
Delivering LHC Software to HPC Compute
Elements with CernVM-FS

Jakob Blomer(B), Gerardo Ganis, Nikola Hardi, and Radu Popescu

European Organization for Particle Research (CERN), Geneva, Switzerland
{jblomer,ganis,nhardi,rpopescu}@cern.ch

Abstract. In recent years, there was a growing interest in improving
the utilization of supercomputers by running applications of experiments
at the Large Hadron Collider (LHC) at CERN when idle cores cannot
be assigned to traditional HPC jobs. At the same time, the upcom-
ing LHC machine and detector upgrades will produce some 60 times
higher data rates and challenge LHC experiments to use so far untapped
compute resources. LHC experiment applications are tailored to run on
high-throughput computing resources and they have a different anatomy
than HPC applications. LHC applications comprise a core framework
that allows hundreds of researchers to plug in their specific algorithms.
The software stacks easily accumulate to many gigabytes for a single
release. New releases are often produced on a daily basis. To facilitate the
distribution of these software stacks to world-wide distributed comput-
ing resources, LHC experiments use a purpose-built, global, POSIX file
system, the CernVM File System. CernVM-FS pre-processes data into
content-addressed, digitally signed Merkle trees and it uses web caches
and proxies for data distribution. Fuse-mounted files system clients on
the compute nodes load and cache on demand only the small fraction of
files needed at any given moment. In this paper, we report on problems
and lessons learned in the deployment of CernVM-FS on supercomputers
such as the supercomputers at NERSC in Berkeley, at LRZ in Munich,
and at CSCS in Lugano. We compare CernVM-FS to a shared soft-
ware area on a traditional HPC storage system and to container-based
systems.

1 Introduction

Computing for High-Energy Physics (HEP) collider experiments benefits from
its embarrassingly parallel workload. HEP software processes so-called “events”.
Events represent the data that a particle detector captured as a result of particle
collisions; they can be processed independently from each other. In the case of the
CERN Large Hadron Collider (LHC) this is reflected in the experiments’ high-
throughput computing (HTC) infrastructure, the World-wide LHC Computing
Grid (WLCG) [1]. A federation of some 170 globally distributed data centers
contributes resources in the form of commodity, Linux-based x86 64 servers.
A middleware presents these resources as one coherent batch and data man-
agement system to hundreds of individual physics research groups. The aggre-
gated amount of resources in WLCG, approximately half a million cores and one
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 724–730, 2017.
https://doi.org/10.1007/978-3-319-67630-2_52

Delivering LHC Software to HPC Compute Elements with CernVM-FS 725

exabyte of storage, is comparable to a large supercomputer. Yet the computing
environment comes closer to a typical Big Data installation than to an HPC
system. Compute resources are considered as a set of independent CPU cores.
A typical compute job runs for a few hours on a particular core. It has access
to 2 GB to 4 GB memory, node-local scratch space, a GbE Internet connection
to access central databases and to read and write data, and a standard Linux
environment with a few custom system software packages. Substantial success
was made in porting compute intensive simulation codes to special architectures
found on supercomputers, including KNL and PowerPC systems [6]. Still, the use
of supercomputers has been a manual, labor intensive task. A lack of bridging
on the systems level between HTC and HPC worlds prevents LHC experiments
to integrate supercomputers in a seamless and automated way into the general
pool of resources. Custom approaches tailored to individual HPC centers are
carried out in order to stage input data, write out output data, integrate with
the supercomputer’s job manager and to deliver codes to compute nodes. In this
contribution, we will discuss the distribution of large software stacks to HPC
resources.

2 Software Distribution in High-Throughput Computing

In the traditional HPC world, the distribution of codes is usually not a problem.
Applications are carefully optimized, often statically linked binaries tailored to
run on a specific supercomputer. They are either sent together with the compute
job definition or they can reside on a shared cluster file system. In the HTC
world, compute jobs can potentially be executed on any of the hundreds of the
world-wide distributed data centers, whose compute nodes run different flavors
of Linux with different sets of pre-installed libraries. Therefore, LHC experiments
have long developed a discipline of bundling all the dependencies (compilers and
system libraries) together with the application software. Overall, a single LHC
software release consists of the order of ten gigabytes and hundred thousand
files. New releases are produced on a daily basis.

