
OpenACC 2.5 Validation Testsuite Targeting
Multiple Architectures

Kyle Friedline1(B), Sunita Chandrasekaran1, M. Graham Lopez2,
and Oscar Hernandez2

1 University of Delaware, Newark, DE, USA
{utimatu,schandra}@udel.edu

2 Oak Ridge National Lab, Oak Ridge, TN, USA
{lopezmg,oscar}@ornl.gov

Abstract. Heterogeneous computing has emerged as a promising fit
for scientific domains such as molecular dynamics simulations, bioinfor-
matics, weather prediction. Such a computing paradigm includes x86
processors coupled with GPUs, FPGAs, DSPs or a coprocessor para-
digm that takes advantage of all the cores and caches on a single die such
as the Knights Landing. OpenACC, a high-level directive-based paral-
lel programming model has emerged as a programming paradigm that
can tackle the intensity of heterogeneity in architectures. Data-driven
large scientific codes are increasingly using OpenACC, which makes it
essential to analyze the accuracy of OpenACC compilers while they port
code to various types of platforms. In response, we have been creating a
validation suite to validate and verify the implementations of OpenACC
features in conformance with the specification. The validation suite also
provides a tool to compiler developers as a standard for the compiler to
be tested against and to users and compiler developers alike in clarifying
the OpenACC specification. This testsuite has been integrated into the
harness infrastructure of the TITAN and Summitdev systems at Oak
Ridge National Lab and is being used for production.

Keywords: Programming models · Testsuite · Hardware · Validation

O. Hernandez—This manuscript has been authored by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for publi-
cation, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan). This paper is authored by an employee(s)
of the United States Government and is in the public domain. Non-exclusive copy-
ing or redistribution is allowed, provided that the article citation is given and the
authors and agency are clearly identified as its source.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 557–575, 2017.
https://doi.org/10.1007/978-3-319-67630-2_39

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

558 K. Friedline et al.

1 Introduction

Hardware continues to evolve very rapidly expecting programmers to quickly
deploy or redeploy scientific codes in order to exploit the rich feature set of
these hardware platforms. These platforms are also becoming increasingly het-
erogeneous thus creating programming challenges and maintenance of single
code bases. At the same time there is a constant demand for improved per-
formance. Currently these heterogeneous platforms can be programmed using a
variety of languages or models such as OpenACC [17], OpenMP [19], CUDA [15],
OpenCL [18], NVIDA Thrust [3], Kokkos [8]. This paper focuses on OpenACC,
which is an emerging directive-based programming model for traditional X86,
accelerators such as GPUs, IBM Power processors, and, with OpenACC research
compilers, FPGAs [4]. Since OpenACC can target more than just one or two plat-
forms, it allows the programmers to maintain a single code base. Commercial
compilers include support from PGI, Sunway Taihulight and Cray. Currently
only PGI and GCC support OpenACC 2.5 (the version of the specification we
are testing), though GCC has only partial support for the 2.5 feature set. Cray
and Sunway provides support for OpenACC only until 2.0 features.

Open Source compilers include GNU Compiler Collection (GCC) with initial
support for OpenACC 2.5. Academic compilers include Omni Compiler from
Riken, OpenARC from ORNL, OpenUH from SBU and UH, RoseACC from
LLNL, UDEL. More information on existing compilers can be found on the
OpenACC webpage1.

The model has been gaining wide adoption among the scientific community
and is being used to accelerate scientific codes such as molecular dynamics,
computational fluid dynamics, weather modeling to an accelerator. Instead of
writing explicit code to offload or parallelize a given region of code, the pro-
grammer simply inserts compiler hints or directives into a C11, C++14 or a
Fortran code, and the compiler offloads compute intensive portions of the code
to an accelerator which could be multiple CPU cores and/or GPUs. As the Ope-
nACC specification evolves and it’s feature set is expanded, it is critical to ensure
that the implementations of the features are conforming to the specifications and
consistent with the definition of the features. It is quite common for different
implementors to interpret the specifications differently. As a result there may
be differing implementations of a particular feature defined in the specifications.
Our previous publication on this effort [24] captured these discrepancies. The
specifications has since evolved and there have been some major updates includ-
ing providing support for both shared and discrete memory machines. So most,
if not all, tests which this paper discusses are new and have been written to
adhere to the current specifications.

This project creates a validation and verification testsuite where we con-
struct a number of functional test cases to test several constructs such as the
parallel or kernel constructs, clauses such as async or reduction, or combi-
nations of occurrences of clauses on constructs. The testsuite is built to check

1 https://www.openacc.org/tools.

https://www.openacc.org/tools

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 559

for correctness and conformance of features to the OpenACC specifications. We
will also demonstrate the results of the testsuite on multiple compilers/versions
to compare implementations’ adherence to the OpenACC specifications. This
testsuite will enable the compiler implementors to improve the quality of their
tools and ensure compliance of their implementations with the specifications of
the language.

OpenACC has been adopted for large-scale scientific applications on
accelerator-based supercomputers such as Titan at the Oak Ridge Leader-
ship Facility (OLCF). These applications include: ACME Land Model and
CAM/SE [21,22], One-Way Based Methods OWBM (Oil and Gas), Dalton [6],
Maestro [14] (Astro-physics), GTC-p [5,9], and many are part of funded user
programs such as INCITE [2] and CAAR [1]. These show that OpenACC has
already afforded applications early successes at scale on heterogeneous machines
such as Titan. Such large scale applications demand updates to OpenACC data
clauses to allow deep copy. This feature is needed to handle complex data struc-
tures and how they are mapped to the limited memory capacity of discrete
accelerators with disjoint memory address spaces. The OpenACC organization
put together a technical report (TR-16-1) discussing challenges to support deep
copy and also propose probable solutions [16]. Secondly, the increasing complex-
ity of upcoming architectures means that OpenACC needs to be improved to
handle and optimize for deeper node-level memory hierarchies; currently, the
acc cache directive provides insufficient optimization and limits performance
where memory capacity and bandwidth trade-offs are critical. Finally, the abil-
ity to better handle multiple accelerators per node will be critical to exploiting
upcoming machines.

