
High-Throughput Sockets over RDMA for the
Intel Xeon Phi Coprocessor

Aram Santogidis1,2(B) and Spyros Lalis3

1 Maynooth University, Maynooth, Ireland
aram.santogidis@cern.ch

2 CERN, Geneva, Switzerland
3 University of Thessaly, Volos, Greece

lalis@uth.gr

Abstract. In this paper we describe the design, implementation and
performance of Trans4SCIF, a user-level socket-like transport library for
the Intel Xeon Phi coprocessor. Trans4SCIF library is primarily intended
for high-throughput applications. It uses RDMA transfers over the native
SCIF support, in a way that is transparent for the application, which
has the illusion of using conventional stream sockets. We also discuss
the integration of Trans4SCIF with the ZeroMQ messaging library, used
extensively by several applications running at CERN. We show that this
can lead to a substantial, up to 3x, increase of application throughput
compared to the default TCP/IP transport option.

Keywords: RDMA · Fast data transfer · Stream sockets · Manycore
processors · Intel Xeon Phi · ZeroMQ · High performance computing

1 Introduction

One of the systems used at CERN to process the data generated from the LHC
experiments [12] is the O2 online-offline distributed system, developed by the
ALICE collaboration [1]. O2 consists of over hundred different kinds of processes
that perform data acquisition from the particle detectors, particle trajectory
reconstruction, data compression and storage, as well as detector monitoring and
calibration. They form a distributed data processing pipeline, interconnected via
a message passing fabric based on the ZeroMQ [7] and NanoMSG [18] libraries.

With the introduction of the Intel Xeon Phi coprocessor [5], we started to
investigate the possibility of taking advantage of this manycore architecture in
order to increase the efficiency of O2 workloads. Indeed, several O2 computations
could greatly profit from the high core count and high memory bandwidth of the
Intel Xeon Phi coprocessor. However, our tests [17] have shown that the host-
coprocessor communication throughput of ZeroMQ and NanoMSG over TCP/IP
is up to 20x lower than what could be achieved using the RDMA support of the
Symmetric Communication Interface (SCIF) [8], the native transport mechanism
of the Intel Xeon Phi platform.
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 75–86, 2017.
https://doi.org/10.1007/978-3-319-67630-2_6

http://orcid.org/0000-0002-1896-7207
http://orcid.org/0000-0003-2232-3559


76 A. Santogidis and S. Lalis

For this reason, we decided to provide a high-throughput transport service
over SCIF-RDMA, called Trans4SCIF, with two goals in mind. On the one hand,
it should be straightforward to integrate this transport with the ZeroMQ mes-
saging library, so that the O2 stack can enjoy improved performance in a trans-
parent way. On the other hand, this transport should be easy to use in other
applications as well, offering the familiar abstraction of streaming sockets.

This paper describes the implementation of Trans4SCIF and discusses its
integration with ZeroMQ. The main contributions are: (i) we present a socket-
based RDMA-capable transport library with streaming semantics for the Intel
Xeon Phi coprocessor; (ii) we introduce a novel synchronization algorithm for
RDMA-based transport mechanisms; (iii) we discuss how the ZeroMQ library
was extended with support for RDMA-based data transfers through Trans4SCIF
(iv) we provide an evaluation showing that Trans4SCIF can lead to significant
performance improvements vs. TCP/IP based data transfers for intra-node com-
munication. We note that the developed support is also relevant for the second
generation Intel Xeon Phi coprocessor (given that this was released in Q2 of 2017,
after the paper was written, here we report results only for the first generation).

The rest of the paper is organized as follows. Section 2 describes the
implementation of the Trans4SCIF library. Section 3 discusses the integration
of Trans4SCIF with ZeroMQ. Section 4 provides a performance evaluation.
Section 5 gives an overview of related work. Finally, Sect. 6 concludes the paper
and points to some directions for future work.

