
Exploiting Social Networking and Mobile Data
for Crisis Detection and Management

Katerina Doka1(B), Ioannis Mytilinis1, Ioannis Giannakopoulos1,
Ioannis Konstantinou1, Dimitrios Tsitsigkos2, Manolis Terrovitis2,

and Nectarios Koziris1

1 CSLab, NTUA, Athens, Greece
{katerina,gmytil,ggian,ikons,nkoziris}@cslab.ece.ntua.gr

2 IMIS, RC Athena, Athens, Greece
{tsitsigkosdim,mter}@imis.athena-innovation.gr

Abstract. Every day, vast amounts of social networking data is being
produced and consumed at a constantly increasing rate. A user’s digital
footprint coming from social networks or mobile devices, such as com-
ments, check-ins and GPS traces contains valuable information about her
behavior under normal as well as emergency conditions. The collection
and analysis of mobile and social networking data before, during and
after a disaster opens new perspectives in areas such as real-time event
detection, crisis management and personalization and provides valuable
insights about the extent of the disaster, its impact on the affected popu-
lation and the rate of disaster recovery. Traditional storage and process-
ing systems are unable to cope with the size of the collected data and the
complexity of the applied analysis, thus distributed approaches are usu-
ally employed. In this work, we propose an open-source distributed plat-
form that can serve as a backend for applications and services related to
crisis detection and management by combining spatio-textual user gener-
ated data. The system focuses on scalability and relies on a combination
of state-of-the art Big Data frameworks. It currently supports the most
popular social networks, being easily extensible to any social platform.
The experimental evaluation of our prototype attests its performance
and scalability even under heavy load, using different query types over
various cluster sizes.

1 Introduction

In the recent years we have witnessed an unprecedented data explosion on the
web. The wide adoption of social networks has concluded in terabytes of pro-
duced data every day. In March 2017 for example, Facebook had on average 1.28
billion daily active users [5], while more than 500 million tweets are produced
on a daily basis [7]. The proliferation of mobile, smart devices has contributed
decisively to this trend: With more than half the world now using a smartphone,
active mobile social media users account for 34% the total population [3].

As this data is mostly a product of human communication, it reveals valuable
information covering all aspects of life, even emergency situations. Indeed, social
c© Springer International Publishing AG 2017
I.M. Dokas et al. (Eds.): ISCRAM-med 2017, LNBIP 301, pp. 28–40, 2017.
DOI: 10.1007/978-3-319-67633-3 3

Exploiting Social Networking and Mobile Data 29

media have become a prevalent information source and communication medium
in cases of crises, producing high throughput data only seconds after a crisis
occurs, as attested by the 500k tweets produced in the first hours after the
tsunami in Philippines and the 20k tweets/day registered during the Sandy storm
in New York in 2012 [16].

Thus, the processing and linkage of such mobile social media information,
which includes heterogeneous data varying from text to GPS traces, provide
tremendous opportunities for the detection of emergency situations [15], for the
provision of services for immediate crisis management (e.g., getting life signs from
people affected [4], communicating with responders, etc.) and for data analytics
that can assist in short and long-term decision making by evaluating the extent
of the disaster, its impact on the affected population and the rate of disaster
recovery [10].

When the volume, velocity and variety of the collected data or the complex-
ity of the applied methods increase, traditional storage and processing systems
are unable to cope and distributed approaches are employed. To this end, we
propose, design and implement a distributed, Big Data platform that can power
crisis detection and management applications and services by combining het-
erogeneous data from various data sources, such as user GPS traces from cell
phones, profile information and comments from existing friends in various social
networks connected with the platform. Currently our prototype supports Face-
book, Twitter and Foursquare, but it can be extended to more platforms with
the appropriate plug-in implementation. It has been tested with real data but
simulated workloads (i.e., synthetic user base).

Through distributed spatio-temporal and textual analysis, our system pro-
vides the following functionalities:

– Socially enhanced search of crisis-related information based on criteria such
as location, time, sentiment or a combination of the above.

– Automatic discovery of new Points of Interest (POIs) and events that could
indicate an emerging crisis of any extent, small or big, ranging from traffic
jams and spontaneous gatherings such as protests, to natural disasters or
terrorist attacks.

– Inference of the user’s semantic trajectory during and after the emergency
through the combination of her GPS traces with background information
such as maps, check-ins, user comments, etc.

