
Scaling the EOS Namespace

Andreas J. Peters, Elvin A. Sindrilaru, and Georgios Bitzes(B)

CERN IT, Geneva, Switzerland
Georgios.bitzes@cern.ch

Abstract. EOS is the distributed storage system being developed at
CERN with the aim of fulfilling a wide range of data storage needs,
ranging from physics data to user home directories. Being in production
since 2011, EOS currently manages around 224 petabytes of disk space
and 1.4 billion files across several instances.

Even though individual EOS instances routinely manage hundreds of
disk servers, users access the contents through a single, unified namespace
which is exposed by the head node (MGM), and contains the metadata
of all files stored on that instance.

The legacy implementation keeps the entire namespace in-memory.
Modifications are appended to a persistent, on-disk changelog; this way,
the in-memory contents can be reconstructed after every reboot by
replaying the changelog.

While this solution has proven reliable and effective, we are quickly
approaching the limits of its scalability. In this paper, we present our
new implementation which is currently in testing. We have designed and
implemented QuarkDB, a highly available, strongly consistent distrib-
uted database which exposes a subset of the redis command set, and
serves as the namespace storage backend.

Using this design, the MGM now acts as a stateless write-through
cache, with all metadata persisted in QuarkDB. Scalability is achieved
by having multiple MGMs, each assigned to a subtree of the namespace,
with clients being automatically redirected to the appropriate one.

1 Introduction

The EOS project [1] started in 2011 to fulfill the data storage needs of CERN,
and in particular storing and making available the physics data produced by
the LHC experiments. Being developed and in production since 2011, EOS is
built upon the XRootD [8] client-server framework, supports several data access
protocols (XRootD, gsiftp, WebDAV, S3), and currently manages around 224
petabytes of disk space with 1.4 billion files across several instances.

Recently, the scope of EOS has expanded to additionally serve as the backend
for user home directories and a file syncing service, CERNBox [3], as the future
replacement to the AFS [2] service provided by CERN IT.

The gradual growth in the total number of files stored on EOS has revealed
certain scalability limitations in the original design of the namespace subsys-
tem. In this paper, we describe the legacy implementation and its shortcomings,
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 731–740, 2017.
https://doi.org/10.1007/978-3-319-67630-2_53



732 A.J. Peters et al.

discuss our new implementation based on a separate highly-available metadata
store exposing a redis-like interface, and present some preliminary performance
measurements.

2 Architectural Overview

An EOS instance is composed of several distinct components:

– The File Storage nodes (FSTs) are responsible for handling the physical stor-
age — in a typical deployment, each FST manages several tens of hard drives.

– The Metadata Manager (MGM) is the initial point of contact for external
clients, handles authentication and authorization, and redirects clients to the
appropriate FSTs on both reading and writing.

– The Message Queue (MQ) handles inter-cluster communication between the
MGM and the FSTs, delivering messages such as heartbeats and configuration
changes.

The component this paper focuses on is the MGM, and in particular its
namespace subsystem which stores all file metadata and among other things is
responsible for translating logical paths to the physical locations where the files
reside within the cluster.

Example 1. Sample namespace entry representing /eos/somedir/filename.
Inode number: 134563
Name: filename
Parent directory inode: 1234, meaning eos/somedir
Size: 19183 bytes
File layout: 2 replicas
Physical replica 1: Filesystem #23, meaning fst-1.cern.ch:/mnt34/
Physical replica 2: Filesystem #45, meaning fst-2.cern.ch:/mnt11/
Checksum: md5-567c100888518c1163b3462993de7d47

In the process of developing a better namespace implementation, and for the
sake of being able to run experiments and measurements easily, we moved the
namespace subsystem into a separate plugin. The rest of the MGM code uses
a standard interface to talk to it, thus facilitating an easy way of replacing it
without affecting the rest of the code.

Making the namespace more scalable involved some changes to the above
architecture; namely, the addition of a new highly-available database component,
as well as enabling the use of multiple MGMs for load-balancing. These changes
are described in more detail in later sections.



Scaling the EOS Namespace 733

3 The Legacy In-Memory Namespace

One of the primary goals of EOS from the beginning has been to deliver good and
consistent performance. This includes being able to fully exploit the underlying
hardware in terms of I/O and network performance of the FSTs, as well as
perform low-latency metadata operations on the MGM.

The initial design includes a namespace implementation where all metadata
lives in-memory on the MGM, and is persisted on-disk in the form of a changelog.
In more detail:

– During MGM boot, the entire namespace is reconstructed in-memory by
replaying the on-disk changelog.