2 The Trans4SCIF Library

We give an overview of the Symmetric Communication Interface of the Intel
Xeon Phi coprocessor, and describe how Trans4SCIF was implemented on top
of it. The code is available for download at goo.gl/ynrmSL.

2.1 The Symmetric Communication Interface (SCIF)

SCIF supports intra-node communication over the PCIe bus [8]. For small data
transfers, it offers familiar POSIX-like send()/recv() operations. For bulk trans-
fers, SCIF offers an RDMA interface that can fully utilize the capabilities of the
PCIe bus. While this can lead to much higher throughput, it is harder to use due
to the memory management and synchronization issues that must be handled
by the programmer, in particular, registering the memory regions to be used
for remote reading/writing, and detecting the completion of RDMA transfers.
These issues also exist in other RDMA implementations [13].

Besides the classic RDMA read/write operations, SCIF offers the
scif mmap() function, which maps a pre-registered remote address region into
the address space of the calling process. If successful it returns a pointer that can
be used to transparently access that memory region of a remote process. This
method enables a direct sharing of data structures between processes running on



High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor 77

the coprocessor and the host. It also has the lowest communication latency [9],
which makes it attractive for inter-process synchronization via shared state.

Data transfers via RDMA occur concurrently to normal program execution.
One way to notify the program that the requested data transfers have been per-
formed, is to use the scif fence signal() function. When called, it internally marks
all transfers that have been scheduled so far, and upon their completion writes
a given value into a specified local or remote memory location (or both). This is
done asynchronously, and the program must check/read that memory location
in an explicit way to determine whether the transfers have been completed.

2.2 Trans4SCIF API

To make SCIF-RDMA transport more accessible to application programmers,
as well as to pave the way towards exploiting it through the messaging libraries
of the O2 stack, we have developed Trans4SCIF, a user-level library that uses
the RDMA mechanism of SCIF and exposes an easy to use socket-like interface.

class Socket {
{uint8_t*, size_t} getSendBuffer (); // free region of internal send buffer
size_t send(const uint8_t *data , size_t data_size); // non -blocking
size_t recv(uint8_t *data , size_t data_size); // non -blocking
void waitIn(long timeout); // block until there is data to receive

};

Fig. 1. Basic API of the Trans4SCIF library.

The basic primitives of the Trans4SCIF API are shown in Fig. 1 in simplified
C++ syntax. In a nutshell, send() copies the data for transmission to an internal
pre-registered buffer and schedules a corresponding RDMA-write operation. If
the internal buffer is full, send() returns zero, indicating that the application
should retry at a later point in time. To avoid data copying, the application
can get a handle on the internal transport buffer via getSendBuffer(), and write
data directly into it. Data reception is done via recv(), which immediately returns
zero when no data is available. If desired, the application can block until data
becomes available by calling waitIn().

2.3 Trans4SCIF Implementation

We now turn to the implementation of the sending and receiving side of Trans4-
SCIF, henceforth referred to as sender and receiver, respectively. Each side main-
tains its own pre-registered data buffer, the sender for the data that is written
by the application, and the receiver for the data that is read by the applica-
tion. Data copying between the two buffers is performed via RDMA-write. The
synchronization between the sender and the receiver is done using two auxiliary
data structures, the so-called Buffer Records Table (BRT) and Write Records



78 A. Santogidis and S. Lalis

Table (WRT). These are shared between the two sides via scif mmap(). The size
of the data buffers can be set by the application at the initialization time; the
size of the WRT and other parameters can be set at library compilation time.

The BRT resides in the memory of the sender, and is used to keep track of
the free buffer space at the receiver. Each entry contains the starting and ending
offset of a region in the remote receiver buffer that is available for writing over
RDMA. For example, in Fig. 2, the sender checks the BRT and discovers that
there are two regions available for RDMA writes, the first being [0x0..0x400] and
the second [0xE00..0x1000]. Given that data chunks are written in the receiver
buffer in the spirit of a circular buffer, there can be at most two regions available
for write operations, thus the BRT only needs to have two entries.