– Semi-Automatic extraction of a user’s activity during the crisis in the form
of a blog.

An important feature of our system is the automatic POIs detection. A dis-
tributed version [8] of DBSCAN, a well-known clustering algorithm, is applied
to the GPS traces of our system’s users. A dense concentration of traces signifies
a POI existence. Furthermore, the correlation of spatio-temporal information
provided by the GPS traces with POI related texts automatically produces a
blog with the user’s activity.

Moreover, a user can search for crisis-related social media information posing
both simple as well as more advanced criteria. Simple criteria include commonly

30 K. Doka et al.

used features such as keywords (e.g., “flood”, “terrorism”, “traffic”, etc.), loca-
tion (e.g., a bounding box on a map) or a time frame of interest. Advanced
criteria refer to data annotations, that derive from the processing of data, such
as the sentiment of a tweet or a Facebook post. On top of these, each search
can be socially charged, taking into account one’s social graph when providing
responses (e.g., rank content based on the sentiment of one’s friends of it). Thus,
the proposed platform is capable of supporting queries such as “Which are the
places in Greece where protests are currently taking place and my Facebook
friends (or a subset of them) participate in” or “Inform me of the activity and
sentiment of my Facebook friends that were near Lesvos island on June 12, 2017
(when the earthquake of 6.1 Richter scale occurred)”.

The contribution of this work is many-fold:

– We design a highly scalable architecture that efficiently handles data from
heterogeneous sources and is able to deal with big data scenarios.

– We adapt and fine-tune well-known classification and clustering algorithms
in a Hadoop-based environment.

– We experiment with datasets in the order of tens of GB, from Tripadvisor,
Facebook, Foursquare and Twitter.

– We validate the efficiency, accuracy and scalability of the proposed architec-
ture and algorithms.

The remainder of this paper is organized as follows: Sect. 2 presents the system
architecture, Sect. 3 provides an experimental evaluation of the platform, Sect. 4
presents the related work and Sect. 5 concludes our work.

2 Architecture

Our platform follows a layered architecture that is illustrated in Fig. 1. It com-
prises the frontend and backend layers, both of which follow a completely mod-
ular design to favor flexibility and ease of maintenance.

The frontend layer constitutes the point of interaction with the user and
includes all applications related to crisis detection and management that can
be supported by the platform. Such an application can be a web, a mobile
phone (e.g., Android, iOS) or a native application. To test the platform’s basic
functionality, a web application has been implemented.

The applications communicate with the backend layer through a REST API.
The requests to the backend as well as the responses of the backend back to the
user follow a specific JSON format. This feature enables the seamless integration
of any client applications with the platform.

The backend is divided in two subsystems, the processing subsystem and
storage subsystem. For the processing subsystem, a Hadoop cluster and a web
server farm have been deployed, in order to cater for the special requirements of
social network data processing.

Indeed, the volume and velocity of the data produced by social networks
demand a distributed approach. Since the Hadoop framework has emerged as

Exploiting Social Networking and Mobile Data 31

Frontend

Backend

Applications

Storage subsystem

Hadoop Cluster

Da
ta

Co
lle
ct
io
n

Text
Processing

Query
Answering

REST API
Server farm

data/queries

personalized
non-

personalized

HBase Cluster
Social Info Text

GPS Traces Emergency
POIs

Blogs

Friend Activity

Sentiment
Analysis

User
Management

REST APIREST API

Processing subsystem

PostgreSQL
Server

Event
Detection

Fig. 1. The proposed platform architecture.

the most prevalent platform of choice for large-scale analytics, we design and
deploy the following Hadoop-based processing modules: (a) the Data Collection
module, (b) the Sentiment Analysis module, (c) the Text Processing module and
(d) the Event detection module.

The web server farm hosts the User Management and the Query Answering
modules, which act as gateways to the platform. Both modules are implemented
as lightweight web services which put load to the datastore without stressing the
web servers.

The storage subsystem is responsible for storing all the data used by our plat-
form, both raw and processed. We refer to the components of the storage sub-
system as repositories. Repositories are conceptually classified to primitive and
non-primitive data repositories. Primitive repositories store raw, unprocessed
data, referred to as primitive data. Primitive data are collected from external
data sources such as social networks (Facebook, Foursquare, Twitter) and GPS
traces and are directly stored to the platform. Non-primitive data repositories
are the ones serving answers to queries and hold information extracted from the
analysis of primitive data through the use of spatio-textual algorithms.