Size and volatility of the LHC experiment software combined with the large
number of compute nodes makes it difficult to use containers for software distrib-
ution. Instead, LHC experiments and other scientific collaborations use CernVM-
FS, a purpose-built, global file system to provide a shared software area for
compute nodes around the world. CernVM-FS pre-processes data into content-
addressed, digitally signed Merkle trees and it uses web caches and proxies for
data distribution. [2,3] Fuse-mounted [10,16] files system clients on the worker
nodes provide access to the entire repository of precompiled software under the
/cvmfs directory. Currently, LHC experiments provide close to half a billion
(small) files in CernVM-FS.

The client loads and caches on demand only the tiny fraction of files and
file meta-data needed at any given moment. This way, most data and meta-data
requests are served from the compute nodes’ local caches, with cache hit rates
well over 99%. A typical cache hierarchy comprises some 100 MB in the worker

726 J. Blomer et al.

node RAM, 10 GB on the worker node hard disk, and 50 GB on a handful of web
proxies within the data center. Caching is key to CernVM-FS’ ability to scale a
very meta-data intensive workload—up to the MHz range of meta-data requests
per node—to tens of thousands of nodes.

3 Aspects of HPC Computing Environments

For traditional HPC storage systems, such as Lustre and GPFS, the high meta-
data load from LHC software is challenging. Storage of tens of millions of small
files easily exceeds the user’s inode quota. The synchronization of such a large
number of files into the supercomputers storage system, for instance through
rsync invocations on the login nodes, is error-prone and time consuming. At
runtime, meta-data servers can easily become overloaded.

Another problem with copying software from CernVM-FS into a shared loca-
tion is that its contents are often not relocatable. The supercomputer’s systems
team either need to create a symbolic link on the compute nodes from /cvmfs
into the actual location or binaries and scripts need to be post-processed after
copying. For one of the LHC experiments, this post-processing affected tens of
thousands of files. [18]

The straight deployment of CernVM-FS on supercomputers, on the other
hand, is often difficult because

1. restrictive policies for compute nodes prevent the deployment of the CernVM-
FS client,

2. compute nodes might not have outgoing Internet connectivity, which is needed
to populate the caches from central CernVM-FS servers,

3. compute nodes might lack local hard disks, removing a key caching layer of
CernVM-FS.

The following sections discuss these obstacles. It is worth noting that binaries
can be pre-compiled or cross-compiled for a variety of destination platforms and
placed on CernVM-FS beforehand. In one instance, the software pre-compiled
by gcc for standard x86 64 nodes even ran 20% faster compared to the same
code compiled by Cray’s compiler. [8]

3.1 File System Interface

Binary files containing the scientific codes have to reside on a “real” file system
ready to be loaded by the operating system kernel. This is different from data,
which can in principal also be accessed from applications through user-level
libraries. CernVM-FS clients are based on the Fuse file system toolkit (cf. Fig. 1).
Fuse is a kernel level file system that forwards all calls to a user-level module.
Thus errors in the file system code do not cause kernel crashes. Although part
of the Linux kernel, many supercomputers disable Fuse on the compute nodes.

On such systems, individual applications can access /cvmfs by means of
the CernVM-FS connector for Parrot [15]. Parrot provides virtual file systems

Delivering LHC Software to HPC Compute Elements with CernVM-FS 727

Fig. 1. CernVM-FS file system options. Left hand with Fuse upcalls to user space,
right hand in pure user space with Parrot.

for Linux processes using ptrace-level sandboxing (cf. Fig. 1). As such, Parrot
requires no special privileges but it also introduces a performance penalty. We
found that the performance penalty is negligible for most compute tasks. Some
HPC centers, however, reported problems with certain multi-core applications
and with direct GPU access caused by the ptrace sandboxing. [8]

We are currently investigating Cray’s Data Virtualization Service (DVS) [14]
to provide network file systems to compute nodes. DVS can provide NFS volumes
to compute nodes, and as such it can provide an NFS exported CernVM-FS
mount point to compute nodes. In our experience, an NFS server providing
/cvmfs scales up to a few thousand cores. Caching within DVS, however, could
increase the scalability.

