methods.

Dahi et al. [41] conducted a systematic study to evaluate BFPA performance in

solving the Antenna Positioning Problem (APP). BFPA was tested using realistic,

synthetic, and random data with different dimensions and compared with Population-

Based Incremental Learning (PBIL) and the Differential Evolution algorithm (DE),

which are two of the efficient algorithms in the APP domain. BFPA achieved a more

competitive technical finding than PBIL and DE in the APP domain.

3.1.3 Chotic-Based FPA

The standard FPA uses random numbers, and some randomization can also be

achieved by using chaotic maps. In mechanical engineering, Meng et al. [28] has

developed a modified flower pollination algorithm (MFPA) to solve a design prob-

lem. This MFPA involved the adaptive inertia weight and the chaos theory in the

enhancement of local search. Evaluating the performance results of MFPA through

five mechanical engineering benchmarks, namely, speed reducer, gear train, tubu-

lar column design, pressure vessel, and tension/compression spring design, showed

better results than other algorithms for mechanical engineering problems.

Metwalli et al. [42] presented a new method for solving fractional programming

problems (FPPs) based on development of chaos-based Flower Pollination Algo-

rithm (CFPA). The performance of CFPA has been proven using several FPP bench-

marks. The proposed algorithm was compared with metaheuristic solution methods

for solving FPPs where the former showed superiority over other fractional program-

ming problem-solving methods.

Many power system techniques have been proposed for wind speed forecasting,

but most of these systems do not have any efficient model on data preprocessing.

Therefore, Zhang et al. [43] proposed a new model that involved a combination of

three short-term techniques for wind speed forecasting. Their novel system included

complete ensemble empirical mode decomposition adaptive noise (CEEMDAN),

FPA with chaotic local search (CLSFPA), five neural networks, and no negative con-

straint theory. CLSFPA aimed to choose the optimal weight coefficients of the com-

bined model. It was shown that their combined algorithms could effectively forecast

the wind speed at high accuracy after evaluating the 15 min wind speed data from

four different farms in eastern China.
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3.2 Hybridized Versions of FPA

One of the main problems for any metaheuristic methods is to strike the right bal-

ance between global-wide exploration and local neighborhood exploitation during

the search process. Some methods are very powerful in exploring several regions of

the problem landscape, despite lacking in the exploitation of each region, and these

algorithms tend to be population-based or swarm-based algorithms. Other meth-

ods are very powerful in exploiting the good elements in a specific region in the

search space at the expense of sacrificing the simultaneous exploration of several

regions, which is true for gradient-based methods or trust-region methods. There-

fore, research communities have been trying to hybridize FPA with other algorithms

to improve its performance. Such types of hybridization are summarized below.

3.2.1 Hybridization with Local Search Based Algorithms

The hybridization of FPA with simulated annealing (SA) for engineering optimiza-

tion problems, named (FPSA), was developed in [44]. In their method, solutions

generated by FPA improved locally using the SA algorithm to enhance the search

performance and to speed up the convergence. FPSA had a better performance than

other methods in the literature.

Jensi and Jiji [45] proposed FPA hybridization with the K-Means algorithm for

data clustering and used the K-Means algorithm to enhance the local exploitation

of FPA. The performance of their hybrid algorithm was more effective than using

classical K-Means or FPA alone.

Sayed et al. [46] introduced a hybrid algorithm called BCFA, which combined

Clonal Selection Algorithm (CSA) with FPA to solve feature selection problem. The

authors used the Optimum-Path Forest classifier as an objective function, and their

proposed hybrid algorithm (BCFA) produced better results than other metaheuristic

algorithms.

Emad Nabil [24] proposed an improved variant of FPA hybrid, which was a com-

bination of MFPA and CSA. To evaluate the performance of MFPA, a total of 23

optimization benchmark problems were tested, and MFPA efficiency was compared

with SA, GA, FPA, BA, and FA. Results showed that the proposed hybrid MFPA can

obtain the better results than standard FPA and the former outperformed the other

four metaheuristic algorithms.

A novel FPA hybrid from the integration of FPA and Path Relinking metaheuristic

was presented in [30] and was used in the context of generating healthy and nutri-

tional meals for older adults. This hybridization aimed to improve the search for

optimal or near-optimal personalized menu recommendations in terms of execution

time and quality. The performance test of this hybrid version on real-world dataset

showed the superiority of the algorithm to classical FPA in terms of both solution

quality and execution time.
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Zhang et al. [43] proposed CLSFPA that combined FPA and chaotic local search

to enhance the exploration capabilities and to improve the local search ability of

FPA. The authors used their version of CLSFPA to solve wind speed forecasting by

combining CEEMDAN, which broke down the raw wind speed series into several

independent intrinsic mode function components, with corresponding frequencies

for easy analysis and forecasting. Later on, CLSFPA was employed for each com-

ponent to improve the accuracy of the forecast. Experimental results illustrated that

the proposed CLSFPA was effective in predicting wind speed with high precision.

3.2.2 Hybridization with Population Based Algorithms

Abdel-Raouf et al. [47] presented a hybrid method, called hybrid FPA for optimiza-

tion problems, by combining the FPA with the PSO algorithm to improve the search

accuracy. Results showed that their method was more accurate, reliable, and efficient

in finding the optimal solutions than the other methods in the literature. In another

study, the same authors integrated the FPA with chaotic HS algorithm in [25] and

used the hybrid algorithm to solve Sudoku puzzles with satisfactory results com-

pared with chaotic HS algorithm.

Nigdeli et al. [48] integrated FPA with HS algorithm for tuning of mass dampers.

In their method, four different types of generations were used, the global and local

search process of HS and the global and local pollination of FPA. A probability-based

method determined the kind of generation utilized in the construction of new solu-

tions. This proposed probability was calculated based on the objective of optimiza-

tion, and they found that their probability-based FPA performed better than classical

FPA in terms of convergence rates.

Recently, Lenin et al. [49] used a hybrid FPA with chaotic HS algorithm to solve

the optimal reactive power dispatch problem. The basic idea was to improve the accu-

racy of the FPA search process. The authors tested the performance of their hybrid

FPA using the standard IEEE 57-bus system dataset, and found its effectiveness and

robustness in minimizing real power loss.

A novel hybridization of ABC with FPA, called Bee Pollinated Flower Pollination

Algorithm (BPFPA), was introduced in Ref. [50] for solar PV parameter estimation.

In BPFPA, the bee behavior of discarding pollen combines within FPA, and an elite-

based mutation operation replaced the local pollination of FPA. Introducing these

modifications in FPA not only enhanced its randomness but the hybrid method also

had a faster execution speed and higher robustness than other methods.

Abdel-Baset and Hezam [51] proposed the hybridization of FPA with GA, called

FPA-GA, to solve constrained optimization problems. In their method, the GA was

triggered after the FPA loop. Introducing the hybridization enhanced the search accu-

racy of FPA. The authors tested the performance of their method on seven well-

known benchmark design problems, and the performance of the proposed FPA-GA

was better than the basic GA, the basic FPA, and other algorithms.

Hybridization of DE algorithm with FPA, called DE-FPA, was proposed in [52]

to solve benchmark optimization problems. The main idea of their algorithm was to
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synthesize the strength and power of both algorithms, where this combination pro-

vided a right balance between exploration and exploitation capabilities. For their

studies, it seemed that DE algorithm was notably a main source of exploration,

whereas the exploitation was the main FPA characteristic in this case. Experimental

results showed that DE-FPA outperforms classical DE and FPA in terms of per-

formance and convergence rate. Ramadas et al. developed similar hybridization to

solve 15 global optimization benchmark problems [53]. Experimental results illus-

trated that the proposed method was better than or equal to the standard DE almost

all test problems.

To solve the wind-thermal dynamic multi-objective optimal dispatch problem,

Dubey et al. [54] hybridized FPA with DE and named their algorithm as HFPA.

Furthermore, 5-class, 3-step time varying fuzzy selection mechanism (TVFSM) was

integrated with HFPA to find a fuzzy selection index (FSI) by aggregating different

conflicting objectives. FSI notably helped the decision maker in finding the trade-off

solutions by problem specific parameter selection. Based on the experimental results,

the HFPA-TVFSM algorithm was more efficient than DE, FPA, and HFPA.

Kalra and Arora [34] improved the FPA performance with the firefly algorithm

(FA) to tackle multimodal optimization functions and to overcome the shortcom-

ings of each algorithm. In FPA, the convergence speed improves, and the chances of

trapping within local optima decrease by reducing the effect of randomness in FA.

Experimentally, the proposed hybrid algorithm obtained better accuracy and faster

convergence than FA and FPAs.

A multi-objective optimal power flow problem was tackled through a new hybrid

FPA in [15]. The authors combined the FPA with PSO algorithm order to enhance

the global search and validated their algorithm using IEEE 30 test bus system and

IEEE 118 test bus system. Based from their results, the hybrid algorithm significantly

performed better than FPA and PSO alone. A similar study was evaluated on the

optimal reactive power dispatch problem in [55]. The authors evaluated the proposed

hybrid algorithm evaluated using IEEE 30 and, IEEE 57 bus test systems and found

that the algorithm performance of is better in reducing real power loss.

A novel FAP hybridization with PSO algorithm, called HFPA, was proposed in

[56], where the PSO was integrated intentionally to enhance the exploration capa-

bility of FPA. The authors used their method to design wide-band infinite impulse

response digital differentiators and digital integrators. Simulation results illustrated

that the proposed HFPA achieved a superior performance in the least number of

function evaluations when compared with the other methods in the literature.

Chakraborty et al. [57] integrated the global search capabilities of FPA with

the local search behavior of gravitational search algorithm (GSA) for training the

feedforward neural network so as to strike a right balance between exploration and

exploitation during the search process. Furthermore, dynamic switch probability and

adaptive weights of the GSA velocity operator were introduced to avoid trapping in

the local minima and to guide the search toward the global minima, respectively.

The authors investigated their method using a set of real-world benchmark datasets

retrieved from the UCI Machine Learning Repository. These real-world benchmark

data sets included cancer, glass, iris, vertebral column, and wine The numerical
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experiment demonstrated that their method performed significantly better than FPA

and GSA for all datasets.

Salgotra and Singh combined FPA with the bat algorithm, called bat flower pol-

lination algorithm (BFA), to avoid getting stuck in the local optima problem and

to enhance the convergence speed [58]. Evaluation of the proposed BFA algorithm

entailed using thirteen benchmark functions with superior performance and compar-

ison with state-of-the-art algorithms. For more validation, the authors evaluated their

method by synthesizing unequally spaced linear antenna arrays for single and multi-

objective design. Interestingly, the proposed BFA obtained better synthesis results

than other techniques in the literature.

3.2.3 Hybridization with Other Components

Zawbaa et al. [59] presented a new model for multi-objective feature selection based

on the combination of FPA and rough set theory to find the optimal feature set

for classification. Their model exploited the characteristics of filter-based feature

selection and wrapper-based feature selection. Filter-based method served as a data-

oriented technique, while wrapper-based method was a classification technique. The

authors verified the performance of their method on eight UCI datasets and found

that the proposed method was highly competitive when compared with the classical

FPA, PSO, and GA.

Abdel-Baset and Hezam combined FPA and conjugate direction (CD) method to

solving the ill-conditioned system of linear and nonlinear equations [44]. FPA was

used for fast convergence and to find more than one root, whereas CD method was

utilized to increase the accuracy of final results and to avoid getting stuck in the

local minima. Numerical simulation results showed that the proposed method was

very competitive when compared with the other methods in literature.

Valenzuela et al. [60] introduced FFPA a novel hybrid from the integration of FPA

with fuzzy inference system. The fuzzy inference system was used in their method to

adapt the probability of switching between local and global pollination. The perfor-

mance of the proposed method was competitive with other approaches when evalu-

ated on eight benchmark mathematical functions.

In 2016, Wang et al. [61] presented a new hybrid variant by integrating FPA with a

bee pollinator to solve clustering problems. Elite-based mutation and crossover oper-

ators were used in the local search process of FPA to improve convergence speed

and population diversity. Furthermore, the discarded pollen operator was used in

the global search process of FPA to improve the exploration capability, thus poten-

tially avoiding from getting stuck in the local minima. The authors evaluated their

method using ten datasets and the experimental results demonstrated that the pro-

posed method had a higher accuracy, level of stability, and convergence speed, when

compared with K-Means, PSO, DE, CS, ABC, and FPA.

Majidpour et al. [62] integrated FPA with Ada-Boost algorithm to enhance the

accuracy in text document classification, where the former was used for feature selec-

tion, while the latter was used to classify text documents. The authors
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evaluated the performance of their proposed algorithm by using three standard

datasets such as Reuters-21578, WEBKB, and CADE 12. Experimental results

showed that the proposed algorithm performed better than the Ada-Boost algorithm

and other algorithms.

Jain et al. [63] introduced a multi-objective FPA hybrid to solve the channel allo-

cation problem in optical division multiplexing. The authors divided the population

into a set of subpopulations, and combined the mutation strategy of DE with their

method to improve search efficiency and to increase population diversity. Simula-

tion demonstrated that the results of the proposed method were satisfactory when

compared with other methods.

Xu and Wang proposed a new version of hybrid FPA for estimating the

parameters of solar cells and PV modules [64] by integrating the FPA with the

Nelder-Mead simplex method to enhance the local search ability of classical FPA.

Furthermore, generalized opposition-based learning mechanism was combined with

their method to avoid getting stuck in the local optima. The authors evaluated their

method using three different solar models including the single diode model, the dou-

ble diode model, and a PV module. Numerical results clearly demonstrated that the

proposed hybrid FPA was better than the other methods in terms of the accuracy of

final solutions, convergence speed, and stability.

In another study, FPA was hybridized with the Nelder-Mead simplex method to

enhance the local exploitation ability [65]. The authors tested their method using

three typical chaotic system parameter estimation problems with three unknown sys-

tem parameters, including the Lorenz system, the Rossler system, and the Lorenz

system under a noise condition. A comparative evaluation conducted with the state-

of-the-art methods revealed the proposed algorithm as an effective technique for

solving the parameter estimation problem of chaotic systems.

Bensouyad and Saidouni [66] developed a hybrid version of FPA for Graph Col-

oring Problem by using the efficient constructive method called Recursive Largest

First to maintain the feasibility of the solutions during the search process. Further-

more, combining the swap and inversion strategies within their method could keep

population diversity and avoid the stagnation problem that occurs during the search

process. The experimental results showed that the proposed method was competitive

with the state-of-the-art methods.

Combining FPA with a randomized-location modification operator, called a mod-

ified randomized-location flower pollination algorithm (MRLFPA), for medical

image segmentation was presented in [67]. In MRLFPA, the randomized-location

strategy easily overcame the weakness of the classical FPA. The performance of the

proposed MRLFPA was tested using eight medical images with different character-

istics. A comparative evaluation with other algorithms revealed the effectiveness of

MRLFPA in terms of solution quality, stability, and computation efficiency.
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3.3 Multi-objective Versions of FPA

Yang et al. [68] proposed the first attempt of extending FPA to solve multi-objective

engineering optimization problems (MOFPA) through a random weighted sum

method. MOFPA was evaluated using several engineering optimization problems

to produce optimal results. Later, the same authors proposed a novel technique

for MOFPA [69] by introducing several multi-objective test functions and two bi-

objective design benchmarks, and the results of the proposed algorithm were very

efficient, compared with other algorithms.

In the radial distribution system, Tamilselvan et al. [70] introduced an MOFPA to

calculate the power flow and losses in the system. The proposed algorithm was then

evaluated using two standard test cases of IEEE 33 and IEEE 69 radial distribution

systems. Dimitrios Gonidakis also implemented MOFPA [71] in solving the envi-

ronmental/economic dispatch problem. Testing the proposed algorithm from using

two power generation systems showed the MOFPA having several advantages over

other modern optimization techniques.

Shilaja et al. [72] proposed an enhanced FPA called EFPA to find the best solution

for the OPF problem and implemented EFPA for multi-objective of transmission

loss and power plant emission, minimization of generating cost, and improvement

of voltage stability. Evaluation of EFPA using the standard IEEE 30 test showed the

proposed algorithm yielding better results than other optimization algorithms.

For the power loss reduction, Rajaram et al. [73] proposed a multi-objective FPA

to improve the load distribution and the voltage profile for distribution network

reconfiguration. MOFPA provided better results than other published techniques.

Emary et al. [17] implemented a multi-objective FPA for retinal vessel localization

with pattern search (PS). The proposed technique utilized the FPA to find the optimal

clustering of the given retinal image. In addition, the proposed algorithm applied PS

as a local search approach to improve segmentation results. The proposed method

was tested using a standard benchmark named as DRIVE dataset. The results of the

proposed technique were comparable with other optimization algorithms in terms of

accuracy, sensitivity, and specificity with many extendable features.

3.4 Parameters Setting Versions of FPA

To improve the ease of tuning parameters in the standard FPA, Salgotra et al. [74]

proposed a new FPA variant called the adaptive-Lévy flower pollination algorithm

(ALFPA), which involved new mutation operators, dynamic switching, and adapt-

ing local search. ALFPA had been tested using 17 benchmarks and compared with

other optimization algorithms such as ABC, FA, BA, DE, and GWO. As a result,

they showed ALFPA had superiority in numerical results for standard benchmark

functions as well as in statistical tests.
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In the manufacturing industry, one challenging task is the multi-pass turning of

parameters such as feed rate, cutting speed, and depth of cut. Xu et al. [75] proposed

an improved FPA to solve this problem where the proposed algorithm gusseted in

keeping the local and global search operator of the standard FPA, while using Deb’s

heuristic rules to initiate the new population. The proposed algorithm has shown

comparative results and outstanding performance.

4 Applications of Flower Pollination Algorithm

When we presented various variants of FPA, we also outlined their applications in

a diverse range of real-world scenarios. Here, we briefly introduce other applica-

tions that were not mentioned earlier. The FPA is successfully tailored for several

domains of optimization problems, including electrical and power system [11–15],

signal and image processing [16–18], wireless sensor networking [19–21], cluster-

ing and classification [22, 23], global function optimization [24], computer gaming

[25], structural and mechanical engineering [26–28], and and many others [29, 30].

Table 2 summarizes these applications. Some applications are high dimensional,

complex, and non-convex problems that the classical version of FPA may not easily

tackle alone without any amendment. The main focus of this review is not to pro-

vide a detailed review of all FPA applications, but rather show the alternative FPA

variants and the FPA pros and cons, which can motivate researchers to explore new

possibilities in enhancing FPA to solve other application problems. Thus, this review

presents a comprehensive but not exhaustive summary of FPA applications.

Figure 5 shows the FPA application domains. Most research areas that use FPA

are electrical and power system where most problems can efficiently be solved by

FPA, including economic/emission dispatch, load frequency control, optimal power

flow, and so on. The FPA in the domain of structural and mechanical engineering has

shown powerful results in solving challenging problems such as structural design,

tuning of mass dampers, and multi-pass turning parameters. In the clustering and

classification domain, the FPA is successfully applicable in several problems such as

data clustering and feature selection. Furthermore, FPA has obtained optimal find-

ings in wireless and network system domain where it is applicable in addressing

different problems such as wireless sensor networks, antenna positioning, and vehi-

cle path planning problem. Another domain, where using FPA shows its superiority,

is signal and image processing, in which the algorithm solves medical image seg-

mentation, retinal vessel localization, EEG channel selection, and multilevel image

thresholding. Finally, the FPA has shown good results with the optimization prob-

lems of standard benchmark functions.
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Table 2 FPA applications

Problem References

Electrical and power system domain
Economic/Emission dispatch Abdelaziz et al. [11], Prathiba et al. [76],

Abdelaziz et al. [13], Shilaja et al. [40],

Dimitrios Gonidakis [71], Dubey

et al. [38], Putra et al. [14], Regalado et al.

[36], Dubey et al. [54], Abdelaziz et al. [97],

Nigdei et al. [98], Kerta et al. [99], Velamuri et

al. [105], Abdelaziz et al. [106]

Reactive power dispatch Lenin et al. [49], Sakthivel et al. [96]

Optimal power flow Rajalashmi and Prabha [15], Kanagasabai and

RavindhranathReddy [55], Shilaja et al. [72],

Shilaja et al. [95]

Transmission laser welding Acherjee et al. [77]

Optimal design of wideband integrators Mahata et al. [56]

Solar PV parameter estimation Ram et al. [50]

Estimation of photovoltaic parameters Xu and Wang [64], Xu et al. [65]

Forecasting of petroleum consumption Chiroma et al. [22]

Load frequency control Lakshmi et al. [78], Jagatheesan et al. [79]

Network reconfiguration Namachivayam et al. [37], Rajaram et al. [73]

Optimal power flow Shilaja et al. [72], Mahdad et al. [102]

Optimal parameters of photovoltaic (PV) Alam et al. [80]

Pi-pd cascade controller Dash et al. [81]

Wind speed forecasting Zhang et al. [43]

Wireless and network system domain
Wireless sensor networks Sharawi et al. [19], Hajjej et al. [21], Rana et al.

[82], Pan et al. [92], Sesli et al. [101], Binh

et al. [111], Sharma et al. [117]

Antenna positioning Dahi et al. [41], Vedula et al. [108], Salgotra

et al. [110]

Optical division multiplexing Jain et al. [63]

Vehicle path planning problem Zhou et al. [83]

Linear antenna array optimization Saxena et al. [84]

Synthesis of linear antenna array Salgotra and Singh [58]

Clustering and classification domain
Data clustering Agarwal et al. [23], Łukasik et al. [85], Jensi

and Jiji [45], Wang et al. [61], Ramadas et al.

[112]

Train the feed forward neural network Chakraborty et al. [57]

Feature selection Rodrigues et al. [39], Sayed et al. [46], Zawbaa

et al. [59], Majidpour et al. [62]

Structural and mechanical engineering domain
Frames and and truss systems Nigdeli et al. [26]

Structure engineering design Zhou et al. [27], Bekdaş et al. [103], Bekdaş et

al. [104]

(continued)
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Table 2 (continued)

Problem References

Tuning of mass dampers Nigdeli et al. [48]

Multi-pass turning parameters Xu et al. [75]

Mechanical engineering design Meng et al. [28]

Assembly sequence optimization Mishra et al. [86]

Games domain
Sudoku puzzles Abdel-Raouf et al. [25]

General healthy domain
Generating menu recommendations Pop et al. [30], Pasaribu et al. [93]

Image and signal processing domain
Shape matching Zhou et al. [113]

Medical image segmentation Wang et al. [67], Emary et al. [100]

EEG channel selection Rodrigues et al. [16]

Retinal vessel localization Emary et al. [17]

Graph coloring problem Bensouyad and Saidouni [66]

Multilevel image thresholding Ouadfel et al. [18]

Standard benchmark functions domain
Global optimization Emad Nabil [24], Sakib et al. [91], Draa [94],

Łukasik et al. [107], Nasser et al. [114],

Hegazy et al. [115], Rathasamuth et al. [116]

Ill-conditioned set of equations Abdel-Baset and Hezam [44]

Roots identified Platt et al. [87]

Fractional programming problems Metwalli et al [42]

5 Critical Analysis of FPA Variants

Almost all metaheuristic algorithms can be modified by hybridizing with other algo-

rithms or adding new components. FPA has undergone various modifications and

hybridization with other techniques to address the complexity nature of optimiza-

tion problems. As we have summarized above, the research community has investi-

gated many different ways to improve the convergence of FPA and to overcome its

potential weakness or drawbacks. Here we choose a few variants and analyze them

critically so as to gain a better understanding and insight into different variants and

try to understand why certain hybrid and additional components can improve the

performance.

The first issue is related to the exploration ability of FPA by Lévy flights which

can be too aggressive by generating large steps, which may lead to the case when

newly generated solutions can be potentially outside of the search domain and thus

reduce the true exploration ability. Some variants try to enhance the exploration

capability. For example, Wang et al. [61] related the exploration capability of FPA

to the pollination operator. Their modification of classical FPA used three steps:

use of dynamic switching probability, application of the real-coded GA (RCGA) as
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Fig. 5 FPA applications

mutation for global and local search, and the differentiation between the temporary

local search and optimal solution [14]. In addition, exploitation in the standard FPA

is mainly by selection and use of g∗ (the best solution found so far). Some variants

try to enhance this ability by using gradients or simplex method. Hybridization has

been carried out by improving its performance in exploration as FPA has a stronger

ability in exploitation [47, 50, 61]. Further research can try to understand why these

hybrid algorithms work both numerically and theoretically.

Another issue is about discretization of continuous FPA because theclassical

FPA cannot deal with the binary optimization problem directly. To handle this type

of problems, Rodrigues et al. [16] produced a new binary FPA version where the

local pollination operator has been modified. The search space is modeled as an n-

dimensional Boolean lattice, in which the solutions are updated across the corners

of a hypercube.

In addition, many optimization problems in real-world applications are multi-

objective. Thus, some variants have focused on the extension of FPA to solve

challenging multi-objective problems [68, 69]. This area requires further research

because multi-objective optimization can be very computationally extensive in higher

dimensions. Effective methods should be sorted to generate high quality Pareto fronts

for multiobjective optimization.

Like all metaheuristic algorithms, the parameter values of an algorithm may affect

the performance of that algorithm. Therefore, some variants of FPA attempted to

tune FPA parameters. For example, FPA parameters are tunable through a dynamic

switching probability, application of the mutation for global and local search, and
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identification of the difference between the temporary local search and optimal

solution [14, 74, 75]. In addition, the standard FPA has not been applied to solve

large-scale problem. Therefore, several researchers have attempted to use FPA with

modifications to solve a large spectrum of optimization problems [38, 74]. FPA has

a good robust ability in solving continuous optimization problems, and this ability

has been tested for discrete optimization problems [88].

Even with the above various modifications and variants, there are still more

research opportunities in this area. We will highlight some of research directions

in the next section.

6 Conclusions and Future Directions

This review has summarized the most recent FPA variants, based on the main opti-

mization framework of FPA initially proposed by Yang [10]. The variations of

FPA variants have been discussed based on four classifications, namely, modified

variants, hybridized variants, multi-objective variants, and adaptive parameter vari-

ants. Modified FPA variants have been further classified into three classes: modi-

fied FPAs based on operators, binary FPAs, and chaotic-based FPAs. Furthermore,

the hybridized FPA versions have also been categorized into local search-based

hybridization, population-based hybridization, and hybridization with other com-

ponents. Finally, a critical analysis of some FPA variants has been carried out show

to gain some insight.

Even the FPA performance has been enhanced in many places and in many ways,

future research can focus on the following areas:

∙ Theoretical Analysis: As FPA has successfully been applied into a wide variety

of optimization problem, there is one mathematical study on its global conver-

gence by He et al. [89] that has proved that FPA can have guaranteed global con-

vergence. However, this study does not provide any information about the rate of

convergence. Therefore, further studies can focus on the theoretical analysis of the

convergence rate, stability and robustness of FPA. Such methodology will also be

useful to analyze other metaheuristic algorithms.

∙ Adaptivity of Parameters: Almost all algorithms have algorithm-dependent para-

meters and such parameters can influence their performance. However, the tuning,

control and variations of such parameters can be difficult. Ideally, an algorithm

should tune its parameters automatically and adapt their values according to the

type of problem under consideration.

∙ Large-Scale Combinatorial Optimization: FPA has been applied to many prob-

lems including some combinatorial optimization problems with good results.

However, like almost all other metaheuristic algorithms, it has not been applied

to truly large-scale combinatorial problems with thousands of design variables.

Therefore, future research should focus on the application of FPA and other algo-

rithms to solve large-scale problems that are important in real-world applications.

∙ Population Structure: Currently, almost all population-based algorithms includ-

ing FPA and its variants use a simple structure of updating the population. All
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solutions in the population are either updated in series or in parallel. It would

be useful to investigate the possibility of updating them in a non-synchronized,

unstructured way. It will also be useful to see if they work for a mixed parallel-

series population with random mixing, even with island models such as cellular

automata type of structures.

In summary, this review has justified that FPA is a potentially powerful and useful

tool for solving different optimization problems in a diverse range of applications.

New modifications and improvements can enhance its performance even further. The

authors hope that this chapter can inspire interested researchers and practitioners to

carry out more research in this area and to solve more complex and challenging

problems in practice.

Acknowledgements The first author would like to thank the University Science Malaysia (USM)

and The World Academic Science (TWAS) for supporting his Ph.D. study which is under (USM-

TWAS Postgraduate Fellowship, FR number: 3240287134).

References

1. Holland, J.H.: Adaptation in Natural and Artificial Systems. An Introductory Analysis With

Application to Biology, Control, and Artificial Intelligence. University of Michigan Press,

Ann Arbor, MI (1975)

2. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical

report-tr06, Erciyes university, engineering faculty, computer engineering department (2005)

3. Kennedy, J.: Particle swarm optimization. Encyclopedia of Machine Learning, pp. 760–766.

Springer (2011)

4. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61

(2014)

5. Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-

Inspired Comput. 2(2), 78–84 (2010). Inderscience Publishers

6. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative

Strategies for Optimization (NICSO 2010), pp. 65–74. Springer (2010)

7. Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach

to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

8. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)

9. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications.

Wiley (2010)

10. Yang, X.-S.: Flower pollination algorithm for global optimization. In: International Confer-

ence on Unconventional Computing and Natural Computation, pp. 240–249. Springer (2012)

11. Abdelaziz, A., Ali, E., Elazim, S.A.: Combined economic and emission dispatch solution

using flower pollination algorithm. Int. J. Electr. Power Energy Syst. 80, 264–274 (2016)

12. Singh, U., Salgotra, R.: Synthesis of linear antenna array using flower pollination algorithm.

Neural Comput. Appl., 1–11 (2016)

13. Abdelaziz, A., Ali, E., Elazim, S.A.: Implementation of flower pollination algorithm for solv-

ing economic load dispatch and combined economic emission dispatch problems in power

systems. Energy 101, 506–518 (2016)

14. Putra, P.H., Saputra, T.A., et al.: Modified flower pollination algorithm for nonsmooth and

multiple fuel options economic dispatch. In: 2016 8th International Conference on Informa-

tion Technology and Electrical Engineering (ICITEE), pp. 1–5. IEEE (2016)



114 Z.A.A. Alyasseri et al.

15. Rajalashmi, K., Prabha, S.: A hybrid algorithm for multiobjective optimal power flow prob-

lem using particle swarm algorithm and enhanced flower pollination algorithm. Asian J. Res.

Social Sci. Humanit. 7(1), 923–940 (2017)

16. Rodrigues, D., Silva, G.F., Papa, J.P., Marana, A.N., Yang, X.-S.: Eeg-based person identifi-

cation through binary flower pollination algorithm. Expert Syst. Appl. 62, 81–90 (2016)

17. Emary, E., Zawbaa, H.M., Hassanien, A.E., Parv, B.: Multi-objective retinal vessel localiza-

tion using flower pollination search algorithm with pattern search. Adv. Data Anal. Class.,

1–17 (2016)

18. Ouadfel, S., Taleb-Ahmed, A.: Social spiders optimization and flower pollination algorithm

for multilevel image thresholding: a performance study. Expert Syst. Appl. 55, 566–584

(2016)

19. Sharawi, M., Emary, E., Saroit, I.A., El-Mahdy, H.: Flower pollination optimization algorithm

for wireless sensor network lifetime global optimization. Int. J. Soft Comput. Eng. 4(3), 54–59

(2014)

20. Shankar, T., James, T., Mageshvaran, R., Rajesh, A.: Lifetime improvement in wsn using

flower pollination meta heuristic algorithm based localization approach. Indian J. Sci. Tech-

nol. 9(37)

21. Hajjej, F., Ejbali, R., Zaied, M.: An efficient deployment approach for improved coverage in

wireless sensor networks based on flower pollination algorithm, pp. 117–129 (2016). doi:10.

5121/csit.2016.61511

22. Chiroma, H., Khan, A., Abubakar, A.I., Saadi, Y., Hamza, M.F., Shuib, L., Gital, A.Y., Her-

awan, T.: A new approach for forecasting opec petroleum consumption based on neural net-

work train by using flower pollination algorithm. Appl. Soft Comput. 48, 50–58 (2016)

23. Agarwal, P., Mehta, S.: Enhanced flower pollination algorithm on data clustering. Int. J. Com-

put. Appl. 38(2–3), 144–155 (2016)

24. Nabil, E.: A modified flower pollination algorithm for global optimization. Expert Syst. Appl.

57, 192–203 (2016)

25. Abdel-Raouf, O., El-Henawy, I., Abdel-Baset, M.: A novel hybrid flower pollination algo-

rithm with chaotic harmony search for solving sudoku puzzles. Int. J. Mod. Educ. Comput.

Sci. 6(3), 38 (2014)

26. Nigdeli, S.M., Bekdaş, G., Yang, X.-S.: Application of the flower pollination algorithm in

structural engineering. In: Metaheuristics and Optimization in Civil Engineering, pp. 25–42.

Springer (2016)

27. Zhou, Y., Wang, R., Luo, Q.: Elite opposition-based flower pollination algorithm. Neurocom-

puting 188, 294–310 (2016)

28. Meng, O.K., Pauline, O., Kiong, S.C., Wahab, H.A., Jafferi, N.: Application of modified

flower pollination algorithm on mechanical engineering design problem. In: IOP Conference

Series: Materials Science and Engineering, vol. 165, p. 012032. IOP Publishing (2017)

29. Pant, S., Kumar, A., Ram, M.: Flower pollination algorithm development: a state of art review.

Int. J. Syst. Assur. Eng. Manag., 1–9 (2017)

30. Pop, C.B., Chifu, V.R., Salomie, I., Racz, D.S., Bonta, R.M.: Hybridization of the flower

pollination algorithma ase study in the problem of generating healthy nutritional meals for

older adults. In: Nature-Inspired Computing and Optimization, pp. 151–183. Springer (2017)

31. Bell, A.: Plant Form: An Illustrated Guide to Flowering Plant Morphology. Oxford University

Press, Oxford (1991)

32. Cronquist, A.: An Integrated System of Calssificaiton of Flowering Plants. Columbia Univer-

sity Press, New York (1981)

33. Glover, B.J.: Understanding Flowers and Flowering: An Integrated Approach. Oxford Uni-

versity Press (2007)

34. Kalra, S., Arora, S.: Firefly algorithm hybridized with flower pollination algorithm for multi-

modal functions. In: Proceedings of the International Congress on Information and Commu-

nication Technology, pp. 207–219. Springer (2016)

35. Yamany, W., Zawbaa, H.M., Emary, E., Hassanien, A.E.: Attribute reduction approach based

on modified flower pollination algorithm. In: 2015 IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE), pp. 1–7. IEEE (2015)

http://dx.doi.org/10.5121/csit.2016.61511
http://dx.doi.org/10.5121/csit.2016.61511


Variants of the Flower Pollination Algorithm: A Review 115

36. Regalado, J.A., Emilio, B.E., Cuevas, E.: Optimal power flow solution using modified flower

pollination algorithm. In: 2015 IEEE International Autumn Meeting on Power, Electronics

and Computing (ROPEC), pp. 1–6. IEEE (2015)

37. Namachivayam, G., Sankaralingam, C., Perumal, S.K., Devanathan, S.T.: Reconfiguration

and capacitor placement of radial distribution systems by modified flower pollination algo-

rithm. Electr. Power Compon. Syst. 44(13), 1492–1502 (2016)

38. Dubey, H.M., Pandit, M., Panigrahi, B.K.: A biologically inspired modified flower pollination

algorithm for solving economic dispatch problems in modern power systems. Cogn. Comput.

7(5), 594–608 (2015)

39. Rodrigues, D., Yang, X.-S., De Souza, A.N., Papa, J.P.: Binary flower pollination algorithm

and its application to feature selection. In: Recent Advances in Swarm Intelligence and Evo-

lutionary Computation, pp. 85–100. Springer (2015)

40. Shilaja, C., Ravi, K.: Optimization of emission/economic dispatch using euclidean affine

flower pollination algorithm (efpa) and binary fpa (bfpa) in solar photo voltaic generation.

Renew. Energy 107, 550–566 (2017)

41. Dahi, Z.A.E.M., Mezioud, C., Draa, A.: On the efficiency of the binary flower pollination

algorithm: application on the antenna positioning problem. Appl. Soft Comput. 47, 395–414

(2016)

42. Metwalli, M.A.-B., Hezam, I., Yardım, D., Ozkan, I.A., Saritas, I., Aslam, D.M.: A modified

flower pollination algorithm for fractional programming problems. Int. J. Intell. Syst. Appl.

Eng. 3(3) (2015)

43. Zhang, W., Qu, Z., Zhang, K., Mao, W., Ma, Y., Fan, X.: A combined model based on ceem-

dan and modified flower pollination algorithm for wind speed forecasting. Energy Convers.

Manag. 136, 439–451 (2017)

44. Abdel-Baset, M., Hezam, I.: A hybrid flower pollination algorithm for engineering optimiza-

tion problems. Int. J. Comput. Appl. 140(12) (2016)

45. Jensi, R., Jiji, G.W.: Hybrid data clustering approach using k-means and flower pollination

algorithm (2015). arXiv:1505.03236

46. Sayed, S.A.-F., Nabil, E., Badr, A.: A binary clonal flower pollination algorithm for feature

selection. Pattern Recogn. Lett. 77, 21–27 (2016)

47. Abdel-Raouf, O., Abdel-Baset, M., et al.: A new hybrid flower pollination algorithm for solv-

ing constrained global optimization problems. Int. J. Appl. Oper. Res.-An Open Access J.

4(2), 1–13 (2014)

48. Nigdeli, S.M., Bekdaş, G., Yang, X.-S.: Optimum tuning of mass dampers by using a hybrid

method using harmony search and flower pollination algorithm. In: International Conference

on Harmony Search Algorithm, pp. 222–231. Springer (2017)

49. Lenin, K., Ravindhranath, R., Surya, K.: Shrinkage of active power loss by hybridization of

flower pollination algorithm with chaotic harmony search algorithm. Control Theory Inf. 4,

31–38 (2014)

50. Ram, J.P., Babu, T.S., Dragicevic, T., Rajasekar, N.: A new hybrid bee pollinator flower pol-

lination algorithm for solar pv parameter estimation. Energy Convers. Manag. 135, 463–476

(2017)

51. Abdel-Baset, M., Hezam, I.M.: An effective hybrid flower pollination and genetic algorithm

for constrained optimization problems. Adv. Eng. Technol. Appl. Int. J. 4, 27–27 (2015)

52. Chakraborty, D., Saha, S., Dutta, O.: De-fpa: A hybrid differential evolution-flower pollina-

tion algorithm for function minimization. In: 2014 International Conference on High Perfor-

mance Computing and Applications (ICHPCA), pp. 1–6. IEEE (2014)

53. Ramadas, M., Pant, M., Abraham, A., Kumar, S.: ssfpa/de: an efficient hybrid differential

evolution–flower pollination algorithm based approach. Int. J. Syst. Assur. Eng. Manag., 1–

14 (2016)

54. Dubey, H.M., Pandit, M., Panigrahi, B.: Hybrid flower pollination algorithm with time-

varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic

dispatch. Renew. Energy 83, 188–202 (2015)

http://arxiv.org/abs/1505.03236


116 Z.A.A. Alyasseri et al.

55. Kanagasabai, L., RavindhranathReddy, B.: Reduction of real power loss by using fusion of

flower pollination algorithm with particle swarm optimization. J. Inst. Ind. Appl. Eng. 2(3),

97–103 (2014)

56. Mahata, S., Saha, S.K., Kar, R., Mandal, D.: Optimal design of wideband digital integrators

and differentiators using hybrid flower pollination algorithm. Soft Comput., 1–27 (2017)

57. Chakraborty, D., Saha, S., Maity, S.: Training feedforward neural networks using hybrid

flower pollination-gravitational search algorithm. In: 2015 International Conference on Futur-

istic Trends on Computational Analysis and Knowledge Management (ABLAZE), pp. 261–

266. IEEE (2015)

58. Kusuma, I., Ma’sum, M.A., Sanabila, H., Wisesa, H., Jatmiko, W., Arymurthy, A., Wiweko,

B.: Fetal head segmentation based on gaussian elliptical path optimize by flower pollination

algorithm and cuckoo search. In: 2016 International Conference on Advanced Computer Sci-

ence and Information Systems (ICACSIS), pp. 564–571. IEEE (2016)

59. Zawbaa, H.M., Hassanien, A.E., Emary, E., Yamany, W., Parv, B.: Hybrid flower pollina-

tion algorithm with rough sets for feature selection. In: 2015 11th International Computer

Engineering Conference (ICENCO), pp. 278–283. IEEE (2015)

60. Valenzuela, L., Valdez, F., Melin, P.: Flower pollination algorithm with fuzzy approach for

solving optimization problems. In: Nature-Inspired Design of Hybrid Intelligent Systems, pp.

357–369. Springer (2017)

61. Wang, R., Zhou, Y., Qiao, S., Huang, K.: Flower pollination algorithm with bee pollinator for

cluster analysis. Inf. Process. Lett. 116(1), 1–14 (2016)

62. Majidpour, H., Soleimanian Gharehchopogh, F.: An improved flower pollination algorithm

with adaboost algorithm for feature selection in text documents classification. J. Adv. Comput.

Res

63. Jain, P., Bansal, S., Singh, A.K., Gupta, N.: Golomb ruler sequences optimization for fwm

crosstalk reduction: multi-population hybrid flower pollination algorithm. In: Progress in

Electromagnetics Research Symposium (PIERS), Prague, Czech Republic, pp. 2463–2467

(2015)

64. Xu, S., Wang, Y.: Parameter estimation of photovoltaic modules using a hybrid flower polli-

nation algorithm. Energy Convers. Manag. 144, 53–68 (2017)

65. Xu, S., Wang, Y., Liu, X.: Parameter estimation for chaotic systems via a hybrid flower pol-

lination algorithm. Neural Comput. Appl. 1–17 (2017)

66. Bensouyad, M., Saidouni, D.E.: A hybrid discrete flower pollination algorithm for graph col-

oring problem. In: Proceedings of the The International Conference on Engineering & MIS

2015, p. 22. ACM (2015)

67. Wang, R., Zhou, Y., Zhao, C., Wu, H.: A hybrid flower pollination algorithm based modified

randomized location for multi-threshold medical image segmentation. Bio-Med. Mater. Eng.

26(s1), S1345–S1351 (2015)

68. Yang, X.-S., Karamanoglu, M., He, X.: Multi-objective flower algorithm for optimization.

Proc. Comput. Sci. 18, 861–868 (2013)

69. Yang, X.-S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for

multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

70. Tamilselvan, V., Jayabarathi, T.: Multi objective flower pollination algorithm for solving

capacitor placement in radial distribution system using data structure load flow analysis. Arch.

Electr. Eng. 65(2), 203–220 (2016)

71. Gonidakis, D.: Application of flower pollination algorithm to multi-objective environmen-

tal/economic dispatch. Int. J. Manag. Sci. Eng. Manag. 11(4), 213–221 (2016)

72. Shilaja, C., Ravi, K.: Multi-objective optimal power flow problem using enhanced flower

pollination algorithm. Gazi Univ. J. Sci. 30(1), 79–91 (2017)

73. Rajaram, R., Kumar, K.S.: Multiobjective power loss reduction using flower pollination algo-

rithm. 8(5), 2239–2245 (2015)

74. Salgotra, R., Singh, U.: Application of mutation operators to flower pollination algorithm.

Expert Syst. Appl. 79, 112–129 (2017)



Variants of the Flower Pollination Algorithm: A Review 117

75. Xu, S., Wang, Y., Huang, F.: Optimization of multi-pass turning parameters through an

improved flower pollination algorithm. Int. J. Adv. Manuf. Technol., 1–12 (2016)

76. Prathiba, R., Moses, M.B., Sakthivel, S.: Flower pollination algorithm applied for different

economic load dispatch problems. Int. J. Eng. Technol. (IJET) 6(2), 1009–16 (2014)

77. Acherjee, B., Maity, D., Kuar, A.S.: Parameters optimisation of transmission laser welding

of dissimilar plastics using rsm and flower pollination algorithm integrated approach. Int. J.

Math. Modell. Num. Optim. 8(1), 1–22 (2017)

78. Lakshmi, D., Fathima, A.P., Muthu, R., et al.: A novel flower pollination algorithm to solve

load frequency control for a hydro-thermal deregulated power system. Circuits Syst. 7(04),

166 (2016)

79. Jagatheesan, K., Anand, B., Samanta, S., Dey, N., Santhi, V., Ashour, A.S., Balas, V.E.: Appli-

cation of flower pollination algorithm in load frequency control of multi-area interconnected

power system with nonlinearity. Neural Comput. Appl., 1–14 (2016)

80. Alam, D., Yousri, D., Eteiba, M.: Flower pollination algorithm based solar pv parameter esti-

mation. Energy Convers. Manag. 101, 410–422 (2015)

81. Dash, P., Saikia, L.C., Sinha, N.: Flower pollination algorithm optimized pi-pd cascade con-

troller in automatic generation control of a multi-area power system. Int. J. Electr. Power

Energy Syst. 82, 19–28 (2016)

82. Rana, D., Arora, M.: Energy efficient cluster-based routing protocol in wireless sensor net-

work using flower pollination algorithm. Int. J. Control Theory Appl. 10(10), 119–133 (2017)

83. Zhou, Y., Wang, R.: An improved flower pollination algorithm for optimal unmanned under-

sea vehicle path planning problem. Int. J. Pattern Recognit. Artif. Intell. 30(04), 1659010

(2016)

84. Saxena, P., Kothari, A.: Linear antenna array optimization using flower pollination algorithm.

SpringerPlus 5(1), 306 (2016)

85. Łukasik, S., Kowalski, P.A., Charytanowicz, M., Kulczycki, P.: Clustering using flower polli-

nation algorithm and calinski-harabasz index. In: 2016 IEEE Congress on Evolutionary Com-

putation (CEC), pp. 2724–2728. IEEE (2016)

86. Mishra, A., Deb, S.: Assembly sequence optimization using a flower pollination algorithm-

based approach. J. Intell. Manuf., 1–22 (2016)

87. Platt, G.: Application of the flower pollination algorithm in nonlinear algebraic systems with

multiple solutions. Eng. Optim. 2014, 117 (2014)

88. Wang, R., Zhou, Y., Zhou, Y., Bao, Z.: Local greedy flower pollination algorithm for solving

planar graph coloring problem. J. Comput. Theor. Nanosci. 12(11), 4087–4096 (2015)

89. He, X.S., Yang, X.S., Karamanoglu, M., Zhao, Y.X.: Global convegence analysis of the flower

pollination algorithm: a discrete-time Markov chain approach. Proc. Comput. Sci. 108, 1354–

1363 (2017)

90. Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Comput. Phys.

226, 1830–1844 (2007)

91. Sakib, N., Kabir, M.W.U., Subbir, M., Alam, S.: A comparative study of flower pollination

algorithm and bat algorithm on continuous optimization problems. Int. J. Appl. Inf. Syst. 7(9),

13–19 (2014)

92. Pan, J.-S., Dao, T.-K., Pan, T.-S., Chu, S.-C., Roddick, J.F.: An improvement of flower pol-

lination algorithm for node localization optimization in wsn. J. Inf. Hiding Multimed. Signal

Process. 8(2), 486–499 (2017)

93. Pasaribu, U.S., al Mashumah, F., Permana, D.: Estimation of the transition matrix in Markov

chain model of customer lifetime value using flower pollination algorithm. Appl. Math. Sci.

9(69), 3409–3418 (2015)

94. Draa, A.: On the performances of the flower pollination algorithm-qualitative and quantitative

analyses. Appl. Soft Comput. 34, 349–371 (2015)

95. Shilaja, C., Ravi, K.: Optimal line flow in conventional power system using euclidean affine

flower pollination algorithm. Int. J. Renew. Energy Res. C. 6(1)

96. Sakthivel, S., Manopriya, P., Venus, S., Ranjitha, S., Subhashini, R.: Optimal reactive power

dispatch problem solved by using flower pollination algorithm. Int. J. Appl. Eng. Res. 11(6),

4387–4391 (2016)



118 Z.A.A. Alyasseri et al.

97. Abdelaziz, A., Ali, E., Elazim, S.A.: Optimal sizing and locations of capacitors in radial dis-

tribution systems via flower pollination optimization algorithm and power loss index. Eng.