To handle multiple concurrent users that issue queries to the platform, the
system follows a scalable approach. To this end, the Apache HBase [1] NoSQL
datastore is used. However, there are queries which require either complex index-
ing schemes or extended random access to the underlying data. These queries

32 K. Doka et al.

cannot be efficiently executed in HBase. For this reason, we devise a hybrid
architecture that uses HBase for batch queries that can be efficiently executed
in parallel and PostgreSQL [6] for online random-access queries that cannot.

In the following, we describe in more detail the repositories and the processing
modules of the proposed platform.

2.1 Storage Subsystem Repositories

Emergency POI repository: It is a non-primitive data repository that con-
tains all the information our platform needs to know about POIs where an emer-
gency has occurred. The name of a POI, its geographical location, the keywords
characterizing the emergency and the sentiment-related metrics are all stored in
this repository. A new entry to the repository can be inserted either explicitly
by the user through the web GUI or automatically by the Event Detection mod-
ule. While POI repository has to deal with low insert/update rates, it should be
able to handle heavy, random access read loads. Thus, indexing capabilities are
required. PostgreSQL offers such capabilities and has therefore been chosen as
the ideal infrastructure for hosting the emergency POI repository.

Social Info repository: This primitive data repository is a HBase-resident
table where social graph information is held. For each platform user and for
each connected social network, the list of friends is persisted. More specifically,
we store a compressed list with the unique social network id, the name and the
profile picture of each friend. This list is periodically updated through the Data
Collection module to capture possible changes in a user’s social graph.

Text repository: The textual data collected from social media an processed
through the Text Processing module are stored in this non-primitive data reposi-
tory. Since the anticipated volume of this data type is high, the Text repository is
most demanding in terms of disk space requirements. For this reason, it is stored
in HBase and spread across all available cluster nodes. The Text repository holds
all the collected comments and reviews that contain crisis related keywords, such
as “flood”, “hurricane”, “traffic”, “protest”, etc. along with their geo-location.
Texts are indexed by user, geo-location and time. For any given crisis-related
keyword and any given rectangle on the map, we are able to retrieve the com-
ments that any user made at any given time interval, containing the keywords
and geo-located within the search area.

Friend Activity repository: In order to give information based on social
friends’ activity, we need to keep track of all locations (Emergency POIs) and
social media content of a user’s friends. This information is maintained in the
Friend Activity repository, a non-primitive data repository persisted as an HBase
table. Each activity is represented by an activity data structure with the com-
plete Emergency POI information (name, latitude, longitude, etc.) as well as
the textual content of possible posts. Moreover, this structure is enriched with
sentiment metrics (positive/negative) through the Sentiment Analysis module.
Every time a user or a user’s social friend is tracked near an Emergency POI
through her GPS trace or geo-tagged posts, an activity struct indexed by user
and time is added to the repository. Thus, for any given time interval, we know

Exploiting Social Networking and Mobile Data 33

the places that all of a user’s friends have been and a score indicating each
friend’s sentiment.

An obvious remark is that the activity struct introduces high data redun-
dancy, since each time someone visits an Emergency POI, the whole POI infor-
mation is registered within the struct. The alternative schema design strategy
would be joining POI information with activity information at query time. How-
ever, our experiments suggest data replication to be more efficient. Our schema
in combination with HBase coprocessors and a fully parallel query mechanism
offers higher scalability and achieves lower latency in the event of many concur-
rent users, which is the case in emergency situations. Thus, we sacrifice cheap
storage space for efficiency.

GPS Traces repository: Mobile devices with appropriate geo-location
applications supported by our platform installed, can push their GPS traces
to the platform. These traces are stored in the primitive data repository of GPS
Traces. Since the platform may continuously receive GPS traces, this repository
is expected to deal with a high update rate. Furthermore, as GPS traces are not
queried directly by the users but are periodically processed in bulk, there is no
need to build indices on them. The volume of data, the opportunities for parallel
bulk processing and the absence of indices are the main reasons why we choose
HBase as the storage substrate for GPS data.