A comprehensive and community-driven OpenACC validation suite is an
essential tool for computing facilities that must procure and evaluate both large
production and experimental systems. As multiple compiler implementations
are adapted to new architectures and updated to support evolving specifica-
tions, OpenACC consumers benefit greatly from having a way to evaluate each
implementation’s coverage of a given specification on each architecture where
OpenACC-enabled applications are used. By having a community-driven val-
idation suite that can be used in common by any vendor as well as the end
users, application developers have a way to evaluate and push for consistency in
functionality across implementations.

Since the tests are in a more matured state than it was earlier, we plan to
release the testsuite by July 2017, just in time for the camera ready version of this
paper. This testsuite will be released under a dual license scheme and we welcome
contributions. One license will preserve the license used by the contributor, the
second OpenACC license will ensure consistency in code version, and the running
and reporting of results. Currently all OpenACC members can use and contribute
to the testsuite.

The paper makes the following contributions:

– Develop test cases that can test on both shared and discrete memory models
– Identify and report compiler bugs and runtime errors

560 K. Friedline et al.

– Evaluate different compilers’ implementations for its conformance to the Ope-
nACC specifications

– Delivered initial release of OpenACC 2.5 Testsuite2

2 Overview of the Programming Model

The underlying goal of OpenACC is to deliver an API for parallelizing code tar-
geting a generic heterogeneous architecture. With three layers of parallelism as
well as a compute construct designated for compiler targeting of generic archi-
tectures, the model aims to abstract the architecture with minimal adjustments
to the logic of the code thus allowing maintenance of a single code base. With
often only minor adjustments to memory management near parallelized com-
pute regions, the model accommodates both shared and discrete memory or any
combination of the two across any number of devices.

The basic functionality of the model deals with specifying the compute inten-
sive regions of code that needs to run on an accelerator as well as manage data
on multiple devices. A great deal of this is managed by creating scopes with cer-
tain descriptors. Parallel or kernels directives need to be added to the code
region that needs to be offloaded to the accelerator.

Since the last time this topic has been discussed (see [24]), the OpenACC
specifications have undergone two major changes. OpenACC 2.0 version was
released with features for queuing and resynchronization of asynchronous com-
pute regions via the wait clause (see Code 1); dynamic data lifetimes via the
enter data and exit data directives (see Code 2); asynchronous synchronizing
of queues via the async clause on a wait directive (see Code 3); and function
calls from compute regions via the routine directive (see Code 4).

Code 1. Resynchronization of Queues

#pragma acc p a r a l l e l loop pre sent (a [0 : n] , \
b [0 : n] , c [0 : n]) async (1)

for (int x = 0 ; x < n ; ++x) {
c [x] = a [x] + b [x] ;

}
#pragma acc p a r a l l e l loop pre sent (d [0 : n] , \

e [0 : n] , f [0 : n]) async (2)
for (int x = 0 ; x < n ; ++x) {

f [x] = d [x] + e [x] ;
}
#pragma acc p a r a l l e l loop pre sent (c [0 : n] , \

f [0 : n] , g [0 : n]) async (3) wait (1 , 2)
for (int x = 0 ; x < n ; ++x) {

g [x] = c [x] + f [x] ;
}

2 https://github.com/OpenACCUserGroup/OpenACCV-V.

https://github.com/OpenACCUserGroup/OpenACCV-V

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 561

Code 2. Executable Data Directives

#pragma acc ente r data copyin (data [0 : n])
#pragma acc p a r a l l e l loop pre sent (a [0 : n]) r educt ion (+: t o t a l)

for (int x = 0 ; x < n ; ++x) {
a [x] = a [x] ∗ 2 ;
t o t a l += a [x] ;

}
i f (t o t a l < n) {

\\ Cond i t i ona l l y updates data
#pragma acc e x i t data copyout (data [0 : n])

}
else {

#pragma acc e x i t data d e l e t e (data [0 : n])
}

Code 3. Asynchronous Synchronization of Queues

#pragma acc p a r a l l e l loop pre sent (a [0 : n] , \
b [0 : n] , c [0 : n]) async (1)

for (int x = 0 ; x < n ; ++x) {
c [x] = a [x] + b [x] ;

}
#pragma acc p a r a l l e l loop pre sent (d [0 : n] , \

e [0 : n] , f [0 : n]) async (2)
for (int x = 0 ; x < n ; ++x) {

f [x] = d [x] + e [x] ;
}
#pragma acc wait (1 , 2) async (3)
#pragma acc p a r a l l e l loop pre sent (c [0 : n] , \

f [0 : n] , g [0 : n]) async (3)
for (int x = 0 ; x < n ; ++x) {

g [x] = c [x] + f [x] ;
}

OpenACC 2.5, released in 2015, had a major update on the data manage-
ment. In previous versions, data was managed by copy, copyin, copyout, and
create data clauses as well as their respective counterparts, present or copy,
present or copyin, present or create, present or copyout, that would
check their presence on the device and allocate/copy as necessary. However,
with version 2.5 data control was simplified by merging the data clauses and
only supporting the functionality that tests for data’s presence on device. Along
with this, reference counting and conditional data updates with the if present
clause were added in version 2.5 to further simplify data management.

