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Abstract. We investigate possible options of creating a Dragonfly topol-
ogy capable of accommodating a specified number of end-points. We first
observe that any Dragonfly topology can be described with two main
parameters, imbalance and density, dictating the distribution of routers
in groups, and the inter-group connectivity, respectively. We then intro-
duce an algorithm that generates a dragonfly topology by taking the
desired number of end-points and these two parameters as input. We
calculate a variety of metrics on the generated topologies resulting from
a large set of parameter combinations. Based on these metrics, we isolate
the subset of topologies that present the best economical and perfor-
mance trade-off. We conclude by summarizing guidelines for Dragonfly
topology design and dimensioning.
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1 Introduction

The Dragonfly topology, introduced by Kim et al. [1], is a direct topology, in
which every router accommodates a set of terminal connections leading to end-
points, and a set of topological connections leading to other routers. The Dragon-
fly concept fundamentally relies on the notion of groups. A collection of routers
belonging to the same group are connected with intra-group connections, while
router pairs belonging to different groups are connected with inter-group connec-
tions. In practical deployments, routers and associated end-points belonging to a
group are assumed to be compactly colocated in a very limited number of chas-
sis or cabinets. This permits connections between routers and terminals within
a group to be implemented using short-distance, low-cost electrical transmis-
sion links. Meanwhile, inter-group connections are based on optical equipment
capable of spanning inter-cabinet distances in the range of tens of meters.

Modularity is one of the main advantages provided by the dragonfly topology.
Owing to the clear distinction between intra- and inter-group links, the wiring
within a group is independent of the total number of groups in the topology.
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Vendors can therefore propose all-included, all-equipped cabinets corresponding
to a group, while supercomputer operators are free to decide how many such
groups/cabinets they want to acquire. For instance, the XC40 architecture pro-
posed by Cray consists of 1 to 241 groups [3]. The fixed intra-group wiring also
makes upgrading a dragonfly based supercomputer relatively straightforward
from a hardware point-of-view, as only existing inter-group links may have to
be reorganized. In some cases, incumbent inter-group links can even be kept in
place, and simply complemented with additional inter-group links connecting
the incumbent groups with several interconnected new groups.

A dragonfly topology also guarantees a large path diversity between end-
points, enabling various flavors of adaptive, non-minimal routing schemes [1].
In the presence of congestion between two groups, traffic can first be deflected
to third party groups, then forwarded to the correct destination. This feature
allows the bandwidth available between two groups to be virtually multiplied by
a factor of up to g − 2, where g is the number of groups.

Besides its modularity and capability to leverage non-minimal routing
schemes, the Dragonfly topology also clearly distinguishes optical from electrical
cables connecting the routers. Although the price gap is shrinking, optical links
are still generally more expensive than their electrical counterpart, and thus
represent a considerable fraction of an interconnect’s total cost. There is there-
fore a motivation to allow fine-tuning of the expensive “optical bandwidth”.
A dragonfly cleanly separates the most expensive fraction of the bandwidth
(optical) outside the cabinets while leaving the least expensive part (electrical)
“hard-wired” inside the cabinets. As not all parallel applications require the
same balance between bandwidth and computation, being able to adapt the
bandwidth available at procurement time is an interesting feature. For instance,
supercomputer operators interested in compute power and less concerned with
bandwidth-intensive workloads can save on the “optical-bandwidth” and invest
in additional cabinets.

All these interesting features make the Dragonfly topology the default choice
for the whole XC series of Cray [4], and is thus widely adopted in the largest
supercomputing platforms. The dragonfly concept also triggered sustained inter-
est from the scientific community, with research papers addressing congestion in
dragonflies [5] or optimizing throughput [6], and possible inclusion of optical
switching [7].

One can note across literature, however, the varying ideas of what consti-
tutes a Dragonfly. Here we aim to clarify the definition of the Dragonfly and
then show what a Dragonfly can and cannot be. We first make the relatively
trivial but important statement that a Dragonfly with fully-meshed intra-group
connectivity can be assimilated into a 2-dimensional Flattened Butterfly (2D-
FB) [2], but with partial connectivity in one dimension (the one wired with
optical cables). We then show that a Dragonfly topology can be described by
a) the varying sizes of the two dimensions of the underlying 2D-FB, and b) the
number of links in the optical dimension. Having reduced the shape of a Drag-
onfly topology to these two parameters, we perform a thorough exploration of
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the Dragonfly design space. We finally analyze the value of the identified designs
by means of a cost model. Our analyses are related to the those reported by
Camarero et al. [8], but with a focus on practical insights rather than graph
theory.