0
1

0
1
2

N

3

1 2 3

Fig. 2. Snapshot of the registered address spaces of a pair of Trans4SCIF endpoints.
The sender’s space contains the send buffer and the BRT, while the receiver’s space
contains the receive buffer and the WRT.

The WRT resides in the memory of the receiver, and is used to keep track of
the RDMA writes performed by the sender in the receiver’s data buffer. Similarly
to a BRT entry, each WRT entry contains the start and end offset of a region
in the receiver’s data buffer. Taking a look at Fig. 2, the receiver knows that
several writes have been performed in its data buffer, the first one in the region
[0x400..0x7DB] followed by [0x800..0x9D0] and [0xA00..0xE00]. Note that a sep-
arate entry is needed for each individual data transfer. This is because although
a write starts at a cache-aligned offset it may end at an arbitrary (non cache-
aligned) offset. As a result the receiver’s data buffer may have gaps that contain
garbage, to be skipped when reading out data. Some WRT entries, like the first
and last one in Fig. 2, can be empty (free to use by the sender to denote subse-
quent RDMA transfers), in which case the start and end fields have an invalid
value (infinity). Like the receiver’s actual data buffer, the WRT is filled by the
sender and consumed by the receiver in the spirit of a circular buffer.

The pseudo-code in Algorithm 1 gives a high-level description of the sender
and receiver logic. In a nutshell, the sender checks the BRT to see if there is



High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor 79

available space in the receiver’s data buffer, in which case it subsequently checks
the next WRT entry to see if it is empty, and if so, proceeds with the data transfer
and updates the BRT and WRT accordingly. Similarly, the receiver checks the
next WRT entry to see if it is filled, in which case it reads out the corresponding
region of its data buffer and updates the BRT and WRT. If the next WRT entry
is empty the receiver knows no data is available.

Algorithm 1. High-level sender and receiver logic of Trans4SCIF
1: procedure Send(data, data size)
2: if buf space = 0 or free WRT slots = 0 then
3: return 0
4: sz ← min(buf space, data size, BUFSIZE/2)
5: sz ← round up(sz) � to cacheline size boundary
6: memcpy(send buf, data, sz) � destination, source, size
7: rdma write to(recv buf, send buf, sz) � schedule asynchronous RDMA
8: scif fence signal() � commission update of WRT upon completion
9: scif send(token) � send notification (blocking but fast)

10: update(BRT )
11: return sz + Send(data + sz, data size − sz)

12:
13: procedure Recv(data, data size)
14: if pending notifications > 0 then
15: scif recv(tokens) � consume notifications (non-blocking)

16: if buf fill = 0 then � buffer is empty
17: return 0
18: sz ← min(buf fill, data size)
19: memcpy(data, recv buf, sz) � destination, source, size
20: update(BRT ); update(WRT )
21: if WRT entry was consumed then
22: pending notifications + +

23: return sz + Recv(data + sz, data size − sz)

24:
25: procedure WaitIn(timeout)
26: if pending notifications > 0 then
27: scif recv(tokens) � consume all notifications (blocking)
28: pending notifications ← 0

29: scif poll(timeout)(timeout) � wait for notification (blocking)

The tail recursion in the send and recv procedures is merely for presentation
purposes; in reality, this is implemented using a loop. At the sender, a repetition
is performed when wrapping-around the sender’s or the receiver’s data buffer,
in which case two distinct RDMA transfers are scheduled. At the receiver, a
repetition is required when wrapping-around the local data buffer, leading to
two distinct memory copy operations into the application buffer.