562 K. Friedline et al.

Code 4. Routine

int pow(int base , int exponent) {
returned = 1 ;
for (int x = 0 ; x < exponent − 1 ; ++x) {

returned = returned ∗ base ;
}
return returned ;

}
#pragma acc rou t in e (pow) seq
#pragma acc p a r a l l e l loop pre sent (a [0 : n])
for (int x = 0 ; x < n ; ++x) {

a [x] = pow(a [x] , 2) ;
}

To briefly discuss reference counting, this is managed by the compiler runtime
libraries. Every time a variable is either used in an enter data directive or at
the entrance to a data region, the variable’s reference count is incremented. At
either an exit data or at the exit of a data region, it is decremented. If before
incrementation, the count is zero, the data clause is executed, either copying
the data in or allocating the data on device. And if after decrementing, the
count is zero, the data clause is again executed, either copying out the data or
deallocating it on device.

One of the issues with this functionality is that it still leaves data validity
very hard to determine due to data clauses potentially only altering reference
counts instead of updating data. Also with the 2.5 version, the clause if present
for the update directive allows the update to be dependent on the presence of
the data on device. This, in conjunction with the updated data management
directives/clauses the user is able to exploit much finer control over the data
environment.

3 Methodology

As mentioned in Sect. 1, we develop tests that target platforms with discrete or
unified memory, or a combination of the two. This means that when a test is
executed, the parallel regions of the code could be operating on a device with
direct access to the host-processes memory. We also develop tests that address
the dynamic execution order. The nature of parallel programming creates race
conditions and difficulty with ordering and flow control. These, among other
complications, pose difficulties to creating platform-agnostic tests. Furthermore,
the desire of these tests is to find flaws in the compilation of the program and
to do so we try to design tests in such a way that they can strain the limits of
what the specifications dictate.

The constraints with the model often limit our ability to make the test as
discerning as we might want. Although there are hundreds of test case scenarios,

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 563

in this section we will illustrate these constraints using the example of testing
the create clause.

According to the language specifications, the create clause only allocates
the memory on the device; it does not copy the host’s values for the data to the
device. When testing this aspect of the language, there are some vague aspects
of the execution of the clause. First, the code could be run on either a shared
memory device, or a discrete memory device. This means that at the create call,
if the application is running on a shared memory device, the data will already
be present and the data clause will be ignored. On a discrete memory device,
at the call to the create clause, the memory will be allocated on the separate
memory device. The data is not copied and will be uninitialized in the device
memory.

With these potentialities for possible execution methods, how does one test
that the creation happened without the copy? To demonstrate the complications
in writing tests that satisfy these requirements, let’s look at an example for
testing this clause on an enter data directive. The specifications state that
when an array is in a create clause, that the data is allocated, but not copied.
If we wanted to test this functionality, we might create something such as what
is in Code 5.

Code 5. Enter Data Create V.1

1 double ∗ a = (double ∗) mal loc (n ∗ s izeof (double)) ;
2 double ∗ a copy = (double ∗) mal loc (n ∗ s izeof (double)) ;
3 for (int x = 0 ; x < n ; ++x) {
4 a [x] = rand () ;
5 a copy [x] = a [x] ;
6 }
7 #pragma acc ente r data c r e a t e (a [0 : n])
8 #pragma acc e x i t data copyout (a [0 : n])
9 int e r r = 1 ; // Fa i l i n g

10 for (int x = 0 ; x < n ; ++x) {
11 i f (f abs (a [x] − a copy [x]) > PRECISION) {
12 e r r = 0 ; //Passing
13 }
14 }

In this test, we initialize the data to be random values and make a copy of
the data for verification. We then create the one set of data on the device. This
would initialize the data over garbage data on the device. On the following line,
we copyout the data, which would copy out the garbage data on the device. After
this, we iterate over the data and make sure that it is different from the copy of
the initial data. If it is different, it demonstrates that the allocation happened
without the copy of data.

Now, while this test is well designed to test that the data was not copied, the
test fails to consider the possibility that the test could be operating on a shared
memory device. If this test was running on a machine with a shared memory

564 K. Friedline et al.

device, at line 7, when the data is copied in, the memory would not be allocated
and any device operations would occur on the data that is also available to the
host. The exit data on the following line would again do nothing. During the
loop on lines 10–14, the loop would operate again on the data as it was initially
and would fail the conditional statement within every iteration, resulting in a
failing test. However, this problem could be worked around as shown in Code 6.

Code 6. Enter Data Create V.2

1 double ∗ a = (double ∗) mal loc (n ∗ s izeof (double)) ;
2 double ∗ a copy = (double ∗) mal loc (n ∗ s izeof (double)) ;
3 int devte s t = 1 ;
4 int e r r = 0 ;
5 #pragma acc ente r data copyin (devte s t)
6 #pragma acc p a r a l l e l p r e s ent (devte s t)
7 {
8 devte s t = 0 ;
9 }

10 for (int x = 0 ; x < n ; ++x) {
11 a [x] = rand () ;
12 a copy [x] = a [x] ;
13 }
14 i f (devte s t == 1) {
15 #pragma acc ente r data c r e a t e (a [0 : n])
16 #pragma acc e x i t data copyout (a [0 : n])
17 e r r = 1 ; // Fa i l i n g
18 for (int x = 0 ; x < n ; ++x) {
19 i f (f abs (a [x] − a copy [x]) > PRECISION) {
20 e r r = 0 ; //Passing
21 }
22 }
23 }

Here, we create a new variable, ‘devtest’, as an int that is meant to test
the presence of a separate memory device before entering into separate memory
dependent code. We initiate the variable to a passing condition and copy it into
the device memory. If the device memory is separate, the data transfer occurs
and its value on device is subsequently updated to a failing condition. However,
at the exit of the parallel region, since the scalar was explicitly copied in,
there is no implicit copy back to the host data. Thus, the host version of the
devtest variable is still in the passing condition. However in the case of a shared
memory system, we have the same issue as the previous version of the test. The
parallel region updates the host version, causing the devtest variable to be in
the failing condition. This allows the test to bypass the test conditionally on the
presence of a device. The new functionality of conditionally skipping separate
memory dependent testing is also dependent on proper data management, which
increases the chances of misdiagnosing issues.