2 Dragonfly Variants Description and Construction

2.1 Definitions

We begin by introducing a notation much inspired by the one originally given by
Kim et al. [1]. We consider a Dragonfly as being made of g groups with a routers
in each group, therefore with a total of S = ag routers. Each router accommo-
dates p terminal connections to end-points. Because we uniquely consider Drag-
onflies with fully-meshed intra-group connectivity in this paper, each router also
accommodates a − 1 intra-group connections to the other a − 1 routers of the
group. Finally, each router has h inter-group connections to routers located in
other groups. We immediately remark that under these assumptions, each router
must offer at least radix = p+h+a−1 ports and that the topology can scale to
N = Sp = agp terminals. The topology is also made of ga(a−1)/2 bi-directional
electrical links, and gah/2 optical ones.

We additionally introduce Δ as the global average distance in the Dragonfly
graph, i.e. the average of the minimal number of hops separating every possible
node pair (a node in the graph represents a router). We note that Δ is a func-
tion of the a, g and h parameters, nevertheless we privilege the Δ notation to
Δ(a, g, h) for brevity. Next to the global average distance Δ, we also introduce δi

as the minimal distance separating node i from another node on average, which

relates to Δ as Δ = 1
S

S∑

i=1

δi.

We set the imbalance coefficient b ∈ [−1, 1] to represent the relative size mis-
match between the optical and electrical dimensions, and the density coefficient
d ∈ [0, 1] to represent the degree of connectivity in the optical dimension. These
two parameters will be further described in Sect. 2.4. Finally, because we are
interested in comparing Dragonflies of similar scales, we introduce Sdesired as
a parameter imposing a minimal number of routers (hence S ≥ Sdesired), and
Ndesired to impose a minimal number of end-points (N ≥ Ndesired).

2.2 Dragonfly Construction

Six examples of Dragonflies all made of S = Sdesired = 42 nodes are illustrated in
Fig. 1. We call the case drawn in Fig. 1a the canonical design. We take this case
as the starting point for our explorations. A Dragonfly is said to be canonical
when g = a + 1 and h = 1. In that case, the number of inter-group connections
associated to a group is ha = g − 1, i.e. a group is exactly connected once to
every other group. This is in contrast with the case shown in Fig. 1b, which
has the same g and a values as the canonical case but has h = 6 inter-group
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with a = 6, g = 7, h = 1.
(b) Dragonfly variant with
a = 6, g = 7, and h = 6

(c) Dragonfly variant with
a = 14, g = 3, and h = 1

(d) Dragonfly variant with
a = 3, g = 14, and h = 1

(e) Dragonfly variant with
a = 7, g = 6, and h = 1

(f) Dragonfly variant with
a = 21, g = 2, and h = 1

Fig. 1. Examples of Sdesired = 42 Dragonfly variants parameterized using different
combinations of a, g, and h. Purple links represent inter-group optical links, while blue
links represent intra-group electrical links (Color figure online).

links per router. In this case, not only is every group connected to every other
group, but every router is directly connected to every other group (as h = g−1).
As a result, the Dragonfly becomes effectively a 2D-FB with a maximal optical
dimension. Through this example, we see that every router can be characterized
by a point described by coordinate (x, y) in a 2D-lattice, with x giving the
router’s position in the electrical dimension (i.e. within a group) and y giving
the group the router belongs to. We further remark that the size of the electrical
dimension is a (as x ∈ [0, a − 1]), and the size of the optical dimension is g
(y ∈ [0, g − 1]). The optical dimension is minimally populated when h = 1 and
maximally populated with h = g − 1. We also note that the cases in Fig. 1a
and b have similar sizes in both the optical and electrical dimensions, with
Fig. 1b having maximal optical connections (note h = g − 1 = 6) while Fig. 1a
has minimal optical connections (note h = 1). We can therefore describe the
canonical dragonfly as a case with minimal optical wiring (since h = 1), in which
routers are identically distributed across both electrical and optical dimensions.
Note that this canonical construction still allows every group pair to be directly
connected.

Figure 1c shows a case of great discrepancy between electrical and optical
dimensions, with the electrical dimension (a = 14) much larger than the optical
one (g = 3). We note that each group has ah = 14 inter-group links, the total
number of inter-group links is gah/2 = 21, and that each pair of groups is
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connected through 7 connections. This means that exactly half of the routers in,
say, group 0 are connected to group 1, and the other half to group 2.