Sci. Technol. Int. J. 19(1), 610–618 (2016)

98. Nigdei, S.M., Bekdaş, G., Yang, X.: Optimum tuning of mass dampers for seismic structures

using flower pollination algorithm. Int. J. Theor. Appl. Mech

99. Kerta, S., Hamid, Z., Musirin, I.: Real power generation tracing for deregulated power system

using the flower pollination algorithm technique. J. Theor. Appl. Inf. Technol. 81(3), 564

(2015)

100. Emary, E., Zawbaa, H.M., Hassanien, A.E., Tolba, M.F., Snášel, V.: Retinal vessel segmen-

tation based on flower pollination search algorithm. In: Proceedings of the Fifth International

Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014, pp.

93–100. Springer (2014)

101. Sesli, E., Hacıoğlu, G.: RSSI and flower pollination algorithm based location estimation for

wireless sensor networks. Int. J. Intell. Syst. Appl. Eng., 13–17 (2016)

102. Mahdad, B., Srairi, K.: Security constrained optimal power flow solution using new adaptive

partitioning flower pollination algorithm. Appl. Soft Comput. 46, 501–522 (2016)

103. Bekdaş, G., Nigdei, S.M., Yang, X.: Size optimization of truss structures employing flower

pollination algorithm without grouping structural members. Int. J. Theor. Appl. Mech. 1,

269–273 (2016)

104. Bekdaş, G., Nigdeli, S.M., Yang, X.-S.: Sizing optimization of truss structures using flower

pollination algorithm. Appl. Soft Comput. 37, 322–331 (2015)

105. Velamuri, S., Sreejith, S., Ponnambalam, P.: Static economic dispatch incorporating wind

farm using flower pollination algorithm. Perspect. Sci. 8, 260–262 (2016)

106. Abdelaziz, A.Y., Ali, E.S.: Static var compensator damping controller design based on flower

pollination algorithm for a multi-machine power system. Electr. Power Compon. Syst. 43(11),

1268–1277 (2015)

107. Łukasik, S., Kowalski, P.A.: Study of flower pollination algorithm for continuous optimiza-

tion. In: Intelligent Systems’ 2014, pp. 451–459. Springer (2015)

108. Vedula, V., Paladuga, S., Prithvi, M.R.: Synthesis of circular array antenna for sidelobe level

and aperture size control using flower pollination algorithm. Int. J. Antennas Propag. (2015)

109. Preethi, C., Vanathi, P.: Attribute selection using binary flower pollination algorithm with

greedy crossover and one to allinitialisation. Electron. Lett. 52(21), 1757–1759 (2016)

110. Salgotra, R., Singh, U.: A novel bat flower pollination algorithm for synthesis of linear antenna

arrays. Neural Comput. Appl., 1–14 (2016)

111. Binh, H.T.T., Hanh, N.T., Dey, N., et al.: Improved cuckoo search and chaotic flower pol-

lination optimization algorithm for maximizing area coverage in wireless sensor networks.

Neural Comput. Appl., 1–13 (2016)

112. Ramadas, M., Abraham, A., Kumar, S.: Using data clustering on ssfpa/de-a search strat-

egy flower pollination algorithm with differential evolution. In: International Conference on

Hybrid Intelligent Systems, pp. 539–550. Springer (2016)

113. Zhou, Y., Zhang, S., Luo, Q., Wen, C.: Using flower pollination algorithm and atomic poten-

tial function for shape matching. Neural Comput. Appl., 1–20 (2016)

114. Nasser, A.B., Alsewari, A.A., Muazu, A.A., Kamal, Z., et al.: Comparative performance

analysis of flower pollination algorithm and harmony search based strategies: a case study

of applying interaction testing in the real world. Int. J. Eng. Lang. Educ., 1–5 (2016)

115. Hegazy, O., Soliman, O.S., Salam, M.A.: Comparative study between fpa, ba, mcs, abc, and

pso algorithms in training and optimizing of ls-svm for stock market prediction. Int. J. Adv.

Comput. Res. 5(18), 35 (2015)

116. Rathasamuth, W., Nootyaskool, S.: Comparison solving discrete space on flower pollination

algorithm, pso and ga. In: 2016 8th International Conference on Knowledge and Smart Tech-

nology (KST), pp. 18–21. IEEE (2016)

117. Sharma, S., Rana, A.: Power system loss minimization using flower pollination algorithm

(fpa)-a comparative study. Int. J. Adv. Res. Ideas Innov. Technol., 374–378 (2017)



On the Hypercomplex-Based Search Spaces
for Optimization Purposes

João Paulo Papa, Gustavo Henrique de Rosa and Xin-She Yang

Abstract Most applications can be modeled using real-valued algebra. Neverthe-

less, certain problems may be better addressed using different mathematical tools.

In this context, complex numbers can be viewed as an alternative to standard algebra,

where imaginary numbers allow a broader collection of tools to deal with different

types of problems. In addition, hypercomplex numbers extend naïve complex alge-

bra by means of additional imaginary numbers, such as quaternions and octonions.

In this work, we will review the literature concerning hypercomplex spaces with

an emphasis on the main concepts and fundamentals that build the quaternion and

octonion algebra, and why they are interesting approaches that can overcome some

potential drawbacks of certain optimization techniques. We show that quaternion-

and octonion-based algebra can be used to different optimization problems, allow-

ing smoother fitness landscapes and providing better results than those represented

in standard search spaces.

Keywords Meta-heuristic ⋅Hypercomplex numbers ⋅Optimization ⋅Quaternions ⋅
Octonions

1 Introduction

Optimization problems are relevant in many situations and applications, that range

from engineering [13, 24] to medicine [20], among others. Very often, one must

deal with different challenges when working on optimization problems, including
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the selection of designing variables, establishing their proper bounds, setting up

hyper-parameters [15, 16, 18, 21], and obviously obtaining the appropriate solutions

without be potentially trapped at local optima. The potential trap of local optima can

be of great concern if the optimal solutions are needed, which somehow fosters the

research on different approaches to handle the problem of optimizing complex fit-

ness functions. For example, hybrid variants [8], aging mechanisms [1], and fitness

landscape analysis [19] are among the different approaches that are often used to

deal with the issues related to local optima.

Another direction is an approach that attempts to embed the search space into dif-

ferent representations of those that are normally used. Fister et al. [4], for instance,

presented a Firefly Algorithm embedded in a quaternion-based space [2]. The idea

is to map each possible solution encoded as an n-dimensional firefly as an n × 4 ten-

sor, where each decision variable is now encoded as a hypercomplex number, which

contains four parts, being one real-valued and the remaining three parts concern-

ing imaginary numbers. Later on, Fister et al. [3] proposed a quaternion-based Bat

Algorithm, and Papa et al. [14] introduced the well-known Harmony Search in the

context of Deep Belief Network fine-tuning using quaternion representations.

Normalized quaternions, also known as versors, are widely used to represent the

orientation of objects in three-dimensional spaces, and thus can be efficient to per-

form rotations in such spaces. The idea behind using quaternionic search spaces con-

cerns the possibility of having smoother fitness landscapes, although it has not been

mathematically demonstrated. However, the results obtained previously support that

assumption [3, 4, 14]. Another interesting extension of quaternions is referred to as

octonions, which are composed of eight dimensions, twice the number of a quater-

nion dimension [6]. Although they are not well known in the literature, they have

interesting properties that make them suitable to be used in special relativity and

quantum logic, among other research fields.

In this chapter, we present some insights and recent results concerning optimiza-

tion on hypercomplex spaces. In addition, we also consider a toy example to help

enthusiasts implementing their own technique on top of LibOPT [17], an open-

source library for the implementation of meta-heuristic-based optimization tech-

niques.
1

The experiments also comprise quaternion- and octonion-based implemen-

tations of some well-known techniques in the literature, such as Firefly Algorithm

(FA) [25], Artificial Bee Colony (ABC) [10], Bat Algorithm (BA) [27] and Particle

Swarm Optimization (PSO) [11].

In light of the experiments, the reader can observe that hypercomplex represen-

tations are useful to achieve reasonable results in higher-dimensional problems, as

well as such spaces can allow a faster convergence in a number of situations, which

are addressed here by means of benchmarking functions. We hope the reader can

benefit from such initial study concerning hypercomplex search spaces and their

applications to the context of meta-heuristic techniques.

1
https://github.com/jppbsi/LibOPT.

https://github.com/jppbsi/LibOPT
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2 Hypercomplex Representations

2.1 Complex Numbers

Mathematicians often have to face some challenging problems that seem to be

unsolvable. For example, a seemingly simple problem as follows:

x2 + 1 = 0, (1)

does not have any real solution. The solution x2 = −1 does not appear as reasonable,

since the square of any number must be positive, x ∈ ℜ.

In order to deal with the aforementioned problem, the term imaginary number
was coined. Such a number is usually represented as follows:

i2 = −1, (2)

which does not have any physical meaning in practice. The imaginary numbers com-

pose the so-called complex numbers, which have a real and an imaginary term, as

follows:

c = a + bi, (3)

where a, b ∈ ℜ and i2 = −1. Roughly speaking, one can observe we can obtain a

real number by just setting b = 0, or even to obtain an imaginary number by setting

a = 0. Therefore, the complex numbers generalize both real and imaginary numbers.

Complex numbers have interesting properties when performing rotations in two-

dimensional spaces. In order to clarify that, we can map the complex numbers onto

a two-dimensional plane called complex plane, where the real part (Re) is mapped

on the horizontal axis, and the imaginary part (Im) is mapped on the vertical axis,

as displayed in Fig. 1.

Fig. 1 Complex plane used

to map complex numbers

onto a two-dimensional

representation
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The interesting point in using complex numbers concerns the fact we can rotate

them through the complex plane by 90◦ by using simple multiplication by i. In order

to show that, let us consider an arbitrary point p = 1 + i in the complex plane. Let r
be the result of the multiplication of p by i, as follows:

r = pi = (1 + i)i = i + i2 = −1 + i. (4)

Now, let us multiply r by the very same quantity i, thus obtaining s:

s = ri = (−1 + i)i = −i + i2 = −1 − i. (5)

Repeating the very same computation once more, we can obtain t as follows:

t = si = (−1 − i)i = −i − i2 = 1 − i. (6)

Finally, by multiplying t by i, we can obtain:

u = ti = (+1 − i)i = i − i2 = 1 + i, (7)

which is the very same position we started, i.e., p = u. Figure 2 depicts the above

calculations.

2.2 Hypercomplex Numbers

Roughly speaking, hypercomplex numbers extend complex numbers by adding more

imaginary terms, which allow them to perform rotations in higher-dimensional com-

plex spaces. In this chapter, we consider two well-known hypercomplex representa-

tions: quaternions and octonions.

Fig. 2 Rotating complex

numbers through the

complex plane
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2.2.1 Quaternions

A quaternion q is composed of real and complex numbers, i.e., q = x0 + x1i + x2j +
x3k, where x0, x1, x2, x3 ∈ ℜ and i, j, k are imaginary numbers (also known as “fun-

damental quaternions units”) obeying the next set of equations:

ij = k, (8)

jk = i, (9)

ki = j, (10)

ji = −k, (11)

kj = −i, (12)

ik = −j, (13)

and

i2 = j2 = k2 = −1. (14)

Roughly speaking, a quaternion q is represented in a 4-dimensional space over the

real numbers, i.e., ℜ4
.

Given two quaternions q1 = x0 + x1i + x2j + x3k and q2 = y0 + y1i + y2j + y3k,

the quaternion algebra defines a set of main operations [2]. The addition, for instance,

can be defined by:

q1 + q2 = (x0 + x1i + x2j + x3k) + (y0 + y1i + y2j + y3k) (15)

= (x0 + y0) + (x1 + y1)i + (x2 + y2)j + (x3 + y3)k,

while the subtraction is defined as follows:

q1 − q2 = (x0 + x1i + x2j + x3k) − (y0 + y1i + y2j + y3k)
= (x0 − y0) + (x1 − y1)i + (x2 − y2)j + (x3 − y3)k. (16)

Another important operation is the norm, which maps a given quaternion to a

real-valued number, as follows:

N(q1) = N(x0 + x1i + x2j + x3k)

=
√

x20 + x21 + x22 + x23. (17)
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Finally, Fister et al. [3, 4] introduced two other operations, qrand and qzero. The

former initializes a given quaternion with values drawn from a Gaussian distribution,

and it can be defined as follows:

qrand() = {xi = N (0, 1)|i ∈ {0, 1, 2, 3}}. (18)

The latter function initialized a quaternion with zero values, as follows:

qzero() = {xi = 0|i ∈ {0, 1, 2, 3}}. (19)

2.2.2 Octonions

Roughly speaking, octonions can be modeled as a natural extension of quaternions,

and they were discovered independently by John T. Graves and Arthur Cayley around

by 1843. An octonion has seven complex parts, and one real-valued term, being

defined as follows:

o = x0e0 + x1e1 + x2e2 +⋯ + x7e7, (20)

where xi ∈ ℜ and ei concerns the imaginary number, i = 0,… , 7. Usually, e0 = 1 in

order to obtain the real-valued term of the octonion.

The addition, subtraction and norm operations are computed similarly to the

quaternions’ formulae, which can lead to an easy implementation framework for

handling different hypercomplex representations.

3 LibOPT—A Library for Optimization Purposes

In this section, we first present LibOPT [17] for further working on a toy example

using hypercomplex-based optimization.

3.1 Hypercomplex Tools

LibOPT is an open-source optimization library available at GitHub, where a home-

page presents all techniques
2

and benchmarking functions currently available. To

date, LibOPT implements the following approaches concerning quaternion- and

octonion-based representations:

2
https://github.com/jppbsi/LibOPT/wiki.

https://github.com/jppbsi/LibOPT/wiki
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∙ Particle Swarm Optimization [11];

∙ Particle Swarm Optimization with Adaptive Inertia Weight [12];

∙ Bat Algorithm [27];

∙ Flower Pollination Algorithm [23];

∙ Firefly Algorithm [25];

∙ Cuckoo Search [26];

∙ Black Hole Algorithm [7];

∙ Artificial Bee Colony [10];

∙ Harmony Search [14];

∙ Improved Harmony Search [14]; and

∙ Parameter-setting-free Harmony Search [5].

Additionally, LibOPT implements 112 benchmarking functions
3

[9], which are not

displayed here for the sake of space.

3.2 Installation

The library was implemented and tested to work under Unix- and MacOS-based

operational systems, and can be quickly installed by executing the make command

right after decompressing the compressed file. On MacOS, if there is any problem,

a possible solution is to use the GNU/gcc compiler.
4

3.3 Data Structures

Despite other directories, LibOPT is composed of two main folders, such asLibOPT
∖include and LibOPT∖src, where the first one is in charge of the header files,

and the latter is responsible for the source files and main implementations.

The library was created based on a fast prototyping ideal, where a main structure,

called Agent, controls all the common information shared among the implemented

techniques, as implemented below:

typedef struct Agent_{
/* common definitions */
int n; /* number of decision variables */
double *x; /* position */
double fit; /* fitness value */
double **t; /* tensor */

}Agent;

3
https://github.com/jppbsi/LibOPT/wiki/Benchmarking-functions.

4
https://github.com/jppbsi/LibOPT/wiki/Installation.

https://github.com/jppbsi/LibOPT/wiki/Benchmarking-functions
https://github.com/jppbsi/LibOPT/wiki/Installation
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As stated in the above code-snippet, n is the number of decision variables to be

optimized, and x stands for an array that encodes the current position of the agent

when working under standard search spaces. Further, variable fit stores the fit-

ness value, and t stands for a matrix-like structure that is used to implement the

hypercomplex-based versions of the naïve techniques, and it works similarly to x,

but in another search space representation.

Nonetheless, there is another main structure which depicts the whole search space,

including additional information about the optimization problem not described in the

Agent structure:

typedef struct SearchSpace_{
/* common definitions */
int m; /* number of agents (solutions) */
int n; /* number of decision variables */
int iterations; /* number of iterations */
Agent **a; /* array of pointers to agents */
double *LB; /* lower boundaries */
double *UB; /* upper boundaries */
double *g; /* global best agent */
double **t_g; /* global best tensor */
int best; /* index of the best agent */
double gfit; /* global best fitness */
int is_integer_opt; /* integer-valued problem? */

}SearchSpace;

Notice the library contains a quite detailed explanation about every attribute infor-

mation in order to avoid possible misunderstandings, thus leading the user to the

maximum advantages of LibOPT. Figure 3 depicts an outline of how a hypercom-

plex search space structure works under LibOPT definitions. In this example, there is

only one decision variable to be optimized, which is represented by a tensor t ∈ ℜk
,

where k ∈ {4, 8}. One can observe a SearchSpace structure and three agents allo-

cated, which encode each decision variable as a quaternion (k = 4) or an octonion

(k = 8).

3.4 Model Files

As aforementioned, albeit most techniques have something in common (e.g., number

of decision variables, current position, and maybe velocity), they may also differ in

the number of parameters. Such occasion led us to design a model file-based imple-

mentation, which means all parameter setting up required for a given optimization

technique must be provided in a single text file, hereinafter called “model file”.
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Fig. 3 Hypercomplex search space structure on top of LibOPT

For the sake of explanation, let us consider the model file of the Firefly Algo-

rithm.
5

Roughly speaking, the user must input all information required by that tech-

nique, as follows:

10 2 100 #<n_particles> <dimension> <max_iterations>
0.2 1 1 #<alpha> <beta_0> <gamma>
-10 10 #<LB> <UB> x[0]
-10 10 #<LB> <UB> x[1]

The first line contains three integers: number of agents (particles), number of deci-

sion variables (dimension) and number of iterations. Notice everything right after the

caracter # is considering a comment, thus not taking into account by the parser. The

next line configures FA parameters 𝛼, 𝛽0 and 𝛾 . The last two lines aim at setting up the

range of each decision variable. Since we have two dimensions in this example, each

line stands for one variable, say x[0] and later x[1]. In the above example, we have a

problem with 10 particles, 2 decision variables and 100 iterations for convergence.

Also, we used 𝛼 = 0.2, 𝛽0 = 1, 𝛾 = 1 and x[i] ∈ [−10, 10], i ∈ {0, 1}.

5
Detailed information concerning the model files of the techniques implemented in LibOPT can be

found at https://github.com/jppbsi/LibOPT/wiki/Model-files.

https://github.com/jppbsi/LibOPT/wiki/Model-files
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4 Using LibOPT

In this section, we present a toy example concerning using LibOPT to optimize your

own function on a hypercomplex-based search space.

4.1 Function Optimization

LibOPT works with the concept of “function minimization”, meaning that you need

to take that into account when trying to “maximize” some function. Suppose we want

to minimize the following 2D function:

f (x, y) = x4 + y2 + 10, (21)

where x, y ∈ [−10, 10] and x, y ∈ ℜ. Note that for simplicity reasons, we will be

using x as x0 and y as x1. Figure 4 illustrates the shape of the above function, in

which one can observe a global minimum as of f (x, y) = 10.

Since all functions are implemented in bothLibOPT/include/function.h
(header) and LibOPT/src/function.c files, one must add the function’s sig-

nature in the first file, and the function’s implementation in the second one. In

LibOPT/include/function.h, the following line of code must be added:

double MyFunction(Agent *a, va_list arg);. With respect to the

file LibOPT/src/function.c, one should implement the function as follows:
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Fig. 4 Plot representing f (x, y) = x4 + y2 + 10
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double MyFunction(Agent *a, va_list arg){
double output;

if(!a){
fprintf(stderr,"\nAgent not allocated @MyFunction.");
return DBL_MAX;

}
if(a->n < 1){

fprintf(stderr,"\nInvalid number of decision variables
@MyFunction. It must be equal or greater than one.\n")
;

return DBL_MAX;
}
output = pow(a->x[0], 4) + pow(a->x[1], 2) + 10; /* Equation

(1) */

return output;
}

In the above source-code, the first two conditional structures verify whether the

Agent has been allocated or not, and if the number of decision variables is greater

than 1. The next line implements the function itself: since x ∈ ℜ2
, each agent has two

dimensions only, i.e., a->x[0] and a->x[1]. Notice that LibOPT uses double
precision for the data types.

Although the user can implement any function to be optimized, we need to con-

sider the guidelines implemented in LibOPT/include/common.h by the fol-

lowing function: typedef double (*prtFun)(Agent *, va
_list arg). This signature tells us the function to be minimized should return

a double value, as well as its first parameter should be an Agent, followed by a

list of arguments, which depends on the function.

4.2 Toy Example

In our example, suppose we want to use a hypercomplex quaternion-based Firefly

Algorithm to minimize MyFunction. For the sake of explanation, we will use the

same parameters defined by the model described in Sect. 3.4:

10 2 100 #<n_particles> <dimension> <max_iterations>
0.2 1 1 #<alpha> <beta_0> <gamma>
-10 10 #<LB> <UB> x[0]
-10 10 #<LB> <UB> x[1]

Let fa_model.txt be the file name concerning the above model. Basically,

one needs to create a main file to call hypercomplex quaternion-based FA procedure

as follows:

#include "common.h"
#include "function.h"
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#include "fa.h"

int main(){
SearchSpace *s = NULL;
int i;

s = ReadSearchSpaceFromFile("fa_model.txt", _FA_);

s->t_g = AllocateTensor(s->n, _QUATERNION_);
for (i = 0; i < s->m; i++)

s->a[i]->t = AllocateTensor(s->n, _QUATERNION_);

InitializeTensorSearchSpace(s, _QUATERNION_);

if(CheckSearchSpace(s, _FA_))
runTensorFA(s, _QUATERNION_, MyFunction);

DeallocateTensor(&s->t_g, s->n);

for (i = 0; i < s->m; i++)
DeallocateTensor(&s->a[i]->t, s->n);

DestroySearchSpace(&s, _FA_);

return 0;
}

As one can observe, it is quite simple to execute hypercomplex quaternion-based FA,

since we only need to to call seven main functions:

∙ ReadSearchSpaceFromFile: it reads the model file and creates a search

space;

∙ AllocateTensor: it allocates a tensor to the desired variable. Note that we

need to allocate the global best tensor s->t_g and each agent’s tensor

s->a[i]->t;

∙ InitializeTensorSearchSpace: it initializes the hypercomplex search

space;

∙ CheckSearchSpace: it checks whether the search space is valid or not;

∙ runTensorFA: it minimizes function MyFunction;

∙ DeallocateTensor: it deallocates the used tensors; and

∙ DestroySearchSpace: it deallocates the search space.

Notice one can find a number of similar examples in LibOPT/examples. Figure 5

displays a convergence plot along the iterations concerning the function defined by

Eq. (21) and considered in this toy example.
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Fig. 5 Convergence plot regarding hypercomplex quaternion-based FA considering Eq. 21

5 Methodology and Experiments

As aforementioned in Sect. 2, quaternions and octonions employ a wider search

space, where each parameter is encoded by ℝ4
and ℝ8

spaces, respectively, and then

mapped into an ℝ space within the chosen limits.

The main issue when working with hypercomplex representations concerns with

the boundaries of the real-valued term xi associated to each term. Therefore, we have

devised a function to tackle this boundary issue, mapping xi to plausible boundaries,

as follows:

span(xi) = (Ui − Li)

(
N(q)√
M

)
+ Li, (22)

where Ui and Li stand for the upper and lower bounds of decision variable xi, respec-

tively, and N(q) denotes the norm over quaternion q (similarly to octonions). In addi-

tion,M corresponds to the number of dimensions of the hypercomplex representation

(i.e., M = 4 for quaternions and M = 8 for octonions).
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5.1 Benchmarking Functions

Nevertheless, we need a practical solution in order to validate and compare the per-

formance of optimization techniques. One interesting approach is to test these algo-

rithms against some benchmarking functions. However, it is important to include

a wide variety of test functions, such as unimodal, multimodal, separable, non-

separable, regular, irregular or even multi-dimensional functions.

Thus, we have selected 10 different benchmarking functions in order to validate

our proposed approach. Table 1 depicts the employed functions, where the identifier

column stands for their names, the function column stands for their mathematical

formulations, the bounds column stands for their variables’ lower and upper bounds,

and the f (x∗) column stands for their optimum values.

In addition, in order to provide a more comprehensive view of each function, we

outline below some of their main characteristics:

Table 1 Benchmarking functions

Identifier Function Bounds f (x∗)

Csendes f1(x) =
D∑
i=1

x6i (2 + sin( 1
xi
)) −1 ≤ xi ≤ 1 0

Lévy f2(x) = sin
2(𝜋w1) +

D−1∑
i=1

(wi − 1)2[1 +

10sin
2(𝜋wi + 1)]+

−10 ≤ xi ≤ 10 0

+(wd − 1)2[1 + sin
2(2𝜋wd)], where

wi = 1 + xi−1
4

Quartic f3(x) =
D∑
i=1

ix4i + random[0, 1) −1.28 ≤ xi ≤ 1.28 0

Rastrigin f4(x) = 10n +
D∑
i=1

[x2i − 10cos(2𝜋xi)] −5.12 ≤ xi ≤ 5.12 0

Rosenbrock f5(x) =
D−1∑
i=1

[100(xi+1 − x2i )
2 + (xi − 1)2] −30 ≤ xi ≤ 30 0

Salomon f6(x) = 1 − cos

⎛
⎜⎜⎝
2𝜋

√
D∑
i=1

x2i
⎞
⎟⎟⎠
+ 0.1

√
D∑
i=1

x2i −100 ≤ xi ≤ 100 0

Schewefel f7(x) = (
D∑
i=1

x2i )
√
𝜋 −100 ≤ xi ≤ 100 0

Sphere f8(x) =
D∑
i=1

x2i −10 ≤ xi ≤ 10 0

Xin-She Yang #1 f9(x) =
D∑
i=1

𝜀i|xi|i −5 ≤ xi ≤ 5 0

Zakharov f10(x) =
D∑
i=1

x2i +

(
1
2

D∑
i=1

ixi

)2

+

(
1
2

D∑
i=1

ixi

)4

−5 ≤ xi ≤ 10 0
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∙ Csendes (f1)—continuous, differentiable, non-separable, non-scalable and uni-

modal;

∙ Lévy (f2)—continuous, differentiable and multimodal;

∙ Quartic (f3)—continuous, differentiable, separable, scalable;

∙ Rastrigin (f4)—continuous, differentiable, separable, scalable and multimodal;

∙ Rosenbrock (f5)—continuous, differentiable, non-separable, scalable and

unimodal;

∙ Salomon (f6)—continuous, differentiable, non-separable, scalable and multimodal;

∙ Schewefel (f7)—continuous, differentiable, partially-separable, scalable and uni-

modal;

∙ Sphere (f8)—continuous, differentiable, separable, scalable and multimodal;

∙ Xin-She Yang #1 (f9)—separable;

∙ Zakharov (f10)—continuous, differentiable, non-separable, scalable and unimodal.

5.2 Experimental Setup

In this work, we compared four meta-heuristic approaches against their quaternion

and octonion versions, including

∙ Artificial Bee Colony: ABC, QABC (Quaternion ABC) and OABC (Octonion

ABC);

∙ Bat Algorithm: BA, QBA (Quaternion BA) and OBA (Octonion BA);

∙ Flower Pollination Algorithm: FPA, QFPA (Quaternion FPA) and OFPA (Octo-

nion FPA);

∙ Particle Swarm Optimization: PSO, QPSO (Quaternion PSO) and OPSO (Octo-

nion PSO).

To evaluate the robustness of parameter fine-tuning, we have used four distinct

dimensions D = 10, 25, 50 and 100.

In order to provide an in-depth analysis, we have conducted experiments with 25
runs for each algorithm and used the following metrics: best fitness values, means

of best fitness values and standard deviations of best fitness values. We also used a

population size of 100with 2000D iterations for all techniques. Therefore, this means

we have 20,000 iterations for a D = 10 space, 50,000 iterations for a D = 25 space,

100,000 iterations for a D = 50 space, and 200,000 iterations for a D = 100 space.

Table 2 presents the parameter configuration for each optimization technique.
6

Regarding ABC, the number of trials limit stands for the amount of trials that a

solution can be improved by an employee bee. Considering BA, we have the min-

imum and maximum frequency ranges, fmin and fmax, respectively, as well as the

loudness parameter A and pulse rate r. In FPA, 𝛽 is used to compute the Lévy distri-

bution, while p is the probability of local pollination. Finally, PSO defines w as the

inertia weight, and c1 and c2 as the control parameters.

6
Notice that these values have been empirically setup.
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Table 2 Parameter configuration

Technique Parameters

ABC Trials limit = 1000
BA fmin = 0, fmax = 2,A = 0.5, r = 0.5
FPA 𝛽 = 1.5, p = 0.8
PSO c1 = 1.7, c2 = 1.7, w = 0.7

5.3 Experiments

The results are presented for each employed dimension (D = 10, 25, 50 and 100)

within the following format: (BF, MBF, SDBF), where BF stands for “best fitness

value”, MBF for “mean of best fitness value”, and SDBF for “standard deviation

of best fitness value”. Tables 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 present the results

concerning functions f1 to f10, respectively, being the best values in bold according

to the Wilcoxon signed-rank statistical test with significance as of 0.05 [22]. Note

that the statistical test evaluated the MBF measure only.

Considering the 10-dimensional search space, hypercomplex-based approaches

achieved the best results in 4 out of 10 situations, meanwhile in 25-dimensional prob-

lems, quaternionic- and octonic-based representations obtained the best results in 5
out of 10 functions. If one considers higher dimensional search spaces, i.e., 50 and

100 dimensions, hypercomplex approaches obtained the best results in 6 out of 10
problems. Therefore, we can clearly observe the benefits in using such alternative

representations in optimization problems.

Looking at all the results for all the ten functions, one can observe that only three

functions did not obtain any best result by means of hypercomplex-based search

spaces, and these three functions are f3, f6 and f10. However, the quaternionic and

octonic variants of the optimization techniques considered in this work obtained the

best results or equally best results when compared to the standard versions in most

cases for the aforementioned functions in general. For both functions f3 and f10, the

modality is either unimodal or dominated by a big mode, the optimal solutions are

relatively easily achievable compared to other more complex functions, while f6 the

variable of modal height is not much (due to the cosine term). Therefore, the more

complicated hypercomplex representations may not benefit much because the land-

scape are already sufficiently smooth for these functions.

It can be expected that the benefit of using hypercomplex representations may

be higher for the objective functions with highly complex modality and such benefit

seems to be slightly significant for more higher-dimension problems.

ABC technique seems to be the one that did not benefit from hypercomplex search

spaces as much as the others considered in this work. As a matter of fact, ABC was

the technique that obtained the best results in the situations the hypercomplex spaces

did not improve standard search spaces. In order to have a deeper look into this, we

conducted extra experiments to analyze such behavior.
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Fig. 6 Convergence plot considering ABC, QABC and OABC over Salomon’s function. a 10-D,

b 25-D, c 50-D and d 100-D

Figure 6 depicts a convergence study of ABC variants over Quartic’s function

(f3). Interestingly, although the hypercomplex-based approaches did not obtain the

best results in this dataset, one can observe their faster convergence when compared

to standard ABC considering the first 800 iterations. As a matter of fact, their final

results were considerably close to each other. It can be hypothesized that the standard

ABC uses higher trial limits (here 1000), which may lead to higher computational

costs. Such computational costs may be even higher when represented in hypercom-

plex spaces for ABC, and the benefit can be reduced.

The convergence plots for other functions (f6 and f10) are similar. In this situation,

standard ABC converged faster than its hypercomplex-based version for all dimen-

sions. It is worth pointing out that the observations that ABC may not benefit from

the hypercomplex representations for the selected benchmarks do not necessarily

apply to other functions.
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Since both BA and FPA obtained better and best results when formulated in hyper-

complex representations, it can be expected that the hypercomplex representations

can in general lead to smoother landscapes, especially for highly nonlinear, multi-

modal landscapes. This point requires further investigation so as to figure out what

types of functions should be represented in hypercomplex spaces.

6 Conclusion

Hypercomplex numbers extend standard complex spaces by adding imaginary num-

bers in their formulation. In this work, we considered mapping search spaces into

hypercomplex ones defined by quaternions and octonions. Roughly speaking, each

decision variable is encoded by a hypercomplex number, which leads us to work with

tensors instead of vectors in the search space.

We have considered 10 benchmarking functions with different dimensions in

order to evaluate hypercomplex spaces, and we observed that higher-dimensional

problems seem to benefit more than lower-dimensional search spaces. Additionally,

a study concerning the convergence highlighted that quaternionic- and octonic-based

approaches seem to converge faster than standard ones for some benchmarking func-

tion. As a take-home message, we can observe hypercomplex-based search spaces

may provide better optimization environments, as well as techniques based on quater-

nions and octonions can obtain results so accurate as standard ones, but usually with

a faster convergence.

For future works, it will be useful to carry out more detailed tests using more

benchmarks so as to find the true benefit of hypercomlex representations. In addi-

tion, it will be also useful to consider even higher-dimensional hypercomplex spaces,

such as representations based on sedenions. Furthermore, it can be expected that

quaternions and octonions can be used in the context of hyperparameter fine-tuning

in machine learning techniques and image processing.
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Lévy Flight-Driven Simulated Annealing
for B-spline Curve Fitting
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Abstract Point cloud approximation by spline models, also called curve and surface
reconstruction, is an active research field in computer-aided design and manufactur-

ing (CAD/CAM). Due to the physical and mechanical processes used to obtain the

data, the measurements are often affected by noise and other distortions. Obtaining

a suitable spline model to reconstruct the underlying shape of the data while main-

taining a low design complexity leads to a multivariate and highly non-linear opti-

mization problem, also known to be non-convex and multi-modal. In this work, we

propose a method to fit a given point cloud by means of a B-spline curve model. Our

approach to solve the optimization problem is based on a powerful thermodynamics-

driven metaheuristic known as the Simulated Annealing. We compute the model

parameters by combining traditional SA techniques with Lévy flights (random walks

based on the Lévy distribution). The ability to perform such a flight allows the algo-

rithm to escape from local minima and energy plateaus, a strong requirement when

dealing with highly multi-modal problems. The performance and robustness of our

algorithm is tested against three illustrative examples. Our experimental results show

that our method is able to reconstruct the underlying shape of the data, even in the

presence of noise, with acceptable accuracy and in a completely automated way.

Keywords Data fitting ⋅Curve reconstruction ⋅Reverse engineering ⋅CAD/CAM ⋅
B-spline functions ⋅ Metaheuristic techniques ⋅ Simulated annealing ⋅ Lévy flights

C. Loucera

Department of Communications Engineering, Universidad de Cantabria,

Avda. de Los Castros, s/n, E-39005 Santander, Spain

e-mail: loucerac@unican.es

A. Iglesias (✉) ⋅ A. Gálvez

Faculty of Sciences, Department of Information Science, Toho University,

2-2-1 Miyama, Narashino Campus, Funabashi 274-8510, Japan

e-mail: iglesias@unican.es

A. Iglesias ⋅ A. Gálvez

Department of Applied Mathematics and Computational Sciences,

University of Cantabria, Avda. de Los Castros, s/n, 39005 Santander, Spain

e-mail: galveza@unican.es

© Springer International Publishing AG 2018

X.-S. Yang (ed.), Nature-Inspired Algorithms and Applied Optimization,

Studies in Computational Intelligence 744, https://doi.org/10.1007/978-3-319-67669-2_7

149



150 C. Loucera et al.

1 Introduction

Curve fitting is a major issue in many scientific fields, such as statistics, numeri-

cal analysis, data visualization, geometric modeling, image processing, and meteo-

rology, to mention just a few. Data fitting is also a key problem in computer-aided

design and manufacturing (CAD/CAM), where the ability to obtain a digital model

from a 3D-scanned real-world piece (a process generally known as reverse engi-
neering) plays a crucial role in many current manufacturing industries. This process

usually involves the fitting of a massive and noisy point cloud obtained with modern

data-acquisition technologies such as 3D laser scanning and other devices [1, 2].

B-splines are an industry standard in the CAD/CAM field for data storage and

representation. There are several reasons for this choice: B-splines are highly flexi-

ble and easy to manipulate; they are also able to describe very complex shapes with a

minimal set of parameters. These good properties are due to the particular functional

structure of B-splines: they consist of a linear combination of non-linear functions,

known as the basis functions. The coefficients of this linear combination are usually

called the poles or control points, whereas the local shape parameters are known

as the breakpoints or knots. Finally the parameterization deals with the locations

where the B-splines are evaluated to fit the data points. The problem of reconstruct-

ing a dataset by means of an optimal B-spline is a multivariate and highly non-linear

optimization problem. It is also known to be a non-convex and multi-modal prob-

lem. Owing to these challenging features, the general shape reconstruction problem

remains largely unsolved so far (in other words, no closed analytical form for the gen-

eral solution can be automatically obtained). Even powerful and well-tested mathe-

matical optimization methods tend to get trapped in one of the many local minima

[3].

Recently, nature-inspired computation (a broad set of different computational

methods based on mimicking certain biological or social processes from the nat-

ural world), has evolved into one of the most fruitful areas of scientific research and

knowledge. In fact, bio-inspired optimization has been applied with great success

to many difficult engineering problems [4–7]. These methods, often of derivative-

free nature, consist of the implementation of search strategies providing a trade-

off between local and global optimization without assuming any a priori knowledge

about the problem. This ability to combine exploitation and exploration (i.e., con-

ducting exhaustive search in the most promising regions while simultaneously main-

taining the possibility to explore the whole fitness landscape seeking for the best

global solution) within an unified framework make bio-inspired computation meth-

ods excellent tools for solving the data approximation problem. Over the years many

methods have solved particular instances of the problem, either with Bézier models

[8–16] or local-support curves [17–30]. See also [31] for a recent and detailed review

on curve and surface fitting with nature-inspired methods and some recent trends in

the field.

In this chapter we apply a variant of the classical simulated annealing algorithm

that introduces a Lévy-based re-annealing (restarting the annealing cycle) method
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coupled with a local exploitation phase driven by the constrained optimization by

linear approximations algorithm (COBYLA) [32]. This SA variant searches the B-

spline parameterization associated with the problem data, while a suitable breakpoint

sequence is found by means of the knot averaging method [33]. Finally the poles are

computed by solving traditional linear least-squares problem.

The structure of this chapter is as follows: in Sect. 2 we provide the basic defin-

itions about parametric B-spline curves, along with the mathematical background

required to understand in detail the data fitting problem for this type of curves.

In Sect. 3 we focus on the Lévy flight-driven simulated annealing, the metaheuris-

tics proposed in this paper. The discussion starts with the description of the clas-

sical simulated annealing algorithm. Then, we describe our new variant in detail.

The main components of our method are also discussed in detail in this section.

Section 4 describes our Lévy flight-driven simulated annealing-based method for B-

spline curve fitting. Firstly, a brief outline of the method is presented; then, a more

detailed description of each individual component is given. The performance of this

new method is illustrated in Sect. 5 through three examples. The experimental results

are presented both graphically and numerically. Finally, Sect. 6 summarizes the main

conclusions of this chapter and provides some hints about future work in the field.

2 Mathematical Formulation

2.1 Basic Definitions

Mathematically, a parametric B-spline curve 𝐂(t) ⊂ ℝd
of order p is a piecewise

function expressed as:

𝐂(t) =
n∑

i=0
𝐏iNi,p(t) (1)

where t ∈ [𝛼, 𝛽] represents the data parameterization,
{
𝐏i
}

are the control net of

the curve and
{
Ni,p(t)

}
i are the so called B-spline basis functions of order p defined

on a knot vector U = {u0 = 𝛼, u1, u2,… , un+p = 𝛽}, comprised of non-decreasing

real numbers ui called knots. The B-spline basis functions Nj,p(t) can be computed

through the Cox de-Boor recursive formula (see [34] for details):

Nj,p(t) =
t − uj

uj+p−1 − uj
Nj,p−1(t) +

uj+p − t
uj+p − uj+1

Nj+1,p−1(t) (2)

for p > 1, while for p = 1 we have:

Nj,1(t) =
{

1 if uj ≤ t < uj+1
0 otherwise (j = 0,… , n + p − 1) (3)
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In this paper we consider only splines clamped at the edges, so u0 = · · · = up−1 =
𝛼, and un+1 = · · · = un+p = 𝛽. Each blending function is a local support function,

those that vanish outside a certain interval, since each basis is only defined in the

corresponding interval. Therefore, perturbations on a given interval only affect a

part of the curve, a very useful property in the CAD/CAM industry. For this and

other fundamental properties of the B-spline space of functions, see [33].

2.2 Data Fitting

Let
{
𝐐k

}M
k=1 be a set of points in ℝd

. The aim of this paper consists in finding a

B-spline curve that approximates the given data, by taking into account both, the

fidelity of the reconstruction and its complexity.

In order to reconstruct the underlying shape of the data with a clamped B-spline

curve 𝐂(t) of degree p, our method must perform the parameterization, i.e. find the

{tk} associated to the original data, compute the poles 𝐏j with the corresponding

breakpoints U and, finally, the method must deal with the model complexity: how to

minimize the number of free parameters of the system. Due to the constrains imposed

on the boundary knots, we can assume 𝐂(t1) = 𝐐1 and 𝐂(tM) = 𝐐M . As a result the

equation to minimize in a least-squares sense is given by:

E =
M−1∑

k=2

|||||

|||||
𝐐k −

n∑

i=0
𝐏iNi,p(tk)

|||||

|||||

2

2

(4)

where ||.||2 indicates the Euclidean norm. Note that for known degree, parameteriza-

tion and knot vector, a solution of the previous linear system can always be computed

through standard numerical methods for polynomial system solving, obtaining as a

result the B-spline control net. However, in many real-world problems, neither the

parameterization nor the knot vector are generally known. In general, even the opti-

mal value for the curve degree is unknown. In such a case, the least-squares min-

imization problem (4) becomes highly nonlinear, continuous, and multivariate. In

addition, the computation of the knot vector has been proved to be a non-convex and

multi-modal optimization problem [34, 35]. To overcome such difficulties we pro-

pose an optimization simulated annealing schema that deals with each sub-problem

sequentially: data parameterization, knot vector and pole computation and finally,

model complexity.
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3 Lévy-Driven Simulated Annealing

3.1 Basic Principles

Simulated annealing (SA) is a family of stochastic optimization algorithms belong-

ing to the emergent field of nature-inspired computation. Since its inception in the

early eighties by Kirkpatrick et al. [36], it has been used on a large number of real-

world and synthetic problems [37]. One of the defining features of nature-inspired

algorithms is the assumption of a metaphor driving the search for a global optimum.

In this particular case, the SA algorithm computationally mimics the thermodynam-

ical processes behind the annealing of a metal: how to improve the material through

a set of intervals of rapid heating and slow cooling cycles.

At the initial stages of the physical process, the material is heated to very high

temperatures, which leads to free-moving particles. Then, a slow cooling phase fol-

lows, when the particles tend to loose part of their mobility. All along the process,

the atoms tend to move towards configurations that minimize the system energy,

although it may lead to occasional rises of the overall energy. The thermal equilib-

rium for a certain temperature is reached when these transitions tend to stabilize the

energy of the system. This heating-cooling procedure is repeated until the there are

almost no particle movement, which coincides with the minimal energy state of the

system. The resulting material has a better inner structure at the end of the thermo-

dynamic process.

The SA algorithm constructs a computational metaphor of this thermodynamical

process in order to minimize a functional that replicates the energy of the physical

process. The procedure starts from a random state/solution, and iteratively gener-

ates new solutions sampled from a candidate distribution. This sampling takes into

account the temperature of the system, an artificial parameter controlled by the cool-

ing schedule, how and when the temperature is updated, and the previous visited

solutions. As the system freezes, the sampled points are closer to the previous solu-

tions (which closely follows loss of mobility of the atoms). In order to guarantee that

the system can avoid local minima, each transition is accepted according to a certain

probability. If the energy is minimized, the new candidate is always accepted. Oth-

erwise, the chance to discard a worse transition is increased as the system evolves.

Random walks based on the Lévy distribution have already been used as an

enhancement to various global search algorithms. Relevant examples are described

in [38] for the cuckoo search algorithm, where the flight of cuckoo birds is simu-

lated by Lévy flights, in [39] where that technique is applied to the reconstruction

of outline curves of computer fonts with rational Bézier curves, in [40], where Lévy

flights are used to maintain the population diversity of particle swarm optimization,

and [41] for the flower pollination optimization algorithm, where Lévy random walks

are used to mimic the long distances taken by insects during the pollination.
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3.2 SA Algorithm

The SA algorithm is designed to minimize a real-valued fitness function (usually

called the system energy) f ∶ D ⊆ ℝd ⟶ ℝ, within a problem domain D , assumed

to be continuous in this paper. Each point 𝐱 ∈ D is a state of the physical sys-

tem. Given an initial (usually random) state 𝐱0, the algorithm performs an iterative

process; at each iteration step, a new state 𝐱new is generated from the current one, 𝐱old,

through a neighborhood function, denoted by𝔑 ∶ D ⟶ D , i.e., 𝐱new = 𝔑(𝐱old). Let

now fold ≡ f (𝐱old), fnew ≡ f (𝐱new) be their associated energies, respectively. The algo-

rithm probabilistically decides between moving the system to the new state 𝐱new or

staying in the current state 𝐱old. This new state is chosen with a probability func-

tion 𝔓 ∶ D ×D ⟶ [0, 1], called the acceptance function, which depends on two

factors:

1. the difference △ = fold − fnew of the energy values; and

2. a global parameter called temperature, denoted by T , which varies according to

a strictly decreasing function 𝔗 ∶ ℝ+ ⟶ ℝ+
called the cooling function.

In addition, two more conditions are required. The first one is that 𝔓 > 0 if △ <

0, meaning that the system may move to the new state even if it is worse than the

current one. This condition is imposed with the goal to prevent stagnation (when

the system gets trapped in the neighborhood of local optima, leading to premature

convergence). The second one is that the lower the temperature, the easier to reject

a worse solution. In fact, in the particular case T = 0, the procedure will only allow

downhill moves, meaning that the algorithm reduces to a greedy search algorithm.

The interested reader is referred to [42] for further details about the algorithm and

the corresponding pseudocode.

3.3 Lévy SA Algorithm

The description in previous paragaphs refers to the Classical Simulated Annealing

(CSA), a combinatorial optimization algorithm that follows as closely as possible

the physical annealing process [36]. The algorithm was soon adapted to deal with

continuous optimization problems [43, 44], with an impressive capacity to resolve

very hard problems. However, the computational costs of these first approaches were

prohibitive in many cases and required some heavy fine tuning to guarantee the con-

vergence.

Over the years, many SA variants have been proposed with the aim to overcome

the aforementioned difficulties. A complete list is beyond the scope of this work;

instead, we will introduce two of the most influential variants. On one hand, the Fast

Simulated Annealing (FSA) [45] where a Cauchy visiting distribution is coupled

with a time-inversely cooling schedule. On the other hand, the Adaptive Simulated

Annealing (ASA) [46], a major milestone in the physics-inspired optimization field,
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consists in pairing a fitness-sensitive visiting distribution with two sets of tempera-

tures that are raised and lowered thought the live of the algorithm in a cycle called

re-annealing.

One of the major drawbacks of most SA variants (and many other nature-inspired

optimizers) is the parameter setup: a necessary step that involves knowledge about

the problem being solved. The initial temperature is a critical parameter, as it needs

to be high enough to let the solutions move freely at the initial stages, but no so

high that most computation time is wasted performing random walks aimless on the

solution space. If the start temperature is too low, the system may become a greedy

search too early, effectively losing its global search capabilities.

Algorithm 1: Lévy Simulated Annealing (by linear approximations)

Input: An initial guess 𝐱0, fitness f , lower 𝐥 and upper bounds 𝐮
Output: The final solution 𝐱
constraints ← generateLinearConstraints(𝐱0);
T0 ← computeInitialTemperature(f , 𝐥,𝐮);
𝐱 ← 𝐱0 and f𝐱 ← f (𝐱);
T ← T0;

while The System is not Frozen do
acceptedFlag ← False;

while Thermal Equilibrium is not Reached do
𝐱new ← 𝔑(𝐱,T) and fnew ← f (𝐱new);
if 𝔄(fnew, f𝐱,T) then

𝐱 ← 𝐱new and f𝐱 ← fnew;

acceptedFlag ← True;

end
end
T ← 𝔗(T);
if not acceptedFlag then[

𝐱, f𝐱,T
]
← learnFitnessLandscape(𝐱, 𝐱best, 𝐥,𝐮, constraints);

end
end
return 𝐱

Our SA proposal, as summarized in Algorithm 1, draws its inspiration from the

FSA and ASA algorithms, while maintaining the classical structure. The algorithm

starts with a random point in the search space, then it iteratively tries to improve it

by means of a temperature-driven d-dimensional Cauchy visiting distribution. When

no new solutions are accepted for a given thermal cycle, a local search is performed.