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 565

Code 7. Enter Data Create V.3

1 double ∗ a = (double ∗) mal loc (n ∗ s izeof (double)) ;
2 double ∗ a copy = (double ∗) mal loc (n ∗ s izeof (double)) ;
3 int ∗ devte s t = (int ∗) mal loc (s izeof (int)) ;
4 int e r r = 0 ;
5 devte s t [0] = 1 ;
6 #pragma acc ente r data copyin (devte s t [0 : 1])
7 #pragma acc p a r a l l e l p re sent (devte s t [0 : 1])
8 {
9 devte s t [0] = 0 ;

10 }
11 for (int x = 0 ; x < n ; ++x) {
12 a [x] = rand () ;
13 a copy [x] = a [x] ;
14 }
15 i f (devte s t [0] == 1) {
16 #pragma acc ente r data c r e a t e (a [0 : n])
17 #pragma acc e x i t data copyout (a [0 : n])
18 e r r = 1 ; // Fa i l i n g
19 for (int x = 0 ; x < n ; ++x) {
20 i f (f abs (a [x] − a copy [x]) > PRECISION) {
21 e r r = 0 //Passing
22 }
23 }
24 }

While Code 7 is almost exactly the same, we change the type of the devtest
variable to be a int *. A strict reading of the specifications describes the data
transfer protocols for scalar variables in parallel regions as being treated as if
it appeared in a firstprivate clause for the region if the scalar has not already
appeared in another data clause or in a surrounding data region, in which case,
the operation is that of the explicit data clause. This means that partial imple-
mentations could potentially implement the implicit data transfer without allow-
ing them to be overridden by other data clauses. Instead, by using a pointer
to the data, it gets treated as a non-scalar, avoiding any potential issues with
implicit data transfer and getting incorrect results with regards to the presence
of a separate memory device.

There is yet another issue with this test. The test, which creates the data and
copies it back to host, relies on the assumption that the data on device will be
allocated over garbage data that has different values than that of the host version
of the data. While relatively unlikely, this allows for mixed results that, if users
are testing for only strict adherence of the language, may be unwelcome. Instead
of removing a test over a minor risk or keeping a code that may give unreliable
results, we instead move it to a conditional region dependent on configuration
settings of the test-suite as seen in Code 8 on line 16.

566 K. Friedline et al.

Code 8. Enter Data Create V.4

1 double ∗ a = (double ∗) mal loc (n ∗ s izeof (double)) ;
2 double ∗ b = (double ∗) mal loc (n ∗ s izeof (double)) ;
3 double ∗ a copy = (double ∗) mal loc (n ∗ s izeof (double)) ;
4 int ∗ devte s t = (int ∗) mal loc (s izeof (int)) ;
5 int e r r = 0 ;
6 devte s t [0] = 1 ;
7 #pragma acc ente r data copyin (devte s t [0 : 1])
8 #pragma acc p a r a l l e l p re sent (devte s t [0 : 1])
9 {

10 devte s t [0] = 0 ;
11 }
12 for (int x = 0 ; x < n ; ++x) {
13 a [x] = rand () ;
14 a copy [x] = a [x] ;
15 }
16 i f (devte s t [0] == 1 && run p r o b a b i l i s t i c == 1) {
17 #pragma acc ente r data c r e a t e (a [0 : n])
18 #pragma acc e x i t data copyout (a [0 : n])
19 e r r = 1 ; \\ Fa i l i n g
20 for (int x = 0 ; x < n ; ++x) {
21 i f (f abs (a [x] − a copy [x]) > PRECISION) {
22 e r r = 0 ;
23 }
24 }
25 }
26 for (int x = 0 ; x < n ; ++x) {
27 a [x] = rand () ;
28 b [x] = 0 . 0 ;
29 }
30 #pragma acc ente r data copyin (a [0 : n]) c r e a t e (b [0 : n])
31 #pragma acc p a r a l l e l p re sent (a [0 : n] , b [0 : n])
32 {
33 for (int x = 0 ; x < n ; ++x) {
34 b [x] = a [x] ;
35 }
36 }
37 #pragma acc e x i t data copyout (b [0 : n]) d e l e t e (a [0 : n])
38 for (int x = 0 ; x < n ; ++x) {
39 i f (f abs (a [x] − b [x]) > PRECISION) {
40 e r r += 1 ;
41 break ;
42 }
43 }

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 567

In order to add at least some minimal testing for systems that either have
shared memory or are being run without probabilistic tests, we also include
a test that is written to be completely independent of device type or garbage
data. On lines 30–43 we test the create clause, but instead of testing the lack
of data transfer, we only test that the data was allocated and available for use.
While this severely limits this test, it does provide proof of the dependability of
the clause for any standard code that doesn’t depend on any non-deterministic
structures.

This example demonstrates some of the difficulties that come with varying
memory models. While these are not inherent to a parallel programming model,
many devices that run these codes depend on separate memory while other tech-
nologies, such as Knight’s Landing, focus on reunifying the memory to minimize
the startup cost to parallelization. There are other issues to protect the tests
against in terms of the non-sequential processing model which is inherent to any
parallelization.