Figure 1d shows an opposite case with a small electrical dimension (a = 3,
g = 14). Since only one inter-group link is allocated to each router, the number
of inter-group links leaving each group is only ah = 3, which does not permit full
inter-group connectivity. Also note that it is not straightforward to pick which 3
among 13 other groups to form an inter-group connection with, since there are
many such possible combinations. A similar problem of links/group-mismatching
is faced in the example shown in Fig. 1e: each group has ah = 7 inter-group links
at its disposal, whereas only g − 1 = 5 neighboring groups must be reached. To
allocate inter-groups links in these “inharmonious” cases, a wiring algorithm is
introduced in the next subsection. Finally, Fig. 1f shows a case of when h = g−1.
Due to this equality, the resulting topology is a 2D-FB, and although h = 1, it is
incidentally also equals to g−1, and thus cannot be scaled larger. Through these
examples, we see that the design space for a Dragonfly with S = 42 is already
quite wide, demonstrating the richness of designs when S scales to 1, 000 or
higher.

2.3 Dragonfly Graph Wiring Algorithm

As discussed in the previous subsection, in order to explore the entire design
space, we need to be able to generate a Dragonfly topology described by any
arbitrary combination of a, g, and h parameters. Given this set of parameters,
we would like to distribute the inter-group links between groups such that the
diameter and global average distance Δ are minimized, while maintaining fair-
ness by avoiding unevenly-connected nodes (indicated by high variance of δi).

The problem of distributing inter-group links is that to achieve optimal fair-
ness, diameter or Δ (or a combination thereof) is NP-hard. Instead of targeting
global optimality, the wiring algorithm we introduce is a greedy heuristic. The
algorithm starts by considering every group as a vertex in a secondary graph
G = (V,E), and by allocating a × h links to each vertex Vk ∈ V , effectively
creating an inter-group topology. The destination group Vi of each newly added
link is chosen by considering the sum of two factors: (a) the total number of con-
nections Vi has with every other vertex in G, and (b) the number of connections
Vi has with the target group, Vk, specifically. To maintain wiring fairness and
minimize diameter, the Vi that corresponds to the lowest sum of the aforemen-
tioned two factors is picked. As a result of this policy, the algorithm may select
Vi even though one or more links have already been awarded to the (Vk, Vi) pair.
Once the link has been allocated to said group pair, the algorithm then identifies
the routers within groups k and i with the least number of connections so far,
and connects these two routers.

When the graph G is sparsely occupied by edges, every group is equally likely
to be picked to form a link with Vk, and inter-group link allocation resembles
the relative global link arrangement as discussed in E. Hastings et al. [11]. As
G becomes more saturated with edges, the algorithm tends to distribute links
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Algorithm 1. Dragonfly Wiring Algorithm
1: define G := (V, E), s.t V is set of all the Dragonfly groups and E is the set of

inter-group links
2: initialize ηij := 0, ∀ i, j ∈ V
3: for k ∈ V do
4: for d := 0, ..., a × h do
5: for i ∈ V where i �= k do
6: define μi := ηik +

∑

j∈V

ηij, ∀ i, j s.t j �= k

7: pick i s.t μi = min
i′∈V

μi′ and
∑

j∈V

ηij < (a × h)

8: ηik := ηik + 1
9: end for

10: end for
11: end for

in a fair way by selecting groups currently with the lowest number of formed
connections, thus making inter-group link arrangement seem more random.

In the preceding pseudocode, ηij is used to represent the total number of
inter-group links connecting group i to group j. Since G is an undirected graph,
symmetry dictates that ηij = ηji. μi denotes the “score” of the group i, which
is used to account for the sum of both how many inter-group links the current
target group k shares with destination group i (accounted for by ηik term),
and how many inter-group links destination group i currently shares with other
groups (accounted for by

∑
ηij term).

We evaluated the topologies obtained with our wiring algorithm in terms of
global average distance Δ, diameter, and fairness. To measure wiring fairness,
we consider two metrics: the first identifies δmin and δmax among all δ values, i.e.
the average distances seen from the best and worst connected node, respectively,
and calculate the greatest percentage difference, d, using d = 100( δmax−δmin

δmin
).

The second metric calculates the squared coefficient of variation across the δi

set. Results for a set of topologies with at least Sdesired = 1000 are displayed
in Fig. 2. We observe that global average distances Δ generally decreases as
more links are added to the optical dimension. In general, the larger the groups,
g (thus smaller group sizes, a), the more reliant the Dragonfly is on optical
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Fig. 2. (a) Global average distance Δ, (b) topology diameter, (c) maximum difference
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links to “reach” routers in other groups, as opposed to reaching them directly
via the intra-group electrical links. This translates into larger Δ values for the
same h. Note that ripples appear for g = 45, revealing some limitations in the
wiring algorithm. More importantly, when a × h reaches or exceeds g − 1, both
dimensions are fully populated, and we obtain a 2D-FB topology with diameter
of 2. At this point, additional inter-group links are parallel to existing links,
which does not affect Δ. In contrast, when g = 45, and a = �Sdesired

g � = 23, the
diameter is 5 for h = 1 as shown in Fig. 2b. Hence, with ah = 23 inter-group
links per group, all-to-all group connectivity cannot be guaranteed anymore.