Since the BRT and WRT are directly shared via scif mmap() they are trans-
parently synchronized with the lowest possible latency. Special attention was



80 A. Santogidis and S. Lalis

paid to avoid race conditions, by eliminating concurrent writes on a single field.
Importantly, when no data is available, the receiver only accesses a single entry
of the (local) WRT. In a similar vein, when the receiver’s data buffer is full, the
sender only accesses the (local) BRT. Note that in principle it is possible for
the receiver’s data buffer to have free space and all WRT entries to be filled—in
this case the sender cannot proceed with any further data transfers. This can
happen if the sending program writes many small messages and the receiving
program does not retrieve these messages fast enough. We consider this to be a
marginal case given that Trans4SCIF is intended for large data transfers. Also,
the application can avoid this by choosing a suitable size for the WRT.

Memory copies, local or remote, are faster when memory addresses are
aligned to cacheline boundaries. This is even more crucial for DMA transfers
over the PCIe bus [8]. Thus, to achieve good performance, the sender rounds up
the amount of data to send to the cacheline boundary and communicates the
actual data size to the receiver via the WRT entry. Moreover, the sender bounds
the size of each data transfer up to the half of the buffer size. This way it becomes
possible to pipeline consecutive data transfers, as the local data copy operation
into the sender’s buffer (of the next transfer) can be performed in parallel to the
RDMA operation into the receiver’s buffer (of the previous transfer); note that
the asynchronous update of the WRT, when the scheduled transfer completes,
is performed by SCIF outside the scope of the Trans4SCIF send() operation.

Finally, for each scheduled RDMA transfer the sender sends a notification
message to the receiver. This allows the receiving side to block via scif poll()
(which in turn invokes the poll() system call) instead of busy-waiting until the
next WRT entry becomes valid, in case the application wishes to wait until data
arrives. Otherwise these notifications do not cause significant overhead since they
are small and can be consumed by the receiver in lazy/non-blocking manner.

3 Integration of Trans4SCIF with ZeroMQ

ZeroMQ is a versatile and portable messaging technology for building distributed
systems. Compared to other technologies, such as MPI, it provides higher-level
communication abstractions that can lead to better programmer productivity.
Many groups at CERN, including the ALICE collaboration, have chosen ZeroMQ
as one of the main communication technologies for performance-critical distrib-
uted computing. The popularity of ZeroMQ at CERN as well as elsewhere [16,19]
motivated us to extend it with support for SCIF in order to improve performance
for programs running on the Intel Xeon Phi coprocessor. In the following, we
give an overview of ZeroMQ, and describe how this was extended to support
high-bandwidth data transfers via the Trans4SCIF transport.

3.1 Technical Overview of the ZeroMQ Messaging Library

The API of ZeroMQ is based on sockets, which can be configured to employ
different lower-level transports, such as TCP/IP, UDP/IP and SCTP for



High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor 81

communication over the network, Unix domain sockets for local inter-process
communication, and shared memory between threads. Also, ZeroMQ sockets can
be connected to several peers at the same time in order to form elaborate com-
munication topologies. For instance, one can develop publish-subscribe schemes
and processing pipelines with out-of-the-box load balancing and reconnection
functionality. Another key feature of ZeroMQ is that it works in a direct peer-
to-peer fashion, and does not require an intermediate messaging server/broker.

Once a connection is established between two ZeroMQ sockets, each socket
instantiates a session object, which is used to keep the state of the connection.
In turn, each session object is associated with an engine object, which is respon-
sible for sending and receiving data over a lower-level transport service, e.g.,
TCP/IP or UDP/IP. Figure 3a depicts the relationship between theses objects.
The transport engine provides two callback methods for sending and receiving
data through the underlying transport. These callbacks are invoked by a so-
called poller thread, which monitors a file descriptor for input/output readiness
events (I/O events). The engine registers this file descriptor with the ZeroMQ
runtime environment as part of the initialization procedure. To improve perfor-
mance, the ZeroMQ runtime may be configured to keep a pool of poller threads,
which are shared between the sockets created by the application.

Fig. 3. The ZeroMQ architecture.