– File lookups require no I/O operations, as all metadata is retrieved from
memory. Entries are stored in a dense hash map (provided by the Google
SparseHash library), keyed by the inode number, and consume approximately
1kb of memory each.

– For metadata updates, the memory contents are modified and an entry is
appended to the changelog, which is fsynced periodically.

– A background thread compacts the changelog on regular intervals, thus purg-
ing out-of-date entries which have been superseded by newer ones. This
process ensures the size of the changelog remains under control, and stays
proportional to the total size of the instance, and not to the entire history of
operations on it.

While this solution has proven reliable and effective, it has several important
limitations:

– The total size to store the entire namespace of an instance cannot exceed
the physical RAM available on the head node, since everything is stored in-
memory.

– Replaying the changelog after a reboot can take a long time, upwards to one
hour for some of our larger instances.

– The use of a single head node represents a scalability bottleneck, as well as a
single point of failure.

The effects of long boot time can however be mitigated by employing optional
active-passive replication, through which is possible to have a slave MGM on
hot standby that can be manually promoted to master, in case the current one
fails. During normal operation, the master MGM performs continuous one-way
synchronization of its changelog towards any configured slaves.

4 The New, Scalable Namespace

One of the more promising ideas for replacing the legacy namespace has been
to store all metadata on a redis [4] instance, a datastore well-known for its high
performance and flexibility. We implemented a namespace plugin which used



734 A.J. Peters et al.

redis for metadata persistence — what made it unsuitable for our use-case was
the need to accommodate very large datasets. Redis poses the requirement that
the total data stored is smaller than the physical RAM of the machine hosting it.

A different idea has been to use an embeddable, on-disk key-value store such
as RocksDB [5] directly on the MGM. This solves both major issues of the legacy
design:

– No need for unreasonable amounts of RAM on the MGM, since the contents
can be retrieved from disk when needed. This is certainly much slower than
a memory lookup, but we can mitigate the effects by adding a caching layer
for hot entries.

– Initialization time is nearly instantaneous even for datasets spanning several
terabytes.

While such a design would solve all immediate problems we faced, an impor-
tant downside remained. The MGM would still represent a scalability bottleneck
and single point of failure, and losing it would result in the entire cluster becom-
ing unavailable, requiring manual intervention.

Our final design combines the two ideas above. We implemented a highly
available distributed datastore, QuarkDB, which supports and exposes a small
subset of the redis command set, using RocksDB as the storage backend and
translating all redis commands into equivalent RocksDB key-value transactions.

The MGM encodes all metadata in a redis-compatible format using a com-
bination of STRING, HASH, and SET redis commands, serialized with protocol
buffers [6].

To minimize the impact of an extra network roundtrip between the MGM
and QuarkDB for most metadata operations, the MGM caches hot entries locally
under a Least-Recently-Used eviction policy. As we shall see later in the measure-
ments, there is no performance loss compared to the in-memory implementation
for cached read operations, which is usually the dominating access pattern in
terms of frequency.

Using the above architecture, it now becomes possible to spread the client
load by employing multiple MGMs, having each responsible for a subtree of the
namespace. In this regard, each MGM essentially acts as a write-through cache
for all metadata which is persisted on QuarkDB. To simplify the management
and deployment of multiple MGMs, the configuration setup moves from being
stored in files locally on an MGM, to being centrally managed in QuarkDB.

5 Designing QuarkDB, a Highly Available Datastore

5.1 Choosing a Storage Backend and Access Protocol

As mentioned earlier, the goal of QuarkDB is to serve as the namespace metadata
backend for EOS. In order to avoid the time-consuming task of re-implementing
the low-level details of a database, we leverage the RocksDB library, a highly-
performant embeddable datastore based on the log-structured merge-tree data



Scaling the EOS Namespace 735

structure. We made this choice based on the fact that RocksDB is open source,
actively maintained, and used across several important projects already.

We chose the Redis Serialization Protocol, the same one used in the official
redis server, based on its simplicity of use and implementation and the fact that
there already exist tools compatible with it. (e.g. redis-cli, redis-benchmark).

5.2 Redis Data Structures Stored in RocksDB

The next step was to decide on a way to translate between redis operations and
RocksDB key-value transactions. We implemented the following simple encoding
scheme:

– Each redis key is associated to a key descriptor stored in RocksDB, which is
its name prefixed by the letter “d”, containing its type (whether a STRING,
a HASH, or SET) and size. This allows to detect errors, for example when the
user attempts to use an existing HASH like a SET.