Blogs repository: We define a semantic trajectory to be a timestamped
sequence of Emergency POIs summarizing user’s activity during crisis this infor-
mation is stored in a non-primitive data repository, the Blogs repository. As
POIs, blogs are frequently queried by users but they do not have to deal with
heavy updates and thus are stored as a PostgreSQL resident table.

2.2 Processing Subsystem Modules

User Management module: The User Management module is responsible for
the user authentication to the platform. The user is registered either through
the mobile applications or the website. The signing-in process is carried out only
with the use of the social network credentials. The registration workflow follows
the OAuth protocol. The OAuth authorization framework enables a third-party
application to obtain access to an HTTP service on behalf of a resource owner.
When the authentication is successful, the user logs in and an access token is
returned to the platform. With this token, the platform can interact with the
connected social networks on behalf of the end user. It can monitor user’s activity,
user’s friends activity, posts etc. When multiple social networks are connected to
the platform, the platform joins the acquired data and enriches the information
that is indexed and stored.

Data Collection module: The functionality of this module is to collect
data from external data sources. Periodically, the Data Collection module scans
in parallel all the authorized users of the platform; each worker scans a different
set of users. For each user and for all connected social networks, it downloads all
the interesting updates from the user’s social profile. Since the platform provides

34 K. Doka et al.

social geo-location services, interesting updates are considered to be user check-
ins and the accompanying comments, status updates and geo-located tweets.
From this information, the platform is able to gain knowledge about the existence
of crisis events and people’s sentiment about them. Once data are streamed to the
platform, part of them are indexed and stored in the primitive data repositories,
while the rest are processed in-memory and then indexed and stored to the
appropriate non-primitive data repositories.

Text Processing module: This module indexes all textual information
collected by the Data Collection module according to predefined crisis related
keywords (e.g., flood, earthquake, protest, etc.). To do so, it employs standard
Natural Language Processing (NLP) techniques (lemmatization, stemming, etc.)
to track the predefined keywords and stores the results to the Text repository.

Sentiment Analysis module: The Sentiment Analysis module performs
sentiment analysis to all textual information the platform collects through the
Data Collection module. Comments are classified, real-time and in-memory, as
positive or negative. The score which results from the sentiment analysis is per-
sisted to the datastore along with the text itself.

As a classification algorithm, we choose the Naive Bayes classifier that the
Apache Mahout [2] framework provides. Naive Bayes is a supervised learning
algorithm and thus it needs a pre-annotated dataset for its training. For the
training, data from Tripadvisor, containing reviews for POIs is used. The reason
for choosing this training set is that Tripadvisor comments are annotated with
a rank from 1 to 5 that can be used as a classification score. After an extensive
experimental study and a fine-tuning of the algorithm parameters, we managed
to create a highly accurate classifier that achieves an accuracy ratio of 94%
towards unseen data.

Event Detection module: The detection of new events and emergency
POIs constitutes a core functionality of our platform. A distributed, Hadoop-
based implementation of the DBSCAN clustering algorithm [8] is employed for
this reason. The module is called periodically and processes in parallel the
updates of the GPS Traces repository in order to find traces of high density;
high density traces imply the existence of a new POI. In order to avoid detect-
ing already known Emergency POIs, traces falling near to existing Emergency
POIs in the repository are filtered out and are not taken into consideration for
clustering.

Query Answering module: The Query Answering is the module that exe-
cutes search queries. A search query can take as input the following parameters:

– a bounding box of coordinates (i.e., on a map)
– a list of keywords
– a list of social network friends
– a time window
– results sorting criteria
– the number of results to be returned

Queries are distinguished in personalized and non-personalized ones. Per-
sonalized are the queries that exclusively concern the social media friends (or

Exploiting Social Networking and Mobile Data 35

a subset of them) of a user. Thus, if a list of friends is provided, the query is
considered to be personalized.

For personalized queries, the selected friends’ activities should be taken into
account. The repository that maintains such personalized information is the
Friend Activity repository which resides in HBase. Thus, as Fig. 1 depicts, per-
sonalized queries are directed towards the HBase cluster. In order to efficiently
resolve personalized queries, HBase coprocessors are used. Each coprocessor is
responsible for a region of the Friend Activity repository and performs HBase
get requests to the users under its authority. Since different friends are located
with high probability in different regions, a different coprocessor is in charge of
serving their activities and multiple get requests are issued in parallel. Increasing
the number of regions leads to an increase in the number of coprocessors and
thus a higher degree of parallelism is achieved within a single query.