Figure 3b illustrates the relationship between a poller thread and the engine’s
file descriptor and callback functions. The poller thread monitors the file descrip-
tor using a suitable POSIX operation, such as epoll(), kqueue() or select(). When
a POLLOUT event is raised, indicating that the file descriptor is ready for
output, the out event() callback of the engine is invoked. This pulls the next
application message from the session’s output queue, encodes it into a byte-blob
according to the ZMTP protocol [7] of ZeroMQ, and sends it to the other side
using the underlying transport service. Similarly, a POLLIN event leads to the
invocation of the in event() callback, which retrieves the raw byte-blob from the
underlying transport, decodes it into a ZeroMQ message, and pushes it into the
session’s input queue.



82 A. Santogidis and S. Lalis

3.2 The Trans4SCIF Engine for ZeroMQ

To enable the usage of SCIF-RDMA through ZeroMQ, we have developed a new
ZeroMQ engine that uses Trans4SCIF as the underlying transport service, in the
spirit of Fig. 3b. The application can select the Trans4SCIF engine for a ZeroMQ
socket simply by prefixing the target address with scif:// (e.g., instead of the
prefix tcp:// for TCP/IP). The API of the ZeroMQ library is left untouched
and can be used in the same way as for all other transports.

When invoked by the ZeroMQ poller threads, the Trans4SCIF engine per-
forms the data transmission and reception via the send() and recv() operations
of the Trans4SCIF library. Recall that ZeroMQ requires the underlying transport
to be accessible through a proper file descriptor that can be monitored through
the standard POSIX polling mechanism. Fortunately, the SCIF API provides
access to the underlying OS file descriptor that corresponds to a SCIF endpoint
(and each Trans4SCIF socket is internally associated with such an endpoint).
But note that the I/O readiness of this file descriptor depends on the state of
SCIF’s internal message buffers, and is not related to the actual RDMA transfers.
At the receiver, POLLIN events are properly generated thanks to the arrival of
the respective notification tokens that are issued by the sender for each RDMA
transfer. This triggers the invocation of the in event() callback which in turn
calls the Trans4SCIF recv() function to retrieve the data from the local buffer.
At the sender, the SCIF file descriptor is always ready for writing, and POLL-
OUT events lead to the invocation of out event() and the Trans4SCIF send()
operation, irrespectively of the state of the local data buffer. These invocations
are needed to poll the BRT and determine when free space is created so as to
proceed with the next transfer.

Finally, the Trans4SCIF engine unregisters the sender’s file descriptor from
the ZeroMQ polling mechanism when the session output queue has no more
application messages. The file descriptor is registered back again when ZeroMQ
informs the engine to restart output operation when an application message
is added to the output queue. In a similar vein, the receiver’s file descriptor is
unregistered when the input message queue reaches its capacity, and is registered
again as soon as ZeroMQ asks the engine to resume input operation.

4 Performance Tests

Our experimental testbed consists of two Intel Xeon Phi 7120 coprocessors with
61 cores clocked at 1.23 GHz and 16 GB GDDR memory. The host is a dual
socket Intel Xeon E5-2690 server with 64 GB RAM. We run the Intel MPSS
v3.8.1 on CentOS Linux kernel 3.10.0-514.2.2.el7.x86 64. For software building
we have used the icc compiler v17.0.2 (gcc 6.2 compatibility) with optimizations
enabled. Finally, we used ZeroMQ v4.2 and Trans4SCIF v2.4 for the experiments.

Figure 4a shows the results obtained when using the standalone Trans4SCIF
library for host-to-coprocessor and coprocessor-to-host transfers. We transfer
a total of 1 GB, in chunks ranging from 4 KB up to 256 MB. The bench-
mark is executed with varying internal buffer sizes, from 0.5 up to 128 MB.



High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor 83

(a) The Trans4SCIF data through-
put for different internal buffer
sizes.

(b) The ZeroMQ data throughput with
the TCP/IP and Trans4SCIF en-
gines.

Fig. 4. Trans4SCIF and ZeroMQ throughput results.