In the case of testing the reduction clause on a loop directive with a multiply
operator, one of the problems that can be run into with this sort of reduction is
overflowing the reduction variable. In order to sanitize the data to avoid this, it
might be tempting to keep a rolling multiplied total when initializing the data
and limiting the randomization to a range that will not allow for overflow. When
processing sequentially, there would be no problems with this solution. However,
since the reduction does not execute sequentially, all the largest of the numbers
could, by chance be multiplied together before any of the lower ones, which could
cause undefined values before the completion of the reduction.

4 Setup, Compilation Flags and Infrastructure

For our tests, we ran the suite on three different systems. The first system is
University of Delaware’s (UD) Community Cluster, Farber,3 where our compute
node consists of Intel Xeon CPU E5-2670 v2 processor (20 cores) of Ivy Bridge
architecture and a single NVIDIA Tesla K80 GPU. The second system is Titan4

housed at ORNL where each compute node contains 1 AMD Interlagos 6274
processor (16 cores) of the Bulldozer architecture and a single NVIDIA Tesla
K20 GPU. The third system is Summitdev consisting of IBM Power8+ processor
CPUs (20 cores) with 4 NVIDIA Tesla P100 GPUs. We were also able to test
on a machine running on an Intel Knights Landing chip, the Xeon Phi 7230.

With the first two systems, we were able to use PGI 16.10, which is also the
version for the community edition (at the time of writing this paper). For the first
system - UD’s Farber, we use 17.3 (the latest version of the compiler at the time
of writing this paper). On the third system and the Knights Landing system, we
use PGI 17.1 due to the lack of availability of the 16.10 version on that system.
We also used the GNU 6.3-20170303 compiler version on the second system,
Titan. Between these various environments, we were able to test all supported
3 http://docs.hpc.udel.edu/clusters/farber/start#farber.
4 https://www.olcf.ornl.gov/titan/.

http://docs.hpc.udel.edu/clusters/farber/start#farber
https://www.olcf.ornl.gov/titan/

568 K. Friedline et al.

platforms for both PGI and GNU except for little-endian PowerPC systems for
GNU. In all, we ran the testsuite 13 times as shown in Table 1 with variations of
compiler vendor, compiler version, platform type, and platform version to ensure
we do not spot any flaky tests.

Table 1. Compiler versions and platforms

Run Compiler Platform

1 PGI 16.10 Ivy Bridge Multicore

2 PGI 16.10 K80

3 PGI 17.3 Ivy Bridge Multicore

4 PGI 17.3 K80

5 PGI 16.10 Bulldozer Multicore

6 PGI 16.10 K20

7 PGI 17.1 Power8+ Multicore

8 PGI 17.1 P100

9 PGI 17.1 Knights Landing

10 GNU 6.3-20170303 Bulldozer Multicore

11 GNU 6.3-20170303 K20

12 GNU 6.0.0-20160415 Ivy Bridge Multicore

13 GNU 6.0.0-20160415 K80

The compilation uses various flags. For instance with the PGI compiler, to
target the CPUs either the -ta=multicore or -ta=host flags is used (multicore for
multithreading and host for single threaded execution). For the GPUs, the target
accelerator flag is set to -ta=tesla for the Kepler cards or -ta=tesla:cc60 when
targeting the P100 cards. With the GNU compiler, targeting is not handled at
compile time. Instead, both host and device versions of the code are built. In
order to run the host version (There is no multicore option for GNU as of yet),
the internal control variable has to be set with ACC DEVICE TYPE=host, or,
in order to force device operation, ACC DEVICE TYPE=nvidia.

With the GNU compiler, compilation failure due to linking issues were some-
times resolved by adding the -lm flag. If the issues were still not resolved, adding
the -foffload=-lm would occasionally fix the compilation error as well. With
fortran codes, due the strict adherence of GNU to fortran specifications, the
-ffree-line-length-none could be used when lines were longer than 72 characters.

5 Results

(Note: We have used 16.10 wherever possible as at the time of writing this
paper PGI’s Community Edition supports 16.105). In executing the testsuite on
5 https://www.pgroup.com/products/community.htm.

https://www.pgroup.com/products/community.htm

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 569

the assortment of platforms discussed in Sect. 4, we can statistically verify the
integrity of these tests. We developed 177 tests and out of the 177 tests, 89.3%
passed in all runs with the PGI compiler and 51.7% passed in all runs with PGI
and GNU compilers. In addition, no test failed all runs. The overall success rate
for the tests is 90.6% across 2301 individual test-runs (includes the combination
of compiler versions on the variety of hardware architectures).

5.1 Comparison of PGI Compiler Targeting Various Architectures

Between the systems we had access to, we were able to test seven separate archi-
tectures. As far as accelerators are concerned, we were able to run the testsuite
on NVIDIA’s K20 architecture, K80 architecture, and the P100 architecture. Of
these, on the P100 we were not able to use PGI’s 16.10 compiler version; instead
we used PGI’s 17.1 compiler version available on that system. However, target-
ing these accelerators was very uniform, having a total pass rate of 525/531 or
98.9%. Across all platforms, tests for the tile clause on a parallel loop in
C and the test for the firstprivate clause on a parallel region in Fortran
failed. However, the test for the tile clause is not a surprising failure. The test
takes the lack of a range of valid values for the arguments in the specifications
to test that all values should work. As an optimization clause, even if the tiling
arguments are out of bounds for the loops, it should not change the results of
the test. On other versions of the test that did not do this, the tile clause did
execute properly.