If successful, the algorithm continues, as it may be a basin to exploit. In the case of

an unsuccessful exploitation phase, the algorithm considers that it has been trapped

in either a correctly exploited basin or an energy plateau. In both cases, a Lévy flight

is performed in order to escape from the current situation, and the temperature is

re-restarted (mimicking the ASA re-annealing).

The main components of our method are discussed in detail in next paragraphs.



156 C. Loucera et al.

3.3.1 Initial Temperature

To compute the initial temperature we try to approximate the average of the temper-

atures needed to raise the fitness with a probability of 𝜒0, as proposed in [47, 48].

Let X+
0 =

{
𝛥

(
𝐱k
)}

k a set of randomly chosen positive transitions, and 𝜒0 the desired

acceptance ratio, typically 0.8. Then, the initial temperature is given by:

T0 = −
mean

(
X+
0
)

log
(
𝜒0
) (5)

This step is done with the computeInitialTemperature procedure in Algo-

rithm 1.

3.3.2 Cooling Schedule

The law governing the cooling strategy is given by the following formula:

𝔗 =
T0

kouter
(6)

where T0 is computed as in the previous paragraph and kouter is the annealing index,

updated after each thermal cycle. This cooling law has been proven to be slow enough

to guarantee an stable Cauchy visiting distribution [45]. See [49] for a thoughtful

discussion on this and other SA schedules.

3.3.3 Candidate Distribution

The neighborhood function 𝔑 is based on sampling points from the following

Cauchy distribution:

𝐱new ← 𝐱old + 𝛥𝐱old (7)

that depends on the previous point and the current temperature of the system, where:

𝛥𝐱old ∼
T

(
‖‖𝛥𝐱old‖‖

2 + T2
) D+1

2

(8)

∼ indicates sampled from, and D is the dimension of the solution space. See [45] for

a more detailed discussion on the topic.
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3.3.4 Acceptance Function

The law governing the probability of accepting a given transition follows the modi-

fied Metropolis criterion [50]:

𝔄 ← min

{
1,
(
1 + exp

(
𝛥f
T

))−1
}

(9)

3.3.5 Learn Fitness Landscape

Our memetic approach tries to learn the shape of the fitness landscape after each

thermal equilibrium phase. To do so, if no solution has been accepted during a

given inner cycle (i.e., the acceptedFlag remains False) we assume that we are either

trapped in a local basin or traversing an energy plateau. To overcome such a difficult

scenario, the algorithm first tries to exploit the neighborhood of the current solution

by performing a local search by means of the constrained by linear approximations

algorithm (COBYLA). On one hand, if the direct search is successful, we update the

SA solution with the new one and continue with the main algorithm. On the other

hand, we conclude that the algorithm is traversing an energy plateau so we perform

a Lévy flight in order to escape the flat zone. The temperature is restarted after each

random walk.

3.3.6 Lévy Flights

Let 𝐱 and 𝐱best the current and best-found solution. We simulate the capacity to make

a long jump in the solution space by the following Lévy flight:

𝐱new = 𝐱 + L
(
𝐱 − 𝐱best

)
(10)

where L > 0 is the step size, which follows the Lévy distribution given by:

L ∼
𝜆𝛤 (𝜆) sin

(
𝜆
𝜋

2

)

𝜋

1
s1+𝜆

with s ≫ s0 > 0 (11)

where 𝛤 represents the Gamma function. The given distribution is valid for s ≫
s0 > 0, where s0 is the smallest step. Typically, it is enough to use s0 ≈ 0.1 (although

the limits are problem-dependent). To compute the step size s, i.e. to draw s from

the Lévy distribution given by Eq. (11), we use Mantegna’s algorithm [51], a well

established approach in the nature-inspired optimization field [6]. The procedure can

be summarized as follows:

s = u

|v|
1
𝜆
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where u ∼ N
(
0, 𝜎2

u
)

and v ∼ N (0, 1), with:

𝜎
2
u =

⎛
⎜
⎜
⎜⎝

𝛤 (1 + 𝜆) sin
(

𝜆

2
𝜋

)

𝜆𝛤

(
1+𝜆
2

)
2

𝜆−1
2

⎞
⎟
⎟
⎟⎠

1
𝜆

where N
(
𝜇, 𝜎

2)
represents the normal distribution of mean 𝜇 and variance 𝜎

2
.

Therefore, a Lévy flight can be computed by fixing 𝜆 and s0 using the approximation

L ≈ s ⋅ s0. See [6], pp. 11–20 for a more detailed discussion on Lévy flights.

4 The Method

In this section we will discuss the main parts of our method in detail. Firstly, we

introduce the overall outline of the methodology. Then, we continue with a more

detailed description of each individual component.

4.1 Outline of the Method

Our method is based on converting the geometric problem of how to fit a B-spline

curve to a point cloud in a completely automatic way into a multivariate optimization

problem. This is done through the least-squares technique given by Eq. (4), leading to

a non-convex, highly non-linear optimization problem with three sets of unknowns,

namely; the poles, data parameters, and knots. To overcome such difficulties we pro-

pose a method that sequentially computes each set of unknowns, using the previous

set as the input for the next step.

Figure 1 shows a diagram that summarizes the workflow of the proposed method-

ology. Central and right parts of the image indicates the different steps of the method,

from top to bottom. Left part of the diagram also shows the different sets of variables

computed at each specific step. Before we discuss each component in further detail,

we will briefly summarize our workflow diagram (the reader is kindly referred to

Fig. 1 for a visual explanation of the different steps):

∙ Complexity Parameters: it refers to the free variables of the model. In this problem,

they are the data parameters, the knots and the poles. At the initialization step, they

are randomly chosen and then labelled as T0, U0, and P0, respectively. They are

the initial input of our data fitting problem, along with the given data points.

∙ SA-LSQ: in this step, we compute the model parameterization by means of the

SA algorithm introduced in this paper. The obtained data parameters at step j of

our iterative process, Tj, are used as input data for the kAvgKnots method to
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Fig. 1 Schematic workflow of our method (see the main text for further details)
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obtain the breakpoints,Uj. Finally, we compute the poles,Pj, by solving the least-

squares system (4).

∙ Functional structure and poles: it refers to the output of the current step j to be

used as input for next step j + 1 of our iterative process.

∙ Information Sciences Criterion: at this step, we compute the associated Bayesian

Information Criterion for each model. This will give us a good indicator about the

trade-off between the quality of fitting and the complexity of the model, so that

we can prevent over-fitting to happen.

∙ Best Complexity: Using the output of the previous step, the model with the lowest

BIC is chosen.

∙ Best Functional Structure and Poles: at the end of the iterative process, the best

values for the sets of free variables of the problem are computed. They are labelled

as Tb, Ub, and Pb, respectively. This yields the best B-spline fitting curve for the

given data points.

4.2 B-spline Parameterization

The B-spline parameterization is computed by means of the simulated annealing

variant proposed in Sect. 3. The solution encoding is done by using a M-dimensional

real-valued vector T ∈ (0, 1)M with the first and last values set to 0 and 1, respec-

tively. In order to assure that the parameterization is done in a convenient way, i.e.

a strictly increasing vector, we impose a set of linear constrains derived from the

parameterization structure: 𝐭i < 𝐭i+1,∀i ≠ {1,M}.

4.3 Knot Allocation

Given a parameterization T , we search for a suitable knot vector by making use

of an adaptive averaging method based on the methodology presented in [33]. The

main idea behind this method is that the knot vector should reflect the distribution

of the parameters while keeping control of its length. To do so, we define in advance

the number of inner knots needed, then we select an appropriate segmentation of the

parameter vector, and finally we apply the knot averaging technique from [33]. The

knot allocation procedure is summarized in Algorithm 2.

The averaging method has been successfully used in many data fitting problems

[33]. Its mains advantages are the easiness of computation and a resulting accept-

able knot sequence that follows the distribution of the data. The i-th term of the k
averaging knot sequence from input vector T , is constructed as follows:

𝐮i =
1

k − 1

i+k−1∑

j=i+1
𝐭j (12)
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Algorithm 2: 𝚔𝙰𝚟𝚎𝚛𝚊𝚐𝚎𝙺𝚗𝚘𝚝𝚜 Knot allocation procedure

Input: Parameterization T , spline order p, number of inner knots k
Output: Knot vector U
Get the number of segments:
nSeg ← k + p − 1;

Get index of partition of unity in nSeg:

tIndex ← round (linearPartition (0, 1, nSeg));
Filter T :

T ∗ ← T [tIndex];
Compute the averaging knot sequence over T ∗

:

U ← averageKnots (T ∗
, p);

return U

where T = {tj}j. Note that, in order to guarantee the end point interpolation condi-

tion, we append p equal knots at both extremes. Without loss of generality, we can

assume that [𝛼, 𝛽] = [0, 1]. Therefore, for the problem at hand, this means appending

zeros and ones at the left and right end of the knot vector, respectively.

4.4 Control Net Computation

The spline poles are computed by solving the least-squares problem defined in

Eq. (4). Note that this system of equations is numerically solvable by means of tra-

ditional least-squares methods as it becomes an over-constrained linear system once

the data parameters and knot vector are known.

More precisely, the system given by Eq. (4) can be rewritten in the following

matrix form:

𝐐 = 𝐅 ⋅ 𝐏 (13)

where 𝐐 = vec
({

𝐐i
}
i

)
, 𝐏 = vec

({
𝐏j
}
j

)
and 𝐅 is constructed by the column-wise

stacking of the B-spline basis functions of order p, with knot vector U , and evalu-

ated at T . Therefore, given that M ≫ n and the only set of unknowns in Eq. (13)

are the poles, it is indeed an over-constrained linear system, which can be trivially

transformed as:

𝐅T ⋅𝐐 = 𝐅T ⋅ 𝐅 ⋅ 𝐏

which can be solved by classical least-squares methods. In this work we have opted

for the SVD decomposition, by means of the Moore-Penrose pseudo-inverse, denoted

by ⋅†, of 𝐅:

𝐏 = 𝐅† ⋅𝐐 (14)
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4.5 Model Selection

In order to maintain a good compromise between data-fidelity and complexity we

make use the Bayesian Information Criterion, given by Eq. (15):

BIC = 𝜉 log(E) + d log(𝜉) (15)

where 𝜉 denotes the total number of parameters to be fitted, E represents the fitting

error (given by the residual sum of squares, RSS) and d accounts for the total number

of free parameters of the proposed model. From Eq. (15) we can see that, for a fixed

error, the BIC penalizes models with higher complexity, whereas for a given d, the

criterion favors those models with higher fidelity.

Note that, in our problem, on one hand the length of the parameter vector is fixed

as it is equal to the number of points in the dataset. On the other hand, the number

of control points is fixed for a given order p, and k inner knots. Thus, the number of

inner knots uniquely determines the model complexity.

5 Experimental Results

In this section we present the evaluation of the proposed Lévy flight-driven simu-

lated annealing-based method for B-spline curve fitting over a set of three illustrative

examples. All the examples exhibit challenging features from a geometrical point of

view, such as self-intersections and strong changes of slope and curvature. All the

fitted datasets correspond to real-world instances: the first one represents a famous

logo digitized with noise of medium intensity, while the other two examples are dif-

ferent views of the same dataset: the silhouette of a cat with a high-density uniform

sampling and a irregular low-density sampling, respectively.

Regarding the parameter values used in our simulations, the employed SA para-

meter setup is as follows: the thermal equilibrium cycle runs for Ninner = 50 iter-

ations. For the logo dataset we choose 𝜎 ∈ {1,… , 40}, while for the other exam-

ples we employ 𝜎 ∈ {1,… , 300}. For all examples in our benchmark we consider

𝜆 = 1.5, s0 = 0.1 as the Lévy flight coefficients and 𝜒0 = 0.8 for the initial accep-

tance probability. Note that𝜒0 is the only parameter needed to automatically compute

the initial temperature. For each example we compute the centripetal parameteriza-

tion and run the knot averaging method for the given 𝜎 range, then we select the

model with the lowest BIC (BICbest) and we run our SA implementation for the cho-

sen 𝜎best, starting from a random feasible point, until improving the BICbest. Once

this threshold is exceeded, the stop/frozen indicator is raised, marking the end of

the algorithm. The optimization phase has been carried out 26 times, discarding the

three best and worst results, in order to provide statistical evidence for the results

presented and assert the experiment reproducibility. Note that the non-optimization

phase is completely stochastic-free, therefore, one run for each 𝜎 in the chosen range

is enough.
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5.1 Example 1: A Famous Logo

The first dataset in our benchmark represents a noisy scanned famous logo, which

is also affected by a non-uniform sampling. In addition, the example exhibits some

difficult geometrical features, such as several auto-intersections and changes of con-

cavity. However our method is able to reconstruct the overall shape of the curve as

shown in Fig. 2. In this figure, the data points are represented by × symbols in black.

The picture on the left shows the fitting B-spline curve with a deterministic para-

meterization, while the picture on the right shows the fitting B-spline curve with

the optimized parameterization obtained with our method. They are represented by

solid lines in blue and magenta colors, respectively. As the reader can see, the opti-

mized parameterization presents a better visual quality. This is also confirmed by

our numerical results, reported in Table 1 (see our discussion about the numerical

results in Sect. 5.4).

5.2 Example 2: High-Density Silhouette of a Cat

In this example we reconstruct the silhouette of a cat, sampled by a high density

dataset with subtle changes on the curvature and some sharp peaks around the ears.

Our experimental results are graphically depicted in Fig. 3, where the meaning of

the pictures in this figure is similar to those in Fig. 2. As shown in Fig. 3, due to the

high density and uniform sampling, the cases of deterministic parameterization and

optimized parameterization are almost visually indistinguishable from each other for

this example. This fact is also confirmed by very similar numerical values for both

cases in Table 1.

Fig. 2 Best fitting B-spline curve for the famous logo example: (left) with a deterministic para-

meterization; (right) with the optimized parameterization of our method
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Table 1 Summary table of our numerical results for the three examples in the paper. See the main

text for the meaning of the symbols in the left column

Example I Example II Example III
nparam 380 1062 402

dim 188 529 199

𝜎 31 188 128

Deterministic parameterization
BIC −2677.9178 1316.7934 815.8298

RSS 0.0000 0.0025 0.0011

xNRMSE 0.9919 0.9987 0.9986

yNRMSE 0.9925 0.9983 0.9981

Optimized parameterization
BIC −2682.5495 1221.2876 661.9920

RSS 0.0000 0.0023 0.0008

xNRMSE 0.9917 0.9986 0.9986

yNRMSE 0.9927 0.9984 0.9986

Fig. 3 Best fitting B-spline curve for the high-density silhouette of a cat: (left) with a deterministic

parameterization; (right) with the optimized parameterization of our method

5.3 Example 3: Low-Density Silhouette of a Cat

The dataset of this example presents the same geometrical features as the previous

high-density one, as it corresponds simply to a different sampling of the same orig-

inal silhouette. The low-density scenario provides a challenge at its own, as there

are fewer points to represent the geometrical features and hence, capture the subtle

details of this shape. Furthermore, the non-uniform sampling adds additional diffi-

culties when searching for the optimal parameterization and its associated breakpoint

sequence.

Figure 4 shows the graphical results for the best (in the BIC sense) deterministic

(left) and optimized (right) approximation for the low-density cat dataset. As we
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Fig. 4 Best fitting B-spline curve for the low-density silhouette of a cat: (left) with a deterministic

parameterization; (right) with the optimized parameterization of our method

can see, both methods can reconstruct with good accuracy the shape of the data.

However, it is clear that the optimized version (on the right) is more visually pleasant,

as it is smoother and more polished. By contrast, the picture on the left shows some

strongly linear parts (compare, for instance, the end parts of the two central legs

as well as the end part of the cat tail, for two illustrative examples of this visual

appearance in both cases).

5.4 Numerical Results

Although the figures above are helpful to figure out the goodness of our method, its

accuracy should still be determined numerically. Table 1 summarizes the numeri-

cal results for all the reconstructed examples. The three examples in our benchmark

are arranged in columns. For each example, we report (in rows): the total number

of parameters, nparam, the dimension of the search space, dim, the best value of

𝜎 parameter (in the BIC sense), and the values of the Bayesian Information Crite-

rion score (BIC), the residual sum of squares of the errors (RSS) and normalized

root-mean-square error (NRMSE). The latter value is shown for each coordinate.

Two sets of values are reported for each example, corresponding to the deterministic

parameterization and the optimized parameterization, respectively.

5.5 Computational Issues

All the computations have been carried out in an Intel i7-6700 quad core

processor with 16 GB of RAM. The source code has been implemented by the

authors in the native programming language of MATLAB, version 2014b. We have

make use of the COBYLA implementation in the NLopt library [52]. Our imple-

mentation of the Lévy flight follows Mantegna’s algorithm [51] as described in [6].
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6 Conclusions and Future Work

In this paper we have presented a methodology for data fitting with local-support

curves that merges classical least-squares and knot allocation techniques with a mod-

ern metaheuristic approach. Our method computes the spline parameterization by

means of a new variant of the thermodynamics-driven simulated annealing method.

Instead of using a single candidate distribution function, our approach maintains

two sets of distributions: on one hand, new candidates are typically generated with a

temperature-sensitive Cauchy distribution, which was explored in a previous article

from the authors for rational Bézier surface reconstruction [53]. On the other hand,

in order to escape from local minima and energy plateaus, a particle is allowed to

take a Lévy flight (a random walk controlled by the Lévy distribution). Promising

regions are explored by means of the derivative-free COBYLA algorithm, as previ-

ously outlined in the memetic simulated annealing (MeSA) used by the authors in

[54].

This technique has been tested against a set of data fitting problems that present

interesting features from the optimization and the geometrical points of view. The

results are quite promising, as our technique is able to capture with great precision

the overall shape of the data, while maintaining the complexity of the model under

control. Furthermore, we can produce better results, from an optimization point of

view, than those obtained with other parameterization methods, although with higher

computational efforts. In this regard, we conclude that it is better to put the compu-

tational effort in the computation of the knot vector, by making use of deterministic

parameterizations; only in case that a threshold on the fitting score must be met, it

is recommended to apply the proposed method to further optimize the parameteri-

zation.

Further research in this topic includes the design of new variants of the simulated

annealing approach well suited for obtaining the optimal data parameterization and

knot vector at once, or using a sequential schema, based in [42], where the authors

constructed two schemes for data fitting with rational Bézier curves. We are also

interested to analyze the extension of the current method to the case of B-spline

surfaces. This problem becomes more difficult, not only because we have now to

deal with duplicated sets of free variables (data parameterization for two independent

variables, two knot vectors, control points arranged in matrices instead of arrays) but

also because they are still related to each other in a nonlinear way. In addition, the

cases of organized and non-organized data points must be addressed independently.

Depending on the particular problem, some kind of clustering might also be required

to obtain a preliminary arrangement of data points. From it, a base surface providing

a coarse fitting could be obtained and, then, iteratively refined for higher accuracy.

We also aim at carrying out a complete analysis about the SA parameter setup so that

we could determine, for instance, how the desired acceptance ratio 𝜒0 does actually

influence the convergence of the method and many other interesting open questions.
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A Comprehensive Review of the Flower
Pollination Algorithm for Solving
Engineering Problems

Aylin Ece Kayabekir, Gebrail Bekdaş, Sinan Melih Nigdeli
and Xin-She Yang

Abstract Engineering optimization problems are often solved by using meta-
heuristic algorithms. Flower pollination algorithm (FPA) is a nature-inspired
metaheuristic algorithm and FPA have been used in a variety of engineering
problems. In this book chapter, the engineering applications of FPA and its variants
are reviewed, and the applications include chemical engineering, civil engineering,
energy and power systems, mechanical engineering, electronical and communica-
tion engineering, computer science and others. Further research topics are also
outlined.

Keywords Flower pollination algorithm ⋅ Optimization ⋅ Metaheuristic
methods ⋅ Civil engineering ⋅ Nonlinear optimization

1 Introduction

A good engineering design must consider all important issues such as economy,
safety, performance, sustainability, manufacturability, energy efficiency, environ-
ment, utilization and architecture. The consideration of one or several of these
issues is not enough. All issues must be fully considered. However, it is very
challenging to consider all these issues and conventional design methods may
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struggle to cope. Even approximate solutions may not be easy to obtain. Nowadays,
new methods and alternative solution techniques are often used.

The consideration of different issues and design requirements, design problems
often becomes highly nonlinear. In addition, the initial design preference of an
engineer plays a great role in the following stages of the design. Therefore, designs
can be iterative, and design stages can be iteratively analysed by using numerical
algorithms at least approximately.

An optimization problem with a single or multiple (N) objective functions (fi for
i = 1, 2, …, N)) can be formulated as follows:

Minimize fi xð Þ, x∈Rn, i=1, 2, . . .Nð Þ ð1Þ

The objective functions are subjected to the design constraints which can be J
equalities (hj(x)) and/or K inequalities (gk(x)) as shown in Eqs. (2) and (3).

hj xð Þ, j=1, 2, . . . Jð Þ, ð2Þ

gk xð Þ≤ 0, k=1, 2, . . .Kð Þ, ð3Þ

where x is the set of design variables for the design problem. For a problem with n
design variables, we can write them as a vector:

x= x1, x2, . . . xnð ÞT , i=1, 2, . . . nð Þ ð4Þ

The objective functions are generally related to the cost of the design, but safety,
usability and architecture issues can be also put into the formulations. The design
constraints are generally related with safety consideration according to the physics
of the engineering problems and more often according to the design codes. The
architectural and usability issues can be also considered as design constraints, but
these issues are generally considered as the solution ranges of design variables so as
to constrain the generation of possible optimum solutions.

This chapter is organized as follows. In Sect. 2, the flower pollination algorithm
(FPA) is briefly explained. Then in the third section, applications of FPA are
reviewed for different disciplines of engineering. The last section concludes with
some suggestions.

2 Flower Pollination Algorithm

Flowering plants reproduce by pollination in nature, which is the transfer process of
pollen by pollinators such as insects, birds, bats, other animals or winds. Some-
times, flower constancy exists when a specialised flower-pollinator partnership
exists. Pollination has two major types. Approximately 90% of flowering plants
reproduce via biotic pollination, and the rest reproduce by abiotic pollination.
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By formulizing four rules of flower pollination, Yang developed a nature-inspired
metaheuristic algorithm called flower pollination algorithm (FPA) [1]. FPA has also
been extended by Yang et al. for multiobjective optimization problems [2].

Flower pollination characteristics and idealization:

Rule 1 Biotic and cross-pollination for global pollination.
Rule 2 Abiotic and self-pollination for local pollination.
Rule 3 Flower constancy.
Rule 4 A switch probability (p) controlling global and local pollination.

Biotic and cross-pollination generally occur at a long distance because polli-
nators can fly long distances. The flight of pollinators behaves as Lévy flight
behaviour. Thus, the global pollination can be formulized by using a Lévy distri-
bution to draw random step sizes (L) as Eq. (5) by using Rules 1 and 3.

xt+ 1
i = xti +Lðxti − g*Þ, i=1, 2, . . .mð Þ ð5Þ

In Eq. (5), for a design variable or a set of design variables (x), the solution of
(t + 1)th iteration (new solution xi

t+1) is generated by modifying the solution of tth
iteration (existing solution xi

t). The subscript i represents the solution of ith flower in
a population of m flowers (population size m). The best existing solution in terms of
objective function is denoted as g*.

The local pollination is effective for the convergence of the solutions. Thus, two
random flowers (jth and kth) are chosen and a linear distribution (ε) is used as seen
in Eq. (6). The second and third rules are formulised in the local pollination.

xt+ 1
i = xti + εðxtj − xtkÞ, i=1, 2, . . .mð Þ. ð6Þ

The fourth rule can be done as the probability of using the global and local
pollination. At the start of the algorithm, the initial values are randomly chosen
according to a solution range defined for the design variables. The comparison of
the generated values of (t + 1)th iteration with (t)th iteration values is done with
respect to the optimization objective. The results are only updated if the new
solutions are better than the existing ones.

Dubey et al. [3] modified FPA by employing a scaling factor (F) to control the
mutation of flowers and using an additional intensive exploitation phase. The local
pollination is modified in order to increase the convergence of the method as seen in
Eq. (7).

xt+ 1
i = xti +Fðxtj − xtkÞ, i=1, 2, . . .mð Þ ð7Þ

After the round of global and local pollination, an intensive exploitation of the
best flower is done as seen in Eq. (8).
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xt+ 1
i = g* +H ε1 − ðε2 − ε3½ Þg*� �Þ ð8Þ

Here, H is a control parameter which is calculated as Eq. (9). ε1, ε2, ε3 and ε4 are
random numbers that are uniformly distributed between 0 and 1.

H =
1, if ε4 < p,
0, otherwise.

�
ð9Þ

Bibiks et al. [4] modified FPA for solving combinatorial optimization problems
using discrete variables. The core concepts of FPA such as flower, global polli-
nation, Lévy flight and local pollination are modified for resource constrained
project scheduling problems. Namachivayam et al. [5] modified FPA in order to
enhance the local and global searching abilities by including the local neighbour-
hood searching strategy and the dynamic switching probability strategy.

3 Applications of Flower Pollination Algorithm
in Engineering

In this section, the engineering applications of FPA and its variant of are reviewed
by grouping relevant applications as chemical engineering, civil engineering,
energy and power systems, mechanical engineering, electronical and communica-
tion engineering, computer science and other engineering applications.

3.1 Chemical Engineering

Since FPA is a very recent algorithm, developed in 2010, the studies concerning
chemical engineering are limited. Even so, there are quite a few studies. Merzougui
et al. used FPA for parameter identification in liquid-liquid equilibrium modelling
of food-related thermodynamic systems [6]. Other than the classical FPA, a mod-
ified flower pollination algorithm presented by Dubey et al. was employed [3].
According to the results of different numerical scenarios with and without the
application of closure equations, modified FPA outperformed the classical algo-
rithm and other heuristics such as Simulated Annealing, Genetic algorithm and
Harmony Search.

Sheata et al. applied several metaheuristic algorithms including FPA for per-
forming critical point calculations in multicomponent reservoir fluids in petroleum
industry [7]. The optimizers have been compared by using black oil, volatile oil and
condensate reservoir fluids with fifty components and they concluded that FPA is
one of the effective algorithms in this field. Zainudin et al. developed a hybrid
algorithm by combining FPA and Taguchi design in optimizing the shrinkage of
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triaxial porcelain containing palm oil fuel ash (POFA) and found that the shrinkage
is dominantly dependent on the sintering temperature followed by POFA compo-
sition, moulding pressure, POFA particle size and soaking time [8]. In addition,
Narong et al. used POFA as the cement filter for enhancing the electromagnetic
interference absorption of cement-based composites and optimization of the elec-
tromagnetic interference shielding was done by employing FPA [9]. The prediction
results obtained by using FPA shows comparable results with the experimental
studies.

3.2 Civil Engineering

Civil engineering is one of the important areas of applied optimization since design
problems in this area are highly nonlinear with stringent complex constraints. In
additional to costs, design constraints resulting from the architectural, feasible and
physical requirements often generate a complex engineering problem. Generally
speaking, civil engineering problems are closely related with structural engineering.
For this reason, structural optimization is also counted as a type of optimization in
civil engineering. In this area, several basic structural mechanics problems have
been used as benchmark examples for metaheuristic algorithms in the literature.
The problems such as pin jointed plane frame optimization, a three bars truss
system optimization, vertical deflection minimization problem of an I-beam, cost
optimization of tubular column under compressive load and weight optimization of
cantilever beams have been investigated by employing FPA [10]. Also, two hybrid
FPA including the combination of FPA with simulated annealing [11] and the
shuffled frog-leaping algorithm [12] have been proposed for the basic structural
optimization problems.

The optimization of truss structures is the best known fundamental application of
structural engineering. Bekdaş et al. [13] employed flower pollination algorithm for
sizing optimization of planar and space frames by proposing a handling process for
stress and displacement constraints. FPA is a competitive algorithm for truss
structures according to the comparison of previously developed methods. Gener-
ally, the truss structural member are grouped in order to shorten the optimization
effort and preventing to trap a local optima. Bekdaş et al. [14] investigated the
sizing optimization of truss structures without grouping the members by using FPA.

The spatial 72-bar truss structure shown in Fig. 1 is a well-known benchmark
exercise of the optimization algorithms. The maximum displacement constraint of
joints is ±0.25 in for all coordinate directions, while the stress constraint is ±25 ksi.
The range of design variables which are the cross sectional areas of elements, are
between 0.1 and 3.0 in2. The truss is subjected to the two independent loading cases
(Table 1) and the design constraints are separately considered for all loading cases.

The optimum values of the corresponding group numbers for structural members
are presented in Table 2. The number of flowers was taken as 30 and the switch
probability was taken as 0.5. The results were investigated for 10000 iterations.
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In Table 2, the optimum results for the methods employing ant colony optimization
(ACO) [15], big bang–big crunch algorithm (BB-BC) [16], modified teaching–
learning based optimization (TLBO) [17], chaotic swarming of particles (CSP) [18],
colliding bodies optimization (CBO) [19], ray optimization (RO) [20] and FPA [13]
are shown. It is clear that FPA outperforms the other methods in minimizing the
weight of the truss structure and the number of structural analyses needed to find the
optimum result.

The optimum tuning of mass dampers is an important optimization problem
since the effectiveness of such mass dampers depends on the right tuning of mass
dampers for structures, subject to the dynamic vibrations resulting from wind,
earthquake and traffic excitations. Nigdeli et al. [21] employed FPA for optimum
design of tuned mass dampers (TMDs) for seismic structures and the optimization
objectives are related to time-domain solutions. In addition, a hybrid method using
harmony search and FPA was developed by Nigdeli et al. [22] in order to find more
effective solutions than classical algorithms for optimum TMD design. Addition-
ally, Bekdaş et al. [23] employed FPA for TMD optimization problem by using
frequency domain solutions as the objective function and good results were
obtained.

For example, the objective of the optimization of TMD in the frequency (ω)
domain is to minimize the top story acceleration transfer function of the structure.

Fig. 1 The spatial 72-bar truss structure [13]

Table 1 Multiple load cases
for 72-bar truss [13]

Case Node Px (kips) Py (kips) Pz (kips)

1 17–20 −5.0 −5.0 −5.0
2 17 5.0 5.0 −5.0
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The design variables are the parameters of TMD positioned on the top of structures
as seen on the top of the shear building model given as Fig. 2.

The parameters of TMD are mass, stiffness and damping coefficients shown as
md, kd and cd, respectively. The design variables of the optimization are mass (md),
period (Td) and damping ratio (ξd) of TMD which are formulated as follows:

Td =2π
ffiffiffiffiffiffi
md

kd

r
ð10Þ

ξd =
cd

2md

ffiffiffiffi
kd
md

q ð11Þ

The transfer function (TF) is a dimensionless value which is the ratio of Laplace
transformations of the top story acceleration and the ground acceleration. In
application, the peak value of the transfer function representing the resonance state
is minimized. The TF formulation for all freedoms and the objective function (f) in
desiBel (dB) are as follows:

Table 2 Optimization results for the 72-bar truss problem

Element
group

Members ACO BB-BC TLBO CSP CBO RO FPA

1 1–4 1.9480 1.9042 1.8807 1.9446 1.90280 1.8365 1.8758

2 5–12 0.5080 0.5162 0.5142 0.5026 0.51800 0.5021 0.5160

3 13–16 0.1010 0.1000 0.1000 0.1000 0.10010 0.1000 0.1000

4 17–18 0.1020 0.1000 0.1000 0.1000 0.10030 0.1004 0.1000

5 19–22 1.3030 1.2582 1.2711 1.2676 1.27870 1.2522 1.2993

6 23–30 0.5110 0.5035 0.5151 0.5099 0.50740 0.5033 0.5246

7 31–34 0.1010 0.1000 0.1000 0.1000 0.10030 0.1002 0.1001

8 35–36 0.1000 0.1000 0.1000 0.1000 0.10030 0.1002 0.1000

9 37–40 0.5610 0.5178 0.5317 0.5067 0.52400 0.5730 0.4971

10 41–48 0.4920 0.5214 0.5134 0.5165 0.51500 0.5499 0.5089

11 49–52 0.1000 0.1000 0.1000 0.1075 0.10020 0.1004 0.1000

12 53–54 0.1070 0.1007 0.1000 0.1000 0.10150 0.1001 0.1000

13 55–58 0.1560 0.1566 0.1565 0.1562 0.15640 0.1576 0.1575

14 59–66 0.5500 0.5421 0.5429 0.5402 0.54940 0.5222 0.5329

15 67–70 0.3900 0.4132 0.4081 0.4223 0.40290 0.4356 0.4089

16 71–72 0.5920 0.5756 0.5733 0.5794 0.55040 0.5972 0.5731

Best weight (lb) 380.240 379.660 379.632 379.970 379.6943 380.458 379.095

Average weight (lb) 383.160 381.850 379.759 381.560 379.8961 382.5538 379.534

Standard deviation on
optimized weight (lb)

3.66 1.201 0.149 1.803 0.0791 1.2211 0.272

Number of structural
analyses

18500 13200 21542 10500 15600 19084 9029
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TFðwÞ=

TF1ðωÞ
TF2ðωÞ
⋮
TFNðωÞ
TFdðωÞ

2
66664

3
77775= −Mω2 +Cωj+K

� �− 1
Mω21 ð12Þ

f =20Log10 maxðTFNðωÞÞj j ð13Þ

M, C, and K (Eqs. 14–16) represent the mass, damping and stiffness matrices of
a shear structure with a TMD and mi, ci and ki are mass, damping coefficient,
stiffness coefficients of ith story, respectively. A unity vector with all entries being
ones is represented with 1.

c1
k1

x1

xg
..

xN

xd

mdcd

kd

1m

ci
ki

im

cN

kN

Nm

xi

Fig. 2 System model of
multi-story building structure
with single TMD [23]
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M =diag m1,m2 . . .mN ,md½ � ð14Þ

C=

ðc1 + c2Þ − c2
− c2 ðc2 + c3Þ − c3

. .

. . .
. . .

− cN ðcN + cdÞ − cd
− cd cd

2
666666664

3
777777775

ð15Þ

K=

ðk1 + k2Þ − k2
− k2 ðk2 + k3Þ − k3

. .

. . .
. . .

− kN ðkN + kdÞ − kd
− kd kd

2
666666664

3
777777775

ð16Þ

The optimum results of the designed TMD for a 10-story structure with prop-
erties given in Table 3 are presented in Table 4. FPA, harmony search (HS) and
teaching learning based optimization (TLBO) are employed and 20 independent
runs are conducted. The optimum results were searched for 50000 function eval-
uations. The number of flowers are 25 in FPA and 25 learners in TLBO, while the
switch probability is 0.5. The parameters of HS are 5, 0.5 and 0.2 for harmony
memory size, harmony memory considering rate and pitch adjusting rate,
respectively.

The effect of the optimally designed TMD can be clearly seen in the TF plot of
the top story of the structure given as Fig. 3. As seen from the results, FPA has the
best results and with least computation effort comparing to the others (see Table 4).
A hybrid FPA was employed for groutability estimation of grouting process which
is an efficient approach for ground improvement related to a sub-discipline of civil
engineering called geotechnical engineering. By combining FPA with differential

Table 3 The properties of
the example building [24]

Story mi (t) ki (MN/m) ci (MNs/m)

1 179 62.47 0.81
2 170 52.26 0.67
3 161 56.14 0.72
4 152 53.02 0.68
5 143 49.91 0.64
6 134 46.79 0.60
7 125 43.67 0.56
8 116 40.55 0.52
9 107 37.43 0.48

10 98 34.31 0.44
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evolution, the hybrid algorithm was used to optimize the input factor selection and
hyper-parameter tuning process of the support vector machine based groutability
prediction model by Hoang et al. [25].

3.3 Energy and Power Systems

The solution of economic dispatch problems in modern systems is an important
optimization application of power systems and biologically inspired algorithms are
more effective comparing to gradient-based algorithms. Dubey et al. [3] modified
FPA by using a scaling factor for the local pollination and adding an intensive
exploitation phase to solve four large practical power systems test cases. Prathiba
et al. [26] investigated the economic load dispatch by employing FPA in order to
minimize the fuel cost and tested the method on a bus system. Lenin et al. [27]

Table 4 Optimum values for TMD optimization problem [23]

HS FPA TLBO

md (t) 138.5 138.5 138.5
Td (s) 2.2926 2.2917 2.2917
ξd 0.2782 0.2763 0.2763
Best TF 11.7316 11.7303 11.7303
Average TF 11.7322 11.7303 11.7303
Standard derivative 3.15 × 10−4 1.05 × 10−6 5.55 × 10−10

Number of analyses to find the optimum
result

16529 9125 49500
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Fig. 3 TF plot of the top story of the structure [23]
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proposed the hybridization of FPA with chaotic harmony search algorithm to solve
the reactive power dispatch optimization problem. For the comparison of results of
bus test system, the hybrid method is effective than the compared ones with the help
of the chaotic sequences.

Abdelaziz et al. [28] employed FPA for optimal sizing and locations of capac-
itors in radial distribution systems such as bus radial distribution systems and the
effectiveness of the method was proved in means of minimizing of loses, total cost,
enhancing the voltage profile and net saving. Also, Abdelaziz et al. [29] investi-
gated economic load dispatch and dual-objective combined economic emission
dispatch considering the accumulation from emission of gaseous pollutants of
fossil-fuelled power plants and employed FPA in order to solve six power system
problems. The results show that FPA outperforms the other swarm intelligent
algorithm even for large scale power systems. In another FPA employing study of
Abdelaziz et al. [30], the most candidate buses for installing capacitors are sug-
gested by using loss sensitivity factors.

In order to optimize the horizontal axis tidal current turbines, metaheuristic
algorithm such as the second version of non-dominated sorting genetic algorithm
(NSGA-II), multi objective particle swarm optimization, multiobjective cuckoo
search algorithm and multiobjective FPA are combined with the blade element
momentum theory by Tahani et al. [31]. According to the results, the Pareto fronts
achieved by multiobjective FPA and NSGA-II have better quality than the others.
Tahani et al. [32] used hybrid FPA/Simulated Annealing algorithm in optimization
of Photovoltaic (PV)/Wind Battery stand-alone systems.

The influence of PV panels tilt angle was considered for the wind speed by using
computational fluid dynamics simulation. Tahani et al. [33] developed a new
heuristic method by combining FPA, grey wolf optimizer and elephant herding
optimization in order to optimize the straight blade vertical axis of wind turbines.
The proposal is effective on enlarging the average velocity magnitude around the
optimized blade, momentum and power coefficient. Mahtad and Srairi [34] pro-
posed a flexible power system planning strategy using a new adoptive partitioning
flower pollination algorithm for solving the security optimal power flow consid-
ering faults at critical generating unit. Shilaja and Ravi [35] developed a new
methodology based on combined emission economic dispatch for PV plants and
thermal power generation units. The methodology uses the variants of FPA called
Euclidean affine FPA and binary FPA. Artificial Bee Colony and FPA were
combined by Ram et al. [36] to generate a new hybrid bee pollinator flower pol-
lination algorithm for solar PV parameter estimation. The hybrid method has faster
execution speed in evaluation with the compared algorithms.

In addition, Dubey et al. [37] hybridised FPA with differential evaluation and
combined the hybrid algorithm with time-varying fuzzy selection mechanism for
solving wind integrated multi-objective dynamic economic dispatch problem of
power systems. The developed method effectively searches the best compromise
solution to satisfy the three objectives related with total operating cost, emission
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content and power loss. Namachivanyam et al. [5] employed a modified flower
pollination algorithm for reconfiguration and capacitor placement of radial distri-
bution systems because the common methods of reducing power loss and
improving voltage profile are network reconfiguration, shunt capacitor placement,
distributed generation and high-voltage distribution systems. Xu and Wang [38]
incorporated FPA with the Nelder-Mead simplex method and the generalized
opposition-based learning mechanism for parameter estimation of PV modules. The
different solar cell models such as the single diode model, the double diode model
and a PV module was tested in order to show the effectiveness of the algorithm.

Furthermore, FPA based methodologies have been used for controller design of
power systems. Abdelaziz and Ali [39] employed FPA for robust tuning of a static
VAR compensator damping controller to reduce power system oscillations.
Jagatheesan et al. [40] developed a FPA based approach for optimum tuning of
Proportional-Integral Derivative (PID) controllers in load frequency control of
multi-area interconnected power systems by estimating the controller parameters
such as proportional gain, integral time derivative time. The FPA based method
shows better performance than genetic algorithm and particle swarm optimization
based method for power systems with and without non-linearity effect. Dash et al.
[41] optimally tuned Proportional Integral-Proportional Derivative (PI-PD) con-
trollers by FPA for automatic generation control of multi area power system.

On the other hand, FPA has been used with neural networks in order to predict
the crude oil price in Dubai by Chiroma et al. [42] and the weights and bias of
neural network were optimized.

3.4 Mechanical Engineering

Several basic mechanical engineering optimization problems such as speed reducer,
gear train, tension/compression spring design and pressure vessel have been
investigated by employing two hybrid FPA algorithms combined with frog leaping
local search [12] and simulated annealing [11]. Abdel-Baset and Hezam [11] also
investigated optimum heat exchanger design, corrugated bulk head optimum
design, optimum welded beam design and PID controller tuning for step response.

Kaviranyani and Kumar [43] employed FPA for stabilization of the rotary
inverted pendulum system and the method minimizes the loss occurred because of
time delay.

In production and manufacturing industry, the optimization of multi-pass turning
parameters were done by using an improved FPA. The improvement contains the
initialization of population by using good point set and Deb’s heuristic rules [44]. In
addition, in production, the optimization of process of transmission laser welding of
dissimilar plastics was done by using FPA and response surface methodology [45].
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3.5 Electronical and Communication Engineering

Metaheuristic methods have been often employed in the wireless communication
systems. Chakravarthy and Rao [46] developed a FPA based method to position
nulls of circular array antennas and FPA based method needs less computation time
comparing to genetic algorithm. Chakravarthy et al. [47] implemented FPA to
synthesis of circular array antenna for side lobe level aperture size control. By using
Cauchy based global pollination, enhanced local pollination and dynamic switch
probability, FPA was improved by Singh and Salgotra [48] to solve pattern syn-
thesis of linear antenna arrays.

Shukla and Singh Bhandari [49] employed FPA for optimization problem of
spectrum sensing in cognitive radios. FPA is an effective approach for spectrum
sensing since it has a good convergence rate.

Mahata et al. [50] employed the hybrid algorithm of Abdel-Raouf and
Abdel-Baset [51] combining particle swarm optimization and FPA for the design of
wideband infinite impulse response digital differentiators and digital integrators.

Sharawi et al. [52] used FPA in the proposal of a wireless sensor network
(WSN) energy aware clustering formation model. The objective of method to obtain
a global optimum for WSN lifetime. The FPA based method sustains an effective
balance power utilization of sensor nodes and lifetime extension of WSN com-
paring to classical approach. Hajjej et al. [53] developed an FPA based method to
find the best nodes deployment with maximal convergence in a wireless sensor
network. The method outperforms classical forms of particle swarm optimization
and genetic algorithm.

3.6 Computer Science

In image compression, FPA was employed by Kaur et al. [54] in order to decrease
the search complexity of matching between range block and domain block. Ouadfel
and Taleb-Ahmed [55] employed FPA for multilevel image thresholding problem.
Wang et al. [56] solved a planar graph colouring problem by using a variant of FPA
which uses local greedy strategies such as local swap operator and local
sub-sequence reverse operator. Zhou et al. [57] employed FPA on the optimization
process of shape matching problem based on atomic potential matching model and
the previous approaches are outperformed. Emary et al. [58] presented an auto-
mated retinal blood vessels segmentation approach employing FPA which searches
the optimum clustering of retinal image into compact clusters under some con-
straints. A binary FPA in which the search space is an n-dimensional Boolean
lattice updating the solution across the corners of hypercube is employed by
Rodrigues et al. [59] for electro encephalogram signal based person identification.
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In solving Sudoku puzzles, FPA combined with chaotic harmony search out-
performed the classical harmony search in means of minimum numbers of iterations
[60].

Data clustering is also an active area of metaheuristic algorithms. Jensi and Jiji
[61] proposed a hybrid approach combining K-Means algorithm and FPA. The
hybrid method finds optimal cluster centres since the F-measure value is increased.
Wang et al. [62] proposed FPA with bee pollinators for clustering in date analysis
and data mining technique. Comparing to classical metaheuristic and K-Means
algorithm, the results of the numerical experiments proves the effectiveness of the
hybrid FPA method on accuracy and stability.

3.7 Other Engineering Applications

FPA has been modified and employed for the discrete problems of project
scheduling which is constrained by resources. According to the results, FPA out-
performed several classical metaheuristic algorithms [4].

Lazim et al. [63] obtained and improved polygon simplification methodology
which is a type of cartographic generation. The FPA based improved method
outperformed the standard simplification procedure in computing time.

An improved variant of FPA was developed by Zhou and Wang [64] in order to
enhance the search ability for solving optimum path planning of unmanned
undersea vehicles and the improved FPA was generated by using three strategies
such as particle swarm optimization in local search, dimension evaluation and
improvement strategy and dynamic switching probability strategy. Zhang et al. [65]
proposed a novel model with combination of complete ensemble empirical mode
decomposition adaptive noise, FPA with chaotic local search, five neural networks
and no negative constraints theory for short-term wind speed forecasting. The novel
method is effective in high-precision wind speed predictions.

4 Conclusions

As we have seen from the above reviews, FPA has been used in the development
and solution of a wider range of engineering design problems. Generally speaking,
the classical form of FPA outperforms the classical and several modifications of
other metaheuristic algorithms. In order to enhance the computational capacity and
preventing to local optima, FPA has been modified or combined with other algo-
rithms in development of hybrid methods and these hybrids often obtained the best
results in a variety of applications.

Further research opportunities exist in many areas. For example, discrete and
combinatorial optimization is an area that requires more case studies. In addition,
the application of FPA in data mining such as feature selection and classifications
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can be very useful. In structural and shape optimization, FPA can be applied to even
larger-scale problems and in combination with more complex design evaluation
tools such as finite element methods. Furthermore, wireless sensor networks and
smart homes with smart sensors can be an important area for further research.
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Bat Algorithm and Directional Bat
Algorithm with Case Studies

Asma Chakri, Haroun Ragueb and Xin-She Yang

Abstract In recent years, the Bat Algorithm (BA) is becoming a standard opti-
mization tool used by scientists and engineers to solve many problems in different
engineering fields. One of the most important characteristics of the bat algorithm is
its easy, comprehensible structure which simplifies the computer implementation, in
addition to its ability to obtain reliable results for low dimensional problems. As the
problem complexity increases, several studies pointed out that premature conver-
gence may occur when the algorithm may get trapped at a local optimum. To
overcome this without losing the main BA characteristics (simplicity and reliabil-
ity), the directional echolocation has been introduced to the mainframe of BA to
become what is known as the directional Bat Algorithm (dBA). In this paper, we
discuss the main features of the dBA and their contributions in improving the
exploitation and exploration capabilities of the standard BA. We also analyze the
performance of dBA in optimizing unimodal and multimodal functions in addition
to a constrained engineering problem. The results are compared with those obtained
by BA and also a new competitive improved BA version, namely the Novel Bat
Algorithm (NBA). The ANOVA one way analysis has demonstrated the superiority
of the directional bat algorithm.