Figure 3 shows the sorted δi values for 16 datapoints of Fig. 2. The maximum
difference d between δmin and δmax is also displayed. For (g = 12, a = 84,
h = 15), (g = 21, a = 48, h = 15) and (g = 21, a = 48, h = 10), the average
distance δi is the same for all nodes and d is therefore null (ideal fairness). In
the first case, h is larger than g − 1 leading to a saturation of the connectivity
in the optical dimension thus to a 2D-FB topology. In the second case, each
group has a × h = 48 × 15 = 720 inter-group links, which is a round multiple of
g − 1 = 20. Every group pair is thus awarded 720/20 = 36 links. The fact that
these 36 links must be further allocated to the a = 48 routers composing each
group is not causing unfairness, a fact that validates the viability of the wiring
algorithm. The same situation occurs in the third case (g = 21, a = 48, h = 10):
there are 480 inter-group links per group, which is also a round multiple of 20.
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Fig. 3. Distributions of average distances of graph as viewed from each node. d in each
plot denotes the percentage of greatest difference in average distance, δi

When a × h (the number of inter-group links per group) is not a multiple
of g − 1, some group pairs receive extra links (the “remainder” links). These
specific routers that are given the “remainder” links are consequently favored.
Looking at the general behavior on Fig. 2(c-d), we observe that unfairness tend
to grow with large h values, and with the number of groups g. In general, the
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more remainder links and group pairs, the harder it is to maintain fairness. Also
note the bottom right cases on Fig. 3 (h = 1, g = 33 or 45): with less than one
inter-group link per group pair on average, all-to-all inter-group connectivity is
not maintained, causing the diameter to be 5. Such cases are also subject to
increased unfairness.

2.4 Exploring the Dragonfly Using Imbalance and Density
Parameters

As mentioned above, we introduce two parameters to control the shape of a Drag-
onfly topology. The imbalance coefficient b ∈ [−1, 1] represents the relative size
mismatch between the optical electrical dimensions, and the density coefficient
d ∈ [0, 1] represents to what extent the optical dimension is inter-connected. The
density d parameter implicitly controls h through:

h = max(0, �1 + d(g − 2)�), where 0 ≤ d ≤ 1 and g > 1 (1)

For d = 0, h is always equal to one (minimal inter-group connectivity). In
contrast, for d = 1, h = g − 1, each router is connected to its counterpart
in every other group, and the topology is thus a 2D-FB (maximal inter-group
connectivity). For the imbalance parameter, b = 0 should reflect a situation as
close to the canonical dragonfly as possible with g = a − 1. We define b = −1
as the case where the optical dimension is down-sized to g = 1, i.e. the topology
is made of a single, large group with a = S routers. On the other extreme,
we define b = 1 to describe a topology with g = S groups, each composed
of a single router (a = 1). In order to control a and g using b, we first need to
identify the sizes of the electrical and optical dimensions of a canonical Dragonfly
corresponding to Sdesired. Noting that ag ≥ Sdesired and that g = a + 1, we can
write Sdesired ≥ a(a+1). Equality is achieved when acanonical = −1+

√
1+4Sdesired

2 .
From there we can define:

a =

{
�acanonical − b(Sdesired − acanonical)� when − 1 ≤ b < 0
�1 + (1 − b)(acanonical − 1)� when 0 ≤ b ≤ 1

(2)

g = �Sdesired/a� (3)

The above equations do permit us to obtain (i) a = Sdesired and g = 1 when
b = −1; (ii) a = 1 and g = Sdesired when b = 1; and (iii) a construction close to
one of the canonical dragonflies for b = 0. In the last case, taking for instance
Sdesired = 2000, we have acanonical 	 45.22 thus a = �acanonical� = 46 and
g = �Sdesired/a� = 44.