The data points are the (arithmetic) mean values of 100 repetitions for each
chunk size. As can be seen, throughput stabilizes at 2.5–3 GB/s for chunk sizes
larger than 4 MB. Note that increasing the internal buffer size of Trans4SCIF
above 32 MB does not improve performance. In previous work [17] we observed
that the maximum throughput that could be achieved with zero-copy RDMA
over SCIF was slightly over 6 GB/s on average. Although Trans4SCIF performs
memory copies to/from intermediate buffers and needs to synchronize the sender
and receiver in order to properly manage buffer occupancy, it still delivers over
40% of raw SCIF performance, which we consider quite acceptable. One also
observes that coprocessor-to-host transfers are consistently slower than the ones
in the reverse direction. This is attributed to the fact that the RDMA transfers
scheduled by the coprocessor are slower than the ones scheduled by the host;
this is in line with our previous observations [17].

Figure 4b shows the performance results obtained with ZeroMQ using the
Trans4SCIF engine vs. the TCP/IP engine. In the same spirit as above, we
transfer again a total of 1 GB, in chunks ranging from 64 B (one cacheline) up to
256 MB, with the internal data buffers of Trans4SCIF and TCP/IP set to 16 MB.
It can be seen that ZeroMQ-Trans4SCIF transfers are 2-3x faster than ZeroMQ-
TCP (but one has to keep in mind that the former is limited to communication
over the PCIe bus whereas the latter can also be used for communication over a
network). This is a significant improvement for the ZeroMQ-based applications
targeting the Intel Xeon Phi platform. However, the throughput achieved by
ZeroMQ-Trans4SCIF is only 50% of that of standalone Trans4SCIF. This heavy
drop in performance can be explained considering that encoding and decoding of
the data stream to ZeroMQ messages incurs non-trivial computational overhead.
Moreover, the receiver makes one additional data copy from the Trans4SCIF
buffer into the decoder’s internal buffer, which further diminishes the perfor-
mance (at the sender side, the encoder avoids an extra memory copy by writing
directly into the internal Tans4SCIF buffer). We believe that this memory copy is



84 A. Santogidis and S. Lalis

also responsible for the sharp performance drop in host-to-coprocessor transfers
with ZeroMQ-Trans4SCIF for chunk sizes larger than 2 MB. When chunk sizes
are small, the RDMA transfers are pipelined to a certain extent with the memory
copies performed by the decoder. However, as chunk sizes grow, RDMA trans-
fers scale better than the respective memory copies, which in turn eliminates
this pipelining effect. The coprocessor-to-host transfers are not severely affected
due to the better single-core performance of the host CPU vs. the coprocessor.
But even this highly non-optimal host-to-coprocessor throughput of ZeroMQ-
Trans4SCIF at roughly 600 MB/s is still 3x faster than ZeroMQ-TCP at slightly
over 200 MB/s.

We also measured the round-trip-times for the above transports. For chunk
sizes up to 64 KB the RTT is stable at about 110 microseconds for Trans4SCIF
and 1 millisecond for ZeroMQ-TCP and ZeroMQ-Trans4SCIF. We attribute
this order of magnitude difference mainly to two reasons. First, ZeroMQ per-
forms extra encoding/decoding on the application messages, whereas standalone
Trans4SCIF leaves application data untouched. Secondly, ZeroMQ blocks for
incoming data by waiting to receive an explicit (notification) message from the
sending side, whereas standalone Trans4SCIF directly polls the WRT which is
updated via the fast scif mmap() method. Still, we do not expect this increased
latency to have a notable effect on O2 computations, which typically push large
messages upstream along a uni-directional data-flow pipeline.

5 Related Work

Work on circumventing the limitations of TCP/IP on the Intel Xeon Phi
coprocessor by exploiting SCIF-RDMA has also been done in [4,11], in the con-
text of the ROOT software package [2]. However, the approach is more mission-
specific, geared towards the parallel composition of output files, and also tightly
coupled with the internal architecture of ROOT. In contrast, Trans4SCIF offers
a general-purpose stream-based transport abstraction, which is also reused to
enhance the performance of ZeroMQ.