Targeting multicore processors/shared memory devices had much more var-
ied results. We were able to run the testsuite on the Intel Ivy Bridge architecture,
the AMD Bulldozer architecture (TITAN), the IBM Power8+ architecture (Sum-
mitdev), and the Intel Knights Landing (KNL) architecture (though KNL is not
yet officially supported by PGI). We used PGI’s 16.10 version on the Ivy Bridge
and Bulldozer architectures, and PGI’s 17.1 version on Power8+ and Knights
Landing. The average pass rate for these architectures was lower than that of the
discrete graphics cards tested. Instead of 98.9% pass rate, these tests averaged
a 95.3% pass rate or 675/708 passing over total, though this is not surprising,
due to PGI’s relatively recent support of OpenACC targeting multicore on x86
and Power processors.

Across all multicore architectures, the test for the firstprivate clause on
a parallel construct in C and the test of a multiplication reduction in a
parallel region in C were the only consistent failures. Others were also very
close to across the board failure, such as the Fortran versions of each of these
tests, which failed all but the Ivy Bridge architecture, and the test of an AND
reduction on a parallel loop with a scalar that has been privatized in a
surrounding loop in C, which failed on all but Power8+. The test of the tile
clause on a parallel loop in C failed on all architectures but Bulldozer. Both
the test of the AND reduction on a parallel loop in C and the test of the
OR reduction on a parallel loop in C also failed for both Ivy Bridge and
Knights Landing. In particular, though, the Power8+ architecture had a good
amount of additional failures that should be noted. The Power8+ architecture

570 K. Friedline et al.

failed a simple test having multiple loops inside of a parallel construct in both
C and Fortran as well as many of the tests that utilized the create clause. The
tests associated with the create clause that failed were the tests that used the
functionality of removing the lower bound on the data clause to have it default to
zero on a data construct in both C and Fortran and on an enter data directive
in Fortran and the use of a create clause on a parallel construct in both C
and Fortran.

The performance of these various platforms can be seen in Table 2.

Table 2. Performance of PGI architecture targeting

Architecture Pass rate Percent passed

K20 175/177 98.9%

K80 175/177 98.3%

P100 175/177 98.9%

Ivy Bridge 171/177 96.6%

Bulldozer 172/177 97.2%

Power8+ 165/177 93.3%

Knights landing 167/177 94.4%

5.2 Comparison of Various PGI Compiler Versions

We were also able to test a series of PGI’s compilers using a NVIDIA K80 as
shown in Table 3 The first version that we were able to test was 14.10 (at the time
of this version, PGI did not support the 2.5 specifications). Thus, there is quite a

Table 3. Comparison of K80 targeting across PGI versions

Compiler version Fortran pass rate C pass rate Fortran percent
passed

C percent
passed

14.10 60/86 67/91 69.8% 73.6%

15.1 64/86 80/91 74.4% 87.9%

15.5 65/86 80/91 75.6% 87.9%

15.10 68/86 84/91 79.1% 92.3%

16.1 69/86 84/91 80.2% 92.3%

16.4 82/86 84/91 95.3% 92.3%

16.7 85/86 90/91 98.8% 98.9%

16.10 85/86 90/91 98.8% 98.9%

17.1 85/86 90/91 98.8% 98.9%

17.3 85/86 90/91 98.8% 98.9%

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 571

noticeable improvement across 14.10 to 15.1, causing issues with about nineteen
of the tests. In the 15.5 version, the tile clause was added, fixing the errors
associated with the Fortran version of the test of the tile clause, though the C
version continues to have errors even now due to its inability to handle abnormal
arguments for the tile clause. With the 15.10 version, PGI added support for the
num gangs, num workers, and vector length for the kernels construct, resolv-
ing compilation errors caused by the use of these clauses. Also, until the 16.4
version, having variables copied into the device multiple times would cause errors
in Fortran. This situation appears in another fourteen of the tests. With 16.7,
reference counting was added (including the finalize clause), fixing another five
tests. Also with 16.7, the num gangs, num workers, and vector length clauses
were added to the kernels construct in the C language, fixing another three
tests. The remaining issues have been reported to PGI in order to be fixed.

5.3 Comparison of PGI 16.10 and PGI 17.3 Multicore Support

In our runs on the UD Farber machine, we were able to compare results between
the 16.10 (community edition) and the 17.3 (latest edition) of the PGI compiler
on both Ivy Bridge multicore and NVIDIA K80. Overall the success rate of the
16.10 version was 346/354 between both platforms. Of the seven failures on the
16.10 version targeting the Ivy Bridge multicore, four were failures during testing
the reduction clause in the C language. However, in the 17.3 version, all but one
of these is resolved. Also, when targeting K80, there are no such failures. There
also seem to be issues working with the firstprivate clause. With both version,
Ivy Bridge failed the test of the firstprivate clause in the C language while on
K80, both versions failed the Fortran version. Also, both versions exhibited some
shortcomings in dealing with async clauses on parallel regions when targeting
K80. The last issue is with the tile clause. While the operation seems to be
proper in many cases, there seems to be an issue with properly tiling when the
tiling arguments fall beyond the bound of the iterations in the nested loops.
For these specific platforms, we only see an improvement with the multicore
targeting when using the reduction clause, bringing the 17.3 version’s success
rate to 349/354. It is possible, though, that testing in a similar fashion on other
platforms would show a greater/other improvements that are not evident here.