Keywords Bat Algorithm ⋅ Directional bat algorithm ⋅ Echolocation ⋅
Optimization ⋅ Nature-inspired algorithm ⋅ Swarm intelligence

A. Chakri (✉)
Industrial Mechanics Laboratory, Department of Mechanical Engineering,
University Badji Mokhtar of Annaba (UBMA), BP12-23000 Annaba, Algeria
e-mail: chakri.as623@gmail.com

H. Ragueb
Energy and Mechanical Engineering Laboratory, Department of Mechanical Engineering,
Faculty of Engineering Sciences, University M’hamed Bougara of Boumerdes (UMBB)
Avenue of Independence, 35000 Boumerdes, Algeria

X.-S. Yang
School of Science and Technology, Middlesex University London, The Burroughs,
London NW4 4BT, UK

© Springer International Publishing AG 2018
X.-S. Yang (ed.), Nature-Inspired Algorithms and Applied Optimization,
Studies in Computational Intelligence 744, https://doi.org/10.1007/978-3-319-67669-2_9

189



1 Introduction

To find their way even in a complete darkness, bats use sophisticated echolocation
to map their surrounding environment. By emitting a short pulse of sound waves
and then listening to their echoes, they can distingue prey from objects and dan-
gerous predators. Based on this behavior, Xin-She Yang [1] developed a new
optimization algorithm, called the Bat Algorithm (BA). BA falls into the same
category of algorithms, called swarm intelligence, such as Particle Swarm Opti-
mization (PSO) [2], and Ant Colony Optimization (ACO) [3]. BA uses a population
of bats for the search of the global optimum. Soon after its appearance in the
literature, BA starts to attract the attention of several researchers around the world
due to its two major characteristics. The first one, BA is highly efficient and reliable
in the search of the global optimum for low dimensional problems. The second is its
easy structure. BA is so easy to implement that it can be programmed using any
computer languages under a few dozen lines of codes.

The bat algorithm has been used to solve several engineering problems [4]. It
was used to optimize the brushless DC wheel motor [5], sizing battery for energy
storage [6], power system stabilizer [7, 8] and power dispatch [9]. Moreover,
researchers also found various applications of BA in many disciplines such as the
path planning of uninhabited combat air vehicle (UCAV) [10], structural damage
detection [11], fault diagnosis [12], image processing [13, 14], and others such as
flow shop scheduling [15] or simply planning sports training sessions [16]. How-
ever, as the problems’ complexity increases, the algorithm’s performance may show
some premature convergence [17, 18]. This premature convergence of the algorithm
may be due to the lack in the exploration ability. To overcome this deficiency, some
researchers have proposed several improvements with the aim to enhance the
standard BA’s performance for general optimization use [19–22], while others
modified BA to fit for certain specific tasks such as the traveling salesman problem
[23], large-scale truss structures [24], structural reliability [25], heart attack
detection [26], micro-grid management [27] and others [28–30]. These improved
variants of BA were built using different techniques like hybridization, adaptation,
bio-inspiration and others that will be discussed later in this chapter.

One of the prominent variants of BA is the directional Bat Algorithm
(dBA) proposed by Chakri et al. [31]. The key idea of this algorithm is to use the
directional echolocation with other modifications to improve the exploration and
the exploitation capabilities of the bat algorithm. The newly proposed algorithm
was tested on several complex benchmarks and the results were compared with
those of 20 other standard and sophisticated algorithms including 6 improved
variants of BA. The non-parametric statistical tests showed the superiority of the
directional bat algorithm. This algorithm was successfully applied to solve

190 A. Chakri et al.



probabilistic constrained problems, typical to structural reliability based design
optimization field [32]. In this chapter, we will explore more the working system of
dBA, and how the proposed improvements can enhance the exploration and the
exploitation ability and how to adjust their proportion during the optimization
process.

In the next section, a brief description of the standard bat algorithm followed by
a detailed review of different BA variants in the current literature. We will present
and discuss the dBA properties in Sect. 4. After that, we conduct a series of tests on
benchmark problems and comparisons with standard BA and new improved variant
called the Novel Bat Algorithm (NBA). We will use the ANOVA One Way test to
examine the performances of the three algorithms. Finally, we conclude in Sect. 6.

2 Description of the Standard BA

The standard Bat Algorithm is a swarm-intelligence-based algorithm, developed by
Xin-She Yang [1], inspired by the echolocation process of microbats. The bats are
masters of sensory, with their large ears, they can detect the bounced sound waves
they have emitted, and process the echo signals to create a mental configuration of
their environment in a similar way to the sonar. This behavior, called echolocation,
enables the bats to fly freely and with the ability to detect food or prey. From
observations, Yang [1] developed the standard BA using three major idealized
rules:

• All bats use echolocation to sense distance and the location of a bat xi is encoded
as a solution vector to an optimization problem under consideration [1].

• Bats fly randomly with velocity vi at position xi with a varying frequency (from
a minimum fmin to a maximum frequency fmax) and loudness A to search for
prey. They can automatically adjust the frequencies of their emitted pulses and
the rate of pulse emission r depending on the proximity of the target [1].

• Loudness varies from a large positive value A0 to a minimum constant value
Amin [1], while pulse emission rate r varies from a lower constant value to a
higher value.

For more details on the bats behavior and characteristics during roaming and
foraging, the readers can refer to the original work of Yang [1].

From the implementation point of view, a bat’s motion is governed by two
modes of flight. The first mode (or we can call it a global step) is the guided flight
mode in which all bats are directed toward the bat with the best location (that is the
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solution with the best fitness value). Thus, for the i-th bat at a location, xi, with
velocity, vi, in a d-dimensional search space, the rules for updating its location
(solution) and velocity are given as in [1]:

fi = fmin + ðfmax − fminÞβ ð1Þ

vt+1
i = vti + x* − xti

� �
fi ð2Þ

xt+1
i = xti + vt+1

i ð3Þ

where β∈ [0,1] is a random vector drawn from a uniform distribution, and x* is the
current global best solution found so far (the best bat/location). As it can be seen
from Eq. (2), the motion of the bats is subject to the information from the best bat.
By directing the bats to the best one, it enables them to exploit more the possessed
information and seek for a better solution.

The second mode of flight is what we call the local search step. A new location
for each bat is generated locally using the following updating equation:

xnew = xold + ε<At+1 > ð4Þ

where ε∈ [-1,1] is a random number, while <At+1
i > is the average loudness of all

the bats at time t.
The control of the auto-switch between the first and the second mode of flight is

obtained by the tuning of two parameters, namely, the loudness Ai and the rate of
pulses emission ri (or the pulse rate). These parameters are updated during the
iterations process, the loudness decreases while the pulse rate increases as the bat
gets closer to its prey. The equation for updating the loudness and the pulse rate are:

At+1
i = αAt

i ð5Þ

rt+1
i = r0i 1− expð− γtÞ½ � ð6Þ

where 0 < α < 1 and γ > 0 are constants. As t→∞, we have At
i → 0 and rti → r0i .

Yang [1] proposed that the initial loudness A0 can be A0∈ [1, 2], while the initial
pulse rate r0∈ [0, 1]. The pseudocode of the standard bat algorithm is summarized
in the pseudocode as shown in Algorithm 1.
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Algorithm 1. 
The standard bat algorithm.

01. Define the objective function 
02. Initialize the bat population Li  ≤  xi ≤ Ui (i=1,2,..,n) and vi
03. Define frequencies fi at xi
04. Initialize pulse rates ri and loudness Ai
05. While (t ≤  tmax)
06. Adjust frequency, Eq. (1).
07. Update velocities, Eq. (2). 
08. Update locations/solutions, Eq. (3). 
09. if (rand > ri)
10. Generate a local solution around the 

selected best solution,  Eq. (4).
11. end if
12. if (rand < Ai & F(xi) < F(x*))
13. Accept the new solutions
14. Reduce Ai, Eq. (5).
15. Increase ri, Eq. (6).
16. end if
17. Rank the bats and find the current best x*

28. end while
29. Results processing

3 Survey on the BA Improvements

There are quite a lot of techniques that have been used by researchers to improve
the bat algorithms. The most popular method is to hybridize BA with other
metaheuristic algorithms in order to overcome the exploration deficiency with
techniques borrowed from the other algorithms. Another method consists of using
adaptive parameters for a better control of the balance between exploration and
exploitation in the search process. Some authors suggested to increase the ran-
domness in the bats movements by either transforming the search space into other
spaces (i.e., binary space, complex space), or using chaotic sequences.

Other authors revised the bats behavior for bio-inspired improvements. For a
comprehensive review of BA’s variants, we have categorized the improved variants
of BA into six categories: the hybrid variants, adaptive parameters variants, search
space alteration, chaotic variants, bio-inspired variants and others. This classifica-
tion is not definitive as some BA version can be identified in more than one group;
however, we focus here on the most dominant improvement.

3.1 Hybrid Variants

Differential Evolution (DE) [33] was the first to be hybridized with BA. Fister Jr.
et al. [18] proposed to replace the original local search equation by the differential
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operator strategy “DE/rand/1/bin”, while the main framework of the bat algorithm
remains unchanged. The aim of this modification is to induce additional random-
ness in the bats movement, thus to enhance the exploitation capability of the
standard BA. In [19], the authors replaced also the local search equation by four
different DE strategies with self-adaptive selection mechanism. Three of these
strategies, namely, DE/randToBest/1/bin, DE/best/2/bin and DE/best/1/bin have the
ability to direct the bats movement toward the current best position which improves
the exploitation, while the fourth strategy (DE/rand/1/bin) improve the exploration
as we mentioned before. In another paper [34], the authors used ten DE strategies
for the local search part, where the candidate selection is obtained through Random
Forest regression [35]. Meng et al. [36] used also the “DE/rand/1/bin strategy but
they added a supplementary step in addition to the two steps of the bat algorithm.
However, the candidate selection is based on the fitness value and feasibility (in this
case, the algorithm was built to solve constrained problems); as a result, the number
of function evaluation is multiplied by two for each iteration.

Xie et al. [37] proposed to replace the bats flights equation by the differential
strategy “DE/best/2” to improve the exploitation; moreover, they added an addi-
tional step similar to the local search, using the Lévy Flights trajectory to increase
the randomness in the search. Unlike the original local search steps, this step is
controlled by the loudness, A, instead of the pulse rate, r. He et al. [38] hybridized
the bat algorithm with Simulated Annealing (SA) [39] and Gaussian perturbation.
When the initial population is generated, the authors used SA to update the best
solution, followed by the standard bats movements/equations. When the new
candidates are obtained, Gaussian perturbation is applied. The selection is based on
the fitness value, and thus the number of function evaluation is doubled at each
iteration.

Wang and Guo [40] introduced the Harmony Search algorithm (HS) [41] to the
standard bat algorithm. The proposed framework consists of an additional third step
that controls the bats movement using the HS equations. In addition, they con-
sidered the local search as a separate step, which, in some cases where the statement
“rand > r” is true, we end up with three candidates. The selection between these
candidates is based on the fitness value, thus the number of function evaluation can
be between 2 N and 3 N for single generation.

Nguyen et al. [42] hybridized the bat algorithm with Artificial Bee Colony
(ABC) [43]. Each algorithm works separately; however, for a certain set of itera-
tions, the two algorithms communicate between them the best individuals. The poor
individual of each algorithm are replaced by the communicated new ones. This
strategy of communication is similar to the technique used in the parallelized bat
algorithm proposed by Tsai et al. [44].

Yilmaz and Küçüksille [45] proposed to replace the local search steps with
(IWO) algorithm [46]. In addition to that, two other modifications were embedded
to the velocity equation. First, they added an inertia weight factor to control the
contribution of the old velocity to the generated ones; second, they introduced a
random selected solution to the velocity with a learning factor. The results showed
good improvement on the minimization of unimodal and multimodal functions.
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3.2 Adaptive Parameters

Chen et al. [47] proposed to improve the standard bat algorithm by adjusting the
frequency. The main idea is to incorporate the flight direction in the frequency
generating process, so that the bats can adjust properly their flight toward the best
position. This strategy can improve highly the exploitation capability of BA,
however, the decrease in the flight randomness can reduce the probability of dis-
covering new solutions far away from the current best position. Wang et al. [48]
suggested to link the velocity with the distance between the current bat and the best
bat with a speed factor. Thereby, the longer the distance between them, the faster
the speed of flight. In addition, the last part of local search equation (Eq. (4)) is
replaced by a shrinking factor that starts from a fixed value and decrease expo-
nentially with the iteration process. These adjustments increase the convergence
speed, however they do not improve the exploration ability of the algorithm. With
analogy to the self-adaptive DE, named jDE [49], Fister Jr. et al. [50] developed the
self-adaptive BA by replacing the updating equations of the loudness and the pulse
rate with randomly generating process.

The Modified Bat Algorithm (MBA) introduced by Yilmaz et al. [51] has the
same frame as the standard BA. The main modification proposed by the authors is
that, instead of defining a scalar value of the loudness and the pulse rate for a single
bat, they assigned a vector component for A and r with same dimension as xi.
Therefore, when it comes to the local search part, a random vector is generated and
only the component of xij that satisfies the condition randj > rij is updated. This
strategy is also adopted for updating Aij and rij. By equalizing the pulse rate and the
loudness to the problem dimension, the authors aim to enhance the exploration
capability of the algorithm. Kabir and Alam [52] proposed to multiply the last part
of Eq. (4) by a random number generated using either Gaussian or Cauchy dis-
tribution. The Gaussian and the Cauchy distribution are known that occasionally,
they generate large numbers where the appearance probability of these numbers is
higher for Cauchy distribution than the Gaussian one. Thus, the Gaussian distri-
bution is more suited for exploitation, while the Cauchy distribution is more
adapted for exploration. To achieve the balance between them, a selection strategy
with a learning period is adopted to select the probability of applying each
distribution.

Xue et al. [53] performed an analysis on the optimal settings of BA parameters
(pulse rate, loudness, frequency, α and γ). To achieve their goal, the authors use the
orthogonal experimental design methodology [54], which is a famous strategy for
multi-level multi-factor experiment design. The experiments have been conducted
on unimodal and multimodal functions and the obtained optimal setting are: f∈
[0,5], r0 = 0.9, A0 = 0.9, α = 0.99 and γ = 0.9. Pérez et al. [55, 56] proposed to
use fuzzy logic for the dynamic adaptation of the BA parameters to improve the
optimization process. In the first paper [55], they used the Mamdani-Type fuzzy
system to control the adjustment of the loudness and the frequency boundaries (fmin
and fmax) during the iteration process, whereas in the second paper [56], they
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applied Type-1 and Type-2 fuzzy logic systems for dynamic adaptation of β and the
pulse rate. The presented results in both papers [55, 56] were good; however, it was
not clear how the fuzzy logic system contribute in the improvement of the algorithm
capabilities.

3.3 The Search Space Alteration

To solve certain kinds optimization problems such as the knapsack problem [57],
fault diagnosis [12], feature selection [58] and others, Binary Bat Algorithm
(BBA) has been developed to overcome the inherent difficulties of such problems.
For the case of feature selection problem, the search space is an n-dimensional
Boolean lattice, thus the bats fly from corner to corner of hypercube. Since the
problem consists of selecting or not a given feature, Nakamura et al. [58] proposed
a binary version of the BA by assigning a binary vector that represents the bats
positions, where their movements are restricted to binary values using a sigmoid
function. Using the same concept, Mirjalili et al. [59] generalized the BBA to solve
continuous optimization problem in real space. By converting the continuous real
space search to binary space search, the authors aim to improve the exploitation and
exploration capabilities of the bat algorithm. Huang et al. [60] suggested to
incorporate an inertia weight and learning factor to the velocity equation with a
dynamic updating mechanism to improve the BBA proposed in [59].

With some similarity to the BBA in changing the search space from real to
binary, the complex valued BA proposed by Li and Zhou [22] consist of trans-
forming the real search space to a complex one. The main idea is to convert the bat
position to complex representation with real and imaginary parts. Each part evolve
separately using the BA equations, then, the yielded candidates are converted to the
real space where their absolute value is equal to the modulus of the complex
number, and the sign is obtained using the argument. This strategy can enhance the
diversity of population for a better exploration of the search space. To increase the
diversity, Fister et al. [61] proposed to use a quaternion representation of the bats
positions. That means for a single dimension of the bat’s position is represented
with a vector of four dimensions that evolve separately, and the conversion from the
quaternion space to the real space is obtained by evaluating the l2-nome. This
algorithm may be similar the complex-valued BA, the main differences are in the
vector’s dimension associated for each single coordinate value of the bat’s position
and the equations used to convert this vector to a real scalar value.

3.4 Chaotic Sequences

Afrabandpey et al. [62] stated that to overcame the premature convergence problem
of the bat algorithm, the random initialization process of the algorithm parameters
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(pulse rate, loudness and frequencies) should be well distributed in their corre-
sponding limits. To achieve their goal, chaotic sequences have been used in the
initialization process, due to the fact that, they generate well distributed numbers far
from the strange attractors of the chaotic maps. An implementation technique to
avoid the chaotic attractors in Gauss and Tent maps is presented, and the results
show good improvement compared to the standard BA on benchmark functions.
Instead of the initialization process only, Abdel-Raouf et al. [63] applied the chaotic
sequence for frequency generation during the iteration process. They used the
sinusoidal map and they modified the standard BA to solve integers programming
problems. The results show good potential in solving NP-hard problems.

In the proposed Chaotic Lévy flight BA [64], the authors used the logistic map to
generate chaotic sequences which then applied to control the frequency and as a
parameter for the Lévy flight. The authors also replaced the local search equation in
the original BA by the Lévy flight, and applied the proposed algorithm in the
reconstruction of dynamic nonlinear biological systems. Jordehi [65] analyzed the
efficiency of six variants of the chaotic BA, the previously discussed three variants
[62–64] and three others versions presented within the main paper [65]. The first
version of the chaotic BA proposed by [65] consists of replacing the loudness
updating equation with a linearly decreasing chaotic function, the second version
uses chaotic linearly increasing function to update the pulse rate, while the last one
hybridizes the previous two strategies. Eleven chaotic maps have been considered,
and the results showed that the first version of the chaotic BA that uses the iterative
chaotic map with infinite collapses exposed the best performance among the other
variants.

Gandomi and Yang [21] also analyzed the use of chaotic sequences to increase
randomness in the optimization process. They proposed four strategies to use
chaotic sequences with eleven chaotic maps. The first strategy consists of replacing
the parameter β in Eq. (1) with chaotic sequence. The second is to integrate chaotic
sequence in the computation of the velocity. The third is developed by replacing the
loudness updating equation with chaotic maps, while in the fourth they replace the
pulse emission rate. The results showed that replacing the pulse rate with chaotic
sequence based on sinusoidal map is more effective than the others.

3.5 Bio-Inspired Improvement

The Evolved BA propose by Tsai et al. [17], has the same framework of the
standard BA but with different updating strategy of the bats positions. The authors
reanalyzed the bats behavior with consideration the general characteristics of the
whole species of bats. According to their analysis, they redefined a new equation of
movement based on the propagation of the sound’s waves on the air from the source
to the target and the way-back. The distance from the source to the target is
measured, and then used to generate a new solution. In addition, new equation for
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the local search part is proposed in the form xtRi = β ⋅ ðxbest − xtiÞ, where β is a random
number. The last equation has one meticulous property, that it directs the new
generated solutions toward the position x = [0,…,0]T (the zero vector or the origin).
Since the majority of the benchmark functions have their optimal solutions at the
origin (the zero vector), such as the sphere function, Rastrigin’s function, Ackley’s
function and others, the results obtained through this algorithm can mislead the
readers on the efficiency of the proposed approach. Two others papers have been
propose to improve the search capacity of the Evolved BA [66, 67], however, in
both works, the proposed equation for local search part was kept. The resulted
algorithms are characterized by a rapid convergence toward the zero vector with
weak search capacity.

The bat algorithm with recollection proposed by Wang et al. [68], was developed
after new observations on the flight behavior of bats. The first observation is that the
bats can use various flight modes so that they cannot be trapped in a blind alley. The
second is that they have a conditioned reflex in their flights which is regarded as a
kind of recollection function. To adjust the standard BA according to these new
rules, the authors inserted an inertia weight that decreases exponentially from a
maximum to a minimum in the updating equation of the velocity. In addition, they
embedded a dynamic control parameter in the last part of Eq. (3) to control the bats
search range. The authors also considered the time-delay that exists in the hunting
process of bats. They assumed that when a bat detects a prey and starts to fly toward
it, in this short period of time, the prey can change its location to the surrounding
space, thus, to adapt BA to this new process, they proposed a new local search
equation controlled by a time-delay disturbance-factor.

In the proposed Guidable BA (GBA) by Chen et al. [69], the authors introduced
the Doppler Effect to enable the guidance of bats by shifted frequency. As it is
known, the Doppler Effect produces a frequency shift as the sound travel in the air
between the source and the observer. In order to achieve their objective, the authors
introduced a new strategy they named Next-generation Evolutionary computing
(EC 2.0), based on the collective-effect and context-awareness, to accord the bats
the ability to sense the environmental changes by physical laws. The guidable BA is
based on six steps: initialization, guidable search, refined search, updating the
current best bat, divers search and lastly updating the bat behavior. The resulted
algorithm is composed of fourteen updating equations. However, if we analyze the
presented results, the algorithm was tested with two benchmark functions namely,
the Griewangk function and the Rastrigin function, where their optimal solution is
the zero vector. The assumed population consists of 40 bats, and the maximum
number of iterations was set to 1000. From their tables, we can see that for the best
run, the optimal solution of the Griewangk is achieved after 15 iterations for
dimension of 64 and 335 iterations for dimension 128. The optimal solution of the
Rastrigin function was achieved after 12 iterations for dimension 20, and 17 iter-
ations for dimension 30. Similar to the evolved bat algorithm [17], one can con-
clude that the presented framework of the guidable bat algorithm is directed toward
the zero vector, which can explain the remarkable achievement of the GBA.
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The Novel Bat Algorithm (NBA) proposed by Meng et al. [70], incorporates the
bat’s habitat selection and a strategy for adaptive compensation for the Doppler
effect. The authors indicated that the foraging habitats of bats differ from one
species to another. Some of them may forage in forest, some other near water
source, and moreover, a study recorded bat activity in urban landscape [71]. In the
standard BA, Meng et al. [70] stated the bats’ motions are governed by the laws of
classical mechanics which restrict their foraging space to a single habitat. To enable
the bats to forage in different habitats, quantum behavior has been attributed for
each bat so they can forage in a wide range of habitats. Thus, the motion of bats is
controlled by the wave equation, Ψ, which allow them to appear spontaneously in a
position, x, based on the probability density function |Ψ|2. In another part, the bats
are allowed to use classical mechanics in their flights (the standard updating
equation of BA), however, a compensation strategy for the Doppler effect is inte-
grated to the frequency generation equation and an inertia weight to the velocity.
The local search part was also modified by inserting random Gaussian distribution
with mean 0 and standard deviation related to the loudness. The experiments
conducted by the authors on benchmark functions and engineering problems shows
the efficiency of the proposed algorithm over the standard BA, with a convergence
rate slightly superior to the PSO algorithm.

Cai et al. [72] stated that when the bats seek for food (prey or as they called
energies), they must spend calories in the seeking process. Therefore, it is logical
that the bats prefer to select a seeking strategy that cost less in energy. This strategy
was called by the authors “optimal forage strategy”. Inspired by this phenomenon,
the authors proposed to replace xold in Eq. (4) of the local search part, by the
position of the bat that achieved the best benefit when seeking for food. This benefit
is computed as a ratio between the difference of the old and the new fitness value
over the distance among all the bats. In addition to that, random disturbance
strategy is applied to the velocity updating equation to improve the global explo-
ration capability of the algorithm. Their results showed significant enhancement
over the standard BA.

3.6 Others

Ghanem and Jantan [73] proposed an enhanced BA with a mutation operator. The
basic framework of the standard BA was kept, however, they added a third step, the
mutation stage, after the local search part with the aim to improve the global
exploration. The yielded algorithm was tested on 24 classical benchmark functions
with dimension set to 20, 50 and 100. Fifty bats were used in the optimization
process for 50 iterations. The results were compared with those of 12 other algo-
rithms including the standard BA. A remarkable observation is that the proposed
algorithm achieved the theoretical optimum of 13 functions over 24 even for
dimension 100 considering the allocated effort (50 bats and 50 generation). Another
remark is that the functions, where the algorithm had the best performance, all have
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their optimal solution located at the space origin (the zero vector). This can be
explained b the fact that the proposed mutation equation has tendency to converge
toward the zero vector. The mutation operator consists of two equations,
xtv =0.5 × ðxtworst − xtvÞ× rand½0, 1Þ and xtv =0.5 × ðxtv − xtbestÞ× rand½0, 1Þ. There-
fore, when one of these updating equations is selected, there is a high probability
that xtv can be too close to xtbest(or xtworst) or even equal, thus, the resulted new
position is approximately the zero vector. Since the selection is based on the fitness
value, it is evident that the new position will be accepted; consequently, in the next
generation, all the bats will be directed to this location which explains the high
convergence ratio of this algorithm for the 13 functions.

The bat algorithm with Gaussian walk proposed by [20], is similar to the
standard BA; however, Gaussian random walk is used in the local search step to
enable the algorithm to escape from local minima. In addition, the bats are allowed
to update their velocity either by using the old velocity or not. Their results showed
a good improvement compared to the standard BA.

Inspired from the compact PSO [74], Dao et al. [75] developed the compact bat
algorithm with the aim to reduce the memory consumption so that the BA can be
installed on low-price hardware. The main idea is to use a probabilistic represen-
tation instead of a population of solution, thus, a small number of parameters have
to be stored. The simulation shows significant reduction in memory usage and
computation time.

4 The Directional Bat Algorithm

The directional Bat Algorithm (dBA) proposed by Chakri et al. [31] has the same
procedure or flowchart as the standard bat algorithm. The strategy of flight with two
modes was kept, however, the directional echolocation has been embedded to the
first mode of flight as a main navigation system as well as to others modifications.

The directional echolocation can be described as follows: when the bats are flying,
they emit continuously short sound waves to their environment so by analyzing the
echoes, they can create a 3D map of their surroundings. In addition, they can retrieve
information of other bats such as their positions, and if there is food around them or
not. We assume that each bat emits two pulses into two different directions before
deciding in which direction that it will fly, one pulse toward the leader with best
position (solution), and another pulse to the direction of a randomly selected bat. From
the echo (feedback) the bat can knows the existence of food around these two bats or
not. The food is represented by the fitness value, thus, around the best bat (or leader)
the food is assumed to exist, but around the second randomly selected bat, it depends
on it fitness value. If it has a better fitness value as the actual bat, then the food is
considered to exist, otherwise there is no source of food.

As it is shown in Fig. 1, there are two flight scenarios. The first one is once the
food is confirmed to exist around the two selected bats. That means, a rich source of
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food exists in abundance at the surrounding neighborhood of the two bats, and the
bat will fly to this region. If the food does not exist around the randomly selected
bat as the food source became scarce, the bat will fly toward the leader to compete
for food (the second scenario). The updating equations of the bat’s position can be
described as the following:

xt+1
i = xti + ðx* − xtiÞf1 + ðxtk − xtiÞf2
xt+1
i = xti + ðx* − xtiÞf1 Otherwise

(
ð7Þ

where xtk is the position of randomly selected bat (k ≠ i) and x* is the position of
the leader bat (or the best solution). The F(.) is fitness function, while f1 and f2 are
the frequencies of the two pulses and defined as follows:

f1 = fmin + ðfmax − fminÞrand1
f2 = fmin + ðfmax − fminÞrand2

(
ð8Þ

Both rand1 and rand2 are two random vectors drawn from a uniform distri-
bution between 0 and 1.

One particularity of Eq. (7) that it has the ability to diversify the flights’
directions of the bat swarm. At the begging of the iteration process, the distances
between bats are large which gives them the ability to explore wide ranges of the
search space, thus we enhance the exploration capability and avoid premature
convergence. Furthermore, as the iteration process proceeds, the bats have a ten-
dency to gather around the leader bat which reduces the distance between them.
Consequently, a strong exploitation process is engaged which enhances the speed of
convergence. Equation (7) can promote different capabilities at different stages of
iterations, leading to a better flight strategy and enhanced performance [31].

Fig. 1 Hypothetical figure of the directional echolocation
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To improve the second mode of flight (the local search step), Chakri et al. [31]
introduced a scale factor to the updating equation as the following:

xt+1
i = xti + <At > εwt

i ð9Þ

where < At > is the average loudness of all bats and ε∈ [−1,1] is a random vector.
Here, wi is used to control the scales of the search as the iterations proceed. It starts
from a large value about a quarter of the space length of the domain, and then
decreases to around 1% of the quarter of this length. This parameter is updated as
the following:

wt
i =

wi0 −wi∞

1− tmax

� �
t− tmaxð Þ+wi∞ ð10Þ

where t is the current iteration and tmax is the maximum number of iterations. Here,
wi0 and wi∞ are the initial and final values, respectively. The wi0 and wi∞ param-
eters are set as the following:

wi0 = ðUi −LiÞ ̸4 ð11Þ

wi∞ =wi0 ̸100 ð12Þ

where Ui and Li are the upper and lower bounds, respectively.
At the initial stage, wi starts with a large value. It allows the bats to move

randomly with large steps, which gives the algorithm the ability to explore the
whole search space more effectively. As the iteration proceeds, the value of wi

decreases, which focuses the search on the neighborhood around the best solution,
and thus the exploitation capability of the algorithm is also enhanced.

The updating equation of the loudness and the pulse emission rate, Eqs. (5–6),
proposed by Yang [1] reach their final value during the iterative process quickly.
Consequently, it reduces the amount of the auto-switch between the two modes of
flight due to a higher pulse rate, and the acceptance rate of a new solution (low
loudness). Therefore, in the dBA structure, the following linearly descending and
ascending loudness and pulse rate are used, respectively:

At =
A0 −A∞

1− tmax

� �
t− tmaxð Þ+A∞ ð13Þ

rt =
r0 − r∞
1− tmax

� �
t− tmaxð Þ+ r∞ ð14Þ

where the index 0 and ∞ stand for the initial and final values, respectively.
The pulse rate plays an important role in the balance between the exploration and

the exploitation capability of the algorithm. Starting from a low value, r0, it pro-
motes the use of the second mode of flight so the algorithm can explore effectively
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the search space and avoid the premature convergence. However, this value should
not be too low, thus allowing to a small fraction of bats to exploit the solutions of
the bat with the good positions [31]. As the pulse rate value increases, the first mode
of flight takes over the second which has a better exploitation capability. For the
case of loudness, this parameter controls the acceptance or rejection of newly
generated solutions. It allows the algorithm to avoid being trapped in local optima
by rejecting some solutions. The recommended settings by [31], for the pulse rate
and loudness are: r0 = 0.1, r∞ = 0.7, A0 = 0.9 and A∞ = 0.6.

In the original BA, the bats are allowed to update their positions if and only if
two conditions were satisfied simultaneously. The first one is that a randomly
generated number must be lower than loudness A, and for the second, the fitness
value of the newly generated solution must be better than the best solution (see
Algorithm 1, line 12). The last condition can reduce the diversity of the population,
thus, we will allow to the bats to improve their position if the yielded fitness value is
better than the old one without neglecting the fulfillment of the first condition. In
addition, the best position is updated whenever the bats’ motion produces a better
solution. The framework of the proposed directional bat algorithm is illustrated in
Algorithm 2.
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5 Numerical Results and Discussion

To test the performances of the directional bat algorithm, two experiments were
conducted. The first one consists of conducting unconstrained optimization of the
first 14 benchmark functions used in the CEC-2005 competition [76]. These
functions are characterized by having their optimal solutions far and different from
the zero vector, which allow as to examine the certainty the capability of the
algorithm to discover the global optimum. In the second experiment, dBA is
applied to solve a constrained engineering problem. For the purpose of comparison,
two other algorithms have been used, namely, the standard bat algorithm and one of
state-of-the-art BA variant, the novel bat algorithm (NBA) proposed by Meng et al.
[70]. We have implemented the standard BA with the following parameter settings:
r0 = 0.1, A0 = 0.9, α = γ = 0.9, fmin = 0 and fmax = 2. The NBA’s Matlab code
has been posted on MathWorks website [77] by the lead author Xian-Bing Meng
for free use. We used this code in our experiment as it is where the setting
parameters were as recommended in [70].

5.1 Unconstrained Optimization

In this experiment, we consider a set of 14 functions of CEC-2005 competition on
real-parameter optimization. These functions were built using on the classical
benchmark functions such as Sphere, Rastrigin’s, Rosenbrock’s and others; how-
ever, their optimal solutions have been shifted to unknown positions. The use of
these functions can provide the experimenter significant information on the per-
formance of the tested algorithm. For more details, readers can refer to [76].

For a meaningful comparison, the three algorithms, dBA, BA and NBA, were
run 25 times on each problem with the same allocations of population and number
of iterations. The dimension of the considered functions was set to D = 10, the size
of population was fixed to N = 100 and the maximum number of iteration was
capped to tmax = 1000. The real optimal minimums of the 14 functions were
provided in [76], and used to compute the error between computed optimum and
the real one, thus error = fcomp – fopt. Figure 2 shows the mean of the error com-
puted at each generation of the 25 runs. As it can be seen, at the initial stage of the
optimization, the convergence of dBA is slower than the other algorithm due to
intensive exploration process that we deliberately favored over exploitation, so that
it can explore effectively the search space. However, as the iteration proceeds, the
exploitation takes over exploration, thus, the convergence speed up toward a better
solution than the competitors in most cases.

Figure 3 presents the ANOVA One-Way test results [78]. The particularity of
the ANOVA One-Way test is that it shows where the solutions of 25 runs are
located. The square mark (□) points out the mean; the mark ( × ) locates the
minimum and the maximum. The large rectangle indicates where 75% of solutions
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are located while the horizontal mid bar specifies the median. As it can be seen, for
25 runs with random initial population, dBA achieved better results than BA and
NBA in most cases; in addition, the fact the rectangle area is less in case of dBA
than the other, means that the proposed algorithm is more reliable in terms of the
solution’s quality.

Fig. 2 Mean optimization progress of BA, NBA and dBA
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Table 1 presents the mean and the standard deviation of the errors obtained in 25
runs. As it can be seen, dBA outperformed BA in all the 13 functions (except F8),
and NBA in 11 functions (except F3, F6 and F8). From the number of wins and
according to the two-tailed sign test with level of significance α = 0.05 (see Table 4
in [79]), we can say that dBA had significantly outperformed the BA and NBA.

Fig. 3 Box plot of the ANOVA results
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5.2 Constrained Engineering Problem

In this second experiment, we consider the geometrical optimization of five stage
cantilever beam, under a concentric load on tip as it is shown in Fig. 4. The
constrained optimization problem consists of 10 geometrical variables that have to
be optimized subject to 11 constraints. The mathematical description of the problem
is as defined by [80]:

Minimize the beam volume

V = l x1x2 + x3x4 + x5x6 + x7x8 + x9x10ð Þ ð15Þ

subject to five nonlinear constraints

g1 =
6Pl
x9x210

− σmax ≤ 0 ð16Þ

g2 =
6P 2lð Þ
x7x28

− σmax ≤ 0 ð17Þ

g3 =
6P 3lð Þ
x5x26

− σmax ≤ 0 ð18Þ

g4 =
6P 4lð Þ
x3x24

− σmax ≤ 0 ð19Þ

Fig. 4 Geometry of the cantilever beam
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g5 =
6P 5lð Þ
x1x22

− σmax ≤ 0 ð20Þ

one stiffness constraint

g6 =
Pl3

E
ð244
x1x32

+
148
x3x34

+
76
x5x36

+
28
x7x38

+
4

x9x310
Þ− δmax ≤ 0 ð21Þ

and five geometrical constraints

g7 = x2 ̸x1ð Þ− 20≤ 0 ð22Þ

g8 = x4 ̸x3ð Þ− 20≤ 0 ð23Þ

g9 = x6 ̸x5ð Þ− 20≤ 0 ð24Þ

g10 = x8 ̸x7ð Þ− 20≤ 0 ð25Þ

g11 = x10 ̸x9ð Þ− 20≤ 0 ð30Þ

The variables xi are assumed to be continuous and bounded as follow:

1≤ x1 ≤ 5

30≤ x2 ≤ 65

2.4≤ x3, x5 ≤ 3.1

45≤ x4, x6 ≤ 60

1≤ x7, x9 ≤ 5

30≤ x8, x10 ≤ 65

The total beam length, L = 500 cm, and the individual section length,
l = 100 cm. the beam must support a load of P = 50000 N, and maximum
deflection δmax = 2.7 cm. The allowable stress in each section is σmax = 14000
N/cm2, and the Young’s modulus E = 2 × 107 N/cm2.

The resolution of the yielded constrained problem is obtained through the use of
the static penalty method. The main idea of this method is to convert a constrained
problem to an equivalent unconstrained problem where the feasibility of the
solution is controlled by the penalty coefficients. If the solution is infeasible, the
fitness function is heavily penalized; if it is feasible, there no contribution of the
constraint in the fitness function. The equivalent unconstrained problem can be
defined as follows:
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MinF xð Þ=V xð Þ+ ∑
11

j=1
ξj max gj xð Þ, 0� �� �

Li ≤ xi ≤Ui ði=1, . . . , 10Þ

8<
: ð31Þ

The setting of the penalty parameters are subject to trials and errors, thus, we
found that using following settings: ξj = 102 for j = 1 to 5, ξ6 = 105 and ξj = 103

for j = 7 to 11, one can obtain a good feasible result.
As is in the previous experiment, the parameter setting of the three algorithms

including the population size and the number of iterations, are the same as the used
before. Each algorithm was runs 25 times, and the mean of the fitness value at every
single iteration for the three algorithms are shown in Fig. 5. One can observe that
the dBA have outperformed significantly the BA and NBA.

The statistical results of the 25 runs are summarized in Table 2. As it can be
seen, the worst solution obtained by dBA (the max), is better than the mean and the
median of the 25 runs for both BA and NBA. The low value of the standard
deviation of dBA entails the robustness and reliability of the proposed algorithm in
achieving high quality solutions. For a single run, dBA has a higher probability to
obtain better solution than the competitors. This conclusion is backed up with the
ANOVA One Way results shown in Fig. (6). The best solution in 25 runs obtained
by the three algorithm and their respective constraint values are presented in
Table 3.

Fig. 5 Mean fitness progress
of 25 runs (constrained
problem)

Table 2 Statistical results of
25 runs (constrained problem)

dBA NBA BA

Min 63113.61 63631.55 74125.97
Median 63213.30 65288.98 90499.58
Max 64245.48 71604.09 98229.06
Mean 63282.98 65920.38 89655.69
StD 265.0299 1995.299 4856.954
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Fig. 6 Box plot of the
ANOVA results (constrained
problem)

Table 3 Best solution
obtained in 25 runs and their
respective constraint values

Solution dBA NBA BA

F(x) 63113.61 63631.55 74125.97
x1 3.046682 3.103206 3.435927
x2 60.93361 60.29433 56.98366
x3 2.819806 2.795826 3.018969
x4 56.39611 55.87571 54.81524
x5 2.529725 2.563917 2.791017
x6 50.59009 51.26774 51.81262
x7 2.205159 2.247257 4.553382
x8 44.10232 44.13850 36.22565
x9 1.749758 1.791717 1.717729
x10 34.99514 34.80139 35.32845
g1 −3.28E-03 −1.75E + 02 −6.79E + 00

g2 −1.09E + 01 −2.95E + 02 −3.96E + 03
g3 −9.92E + 01 −6.45E + 02 −1.99E + 03
g4 −6.20E + 02 −2.52E + 02 −7.71E + 02
g5 −7.40E + 02 −7.04E + 02 −5.55E + 02
g6 −2.21E-07 −0.00E + 00 −5.16E-02
g7 −3.35E-05 −1.77E + 00 −1.17E + 01
g8 −1.36E-05 −4.08E-02 −5.56E + 00
g9 −4.42E-03 −1.06E-02 −4.01E + 00
g10 −8.64E-04 −8.07E-01 −5.48E + 01
g11 −1.94E-05 −1.03E + 00 +9.74E-01
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6 Conclusions

In this chapter, we have presented a new improved variant of the standard BA,
called the direction bat algorithm (dBA). This algorithm uses a new procedure for
directional echolocation as the main foraging strategy for solutions. In addition to
the other modifications that have been embedded in BA, the main advantage of this
strategy is that it offers a better control of the balance between exploration and
exploitation by favoring exploration during the initial stage, and then enhancing
exploitation at the final stage. These modifications yield a powerful algorithm that
outperforms several BA variants and can perform as much as or more of some
sophisticated algorithms that can be found in [31].

During the development of dBA, two other aims were set in addition to the
performance improvement. The first was keeping up with the BA framework, and
the second is developing an algorithm with a structure as much as easy we can.
dBA has a simple structure similar to BA with better performance. The ease
structure of dBA has several advantages such as: it can be implemented in any
computer language without the need of sophisticated coding, and it can be inte-
grated easily in electronic boards such as microchips, FPGA and others.

For further works, it will be interesting to extend dBA and analyze dBA per-
formance on multi-objective problems, and the investigation of the possibility to
use multiple directional echolocations. Furthermore, it is worth realization using the
electronic integration of dBA for real industrial applications.
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Applications of Flower Pollination Algorithm
in Feature Selection and Knapsack Problems

Hossam M. Zawbaa and E. Emary

Abstract This chapter presents one of the recently proposed bio-inspired optimiza-

tion methods, namely, flower pollination algorithm (FPA). FPA for its capability

to adaptively search a large search space with maybe many local optima has been

employed to solve many real problems. FPA is used to handle the feature selection

problem in wrapper-based approach where it is used to search the space of feature

for an optimal feature set maximizing a given criteria. The used feature selection

methodology was applied in classification and regression data sets and was found to

be successful. Moreover, FPA was applied to handle the knapsack problem where dif-

ferent data sets with different dimensions were adopted to assess FPA performance.

On all the mentioned problems FPA was benchmarked against bat algorithm (BA),

genetic algorithm (GA), particle swarm optimization (PSO) and is found to be very

competitive.

Keywords Flower pollination algorithm ⋅ Bio-inspired optimization ⋅ Evolution-

ary computation ⋅ Feature selection ⋅ Knapsack problem

1 Introduction

This chapter presents the importance of flower pollination algorithm (FPA) for fea-

ture selection for regression and classification data and knapsack. In the current

applications of machine learning and pattern recognition techniques, there are thou-

sands of such features. The vast amounts of data generated today in biology offer

more detailed and useful information on one hand; on the contrary, it makes the data

analyzing process more difficult because not all the information is relevant. Select-

ing the important features of a given dataset is a complex problem. Feature selection
is a technique for solving classification and regression problems, and it identifies
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the significant feature subset and removes the unnecessary ones. This mechanism is

particularly useful when the size of feature subset is large, and not all of them are

required for describing the data features in experiments [1]. Hence, the use of fea-

ture selection method is crucial to reduce the enormous number of features. Feature

selection helps in understanding data, decreasing the computation time, reducing the

effect of the curse of dimensionality and enhancing the performance of prediction

model [2]. Furthermore, the feature selection process enhances the visualization and

the comprehensibility of the selected feature subset [3].

In real-world applications, due to different reasons not discussed here, many fea-

tures introduce noise, while others can be totally irrelevant or even misleading,

affecting prediction performance. In these cases, feature selection is a must [4]. Two

main criteria are employed to differentiate between the feature selection algorithms

as follows:

1. Search strategy: the method employed to generate feature subsets or feature com-

binations.

2. Subset quality (fitness): the criteria used to judge the quality of a feature subset.

There are two major approaches of feature selection methods: wrapper-based

approach (applying machine learning algorithms) and filter-based approach (using

statistical methods) [5]. The wrapper-based approach employs a machine learning

technique as part of the assessment operation that helps to obtain better results than

the filter-based [6], but it has a risk of over-fitting the model and can be computa-

tionally costly, and hence, a brilliant search method is required to minimize the com-

putational time [7]. In contrast, the filter-based approach explores for a feature sub-

set that optimizes a given data-dependent criterion rather than using classification-

dependent criteria as in the wrapper methods [8].

In general, the feature selection is expressed as multi-objective with these two

goals: (1) minimize the selected feature subset and (2) maximize the classification

precision (minimize the prediction error in the regression problems). Commonly,

these two goals are contradictory, and the optimal solution is a trade-off between

them. Several search methods have been employed, based mainly on greedy search;

however, these techniques have at least two drawbacks: stagnation in local optima

and big computational time [9]. Evolutionary computing (EC) and population-based

algorithms adaptively search the feature space by using a set of search agents that

interact in a social manner to reach the optimal solution [10]. EC methods are

inspired by the animal social and biological behavior in nature like (wolves, antlions,

dragonflies, spiders, and so on) in a group [11].

Most of the recent optimization techniques are nature-inspired, i.e. they have been

inspired from nature [12].
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2 Related Work

Feature selection methods are composed of two elements: the search strategy and

the evaluation technique (subset goodness). In the wrapper-based approach (alterna-

tive to the filter-based approach), the term wrapper refers to the assessment method.

Learning boolean is a filter feature selection method that exhaustively explores all

potential feature combinations and chooses the minimum feature subset [6].

Various heuristic techniques mimic the biological and physical conducts in nature,

and they have been introduced as robust techniques for the global optimization.

GA was the earliest evolutionary based technique proposed in the literature, later

enhanced relying on the evolution operator during the reproduction [13]. GA fea-

ture selection method using a fuzzy set as the fitness function has been introduced in

[14]. Wrapper-filter based feature selection methods combine GA with local search

methods [15].

In particle swarm optimization (PSO) methods, a solution is represented by a par-

ticle with specific properties like position, fitness, and speed [16]. A binary version

of PSO (BPSO) modifies the native PSO algorithm to deal with the binary optimiza-

tion problems [17]. Moreover, an expanded version of BPSO is implemented to deal

with feature selection [18]. The binary variant of bat algorithm (BBA) is employed

to feature selection, where the search area is described as an n-cube [19].

Ant colony optimization (ACO) uses Fisher discrimination rate to adopt the

heuristic information and rough set approach employed for feature selection [20].

Artificial fish swarm (AFS) algorithm mimics the stimulant reaction by controlling

the tail and fin [21]. Artificial bee colony (ABC) relies on the natural conduct of hon-

eybees that randomly produced employer bees are moved in the elite bee direction

[22]. The elite bee represents the optimal (near to optimal) solution [23]. Antlion

optimization algorithm (ALO) is a comparatively recent EC method, which simu-

lates the antlions hunting in nature [24].

Artificial neural networks (ANN) particularly single hidden layer feed-forward

neural networks (SLFN) are viewed as a standout amongst the most conventional

machine learning models used in regression and classification domains [25]. The

learning algorithm is considered the cornerstone of any neural network. Classical

gradient-based learning algorithms are suffering from over-fitting, local minima, and

they consume a long time to learn [26]. The back-propagation artificial neural net-

work (BP-ANN) has average learning velocity and is likely to get caught in the local

minima, leading to miserable performance and efficiency. The revised back propa-

gation artificial neural network (RBP-ANN) is applied to defeat the constraints of

BP-ANN and RBP-ANN [27].

In extreme learning machine (ELM) techniques, the output connections are tuned

by solving an optimization problem, i.e. finding the minimum of the cost function

by linearization [28]. Huang [29] introduced ELM in order to avoid some of the dif-

ficulties observed in gradient-based learning methods. ELM is used as a supervised
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learning method for SLFN neural networks [30, 31]. ELM is choosing the weights of

the input and hidden layers randomly rather than completely adapting all the internal

parameters. Moreover, ELM could analytically define the output layer weights [32].

3 Flower Pollination Algorithm (FPA) with Selected
Applications

FPA is metaheuristic optimization technique relying on the pollination operation of

flowering plants that introduced by Yang in 2012 [33]. Pollination is carried out

in two modes self pollination (local search) and cross pollination (global search).

Detailed information about the two ways of pollination as follow [34]:

1. Cross pollination happens from the pollen of a flower of a different plant at long

distance via pollinators that can fly a big distance (global pollination) [34]. In

the cross pollination, the pollinators convey the flower pollens and can fly long

distance to assure the pollination and proliferation of the optimal solution g∗.

The initial rule may be formulated as in Eq. (1):

Xt+1
i = Xt

i + L(Xt
i − g∗), (1)

where Xt
i represents the vector of a i solution at t iteration, g∗ demonstrates the

present best solution, and L describes the pollination strength that randomly

pulled from the Lèvy distribution.