However, for negative b values, a linear control of a with b is ineffective.
Hence, for −1 < b < −0.5, Eq. 2 returns Sdesired − 1 > a > Sdesired/2. When
introduced into Eq. 3, these values all return g = 2. To avoid this pitfall, we
use b to control g instead of a for negative b values. First, we similarly obtain
gcanonical = 1+

√
1+4Sdesired

2 . We then modify Eq. 3 into:
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Fig. 4. (a) Effect of imbalance parameter b on Dragonfly parameters. (b) Illustration of
the Dragonfly design space. Each point within this space represents a unique Dragonfly
variant.

g = �1 + (b + 1)(gcanonical − 1)�, a = �Sdesired/g� when − 1 ≤ b < 0 (4)

a = �1 + (1 − b)(acanonical − 1)�, g = �Sdesired/a� when 0 ≤ b ≤ 1 (5)

Fig. 4a shows the obtained a, g and S values for Sdesired = 1500 as a function
of b. Defined this way, Eqs. 4 and 5 allow b to control a and g values while
minimizing ag − Sdesired.

Having introduced the mapping of (b, d) to (a, g, h), we can represent the
Dragonfly design space as a rectangular space with x ∈ [−1, 1] and y ∈ [0, 1]. The
corner cases in the design space are drawn in Fig. 4b. Along the b = −1 line, the
obtained topology is an electrical full-mesh. Since the optical dimension is non-
existent, topologies along this line are not affected by density d. At coordinate
(1, 0) we find an optical ring. An optical full-mesh appears at coordinate (1, 1).
Finally, along the d = 1 line, we find all the 2D-FB constructs of size Sdesired,
except for b = −1 or b = 1 where either g or a, respectively, equals 1. We can also
reverse-evaluate the imbalance and density coefficients of the designs shown in
Fig. 1. In Fig. 1a, the canonical Dragonfly logically maps to (0, 0) while the 2D-
FB in Fig. 1b maps to (0, 1). The other topologies of Fig. 1 are also reproduced
in Fig. 4b along with their corrresponding coordinates in the design space.

Figure 5a and b depict how the ratio of optical links is affected by the two
parameters b and d. As expected, when imbalance is b = −1 or b = 1 the topol-
ogy has only one dimension, which is either fully electrical or optical. Figure 5c
shows how the topology diameter is influenced by the density and imbalance.
For b = −1, the topology is an electrical full-mesh of diameter 1. For b = 1 with
densities d = 0.5 and d = 0.8, the resulting topologies are not 2D-FB, but the
wiring density is large enough to always conserve one of the two 2-hop paths
between each node pairs that a regular 2D-FB offers, resulting in diameter 2
topologies. When density d = 0 and b = 1, the topology becomes a ring with a
diameter of 750. Figure 5d and e depict the impact of parameters on the global
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Fig. 5. Characteristics of Dragonfly topologies accommodating at least Sdesired = 1500
routers.

average distance. As the imbalance leans toward negative values, Δ decreases,
which is expected since more routers can be reached in 1 hop owing to the large
intra-group electrical-mesh. Interestingly, positively imbalanced topologies also
show lower Δ’s than strictly balanced ones, provided enough density is given.
This is mostly due to the high value that h can take when the number of groups
g increases (as h = max (0, �1 + d(g − 2)�)). Looking closer at the b = 0.8 case,
we observe that the topology made from 167 groups translates into h = 83 when
d = 0.5. The many inter-group links cause the vast majority of node pairs to be
separated by two hops (electrical-optical, optical-electrical, and optical-optical).
When d = 1 (2D-FB cases), graph diameter is at most 2, hence Δ converges to
1 as imbalance grows and the topology approaches a full-mesh.

These analyses highlight the diversity of Dragonfly designs, notably in terms
of the proportion of optical links, average distance and diameter. However, this
diversity also translates into a highly-varied total topological bandwidth (i.e.
total number of links shown in Fig. 5f). Each topology thus possesses the ability
to support different number of terminals (Fig. 5f) and corresponds to different
implementation costs. In order to compare the diversely dense and balanced
Dragonflies, we first show in the next section how to adapt our exploration
space to exclusively identify topologies capable of accomodating a given number
of terminals, Ndesired. Then, in Sect. 4, we introduce a cost model to evaluate the
cost of each design and elaborate on topologies supporting Ndesired terminals.
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3 Constructing Dragonflies for a Minimal Number of
End-Points

In our explorations so far, we have let the parameter p which denotes the number
of terminals per router untouched. p is, however, a key factor in the Dragonfly
construction, as it determines not only the final scalability of the topology, but
also the required router radix. Moreover, we observe in Fig. 5f that the total
number of links employed in the Dragonflies explored greatly varies with b and
d, and consequently the available bandwidth of each topology also varies signifi-
cantly. If a substantial amount of bandwidth is available within the topology, e.g.
when the Dragonfly is heavily electrically-balanced (b = −0.8 as in Fig. 5f), we
can populate the S routers with more terminals to ideally exploit the available
bandwidth.