On the other hand, non-personalized queries involve repositories that han-
dle no-personalized information. The Emergency POI repository, which contains
all the required information, resides in PostgreSQL. Thus all non-personalized
queries are translated to select SQL queries and directed towards PostgreSQL.

3 Experiments

We experimentally evaluate our system in terms of performance, scalability and
accuracy of its modules. This way we validate both our architectural design and
the selected optimizations.

3.1 Scalability and Performance Evaluation

We first present some experiments for the scalability and performance of the
query answering module. Using a synthetic dataset, we test the ability of the
platform to respond to personalized queries issued by its users for various loads
and different cluster sizes. Each personalized query involves a set of friends and
returns the activities, i.e., text, geo-location and sentiment related to a crisis
situation designated by a keyword (e.g., earthquake). The platform user can set
a number of other parameters as well: the geographical location, the time period
of the activities, etc. In our experiments, we identified that the dominant factor
in the execution time of the query is the number of social network friends that
the platform users define.

For the synthetic dataset generation, we collected information from Open-
StreetMap about 8500 POIs (which we considered Emergency POIs for out
experiment) located in Greece. Based on those POIs, we emulated the activ-
ity of 150k different social network users, each of whom has performed activities
in a number of Emergency POIs and assigned a sentiment to it. The number
of activities for each social network friend follows the Normal Distribution with
μ = 170 and σ = 101. The dataset is deployed into an HBase cluster consisting
1 The vast majority of the users has performed between 140 and 200 visits in different

POIs.

36 K. Doka et al.

of 16 dual-core VMs with 2 GB of RAM each, running Linux (Ubuntu 14.04).
The VMs are hosted in a private Openstack cluster.

At first, we are going to study the impact of the number of social network
friends into the execution time of a single query. At this point we will also
examine how the cluster size affects the execution time of a query. Secondarily,
we are going to extend our study to multiple concurrent queries where we will
also examine the behavior of the platform for different numbers of concurrent
queries and different cluster configurations.

For the first point, we evaluate the execution time of a query for different
numbers of friends. In Fig. 2 we provide our findings. In this experiment, we
executed one query at a time involving from 500 to 10 k social network friends
for three different cluster setups consisting of 4, 8 and 16 nodes. The friends for
each query are picked randomly in a uniform manner. We repeated each query
ten times and we provide the average of those runs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 2000 3500 5000 6500 8000 9500

Ex
ec

ut
io

n
tim

e
(m

s)

Number of SN friends

4 nodes
8 nodes

16 nodes

Fig. 2. Query latency vs number of users

The number of friends affects the execution time in an almost linear manner.
Furthermore, an increase in the cluster size leads to a latency decrease, since
the execution is happening in parallel to multiple nodes. By utilizing HBase
coprocessors, we managed to exploit the locality of the computations into specific
portions of the data: each coprocessor operates into a specific HBase region
(holding a specific portion of the data), eliminates the activities that do not
satisfy the user defined criteria, aggregates multiple activities referring to the
same Emergency POI and annotates them with aggregated sentiment scores.
Finally, each coprocessor returns to the Web Server the list of emergency POIs,
the related activities and sentiment and the Web Server, in turn, merges the
results and returns the final list to the end user.

Exploiting Social Networking and Mobile Data 37

Using the previously described technique, we achieved latencies lower than 1
second for more than 5000 users. Bearing into consideration that social networks
like Facebook, retain a limit on the maximum number of connections (5000
friends per user), we can guarantee that the latency for each query remains
acceptable for a real time application.

We now extend our analysis for the cases where multiple queries are issued
concurrently to the platform. For our experiments we create a number of con-
current queries involving 6000 social network friends each and we measure their
execution time for different cluster sizes. In Fig. 3, we provide our results. The
execution time in the vertical axis represents the average execution time for each
case.