2. Self pollination is implantation of one flower from the pollen of identical flower

or different flowers of the identical plant that usually happens when there is no

pollinator possible. The local pollination and flower constancy is expressed as

in the Eq. (2):

Xt+1
i = Xt

i + 𝜀(Xt
j − Xt

k), (2)

where Xt
j and Xt

k demonstrate two random solutions, and 𝜀 drawn from the uni-

form distribution.

Because of local pollination may have substantial fraction (p) in the aggregate

pollination actions (in our experiments, we used p = 0.5). A switching probability

p𝜀[0, 1] manages the local and global pollination. FPA search methodology can be

outlined as in the algorithm (1).
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1: Inputs: N Total flower agents,

IterMax Total iterations number,

p Switch probability,

2: Outputs: The best solution (g∗) and its fitness value.

3: Initialize the N flowers population randomly.

4: Choose the best solution (g∗).

5: while Stopping criteria do not meet do
6: for all Flower i in the solution set do
7: if rand < p then
8: Design the L d-dimensional vector based on Lèvy distribution.

9: Employ the global pollination on i solution as in the equation (1).

10: else
11: Pull 𝜖 from the uniform distribution.

12: Select the j and k solutions randomly.

13: Execute the local pollination on the i solution by employing the j and k solutions as in

the equation (2).

14: end if
15: Assess the new solution.

16: if the new solution is better than the current one then
17: Substitute the current solution i by the new solution.

18: end if
19: end for
20: Upgrade the optimal solution g∗.

21: end while
22: Select the optimal solution and its fitness.

Algorithm 1: Flower pollination algorithm (FPA)

3.1 FPA Applied for Feature Selection

FPA is adopted here for exploiting the capabilities of filter and wrapper approaches

for feature selection. The filter approach can be described as data-oriented methods

that not directly related to classification performance. The wrapper-based approach

is more related to prediction performance, but it does not face redundancy and depen-

dency among the selected feature set.

We are seeking to find similarities and differences based on some evaluation cri-

teria that may help in finding weak and strength features of each. All swarm intelli-

gence methods regularly share the data between their multiple agents. Therefore, at

every iteration, all/some agents upgrade/modify their position relied on the data of

their own position and the other positions.

FPA is applied for feature selection in both classification and regression prob-

lems. For a vector with N features, the various feature selection would be 2N that

is the vast space of features to be searched exhaustively. Therefore, intelligent opti-

mization is applied to explore the search area adaptively for best feature subset. The

optimal feature subset is the one with least prediction error and a less number of
selected features as a common objective in literature. In classification problems, the

general fitness function for the proposed optimization algorithms is to maximize the
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classification accuracy over the validation set given the training set, as shown in Eq.

(3) while keeping the minimum number of features selected:

↓ Fitness = 𝛼(1 − P) + 𝛽

∣ R ∣
∣ C ∣

, (3)

where R indicates the size of chosen feature set, C demonstrates the total number

of features in the dataset, 𝛼 and 𝛽 depict the significance of classification perfor-

mance and the chosen feature set length, 𝛼 ∈ [0, 1] and 𝛽 = 1 − 𝛼, P is the classifi-

cation performance measured as in Eq. (4):

P =
Nc

N
, (4)

where Nc indicates the number of correctly classified instances, and N is the total

number of instances.

In the case of regression problems, the general fitness function for the proposed

optimization algorithms is to minimize the prediction error over the validation set

given the training set as in Eq. (5) while keeping a minimum number of features

selected.

↓ Fitness = 𝛼 ∗ E + 𝛽

∣ R ∣
∣ C ∣

, (5)

where E indicates the prediction error, 𝛼 and 𝛽 show the importance of prediction

error and selected feature subset respectively. E is defined as:

E =
M∑

i=1
|ai − ti|, (6)

where ai and ti are the actual model prediction value and target value for point i in

the validation set.

The used features are the same as the number of features in a given dataset. All

features are limited in the range [0, 1], where the feature value approaches to 1; its

corresponding feature is a candidate to be selected in classification. In individual fit-

ness calculation, the feature is a threshold to decide whether a feature will be selected

at the evaluation stage. Therefore, a static threshold of 0.5 is used as in the Eq. (7):

yij =

{
0 if xij < 0.5
1 Otherwise,

(7)

where xij is a D—dimensional point in the search space of features and yij is the

binary value∈ 0, 1 corresponding to selecting/unselecting feature j in solution i from

the solution set.
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3.2 FPA Applied for Knapsack Problem

Given a set of n elements with each element has a profit pj and a weight wj and a

Knapsack of capacity C the objective is to find the most profitable solution without

violating knapsack weight capacity [35]. A vector describing whether an element is

selected or not can be represented in binary form with an n-dimensional vector with

individual elements xi ∈ 0, 1. So, the problem can be mathematically formulated as:

Maximimize
n∑

j=1
pjxj, (8)

subject to

n∑

j=1
wjxj ⩽ C. (9)

The knapsack problem is an NP-hard problem which requires a very intelligent

optimization to search the huge search space of possibilities. FPA is adopted in this

work to solve a set of Knapsack problems with variant dimensions to prove the

searching capability of the FPA. Death penalty [36] is adopted to handle the con-

straint of the knapsack while the total fitness is calculated as in Eq. (8) but with

using negative sign to standardize the maximization into minimization.

4 Experimental Results and Discussion

The global and optimizer-specific parameter setting is outlined in Table 1. All the

parameters are set either according to domain-specific knowledge as the 𝛼 and 𝛽

parameters of the used fitness function, or based on trial and error on small simula-

tions and common in literature such as the rest of parameters.

In this study, the wrapper approach is used to find a feature subset supervised

by the prediction performance. Hence, an intelligent search method is necessary for

searching the feature space. In the case of classification datasets, the used classifier

in the fitness function as given in Eq. (3) is KNN [37]. KNN is utilized in the exper-

iments based on trial and error basis where the best choice of K is selected (K = 5)
as the best performing on all the datasets.

4.1 Assessment Indicators

Each algorithm has been applied K ∗ M times with random positioning of the search

agents except for the full features selected solution that was compelled to be a posi-
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Table 1 The parameter setting for experiments

Parameter Value(s)

K for cross validation 10

M total number of runs 20

Number of search agents 8

Number of iterations (dimension < 100) 100

Number of iterations (dimension ≥ 100) 200

Problem dimension Number of features in the dataset

Search range in binary methods {0, 1}

Search range in continuous methods [0, 1]

𝛼 in the fitness function 0.99

𝛽 in the fitness function 0.01

tion for one of the search agents. Compelling the full features solution ensures that

all consequent feature subsets; if selected as the global best solution, are fitter than

it. Repeated runs of the optimization algorithms were applied to test their conver-

gence capability. We have applied two types of indicators (measures) to compare the

various algorithms.

1. Firstly, this group of indicators is applied directly to the fitness function obtained

based on the validation set and used to characterize the algorithm performance

as follows:

∙ Mean fitness: is an average value of all the solutions in the final sets obtained

by an optimizer in a number of individual runs [38].

∙ Median fitness: is used to assess the average performance tolerating noise per-

formance of the optimizer over all the M runs [38].

∙ Best fitness: is the minimum value of the fitness function that acquired by the

optimizer in M independent applications [38].

∙ Worst fitness: is the maximum fitness function value (or worst obtained fit-

ness value) acquired by an optimization method in M independent applica-

tions [38].

∙ Statistical standard deviation (std): is a representation of the variation of the

obtained best solutions found for running a stochastic optimizer for M differ-

ent runs. Std is used as an indicator for the optimizer capability to converge

to same/similar optimal solution [38].

2. The second group of indicators is applied to assess the performance of the entire

prediction model as follows:

∙ Average classification error: depicts how precise the classifier of the chosen

feature subset, as shown in the Eq. (10):
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Perf = 1
M

M∑

j=1

1
N

N∑

i=1
Unmatch(Ci,Li), (10)

where M represents the total number of runs for the optimization method, N
describes the total instances in the test subset; Ci depicts the classifier output

label of the i data instance. Li denotes the source class label of the i data

instance, and Unmatch specifies the function that yields 0 if the two labels are

equivalent and yields 1 otherwise.

∙ Mean square error (MSE): is measuring the mean square error of the differ-

ence between actual output and the predicted one as given in Eq. (11):

MSE =
∑n

i=1(predi − obsi)2

n
, (11)

∙ Root mean square error (RMSE): is measuring the difference among actual

output and the predicted ones as given in Eq. (12):

RMSE =

√∑n
i=1(obsi − predi)2

n
, (12)

where obsi and predi are the observed and predicted values respectively. 𝜇 rep-

resents the mean of the noticed values, n demonstrates the total of examples,

and i depicts the example number in a given dataset.

∙ Average selection size: demonstrates the average size of the chosen feature

subset to the aggregate amount of features as in the Eq. (13):

Selection_Size = 1
M

M∑

i=1

size(gi∗)
Nt

, (13)

where Nt represents the total number of features in a given dataset.

∙ Average feature reduction: demonstrates the mean size of the reduced features

to the aggregate amount of features as in the Eq. (14):

Reduction = 1 − 1
M

M∑

i=1

size(gi∗)
Nt

, (14)

∙ Average Fisher score (F-score): assesses the feature subset that has large dis-

tances between the data samples in various classes, while the distances among

data instances in the same class are as minimum as possible [39]. F-score is

computed for individual features given the class labels and for M independent

applications of an algorithm; as shown in Eq. (15):
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Fj =
∑c

k=1 nk(𝜇
j
k − 𝜇

j)2

(𝜎j)2
, (15)

where Fj is the Fisher score for feature j, 𝜇j
is the mean of the entire dataset.

(𝜎j)2 is the standard deviation of the whole dataset, nk denotes the size of the

k class, and 𝜇

j
k indicates the mean of k class.

∙ Wilcoxon: introduced by Wilcoxon [40] as a non-parametric test. The test allo-

cates rank to all the scores considered as one group and afterward sums the

ranks of every group. The null hypothesis originates from the same popula-

tion, so any difference in the two rank sums come only from the testing error.

The rank sum test is regularly depicted as the non-parametric version of the

T-test for two independent groups.

∙ T-test: is a statistical significance that decides whether or not the difference

between two classes’ averages most likely reflects a real difference in the pop-

ulation from which the groups were sampled; as in the Eq. (16) [41].

t =
x̄ − 𝜇0

S√
n

(16)

where 𝜇0 is the average of the t-distribution and
S√
n

is its standard deviation.

∙ Average computational time: is the run time for a given optimization algorithm

in millisecond that calculated over the different runs as given in Eq. (17):

To =
1
M

M∑

i=1
RunTimeo,i, (17)

where M demonstrates the total number of runs for the optimizer O, and

RunTimeo,i is the computational time in millisecond for optimizer o at run

number i.

4.2 Datasets

All datasets were collected to have a variety of features and instances as delegates of

various problem types, which the introduced methods will be examined on. Besides,

we selected a set of respectively high dimensional data to ensure the performance

of optimization algorithms in huge search spaces. Each dataset is split by cross-

validation [42] mode for evaluation, which K−1 folds are employed for the training,

validation, and testing sets. Each set is repeated M times, hence, each optimizer is
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estimated K ∗ M times for individual dataset. Each dataset is equally sized into train-

ing, validation, and testing. Training part is used to train the used classifier through

optimization and at the final evaluation. Validation part used to assess the perfor-

mance of the classifier at the optimization time. Testing part is employed to determine

the finally selected features given the trained classifier. The classification and regres-

sion models are used to ensure the quality of the selected features and are assessed

on the validation set inside the fitness function during the optimization process [6].

In the case of regression datasets, the regression model used in the fitness function

as in Eq. (5) is extreme learning machine (ELM) with a different number of hidden

layers and sigmoid basis function. ELM used for regression purposes and is adopted

to evaluate the fitness function. ELM has seven nodes in input layer representation

and one hundred hidden nodes (based on trial and error basis); because ELM needs

more hidden nodes than the classical gradient training algorithms [28].

Table 2 outlines twenty-one datasets used in classification problems. The datasets

are acquired from the UCI machine learning repository [43, 44]. Table 3 displays the

ten datasets applied in the regression experiments. The used datasets are picked from

the UCI machine learning repository [43].

4.3 FPA for Feature Selection Using Classification Data

In classification data category, the classifier used in fitness function as in Eq. (3) is

KNN [37]. KNN is applied in the experiments based on trial and error basis where the

best choice of K is selected (K = 5) as the best performing on all the datasets. The

aggregate purpose of this part is to declare the bio-inspired optimization methods

for feature selection approaches that minimize the selected feature set and maximize

the classification performance from applying the whole features and conventional

feature selection methods in the classification problem.

Table 4 outlines the average statistical mean fitness of FPA [45], BA [46], GA,

and PSO optimization algorithms for all 21 classification datasets that calculated

over the 20 runs. We can observe that all used optimization methods outperform

the full features selected that proves the capability of wrapper-based method in fea-

ture selection problem. We can also highlight that the CS performs in general better

than the other optimizers that demonstrate the ability of CS adaptively to explore the

area for the optimal feature combination. For evaluating the stability of the stochas-

tic algorithms in the study and converge to the same optimal solution. We measure

the standard deviation, and the results are depicted in the Table 5. We can see that,

although the FPA depends on Lèvy distribution that has infinite variance it still keeps

comparable std measure.
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Table 2 List of datasets used in classification data

DS Name No. of features No. of samples

1 Breastcancer 9 699

2 BreastEW 30 569

3 Clean1 166 476

4 Clean2 166 6598

5 CongressEW 16 435

6 Exactly 13 1000

7 Exactly2 13 1000

8 HeartEW 13 270

9 IonosphereEW 34 351

10 KrvskpEW 36 3196

11 Lymphography 18 148

12 M-of-n 13 1000

13 PenglungEW 325 73

14 Semeion 265 1593

15 SonarEW 60 208

16 SpectEW 22 267

17 Tic-tac-toe 9 958

18 Vote 16 300

19 WaveformEW 40 5000

20 WineEW 13 178

21 Zoo 16 101

Table 3 List of datasets used in regression data

DS Name No. of features No. of samples

1 CASP 9 45730

2 CBM 17 11934

3 CCPP 4 47840

4 ENB2012_Y1 8 768

5 ENB2012_Y2 8 768

6 ForestFire 12 517

7 Housing 13 506

8 RelationNetwork 22 53413

9 Slump_test 10 103

10 Yacht_hydrodynamics 6 308
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Table 4 Mean fitness of 20 runs

DS Full BA FPA GA PSO

1 0.026 0.022 0.021 0.022 0.027

2 0.053 0.024 0.022 0.025 0.030

3 0.214 0.140 0.136 0.150 0.148

4 0.048 0.038 0.037 0.038 0.038

5 0.090 0.036 0.033 0.043 0.048

6 0.336 0.161 0.072 0.219 0.296

7 0.284 0.237 0.234 0.240 0.242

8 0.196 0.132 0.123 0.138 0.133

9 0.160 0.109 0.105 0.111 0.127

10 0.091 0.037 0.031 0.036 0.050

11 0.281 0.136 0.116 0.161 0.165

12 0.155 0.037 0.025 0.081 0.114

13 0.203 0.175 0.152 0.193 0.180

14 0.044 0.030 0.030 0.034 0.029
15 0.338 0.128 0.132 0.136 0.164

16 0.161 0.136 0.126 0.141 0.136

17 0.259 0.222 0.219 0.224 0.229

18 0.087 0.033 0.029 0.034 0.041

19 0.231 0.202 0.200 0.206 0.223

20 0.067 0.015 0.007 0.015 0.019

21 0.265 0.102 0.076 0.132 0.125

Avg. 0.171 0.102 0.092 0.113 0.122

Table 6 outlines the average classification error of the selected feature subset from

the optimization methods of test set averaged over the 20 runs. From the table, FPA

obtains the best results on average, thus demonstrating the capability of FPA to find

optimal feature combinations ensuring proper test performance. Regarding the size

of selected features on the original size, Table 7 outlines the kept feature ratio to

the total number of features. We can notice that FFA gets the best selection feature

subset results in general. The performance over the test data is to some extent com-

patible with the results from the F-score calculated over the selected features by the

different optimizers; as shown in the Table 8. GA has obtained the best F-score val-

ues overall. Table 9 outlines the average computational time of different optimization

algorithms. From the table, FPA has the best computational time in comparison to

all other algorithms.
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Table 5 Std of fitness values for 20 runs

DS Full BA FPA GA PSO

1 0.013 0.008 0.009 0.009 0.007
2 0.018 0.006 0.008 0.008 0.010

3 0.047 0.027 0.027 0.029 0.046

4 0.003 0.003 0.004 0.002 0.003

5 0.028 0.016 0.009 0.014 0.016

6 0.033 0.118 0.034 0.103 0.029
7 0.040 0.017 0.016 0.012 0.013

8 0.039 0.024 0.015 0.019 0.020

9 0.005 0.027 0.025 0.027 0.025

10 0.012 0.008 0.005 0.009 0.007

11 0.067 0.044 0.035 0.028 0.045

12 0.019 0.036 0.035 0.046 0.054

13 0.005 0.126 0.102 0.112 0.108

14 0.008 0.003 0.006 0.006 0.005
15 0.041 0.030 0.041 0.036 0.048

16 0.045 0.027 0.027 0.037 0.024
17 0.030 0.011 0.012 0.017 0.021

18 0.031 0.013 0.015 0.015 0.015

19 0.013 0.013 0.011 0.008 0.010

20 0.000 0.019 0.012 0.015 0.021

21 0.029 0.077 0.059 0.052 0.065

Avg. 0.025 0.031 0.024 0.029 0.028

4.4 FPA for Feature Selection Using Regression Data

In regression data, the regression model used in fitness function as in Eq. (5) is

extreme learning machine (ELM). The aggregate purpose of this section is to intro-

duce bio-inspired optimization algorithms for feature selection approach that reduce

the number of selected feature subset and reduce the prediction error from apply-

ing the whole feature set and conventional feature selection techniques in regression

problems.

Table 10 outlines the average statistical mean fitness of BA, CS, DA, FFA, FPA,

MAKHA, GA, and PSO optimization algorithms for all ten regression datasets that

calculated over the 20 runs. We can highlight that the FPA performs in general bet-

ter than the other optimizers that prove the capability of FPA adaptively to explore

the search area for best feature subset. For evaluating the stability of the stochas-

tic algorithms in the study and converge to the same optimal solution. The standard
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Table 6 Average classification error of 20 runs

DS Full BA FPA GA PSO

1 0.043 0.043 0.044 0.042 0.045

2 0.046 0.056 0.059 0.063 0.067

3 0.212 0.204 0.212 0.205 0.197
4 0.050 0.046 0.044 0.048 0.048

5 0.080 0.079 0.064 0.068 0.074

6 0.311 0.185 0.069 0.253 0.314

7 0.261 0.252 0.247 0.253 0.252

8 0.189 0.212 0.214 0.210 0.220

9 0.194 0.177 0.177 0.167 0.170

10 0.091 0.047 0.033 0.041 0.058

11 0.231 0.241 0.225 0.257 0.223
12 0.153 0.045 0.027 0.092 0.124

13 0.289 0.275 0.274 0.311 0.297

14 0.050 0.042 0.039 0.042 0.042

15 0.324 0.266 0.269 0.261 0.282

16 0.236 0.201 0.191 0.185 0.187

17 0.263 0.261 0.260 0.257 0.275

18 0.113 0.079 0.070 0.067 0.066
19 0.239 0.223 0.221 0.224 0.236

20 0.079 0.071 0.077 0.071 0.086

21 0.286 0.133 0.144 0.178 0.144

Avg. 0.178 0.149 0.141 0.157 0.162

deviation results are depicted in the Table 11. We can see that, although the FPA

depends on Lèvy distribution that has infinite variance it still keeps comparable std

measure.

Table 12 describes the mean RMSE of the selected feature subset from the opti-

mization algorithms of test data averaged over the 20 runs. From the table, FFA

obtains the best results on average, thus demonstrating the capability of FFA to find

optimal feature combinations ensuring proper test performance. Regarding the size

of selected features on the original size, Table 13 outlines the kept feature ratio to

the total number of features. We can highlight that GA obtains the best selection
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Table 7 Average selection size of 20 runs

DS BA FPA GA PSO

1 0.506 0.506 0.556 0.506
2 0.441 0.448 0.456 0.493

3 0.461 0.482 0.483 0.468

4 0.491 0.515 0.502 0.516

5 0.424 0.299 0.396 0.403

6 0.513 0.462 0.556 0.556

7 0.308 0.299 0.256 0.171
8 0.521 0.496 0.487 0.556

9 0.399 0.343 0.395 0.422

10 0.451 0.454 0.488 0.451
11 0.401 0.481 0.395 0.451

12 0.513 0.496 0.624 0.581

13 0.403 0.444 0.426 0.416

14 0.462 0.488 0.478 0.481

15 0.398 0.420 0.415 0.409

16 0.379 0.434 0.414 0.429

17 0.654 0.605 0.605 0.593
18 0.340 0.299 0.271 0.347

19 0.542 0.533 0.583 0.497
20 0.393 0.342 0.470 0.410

21 0.347 0.424 0.375 0.382

Avg. 0.445 0.441 0.459 0.454

features size results overall. Table 14 outlines the average computational time of dif-

ferent optimization algorithms. From the table, DA has the best computational time

in comparison to all other algorithms.

4.5 FPA for Knapsack Problem

In this section, FPA is used and benchmarked against BA, GA, and PSO on the

binary Knapsack problem. A set of 20 benchmark problems were in the study having

different dimensionality and capacities as in Table 15.
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Table 8 Average F-score of 20 runs

DS BA FPA GA PSO

1 0.735 0.710 0.752 0.680
2 0.218 0.245 0.234 0.242

3 0.009 0.009 0.009 0.008
4 0.008 0.008 0.008 0.009

5 0.205 0.178 0.212 0.212

6 0.001 0.001 0.001 0.001
7 0.001 0.001 0.001 0.000
8 0.084 0.078 0.082 0.089

9 0.032 0.027 0.034 0.036

10 0.021 0.021 0.021 0.020
11 0.132 0.179 0.150 0.142

12 0.031 0.031 0.030 0.028
13 0.310 0.342 0.326 0.319

14 0.009 0.010 0.010 0.010

15 0.019 0.019 0.019 0.018
16 0.021 0.024 0.024 0.025

17 0.005 0.005 0.005 0.005
18 0.174 0.152 0.145 0.175

19 0.135 0.138 0.136 0.117
20 0.448 0.425 0.503 0.491

21 12.207 12.876 10.636 12.690

Avg. 0.705 0.737 0.635 0.729

Functions F1–F20 are expected to evaluate the exploitation capability of a given

algorithm. We can see in Table 16 that the performance of the FPA optimization

algorithm on the average outperforms the other methods. Such result proves the

exploitation capability of the FPA algorithm. The same conclusion can be derived

by remarking the median performance presented in Table 17 where the FPA still out-

perform the BA, GA, and PSO algorithms.

Table 18 depicts the best performance indicator for running individual optimizers

over 20 runs. Such indicator targets the optimistic users. We can see from the tables

that the FPA outperforms the GA and PSO. Table 19 depicts the worst fitness indica-

tor for both simple and composite benchmark functions. Such indicator is expected

to assess the worst performance of a given optimizer and hence target the pessimistic
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Table 9 Average computational time (milliseconds) of 20 runs for other optimizers

DS BA FPA GA PSO

1 74.968 68.312 48.753 74.576

2 75.343 63.957 55.524 73.486

3 71.724 74.145 39.352 68.027

4 3081.594 2886.748 1722.827 3219.031

5 72.385 59.438 32.316 47.470

6 75.994 75.511 57.433 83.390

7 111.914 109.125 59.681 90.601

8 68.224 61.606 47.014 63.682

9 68.015 68.651 61.015 75.368

10 434.304 417.282 395.025 406.907

11 57.241 48.661 33.788 50.591

12 95.730 83.870 61.417 98.346

13 50.366 53.329 23.921 45.931

14 551.344 550.024 305.656 565.127

15 72.873 71.880 3979.521 72.161

16 69.113 68.056 45.926 61.559

17 103.918 99.622 75.024 99.064

18 70.820 71.250 56.363 67.409

19 914.644 885.766 795.628 966.532

20 41.435 33.260 19.982 37.951

21 48.605 41.365 26.276 39.603

Avg. 295.741 280.565 378.211 300.324

Table 10 Mean fitness of 20 runs

DS Full BA FPA GA PSO

1 6.104 5.491 5.495 5.692 5.605

2 0.008 0.004 0.003 0.007 0.006

3 17.090 4.621 4.763 5.156 5.073

4 5.143 3.041 2.792 3.399 3.389

5 7.906 3.287 3.173 3.211 3.208

6 131.740 57.736 56.612 58.683 57.327

7 8.828 4.122 3.906 4.617 4.912

8 0.189 0.049 0.052 0.056 0.051

9 7.566 3.262 3.411 4.071 3.872

10 10.431 1.766 1.964 3.884 3.122

Avg. 19.500 8.338 8.217 8.878 8.656
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Table 11 Std of fitness values for 20 runs

DS Full BA FPA GA PSO

1 0.009 0.168 0.006 0.084 0.091

2 0.000 0.003 0.002 0.000 0.000
3 0.001 0.136 0.100 0.058 0.047

4 1.140 0.433 0.143 0.868 0.235

5 0.742 0.306 0.094 0.100 0.043
6 96.463 28.073 27.392 28.576 28.008

7 1.034 0.327 0.321 0.269 0.580

8 0.174 0.000 0.002 0.003 0.003

9 0.332 0.326 0.161 0.116 0.178

10 0.553 0.305 0.320 1.277 2.372

Avg. 10.045 3.008 2.854 3.135 3.156

Table 12 Average RMSE of 20 runs

DS Full BA FPA GA PSO

1 6.123 5.830 5.837 5.824 5.834

2 0.007 0.006 0.005 0.006 0.007

3 12.784 7.846 8.775 5.298 6.302

4 4.560 3.923 2.933 3.419 4.110

5 4.232 3.800 3.207 3.325 4.432

6 92.045 178.521 203.068 59.166 59.853

7 7.664 5.070 4.672 5.086 6.176

8 0.058 0.054 0.054 0.056 0.056

9 5.847 5.485 5.496 5.559 5.627

10 9.442 3.371 3.780 4.095 4.583

Avg. 14.276 21.391 23.783 9.183 9.698

users’ satisfaction. We can see from the table that the worst performance of the FPA

still outperform the other algorithms and proves the capability of using such FPA for

pessimistic applications.

Table 20 depicts the standard deviation of individual optimizer’s output best solu-

tion through the 30 runs. Such indicator is expected to assess the repeatability of

the obtained solutions and the convergence to same/similar optima. We can see
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Table 13 Average selection size of 20 runs

DS BA FPA GA PSO

1 0.463 0.500 0.500 0.500

2 0.471 0.461 0.471 0.539

3 0.417 0.500 0.250 0.333

4 0.438 0.375 0.438 0.542

5 0.458 0.438 0.438 0.521

6 0.458 0.403 0.417 0.528

7 0.410 0.436 0.359 0.410

8 0.568 0.553 0.689 0.561

9 0.567 0.533 0.467 0.567

10 0.250 0.222 0.250 0.361

Avg. 0.450 0.442 0.428 0.486

Table 14 Average computational time (in milliseconds) of 20 runs

DS BA FPA GA PSO

1 1516.553 1685.297 1625.241 1600.838

2 1385.868 1408.185 895.429 1465.862

3 1377.098 1395.069 1330.866 1188.551
4 774.341 787.606 750.926 616.100
5 778.917 860.789 753.356 401.869
6 847.260 847.406 789.993 866.437

7 551.635 574.881 469.265 450.445
8 2181.821 2254.263 2361.871 2330.990

9 807.589 825.084 838.978 813.069

10 730.932 693.650 705.527 746.888

Avg. 1095.201 1133.223 1052.145 1048.105

from Table 20 that the standard deviation for the FPA outperforms the other opti-

mizers which proves that FAP has much exploration capability it can still converge

to same/similar optimal and hence can be considered as a candidate optimizer for

repeatable results.
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Table 15 Used problem sets and the corresponding dimension of each problem

Function no. No. Dims Function no. No. Dims

F1 10 F11 4

F2 5 F12 13

F3 6 F13 11

F4 7 F14 18

F5 8 F15 7

F6 7 F16 16

F7 15 F17 5

F8 24 F18 14

F9 4 F19 17

F10 18 F20 20

Table 16 Mean fitness for the different used optimizers on the different problems

Function no. BA FPA GA PSO

F1 −307.750 −𝟑𝟎𝟗 −288.200 −300.200
F2 −49.800 −𝟓𝟏 −50 −50.600
F3 −146.900 −𝟏𝟓𝟎 −138.750 −142.250
F4 −105.450 −𝟏𝟎𝟕 −103.200 −105.250
F5 −895.500 −𝟗𝟗𝟖𝟎𝟎 −892.600 −896.200
F6 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −1728.800 −1733.550
F7 −1457.800 −𝟏𝟒𝟓𝟖 −1442.750 −1449
F8 −13519668.200 −𝟏𝟑𝟓𝟑𝟓𝟔𝟕𝟒.𝟑𝟓𝟎 −13138630.650 −13406262.400
F9 −1656.400 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑
F10 −5957.550 −𝟓𝟗𝟓𝟗 −5891 −5950.600
F11 −1713.950 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗
F12 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑 −6863.100 −6932.600
F13 −5479.850 −𝟓𝟒𝟖𝟔 −5401.050 −5443.450
F14 −9002.750 −𝟗𝟎𝟐𝟑 −8908 −8925.600
F15 −3332.400 −𝟑𝟑𝟒𝟓 −3335 −𝟑𝟑𝟒𝟓
F16 −9760.100 −𝟗𝟕𝟕𝟑 −9577.700 −9729.750
F17 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑
F18 −6628 −𝟔𝟔𝟑𝟔 −6580.600 −6613.450
F19 −6696.650 −𝟔𝟕𝟎𝟏 −6448.100 −6627.600
F20 −8715.600 −𝟖𝟕𝟑𝟖 −8339.500 −8674.300
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Table 17 Median fitness for the different used optimizers on the different problems

Function No. BA FPA GA PSO

F1 −309 −309 −284 −𝟑𝟎𝟗
F2 −𝟓𝟏 −𝟓𝟏 −𝟓𝟏 −𝟓𝟏
F3 −𝟏𝟓𝟎 −𝟏𝟓𝟎 −𝟏𝟓𝟎 −𝟏𝟓𝟎
F4 −𝟏𝟎𝟕 −𝟏𝟎𝟕 −105 −𝟏𝟎𝟕
F5 −𝟗𝟎𝟎 −𝟗𝟎𝟎 −888 −𝟗𝟎𝟎
F6 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓
F7 −𝟏𝟒𝟓𝟖 −𝟏𝟒𝟓𝟖 −1443 −1449.500
F8 −13520148.500 −𝟏𝟑𝟓𝟒𝟗𝟎𝟗𝟒 −13109204.500 −13421603
F9 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑
F10 −𝟓𝟗𝟓𝟗 −𝟓𝟗𝟓𝟗 −5927 −𝟓𝟗𝟓𝟗
F11 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗
F12 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑 −6929 −𝟔𝟗𝟑𝟑
F13 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔
F14 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑
F15 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓
F16 −𝟗𝟕𝟕𝟑 −𝟗𝟕𝟕𝟑 −9688 −𝟗𝟕𝟕𝟑
F17 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑
F18 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔
F19 −𝟔𝟕𝟎𝟏 −𝟔𝟕𝟎𝟏 −6481 −𝟔𝟕𝟎𝟏
F20 −𝟖𝟕𝟑𝟖 −𝟖𝟕𝟑𝟖 −8328 −𝟖𝟕𝟑𝟖

Tables 21 and 22 depict The P-value for two of the common significance tests that

are expected to assess the significance of output enhance using the proposed vari-

ants. The used significance tests are two-sided Wilcoxon test and T-test. We can see

that the P-value for Wilcoxon and T-test are around 0 and hence neglecting the null

hypothesis and hence proves the significance of the proposed variant that it is found

to be significant using FPA rather than BA, GA, and PSO algorithms.



Applications of Flower Pollination Algorithm . . . 239

Table 18 Best fitness for the different used optimizers on the different problems

Function no. BA FPA GA PSO

F1 −𝟑𝟎𝟗 −𝟑𝟎𝟗 −𝟑𝟎𝟗 −𝟑𝟎𝟗
F2 −𝟓𝟏 −𝟓𝟏 −𝟓𝟏 −𝟓𝟏
F3 −𝟏𝟓𝟎 −𝟏𝟓𝟎 −𝟏𝟓𝟎 −𝟏𝟓𝟎
F4 −𝟏𝟎𝟕 −𝟏𝟎𝟕 −𝟏𝟎𝟕 −𝟏𝟎𝟕
F5 −𝟗𝟎𝟎 −𝟗𝟎𝟎 −𝟗𝟎𝟎 −𝟗𝟎𝟎
F6 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓
F7 −𝟏𝟒𝟓𝟖 −𝟏𝟒𝟓𝟖 −1456 −1456
F8 −𝟏𝟑𝟓𝟒𝟗𝟎𝟗𝟒 −𝟏𝟑𝟓𝟒𝟗𝟎𝟗𝟒 −13407977 −13518963
F9 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑
F10 −𝟓𝟗𝟓𝟗 −𝟓𝟗𝟓𝟗 −𝟓𝟗𝟓𝟗 −𝟓𝟗𝟓𝟗
F11 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗
F12 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑
F13 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔 −𝟓𝟒𝟖𝟔
F14 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑 −𝟗𝟎𝟐𝟑
F15 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓 −𝟑𝟑𝟒𝟓
F16 −𝟗𝟕𝟕𝟑 −𝟗𝟕𝟕𝟑 −𝟗𝟕𝟕𝟑 −𝟗𝟕𝟕𝟑
F17 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑
F18 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔 −𝟔𝟔𝟑𝟔
F19 −𝟔𝟕𝟎𝟏 −𝟔𝟕𝟎𝟏 −𝟔𝟕𝟎𝟏 −𝟔𝟕𝟎𝟏
F20 −𝟖𝟕𝟑𝟖 −𝟖𝟕𝟑𝟖 −𝟖𝟕𝟑𝟖 −𝟖𝟕𝟑𝟖

5 Conclusions

This work assesses the performance of FPA on two application domains namely

feature selection and knapsack. For feature selection, FPA can overcome the perfor-

mance of BA, GA, and PSO for its capability to adaptively search the search space

with many local optima avoiding premature convergence. In the domain of knapsack

also FPA is found to be very competitive to PSO, GA, and BA with the tolerable dif-

ference in run time and better optimization performance.

On the basis of future performance, we have five ideas that can be investigated in

addition to the work presented here:

1. The proposed FPA method will be assessed using complex datasets that have a

huge number (thousands) of input features.

2. Add more statistics evaluation measures such as (sensitivity, specificity, and F-

measure).
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Table 19 Worst fitness for the different used optimizers on the different problems

Function no. BA FPA GA PSO

F1 −284 −𝟑𝟎𝟗 −239 −247
F2 −47 −𝟓𝟏 −47 −47
F3 −119 −𝟏𝟓𝟎 −119 −119
F4 −93 −𝟏𝟎𝟕 −91 −93
F5 −858 −𝟗𝟎𝟎 −883 −888
F6 −𝟏𝟕𝟑𝟓 −𝟏𝟕𝟑𝟓 −1682 −1706
F7 −1454 −𝟏𝟒𝟓𝟖 −1427 −1441
F8 −13482886 −𝟏𝟑𝟒𝟗𝟒𝟖𝟔𝟒 −12914151 −13125716
F9 −1531 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑 −𝟏𝟔𝟔𝟑
F10 −5930 −𝟓𝟗𝟓𝟗 −5729 −5797
F11 −1618 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗 −𝟏𝟕𝟏𝟗
F12 −𝟔𝟗𝟑𝟑 −𝟔𝟗𝟑𝟑 −6350 −6925
F13 −5363 −𝟓𝟒𝟖𝟔 −5054 −5058
F14 −8618 −𝟗𝟎𝟐𝟑 −8448 −8338
F15 −3093 −𝟑𝟑𝟒𝟓 −3145 −𝟑𝟑𝟒𝟓
F16 −9515 −𝟗𝟕𝟕𝟑 −8633 −9565
F17 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑 −𝟑𝟓𝟕𝟑
F18 −6476 −𝟔𝟔𝟑𝟔 −6436 −6185
F19 −6641 −𝟔𝟕𝟎𝟏 −5819 −6249
F20 −8442 −𝟖𝟕𝟑𝟖 −7823 −8355

3. Employ bio-inspired optimization methods for solving the challenging problems

and in different applications like big data, bioinformatics, and biomedical.

4. Use more machine learning techniques for wrapper-based fitness evaluation

such as support vector machine (SVM), random forest (RF), and support vector

regression (SVR).

5. Propose a multi-objective fitness function that uses bio-inspired algorithms to

the find optimal feature subset.
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Table 20 Standard deviation of fitness for the different used optimizers on the different problems

Function no. BA FPA GA PSO

F1 5.590 0 19.718 17.307

F2 1.881 0 1.777 1.231

F3 9.542 0 14.917 13.772

F4 3.845 0 4.753 3.810

F5 10.092 0 6.451 5.540

F6 0 0 13.513 6.485

F7 0.894 0 7.873 4.645

F8 21138.405 16426.210 124654.021 95227.213

F9 29.516 0 0 0
F10 6.485 0 77.911 36.165

F11 22.584 0 0 0
F12 0 0 162.916 1.789

F13 27.504 0 146.101 101.379

F14 90.561 0 169.130 191.947

F15 56.349 0 44.721 0
F16 57.691 0 284.099 57.424

F17 0 0 0 0
F18 35.777 0 72.917 100.847

F19 14.420 0 240.613 152.194

F20 72.796 0 261.054 121.372

Table 21 P-value for T-test of FPA compared to other optimizers

Optimzer_1 Optimzer_2 P-value

FPA BA 1.835600e-02

FPA GA 0.000

FPA PSO 0.000

Table 22 P-value for Wilcoxon of FPA compared to other optimizers

Optimzer_1 Optimzer_2 P-value

FPA BA 2.000000e-06

FPA GA 0.000

FPA PSO 0.000
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Why the Firefly Algorithm Works?

Xin-She Yang and Xing-Shi He

Abstract Firefly algorithm is a nature-inspired optimization algorithm and there

have been significant developments since its appearance about 10 years ago. This

chapter summarizes the latest developments about the firefly algorithm and its vari-

ants as well as their diverse applications. Future research directions are also high-

lighted.

Keywords Algorithm ⋅ Firefly algorithm ⋅ Multimodal optimization ⋅ Nature-

inspired computation ⋅ Optimization ⋅ Swarm intelligence

1 Introduction

Nature-inspired computation has become a new paradigm in optimization, machine

learning, data mining and computational intelligence with a diverse range of appli-

cations. The essence of nature-inspired computing is the nature-inspired algorithms

such as genetic algorithm (GA) [28], particle swarm optimization (PSO) [36] and

firefly algorithm (FA) [74]. Most nature-inspired algorithms use some characteristics

of swarm intelligence [14], and an overview of swarm intelligence to nature-inspired

computation was recently carried out by Yang [81].

Among nature-inspired algorithms, firefly algorithm (FA) was developed by Xin-

She Yang in late 2007 and early 2008 [74], and it is almost 10 years since its devel-

opment. Significant developments have been made in the last few years, and thus

this chapter intends to provide a state-of-the-art review of FA and its variants with

an emphasis on the most recent studies.

Therefore, this chapter is organized as follows. Section 2 introduces the funda-

mentals of the firefly algorithm, and Sect. 3 explains why FA works well in practice.

Section 4 highlights the main differences between FA and PSO, and Sect. 5 summa-
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rizes some of the recent variants of FA. Section 6 reviews some of the diverse appli-

cations of FA and its variants. Finally, Sect. 7 concludes with discussion of future

research directions.

2 Firefly Algorithm

The bioluminescence flashes of fireflies are an amazing sight in the summer sky in

tropical and temperate regions. It is estimated that there are about 2000 species of

fireflies and most species produce short, rhythmic flashes. Each species can have

different flashing patterns and rhythms, and one of the main functions of such flash-

ing light acts as a signaling system to communicate with other fireflies. The rate of

flashing, intensity of the flashes and the amount of time between flashes form part

of the signaling system [39], and female fireflies respond to a male’s unique flashing

pattern. Some tropical fireflies can even synchronize their flashes, leading to self-

organized behaviour.

As light intensity in the night sky decreases as the distance from the flashing

source increases, the range of visibility can be typically a few hundred metres,

depending on weather conditions. The attractiveness of a firefly is usually linked

to the brightness of its flashes and the timing accuracy of its flashing patterns.

2.1 The Standard Firefly Algorithm

Based on the above characteristics, Xin-She Yang developed the firefly algorithm

(FA) [74, 75]. Inside FA, the attractiveness of a firefly is determined by its bright-

ness. Due to exponential decay of light absorption and inverse-square law of light

variation with distance, a highly nonlinear term is used to simulate the variation of

light intensity or attractiveness.

In the FA, the main algorithmic equation for the position 𝐱i (as a solution vector

to a problem) is

𝐱t+1i = 𝐱ti + 𝛽0e
−𝛾r2ij (𝐱tj − 𝐱ti) + 𝛼 𝜖ti , (1)

where 𝛼 is a scaling factor controlling the step sizes of the random walks, while 𝛾 is

a scale-dependent parameter controlling the visibility of the fireflies (and thus search

modes). In addition, 𝛽0 is the attractiveness constant when the distance between two

fireflies is zero (i.e., rij = 0). In the above equation, the second term on the right-hand

side (RHS) is the nonlinear attractiveness which varies with distance, while the third

term is a randomization term and 𝜖ti means that the random number vectors should

be drawn from a Gaussian distribution at each iteration.

This system is a nonlinear system, which may lead to rich characteristics in terms

of algorithmic behaviour. Loosely speaking, FA belongs to the category of swarm
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intelligence (SI) based algorithms, and all SI-based algorithms use some aspects of

swarming intelligence [14].

It is worth pointing out that the distance rij between firefly i and firefly j can be

defined as their Cartesian distance. However, for some problems such as the internet

routing problems, this ‘distance’ can be defined as time delay. For certain combi-

natorial problems, it can be defined even as Hamming distance [48]. In addition,

since the brightness of a firefly is associated with the objective landscape with its

position as the indicator, the attractiveness of a firefly seen by others, depending on

their relative positions and relative brightness. Thus, the beauty is in the eye of the

beholder. Consequently, a pair comparison is needed for comparing all fireflies. The

main steps of FA can be summarized as the pseudocode in Algorithm 1.

Initialize all the parameters (𝛼, 𝛽, 𝛾, n);

Initialize randomly a population of n firefies;

Evaluate the fitness of the initial population at 𝐱i by f (𝐱i) for i = 1,… , n;

while (t < MaxGeneration) do
for All fireflies (i = 1 ∶ n) do

for All other fireflies (j = 1 ∶ n) (inner loop) do
if Firefly j is better/brighter than i then

Move firefly i towards j according to Eq. (1);

end
end
Evaluate the new solution and accept the new solution if better;

end
Rank and update the best solution found so far;

Update iteration counter t ← t + 1;

Reduce 𝛼 (randomness strength) by a factor;

end
Algorithm 1: Firefly algorithm.

Furthermore, 𝛼 is a parameter controlling the strength of the randomness or per-

turbations in FA. The randomness should be gradually reduced to speed up the over-

all convergence. Therefore, we can use

𝛼 = 𝛼0𝜃
t, (2)

where 𝛼0 is the initial value and 0 < 𝜃 < 1 is a reduction factor. In most cases, we

can use 𝜃 = 0.9 to 0.99, depending on the type of problems and the desired quality

of solutions.

In fact, since FA is a nonlinear system, it has the ability to automatically subdivide

the whole swarm into multiple subswarms. This is because short-distance attraction

is stronger than long-distance attraction, and the division of swarm is related to the

mean range of attractiveness variations. After division into multi-swarms, each sub-

swarm can potentially swarm around a local mode. Consequently, FA is naturally

suitable for multimodal optimization problems. Furthermore, there is no explicit use
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of the best solution 𝐠∗, thus selection is through the comparison of relative brightness

according to the rule of ‘beauty is in the eye of the beholder’.

2.2 Special Cases of FA

To gain more insight, let us analyze the FA system more carefully. By looking at

Eq. (1) closely, we can see that 𝛾 is an important scaling parameter [74, 75].

2.2.1 Case A: 𝜸 = 𝟎

At one extreme, we can set 𝛾 = 0, which means that there is no exponential decay

and thus the visibility is very high. In this case, all fireflies can see each other in the

whole domain and we have

𝐱t+1i = 𝐱ti + 𝛽0(𝐱tj − 𝐱ti) + 𝛼𝜖ti . (3)

∙ If 𝛾 = 0, 𝛼 = 0 and 𝛽0 is fixed, then FA becomes a variant of differential evolu-

tion (DE) without crossover [63, 79]. In this special case, if we replace 𝐱j by the

best solution in the group 𝐠∗, this reduced FA is equivalent to a special case of

accelerated particle swarm optimization (APSO) [74, 79].

∙ If 𝛽0 = 0, FA is equivalent to the basic simulated annealing (SA) with 𝛼 as the

cooling schedule [79]. In addition, if 𝜖i is further replaced by 𝜖𝐱i, this special case

is equivalent to the pitch adjustment of the harmony search (HS) algorithm.

Thus, it is clear that DE, APSO, SA and HS are special cases of the standard FA.

In other words, FA can be considered as a good combination of APSO, HS, SA and

DE enhanced in a nonlinear system. It is no surprise that FA can outperform these

algorithms for many applications.

2.2.2 Case B: 𝜸 ≫ 𝟏

At the other extreme when 𝛾 ≫ 1, the visibility range is very short. Fireflies are

essentially flying in a dense fog and they cannot see each other clearly. Thus, each

firefly flies independently and randomly. In fact, the exponential term exp[−𝛾r2ij] will

decrease significantly if 𝛾r2ij = 1, which means that the radius R or range of influence

can be defined by

R = 1
√
𝛾
. (4)

Therefore, a good value of 𝛾 should be linked to the scale or limits of the design

variables so that the fireflies within a range are visible to each other.
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For a given objective landscape, if the average scale of the domain is L, then 𝛾

can be estimated by

𝛾 = 1
L2

. (5)

If there is no prior knowledge about its possible scale, we can start with 𝛾 = 1
for most problems, and then increase or decrease it when necessary. In theory,

𝛾 ∈ [0,∞), but in practice, we can use 𝛾 = O(1), which means that we can use

𝛾 = 0.001 to 1000 for most problems we may meet.

2.3 Discrete FA

The standard FA was designed to solve continuous optimization problems. In order

to solve discrete optimization problems, some discretization techniques should be

used. For example, one way of converting a continuous variable x to a binary one is

to use the sigmoidal function

S(x) = 1
1 + e−x

, (6)

where S → 1 for x → ∞, while S → 0 for x → −∞. However, this S-shaped function

requires a large range to get a proper conversion. In practice, many researchers use

an additional rule with a random threshold. A common technique is to use a random

number r ∈ [0,1]. If S > r, then S = 1, otherwise, S = 0. Obviously, once we have

S ∈ {0, 1}, we can use u = 2S − 1 to get u ∈ {+1,−1} if needed.

Another way of conversion is to use random permutation. For example, a set of a

uniformly distributed random number such as r = [0.3, 0.9,… , 0.7] can be converted

to integers. On the other hand, an interesting conversion technique is to use a modulus

function by

u = ⌊x + k⌋ mod m, (7)

to convert x to an integer u. Here, k and m > 0 are integers.

There are other methods for discretization, including random keys, random per-

mutation, Hamming-distance based method, tanh(x), and others [55].

Many studies using FA have demonstrated how the algorithm works and the effec-

tiveness of the algorithm. Interested readers can refer to the book by Yang [79] and

reviews [15, 67]. Now let us explain in more detail why the algorithm works.