We can make the number of terminal attached to a router, p, proportional
to the number of links attached to this same router p ≈ (a − 1 + h). This is the
approach used in Kim et al. original Dragonfly proposal [1]. Since a Dragonfly is
a diameter 3 topology, each transmitted bit is, in the worse case, forwarded twice
onto a local link, once onto a global link, and once onto the destination’s terminal
link. This relationship gives us p = a

2 = h. This approach, however, is too limited
in our case, as our wiring algorithm may return topologies of variable diame-
ter. Furthermore, for topologies strongly negatively-balanced (highly-negative b
and large electrical groups), much of traffic remains within the groups, which
contradicts the worst case assumption that every bit transits across groups.

To obtain a number of terminals p most suited to each of our designs, we
start by remarking that the total traffic carried over a topology is proportional
to the average path lengths (assuming no locality – every node pair have equal
probability to exchange traffic). Thus, the total bandwidth made available by
the topology should be proportional to Δ, and the number of traffic injectors
should be inversely proportional to Δ. Since we cannot easily add bandwidth
over the topology, we compensate Δ by changing p. This relationship can be
expressed as follows:

p ≈ S(a − 1 + h)
Δ

(6)

In applying the methodology proposed by Rumley et al. [9], we can pick p such
that the total traffic injected under uniform traffic must not exceed the total
bandwidth installed, i.e. NΔ ≤ S(a − 1 + h) which can be rewritten as:

p =
N

S
≤ (a − 1 + h)

Δ
(7)

If we target an almost saturated topology under uniform traffic, pselected =
�(a − 1 + h)/Δ� terminals should be connected to every router. Note that the
resulting network utilization (still under uniform traffic assumption) can be writ-
ten as:

H =
pselected

( (a−1+h)
Δ )

(8)
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If equality is reached in Eq. 7, utilization is maximal (100%). In constrast, when
equality in Eq. 7 is not met, pselected is smaller than a−1+h

Δ due to rounding, and
utilization is consequently driven down.

Equation 7 is not entirely satisfying as it implies that the number of routers,
S, best suited to support N terminals is already known – either dictated by
a, g and h, or, when using our exploration mechanisms, given as a parameter
alongside b and d. The resulting total number of terminals supported N = pS
might thus clearly differ from the original Ndesired goal. We can circumvent
this limitation by iteratively testing a sequence of p values. As soon as p is
fixed, Sdesired can be obtained as Sdesired = �Ndesired/p�, a Dragonfly topology
of parameters b, d and S can be produced and its global average distance Δ
subsequently obtained, which ultimately permits us to evaluate the bandwidth
utilization (Eq. 8). The value pselected for which the utilization is the closest to 1
should be retained. To find pselected, we note that the utilization necessarily grows
with p. Hence, for very small p values, the number of routers S is large, which
results greater number of links. As p is increases, the Dragonfly topology shrinks
and so does its bandwidth. There is necessarily a pexcess for which utilization
exceeds 1. Finding the p that maximizes the utilization can thus simply be
achieved by considering incremental integer p values until reaching pexcess. This
is computationally acceptable as p is typically smaller than 50 for most Dragonfly
designs. One may also cap p by the limiting the router radix which equals p+h+
a−1. Most modern routers available in the market today (year 2017) are limited
to radices of ≈ 100. Meanwhile, Δ can be easily obtained as a side product of
the wiring algorithm.

It is important to recognize the limitations of Eq. 7, as it only considers
p such that the total bandwidth can support a uniform traffic, but does not
guarantee that this bandwidth is available where the highest congestion occurs.
For instance, Eq. 7 would not hold when the topology is one with two large
groups connected by a single optical link, since the single optical link would
need to support roughly half the traffic. Even with uniform traffic injection, the
optical link would be subjected to extreme congestion, bottlenecking the network
bandwidth at a lower bound than what the right-hand side of Eq. 7 provides.
To prevent such situations, the utilization of each link could be individually
evaluated and p selected in a way that would ensure that every link’s utilization
is below 1.

Figure 6 reports the properties of many Dragonflies generated with the tech-
nique described above, all of which capable of supporting at least Ndesired =
10, 000 terminals. We first observe how the value p corresponding to highest
utilization, H, varies across designs (Fig. 6a). Through the S = �Ndesired/p�
relationship, the number of routers S (Fig. 6b) is also affected and not stable as
previously seen in Fig. 4a. Notice that the changing of S and density parameter
also significantly affects the shape of the a and g curves of Fig. 6c.