– The contents of a STRING are stored in a key containing its name prefixed by
the letter “a”.

– Each element in a HASH or SET is stored in its own RocksDB key: the key
name concatenated with the symbol “#” plus the element name, prefixed by
the letter “b” or “c”, depending on whether it’s a HASH or a SET.

To make things more clear, the following example shows the steps performed
during a lookup using the HGET redis command.

1. The client issues HGET mykey myelement. In this context, the client is an
EOS MGM.

2. The key descriptor for mykey is retrieved by looking up dmykey in RocksDB.
3. If the key descriptor does not exist, an empty reply is returned. If the key

descriptor is not associated to a HASH but some other data structure, an error
is returned.

4. A lookup for bmykey#myelement is done in RocksDB, and the contents are
returned to the client. If the lookup finds no result, it means there’s no
myelement within mykey, and an empty reply is returned.

Listing the contents of a container works in a similar way – after retrieving
the key descriptor, a range scan is performed with the appropriate prefix, which
returns all elements in the corresponding hash or set.

5.3 Introducing High Availability

To prevent QuarkDB from becoming the single point of failure, we implemented
native quorum-consensus replication based on the Raft [7] consensus algorithm:

– The QuarkDB cluster is able to tolerate losing some nodes without any impact
on availability, provided that a majority (or quorum) remain online. In a
typical deployment with 3 replica nodes, as long as at least 2 out of 3 nodes
are alive and connected to each other, the cluster is fully operational.



736 A.J. Peters et al.

– Replication is semi-synchronous, meaning that clients receive an acknowl-
edgement to a write as soon as it has been replicated to a quorum of nodes.

Raft works by essentially replaying a series of operations towards a database
(called the state machine in Raft terminology), ensuring they are identical across
all nodes and are applied with an identical order. In our case, the state machine
is represented by the class which translates redis commands into RocksDB trans-
actions, and is mostly separate from the consensus logic – this way, QuarkDB can
be run in standalone mode as well, without having to pay for the high overhead
of consensus in case high availability is not needed.

5.4 Ensuring Correctness

Since QuarkDB is to become a critical component of every EOS instance, ensur-
ing correctness has been of paramount importance, especially given that imple-
menting distributed consensus correctly can be quite tricky. QuarkDB is being
written following the spirit of Test Driven Development (TDD), which has
resulted in a large suite of unit, functional, and stress tests. This is in addi-
tion to several internal assertions that detect possible inconsistencies between
the nodes, so as to further reduce the risk of the replicas getting out of sync and
opting to crash early instead.

6 Preliminary Measurements

6.1 Test Setup

We used three identical bare-metal machines running CERN CentOS 7 with
dual-socket Intel Xeon E5-2650 v2 at 2.60 GHz, providing a total of 32 cores on
each machine.

6.2 QuarkDB Performance

Performance depends heavily on whether pipelining is used, that is if the client
sends multiple commands at the same time without waiting for an acknowledge-
ment of the previous ones. This amortizes the roundtrip latency and allows for
certain optimizations, such as batching several responses to the client using a
single write() system call.

All measurements were taken using the redis-benchmark tool with keyspace-
len of 10 million – this ensures the load is spread over a large set of keys.

Ping Throughput. PING is a redis command to which the server simply replies
with PONG. This test is useful to verify that the machinery handling network
sockets and threads is efficient: QuarkDB is able to reach a peak of 1.6 million
pings per second (Fig. 1).



Scaling the EOS Namespace 737

1 16 128
0 K

500 K

1,000 K

1,500 K

concurrent clients

o
p
er

a
ti

o
n
s

p
er

se
co

n
d

No pipelining

Pipeline length: 10

Pipeline length: 100

Fig. 1. QuarkDB PING throughput

Standalone Mode. Write performance reaches a peak of around 105 thousand
operations per second using the SET command (Fig. 2). Each write was 200 bytes
in size. Read performance reaches a peak of 320 thousand operations per second
(Fig. 3).

Replicated Mode with Raft Consensus. Write performance reaches a peak
of 9000 operations per second – the major limiting factor here is the Raft journal
into which all write operations must be serialized (Fig. 4). Read performance is
identical as in standalone mode (Fig. 3), since in our implementation reads go
directly to the state machine, without passing through the raft journal.