5.4 The GNU Compiler’s Accuracy to the OpenACC Specifications

We also were able to use the GNU compiler on the Farber system and Titan.
While it is far from competitive with the PGI results, GNU also does not, at this
point, support the features that were added in the 2.5 version of the OpenACC
specifications. Notably among these new features are reference counting and
the new ways memory is managed. Instead of using pcopy or copy, now the
functionality of copy has been completely removed in favor of treating all copy
clauses as pcopy. This drastically changes the way the tests are interpreted by
the compiler. Many of the tests use some form of multiple references in order to
test proper data management and thus the GNU compiler is, by supporting the

572 K. Friedline et al.

2.0 version, predestined to fail. On the Farber machine, 38 of the tests failures
were memory related runtime errors. While we cannot guarantee that these errors
would be fixed with support for 2.5, many most likely would pass. Results for
GNU in Table 4 indicate ACC DEVICE TYPE is set to host; single-threaded
host-fallback execution, in a shared-memory mode. An in-depth evaluation of
GCC OpenACC implementation on Cray systems is discussed in6. However these
discussions are based on an older version of the testsuite.

Table 4. GNU vs. PGI pass rates

Architecture PGI pass rate GNU pass rate

K20 175/177 112/177

K80 175/177 113/177

Ivy Bridge 171/177 154/177

Bulldozer 172/177 157/177

6 Discussion

With this testsuite, we have shown both the status of the compilers and their
ability to target various architectures. We also had the opportunity to run the
suite on Cray compiler. However, due to the compiler’s adherence to an out-
dated version of the OpenACC specifications, and lack of demand from users to
use Cray OpenACC compiler we have not summarized our test results on the
compiler. Also, since we plan to release the testsuite, anyone interested to vali-
date Cray OpenACC implementations is welcome to use our testsuite to validate
Cray’s OpenACC implementation.

When using the firstprivate clause in the Fortran language using the
PGI compiler, due to it’s potential for causing errors we recommend starting
debugging there. One potential solution to if it will not work is to replace the
firstprivate clause with a private clause and initialize the data in a gang
redundant loop. Though this will take it’s toll on performance, it could solve
incorrect calculations or runtime errors.

Our testsuite has helped validate OpenACC compilers on the Titan super-
computer and the pre-exascale machine Summitdev at Oak Ridge National Lab-
oratory (ORNL). Our tests have already been integrated to the official harness
testsuite of Titan.

There are multiple types of users with quite different requirements for a
comprehensive validation suite, the accessibility and usability features need to
be flexible. End users need an easy way to run all of the tests in the suite
and see a useful summary of the results to know how much coverage their soft-
ware stack and architecture supports. However, when using for QA purposes,
6 https://cug.org/proceedings/cug2017 proceedings/includes/files/pap174s2-file1.

pdf.

https://cug.org/proceedings/cug2017_proceedings/includes/files/pap174s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap174s2-file1.pdf

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 573

an implementer needs to be able to easily run and debug at the single-test level
of granularity. These different types of requirements require a robust testsuite
infrastructure that is currently not in place but under discussion. This infrastruc-
ture needs to be simple so that anybody can contribute new tests or fix bugs by
only needing to understand the host language and OpenACC, not the details of
the test harness. Only by minimizing the effort for new contributions will the
test be widely adopted and expanded by the community.

7 Related Work

Our first paper on this effort [24] covers the specifications through version 1.0
of the OpenACC specifications. A closely related work to this effort is the
OpenMP Validation Suite [20] that also validates and verifies the features of
OpenMP compiler implementations. In 2003, an OpenMP validation suite was
developed [12] to validate OpenMP implementations for OpenMP 2.0. This work
was extended [13] to build test cases to validate implementations of OpenMP 2.5
features. This work was further extended [23] to develop a more robust OpenMP
validation suite and provided up-to-date test cases covering all the features until
OpenMP 3.1.

Other related efforts to building and using a testsuite include Csmith [25],
a comprehensive, well-cited work where the authors perform a randomized test-
case generator exposing compiler bugs using differential testing. Such an app-
roach is quite effective to detecting compiler bugs but does not quite serve our
purpose since it is hard to automatically map a randomly generated failed test
to a bug that actually caused it. Thus we could say that our approach is com-
plimentary to that of Csmith’s approach.

LLVM has a testing infrastructure [10] that contains regression tests and
whole programs. The regression tests are expected to always pass and should be
run before every commit. These are a large number of small tests that tests var-
ious features of LLVM. The whole programs tests are referred to as the “LLVM
test suite” (or “test-suite”). The tests itself are driven by lit testing tool, which
is part of LLVM.

The parallel testsuite [7] chooses a set of routines to test the strength of
a computer system (compiler, run-time system, and hardware) in a variety of
disciplines with one of the goals being compare the ability of different Fortran
compilers to automatically parallelize various loops. The Parallel Loops test suite
is modeled after the Livermore Fortran kernels [11].

8 Conclusion and Future Work

This project develops test cases to validate and verify compilers’ implementations
of OpenACC features as of Version 2.5. As the features of the programming
model have evolved, so has the testsuite. The tests have enabled identification of
compiler bugs that have been or are being fixed in subsequent compiler versions,
thus improving the quality of the compilers. In addition to testing the platforms

574 K. Friedline et al.

and compilers with the testsuite as shown in the results, the variety of compiler
environments and hardware platforms have evaluated the tests to verify that
they properly conform to OpenACC specification.

We aim to build a comprehensive OpenACC testsuite for conformance of the
language features in the OpenACC specification. To that end, we are adding tests
to cover corner cases that may otherwise be not possible via simple unit tests.
We will also add tests to cover features as they are added to the specification.
We will also build interpreters to generate for each test a variety of variations on
that test to test fringe cases and feature limitations such as testing each numeric
type for each operator in a given parallelized region or testing limitations on
optimization variables. To make the testsuite easily usable, we will create forward
and backward references for the testsuite with the specification such that each
test in the open-source GitHub repository can be related to a definition in the
specification and definitions in the specification can be tagged to a test in the
repository.7

Acknowledgments. We are very grateful to OpenACC and NVIDIA for supporting
this project. Special thanks to Mathew Colgrove, Duncan Poole, Christophe Harle, Jeff
Larkin, Michael Wolfe, James Beyer, Pat Brooks, Doug Holt, Wael Elwasif, Thomas
Swinge, Cesar Philippidis, Randy Allen and Alex Rech.