We observe that the global average distances Δ in Fig. 6d is very much com-
parable to the constant Sdesired case depicted in Fig. 5d. This is because the
average distance is mostly related to the structure of the topology, hence to b
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Fig. 6. Characteristics of Dragonfly topologies accommodating at least Ndesired =
10, 000.

and d, and only marginally related to its size. The shapes of the Δ curves propa-
gates into the ones of p (Fig. 6a), as p is inversely proportional to Δ, and finally
into the shapes of S. The number of links present in each topology (Fig. 6e) is
also roughly proportional to Δ, and is overall less affected by the Dragonfly-
“shaping” parameters b and d than previously when we explored topologies with
a constant Sdesired.

Figure 6f finally shows the impact of imbalance and density on the required
radix. We note that when density is maximal, the radix requirements is mini-
mized when topologies are balanced, which is a known property of Flattened-
Butterflies. When density decreases, positively imbalanced topologies tend to
favor low-radix routers. For minimal density d = 0, the required radix con-
stantly decreases until the topology becomes a ring. It is interesting to note that
designs with high b and low d becomes more favorable due to their low radix
requirements. Figure 6b supports this as it shows that low router radices are
required when there are more numerous routers in the Dragonfly. To clarify the
value of these different option, we introduce in the next section a cost model for
routers and links.

4 Design Selection via Cost Comparison

In this section we aim at estimating the cost a high-end HPC packet router switch
of any radix. Based on pricing information available on ColfraxDirect [10], we
considered a low-tier 24-port router currently priced at $7095, and a high-tier
48-port router at $10455, taken from the same supplier and both working at
100 Gb/s. These two data points are used to derive the following cost model.
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We assume the marginal cost of adding a port to an existing router to be a U-
shaped quadratic function with a minimum point at radix = 36. The rationales
are the following: adding a port would benefit from economics of scale, but is
also subject to technical complexity; the global minimum of the U-shaped curve
correspond to the port count where the two effects negate each other. We place
the minimum marginal cost in the middle of the low-tier and high-tier designs,
assuming that with more resources, the supplier may incorporate a “mid-tier”
36-port router into its product line. Since this is not the case, two designs equally
distant from the optimal cost will fulfill the market demands better. This causes
the derivative of our cost model to be written as d

dr cost(r) = c1(r − 36)2 + c2,
where c1 and c2 are constants. Solving for the polynomial constants using the
discussed price points, we arrive at the following cost model:

cost(r) = 0.0901r3 − 9.73r2 + 477r (9)

where r is the radix/port count of the router, and cost(r) is in the units of $’s.
The resulting cost and it’s derivative with respect to port-count for port counts
between 0 and 128 are shown in Fig. 7a and b. We emphasize here that obtaining
a model with a growing marginal cost per port is necessary to ensure that the
router radix is not infinitely scalable. If the cost of a router is simply assumed a
linear function of the number of ports, the cheapest topology becomes the one
consisting of a single router with Ndesired ports. Provided that routers always
have a radix multiple of 8 or 12, we then use this cost model to pinpoint the
cost of routers with a range of radices. Logically, our model returns $7095 and
$10,460 for 24-port and 48-port routers, respectively ($296 and $218 per port).
A putative 64-port router is $14,320 ($228 per port). For 96 ports, this price
grows to $35,884 ($374 per port).

For links, we consider a 100 Gb/s electrical link to be $80 [10]. As we are
interested in analyzing the impact the optical/electrical cost ratio has on the
Dragonfly topology selection, we consider optical links to have cost comprised
between $80 (same as electrical) and $800 (ten times more expensive). As of
today (2017), optical links are about five times more expensive than their elec-
trical counterparts.
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Fig. 7. Cost model for predicting router price as a function of radix/port count
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Fig. 8. Cost analysis of Dragonflies accomodating at least Ndesired = 10, 000 terminals

Results of the cost analysis are depicted in Fig. 8 for Ndesired = 10, 000, and
considering radices of [36, 48, 60, 72]. Figure 8a shows how the cost evolves with
the design space when considering $400 for optical links. We note a correlation
between Fig. 8a and b. The cheapest solutions are the ones that make the best
use of the ports available. Figure 8c shows that the cheapest design found in our
exploration is obtained for b = −0.5 and d = 0.6, which correspond to g = 17
groups of a = 32 routers, p = 19 terminals per router and h = 10 inter-group
links per router. The proportion of electrical links to all links is 76%. We note
that this cheapest design requires 60-port routers and dominates all designs
requiring 72 ports. As expected, it is found in the negatively-balanced region
that favors electrical links.

Figures 9a, b and c illustrate the cost per terminal by considering an optical
link price of $80, $400 and $800, respectively. We note that as the price of optics
increases, negatively-balanced designs tend to become cheaper. Interestingly, in
the presence of optical links that are equally expensive as electrical ones, six
designs that achieve the cheapest cost are found at a cost of $733.86 per terminal,
with densities of 0.7 or 0.8, and imbalance spanning from −0.2 to 0.7. In the
$800 case, the cheapest design is a strongly imbalanced case (b = −0.8, d = 0.5)
with only 10 groups made of 45 routers per group, and 23 terminals per router.