3.2 Local Cache Space

Much of CernVM-FS’ scalability relies on the presence of node-local caches that
satisfy most data and meta-data requests. When local hard disks are missing,
the CernVM-FS client’s cache can be placed on a cluster file system and shared
by all the compute nodes. In contrast to a plain copy of the /cvmfs, in the
CernVM-FS cache data format files are deduplicated and file meta-data is stored
in larger blocks of typically a few hundred thousand files. The load from CernVM-
FS clients accessing a cache on a shared file system is therefore much smaller
than compute nodes directly loading software from a shared file system. At one
supercomputer, the running time of codes with a shared cache on GPFS was
more than three times shorter than running the software from a plain shared
software area on GPFS due to inode cache thrashing in GPFS in the latter
case. [17]

Even when exploiting the CernVM-FS cache format, however, millions of
small files can end up on GPFS or Lustre and thousands of files can be opened
concurrently by the compute nodes. To avoid the “many small files” pattern
altogether, the CernVM-FS cache can be provided as a loopback device on the

728 J. Blomer et al.

cluster file system. This requires one file per compute node, typically between
one and ten gigabytes in size. The files are formatted with a local file system so
that compute nodes are able to mount them as loopback devices. Because there
is only a single file for every node, the parallelism of the cluster file system can
be exploited and all the requests from CernVM-FS circumvent the cluster file
system’s meta-data server(s).

In our view, an efficient cache management requires flexibility in the CernVM-
FS client in order to adapt to node size, network characteristics, and the stor-
age technologies at hand. To this end, we created a plug-in interface to the
client’s cache subsystem so that customized cache algorithms can be indepen-
dently developed and deployed. Many options are conceivable, for instance tap-
ping burst buffers or a fully decentralized cache algorithm among the compute
nodes [4]. For now, we provide a tiered cache manager and an in-memory cache
manager. The two cache managers can be combined, allowing for a small hot set
kept in the compute nodes’ RAM and a larger warm set on a shared file system.
Scale tests of these uncommon cache configurations are underway.

3.3 Internet Access

On a local cache miss, CernVM-FS clients reach out to a web server on the
Internet to fetch data and populate the cache. HPC compute nodes often do
not have access to the Internet but only dedicated login nodes have Internet
connectivity.

We developed a “cache preloader” in order to pre-populate the entire content
of a CernVM-FS directory tree from a login node into a location internal to
the supercomputer, so that content becomes visible to the compute nodes. The
cache preloader makes use of the Merkle trees to efficiently keep the data area on
the shared file system synchronized. After an initial synchronization run, only
change sets need to be transferred. Even for directories with hundreds of millions
of files, incremental synchronization runs usually finish in a few seconds up to
a few minutes. The cache preloader can furthermore prune the directory tree so
that only relevant parts (for instance: the latest software versions) are copied.

4 Practical Examples

In recent years, various groups in the high-energy physics community acquired
grants to run on HPC systems in the U.S. and in Europe. These included some
Leadership Class Facilities such as Titan at the Oak Ridge National Lab and
Mira at the Argonne National Lab. Almost all of these efforts made content
from CernVM-FS available on supercomputers in one way or another. Table 1
provides an overview of code distribution approaches by different groups.

Delivering LHC Software to HPC Compute Elements with CernVM-FS 729

Table 1. Examples of code distribution on supercomputers used by LHC experiments.

HPC System Loc CernVM-FS Deployment

3 Piz Daint CH Fuse client with loopback cache [8]

4 Titan US Rsync of /cvmfs into GPFS [13]

9 Mira US Custom binaries [6]

20 Stampede US Rsync of /cvmfs [9]

33 HPC2 RU Standard fuse client [11]

40 SuperMUC DE Parrot client with preloaded cache [17]

72 Edison US Shifter, parrot client with preloaded cache (tested) [7]

73 Archer UK Rsync of /cvmfs [18]

389 NEMO DE OpenStack virtual machines (tested) [12]

5 Related Work

A tool chain around the Shifter container system [5] was developed in order
to copy the /cvmfs tree into a container. The content was deduplicated and
compressed on a squashfs loopback device in order to reduce the size of the
final container image to “only” a few hundred gigabytes. The main drawback
of this approach is the time of some 24 hours it takes to produce the images.
Containers in general are a promising approach to provide a commodity Linux
environment on compute nodes. They can be combined with application delivery
by CernVM-FS so that the container images remain small and manageable.

A utility called uncvmfs has been used to provide a more efficient copy of the
/cvmfs tree. With uncvmfs, files are deduplicated by means of hardlinks. Unlike
the CernVM-FS cache format, directories and symbolic links are not grouped
into larger blocks, preserving many of the scalability issues of plain copies of the
/cvmfs tree.