6.3 EOS Measurements

There is currently a major limitation in how EOS handles writes into the
namespace: certain locks prevent multiple clients from performing concurrent
updates, resulting in low parallelism and limited use of pipelining towards
QuarkDB.

We are in the process of fixing this limitation – even so, the performance
achieved in replicated mode is still several times higher than what we currently
see in production (20 Hz file creation rate). The goal is to eventually reach and
surpass the rates achieved by the in-memory namespace.



738 A.J. Peters et al.

1 16 128
0 K

20 K

40 K

60 K

80 K

100 K

concurrent clients

o
p
er

a
ti

o
n
s

p
er

se
co

n
d

No pipelining

Pipeline length: 10

Pipeline length: 100

Fig. 2. QuarkDB write performance in standalone mode, SET command, 200 bytes

1 16 128
0 K

100 K

200 K

300 K

concurrent clients

o
p
er

a
ti

o
n
s

p
er

se
co

n
d

No pipelining

Pipeline length: 10

Pipeline length: 100

Fig. 3. QuarkDB read performance, GET command



Scaling the EOS Namespace 739

1 16 128
0

2,000

4,000

6,000

8,000

concurrent clients

o
p
er

a
ti

o
n
s

p
er

se
co

n
d

No pipelining

Pipeline length: 10

Pipeline length: 100

Fig. 4. QuarkDB write performance in Raft mode, SET command, 200 bytes

open(create) open(read) Delete
0

1,000

2,000

3,000

o
p
er

a
ti

o
n
s

p
er

se
co

n
d

QuarkDB replicated

QuarkDB standalone

In-memory namespace

Fig. 5. End-to-end operations towards EOS



740 A.J. Peters et al.

Measurements were taken using our custom load-testing tool through the
XRootD file access protocol. It’s important to note that operations such as file
creation and deletion result in several key writes towards QuarkDB, which is
why these measurements are presented separately (Fig. 5).

7 Conclusions and Future Work

We set out to improve the scalability shortcomings in the original design of the
EOS namespace. We implemented a highly available metadata server component
based on the redis serialization protocol, the RocksDB embeddable key-value
store, and the Raft consensus algorithm.

Our measurements show that the new namespace implementation is capable
of offering the next order of magnitude of scaling for EOS, ready to meet the
data needs of the LHC experiments and CERN as a whole. Future work could
improve on the design in several areas:

– Implementing automatic sharding in QuarkDB to overcome the inherent bot-
tleneck imposed by the serial Raft log.

– Adding automatic and transparent failover to the MGM layer. An MGM fail-
ure could be made detectable by the rest, thus transferring its responsibilities
and assigned namespace subtree to a different node, automatically and with
minimal impact on availability.

– QuarkDB could be made to additionally serve as a highly available message
queue, replacing the current one and removing one of the few remaining single
points of failure in EOS.

References

1. Peters, A.J., Janyst, L.: Exabyte scale storage at CERN. J. Phys. Conf. Ser. 331(5),
052015 (2011). IOP Publishing

2. Howard, J.H.: An overview of the Andrew file system. Carnegie Mellon University,
Information Technology Center (1988)

3. Mascetti, L., et al.: CERNBox+ EOS: end-user storage for science. J. Phys. Conf.
Ser. 664(6), 062037 (2015). IOP Publishing

4. Sanfilippo, S., Noordhuis, P.: Redis (2009)
5. Borthakur, D.: Under the Hood: Building and Open-Sourcing RocksDB. Facebook

Engineering Notes (2013)
6. Varda, K.: Protocol Buffers. Google Open Source Blog (2008)
7. Ongaro, D., Ousterhout, J.K.: In search of an understandable consensus algorithm.

In: USENIX Annual Technical Conference (2014)
8. Dorigo, A., et al.: XROOTD-A highly scalable architecture for data access. WSEAS

Trans. Comput. 1(4.3), 348–353 (2005)


	Scaling the EOS Namespace
	1 Introduction
	2 Architectural Overview
	3 The Legacy In-Memory Namespace
	4 The New, Scalable Namespace
	5 Designing QuarkDB, a Highly Available Datastore
	5.1 Choosing a Storage Backend and Access Protocol
	5.2 Redis Data Structures Stored in RocksDB
	5.3 Introducing High Availability
	5.4 Ensuring Correctness

	6 Preliminary Measurements
	6.1 Test Setup
	6.2 QuarkDB Performance
	6.3 EOS Measurements

	7 Conclusions and Future Work
	References