3 Why the Firefly Algorithm Works?

In the above descriptions, we have explained the main steps of the FA and how it

works. We now try to summarize why it works so well in practice.
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The exact reasons why FA works may require further mathematical analysis, spe-

cially for the variants to be introduced later. As it still needs a theoretical framework

to explain the working mechanisms of FA and all other algorithms, we do not intend

to figure out all the reasons why an algorithm works. However, from both empiri-

cal observations and the analysis of the algorithm structure, we can summarize the

following four reasons why the FA works [79]:

∙ From the special cases discussed in the previous section, we know that APSO,

SA, HS and DE are special cases of FA, and thus FA can be considered as a good

combination of all these algorithms. Therefore, it is no surprise that FA can work

more efficiently than these algorithms.

∙ Due to the nonlinear attraction mechanism in FA, the short-distance attraction

is stronger than long-distance attraction; therefore, the whole swarm can auto-

matically subdivide into multiple subswarms. Each swarm can potentially swarm

around a local mode, and among all the local modes, there is always a global

optimal solution. Consequently, the multiswarm nature of FA enables FA to find

multiple optimal solutions simultaneously and FA is naturally suitable for solving

nonlinear, multimodal optimization problems. Therefore, for a given problem with

m modes, if the number of fireflies n is much higher than m (i.e., n ≫ m), then all

the optima (including the global best) can be found simultaneously.

∙ The influence radius or range is controlled by 𝛾 . As a small value of 𝛾 means higher

influence and higher visibility, while a higher value of 𝛾 reduces its influence and

visibility. Therefore, we can tune 𝛾 to control the subdivision of the swarm. If

𝛾 = 0, there is no subdivision and all fireflies belong to a single swarm. A moderate

value of 𝛾 leads to multiswarms, while a much higher value of 𝛾 may lead to

individual random walks without a swarm. As a result, the diversity and properties

of the population are linked to 𝛾 . This nonlinearity provides much richer dynamic

characteristics.

∙ In comparison with PSO and other algorithms, FA does not use velocities explic-

itly, which means that FA does not have any drawbacks associated with velocities.

In addition, FA does not use 𝐠∗ in its equation. The use of 𝐠∗ can potentially lead to

premature convergence if the initial 𝐠∗ lies in the wrong region, which will attract

all other agents towards it. Therefore, FA can avoid any disadvantage associated

with 𝐠∗.

It is worth pointing out that all these parameters have to be tuned properly. For

example, 𝛼 as the strength of the random walks must be reduced gradually; otherwise,

the convergence may be slowed down by too much randomness. Similarly, a proper

value of 𝛾 has to be tuned to allow a good set of subswarms to emerge automatically

[74, 78].
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4 FA Is Not PSO

Though FA and PSO are both swarm intelligence based algorithms, they thus share

some similarity; however, FA is not PSO because they have some significant differ-

ences. Apart from the different inspiration from nature, we briefly summarize here

the main differences between FA and PSO:

∙ FA is a nonlinear system due to the nonlinear attraction term 𝛽0 exp(−𝛾r2ij), while

PSO is a linear system because its updating equations are linear in terms of 𝐱i and

𝐯i. The nonlinear dynamic nature of FA can lead to much richer characteristics in

terms of algorithmic behaviour and population properties.

∙ The strong nonlinearity of FA means that FA has an ability of multi-swarming,

while PSO cannot. Thus, FA can find multiple optimal solutions simultaneously

and consequently deal with multimodal problems more effectively.

∙ PSO uses velocities, but FA does not. Thus, FA does not have the drawbacks asso-

ciated with velocity initialization and instability for high velocities of particles.

∙ FA has some scaling control (via 𝛾), while PSO has no scaling control. Such scal-

ing control can give FA more flexibility.

All these differences enable FA to search the design spaces more effectively for

multimodal objective landscapes.

5 Variants of FA

Since the development of FA in 2008, it has been applied to many applications [78].

A comprehensive review was done by Fister et al. in 2013 [15], covering the litera-

ture up to 2013. Yang and He provided another review from a different perspective

in 2013 [76]. More recently, Tilahun et al. provided an updated review on the contin-

uous versions of the firefly algorithm and its variants [67], and the discrete versions

of the firefly algorithms were also reviewed by Tilahun and Ngnotchouye in 2017

[66].

Despite the success of the standard FA, many variants have been developed to

enhance its performance in the last few years. Again many of these variants have

been reviewed by Fister et al. [15] and Tilahun et al. [67], and we will not repeat

their coverage. Instead, here we will focus only on the most recent variants that have

just appeared in the last few years.

Though there are a diverse range of variants of FA, they can be loosely put into

the following six major variants/categories:

∙ Discrete FA: The standard FA was designed to solve problems in the continuous

domains. To solve discrete or combinatorial optimization problems, some modi-

fications are needed. For example, Marichelvam et al. developed a discrete FA for

solving hybrid flow shop scheduling problems [43, 44], while Osaba developed

a discrete FA for solving vehicle routing problems with recycling policy [48]. In
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addition, Poursalehi et al. used an effective discrete FA for optimizing fuel reload

design of nuclear reactors [51]. Zhang et al. used a discrete double-population for

assembly sequence planning [87]. These variants can be used to solve scheduling

and planning problems as well as routing problems.

∙ Adaptive FA: In the standard FA, parameters are fixed, and it may be advan-

tageous to use adaptively varying parameter values. Baykasoglu and Ozsoydan

developed an adaptive firefly algorithm with chaos to solve mechanical design

problems [5], and Gálvex and Iglesias [19] developed a memetic self-adaptive FA

for shape fitting [19].

∙ Modified/Enhanced FA: Researchers have designed various ways to modify and

enhance the performance of FA. For example, Cheung et al. developed a non-

homogeneous FA [8], while Chou and Ngo developed a modified FA for multi-

dimensional structural optimization [9]. Darwish combined FA with a Bayesian

classifier for solving classification problems [10], while Fister et al. used quater-

nion to represent the solutions of FA in higher dimensions [16].

In addition, He and Huang used a modified FA for multilevel thresholding of color

image segmentation [27]. Gupta used a modified FA for controller design [25].

Tesch and Kaczorowska used a rotational FA for arterial cannula shape optimiza-

tion [65]. Verma et al. developed an opposition and dimensional based modified

firefly algorithm [68]. Furthermore, Wang et al. developed a modified FA based

on light intensity difference [70], while Wang et al. modified FA with neighbor-

hood attraction [71] and Yu et al. developed a variable step size FA [82].

Additionally, Zhou et al. used an information-fusing FA for wireless sensor place-

ment for structural monitoring [89], and Zhou et al. combined FA with Newton’s

method to identify boundary conditions for transient heat conduction problems

[90].

∙ Chaotic FA: Some of the parameters in the FA can be replaced by the outputs

of some chaotic maps, which may be able to enhance the exploration ability of

the FA. For example, Gandomi et al. developed a chaotic FA in 2013 [18], while

Gokhale and Kale used a tent map for their chaotic FA [23]. Also, Zouache et

al. developed a quantum-inspired FA for discrete optimization problems [91], and

Dhal et al. developed a chaotic FA for enhancing image contrast [11]. Chaos-based

FA variants were reviewed by Fister et al. [17].

∙ Hybrid FA: Hybridization can be a good way to create new algorithm tools by

combing the advantages of each algorithm involved in the hybrid. For example,

Aleshab and Abdullah developed a hybrid FA with a probabilistic neural network

for solving classification problems [1], and Zhang et al. developed a hybrid by

combing FA with DE and achieved improved performance and accuracy [86].

∙ Multiobjective FA: The standard FA was for single objective optimization and

Yang extended the standard FA to multiobjective firefly algorithm (MOFA) for

design optimization [77]. In addition, Eswari and Nickolas developed a modi-

fied multiobjective FA for task scheduling [13], while Wang et al. developed a

hybrid multiobjective FA for big data optimization [72], and Zhao et al. devel-

oped a decomposition-based multiobjective FA for RFID network planning with

uncertainty [88].
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6 Applications of FA and Its Variants

The applications of FA and its variants are diverse, a quick Google scholar search

gives more than 7000 outputs, and it is not possible to cover all these applications

here. It is not our intention to review even a good fraction of the applications in the

current literature. For comprehensive reviews, interested readers can refer to [15, 66,

67]. Here, our emphasis will be on the recent, new applications that can be repre-

sentative in areas from engineering design to energy systems and from scheduling to

image processing. For example, FA has been applied in the design of radial expanders

in organic Rankine cycles [4], design optimization of steel frames [6], distributed

generation system [7], beam design [12], wavelet neural network optimization [83],

hysteresis model identification [84], detection of TEC seismo-ionospheric anomalies

[2] and structural search in chemistry [3].

In the area of clustering and classification, Senthinath et al. compared and evalu-

ated the performance of clustering using FA [59]. Gope et al. used FA for reschedul-

ing of real power for congestion management concerning pumped storage hydro-

units [24]. Long et al. used FA for heart disease predictions [40].

For applications in design and optimization, Mohanty applied FA for designing

shell and tube heat exchangers [46], while Shukla and Singh used FA to select para-

meters for advanced machining processes [60]. Hung applied FA in OFDM systems

[29] and Kamarian et al. used FA for thermal buckling optimization of compos-

ite plates [32], while Jafari and Akbari used FA to optimize micrometre-scale res-

onator modulators [31], and Othman et al. used a supervised FA to achieve optimal

placement of distributed generators [49]. Also, Singh et al. combined FA with least-

squares method to estimate power system harmonics [61], and Kaur and Ghosh used

a fuzzy FA for network reconfiguration of unbalanced distribution networks [34].

In the area of energy engineering and energy systems, Ghorbani et al. used FA

for prediction of gas flow rates from gas condensate reservoirs [22], and Massan

et al. used FA to solve wind turbine applications [45]. Wang et al. used an FA-BP

neural network to forecast electricity price [69] and Rastgou and Moshtagh used FA

for multi-stage transmission expansion planning [54]. In addition, Satapathy et al.

used a hybrid HS-FA based approach to improve the stability of PV-BESS diesel

generator-based microgrid [57].

For image processing, Kanimozhi and Latha used FA for region-based image

retrieval [33], and Rajinikanth and Couceiro used an FA-based approach for color

image segmentation [53]. Sáchez et al. used FA to optimize modular granular neural

networks for human recognition [58]. Rahebi and Hardalac used FA for optic disc

detection in retinal images [52], while Gao et al. used FA for visual tracking [20],

and Zhang et al. used a discrete FA for end member extraction from hyperspectral

images [85].

In the area of time series and forecasting, Xiao et al. used a combined model for

electrical load forecasting [73] and Ghorbani et al. used FA for capacity prediction

in combination with support vector machine [21]. In addition, Ibrahim and Khatib

used a hybrid model for solar radiation prediction [30].
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In the area of planning and navigation, Ma et al. used FA for planning navigation

paths [41], and Patle et al. used FA to optimize mobile robot navigation [50].

In deep learning and software engineering, Rosa et al. used FA for learning para-

meters in deep belief networks [56]. Srivatsava used an FA-based approach for gen-

erating optimal software test sequences [62], and Kaushik et al. integrated FA in

artificial neural network for predicting software costs accurately [35].

Other applications include nanoscale structural optimization by Kougianos and

Mohanty [37], protein complex identification by Lei et al. [38], protein structure pre-

diction by Maher et al. [42]. Also, Nekouie and Yaghoobi used FA to carry out mul-

timodal optimization [47], and Sundari et al. used an improved FA for programmed

PWM in multilevel inverters with adjustable DC sources [64].

7 Conclusions and Future Directions

As we have seen from the above reviews and discussions, FA and its variants have

been successfully applied in a wide spectrum of real-world applications. Despite its

success, there are still some interesting future research directions concerning FA,

and we will summarize them as follows.

1. Theory: Though we know FA and its variants work well, we do not have solid the-

oretical proof why they work and under exactly what conditions. A recent study

by He et al. proved the global convergence of the flower pollination algorithm

[26]. It can be expected that the same methodology can be applied to analyze

the firefly algorithm and other algorithms. Therefore, more theoretical analysis is

needed.

2. Adaptivity: All bio-inspired algorithms including FA have parameters, and tuning

of these parameters can be tedious. Ideally, algorithms should be able to tune their

parameters using a self-tuning framework [80] and also adapt their values to suit

for a given type of problems. Future work can focus on the parameter adaptivity

of FA and its variants.

3. Hybrid: Though there are many different variants of FA, it is no doubt that more

hybrid variants will appear in the future. At the moment, hybridization is by trial

and error, and it is not clear yet how to achieve a better hybrid by combining

different algorithms, which needs more research and further insight.

4. Co-evolution: Simple hybridization can often work well; however, co-evolution

can be more advantageous by co-evolving two or more algorithms together so

as to allow the successful characteristics of an algorithm to enhance the co-

evolutionary algorithm structure. It is not clear how to carry out co-evolution

of algorithms.

5. Applications: In addition to the diverse range of applications reviewed in this

chapter, there are more research opportunities of applying FA and its variants.

Future applications can focus on the area in big data, deep learning and large-

scale problems. Big data in combination with machine learning techniques such
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as deep nets can be an active research area for many years to come, and the nature-

inspired algorithms can expect to play an important role in this area.

As we can see that FA and its variants have been very successful in many applica-

tions, there are more opportunities for future research and applications. The authors

hope that this work can inspire future research in the above mentioned directions

with more real-world applications.
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An Efficient Computational Procedure
for Simultaneously Generating
Alternatives to an Optimal Solution
Using the Firefly Algorithm

Julian Scott Yeomans

Abstract In solving many “real world” mathematical programming applications, it
is often preferable to formulate numerous quantifiably good approaches that provide
distinct alternative solutions to the particular problem. This is because
decision-making frequently involves complex problems possessing incompatible
performance objectives and contain competing design requirements which prove
very difficult—if not impossible—to capture and quantify at the time that the sup-
porting decision models are actually formulated. There are invariably unmodelled
design issues, not apparent at the time of model construction, which can greatly
impact the acceptability of the model’s solutions. Consequently, it can prove
preferable to generate numerous alternatives providing contrasting perspectives to
the problem. These alternatives should be near-optimal with respect to the known
modelled objective(s), but be fundamentally dissimilar from each other in terms of
their decision variables. This solution approach has been referred to as modelling to
generate-alternatives (MGA). This chapter provides an efficient computational
procedure for simultaneously generating multiple different alternatives to an optimal
solution using the Firefly Algorithm. The efficacy and efficiency of this approach
will be illustrated using a two-dimensional, multimodal optimization test problem.

Keywords Firefly Algorithm ⋅ Biologically-inspired metaheuristic ⋅
Modelling-to-generate-alternatives

1 Introduction

Typical “real world” decision-making involves complex problems that possess
design requirements which are frequently very difficult to incorporate into their
supporting mathematical programming formulations and tend to be riddled with
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competing performance objectives [3, 11, 13]. While optimal solutions provide
provably best solutions to the mathematical constructions, they are generally not the
best solutions to the underlying real problems as there are invariably unquantified
issues and unmodelled objectives not apparent during the model formulation phase
[3, 11, 12]. Hence, it is generally considered desirable to generate a reasonable
number of very different alternatives that provide multiple, contrasting perspectives
to the specified problem [16]. These alternatives should preferably all possess good
(i.e. near-optimal) measures with respect to all of the modelled objective(s), but be
as fundamentally different as possible from each other in terms of the system
structures characterized by their decision variables. Several approaches collectively
referred to as modelling-to-generate-alternatives (MGA) have been developed in
response to this multi-solution creation requirement [2, 7–10, 12, 16].

The primary motivation behind MGA is to produce a manageably small set of
alternatives that are good with respect to all known objective(s) yet are as different
as possible from each other within the decision space. The resulting set of alter-
natives should provide diverse approaches that all perform similarly with respect to
the known modelled objectives, yet very differently with respect to any unmodelled
issues [7, 13]. Clearly the decision-makers must conduct subsequent evaluations to
ascertain which alternatives are most applicable to their specific circumstances.
Therefore, MGA methods must necessarily be regarded as decision support pro-
cesses in contrast to the explicit solution determination methods of optimization.

In this chapter, it is shown how to simultaneously generate sets of maximally
different alternatives by implementing a modified version of the nature-inspired
Firefly Algorithm (FA) [14, 15] by extending previous concurrent MGA approa-
ches [5–10]. For optimization, it has been demonstrated that the FA is more
computationally efficient than such metaheuristics as enhanced particle swarm
optimization, simulated annealing, and genetic algorithms [4, 15]. The MGA pro-
cedure extends the earlier efforts of Imanirad et al. [5–10] to now permit the
simultaneous generation of the desired number of alternatives in a single compu-
tational run. This new simultaneous FA-based MGA procedure is extremely
computationally efficient. This chapter illustrates the efficacy of the new FA
approach for simultaneously constructing multiple, good-but-very-different solution
alternatives on a 100-peak multimodal optimization test problem [12].

2 Firefly Algorithm for Optimization

While this section provides only an abridged outline of the steps involved in the FA
process [4–6], more comprehensive explanations appear in [14, 15]. The FA is a
biologically-inspired, population-based metaheuristic. Each firefly in the population
represents one potential solution to a problem and the population of fireflies should
initially be distributed uniformly and randomly throughout the solution space. The
solution approach employs three idealized rules. (i) All fireflies within the popu-
lation are considered “unisex”, so that any one firefly could potentially be attracted

262 J.S. Yeomans



to any other firefly irrespective of their sex. (ii) The brightness of a firefly is
determined by the overall landscape of the objective function. Namely, for a
maximization problem, the brightness is simply considered to be proportional to the
value of the objective function. (iii) The relative attractiveness between any two
fireflies is directly proportional to their respective brightness. This implies that for
any two flashing fireflies, the less bright firefly will always be inclined to move
towards the brighter one. However, attractiveness and brightness both decrease as
the relative distance between the fireflies increases. If there is no brighter firefly
within its visible neighborhood, then the particular firefly will move about ran-
domly. Based upon these three rules, the basic operational steps of the FA can be
summarized within the following pseudo-code [15].

Objective Function F(X), X = (x1, x2,… xd) 

Generate the initial population of n fireflies, Xi, i = 1, 2,…, n 

Light intensity Ii at Xi is determined by F(Xi) 

Define the light absorption coefficient γ

while (t < MaxGeneration) 

for i = 1: n , all n fireflies 

for j = 1: n ,all n fireflies (inner loop) 

if (Ii < Ij), Move firefly i towards j; end if

Vary attractiveness with distance r via e- γr

end for j

end for i

Rank the fireflies and find the current global best solution G*

end while
Postprocess the results

In the FA, there are two important issues to resolve: the variation of light
intensity and the formulation of attractiveness. For simplicity, it can always be
assumed that the attractiveness of a firefly is determined by its brightness which in
turn is associated with its encoded objective function value. In the simplest case, the
brightness of a firefly at a particular location X would be its calculated objective
value F(X). However, the attractiveness, β, between fireflies is relative and will vary
with the distance rij between firefly i and firefly j. In addition, light intensity
decreases with the distance from its source, and light is also absorbed in the media,
so the attractiveness needs to vary with the degree of absorption. Consequently, the
overall attractiveness of a firefly can be defined as
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β= β0 expð− γr2Þ

where β0 is the attractiveness at distance r = 0 and γ is the fixed light absorption
coefficient for the specific medium. If the distance rij between any two fireflies i and
j located at Xi and Xj, respectively, is calculated using the Euclidean norm, then the
movement of a firefly i that is attracted to another more attractive (i.e. brighter)
firefly j is determined by

Xi =Xi + β0 exp ð− γðrijÞ2Þ ðXi −XjÞ+ aεi.

In this expression of movement, the second term is due to the relative attraction
and the third term is a randomization component. Yang [15] indicates that α is a
randomization parameter normally selected within the range [0,1] and εi is a vector
of random numbers drawn from either a Gaussian or uniform (generally [−0.5,0.5])
distribution. It should be explicitly noted that this expression represents a random
walk biased toward brighter fireflies and if β0 = 0, it becomes a simple random
walk. The parameter γ characterizes the variation of the attractiveness and its value
determines the speed of the algorithm’s convergence. For most applications, γ is
typically set between 0.1 to 10 [4, 15]. For all computational approaches for the FA
considered in this study, the variation of attractiveness parameter γ was fixed at 5
while the randomization parameter α was initially set at 0.6, but is then gradually
decreased to a value of 0.1 as the procedure approaches its maximum number of
iterations (see [15]).

In any given optimization problem, for a very large number of fireflies n >> k,
where k is the number of local optima, the initial locations of the n fireflies should
be distributed relatively uniformly throughout the entire search space. As the FA
proceeds, the fireflies begin to converge into all of the local optima (including the
global ones). Hence, by comparing the best solutions among all these optima, the
global optima can easily be determined. Yang [15] proves that the FA will approach
the global optima when n → ∞ and the number of iterations t, is set so that t ≫ 1.
In reality, the FA has been found to converge extremely quickly with n set in the
range 20–50 [4, 14].

Two important limiting or asymptotic cases occur when γ → 0 and when γ →
∞. For γ → 0, the attractiveness is constant β = β0, which is equivalent to having a
light intensity that does not decrease. Thus, a firefly would be visible to every other
firefly anywhere within the solution domain. Hence, a single (usually global)
optima can easily be reached. If the inner loop for j in the pseudo-code is removed
and Xj is replaced by the current global best G*, then this implies that the FA
reverts to a special case of the accelerated particle swarm optimization (PSO) al-
gorithm. Subsequently, the computational efficiency of this special FA case is
equivalent to that of enhanced PSO. Conversely, when γ → ∞ , the attractiveness
is essentially zero along the sightline of all other fireflies. This is equivalent to the
case where the fireflies randomly roam throughout a very thick foggy region with
no other fireflies visible and each firefly roams in a completely random fashion.
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This case corresponds to a completely random search method. As the FA operates
between these two asymptotic extremes, it is possible to adjust the parameters α and
γ so that the FA can outperform both a random search and the enhanced PSO
algorithms [4].

The computational efficiencies of the FA will be exploited in the subsequent
MGA solution approach. As noted, within the two asymptotic extremes, the pop-
ulation in the FA can determine both the global optima as well as the local optima
concurrently. This concurrency of population-based solution procedures holds huge
computational and efficiency advantages for MGA purposes [16]. An additional
advantage of the FA for MGA implementation is that the different fireflies essen-
tially work independently of each other, implying that FA procedures are better than
PSO and genetic algorithms for MGA because the fireflies will tend to aggregate
more closely around each local optimum [4, 15]. Consequently, with a judicious
selection of parameter settings, the FA will simultaneously converge extremely
quickly into both local and global optima [4, 14, 15].

3 Modelling to Generate Alternatives

Most optimization methods appearing in the mathematical programming literature
have focused almost entirely on the production of single optimal solutions to
single-objective problem formulations or, equivalently, on the generation of non-
inferior sets of solutions to multi-objective instances [2, 5, 6, 11, 13]. While such
algorithms may efficiently generate solutions to the derived complex mathematical
models, whether these outputs actually establish “best” approaches to the under-
lying real problems is debatable [2, 3, 11, 12]. In most “real world” applications,
there are innumerable system requirements and objectives that are never included or
apparent in the decision formulation stage [3, 13]. Furthermore, it may never be
possible to explicitly incorporate all of the subjective components because there are
frequently many incompatible, competing, design interpretations and, perhaps,
adversarial stakeholders involved. Therefore most of the subjective aspects of a
problem necessarily remain unquantified and unmodelled in the construction of the
resultant decision models. This occurs frequently in situations where final decisions
are constructed based not only upon clearly stated and modelled objectives, but also
upon more fundamentally subjective socio-political-economic goals and stake-
holder preferences [16]. Numerous “real world” examples describing these types of
incongruent modelling dualities are discussed in [1, 2, 12, 17].

When unquantified objectives and unmodelled issues are suspected, then
non-conventional approaches should be undertaken that not only search the feasible
region for noninferior solutions, but also explore the feasible region for obviously
inferior alternatives to the formulated problem. In particular, any search for good
alternatives to problems known or suspected to contain unmodelled objectives must
focus not only on the non-inferior solution set, but also necessarily on an explicit
exploration of the problem’s inferior decision space.
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To illustrate the implications of an unmodelled objective on a decision search,
assume that the optimal solution for a quantified, single-objective, maximization
decision problem is X* with corresponding objective value Z1*. Now suppose that
there exists a second, unmodelled, maximization objective Z2 that subjectively
reflects some unquantifiable “political acceptability” component. Let the solution
Xa, belonging to the noninferior, 2-objective set, represent a potential best com-
promise solution if both objectives could somehow have been simultaneously
evaluated by the decision-maker. While Xa might be viewed as the best compro-
mise solution to the real problem, it would appear inferior to the solution X* in the
quantified mathematical model, since it must be the case that Z1a ≤ Z1*. Conse-
quently, when unmodelled objectives are factored into the decision making process,
mathematically inferior solutions for the modelled problem can prove optimal to the
underlying real problem. Therefore, when unmodelled objectives and unquantified
issues might exist, different solution approaches are needed in order to not only
search the decision space for the noninferior set of solutions, but also to simulta-
neously explore the decision space for inferior alternative solutions to the modelled
problem. Population-based solution methods such as the FA permit concurrent
searches throughout a feasible region and thus prove to be particularly adept pro-
cedures for searching through a problem’s decision space.

The primary motivation behind MGA is to produce a manageably small set of
alternatives that are quantifiably good with respect to the known modelled objec-
tives yet are as different as possible from each other in the decision space. The
resulting alternatives are likely to provide truly different choices that all perform
somewhat similarly with respect to the modelled objective(s) yet very differently
with respect to any unknown unmodelled issues. By generating a set of
good-but-different solutions, the decision-makers can explore desirable qualities
within the alternatives that may prove to satisfactorily address the various
unmodelled objectives to varying degrees of stakeholder acceptability.

In order to properly motivate an MGA search procedure, it is necessary to supply
a more mathematically formal definition of the goals of the MGA process [7, 12,
16]. Suppose the optimal solution to an original mathematical model is X* with
objective value Z* = F(X*). The following model can then be solved to generate an
alternative solution, X, that is maximally different from X*:

Maximize ΔðX,X*Þ= ∑
i

Xi −X*
i

�
�

�
�

Subject : to
X ∈D
FðXÞ−Z*
�
�

�
�≤ T

ð½P1�Þ

where Δ represents some difference function (for clarity, shown as an absolute
difference in this instance) and T is a targeted tolerance value specified relative to
the problem’s original optimal objective Z*. T is a user-supplied value that deter-
mines how much of the inferior region is to be explored in the search for acceptable
alternative solutions. This difference function concept can be extended into a
measure of difference between a set of alternatives by replacing X* in the objective
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of [P1] and calculating the overall sum (or some other function) of the differences of
the pairwise comparisons between each pair of alternatives—subject to the condi-
tion that each alternative is feasible and falls within the specified tolerance
constraint.

4 FA-Based Simultaneous MGA Computational
Algorithm

The MGA method to be introduced produces a pre-determined number of
near-optimal, maximally different alternatives, by modifying the value of the bound
T in [P1] and using an FA to solve the corresponding, maximal difference problem.
Each solution within the FA’s population contains one potential set of p different
alternatives. By exploiting the co-evolutionary solution structure within the popu-
lation of the algorithm, the Fireflies collectively evolve each solution toward sets of
different local optima within the solution space. In this process, each desired
solution alternative undergoes the common search procedure of the FA. However,
the survival of solutions depends not only upon how well the solutions perform
with respect to the modelled objective(s), but also by how far away they are from all
of the other alternatives generated in the decision space.

A direct process for generating alternatives with the FA is to iteratively solve the
maximum difference model [P1] by incrementally updating the target T whenever a
new alternative needs to be created and then re-running the algorithm. This iterative
approach parallels the seminal Hop, Skip, and Jump (HSJ) MGA algorithm [2] in
which, once an initial problem formulation has been optimized, supplementary
alternatives are systematically produced one-by-one via an incremental adjustment
of the target constraint to force the sequential generation of suboptimal solutions.
While this approach is straightforward, it requires a recurrent execution of the
optimization algorithm [5, 6, 16].

To improve upon the stepwise alternative approach of the HSJ algorithm, a
concurrent MGA technique was subsequently designed based upon the concept of
co-evolution [5–7, 9]. In the co-evolutionary approach, pre-specified stratified
subpopulation ranges within the algorithm’s overall population were established
that collectively evolved the search toward the creation of the stipulated number of
maximally different alternatives. Each desired solution alternative was represented
by each respective subpopulation and each subpopulation underwent the common
processing operations of the FA. The survival of solutions in each subpopulation
depended simultaneously upon how well the solutions perform with respect to the
modelled objective(s) and by how far away they are from all of the other alterna-
tives. Consequently, the evolution of solutions in each subpopulation toward local
optima is directly influenced by those solutions contained in all of the other sub-
populations, which forces the concurrent co-evolution of each subpopulation
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towards good but maximally distant regions within the decision space according to
[P1] [16].

By employing this co-evolutionary concept, it became possible to implement an
MGA procedure that concurrently produced alternatives possessing objective
function bounds analogous to those created by the sequential, iterative HSJ-styled
approach. In contrast, while each alternative produced by an HSJ procedure is
maximally different only from the overall optimal solution (together with its bound
on the objective value which is at least x% different from the best objective (i.e. x =
1%, 2%, etc.)), the concurrent procedure generated alternatives that are no more
than x% different from the overall optimal solution but with each one of these
solutions being as maximally different as possible from every other generated
alternative that was produced. Co-evolution is also much more efficient than
sequential HSJ in that it exploits the inherent population-based searches of FA
procedures to concurrently create its entire set of maximally different solutions
using only a single population [7, 9].

While a concurrent approach exploits the population-based nature of the FA’s
solution approach, the co-evolution process occurs within each of the stratified
subpopulations. The maximal differences between solutions in different subpopu-
lations is based upon aggregate subpopulation measures. Conversely, in the fol-
lowing simultaneous MGA algorithm, each solution in the population contains
exactly one entire set of alternatives and the maximal difference is calculated only
for that particular solution (i.e. the specific alternative set contained within that
solution in the population). Hence, by the evolutionary nature of the FA search
procedure, in the subsequent approach, the maximal difference is simultaneously
calculated for the specific set of alternatives considered within each specific solu-
tion—and the need for concurrent subpopulation aggregation measures is
circumvented.

The steps in the simultaneous co-evolutionary alternative generation algorithm
are as follows:

Initialization Stage: In this preliminary step, solve the original optimization
problem to determine the optimal solution, X*. As with prior solution approaches
[5]–[10] and without loss of generality, it is entirely possible to forego this step and
construct the algorithm to find X* as part of its solution processing. However, such
a requirement increases the number of computational iterations of the overall
procedure and the initial stages of the processing focus upon finding X* while the
other elements of each population solution remain essentially “computational
overhead”. Based upon the objective value F(X*), establish P target values.
P represents the desired number of maximally different alternatives to be generated
within prescribed target deviations from the X*.

Note: The value for P has to have been set a priori by the decision-maker.

Step 1. Create the initial population of size K in which each solution is divided
into P equally-sized partitions. The size of each partition corresponds to
the number of variables for the original optimization problem. Ap repre-
sents the pth alternative, p = 1,…,P, in each solution.
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Step 2. In each of the K solutions, evaluate each Ap, p = 1,…,P, with respect to the
modelled objective. Alternatives meeting their target constraint and all
other problem constraints are designated as feasible, while all other
alternatives are designated as infeasible. A solution can only be designated
as feasible if all of the alternatives contained within it are feasible.

Step 3. Apply an appropriate elitism operator to each solution to rank order the
best individuals in the population. The best solution is the feasible solution
containing the most distant set of alternatives in the decision space (the
distance measure is defined in Step 5). Note: Because the best solution to
date is always retained in the population throughout each iteration of the
FA, at least one solution will always be feasible. A feasible solution for the
first step can always consists of P repetitions of X*.

This step simultaneously selects a set of alternatives that respectively satisfy
different values of the target T while being as far apart as possible (i.e. maximally
different as defined in [P1]) from the other solutions generated. By the
co-evolutionary nature of the FA, the alternatives are simultaneously generated in
one pass of the procedure rather than the P implementations suggested by the
necessary increments to T in problem [P1].

Step 4. Stop the algorithm if the termination criteria (such as maximum number of
iterations or some measure of solution convergence) are met. Otherwise,
proceed to Step 5.

Step 5. For each solution k = 1,…, K, calculate Dk, a distance measure between all
of the alternatives contained within solution k.

As an illustrative example for determining a distance measure, calculate

Dk = ∑
i=1 to P

∑
j=1 to P

ΔðAi,AjÞ.

This represents the total distance between all of the alternatives contained within
solution k. Alternatively, the distance measure could be calculated by some other
appropriately defined function.

Step 6. Rank the solutions according to the distance measure Dk objective—
appropriately adjusted to incorporate any constraint violation penalties for
infeasible solutions. The goal of maximal difference is to force alternatives
to be as far apart as possible in the decision space from the alternatives of
each of the partitions within each solution. This step orders the specific
solutions by those solutions which contain the set of alternatives which are
most distant from each other.

Step 7. Apply appropriate FA “change operations” to the each of the solutions and
return to Step 2.
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5 Computational Testing of Simultaneous MGA
Algorithm

As alluded to in the earlier sections, non-mathematically orientated, “real world”
planners generally prefer to be able to select from a set of “near-optimal” alter-
natives that significantly differ from each other in terms of the system structures
characterized by their decision variables. The ability of the FA MGA procedure to
simultaneously produce such maximally different alternatives will be demonstrated
using a non-linear optimization problem taken from [12]. The mathematical for-
mulation for this multimodal problem is:

MaximizeFðx, yÞ= sinð19πxÞ+ x
1.7

+ sinð19πyÞ+ y
1.7

+ 2

0.0≤ x≤ 1.0 0.0≤ y≤ 1.0

The non-linear, feasible region contains 100 peaks separated by valleys in which
the amplitudes of both the peaks and valleys increase as the values of the decision
variables increase from the (0,0) toward (1,1). For the design parameters employed
in this formulation, the best solution of F(x, y) = 5.146 occurs at point (x, y) =
(0.974, 0.974) [12].

In order to create the set of different alternatives, extra target constraints that
varied the value of T by up to 1.5% between successive alternatives were placed
into the original formulation in order to force the generation of solutions maximally
different from the initial optimal solution (i.e. the values of the bound were set at
1.5, 3, 4.5%, etc. for the respective alternatives). The MGA maximal difference
algorithm described in the previous section was run to produce the optimal solution
and the 10 maximally different solutions shown in Table 1 and illustrated in Fig. 1.

Table 1 Objective values
and solutions for the 11
maximally different
alternatives

Increment 1.5% Increment
between alternatives
F(x,y) x y

Optimal 5.14 0.97 0.97
Alternative 1 5.11 0.97 0.98
Alternative 2 5.06 0.98 0.87
Alternative 3 5.01 0.87 0.76
Alternative 4 4.98 0.87 0.98
Alternative 5 4.92 0.76 0.98
Alternative 6 4.90 0.87 0.66
Alternative 7 4.77 0.45 0.87
Alternative 8 4.73 0.98 0.34
Alternative 9 4.66 0.13 0.97

Alternative 10 4.65 0.98 0.13
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As described earlier, most “real world” optimization applications tend to be
riddled with incongruent performance requirements that are exceedingly difficult to
quantify. Consequently, it is preferable to create a set of quantifiably good alter-
natives that provide very different perspectives to the potentially unmodelled per-
formance design issues during the policy formulation stage. The unique
performance features captured within these dissimilar alternatives can result in very
different system performance with respect to the unmodelled issues, hopefully
thereby addressing some of the unmodelled issues into the actual solution process.

The example in this section underscores how a co-evolutionary MGA modelling
perspective can be used to simultaneously generate multiple alternatives that satisfy
known system performance criteria according to the prespecified bounds and yet
remain as maximally different from each other as possible in the decision space. In
addition to its alternative generating capabilities, the FA component of the MGA
approach simultaneously performs extremely well with respect to its role in func-
tion optimization. It should be explicitly noted that the cost of the overall best
solution produced by the MGA procedure is indistinguishable from the one
determined in [12].

The computational example has demonstrated several important findings with
respect to the simultaneous FA-based MGA method: (i) The co-evolutionary
capabilities within the FA can be exploited to generate more good alternatives than
planners would be able to create using other MGA approaches because of the
evolving nature of its population-based solution searches; (ii) By the design of the
MGA algorithm, the alternatives generated are good for planning purposes since all
of their structures will be maximally different from each other (i.e. these differences
are not just simply different from the overall optimal solution as in an HSJ-style
approach to MGA); and, (iv) The approach is computationally efficient since it need

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y
va
lu
e

x value

Fig. 1 Dispersion of the maximally different alternatives throughout the decision space

An Efficient Computational Procedure … 271



only be run a single time in order to generate its entire set of multiple, good solution
alternatives (i.e. to generate n solution alternatives, the MGA algorithm needs to run
exactly once irrespective of the value of n).

6 Conclusions

“Real world” decision-making problems generally possess multidimensional per-
formance specifications that are compounded by incompatible performance objec-
tives and unquantifiable modelling features. These problems usually contain
incongruent design requirements which are very difficult—if not impossible—to
capture at the time that supporting decision models are formulated. Consequently,
there are invariably unmodelled problem facets, not apparent during the model
construction, that can greatly impact the acceptability of the model’s solutions to
those end users that must actually implement the solution. These uncertain and
competing dimensions force decision-makers to integrate many conflicting sources
into their decision process prior to final solution construction. Faced with such
incongruencies, it is unlikely that any single solution could ever be constructed that
simultaneously satisfies all of the ambiguous system requirements without some
significant counterbalancing involving numerous tradeoffs. Therefore, any ancillary
modelling techniques used to support decision formulation have to somehow
simultaneously account for all of these features while being flexible enough to
encapsulate the impacts from the inherent planning uncertainties.

In this chapter, an MGA procedure was presented that demonstrated how the
population structures of a computationally efficient FA could be exploited to
simultaneously generate multiple, maximally different, near-best alternatives. In this
MGA capacity, the approach produces numerous solutions possessing the requisite
structural characteristics, with each generated alternative guaranteeing a very dif-
ferent perspective to the problem. Since FA techniques can be modified to solve a
wide variety of problem types, the practicality of this MGA approach can clearly be
extended into numerous disparate planning applications. These extensions will be
studied in future research.
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Optimization of Relay Placement in Wireless
Butterfly Networks

Quoc-Tuan Vien

Abstract As a typical model of multicast network, wireless butterfly networks

(WBNs) have been studied for modelling the scenario when two source nodes wish

to convey data to two destination nodes via an intermediary node namely relay node.

In the context of wireless communications, when receiving two data packets from the

two source nodes, the relay node can employ either physical-layer network coding or

analogue network coding on the combined packet prior to forwarding to the two des-

tination nodes. Evaluating the energy efficiency of these combination approaches,

energy-delay trade-off (EDT) is worth to be investigated and the relay placement

should be taken into account in the practical network design. This chapter will first

investigate the EDT of network coding in the WBNs. Based on the derived EDT,

algorithms that optimize the relay position will be developed to either minimize

the transmission delay or minimize the energy consumption subject to constraints

on power allocation and location of nodes. Furthermore, considering an extended

model of the WBN, the relay placement will be studied for a general wireless mul-

ticast network with multiple source, relay and destination nodes.

Keywords Wireless butterfly network ⋅Wireless multicast network ⋅Network cod-

ing ⋅ Energy-delay tradeoff ⋅ Relay placement

1 Introduction

As wireless communications is growing with emerging enhanced technologies, data

transmission over wireless medium turns out to be more reliable and more secured.

The broadcast nature of the wireless media has been exploited to enable a variety of

communication mechanisms and algorithms for enhancing the performance of the

wireless communications. Apparently, there exist a number of nodes in a network

and a question that can be raised is why they do not help each other in the data trans-

mission between two end nodes. The energy waste and the unwanted interference in

Q.-T. Vien (✉)

Middlesex University, The Burroughs, London NW4 4BT, UK

e-mail: q.vien@mdx.ac.uk

© Springer International Publishing AG 2018

X.-S. Yang (ed.), Nature-Inspired Algorithms and Applied Optimization,

Studies in Computational Intelligence 744, https://doi.org/10.1007/978-3-319-67669-2_13

275



276 Q.-T. Vien

the shared media between the nodes that used to be regarded as drawbacks of the

wireless communications can become a potential resource in assisting the commu-

nication between them. The attenuation in signal strength caused by severe fading

of the source-destination link or even completely corrupted link could be solved

with the help of intermediate nodes whose channels are independent of the channel

between the source and destination nodes. The probability of successful transmission

is therefore improved for a more reliable communication if these issues are satisfac-

torily addressed.

Cooperative communications, also known as relay communications or user coop-

eration in the preliminary works of Sendonaris et al. in 2003 [1, 2] and Laneman

et al. in 2004 [3], has attracted an increasing interest in wireless communications

aiming at throughput enhancement and quality improvement by exploiting spatial

diversity gains. The relays can be used not only to improve service quality and link

capacity for local users which are located near the source but also to enhance cov-

erage and throughput for remote users. Inspired by the benefits of the relays, relay-

assisted communications has been incorporated in various types of wireless systems;

for instance, cellular networks in Loa et al. in 2010 [4] and Sheng et al. in 2011 [5], ad

hoc networks in Sharma et al. in 2011 [6], sensor networks in Sun et al. in 2009 [7],

ultra-wideband body area networks in Chen et al. in 2009 [8], and storage networks

in Dimakis et al. in 2011 [9].

Conventionally, data traverses along relays in a store-and-forward manner, and

thus the use of the relays does not immediately increase network throughput. In 2000,

Ahlswede et al. [10] proposed the idea of network coding (NC) to increase the system

throughput in lossless networks. Later in 2003, Koetter and Medard [11] developed

an algebraic approach to enable the applicability of the NC. The NC has been then

applied at the relays to dramatically improve the throughput of wireless relay net-

works, such as Zhang et al. in 2006 [12], Katti et al. in 2007 [13], and Louie et al. in

2010 [14]. By employing the NC at the relay nodes to coordinate the transmission

among nodes in an efficient way, the optimality of the bandwidth could be achieved.

Many NC-based protocols have also been proposed for some particular relay chan-

nel topologies such as relay-assisted bidirectional channels in Ju et al. in 2010 [15],

broadcast channels in Nguyen et al. in 2009 [16], multicast channels in Chen et al.

in 2010 [17], and unicast channels in Liu et al. in 2009 [18]. As a specific model of

the multicast channels, butterfly networks have been investigated, e.g., Zhan et al. in

2010 [19] and Hu et al. in 2011 [20], in which the NC is applied at the relay node to

help two source nodes simultaneously transmit their information to two destination

nodes.

This chapter is devoted to investigating the energy efficiency for reliable com-

munications in wireless butterfly networks (WBNs) employing various NC tech-

niques. In particular, the relay placement (RP) problem for energy-efficient and reli-

able relaying in the WBNs will be discussed. In the rest of this chapter, Sect. 2

will first introduce the background of cooperative diversity starting from its founda-

tion including the concepts of diversity and multiple-input multiple-output (MIMO).

Basic principles and specific protocols for cooperative communications in wireless

relay networks will be presented along with cooperative diversity techniques via dis-
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tributed space-time-frequency coding and NC for a variety of relay network topolo-

gies. Section 3 will describe the system model of a typical WBN employing the NC

techniques. As a common approach to improve the reliability of the wireless com-

munications, Sect. 4 will discuss hybrid automatic repeat request with incremen-

tal redundancy (HARQ-IR) protocol and, in particular, this section will provide a

detailed analysis for the energy-delay tradeoff of the HARQ-IR protocol with the

NC techniques in the WBN. The RP problem in the WBN will be then formulated

and optimized in Sect. 5. An extension of the RP for a general wireless multicast

network will be discussed in Sect. 6. Finally, Sect. 7 will conclude this chapter with

suggestion for future works.

2 Background

In this section, the basic concepts of diversity techniques will be firstly described,

including temporal diversity, frequency diversity, and spatial diversity. As an

approach to achieve the spatial diversity in terms of antenna diversity, MIMO sys-

tems will be presented with some well-known space-time-frequency coding schemes,

based on which the motivation of cooperative diversity will be then discussed with

an overview of cooperative protocols and techniques. The section will conclude by

introducing NC which is regarded as a new technique to improve the throughput of

wireless cooperative relay networks.

2.1 Diversity Techniques in Wireless Communications

In a communication system consisting of a sender and a receiver, the reliability of

data transmission can be improved by providing more than one path between them.

This technique is the main idea behind the term “diversity”. In fact, by providing

multiple replicas or copies of the transmitted signals over independent channels, the

receiver can more reliably decode the transmitted signal by either combining all the

received signal, namely a maximal ratio combiner, or selecting the best signal with

the highest signal-to-noise ratio (SNR), namely a selection combiner, or choosing the

signal with an SNR exceeding a threshold, namely a threshold combiner. In order

to define the diversity quantitatively, Zheng and Tse in 2003 [21] formulated the

relationship between the error probability, i.e., Pe, and the received SNR, i.e., 𝛾 ,

through a diversity gain as

Gd ≜ − lim
𝛾→∞

logPe

log 𝛾
. (1)

It can be seen in Eq. (1) that the diversity gain Gd is the slope of the Pe curve in

terms of 𝛾 in a log-log scale. This means that a large diversity gain is preferred to

achieve a reduced Pe at a higher data rate. The problems are how to provide various
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copies of the transmitted signal to the receiver in an efficient way in terms of power,

time, bandwidth, and complexity, and, how to take advantage of these copies at the

receiver to achieve the lowest Pe. To cope with these two issues, various diversity

methods, as will be shown below, can be implemented.

2.1.1 Temporal Diversity

In temporal diversity, copies of the transmitted signal are sent at different time inter-

vals. The time interval between two transmitted replicas should be longer than the

coherence time of the channel to make the fading channels uncorrelated and thus the

temporal diversity can be obtained. However, the temporal diversity is bandwidth

inefficient due to the delay that may be suffered at the receiver in the case of a slow

fading channel, i.e., a large coherence time of the channel.

2.1.2 Frequency Diversity

Instead of using temporal separation between different replicas of the transmitted sig-

nal, the transmission of these copies can be carried out over different carrier frequen-

cies to achieve frequency diversity. Similar to temporal diversity, frequency diversity

can be achieved when there exists a necessary separation between two carrier fre-

quencies which should be larger than the coherence bandwidth of the channel. The

frequency diversity is therefore also bandwidth inefficient and the capability of fre-

quency tuning is required at the receiver.

2.1.3 Spatial Diversity

In spatial diversity, multiple antennas are employed at the sender and/or the receiver

to transmit and/or receive different copies of a signal. It is therefore also known

as antenna diversity in Winters et al. in 1994 [22]. The spatial diversity does not

suffer from bandwidth inefficiency which is a major drawback of the temporal and

frequency diversity. However, in order to achieve the spatial diversity, a number of

antennas are required at either the transmitter side or the receiver side or both sides.

Also, the antennas deployed on a device are normally separated by at least half of a

wavelength of the transmission frequency to guarantee that the fading channels are

independent or at least low-correlated. Obviously, the condition of the antenna sep-

aration could be easily satisfied at large base stations, but may not be applicable for

small handheld devices. This accordingly motivates the concept of user cooperation

with cooperative diversity, which will be discussed in details in Sect. 2.3.
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2.2 MIMO Systems and Space-Time-Frequency Coding

In radio communications, the negative effects of fading phenomena on quality and

data rate in wireless communications can be combated with diversity in the spatial

domain via the employment of multiple antennas. The concept of MIMO systems is

defined for systems where multiple antennas are deployed at source and destination

nodes to achieve the spatial diversity. The works of Foschini and Gans in 1998 [23]

and Telatar in 1999 [24] on various MIMO techniques are regarded as the first stud-

ies of the MIMO systems. These two pioneering publications showed that a large

capacity gain could be achieved with the MIMO systems compared to the traditional

single-input single-output (SISO) systems. These findings have motivated a large

number of research works on MIMO systems.

Also in 1998 and 1999, Tarokh et al. [25] and Guey et al. [26] derived two space-

time coding (STC) design criteria based on the upper bound of pairwise error prob-

ability. One is rank criterion or diversity criterion in which an STC is said to achieve

full diversity if the code difference matrix is of full rank. The other is the product

criterion or determinant criterion in which the coding gain of an STC is determined

by the product of eigenvalues of the code difference matrix, and thus it should be

large to obtain a high coding gain.