Extensive research has been done to optimize MPI for the Intel Xeon Phi
coprocessor. For instance, the implementation described in [14,15] employs a
zero-copy rendezvous protocol over SCIF to achieve high data throughput for
intra-node communication on the coprocessor MPI proxy. While the goal is simi-
lar to ours, such support is not easily reusable in the context of ZeroMQ, because
the internal design of ZeroMQ does not support integration of RDMA-based
transports. In particular, there is no consideration for memory registration and
aligned allocations, which is a requirement not only for SCIF but also for numer-
ous other RDMA-enabled interconnects.

An extension for the MVAPICH2 MPI library has been implemented to sup-
port transparent data movement between GPUs in a cluster environment with
MPI primitives [20]. To hide the overhead of data movement over the PCIe
bus, GPU-to-host memory copies are pipelined with node-to-node MPI RDMA
transfers. We have adopted a similar approach in Trans4SCIF for the Xeon Phi



High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor 85

coprocessor, by pipelining the memory copies to the internal buffer with the
RDMA transfers. Also, our data transfer mechanism comes in the form of a
standalone library which can be used for socket-oriented host-coprocessor com-
munication. However, MVAPICH2-GPU also enables GPU-to-GPU communica-
tion over the network, while Trans4SCIF only works over the PCIe bus.

The work in [10] discusses the performance improvement of UNH-EXS library
for data streaming over RDMA. A hybrid data transfer algorithm is presented,
which under certain conditions switches to non-zero copy transfers by employing
an intermediate circular receive buffer. Once data is copied out from this buffer,
the receiver sends notifications back to the sender. Trans4SCIF differs from this
approach by eliminating the receiver-to-sender notifications via explicit messag-
ing. Instead, the desired synchronization on the sender side is achieved through
shared data structures that are polled locally. However, Trans4SCIF does adopt
an explicit notification approach in order to eliminate polling at the receiver side
and avoid busywaiting when applications wait for data/messages to arrive.

The Rsockets protocol [6], a successor of the Sockets Direct Protocol
(SDP) [3], aims at supporting TCP/IP-like streaming over RDMA by perform-
ing remote write operations into pre-exposed data buffers. As these buffers are
consumed, new ones become available at the receiving end, for which the sender
is notified via control messages. As mentioned, in Trans4SCIF the sender does
not need to receive/handle such notifications. To avoid polling at the sender
side, Trans4SCIF could be extended following a similar approach. However, the
reception of notification messages at the sender would also complicate integration
with ZeroMQ significantly.

6 Conclusions

In this paper we have described the design, implementation and performance
of the Trans4SCIF library and its integration with the ZeroMQ library. We
believe that the synchronization algorithm of Trans4SCIF is generic enough to be
used with other RDMA-based transport protocols. Our performance tests show
that standalone Trans4SCIF can achieve high data throughput over a second
generation PCIe, even with relatively modest internal buffers of a few megabytes.
Furthermore, when used through the ZeroMQ messaging library, Trans4SCIF
yields a significant improvement over the TCP/IP transport option.

In the future we wish to extend Trans4SCIF to support zero-copy and block-
ing transfers on both the sender and receiver side, and to exploit these features
through ZeroMQ. We will also investigate whether data encoding/decoding can
be bypassed in the next versions of ZeroMQ-Trans4SCIF. Last but not least, we
plan to port Trans4SCIF on the next generation of the Xeon Phi coprocessor
and measure the performance enhancement on actual O2 workloads.

Acknowledgments. Many thanks for the great support we received from Kristina
Gunne, Omar Awile and Luca Atzori from CERN openlab and the CERN IT depart-
ment.