 10

 15

 20

 25

 30

 35

 40

 45

30 35 40 45 50

Ex
ec

ut
io

n
tim

es
 (s

ec
)

Concurrent queries

4 nodes
8 nodes

16 nodes

Fig. 3. Average execution time for concurrent queries

As Fig. 3 demonstrates, an increase in the number of concurrent queries leads
to worse performance (larger execution time). However, for larger cluster sizes we
can make the following observations: (a) even for the lowest number of concurrent
queries the 16 cluster case is approximately 2.5 times better than the 4 cluster
case, indicative of the proper utilization of more resources and (b) larger cluster
sizes do not allow execution time to rise fast as the number of concurrent queries
increases. Specifically, when the cluster consists of 4 nodes, the execution time
is high even for the lowest number of concurrent queries and it continues to rise
rapidly while the number of queries is increased. In the 8 nodes case, although
at first the achieved execution times are relatively low, the increase becomes
rapid for more concurrent queries, whereas in the 16 nodes case we see that the
increase is held in a minimum level. This is indicative of the scalability of the
platform, since more resources are properly utilized and the platform becomes
resistant to concurrency.

38 K. Doka et al.

Finally, since greater number of concurrent queries leads to more threads
in the Web Server which, in turn, hits the cluster, we can avoid any potential
bottlenecks by replicating the Web Servers while simultaneously, we use a load
balancer to route the traffic to the web servers accordingly. In our experimental
setup, we identified that two 4-cores web servers with 4 GB of RAM each are
more than enough to avoid such bottlenecks.

3.2 Evaluation of Sentiment Analysis

In this section we evaluate the tuning of the Naive Bayes classifier we use for
sentiment analysis. As we have already mentioned, for the training of the classi-
fier, we crawl and use data from Tripadvisor. We consider a Tripadvisor review
about a place to be a classification document. We divide training documents into
two sets: positive and negative opinion documents. Both sets should have almost
the same cardinality. Before feed the training set to the classifier, a preprocess-
ing step is applied which involves stemming, turning all letters to lowercase and
removing all words belonging to a list of stopwords. When the preprocessing
step is finished, Naive Bayes is applied to the data. Let this procedure be the
baseline training process. As a next step, we experiment with the following opti-
mizations: use of the tf metric, 2-grams, Bi-Normal Separation and deletion of
words with less than x occurrences. These optimizations can be given as para-
meters to the classification algorithm. Experiments with different combinations
for the algorithm parameters were also conducted but are omitted due to space
constraints.

Figure 4 shows the classification accuracy for various training set sizes, when
the baseline and the optimized classification are used. We observe that when
optimizations are applied, classification results are more accurate for any training
size. Especially, for a training set of 500 k documents, we achieve an accuracy of
93.8%. As we can see, the 500 k documents form a threshold for the classifier.
For both versions of the algorithm after this point accuracy degrades. This is
because there is an overfit of data, which is a classic problem in Machine Learning
approaches.

4 Related Work

This work is not the first that proposes the use of social network [9,10,14,15]
or mobile phone data [13] for crisis response and management. AIDR [9] is a
platform that classifies tweets into user-defined, crisis-related categories in a
semi-automatic way (classifiers are built using crowdsourced annotations). The
work in [15] focuses on identifying timely and relevant responders for questions in
social media in order to help people affected by natural calamities. The authors of
[10] employ unsupervised learning techniques on textual data to extract knowl-
edge and provide an overview of the crisis while the study in [13] correlates CDR

Exploiting Social Networking and Mobile Data 39

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

#documents in trainingset

70

80

90

100

T
ra

in
in

g
A

cc
ur

ac
y

(%
)

Baseline training
Training with optimizations

Fig. 4. Classification accuracy for different training sizes

data with rainfall levels, suggesting the potential in using cell tower activity
information to improve early warning and emergency management mechanisms
in case of floodings.

Contrarily, our platform focuses on combining textual as well a spatial data
(GPS traces) from multiple social networks to (a) detect possible emergency
POIs and to (b) provide personalized information about a crisis situation. Fur-
thermore, our platform relies on distributed processing and storage solutions and
thus proves to be scalable, while no implementation and performance informa-
tion is provided for the other systems. Our platform is based on prior work of
our team, which resulted in a socially enhanced recommendation system [11,12].
This has been adapted to cater the specific requirements of crisis detection and
management.