One important means of achieving spatial diversity is by deployment of multiple

antennas at the transmitter, which is known as transmit diversity. Tarokh et al. in 1998

[25] proposed space-time trellis coding (STTC) that can effectively exploit transmit

diversity, but its decoding complexity increases exponentially with the transmission

rate. Thus different transmit diversity schemes should be proposed to reduce the

complexity of the decoding algorithm in STTC. Dealing with this issue, in the same

year with the STTC, Alamouti [27] designed a new orthogonal transmit diversity

scheme using two transmit antennas. This coding scheme has been widely known as

the Alamouti code in honour of its inventor. The Alamouti scheme was later gener-

alized by Tarokh et al. in 2001 [28], Ganesan and Stoica in 2001 [29], and Tirkkonen

and Hottinen in 2002 [30] for more than two transmit antennas and characterized as

orthogonal space-time block coding (OSTBC) for MIMO systems. Other STCs were

also designed using some specific matrix structures; for instance, quasi-orthogonal

space-time block code (QOSTBC) in Jafarkhani in 2001 [31], rotated QOSTBC in Su

and Xia in 2004 [32], cyclic STC in Hughes in 2000 [33], unitary STC in Hochwald

et al. in 2000 [34], diagonal algebraic STC in Damen et al. in 2002 [35], and group-

wise STC in Du and Li in 2006 [36].

Considering wideband wireless communications when the systems are required

to operate at a high data rate, the communication channels now become frequency-

selective fading. The STC schemes for the narrowband communications are shown

to be inappropriate and are thus required to be redesigned. Indeed, the frequency-

selective or multipath fading channels cause not only severe attenuation in signal

strength, but also a large amount of inter-symbol interference (ISI), which makes

the signal detection unreliable. However, these multiple paths can offer multipath

diversity or frequency diversity. Many studies were then dedicated to extend OST-
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BCs to frequency-selective fading channels, such as Linkskog and Paulraj in 2000

[37], Al-Dhahir in 2001 [38], and Zhou and Giannakis in 2001 [39]. The newly

designed codes can be viewed as a block implementation of the Alamouti code.

Another approach to mitigate the frequency selectivity is orthogonal frequency-

division multiplexing (OFDM) which uses multiple subcarriers to mitigate the fading

effects. For wideband MIMO-OFDM systems, Agrawal et al. in 1998 [40] proposed

space-frequency coding (SFC) by converting the time domain in the STC to the fre-

quency domain. Different versions of the SFC were then developed and analyzed

in Lu and Wang in 2000 [41], Blum et al. in 2001 [42], and Su et al. in 2005 [43]

based on the mapping from different STCs. Adapting the SFCs to several consecu-

tive OFDM blocks, Gong and Letaief in 2001 [44] designed space-time-frequency

coding (STFC) for two transmit antennas, which was then extended by Liu et al. in

2002 [45] and Molisch et al. in 2002 [46] for multiple transmit antennas.

2.3 Cooperative Diversity Protocols and Techniques

MIMO systems are only feasible when devices employ multiple co-located antennas.

However, the installation of multiple antennas may be impractical due to the inher-

ent hardware limitation of some small devices. Instead, these devices can collaborate

to form a virtual multi-antenna system. The communication between a source node

and a destination node can be realized in a cooperative manner with one or mul-

tiple cooperating nodes acting as relay node(s). Drawing from user cooperation to

achieve some of the benefits of MIMO systems, this form of diversity is well known

as cooperative diversity or user cooperation diversity.

2.3.1 Cooperative Protocols

A very classical relay channel including three terminals was initially introduced by

van der Meulen in 1971 [47] where a relay terminal simply listens to the transmitted

signal from a source terminal, processes it and then sends it to a destination termi-

nal. For this relay channel model, Cover and Gamal in 1979 [48] was the first work

investigating the capacity of the relay channel and also deriving the lower and upper

bounds of its capacity. The ergodic capacity of the relay channel with different cod-

ing strategies was then analysed by Kramer et al. in 2005 [49].

Motivated by the three-terminal channel model, Laneman et al. in 2004 [3] pro-

posed low-complexity cooperative protocols for a more general system model taking

into account practical aspects. These protocols were developed for time-domain divi-

sion multiple access (TDMA) systems operating in half-duplex mode. Specifically,

two notable cooperative protocols, namely amplify-and-forward (AF) and decode-

and-forward (DF), were defined and investigated for two types of relaying techniques

including fixed and adaptive relaying. While fixed relaying was shown to be easy in

implementation at the cost of low bandwidth efficiency, adaptive relaying via either
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selective or incremental relaying methods could increase the rate at the expense of

high complexity. In fact, the overall rate using the fixed relaying scheme is reduced

by half for two transmissions from the source and relay, and thus results in low band-

width efficiency. Instead of simply processing and forwarding the data to the desti-

nation, the relay in the selective relaying scheme has the capability of deciding when

to transmit based on a certain threshold of quality of the received signal, i.e., SNR. If

the SNR of received signal at the relay is lower than a certain threshold, i.e., the chan-

nel from the source to the relay suffers from severe fading, then the relay does not

carry out any processing. A relaying scheme known as incremental relaying could

improve the performance further if the source knows when to repeat the transmis-

sion and the relay knows when the destination needs help. It can be appreciated that

the adaptive relaying schemes require a high-complexity processing and a feedback

channel from the destination to both the source and relay is specifically required for

the incremental relaying.

∙ DF Protocol: In the DF protocol, the relay tries to decode the signal from the

source and then transmits the decoded signal to the destination. Since the signal

detected at the relay is possibly corrupted, it may cause meaningless cooperation to

the eventual decision at the destination. In order to achieve the optimal detection,

the destination needs to know the error statistics of the inter-user link. This method

was also mentioned by Sendonaris et al. in 2003 [1, 2] for code division multiple

access (CDMA) in cellular networks. Laneman et al. showed that the diversity of

the DF protocol is limited to one due to the worst link from the source to the relay

and from the source to the destination [3].

∙ AF Protocol: In the AF protocol, the relay only amplifies what it receives from the

source and then transmits the amplified version to the destination. The destina-

tion combines the information sent by the source and the relay, and makes a final

decision on the transmitted signal. Although the noises at the relay in the AF pro-

tocol are also amplified together with the information, the destination can make

a better decision with two independently faded versions of the transmitted signal.

Indeed, Laneman et al. in 2004 [3] showed that the AF protocol can achieve the

full diversity.

∙ Other Protocols: Besides the DF and AF protocols, compress-and-forward (CF)

protocol also attracted much attention in Cover and Gamal in 1979 [48] and

Kramer et al. in 2005 [49]. In the CF protocol, the relay transmits to the desti-

nation a quantized and compressed version of the signal received from the source.

At the destination, the signal received from the source is used as side information

to decode the information from the relay. Another cooperative protocol that was

studied by Hunter and Nosratinia in 2006 [50] is coded cooperation where error-

control coding is included. In the coded cooperation, the relay transmits incremen-

tal redundancy to help the destination recover the original data more reliably by

combining the codewords with redundancy from both the source and the relay.
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2.3.2 Cooperative Diversity via Distributed Space-Time-Frequency
Coding

Relaying protocols are in fact repetition-based cooperative diversity schemes

designed to achieve spatial diversity gain as a virtual MIMO system. The benefits

of these cooperative protocols are achieved at the price of decreasing bandwidth

efficiency with the number of cooperating terminals since each relay requires its

own channel or subchannel for repetition. Inspired by the work on STCs for MIMO

systems, Laneman and Wornell in 2003 [51] proposed distributed STC (DSTC) to

improve the bandwidth efficiency of the cooperative communications. The basic idea

of the DSTC is that each single-antenna terminal in the relay network transmits a col-

umn of the original OSTBC that was designed for multiple co-located antennas in the

MIMO systems. In a distributed fashion, multiple columns of the original OSTBC

can be transmitted by the source and the relays to indirectly generate coding matrices

which are of the same form as that of the OSTBC, and thus it was named distrib-

uted STBC (DSTBC). Various forms of the DSTBC were then devised for flat and

frequency-selective fading channels.

With regard to flat fading channels, the first DSTBC was proposed by Laneman

and Wornell in 2003 [51] for DF relaying protocol. Nabar et al. in 2004 [52] ana-

lyzed different DSTBCs for AF relay networks. The original design criteria for the

conventional STC in the work of Tarokh et al. in 1998 [25] was shown to be able to

apply to the DSTBCs. Laneman and Wornell showed that, in order to guarantee full

diversity, the number of relay nodes should be less than the number of columns in the

conventional OSTBC matrix [51]. The limit on the number of relays was then solved

with a new class of the DSTBC for multiple relays designed by Yiu et al. in 2006

[53]. In this scheme, the signal transmitted by an active relay node is the product of

an information-carrying code matrix and a unique node signature vector to ensure

that no active node transmits data using the same coding vector. This method never-

theless operates under the DF protocol and requires high-complexity processing at

the relay nodes. For the AF protocol, originated from the idea of linear dispersion

STC in Hassibi and Hochwald in 2002 [54], a new DSTBC for the relaying systems

was constructed by Jing and Hassibi in 2006 [55] and Jing and Jafarkhani in 2007

[56]. The transmitted signal at each relay is a linear function of its received signals

without any decoding but only simple processing. However, these DSTBCs, in gen-

eral, cannot offer a simple decoding mechanism at the destination. To address this

problem, Yi and Kim in 2007 [57] designed a new DSTBC to obtain symbol-wise

decodability.

On the subject of dealing with inherent frequency-selective fading phenomena

in wideband wireless communications, the DSTBCs for flat fading channels are not

directly applicable. In 2005, Scutari and Barbarossa proposed a DSTBC for multi-

hop transmission over frequency-selective fading channels with DF protocol [58].

For optimal detection, the error statistics at the relays must be known at the destina-

tion. However, this cannot be easily implemented in many current wireless systems.

Focused on the uplink communications system with fixed wireless relay stations,

Anghel and Kaveh in 2003 [59] introduced the combination of DSTBC and OFDM
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signaling. Another DSTBC for frequency-selective fading channels was studied in

Mheidat et al. in 2007 [60] and Tran et al. in 2009 and 2012 [61, 62] where the

traditional equalization techniques were extended to the DSTBC with AF proto-

col. Considering two-relay networks also employing the AF protocol, Vien et al. in

2009–2011 proposed other DSTBCs to obtain maximal data rate, maximal diversity

gain and decoupling detection of data blocks for a low-complexity receiver structure

[63–65]. Based on the QOSTBC designed by Jafarkhani in 2001 [31] for co-located

antennas in MIMO systems, distributed QOSTBC (DQOSTBC) was developed for

four-relay networks by Vien et al. in 2009 in [66]. Inspired by the concept of coded

cooperation, Vien et al. in 2009 [67] also designed a new DSTBC combined with the

hybrid automatic repeat request (HARQ) for turbo-coded relay networks to enhance

the performance of the DSTBC achieving both diversity gain and coding gain. The

STFC in the MIMO systems was also adapted to the cooperative communications

where a distributed space-time-frequency block code (DSTFBC) was proposed by

Vien et al. in 2013 and 2014 [68, 69] for non-regenerative cognitive wireless relay

networks.

2.4 Network Coding Techniques

Network coding (NC) was first proposed in 2000 by Ahswede et al. [10] to increase

system throughput in lossless networks. This work was regarded as a seminal publi-

cation on the NC and has motivated a vast amount of research works. The principle of

the NC is that intermediate nodes are allowed to mix signals received from multiple

links for subsequent transmissions.

In a typical two-way single-relay network (TWSRN) with no direct link between

two end terminals, four transmissions are conventionally required to exchange the

data from two terminals through a relay. By applying NC, the number of transmis-

sions could be reduced to three, including two transmissions from two terminals to

the relay and one broadcast transmission of the mixed data from the relay to both

terminals. Basically, the relay in an NC-based TWSRN mixes the signals received

from two terminals, and then forwards the combined signal to both terminals. An

end terminal can extract from the combined signal the data sent by another terminal

based on its known signal. Since the relay in the NC-based TWSRN has to avoid the

collision of the two data packets to detect the data from these two terminals sepa-

rately, two transmissions are required in the first phase and hence three transmissions

in total.

Considering the application of NC at the physical layer, also known as physical-

layer NC (PNC), the number of transmissions in a TWSRN could be reduced to

two due to the fact that two terminals can transmit simultaneously. The PNC can

accordingly improve the network throughput by up to 100% and 50% over the con-

ventional relaying and the NC-based relaying, respectively. Several studies have been

dedicated to investigating the application of the PNC in the TWSRN. Specifically,

Zhang et al. in 2006 [12] and Katti et al. in 2007–2008 [13, 70] were the preliminary
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works that applied the PNC concept for the wireless environment in the TWSRN.

The performance of different PNC-based protocols was summarized by Louie et al.

in 2010 [14] providing a detailed analysis of the bit error rate and the achievable data

rate.

Basically, the processing at the relay with PNC techniques follows DF relaying

protocol, while the AF-based PNC was named analog NC (ANC) by Katti et al. in

2007 [13]. In the following, these two NC techniques will be presented along with

the relevant works on their application in various system models.

2.4.1 Physical-Layer Network Coding

In one-way relay network operated under DF protocol, the relay simply decodes

the signal received from the source before forwarding to the destination. However,

the relay in TWSRNs receives two data sequences simultaneously from two termi-

nals. The challenging problem is how the relay decodes this mixed signal. Dealing

with this problem, Zhang et al. proposed the first strategy, namely physical-layer NC

(PNC), in 2006 [12]. In the PNC, the relay decodes the sum of two signals instead

of decoding each signal individually. The sum of any two signals is characterized

by a point in a lattice. Based on this lattice, the relay can decode its received mixed

signal and then forward it to both terminals. Using the DF protocol, the PNC tech-

nique does not suffer from noise amplification at the relay, and thus a higher data

rate is expected. However, the generation of the lattice for mapping would be com-

plicated for a general scenario where the signals transmitted from two terminals use

different modulation and coding schemes. Also, this strategy requires a perfect syn-

chronization at the relay in both time and carrier when receiving signals from two

terminals.

Another approach to PNC was proposed by Rankov and Wittneben in 2007 [71]

where the relay separately decodes two signals from the mixed signal received from

two terminals, then combines and forwards them to both terminals. The decoding

of these two signals could be implemented using multiuser detection techniques in

a well-known textbook of Verdu published in 1998 [72]. Similar to the technique

proposed by Zhang et al. in 2006 [12], the error amplification at the relay does not

have any effects on this strategy. As an advantage of this scheme, the generation of

lattice matrices for mapping is not necessary; however, the separate decoding at the

relay requires a higher complexity and produces a lower data rate.

2.4.2 Analog Network Coding

With AF protocol, the operation at the relay in TWSRNs is much simpler. The relay

only amplifies the mix of two signals received from two terminals and then forwards

this amplified version to both terminals. Since the relay performs processing upon

the analog signals received from the terminals, this AF-based technique was named

analog network coding (ANC) in Katti et al. in 2007 [13]. Similar to the AF protocol
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for one-way relay networks, the ANC has some advantages and disadvantages. The

complexity at the relay using the ANC is significantly reduced compared to PNC

technique, but the performance and data rate could be nonetheless affected since the

noises at the relay are also amplified and forwarded to both terminals. Moreover, in

order to extract the interested signal sent by another terminal from the mixed signal,

channel information has to be estimated at both terminals to remove its own signal

which is regarded as an interference to the interested signal.

2.4.3 Related Works on PNC and ANC

Related works on the application of NC in TWSRNs can be found in Popovski and

Yomo in 2007 [73], Zhang et al. in 2009 [74], Song et al. in 2010 [75], Louie et al.

in 2010 [14], Ju and Kim in 2010 [15], Wang et al. in 2010 [76], and Vien et al. in

2010–2014 [77–80], where different PNC and ANC approaches were investigated

and evaluated. For instance, the performance analysis of PNC and ANC protocols

for TWSRN in Popovski and Yomo in 2007 [73], Louie et al. in 2010 [14], and Ju and

Kim in 2010 [15], beamforming for ANC in Zhang et al. in 2009 [74], differential

modulation for ANC in Song et al. in 2010 [75], ANC for asynchronous TWSRNs in

Wang et al. in 2010 [76], and automatic repeat request (ARQ) with PNC in Vien et

al. in 2010 and 2011 [77, 78], channel quality indicator (CQI) reporting with PNC

in AF-based TWSRNs in Vien et al. in 2012 and 2014 [79, 80].

Many NC-based protocols have also been proposed for a variety of relay channel

topologies. A summary of these protocols can be found in the Ph.D. thesis of Vien et

al. in 2013 [81], such as broadcast channels in Nguyen et al. in 2009 [16]; multicast

channels in Chen et al. in 2010 [17], and Vien et al. in 2011–2015 [82–89]; unicast

channels in Liu et al. in 2009 [18]; and multi-relay channels in Vien et al. in 2011–

2013 [90–93]. As a specific model of the multicast channels, butterfly networks have

been investigated in Zhan et al. in 2010 [19], Hu et al. in 2011 [20], and Vien et al.

in 2013 and 2015 [94–96], in which the NC is applied at the relay node to help two

source nodes simultaneously transmit their information to two destination nodes.

3 Network Coding in Wireless Butterfly Networks

The basic system model of a WBN is shown in Fig. 1 where data transmitted from

two source nodes S1 and S2 to two destination nodes D1 and D2 is assisted by

one relay node R. A half-duplex system is considered where all nodes can either

transmit or receive data, but not simultaneously. In the WBN, the NC is applied at R
to help S1 and S2 simultaneously transmit their data packets 𝐬1 and 𝐬2, respectively,

to D1 and D2 in two time slots. In the first time slot, S1 transmits 𝐬1 to both R and

D1 while S2 transmits 𝐬2 to both R and D2. Then, R performs NC on the mixed

signals received from S1 and S2 and broadcasts the network coded signals to both

D1 and D2 in the second time slot. Accordingly, D1 can extract the signal transmitted
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Fig. 1 System model of a wireless butterfly network

from S2, i.e., 𝐬2, and D2 can extract the signal transmitted from S1, i.e., 𝐬1. The data

transmission in the first time slot consists of two direct (DR) transmissions (S1 →
D1 and S2 →D2) and a multiple access (MA) transmission ({S1 S2}→R), while

there is only a broadcast (BC) transmission (R → {D1 D2}) in the second time slot.

Note that the DR and MA transmissions are carried out simultaneously in the first

time slot due to the broadcast nature of the wireless medium. This chapter is focused

on energy efficiency for a conventional butterfly network when the relay plays a role

of coverage extension, facilitating message delivery of indirect links (S1 → D2 and

S2 →D1), and thus it is assumed that there is no direct link between S1 and D2 and

between S2 and D1.

For convenience, the main notation used in this chapter is listed in Table 1, unless

stated otherwise.

4 Hybrid Automatic Repeat Request with Incremental
Redundancy Protocol and Energy-Delay Tradeoff

In addition to the merit of NC techniques providing throughput improvement, the

reliability and energy efficiency of data transmission should also be taken into con-

sideration within communication systems. This is particularly the case in wireless

environments where the communication channels often suffer from deep fading and

background noise, and where the energy consumption of various communication and
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Table 1 Main notation in the chapter

Notation Meaning

dAB, {A,B} ∈ {S1, S2,R,D1,D2} Distance of link A −B

𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼R Physical angles ̂D1S1S2, Ŝ1S2D2, Ŝ2D2D1, D̂2D1S1,

D̂1S1R, respectively

Pi, i = 1, 2, PR Transmit powers of Si,R, respectively

ri, i = 1, 2, rR Transmission rate at Si, R, respectively

hii, hiR, hRi, i = 1, 2 Channel coefficients of links Si → Di, Si → R, R → Di,

respectively

𝐧ii, 𝐧R, 𝐧Ri, i = 1, 2 Independent circularly symmetric complex Gaussian

(CSCG) noise vectors of links Si → Di, {S1,S2} → R,

R → Di, respectively, with each entry having zero mean

and unit variance

𝛾ii, 𝛾iR, 𝛾Ri, i = 1, 2 Signal-to-noise ratio (SNR) of links Si → Di, Si → R, R
→ Di, respectively

𝜈 Pathloss exponent between a pair of transceiver nodes

𝜅(⋅) Number of transmissions required in HARQ-IR protocol

to transmit a data packet

𝛿(⋅) Effective delay (ED) of HARQ-IR protocol

𝜀(⋅) Energy per bit (EB) of HARQ-IR protocol

[a]i i-th realisation of a random variable a
ā Mean of a random variable a
log(⋅) Binary logarithm function

ln(⋅) Natural logarithm function

E[⋅] Statistical expectation function

networking devices causes an increasing carbon dioxide emission. To cope with the

reliability issue, hybrid automatic repeat request (HARQ) protocols were proposed to

reliably deliver information over error-prone channels such as the wireless medium.

A detailed study of various error control mechanisms for digital communications is

summarized in a textbook of Wicker in 1995 [97]. Specifically, Caire and Tunineti

in 2001 [98] showed that the HARQ with incremental redundancy (HARQ-IR) can

achieve the ergodic capacity of fading and interference channels. With respect to

energy efficiency, an energy-delay tradeoff (EDT) tool was developed by Choi and

To in 2012 [99] to evaluate the energy efficiency of HARQ-IR protocols for NC-

based two-way relay systems.

4.1 Energy-Delay Tradeoff in Point-to-Point Wireless Links

In order to investigate HARQ-IR protocols with PNC and ANC techniques in WBNs,

this section will first introduce briefly a simple HARQ-IR protocol for wireless point-

to-point (P2P) communications along with EDT evaluation for this system model.
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Over a P2P communication channel S → D employing the HARQ-IR protocol,

node S encodes a data packet 𝐝 into a sequence of N coded packets {𝐜1, 𝐜2, … , 𝐜N}.

Then, S sequentially transmits 𝐜k, k = 1, 2, … ,N, to D until a positive acknowl-

edgement (ACK) is received. The signal 𝐲k received at node D when transmitted the

k-th coded packet 𝐜k from node S can be expressed through

𝐲k =
√

Phk𝐱k + 𝐧k, (2)

where P is the signal power, hk is the channel gain of link S → D for the k-th packet

transmission, 𝐱k is the modulated signal of 𝐜k, and 𝐧k is an independent circularly

symmetric complex Gaussian (CSCG) noise vector with each entry having zero mean

and unit variance.

Let 𝜅𝙿𝟸𝙿 denote the number of transmissions required in the HARQ-IR protocol

to transmit a data packet from S to D . Caire and Tuninetti in 2001 [98] expressed

𝜅𝙿𝟸𝙿 as

𝜅𝙿𝟸𝙿 = min

{

k|
k∑

j=1
log(1 + P|[hk]j|2) > r𝙿𝟸𝙿

}

, (3)

where r𝙿𝟸𝙿, in bits/sec/Hertz (or b/s/Hz), denotes the link spectral efficiency of a

capacity-achieving code in P2P communications. By using the same evaluation tool

developed by Choi in 2012 [99], the EDT can be characterized by two normalized

metrics including energy per bit (EB) in Joules/bit/Hertz (or J/b/Hz] and effective

delay (ED) in secs/bit/Hertz (or s/b/Hz). Here, the EB and ED are normalized over

the link spectral efficiency r𝙿𝟸𝙿. Let 𝛿𝙿𝟸𝙿 and 𝜀𝙿𝟸𝙿 denote the ED and EB, respectively,

of the HARQ-IR protocol for the P2P communications. These metrics can be written

as

𝛿𝙿𝟸𝙿 =
𝜅̄𝙿𝟸𝙿

r𝙿𝟸𝙿
, (4)

𝜀𝙿𝟸𝙿 =
P𝜅̄𝙿𝟸𝙿
r𝙿𝟸𝙿

= P𝛿𝙿𝟸𝙿, (5)

where 𝜅̄𝙿𝟸𝙿 denotes the average number of transmissions for reliable P2P communi-

cations.

4.2 Energy-Delay Tradeoff in Wireless Butterfly Networks

Basically, the signal processing at relay R in a WBN (cf. Fig. 1) can be carried out

with either PNC or ANC protocols. This section will derive the EDTs of the HARQ-

IR protocols with PNC and ANC.
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4.2.1 EDT of HARQ-IR Protocol with PNC

Using the PNC scheme for HARQ-IR in a WBN, R performs joint decoding of

two signals received from S1 and S2 in MA transmission following the approach of

Zhang and Liew in 2009 [100]. The number of transmissions in the MA transmission

can be determined through the MA channel capacity bound derived in a book on

information theory of Cover and Thomas in 2006 [101] as follows:

𝜅𝙿𝙽𝙲,𝙼𝙰 = min

{

k|||

{ k∑

j=1
log(1 + [𝛾1R]j) > r1

}

∩

{ k∑

j=1
log(1 + [𝛾2R]j) > r2

}

∩

{ k∑

j=1
log(1 + [𝛾1R]j + [𝛾2R]j) > r1 + r2

}}

,

(6)

where 𝛾iR and ri, i = 1, 2, denote the SNR of the transmission link Si → R and

the transmission rate at Si, respectively. In parallel with the MA transmission, Di,

i = 1, 2, receives the packet from Si in the DR transmission. The received signal at

Di can be written by

𝐲ii =
√

Pihii𝐬i + 𝐧ii, (7)

where Pi, hii and 𝐧ii denote the transmission power, channel coefficient and CSCG

noise vector at Di of the transmission link Si → Di, respectively. Similar to the

transmission over P2P channels, the number of transmissions required atSi, i = 1, 2,

to transmit 𝐬i to Di in the DR transmission can be computed by

𝜅𝙿𝙽𝙲,𝙳𝚁i
= min

{

k|||

k∑

j=1
log(1 + [𝛾ii]j) > ri

}

, (8)

where 𝛾ii denotes the SNR of the transmission link Si →Di. With HARQ-IR proto-

col, the data packet is retransmitted by Si, i = 1, 2, until both R and Di successfully

decode. Thus, the number of transmissions at Si and the total number of transmis-

sions in the first time slot are given by

𝜅𝙿𝙽𝙲,𝚂i
= max{𝜅𝙿𝙽𝙲,𝙼𝙰, 𝜅𝙿𝙽𝙲,𝙳𝚁i

}, (9)

𝜅𝙿𝙽𝙲,1 = max{𝜅𝙿𝙽𝙲,𝙼𝙰, 𝜅𝙿𝙽𝙲,𝙳𝚁1 , 𝜅𝙿𝙽𝙲,𝙳𝚁2}, (10)

respectively. Then, R encodes the superimposed packet, and then broadcasts the

encoded packet to both S1 and S2 in the second time slot. The number of transmis-
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sions required at R to transmit the mixed packet to Di, i = 1, 2, in the BC transmis-

sion is similarly determined as in P2P communications in Sect. 4.1, i.e.,

𝜅𝙿𝙽𝙲,𝙱𝙲i
= min

{

k|||

k∑

j=1
log(1 + [𝛾Ri]j) > ri′

}

, (11)

where i′ = 1 if i = 2 and i′ = 2 if i = 1 (or i′ = i − (−1)i). Here, 𝛾Ri denotes the SNR

of the transmission link R → Di. In order to help both D1 and D2 detect the data

packets from S2 and S1, respectively, R retransmits the packet until both D1 and

D2 successfully detect it. Thus, the number of transmissions in the second time slot

is computed by

𝜅𝙿𝙽𝙲,2 = max{𝜅𝙿𝙽𝙲,𝙱𝙲1 , 𝜅𝙿𝙽𝙲,𝙱𝙲2}. (12)

Overall, the resulting ED and EB of the HARQ-IR protocol with the PNC are

respectively given by

𝛿𝙿𝙽𝙲 =
𝜅̄𝙿𝙽𝙲,1 + 𝜅̄𝙿𝙽𝙲,2

r1 + r2
, (13)

𝜀𝙿𝙽𝙲 =
P1𝜅̄𝙿𝙽𝙲,𝚂1 + P2𝜅̄𝙿𝙽𝙲,𝚂2 + PR𝜅̄𝙿𝙽𝙲,2

r1 + r2
, (14)

where PR denotes the transmission power at R.

4.2.2 EDT of HARQ-IR Protocol with ANC

With the ANC protocol, in the MA transmission of the first time slot, R receives the

data packets from both S1 and S2, which can be written by

𝐫 =
√

P1h1R𝐬1 +
√

P2h2R𝐬2 + 𝐧R, (15)

where hiR and 𝐧R denote the channel coefficient and CSCG noise vector at R of the

transmission link Si → R, respectively. At the same time, Di, i = 1, 2, receives the

data packet from Si in the DR transmission. Similarly, the received signal 𝐲ii at Di
is given by Eq. (7) and the number of transmissions 𝜅𝙰𝙽𝙲,𝙳𝚁i

is determined as 𝜅𝙿𝙽𝙲,𝙳𝚁i
in Eq. (8).

Prior to broadcasting the received signal to both D1 and D2, R normalises its

received signal 𝐫 in Eq. (15) by a factor 𝜆 = 1∕
√

E
[
|𝐫|2

]
= 1∕

√
𝛾1R + 𝛾2R + 1 to

have unit average energy. Thus, in the BC transmission, the signals received at Di,

i = 1, 2, can be written as

𝐲Ri =
√

PRhRi𝜆𝐫 + 𝐧Ri, (16)
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where hRi and 𝐧Ri denote the channel coefficient and CSCG noise vector at Di of the

transmission link R →Di, respectively. Then, Di, i = 1, 2, detects 𝐬i′ , i′ = i − (−1)i,
by canceling 𝐬i which is detected in the DR transmission. The resulting SNR 𝛾i′ at

Di is expressed by

𝛾i′ =
𝛾Ri𝛾i′R

𝛾Ri + 𝛾i′R + 𝛾iR + 1
, (17)

where 𝛾iR and 𝛾Ri denote the SNRs of the transmission links Si → R and R → Di,

respectively. In the HARQ-IR protocol with ANC, D1 and D2 feedback to S1 and

S2 over direct links to acknowledge the packets 𝐬1 and 𝐬2, respectively. Since there

is no decoding process carried out at R in the first time slot, R does not perform

any feedback for the links S1 → R and S2 → R. However, R can help D1 and D2
forward the acknowledgement of the packets 𝐬2 and 𝐬1 to S2 and S1, respectively.

Therefore, the number of transmissions required at Si, i = 1, 2, to transmit 𝐬i to Di′
is determined by

𝜅𝙰𝙽𝙲i
= min

{

k|||

k∑

j=1
log(1 + [𝛾i]j) > ri

}

. (18)

The total number of transmissions at Si, i = 1, 2, is accordingly given by

𝜅𝙰𝙽𝙲,𝚂i
= max{𝜅𝙰𝙽𝙲i

, 𝜅𝙰𝙽𝙲,𝙳𝚁i
}. (19)

It is noted that, with the ANC protocol, the retransmission of the lost packets at

D1 and D2 is carried out by S1 and S2. R only amplifies and forwards to D1 and D2
the data received from S1 and S2. This means that the number of transmissions at

R to assist S1 and S2 is also given by 𝜅𝙰𝙽𝙲1 and 𝜅𝙰𝙽𝙲2 , respectively, and, R uses half

power for each task. Therefore, the resulting ED and EB of the HARQ-IR protocol

with the ANC scheme are respectively obtained as

𝛿𝙰𝙽𝙲 =
max{𝜅̄𝙰𝙽𝙲,𝚂1 , 𝜅̄𝙰𝙽𝙲,𝚂2} + max{𝜅̄𝙰𝙽𝙲1 , 𝜅̄𝙰𝙽𝙲2}

r1 + r2
, (20)

𝜀𝙰𝙽𝙲 =
P1𝜅̄𝙰𝙽𝙲,𝚂1 + P2𝜅̄𝙰𝙽𝙲,𝚂2 +

PR
2
𝜅̄𝙰𝙽𝙲1 +

PR
2
𝜅̄𝙰𝙽𝙲2

r1 + r2
. (21)

4.3 Analysis of EDTs in WBNs

In order to provide insights of the EDT in WBNs, this section will derive the approx-

imations of the EDTs for various HARQ-IR protocols in WBNs in high and low

power regimes. For comparison, the approximated EDTs of both relay-aided trans-

mission, i.e., PNC and ANC, and non-relay-aided transmission, i.e., DT, are investi-
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gated. For fair comparison, both relay-aided transmission and non-relay-aided trans-

mission require the same number of time slots to transmit data packets 𝐬1 and 𝐬2 from

S1 and S2, respectively, to both D1 and D2. Specifically, in the DT scheme, in the

i-th, i = 1, 2, time slot Si transmits 𝐬i to D1 and D2 over Si-D1 and Si-D2 links,

respectively. In the PNC and ANC schemes, the data transmission in the first time

slot consists of two DR transmissions (S1 → D1 and S2 → D2) and a MA trans-

mission ({S1, S2} → R), and there is a BC transmission (R → {D1, D2}) in the

second time slot. This means that all the PNC, ANC and DT schemes require 2 time

slots for the data transmission.

Let P denote the total power constraint of all transmitting nodes, i.e., P = P1 +
P2 + PR. Also, denote 𝜌1, 𝜌2 and (1 − 𝜌1 − 𝜌2) as the fractions of power allocated to

S1, S2 and R, respectively. Note that, in the DT scheme, PR = 0 and 𝜌1 + 𝜌2 = 1.

Accordingly, P1 = 𝜌1P, P2 = 𝜌2P and PR = (1 − 𝜌1 − 𝜌2)P. All channel links are

assumed to suffer from quasi-static Rayleigh block fading with E[|h11|2] = 1∕d𝜈

S1D1
,

E[|h22|2] = 1∕d𝜈

S2D2
, E[|hiR|2] = 1∕d𝜈

SiR
and E[|hRj|2] = 1∕d𝜈

RDj
, i = 1, 2, j = 1, 2.

Applying HARQ-IR protocol for DT scheme, the ED and EB can be simply

derived as

𝛿𝙳𝚃 =
𝜅̄𝙳𝚃,1 + 𝜅̄𝙳𝚃,2

r1 + r2
, (22)

𝜀𝙳𝚃 =
P1𝜅̄𝙳𝚃,1 + P2𝜅̄𝙳𝚃,2

r1 + r2
. (23)

Here, 𝜅𝙳𝚃,i, i = 1, 2, denotes the total number of transmissions required atSi to trans-

mit 𝐬i to both D1 and D2, which is given by

𝜅𝙳𝚃,i = max

{

min

{

k|||

k∑

j=1
log(1 + [𝛾ii]j) > ri

}

,

min

{

k|||

k∑

j=1
log(1 + [𝛾ii′ ]j) > ri

}}

,

(24)

where i′ = i − (−1)i, i = 1, 2, and 𝛾ii′ denotes the SNR of the transmission link Si
→ Di′ .

In the high power regime, all HARQ-IR protocols for both relay-aided and non-

relay-aided transmissions in a WBN require 2 time slots in total to transmit suc-

cessfully 2 data packets 𝐬1 and 𝐬2 from S1 and S2 to D1 and D2. This means

that all the PNC, ANC and DT schemes achieve the same EDT performance with

{𝛿𝙿𝙽𝙲, 𝛿𝙰𝙽𝙲, 𝛿𝙳𝚃} → 2
r1+r2

and {𝜀𝙿𝙽𝙲, 𝜀𝙰𝙽𝙲, 𝜀𝙳𝚃} → ∞ as P → ∞, and there is no advan-

tageous scheme in the high power regime.

In the low power regime, the transmission power at all transmitting nodes is

assumed to be equally allocated as P1 = P2 = PR = P∕3 in PNC and ANC schemes

and P1 = P2 = P∕2 in the DT scheme. Note that, although the equal power alloca-
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tion is not optimal in general, it is reasonable to assume the equal power allocation

at all transmitting nodes as P → 0. Also, for simplicity, the data transmission from

S1 and S2 to D1 and D2 is assumed to be carried out at the same data rate, i.e.,

r1 = r2 = R. The EDTs of the HARQ-IR protocol in the WBN with the DT, PNC

and ANC schemes as P approaches to 0 can be derived as in the following theorems.

Theorem 1 If P approaches 0, then the ED and EB of the HARQ-IR protocol with
the DT scheme are approximated by 𝛿𝙳𝚃,0 and 𝜀𝙳𝚃,0, respectively, where

𝛿𝙳𝚃,0 =
ln 2
P

(max{d𝜈

S1D1
, d𝜈

S1D2
} + max{d𝜈

S2D1
, d𝜈

S2D2
}), (25)

𝜀𝙳𝚃,0 =
ln 2
2

(max{d𝜈

S1D1
, d𝜈

S1D2
} + max{d𝜈

S2D1
, d𝜈

S2D2
}). (26)

Proof It is noted that when x is sufficiently small,

log(1 + ax) ≈ ax
ln 2

+ O(x2). (27)

Thus, when P → 0,

log(1 + [𝛾ii]j) ≈
|[hii]j|2P
2 ln 2

, log(1 + [𝛾ii′ ]j) ≈
|[hii′ ]j|2P
2 ln 2

,

where i′ = i − (−1)i, i = 1, 2. Since E{|h11|2} = 1∕d𝜈

S1D1
, E{|h22|2} = 1∕d𝜈

S2D2
,

E{|h12|2} = 1∕d𝜈

S1D2
, E{|h21|2} = 1∕d𝜈

S2D1
and r1 = r2 = R, it can be deduced

𝜅̄𝙳𝚃,1 ≈
2R ln 2

P
max{d𝜈

S1D1
, d𝜈

S1D2
}, (28)

𝜅̄𝙳𝚃,2 ≈
2R ln 2

P
max{d𝜈

S2D2
, d𝜈

S2D1
}. (29)

Substituting Eqs. (28) and (29) into Eqs. (22) and (23) with r1 = r2 = R and P1 =
P2 = P∕2, the theorem is proved.

Theorem 2 If P approaches 0, then the ED and EB of the HARQ-IR protocol with
the PNC scheme are approximated by 𝛿𝙿𝙽𝙲,0 and 𝜀𝙿𝙽𝙲,0, respectively, where

𝛿𝙿𝙽𝙲,0 =
3 ln 2
2P

(max{d𝜈

S1D1
, d𝜈

S2D2
} + max{d𝜈

RD1
, d𝜈

RD2
}), (30)

𝜀𝙿𝙽𝙲,0 =
ln 2
2

(d𝜈

S1D1
+ d𝜈

S2D2
+ max{d𝜈

RD1
, d𝜈

RD2
}). (31)
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Proof Consider Eqs. (13) and (14). When P → 0, applying the approximation in Eq.

(27) to 𝜅𝙿𝙽𝙲,𝙼𝙰, 𝜅𝙿𝙽𝙲,𝙳𝚁i
and 𝜅𝙿𝙽𝙲,𝙱𝙲i

, i = 1, 2, given by Eqs. (6), (8) and (11) with ri = R
and Pi = PR = P∕3, i.e.,

𝜅̄𝙿𝙽𝙲,𝙼𝙰 ≈
6R ln 2

P

d𝜈

S1Rd𝜈

S2R

d𝜈

S1R + d𝜈

S2R
, (32)

𝜅̄𝙿𝙽𝙲,𝙳𝚁1 ≈
3R ln 2

P
d𝜈

S1D1
, (33)

𝜅̄𝙿𝙽𝙲,𝙳𝚁2 ≈
3R ln 2

P
d𝜈

S2D2
, (34)

𝜅̄𝙿𝙽𝙲,𝙱𝙲i
≈ 3R ln 2

P
d𝜈

Ri. (35)

It is noted that dS1R and d3R should be both less than dS1D1
and dS2D2

. Thus,

d𝜈

S1Rd𝜈

S2R

d𝜈

S1R + d𝜈

S2R
<

d𝜈

S1D1

2
,

d𝜈

S1Rd𝜈

S2R

d𝜈

S1R + d𝜈

S2R
<

d𝜈

S2D2

2
.

Substitute Eqs. (32)–(35) into Eqs. (9), (10) and (12) as

𝜅̄𝙿𝙽𝙲,𝚂1 ≈
3R ln 2

P
d𝜈

S1D1
, (36)

𝜅̄𝙿𝙽𝙲,𝚂2 ≈
3R ln 2

P
d𝜈

S2D2
, (37)

𝜅̄𝙿𝙽𝙲,1 ≈
3R ln 2

P
max{d𝜈

S1D1
, d𝜈

S2D2
}, (38)

𝜅̄𝙿𝙽𝙲,2 ≈
3R ln 2

P
max{d𝜈

RD1
, d𝜈

RD2
}. (39)

Then, substituting Eqs. (36)–(39) into Eqs. (13) and (14) with r1 = r2 = R, the the-

orem is proved.

Theorem 3 If P approaches 0, then the ED and EB of the HARQ-IR protocol with
the ANC scheme are approximated by 𝛿𝙰𝙽𝙲,0 and 𝜀𝙰𝙽𝙲,0, respectively, where

𝛿𝙰𝙽𝙲,0 =
9 ln 2

P2 max{d𝜈

S1Rd𝜈

RD2
, d𝜈

S2Rd𝜈

RD1
}, (40)

𝜀𝙰𝙽𝙲,0 =
9 ln 2
4P

(d𝜈

S1Rd𝜈

RD2
+ d𝜈

S2Rd𝜈

RD1
). (41)
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Proof Consider Eqs. (20) and (21). When P → 0, applying the approximation in Eq.

(27) to 𝜅𝙰𝙽𝙲i
, i = 1, 2, given by Eq. (18) with ri = R and Pi = PR = P∕3, i.e.,

𝜅̄𝙰𝙽𝙲i
≈ 9R ln 2

P2 d𝜈

SiR
d𝜈

RD′
i
, (42)

where i′ = 2 if i = 1 and i′ = 1 if i = 2. Substituting Eqs. (33), (34) and (42) into Eq.

(19), it can be deduced

𝜅̄𝙰𝙽𝙲,𝚂1 ≈ max{9R ln 2
P2 d𝜈

S1Rd𝜈

RD2
,
3R ln 2

P
d𝜈

S1D1
}, (43)

𝜅̄𝙰𝙽𝙲,𝚂2 ≈ max{9R ln 2
P2 d𝜈

S2Rd𝜈

RD1
,
3R ln 2

P
d𝜈

S2D2
}. (44)

Since P → 0, it can be shown that

9R ln 2
P2 d𝜈

S1Rd𝜈

RD2
>

3R ln 2
P

d𝜈

S1D1
,

9R ln 2
P2 d𝜈

S2Rd𝜈

RD1
>

3R ln 2
P

d𝜈

S2D2
.

Thus, Eqs. (43) and (44) can be rewritten as

𝜅̄𝙰𝙽𝙲,𝚂1 ≈
9R ln 2

P2 d𝜈

S1Rd𝜈

RD2
, (45)

𝜅̄𝙰𝙽𝙲,𝚂2 ≈
9R ln 2

P2 d𝜈

S2Rd𝜈

RD1
, (46)

respectively. Substituting Eqs. (42), (45) and (46) into Eqs. (20) and (21) with r1 =
r2 = R and P1 = P2 = PR = P∕3, the theorem is proved.

From the above theorems, the following remarks can be noticed in the low power

regime.

Remark 1 (Energy inefficiency with ANC) It can be seen in Eq. (41) that 𝜀𝙰𝙽𝙲,0
increases as P decreases. This means that the ANC scheme is not energy efficient

when compared to the DT and PNC schemes for the HARQ-IR protocol in WBN.

Remark 2 (Higher energy efficiency with PNC when relay node is located far from
source nodes) When R is far from S1 and S2, {d𝜈

RD1
, d𝜈

RD2
}≪ {d𝜈

S1D1
, d𝜈

S2D2
}. Thus,

d𝜈

S1D1
+ d𝜈

S2D2
+ max{d𝜈

RD1
, d𝜈

RD2
} ≈ d𝜈

S1D1
+ d𝜈

S2D2
. Accordingly, from Eqs. (26) and

(31), it can be shown that 𝜀𝙿𝙽𝙲,0 < 𝜀𝙳𝚃,0, which means the HARQ-IR protocol with

the PNC scheme is more energy efficient than the HARQ-IR protocol with the DT

scheme.
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Remark 3 (Higher energy efficiency with DT over PNC when relay node is located
nearby source nodes) In this scenario, {d𝜈

RD1
, d𝜈

RD2
}⪆ {d𝜈

S1D1
, d𝜈

S2D2
}. Thus, from Eqs.

(26) and (31), it can be shown that 𝜀𝙿𝙽𝙲,0 > 𝜀𝙳𝚃,0. This means that the DT scheme is

more energy efficient than the PNC scheme for the HARQ-IR protocol in the WBN.

In other words, there is no advantage of employing the relay when the relay is in the

neighborhood of the sources.

For illustration, the EDT performance of the HARQ-IR protocols in a WBN is

validated in two following examples, i.e., Examples 1 and 2, for different network

configurations.

Example 1 A symmetric WBN is considered with dS1D1
= dS2D2

, dS1S2 = dD1D2
and

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 𝜋∕2. The data transmission from S1 and S2 to D1 and D2 is

carried out at the same data rate with spectral efficiency of r1 = r2 = R [b/s/Hz].

HARQ-IR protocol is employed with either DT or PNC or ANC schemes. The

pathloss exponent between a pair of transceiver nodes is assumed to be 𝜈 = 3 and all

channels experience quasi-static Rayleigh block fading.

Figure 2 plots the EDT curves of three HARQ-IR protocols with different data

rates at S1 and S2. The spectral efficiency, i.e., R, is assumed to vary in the ranges

{1, 4, 16} b/s/Hz. The relay is assumed to be located at the center of the network, i.e.,

dS1R = dS2R = dRD1
= dRD2

. The transmission powers at S1, S2 and R are assumed

to be equally allocated. It can be seen that the PNC scheme is more energy efficient

than both the ANC and DT schemes. In fact, using the HARQ-IR protocol with PNC,

R can help S1 and S2 retransmit the corrupted combined packets to both D1 and

D2. Using the HARQ-IR protocol with the ANC scheme, S1 and S2 are required

to retransmit the corrupted packets to R, then R combines the received packets and

broadcasts the new combined packets to bothD1 andD2. Using the DT scheme, there

is no relay to assist S1 and S2 retransmit the corrupted combined packets to both D1
and D2. Due to the long distances from S1 to D2 and from S2 to D1, the DT scheme

is shown to be less energy efficient than the PNC scheme. However, the EDT of the

DT scheme is better than that of the ANC scheme since a re-combination process

is required at R in the ANC scheme, which means more energy consumption at R.

This confirms the statements in Remarks 1 and 2 regarding a lower energy efficiency

of the ANC scheme and a higher energy efficiency of the PNC scheme over the DT

scheme when the relay node is located far from the source nodes. The impact of data

rate on the EDT performance can also be observed in Fig. 2 where an improved EDT

is achieved for all the HARQ-IR protocols as the data rate increases.

Example 2 Taking into account the practical scenario where the relay is not always

located at the center of the network, Fig. 3 plots the EDT curves of various HARQ-IR

protocols in the WBN with respect to different relay positions.

Three relay positions are considered, including

(i) R near {S1,S2}: dS1R = 1∕4 m, 𝛼R = 𝜋∕4;

(ii) R at the center: dS1R = dS2R = dRD1
= dRD2

;

(iii) R near {D1,D2}: dS1R = 2 m, 𝛼R = 𝜋∕6.
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Fig. 2 EDTs of various HARQ-IR protocols in WBN with dS1D1
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=

1∕2 m and dS1R = dS2R = dRD1
= dRD2
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Fig. 3 EDTs of various HARQ-IR protocols in WBN with R = 16 b/s/Hz, dS1D1
= dS2D2

= 2 m,

dS1S2 = dD1D2
= 1∕2 m and various relay positions

As shown in Fig. 3, the DT scheme is the most energy efficient scheme compared

to both the PNC and ANC schemes when the relay is in the neighborhood of the

sources. This confirms the statement in Remark 3 in relation to the higher energy

efficiency of the DT scheme when the relay is located nearby the sources. In fact, it

can be intuitively observed that the relay plays the same role as the sources if the relay

is located near the sources, which means the use of the relay in the PNC and ANC

schemes is not as energy efficient compared to the DT scheme, though the relay can

be used in this case to increase the transmit diversity order. For the scenario when
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the relay is near the destinations, the relay is shown to be energy efficient with the

PNC scheme in the low power regime, while with the ANC scheme it is seen to be

always less energy efficient. This scenario is similar to the scenario when the relay

is located at the center of the network as observed in Fig. 2 of Example 1.