86 A. Santogidis and S. Lalis

References

1. ALICE Collaboration: Upgrade of the Online - Offline computing system (CERN-
LHCC-2015-004; ALICE-TDR-019)

2. Antcheva, I., et al.: ROOT - A C++ framework for petabyte data storage, sta-
tistical analysis and visualization. Comput. Phys. Commun. 180(12), 2499–2512
(2009)

3. Balaji, P., et al.: Sockets Direct Protocol over InfiniBand in clusters: is it benefi-
cial? In: IEEE International Symposium on Performance Analysis of Systems and
Software, pp. 28–35, IEEE (2004)

4. Farrell, S., Dotti, A., Asai, M., Calafiura, P., Monnard, R.: Multi-threaded Geant4
on the Xeon-Phi with complex high-energy physics geometry. In: IEEE Nuclear
Science Symposium and Medical Imaging Conference, pp. 1–4 (2015)

5. George, C.: Intel Xeon Phi Coprocessor, the architecture. Intel Whitepaper (2014)
6. Hefty, S.: Rsocket, https://goo.gl/2uOsmZ
7. Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly, Sebastopol

(2013)
8. Intel Corporation: Symmetric Communications Interface (SCIF) For Intel Xeon

Phi Product Family Users Guide , revision: 3.5 (2015)
9. Linux. https://www.kernel.org/doc/Documentation/mic/mic overview.txt

10. MacArthur, P., Russell, R.D.: An efficient method for stream semantics over
RDMA. In: IEEE International Parallel and Distributed Processing Symposium,
pp. 841–851 (2014)

11. Monnard, R.: Concurrent I/O from Xeon Phi accelerator cards. Masters thesis,
Haute Ecole Specialisee de Suisse Occidentale de Fribourg, Switzerland (2015)

12. Nowak, A., et al.: Does the Intel Xeon Phi processor fit HEP workloads?. J. Phys.
Conf. Seri. 513(5) (2014). article no. 052024

13. Pfister, G.F.: An introduction to the infiniband architecture. High Perfor. Mass
Storage and Parallel I/O 42, 617–632 (2001)

14. Potluri, S., Hamidouche, K., Bureddy, D., Panda, D.K.: MVAPICH2-MIC: A high
performance MPI library for Xeon Phi clusters with Infiniband. In: Extreme Scal-
ing, Workshop, pp. 25–32 (2013)

15. Potluri, S., Venkatesh, A., Bureddy, D., Kandalla, K., Panda, D.K.: Efficient intra-
node communication on Intel-MIC clusters. In: IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, pp. 128–135 (2013)

16. Radford, N.A., et al.: Valkyrie: NASA’s first bipedal humanoid robot. J. Field
Robot. 32(3), 397–419 (2015)

17. Santogidis, A., Hirstius, A., Lalis, S.: Evaluating the transport layer of the ALFA
framework for the Intel Xeon Phi Coprocessor. J. Phys. Conf. Ser. 664(9) (2015).
article no. 092021

18. Sustrik, M.: NanoMSG. http://nanomsg.org/
19. Toshniwal, A., et al.: Storm@ twitter. In: ACM SIGMOD International Conference

on Management of Data, pp. 147–156 (2014)
20. Wang, H., et al.: MVAPICH2-GPU: optimized GPU to GPU communication for

InfiniBand clusters. In: Comput. Sci. Res. Dev. 26(3–4), p. 257 (2011)

https://goo.gl/2uOsmZ
https://www.kernel.org/doc/Documentation/mic/mic_overview.txt
http://nanomsg.org/

	High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor
	1 Introduction
	2 The Trans4SCIF Library
	2.1 The Symmetric Communication Interface (SCIF)
	2.2 Trans4SCIF API
	2.3 Trans4SCIF Implementation

	3 Integration of Trans4SCIF with ZeroMQ
	3.1 Technical Overview of the ZeroMQ Messaging Library
	3.2 The Trans4SCIF Engine for ZeroMQ

	4 Performance Tests
	5 Related Work
	6 Conclusions
	References