5 Conclusions

In this paper we presented a storage and processing platform that is able to
support applications and services that leverage the power of Big Data produced
by mobile and social network users to detect and manage emergencies. Such
data include spatio-temporal and textual information, which can be combined
to automatically discover POIs and events that could indicate an emerging crisis
of any extent, provide crisis-related information based on criteria such as loca-
tion, time, sentiment or a combination of the above and infer a user’s semantic
trajectory during and after the emergency. Our prototype, which currently sup-
ports Facebook, Twitter and Foursquare, is able to provide query latencies of a
few seconds even under heavy load, falling into the sub-second scale when exe-
cuting over a 16-node cluster. Releasing an online public version of our system
and testing it under real world conditions is part of our future plans.

40 K. Doka et al.

References

1. Apache HBase. http://hbase.apache.org
2. Apache Mahout. https://mahout.apache.org/
3. Digital in 2017: Global Overview. https://wearesocial.com/special-reports/

digital-in-2017-global-overview
4. Facebook Safety Check. https://www.facebook.com/about/safetycheck/
5. Facebook Stats. https://newsroom.fb.com/company-info/
6. Postgresql. http://www.postgresql.org/
7. Twitter Usage Statistics. http://www.internetlivestats.com/twitter-statistics/
8. He, Y., Tan, H., Luo, W., Mao, H., Ma, D., Feng, S., Fan, J.: MR-DBSCAN: an

efficient parallel density-based clustering algorithm using mapreduce. In: ICPADS
(2011)

9. Imran, M., Castillo, C., Lucas, J., Meier, P., Vieweg, S.: AIDR: artificial intelli-
gence for disaster response. In: Proceedings of the 23rd International Conference
on World Wide Web, pp. 159–162. ACM (2014)

10. Lazreg, M.B., Goodwin, M., Granmo, O.-C.: Deep learning for social media analy-
sis in crises situations. In The 29th Annual Workshop of the Swedish Artificial
Intelligence Society (SAIS) 2–3 June 2016, Malmö, Sweden, p. 31 (2016)

11. Mytilinis, I., Giannakopoulos, I., Konstantinou, I., Doka, K., Koziris, N.: MoDis-
SENSE: a distributed platform for social networking services over mobile devices.
In: 2014 IEEE International Conference on Big Data (Big Data), pp. 49–51. IEEE
(2014)

12. Mytilinis, I., Giannakopoulos, I., Konstantinou, I., Doka, K., Tsitsigkos, D., Ter-
rovitis, M., Giampouras, L., Koziris, N.: MoDisSENSE: a distributed spatio-
temporal and textual processing platform for social networking services. In: Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pp. 895–900. ACM (2015)

13. Pastor-Escuredo, D., Morales-Guzmán, A., Torres-Fernández, Y., Bauer, J.-M.,
Wadhwa, A., Castro-Correa, C., Romanoff, L., Lee, J.G., Rutherford, A., Frias-
Martinez, V., et al.: Flooding through the lens of mobile phone activity. In: 2014
IEEE Global Humanitarian Technology Conference (GHTC), pp. 279–286. IEEE
(2014)

14. Purohit, H., Sheth, A.P.: Twitris v3: from citizen sensing to analysis, coordination
and action. In: ICWSM (2013)

15. Ranganath, S., Wang, S., Hu, X., Tang, J., Liu, H.: Facilitating time critical infor-
mation seeking in social media. IEEE Trans. Knowl. Data Eng. PP(99), 1–14
(2017)

16. Zielinski, A., Middleton, S.E., Tokarchuk, L.N., Wang, X.: Social media text mining
and network analysis for decision support in natural crisis management, pp. 840–
845. Proc. ISCRAM. Baden-Baden, Germany (2013)

http://hbase.apache.org
https://mahout.apache.org/
https://wearesocial.com/special-reports/digital-in-2017-global-overview
https://wearesocial.com/special-reports/digital-in-2017-global-overview
https://www.facebook.com/about/safetycheck/
https://newsroom.fb.com/company-info/
http://www.postgresql.org/
http://www.internetlivestats.com/twitter-statistics/

	Exploiting Social Networking and Mobile Data for Crisis Detection and Management
	1 Introduction
	2 Architecture
	2.1 Storage Subsystem Repositories
	2.2 Processing Subsystem Modules

	3 Experiments
	3.1 Scalability and Performance Evaluation
	3.2 Evaluation of Sentiment Analysis

	4 Related Work
	5 Conclusions
	References