5 Relay Placement in Wireless Butterfly Networks

Relay placement (RP) problem has been extensively investigated in the literature,

e.g., Chen et al. in 2012 [102] and Han et al. in 2013 [103]. In Chen et al. in

2012 [102], the relay position optimization was proposed to improve diversity gain

of unbalanced DF relay networks, while the optimal relay placement problem was

investigated by Han et al. in 2013 [103] for AF relay networks.

In WBNs employing HARQ-IR protocol with either PNC or ANC technique, the

location of the relay also has a considerable impact on the energy efficiency of the

network. Based on the derived EDT for HARQ-IR protocols with PNC and ANC in

Sect. 3, this section will develop algorithms for solving the RP optimization problem

subject to location and power constraints in the WBNs. The best relay location will

be determined with respect to different HARQ-IR protocols. This is useful for the

system where the mobile users play the role as the relay nodes and thus the user

having the best relay location would be selected for the relay communications.

The RP problem relates to how to position the relay node in order to minimize

either the total delay or the total energy consumption of all the multicast transmis-

sions from two source nodes to two destination nodes. As shown in Fig. 1, the relay

location can be determined through the distance between S1 and R, i.e., dS1R, and

the angle D̂1S1R, i.e., 𝛼R. Based on dS1R and 𝛼R, the distances from R to S2, D1
and D2 can be easily obtained as

dS2R =
√

d2
S1S2

+ d2
S1R − 2dS1S2dS1R cos(𝛼1 − 𝛼R), (47)

dRD1
=
√

d2
S1D1

+ d2
S1R − 2dS1D1

dS1R cos 𝛼R, (48)

dRD2
=
√

d2
S2D2

+ d2
S2R − 2dS2D2

dS2R cos 𝛽R, (49)

respectively. Here, 𝛽R denotes the angle D̂2S2R, which can be computed by

𝛽R = 𝛼2 − sin−1
(

dS1R

dS2R
sin(𝛼1 − 𝛼R)

)

. (50)
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Let {d∗
S1R,𝛿𝙿𝙽𝙲

, 𝛼
∗
S1R,𝛿𝙿𝙽𝙲

}, {d∗
S1R,𝛿𝙰𝙽𝙲

, 𝛼
∗
R,𝛿𝙰𝙽𝙲

}, {d∗
S1R,𝜀𝙿𝙽𝙲

, 𝛼
∗
R,𝜀𝙿𝙽𝙲

} and {d∗
S1R,𝜀𝙰𝙽𝙲

, 𝛼
∗
R,𝜀𝙰𝙽𝙲

}
denote the optimized positioning parameters for the relay location using PNC and

ANC protocols subject to minimizing 𝛿𝙿𝙽𝙲, 𝛿𝙰𝙽𝙲, 𝜀𝙿𝙽𝙲 and 𝜀𝙰𝙽𝙲, respectively. The RP

optimization problem can be formulated as

{d∗
S1R,𝛿𝙿𝙽𝙲

, 𝛼
∗
R,𝛿𝙿𝙽𝙲

} = arg min
dS1R,𝛼R

𝛿𝙿𝙽𝙲, (51)

{d∗
S1R,𝛿𝙰𝙽𝙲

, 𝛼
∗
R,𝛿𝙰𝙽𝙲

} = arg min
dS1R,𝛼R

𝛿𝙰𝙽𝙲, (52)

{d∗
S1R,𝜀𝙿𝙽𝙲

, 𝛼
∗
R,𝜀𝙿𝙽𝙲

} = arg min
dS1R,𝛼R

𝜀𝙿𝙽𝙲, (53)

{d∗
S1R,𝜀𝙰𝙽𝙲

, 𝛼
∗
R,𝜀𝙰𝙽𝙲

} = arg min
dS1R,𝛼R

𝜀𝙰𝙽𝙲, (54)

where 𝛿𝙿𝙽𝙲, 𝛿𝙰𝙽𝙲, 𝜀𝙿𝙽𝙲 and 𝜀𝙰𝙽𝙲 are generally given by Eqs. (13), (20), (14) and (21),

respectively. Given the fixed location of the source and destination nodes (cf. Fig. 1),

dS1R and 𝛼R are bounded by the following ranges:

0 < dS1R < max
{√

d2
S1D1

+ d2
S1S2

− 2dS1D1
dS1S2 cos 𝛼1,

√
d2

S1D1
+ d2

D1D2
− 2dS1D1

dD1D2
cos 𝛼4

}
,

(55)

0 < 𝛼R < 𝛼1. (56)

The following remarks can be drawn:

Remark 4 (ANC-based relay can be nearly located at the same location for minimiz-
ing both the delay and energy) Given a compact set 𝕊, arg min

x1,x2∈𝕊
max{f (x1), f (x2)} ≈

arg min
x1,x2∈𝕊

(f (x1) + f (x2)). Thus, from Eqs. (20) and (21), it can be approximated that

arg min
dS1R,𝛼R

𝛿𝙰𝙽𝙲 ≈ arg min
dS1R,𝛼R

𝜀𝙰𝙽𝙲, which means {d∗
S1R,𝛿𝙰𝙽𝙲

, 𝛼
∗
R,𝛿𝙰𝙽𝙲

} ≈ {d∗
S1R,𝜀𝙰𝙽𝙲

, 𝛼
∗
R,𝜀𝙰𝙽𝙲

}.

Remark 5 (Perspective transformation for a general setting of the node positions in
an irregular quadrilateral) Note that the nodes in a quadrilateral can be mapped to

the nodes in a rectangle using spatial transformation approach which can be found

in a book of Wolberg in 1990 [104] for digital image processing. The optimal relay

position in the rectangular region, namely virtual relay positions, can be firstly found

for minimizing either delay or energy. Then, the real relay position for the irregular

quadrilateral node setting can be determined by an inverse mapping. Specifically,

a perspective transformation or projective non-affine mapping with bilinear inter-

polation can be used to map a quadrilateral to a rectangle as follows: Given four

2-dimensional points A, B, C and D of a quadrilateral located at (xA, yA), (xB, yB),
(xC, yC) and (xD, yD), and four 2-dimensional points A′

, B′
, C′

and D′
of a rectangle
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located at (xA′ , yA′ ), (xB′ , yB′ ), (xC′ , yC′ ) and (xD′ , yD′ ). {A,B,C,D} can be mapped to

{A′
,B′

,C′
,D′} by finding an 4 × 4 mapping matrix 𝐌 such that

⎛
⎜
⎜
⎜
⎝

1 xA yA xAyA
1 xB yB xByB
1 xC yC xCyC
1 xD yD xDyD

⎞
⎟
⎟
⎟
⎠

𝐌 =
⎛
⎜
⎜
⎜
⎝

1 xA′ yA′ xA′yA′

1 xB′ yB′ xB′yB′

1 xC′ yC′ xC′yC′

1 xD′ yD′ xD′yD′

⎞
⎟
⎟
⎟
⎠

Wolberg in 1990 [104] and Kim et al. in 2002 [105] showed that perspective trans-

formation is planar mapping and thus both forward and inverse mapping are unique.

Also, the lines connecting nodes are shown to be preserved in all orientations.

According to Remark 5, for simplicity, a specific scenario can be considered, where

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 𝜋∕2, dS1D1
= dS2D2

and dS1S2 = dD1D2
. The search range of the

relay position given by Eqs. (55) and (56) is thus rewritten as

0 < dS1R <

√
d2

S1D1
+ d2

S1S2
, (57)

0 < 𝛼R <
𝜋

2
. (58)

With the total power constraint P and different power allocation at S1 and S2,

there are three typical cases based on the relationship between P1 and P2 which

are described as follows:

5.1 Equal Power Allocation at Sources

Due to the equal power allocation at S1 and S2, R is located on the median line

between the pair nodes {S1, D1} and {S2, D2}. Denote dR =
√

d2
S1R − d2

S1S2
∕4. The

RP optimization in Eqs. (51)–(54) can be determined through

d∗
R,𝛿𝚇

= arg min
0<dR<dS1D1

𝛿𝚇, (59)

d∗
R,𝜀𝚇

= arg min
0<dR<dS1D1

𝜀𝚇, (60)

where 𝚇 ∈ {𝙿𝙽𝙲, 𝙰𝙽𝙲}. Then, {d∗
S1R,𝛿𝚇

, 𝛼
∗
R,𝛿𝚇

} and {d∗
S1R,𝜀𝚇

𝛼
∗
1R,𝜀𝚇

} can be computed by

d∗
S1R,𝛿𝚇

=

√

d∗2
R,𝛿𝚇

+
d2

S1S2

4
, 𝛼

∗
R,𝛿𝚇

= tan−1
(

dS1S2

2d∗
R,𝛿𝚇

)

, (61)
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d∗
S1R,𝜀𝚇

=

√

d∗2
R,𝜀𝚇

+
d2

S1S2

4
, 𝛼

∗
R,𝜀𝚇

= tan−1
(

dS1S2

2d∗
R,𝜀𝚇

)

. (62)

It can be observed that the search algorithms using Eqs. (59)–(62) require a lower

complexity processing than an exhaustive search of all available relay positions in

the whole region encompassing the four source and destination nodes with the con-

straints of Eqs. (57) and (58).

5.2 Unequal Power Allocation at Sources

Considering unequal power allocation at S1 and S2, i.e., P1 ≠ P2, there are two

cases including P1 > P2 and P1 < P2 as follows:

5.2.1 P𝟏 > P𝟐

In this scenario, R should be located in the neighborhood region of the pair node

{S2, D2}. Thus, the search range for the optimal relay location in Eqs. (57) and (58)

can be limited by two regions defined as follows:

Region (I):

⎧
⎪
⎨
⎪
⎩

tan−1
(

dS1S2
2dS1D1

)
< 𝛼R < tan−1

(
dS1S2
dS1D1

)
,

dS1S2
2 sin 𝛼R

< dS1R <
dS1D1
cos 𝛼R

.

(63)

Region (II):

⎧
⎪
⎨
⎪
⎩

tan−1
(

dS1S2
dS1D1

)
< 𝛼R <

𝜋

2
,

dS1S2
2 sin 𝛼R

< dS1R <
dS1S2
sin 𝛼R

.

(64)

With various relay positions in regions (I) and (II), the optimal relay location {d∗
S1R,𝛿𝚇

,

𝛼
∗
R,𝛿𝚇

} and {d∗
S1R,𝜀𝚇

, 𝛼
∗
R,𝜀𝚇

}, 𝚇 ∈ {𝙿𝙽𝙲, 𝙰𝙽𝙲}, subject to minimizing either 𝛿𝚇 or 𝜀𝚇 can

be determined as in Eqs. (51)–(54). Regarding the search range in the context of

P1 > P2, it can be observed that the search regions (I) and (II) are narrower than the

region determined by Eqs. (57) and (58), and thus the complexity of the search for

the optimal relay location is reduced.

5.2.2 P𝟏 < P𝟐

Similarly, in this scenario, R is located near the two nodes S1 and D1. The search

range for the optimal relay location in Eqs. (57) and (58) can thus be limited by two

regions defined as follows:



302 Q.-T. Vien

Region (III):

⎧
⎪
⎨
⎪
⎩

0 < 𝛼R < tan−1
(

dS1S2
2dS1D1

)
,

0 < dS1R <
dS1D1
cos 𝛼R

.

(65)

Region (IV):

⎧
⎪
⎨
⎪
⎩

tan−1
(

dS1S2
2dS1D1

)
< 𝛼R <

𝜋

2
,

0 < dS1R <
dS1S2
2 sin 𝛼R

.

(66)

Then, the optimal relay location {d∗
S1R,𝛿𝚇

, 𝛼
∗
R,𝛿𝚇

} and {d∗
S1R,𝜀𝚇

, 𝛼
∗
R,𝜀𝚇

}, 𝚇 ∈ {𝙿𝙽𝙲, 𝙰𝙽𝙲},

can be determined in regions (III) and (IV) so as to minimize either 𝛿𝚇 or 𝜀𝚇. Addi-

tionally, it can be observed that the search regions (III) and (IV) for the scenario

P1 < P2 are also narrower than the region determined by Eqs. (57) and (58), and

again a low-complexity search algorithm is achieved.

Consider for illustration the following example of the RP optimization problem

for minimum ED and EB in a typical WBN.

Example 3 A symmetric WBN as in Example 1 is investigated where dS1D1
= dS2D2

= 2 m and dS1S2 = dD1D2
= 1∕2 m. Figures 4 and 5 plot the optimal relay locations

for minimizing ED and EB, respectively, as a function of power allocation at source

nodes when HARQ-IR protocols are employed with PNC and ANC. The optimal

relay locations in Figs. 4 and 5 are determined through dS1R and 𝛼R. It is assumed

that R = 4 b/s/Hz and P = P1 + P2 + PR = 5 W. Both equal power allocation, i.e.,

P1 = P2, and unequal power allocation with P1 = 3P2 and P1 = 5P2, are considered.

Note that the RP for the scenario P1 < P2 can be similarly observed to be symmetric

with that for the scenario P1 > P2. The bisection search method is applied to find the

optimal relay position in the search region. Investigating the optimal relay location

for minimum ED, Fig. 4 shows that for the scenario P1 = P2, as P1 and P2 increase,

the optimal location of both the ANC-based and PNC-based R move from the region

near S1 and S2 to the region near D1 and D2. However, when P1 and P2 are small,

the ANC-based R is closer to S1 and S2 than the PNC-based R. For the case

P1 = nP2, n > 1, as n increases, the optimal location of the ANC-based R is closer

to S2, while that of the PNC-based R is farther away from D2.

For minimum EB, it can be observed in Fig. 5 that for the scenario P1 = P2, as P1
and P2 increase, the optimal location of the ANC-based R moves from the region

near S1 and S2 to the region near D1 and D2, while that of the PNC-based R moves

in the reverse direction. For the case P1 = nP2, n > 1, similar to Fig. 4, it is shown

that, as n increases, the ANC-based R should be closer to S2, while that of the PNC-

based R should be farther away from D2. Furthermore, the optimal locations for the

ANC-basedR are shown to be nearly similar for both objectives of minimum ED and

minimum EB, while the optimised locations for the PNC-based R are different with

respect to the objective functions. These nearly similar locations of the ANC-based

R verify the statement in Remark 4.
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Fig. 4 Optimization of relay location subject to minimizing ED with R = 4 b/s/Hz, P = 5 W,

dS1D1
= dS2D2

= 2 m, dS1S2 = dD1D2
= 1∕2 m: a dS1R and b 𝛼R

6 Relay Placement in Wireless Multicast Networks

The RP optimization in WBNs can be extended for a general wireless multicast net-

work (WMN) consisting of Ns sources, Nr relays and Nd destinations. The positions

of Ns sources and Nd destinations are assumed to be fixed in a two-dimensional plane

while the positions of Nr relays vary in a convex set 𝔖T having its boundary formed

by all the source and destination points. HARQ-IR protocol and NC techniques are

also applied at the relays to assist the data transmission between the sources and

destinations.
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Fig. 5 Optimization of relay location subject to minimizing EB with R = 4 b/s/Hz, P = 5 W,

dS1D1
= dS2D2

= 2 m, dS1S2 = dD1D2
= 1∕2 m: a dS1R and b 𝛼R

In a WMN, the k-th relay, k = 1, 2,… ,Nr, i.e., Rk, assists the data transmis-

sion from a group of Ns,k sources, i.e., {Sk,1,Sk,2,… ,Sk,Ns,k
} ≜ S

(Ns,k)
k , to a group

of Nd,k destinations, i.e., {Dk,1,Dk,2,… ,Dk,Nd,k
} ≜ D

(Nd,k)
k . The indices of nodes are

determined based upon their vertical axis values in a decreasing order, i.e., the node

located higher has a lower index. Denote 𝔖k as the convex set generated by points

{Sk,1,Sk,2,… ,Sk,Ns,k
} and {Dk,1,Dk,2,… ,Dk,Nd,k

} which are in supporting region

of Rk, i.e.,

𝔖T ⊇

Nr⋃

k=1
𝔖k (67)
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The relay-aided transmission is realized in two time slots as follows: In the first

time slot, Sk,ik , ik = 1, 2,… ,Ns,k, sends data to Rk and the corresponding Dk,i′k
,

i′k = 1, 2,… ,Nd,k via direct links. Then, Rk carries out either PNC or ANC on the

received signals before broadcasting the combined signal to all D
(Nd,k)
k in the second

time slot. For simplicity, it is assumed that there is no interference caused by non-

intended nodes and there is no cooperation between relays, between sources and

between destinations in the WMN.

Let (xA, yA), A ∈ {{Si}, {Rk}, {Dj}}, denote the coordinate values of a point A .

Exploiting the properties of perspective transformation (cf. Remark 5), the nodes in

the irregularly-shaped WMN can be mapped to the nodes in a rectangle. The optimal

placement of virtual relays can be found in the rectangular region to minimize either

ED or EB. The real optimal positions of the relays can be thus determined by an

inverse mapping.

Algorithm 1 Proposed relay placement algorithm

for k = 1 to Nr do
𝔖k ← {Sk,1,Sk,2,… ,Sk,Ns,k

,Dk,1,Dk,2,… ,Dk,Nd,k
}

Step 1: Map the boundary of 𝔖k to a rectangle 𝔖′
k:

(S ′
k,1S

′
k,Ns,k

D ′
k,1D

′
k,Nd,k

)← (Sk,1Sk,Ns,k
Dk,1Dk,Nd,k

)
Find mapping matrix 𝐌.

Step 2: Find virtual positions of remaining nodes in 𝔖′
k:

for i = 2 to Ns,k − 1 do
[1,xS′k,i

,yS′k,i
,xS′k,i

yS′k,i
]← [1,xSk,i

,ySk,i
,xSk,i

ySk,i
]𝐌

end for
for i = 2 to Nd,k − 1 do

[1,xD′
k,i
,yD′

k,i
,xD′

k,i
yD′

k,i
] ← [1,xDk,i

,yDk,i
,xDk,i

yDk,i
]𝐌

end for
Step 3: Find virtual relay placement in 𝔖′

k to either minimize ED or minimize EB: (x′Rk
, y′Rk

).
Step 4: Find real relay placement in 𝔖k:

[1, xRk
, yRk

, xRk
yRk

]← [1, x′Rk
, y′Rk

, x′Rk
y′Rk

]𝐌−1

end for

For convenience, the entire set 𝔖T is divided into Nr subsets with respect to Nr
relays (cf. Eq. (67)) and consider a specific subset 𝔖k, k = 1, 2,… ,Nr. The RP in the

WMN can be carried out as in Algorithm 1, which consists of the following steps:

∙ Step 1: Map the boundary of 𝔖k to a rectangle, namely 𝔖′
k, by finding a mapping

matrix 𝐌.

∙ Step 2: Find virtual positions of remaining sources and destinations in 𝔖′
k.

∙ Step 3: Find virtual relay position (x′Rk
, y′Rk

) in 𝔖′
k for either minimizing ED or

minimizing EB.

∙ Step 4: Find real relay position in 𝔖k by inverse mapping.

It can be observed that the RP algorithm only requires the perspective transformation

and determination of the optimal relay positions in a particular rectangle.
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7 Conclusions

This chapter has provided an overview of cooperative communications with differ-

ent diversity approaches and cooperative protocols along with NC techniques at the

physical layer. In particular, WBN has been investigated as a typical application of

the NC techniques. The EDT has been derived for HARQ-IR protocols with PNC

and ANC in the WBN by taking into account the effects of both relay location and

power allocation. In the high power regime, the use of the relay in both PNC and

ANC schemes has been shown to have no advantage over the non-relay-aided DT

scheme. In the low power regime, the PNC scheme is more energy efficient than

both the ANC and DT schemes when the relay node is located either at the centre

of the network or close to the destination nodes, while the DT scheme outperforms

both the PNC and ANC schemes when the relay node is in the neighborhood of

the source nodes. Furthermore, an RP algorithm for reducing the search region has

been developed to find the optimal relay locations for the HARQ-IR protocols with

PNC and ANC to minimize either the total delay or the total energy consumption

in the WBN. The RP algorithm has also been discussed for a general WMN. For

future work, the mobility of nodes as well as network infrastructures in the practical

WMNs, such as mobile ad hoc networks, wireless sensor networks, vehicular net-

works and more generally wireless mesh networks, could be considered in the RP

optimization problem subject to constraints on the limited power of nodes and their

geographic locations.
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The Bat Algorithm, Variants and Some
Practical Engineering Applications:
A Review

T. Jayabarathi, T. Raghunathan and A.H. Gandomi

Abstract The bat algorithm (BA), a metaheuristic algorithm developed by
Xin-She Yang in 2010, has since been modified, and applied to numerous practical
optimization problems in engineering. This chapter is a survey of the BA, its
variants, some sample real-world optimization applications, and directions for
future research.

Keywords Algorithm ⋅ Bat algorithm ⋅ Engineering application ⋅
Optimization ⋅ Swarm intelligence ⋅ Metaheuristics

1 Introduction

Real-world optimization problems do not conform to the requirements of calculus
or gradient based optimization methods that require functions to be continuous,
smooth and unimodal, with ever present derivatives and ideal constraints. In reality,
functions can be noisy, filled with discontinuities, have multiple optimums, and
their derivatives may be non-existent [1]. To solve such problems, researchers have
been increasingly looking to nature as the ultimate expert on optimization. A pi-
oneer in the field who conclusively demonstrated that practical problems of sig-
nificant complexity could be solved by nature inspired algorithms is Goldberg, who
solved an oil transportation problem that was not amenable to gradient based
optimization, and thought to be even less amenable to nature inspired methods, for
his PhD in the year 1983 [2]. Given their enormous popularity, nature inspired
algorithms are known by many names, including evolutionary computation, the
oldest name. Since an element of learning or heuristics is involved, and this
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heuristics is of higher level, they are also popularly known as metaheuristic algo-
rithms at present.

The genetic algorithm (GA) used by Goldberg belongs to the family of evolu-
tionary algorithms (EAs), which loosely model evolution in biology as an opti-
mization process. The 1990s onwards saw the development of another family of
nature based algorithms that modeled the collective behavior of social animals as an
optimization process. The ant colony optimization (ACO) [3], particle swarm
optimization (PSO) [4] and krill herd [5] algorithms belong to this family of swarm
intelligence (SI) algorithms. Nature inspired algorithms continued to be developed
at an even faster pace in the 2000s, and the year 2010 saw the emergence of the bat
algorithm (BA), an SI algorithm developed by Xin-She Yang [6]. This was fol-
lowed by the application of the BA to engineering applications in 2012 [7], and to
constrained optimization problems in 2013 [8]. A good reference to swarm intel-
ligence methods of the period is [9]. Since then, the BA has seen numerous variants
being developed, and these applied to solve many real-world problems.

In the search for an optimum in multimodal search or solution space, two
conflicting objectives need to be catered to: exploration or diversification, and
exploitation or intensification. Striking the right balance these two objectives can be
the difference between successfully locating the global optimum and not doing so.
In the initial stages of the search, all areas of the solution space have to be explored,
if the global optimum is not to be missed. On the other hand, once the most
promising areas have been located, further exploration would lead the search to
meander about aimlessly. Instead, the requirement at this later stage of the search is
to exploit or intensify the search in the narrowed down promising areas, so that the
optimum can be located. A good search algorithm must thus have operators for
exploration and exploitation.

1.1 Exploration or Diversification

Reference [6] contains a detailed description of the food location behavior of bats in
nature, and the modeling of this behavior to form the BA metaheuristic. Hence the
motivation here is to recapture the most essential details of the BA in the language
of general optimization theory. In summary, the BA mimics the collective behavior
of a colony of bats that use a phenomenon known as echolocation. Echolocation by
bats is characterized by the emission of pulses of some frequency f, loudness A and
emission rate R. The exploration capability of the BA is provided by its velocity and
position update equations, given by

Viðt+1Þ=ViðtÞ+ f i XiðtÞ−XbestðtÞ� � ð1Þ

f iðtÞ= fmin + randðÞ ðfmax − fminÞ ð2Þ
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Xiðt+1Þ=XiðtÞ+Viðt+1Þ ð3Þ

where t is the current iteration number, Vi, f i and Xi are the velocity, frequency, and
position, respectively, of the ith bat in the population of Nb bats, and Xbest is the bat
location (solution) that has the best fitness in the current population. randðÞ∈ ½0, 1�
is a randomly generated number from a uniform distribution in the interval [0,1].
fmax and fmin are the allowable maximum and minimum frequencies, which can
assume the default values of 0 and 100, but can be varied to suit the problem being
solved. At initialization ðt=0Þ, Vi is assumed to be 0.

1.2 Exploitation or Intensification

The exploitation or local search is by means of a random walk. Two parameters, the
loudness AiðtÞ and the pulse emission rate RiðtÞ are updated at every iteration, for
every bat in the population. Depending on RiðtÞ, a local search is conducted, either
around the best solution or a randomly chosen solution:

Xi, new = Xi, oldðtÞ+ r2AiðtÞ if randðÞ>RiðtÞ
XrðtÞ+ r2AiðtÞ else

�
ð4Þ

where randðÞ∈ ½0, 1� and r2 ∈ ½− 1, 1� are uniformly distributed random numbers,
and r∈ 1, 2, . . . ,Nb½ �, r≠ i is a randomly chosen integer. In other words, XrðtÞ is a
randomly chosen solution in the current iteration, and different from the ith
solution.

The right balance between exploration and exploitation as the search progresses
is provided by adjusting the pulse emission rate RiðtÞ and loudness AiðtÞ
dynamically:

Riðt+1Þ=Rið0Þ 1− expð− γtÞ½ � ð5Þ

Aiðt+1Þ= αAiðtÞ ð6Þ

where Rið0Þ∈ ½0, 1� and AiðtÞ∈ ½1, 2�, both randomly generated, within their
respective limits. As a first choice, the default values that can be used are
γ = α=0.9, as in [6].
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1.3 Selection

In order to improve the solutions over the iterations, a fitness based, tournament
type of solution, in which the competitors are the old and new solutions is
implemented. The fitter solution replaces the less fit one, with a probability

AiðtÞ:XiðtÞ=Xi, newðtÞ if F Xi, newðtÞ� �
<F XiðtÞ� �

and randðÞ<AiðtÞ∀ i, i∈ 1, 2, . . . ,Nb½ �
ð7Þ

where randðÞ∈ ½0, 1� is a uniformly distributed random number, and F(X(t)) is the
fitness or cost function to be minimized.

The BA is shown to perform well on some benchmark unimodal and multimodal
functions in comparisons against the PSO and GA in [6].

2 Variants of the Bat Algorithm

Once the basic BA showed initial promise as a good metaheuristic algorithm, the
focus shifted towards improving it further and applying it to real-world optimization
problems for better results. Some of the modifications proposed to improve the
performance of the BA are outlined next.

2.1 Chaotic Bat Algorithm

The basic BA outlined in Sect. 1 used default values of the algorithm parameters,
and exponentially decreasing values for loudness Ai. For reasons yet to be studied,
using chaotic maps or sequences to update the loudness has been shown to produce
better performance on the complicated real-world problem solved in [10]. Instead of
using Eq. (6) to update the loudness, Ref. [10] updated the loudness using

Aiðt+1Þ= a AiðtÞ� �2
sin π AiðtÞ� � ð8Þ

where a is set to 2.3 and Aið0Þ∈ ½0, 1�, and is randomly generated. Equation (8)
describes the sinusoidal chaotic map or sequence of the variable Ai. Other chaotic
maps are given in [11], which proposed the chaotic BA (CBA) used in [10].
Another version of the CBA was proposed by Jordehi [12].
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2.2 Directional Bat Algorithm

Instead of updating the bat positions using Eqs. (1)–(3), the directional BA pro-
posed by Chakri et al. [13] probes the search space in two different directions: one
in the direction of the best bat, and the other a randomly selected one. The one with
better fitness is used to update the current bat position. When used along with a few
other modifications, this directional BA is claimed to improve the performance
when tested on a suite of benchmark functions.

2.3 θ-Modified Bat Algorithm

The central idea of the θ-modified BA is to use a polar framework, instead of the
Cartesian coordinate framework used by Eqs. (1)–(3) [14]. A second modification
is to dynamically update of the parameter α, instead of using a fixed value, as in the
basic BA described in Sect. 1. This is claimed to have produced the best results on
the stochastic multi-objective problems solved in [14].

2.4 The BA with Mutation

One of the earliest ideas was to equip the BA, which is an SI algorithm, with
operators from EAs.

In nature, mutation introduces new genetic material into the existing gene pool,
thereby helping to maintain the diversity of the population. The mutation operator
in EAs plays the same role of maintaining the diversity of the search space. Its
operation can be explained quite simply with the help of the binary genetic algo-
rithm (BGA) in [1], since the solutions or chromosomes or strings in a BGA consist
of just 1’s and 0’s. If the string length of the individual solution or chromosome or
string is lenstr and the population consists of Np number of individuals, the total
number of bits in the population is Np × strlen. If the probability of mutation is equal
to 1 ̸ðNp × strlenÞ, applying the mutation operator to this population involves flip-
ping one randomly chosen bit in the population: if this bit is a 1, it is changed to 0
and vice versa.In multimodal search space, mutation applied correctly can help the
search break out of being trapped in local minima. In real valued or continuous GA,
mutation is slightly more complex to implement. The interested reader is referred to
[15] for more details.

On some problems, the BA could be lacking in exploratory capability, [16]
introduced the BA with mutation, to successfully produce better results on a variant
of the basic economic dispatch problem, which is to be discussed in Sect. 3 of this
chapter. The BA with mutation for a different application can be found in [17]. An
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enhanced BA with four different types of mutation for self-adaptive learning
mechanism (SALM) can be found in [18].

2.5 The BA with Mutation and Crossover

As a logical next step, another evolutionary operator of crossover was also intro-
duced in [19]. Crossover between two parent individuals produces a new offspring
or solution that could be potentially fitter than the parents, thereby progressing the
search towards the optimum.

2.6 The BA with DE Mutation and Crossover

Differential evolution (DE) is an evolutionary algorithm whose performance was
found to be superior to the simple GA on complicated real-world problems [20, 21],
by virtue of the kind of mutation and crossover that the DE uses, and known as DE
mutation and crossover. Reference [22] explored the hybridization of the bat
algorithm with differential evolution, to obtain better results.

2.7 The BA with DE Mutation and Lévy Flights Trajectory
(DLBA)

The basic BA is equipped with differential evolution (DE) mutation, and Lévy
flights trajectory, to improve its performance. The DLBA is shown to perform
better than the basic BA on a suite of unimodal and multimodal benchmark
functions in [23].

2.8 The Double-Subpopulation Lévy Flight Bat Algorithm

In this variant [24], the bat population is divided into two subpopulations, internal
and external. The internal subpopulation aims at better exploitation, by employing
the current speed and global optimal values for updating the speed, and a Lévy
flight model. The external subpopulation aims at better exploration, employing DE
mutation and crossover, whenever the population diversity reaches a minimum
value called the diversity threshold.
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2.9 BA with Habitat Selection and Self-adaptive
Compensation for Doppler Effect in Echoes

In this variant [25], the position of a bat in the population can display both quantum
and mechanical behavior. In quantum behavior, it can appear anywhere in the
whole search space with a certain probability. In physical behavior, the frequency
update equation has a term that compensates the Doppler effect of change of
frequency as the target moves relative to its source.

3 Application of the Bat Algorithm to the Economic
Dispatch Problem

3.1 Problem Formulation

Whenever a new algorithm is proposed, its performance is first tested by applying it
on unconstrained, unimodal and multimodal benchmark test functions. In contrast,
most real-world problems are constrained, and often, even the existence of a
solution that satisfies all the constraints is not known beforehand. Details like how
violations of the constraints are handled during the solution process too can often be
far from clear to beginners. Hence it is instructive to go through the solution
procedure for solving a complicated real-world problem by applying the BA. We
choose to demonstrate this by going through the steps involved in solving the
economic dispatch (ED) problem in electrical power systems engineering [10]. The
cost function in this problem is nonlinear, multimodal, with discontinuities, subject
to numerous inequality and equality constraints as outlined below.

3.1.1 Objective Function

The cost function is assumed to be quadratic, and minimization of the fuel cost of
Ng number of power plants in the system is the objective here:

min
P∈RNg

F = ∑
Ng

j=1
FjðPjÞ= ∑

Ng

j=1
ðaj + bjPj + cjP2

j Þ ð9Þ

where Fj(Pj) is the fuel cost of the jth generating unit in $/hr, Pj is the power
generated by the jth generating unit in MW, and aj, bj and cj are cost coefficients of
the jth generator.

However, the valve point effect superimposes ripples on this quadratic cost
curve, thereby making it multimodal, and the cost curve becomes
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min
P∈RNg

F = ∑
Ng

j=1
FjðPjÞ= ∑

Ng

j=1
ðaj + bjPj + cjP2

j Þ+ ej sinðfjðPmin
j −PjÞÞ

			 			 ð10Þ

where ej and fj are the constants of the valve-point effect of generators.
If there are multiple fuel options, the fuel cost of the jth generator is given by

FjðPjÞ=
aj1 + bj1Pj + cj1P2

j , fuel 1,P
min
j <Pj ≤Pj1

aj2 + bj2Pj + cj2P2
j , fuel 2,Pj1 <Pj ≤Pj2

⋮
ajk + bjkPj + cjkP2

j , fuel k,Pjk − 1 <Pj ≤Pmax
j

8>><
>>:

ð11Þ

A generator with k fuel options has k discrete regions.

3.1.2 Optimization Constraints

The power generated has to obviously satisfy the minimum and maximum power
generation limits:

Pmin
j ≤Pj ≤Pmax

j ð12Þ

While the above inequality constraints are relatively easier to satisfy, the more
difficult-to-satisfy equality constraint is that the solution or total power generated
PG must satisfy the total load demand PD plus the total losses PL in the system:

∑
Ng

j=1
Pj =PD +PL ð13Þ

where PL represents the line losses which is calculated using B-coefficients, given
by

PL = ∑
Ng

j=1
∑
Ng

i=1
PjBjiPi + ∑

Ng

j=1
B0jPj +B00 ð14Þ

where Pi and Pj are the real power injection at ith and jth buses, respectively, and
the Bij’s are the loss coefficients which can be assumed to be constant under normal
operating conditions.

3.1.3 Practical Operating Constraints of Generators

.
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3.1.4 Prohibited Operating Zones (POZ)

The prohibited zones arise due to practical operational constraints on generators.
The feasible operating zones of unit j can be described as follows:

Pj ∈
Pmin
j ≤Pj ≤Pl

j, 1

Pu
j, k− 1 ≤Pj ≤Pl

j, k
Pu
j, nj ≤Pj ≤Pmax

j

8<
: , k=2, 3, . . . nj, j=1, 2, . . . n ð15Þ

where nj is the number of prohibited zones of the jth generator. Pl
j, k,P

u
j, k are the

lower and upper power outputs of the kth prohibited zone of the jth generator,
respectively.

3.1.5 Ramp Rate Limits

The physical limitations of starting up and shutting down of generators imposeramp
rate limits, which are modeled as follows. The increase in generation is limited by

Pj −P0
j ≤URj ð16Þ

Similarly, the decrease is limited by

P0
j −Pj ≤DRj ð17Þ

where P0
j is the previous output power, URj and DRj are the up-ramp limit and the

down-ramp limit, respectively, of the jth generator.
Combining (16) and (17) with (12) results in the change of the effective oper-

ating or generation limits to

Pj ≤Pj ≤Pj ð18Þ

where

Pj =maxðPmin
j ,P0

j −DRjÞ ð19Þ

Pj =minðPmax
j ,P0

j +URjÞ ð20Þ

Combining this with (15), the ED problem can be formulated as
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min
P∈RNg

F = ∑
Ng

j=1
FjðPjÞ= ∑

Ng

j=1
ðaj + bjPj + cjP2

j Þ

+ ej sin fjðPmin
j −PjÞ

h i			 			
ð21aÞ

s.t. ∑
Ng

j=1
Pj =PD +PL

maxðPmin
j ,P0

j −DRjÞ≤Pj ≤Pl
j, 1

Pu
j, k− 1 ≤Pj ≤Pl

j, k, k=2, 3, . . . nj, j=1, 2, . . .Ng

Pu
j, nj ≤Pj ≤minðPmax

j ,P0
j +URjÞ

ð21bÞ

3.2 Implementation of the BA to ED Problem

Step 0: The 0th or the first step consists of initialization, which is executed as
follows:

• For every solution (or bat or generating unit), generate randomly
within the specified limits the generation values.

• For units with POZ, if the randomly generated value falls within the
POZ, fix it at the nearest limit that is violated.

• If a unit has ramp-rate limits, the power output is uniformly dis-
tributed between the effective lower and upper limits.

Generate Nb number of bats or solutions, each comprising Ng number of gen-
erating units:

p11 p12 ⋯ p1Ng

p21 p22 ⋯ p2Ng

⋮
pNb
1 pNb

2 ⋯ pNb
Ng

2
664

3
775=

P1

P2

⋮
PNb

2
664

3
775 ð22Þ

Step 1: Calculate the fitness values of all the bats using the objective or fitness
function F, in (21a).

Step 2: For ith bat, define pulse frequency f i using (2).
Step 3: Update the velocity and position (which is a vector of generation values)

of each bat using (1) and (3), respectively.
Step 4: Generate a new solution by random walk using (4).
Step 5: Select the fitter of the old and new solutions, with a probability AiðtÞ,

using (7).
Step 6: Update the values of Ri and Ai using (5) and (6), respectively.
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Step 7: Check if the effective generation limits and POZ limits are violated. Fix
the generation at the limit that is violated. This takes care of the
inequality constraints. After this is done, any violation of the power
balance equality constraint (13) is dealt with by using a penalty factor
approach. By this approach, (21a) is modified to

min
P∈RNg

L=F + λ ∑
Ng

j=1
Pj − ðPD +PLÞ

					
					 ð23Þ

where λ is the penalty coefficient, and a fixed large, positive real number.
Step 8: Repeat steps 1–7 until the maximum number of iterations is reached.

4 Application of the Bat Algorithm to Real-World
Problems

Given that the BA is a good metaheuristic algorithm capable of solving complicated
optimization problems, it was not long before it was applied to practical real-world
problems. These are classified as falling into one of the areas below.

4.1 Structural Optimization

One of the first problems solved by using the BA is the welded beam design
problem [26]. The problem has four design variables and two objectives: to min-
imize both the overall fabrication cost and the end deflection. The noteworthy
aspect of the problem is that, since multiple solutions of the same objective function
value exist, and an efficient algorithm or optimizer must discover all the solutions
that form the Pareto front. The BA successfully solved this problem. Probably the
next real-world problem to be solved by the BA is the design of a brushless DC
wheel motor [27]. The objective here is to maximize the efficiency, with five design
variables, six constraints and seventy-eight nonlinear equations. Other problems in
this category that were successfully solved are (a) the design of steel truss struc-
tures, a problem of medium to high dimensionality [28], (b) optimal design of steel
frames for minimum weight [29], and (c) the design of a shell and tube heat
exchanger to optimize the bi-objective fitness function comprising cost and effec-
tiveness [30].
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4.2 Classification and Feature Selection

Reference [31] solves the problem of classification of high dimensional microarray
data sets by a functional link artificial neural network (FLANN) classifier. The BA
is used to optimize the weights of the FLANN. The BA has also been used to find
both the optimal structure as well as the weights and biases of a neural network
used for data classification [32]. In [33], a neural network used for data classifi-
cation is trained using a BA with multiple co-operative sub-populations, and a
chaotic map to preserve the diversity of solutions. Such co-operation, in the place of
the usual competition between solutions, is claimed to perform better, for this
particular application.

In [34], the multispectral satellite image classification using the BA is shown to
be a better performer than the bat-K-means clustering, GA, and PSO methods, both
in terms of classification efficiency and time complexity.

Feature selection methods aim to provide as simple a classification model as
possible, since feature selection is a high dimensional problem affected by the curse
of dimensionality. Using a wrapper approach that consists of a heuristic search of a
subspace of all possible feature combinations, and a fitness function that is the
classifier’s performance, [35] uses a binary BA to maximize classifier performance.
Reference [36] proved the ability of the BA to solve a high dimensional, combi-
natorial optimization problem involving feature selection by modifying the con-
tinuous valued basic BA into a binary BA. The solution space comprised Boolean
hypercube, and the most informative features had to be selected.

Reference [37] considers image thresholding as a constrained optimization
problem, and determines the optimal one- or multi-level, fuzzy entropy based
thresholds that are maximized using the BA. The BA is used to optimize the
parameters of support vector machine, to reduce classification errors in classifica-
tion problems in [38].

4.3 Electrical Power Systems

The BA has been applied to solve a large number of problems in electrical power
systems. Reference [10] solves the ED problem in electrical power systems engi-
neering, using the chaotic BA (in Sect. 2.1), an enhanced version of the basic BA.
The problem herein has a cost function that is nonlinear, multimodal, has discon-
tinuities, and has to satisfy numerous inequality and equality constraints as outlined
in Sect. 3. Reference [39] solves the same ED problem using chaotic BA as in [10],
but using a pseudo-code based algorithm to deal with the power balance equality
constraint, instead of the penalty factor approach in [10]. Reference [16] solved an
advanced version of the ED problem using the BA with mutation, described in
Sect. 2.4. Another application of the BA to the ED problem can be found in [40].
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The optimal power flow problem whose objective is to minimize the losses in the
presence of power balance equality constraints, and inequality constraints like limits
on voltages, real and reactive powers at buses is solved using the BA, without and
with an unified power flow controller, a flexible ac transmission system device, in
[41].

The objective of load frequency control (LFC) in an electrical power system is to
minimize frequency oscillations and tie-line flows due to sharp load changes.
Reference [19] solves the multi-area LFC problem using the BA with mutation and
crossover, described in Sect. 2.5. A PD-PID controller tuned by the BA is used for
solving the multi-area LFC in [42]. The LFC of a two-area system is achieved by
using a dual mode gain scheduling of PI controllers, which are tuned by using the
BA in [43]. Reference [44] contains the LFC of a two-area system with super-
conducting magnetic energy storage (SMES) units using model predictive control
(MPC) is solved by using the BA, to choose the parameters of the MPC and SMES.

The problem of tuning the parameters of the power system stabilizer (PSS) to
minimize system oscillations due to load changes and disturbances is solved using
the BA, and compared against the other approaches of the conventional PSS
(CPSS) and GA based PSS (GAPSS) in [45]. It found the BA based PSS to be the
best performer. The same problem of tuning the parameters of the PSS to minimize
oscillations due to disturbances, but for a nonlinear model of the power system
comprising single machine connected to an infinite-bus through a transmission line
is solved in [46]. It uses the integral of time weighted errors as the cost function.

The optimal phasor measurement unit (PMU) placement to ensure observability
of the power system is an NP-hard, combinatorial optimization problem. This
problem is solved using a binary bat algorithm hybridized with Taguchi method
(TBBA) in [47]. Reference [48] solves the problem of parameter estimation in a
power system based on PMU recorded data using a hybridized algorithm com-
prising the BA and DE, and found that this hybridized algorithm performs better
than the other algorithms therein.

Reference [49] uses the binary bat algorithm (in which the solution vector
comprises just 1’s and 0’s) to extract wavelet based fault features for predicting low
speed bearing faults. The maximum power point tracking (MPPT) problem, whose
objective is to maximize the power output of a photovoltaic array solar panel, is
solved by employing a PI controller that is tuned using the BA in [50]. Reference
[14] solved the distribution feeder reconfiguration problem, using θ-modified BA
(in Sect. 2.3), another enhanced version of the basic BA.

The problem of improvement of power quality has been successfully solved
using the BA. The cost function comprising multiple objectives of minimization of
total harmonic distortion, initial investment cost, and total fundamental power
losses, subject to multiple inequality constraints is minimized by optimal design of
a passive power filter, using the BA, in [51].

For the optimal speed control of a brushless dc motor using an online adaptive
neuro-fuzzy inference system (ANFIS) controller, the learning parameters of the
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ANFIS controller are tuned using the BA in [52]. The position control of a
piezoelectric actuator is complicated by the nonlinear and multi-valued mapping
between the input and output of the actuator, due to the presence of highly non-
linear hysteresis. Hence a neural network (NN) controller trained by using the BA is
proposed in the place of conventional controllers and claimed to perform better in
[53].

Using the BA, [54] solves the problem of optimal sizing of the battery energy
storage (BES) in a microgrid, taking the fixed and running cost of the distributed
generators and running cost of the BES per day as the cost function, subject to
power balance equality constraint and a number of inequality constraints including
charging and discharging rates of the BES, and operating reserve constraint.

Using the BA, [55] solves the problem of optimal spot pricing in a deregulated
electricity market, using the fuel cost as the cost function, and power flows as
inequality constraints that have to be satisfied optimally.

Using four different types of mutation for self-adaptive learning mechanism
(SALM) along with the basic BA to produce the enhanced BA, for finding the
linear supply function equilibrium of generating companies in a competitive elec-
tricity market is solved in [18].

4.4 Applications in Other Areas

In the field of arrays in electronic engineering, the design of a linear array antenna
to minimize the side lobe level, mutual coupling effect, and null control is solved
using the BA in [56]. In the field of process control, the NP-hard problem of
minimizing the total production cost, of a process with five different tasks with their
own costs is solved using the BA with mutation to improve the exploratory
capability in [57].

In aerospace engineering, the challenging, high dimensional optimization
problem of three-dimensional path planning for an unmanned combat air vehicle
(UCAV), whose objective is to find the minimum cost path, subject to numerous
constraints, is solved using the BA with DE mutation and crossover in [58].

In the field of petroleum engineering, the problem of minimizing drilling costs
by predicting the rate of penetration (ROP) is solved using the BA. First, the data of
simultaneous effect of six variables on the ROP is used to develop a mathematical
relationship between the ROP and these variables. Next, the BA is used to deter-
mine the optimal values of these variables in [59]. Maximization of net present
value (NPV) by optimal placement of wells for oil production is solved by the BA,
and compared with the other algorithms of GA and PSO, in [60].

In the field of nuclear engineering, a fitness factor that involves maximization of
the multiplication factor and minimization of the power peaking factor of a nuclear
reactor core is maximized using the BA in [61].

Reference [62] solves the problem of minimizing the energy consumption of a
heating, ventilation, and air conditioning (HVAC) system. Using a cubic cost curve
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to define the total power consumption of the daily optimal chiller loading (DOCL),
the minimum DOCL subject to cooling load balance equality constraint, and
lower/upper limits on chillers as inequality constraints is solved by the BA.

The examples and case studies cited herein are merely a typical sample of the
real-world problems solved by the BA. Given the popularity of the BA, the
interested reader of any background is probably quite likely to find applications of
interest within their own fields.

5 Conclusion

As one of the better performing metaheuristic algorithms, the bat algorithm has
been applied to solve numerous challenging real-world problems that are not that
easily solvable by conventional calculus-based methods.

There is immense scope for further research on the bat algorithm. The BA has
been applied to numerous continuous optimization problems. However, its appli-
cation to solving combinatorial optimization problems like the traveling salesman
problem have been far fewer in number. Another area in which the BA has been
relatively untested is the solution of large scale optimization problems.

At present, the user has to tune the parameters of loudness AiðtÞ and pulse
emission rate RiðtÞ to suit the problem being solved. An alternate, ideal solution
would be to equip the algorithm with self-tuning capabilities so that these param-
eters are automatically adjusted to suit the problem being solved. This too has not
attracted enough research at present.

Since metaheuristic algorithms work on the Darwinian principle of selection of
the fittest, other types of selection like rank based selection could be experimented
with, instead of the knockout or tournament type of selection described in this
chapter.

Given that numerous metaheuristic algorithms exist at present, another direction
for further research would be the hybridization of the bat algorithm with the
operators of other metaheuristic algorithms, so that the hybrid would combine the
best features of the algorithms being combined.

Another kind of hybridization that could be explored profitably is that between
the bat algorithm and gradient based methods, eliminating the limitations and
combining the strengths of these two contrasting types of optimization methods.

Some steps have been taken in many of the directions indicated here. However,
fundamental research that addresses these difficult, core issues in optimization
theory requires research at a different level altogether, rather than simple compar-
isons of performance between some x and y algorithms on some specific problem or
set of problems. In that sense, it is hoped that this chapter can inspired more
research in the foreseeable future.
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