We complete our analysis by exploring designs supporting Ndesired = 25, 000
terminals (Fig. 9d). Here we assume radices of [48, 64, 80] are available. We note
first that the cost per terminal is slightly higher than that of the Ndesired =
10, 000 case, as the larger network scale incurs a cost premium. Even though we
consider here $400 for each optical link, it is still surprising to see the cheapest
design being positively-balanced (b = 0.2). Our analyses show that for very large
scale topologies, the positively-balanced designs emerge as among the cheap-
est options due to their lower radix requirements (as visible in Fig. 6f). In the
Ndesired = 25, 000 case, the cheapest design found (b = 0.2 with a moderate
density of d = 0.3) has 43 groups, 34 routers per group, h = 13 inter-group links
per router, and p = 18 terminals per router. It still guarantees a high proportion
of electrical links (72%), and requires routers with radix of 64.
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Fig. 9. Cost analysis for when optical links are set to (a) $80, (b) $400, (c) $800 with
Ndesired = 10, 000 and when optical links set to (d) $400 when Ndesired = 25, 000

5 Conclusion

The Dragonfly topology, while having recently garnered much attention from
the HPC community, have been subjected to different interpretations across
literature. In this paper, we aim at formalizing the definition of a Dragonfly
topology. To do so, we first state that any Dragonfly variant can be represented
as 2D-Flattened Butterfly. In other words, a router can be represented in terms
of its (x, y) coordinate in a 2-D lattice, where x (electrical dimension) represents
the router’s position in a group, and y (optical dimension) represents the group
said router belongs to. Next, we introduce two Dragonfly-shaping parameters,
namely: (a) the imbalance parameter, b ∈ [−1, 1], which controls the relative
sizes of the optical dimension to the electrical dimension, and (b) the density
parameter, d ∈ [0, 1], which controls a router’s inter-group connectivity in the
optical dimension. The space spanned by b and d creates the Dragonfly design
space.

Using the wiring algorithm presented in Sect. 2.2, we generated various drag-
onflies in the design space, and subsequently identified several interesting designs.
By studying dragonflies with 1500 routers, we found that as long as d �= 0, the
average global distance of the network remains fairly constant over the range of
the imbalances, and only tending towards 1 when either the optical or electri-
cal dimensions get downsized to 1. This is due to the topology approaching a
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full-mesh (when optical dimension is downsized to 1) or a flattened-butterfly
(when electrical dimension is downsized to 1). In general, the number of links in
the topology also increases as b becomes more negative due to the larger electri-
cal dimension, in which more router pairs are directly-linked as a result of the
larger full-mesh intra-group topology.

We found that topologies with a density of 0 exhibit poor network char-
acteristics, since each router only has one inter-group link at its disposal. This
minimal connectivity in the optical dimension incurs a higher global average dis-
tance on these topologies, an effect that is even more pronounced as the optical
dimension expands (imbalance tending to more positive values). Our results in
Sect. 4 indicate that if given access to routers with higher radices, it is generally
worth maximizing the utilization of the allocated port counts to obtain inter-
connect designs of more optimal costs. This can be done either by (a) expanding
bandwidth in the electrical dimension by opting for more nagatively-balanced
Dragonflies or by (b) expanding bandwidth in the optical dimension by opting
for Dragonflies with higher densities.

Finally, the effects of varying the cost of optical links relative to electronic
links on cost-efficiency are explored on dragonflies supporting 10, 000 terminals.
Our results show that as the cost of optical links increases, negatively-balanced
Dragonfly variants tend to be more cost-efficient due to their larger electrical
dimension. A similar exploration done on topologies with 25, 000 terminals, how-
ever, showed that positively-balanced Dragonfly offer more cost-efficient designs,
despite considering optical links at 5× the cost of electrical links. These results
unanimously indicate that density should generally be greater than 0 to yield
cost-efficient designs with reasonable global average network distances. On the
other hand, it is difficult to draw a conclusion on the range of imbalance that
yields the most cost-optimal Dragonfly designs. We recognize that the regions in
the design space corresponding to the most cost-optimal dragonflies vary signifi-
cantly based on the targeted system scale (defined by number of terminals), the
available router radix, and the cost of the network components (e.g. links and
routers). However, the methodology employed to study cost-efficiency is valid,
and we plan to investigate the ideal imbalance to scale relationship in the future
by means of workload simulations.
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