6 Summary

We have shown several options to approach code distribution of typical HTC
applications onto supercomputers. While software stacks for LHC experiments
are particularly large and volatile, we believe that typical Big Data applications
will face similar challenges as HPC centers become more open for non-traditional
workloads. While there are a number of successful efforts to use HPC resources
in LHC computing, a generally applicable and automated approach to code
distribution would be highly desirable. Beyond the scope of code distribution,
using HPC resources for HTC workloads raises several other open questions, such
as the integration into experiments’ global data management, job management,
and identity federation systems.

730 J. Blomer et al.

References

1. Bird, I., et al.: LHC computing grid: Technical design report. Technical report
LCG-TDR-001, CERN (2005)

2. Blomer, J., Aguado-Sanchez, C., Buncic, P., Harutyunyan, A.: Dis-
tributing LHC application software and conditions databases using
the CernVM file system. J. Phys. Conf. Ser. 331, 042003 (2011).
http://iopscience.iop.org/article/10.1088/1742-6596/331/4/042003/meta

3. Blomer, J., Buncic, P., Meusel, R., Ganis, G., Sfiligoi, I., Thain, D.: The evolution
of global scale filesystems for scientific software distribution. Comput. Sci. Eng.
17(6), 61–71 (2015)

4. Blomer, J., Fuhrmann, T.: A fully decentralized file system cache for the Cern-
VMFS. In: Proceedings 10th International Conference on Computer and Commu-
nications Networks (ICCCN), August 2010

5. Canon, S., Jacobsen, D.: Shifter: Containers for hpc. In: Proceedings of the Cray
User Group (2016)

6. Childersa, J.T., Gerhardt, L.: Developments in architectures and services for using
high performance computing in energy frontier experiments. In: Proceedings 38th
International Conference on High Energy Physics (ICHEP 2016) (2016)

7. Fasel, M.: Using nersc high-performance computing (hpc) systems for high-energy
nuclear physics applications with alice. J. Phys. Conf. Ser. 762, 012031 (2016).
IOP Publishing

8. Filipcic, A., Haug, S., Hostettler, M., Walker, R., Weber, M.: Atlas computing on
cscs hpc. J. Phys. Conf. Ser. 664, 092011 (2015). IOP Publishing

9. Gardner, R.: Xsede integration. In: US ATLAS Physics Support, Software and
Computing Technical Planning Meeting (2016)

10. Henk, C., Szeredi, M.: Filesystem in Userspace (FUSE). http://fuse.sourceforge.
net, http://fuse.sourceforge.net/

11. Mashinistov, R.: Panda @ nrc ki. Talk at the PanDA Workshop (2016)
12. Meier, K., Fleig, G., Hauth, T., Janczyk, M., Quast, G., von Suchodoletz, D.,

Wiebelt, B.: Dynamic provisioning of a hep computing infrastructure on a shared
hybrid hpc system. J. Phys. Conf. Ser. 762, 012012 (2016). IOP Publishing

13. Nilsson, P., Panitkin, S., Oleynik, D., Maeno, T., De, K., Wu, W., Filipcic, A.,
Wenaus, T., Klimentov, A.: Extending atlas computing to commercial clouds and
supercomputers. PoS, p. 034 (2014)

14. Sugiyama, S., Wallace, D.: Cray dvs: Data virtualization service. In: Cray User
Group Annual Technical Conference (2008)

15. Thain, D., Livny, M.: Parrot: an application environment for data-intensive com-
puting. Scalable Comput. Pract. Experience 6(3), 9–18 (2005)

16. Vangoor, B.K.R., Tarasov, V., Zadok, E.: To FUSE or Not to FUSE: performance
of user-space file systems. In: Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST 2017) (2017)

17. Walker, R.: Hep software on supercomputers. In: Talk at the CernVM Users Work-
shop (2016)

18. Washbrook, A.: Processing lhc workloads on archer. In: Talk at GridPP35 Confer-
ence (2015)

http://iopscience.iop.org/article/10.1088/1742-6596/331/4/042003/meta
http://fuse.sourceforge.net
http://fuse.sourceforge.net
http://fuse.sourceforge.net/

	Delivering LHC Software to HPC Compute Elements with CernVM-FS
	1 Introduction
	2 Software Distribution in High-Throughput Computing
	3 Aspects of HPC Computing Environments
	3.1 File System Interface
	3.2 Local Cache Space
	3.3 Internet Access

	4 Practical Examples
	5 Related Work
	6 Summary
	References