This material is based upon work supported by the U.S. Department of Energy,
Office of science, and this research used resources of the Oak Ridge Leadership Comput-
ing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

References

1. CAAR center for accelerated application readiness. https://www.olcf.ornl.gov/
caar/

2. INCITE program. http://www.doeleadershipcomputing.org/incite-program/
3. NVIDIA Thrust. https://developer.nvidia.com/thrust. Accessed 03 Feb 2017
4. OpenACC
5. Adams, M.F., Ethier, S., Wichmann, N.: Performance of particle in cell methods on

highly concurrent computational architectures. J. Phys. Conf. Ser. 78(1), 012001
(2007)

6. Aidas, K., Angeli, C., Bak, K.L., et al.: The dalton quantum chemistry program
system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4(3), 269–284 (2014)

7. Dongarra, J., Furtney, M., Reinhardt, S., Russell, J.: Parallel loops–a test suite for
parallelizing compilers: description and example results. Parallel Comput. 17(10–
11), 1247–1255 (1991)

8. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

9. Ethier, S., Tang, W.M., Walkup, R., Oliker, L.: Large-scale gyrokinetic particle
simulation of microturbulence in magnetically confined fusion plasmas. IBM J.
Res. Dev. 52(1.2), 105–115 (2008)

7 For more detailed explanation and example, see https://github.com/
OpenACCUserGroup/OpenACCV-V/blob/master/README.md.

https://www.olcf.ornl.gov/caar/
https://www.olcf.ornl.gov/caar/
http://www.doeleadershipcomputing.org/incite-program/
https://developer.nvidia.com/thrust
https://github.com/OpenACCUserGroup/OpenACCV-V/blob/master/README.md
https://github.com/OpenACCUserGroup/OpenACCV-V/blob/master/README.md

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 575

10. LLVM. Llvm Testing Infrastructure Guide. http://www.llvm.org/pre-releases/4.0.
0/rc2/docs/TestingGuide.html#test-suite

11. McMahon, F.H.: The livermore fortran kernels: a computer test of the numerical
performance range. Technical report, Lawrence Livermore National Lab, CA, USA
(1986)

12. Müller, M., Neytchev, P.: An openMP validation suite. In: Fifth European Work-
shop on OpenMP, Aachen University, Germany (2003)

13. Müller, M., Niethammer, C., Chapman, B., Wen, Y., Liu, Z.: Validating openMP
2.5 for fortran and C/C. In: Sixth European Workshop on OpenMP, KTH Royal
Institute of Technology. Citeseer (2004)

14. Nonaka, A., Almgren, A.S., Bell, J.B., Lijewski, M.J., Malone, C.M., Zingale, M.:
MAESTRO: an adaptive low mach number hydrodynamics algorithm for stellar
flows. Astrophys. J. Suppl. Ser. 188(2), 358 (2010)

15. NVIDIA. CUDA SDK Code Samples. http://developer.nvidia.com/cuda-cc-sdk-
code-samples. Accessed 03 Feb 2017

16. OpenACC. Deep Copy Attach and Detach. http://www.openacc.org/sites/
default/files/TR-16-1.pdf

17. OpenACC. OpenACC, Directives for Accelerators. http://www.openacc.org/
18. OpenCL. OpenCL. https://www.khronos.org/
19. OpenMP. OpenMP 4.5 specification. http://www.openmp.org/wp-content/

uploads/openmp-4.5.pdf
20. OpenMP Validation and Verification Suite. OpenMP 3.1 Specification. https://

github.com/sunitachandra/omp-validation
21. Taylor, M.A., Edwards, J., Cyr, A.S.: Petascale atmospheric models for the commu-

nity climate system model: new developments and evaluation of scalable dynamical
cores. J. Phys. Conf. Ser. 125(1), 012023 (2008)

22. Taylor, M.A., Edwards, J., Thomas, S., Nair, R.: A mass and energy conserving
spectral element atmospheric dynamical core on the cubed-sphere grid. J. Phys.
Conf. Ser. 78(1), 012074 (2007)

23. Wang, C., Chandrasekaran, S., Chapman, B.: An OpenMP 3.1 validation test-
suite. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 237–249. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30961-8 18

24. Wang, C., Xu, R., Chandrasekaran, S., Chapman, B., Hernandez, O.: A validation
testsuite for OpenACC 1.0. In: 2014 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 1407–1416. IEEE (2014)

25. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: ACM SIGPLAN Notices, vol. 46, pp. 283–294. ACM (2011)

http://www.llvm.org/pre-releases/4.0.0/rc2/docs/TestingGuide.html#test-suite
http://www.llvm.org/pre-releases/4.0.0/rc2/docs/TestingGuide.html#test-suite
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://www.openacc.org/sites/default/files/TR-16-1.pdf
http://www.openacc.org/sites/default/files/TR-16-1.pdf
http://www.openacc.org/
https://www.khronos.org/
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://github.com/sunitachandra/omp-validation
https://github.com/sunitachandra/omp-validation
http://dx.doi.org/10.1007/978-3-642-30961-8_18
http://dx.doi.org/10.1007/978-3-642-30961-8_18

	OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures
	1 Introduction
	2 Overview of the Programming Model
	3 Methodology
	4 Setup, Compilation Flags and Infrastructure
	5 Results
	5.1 Comparison of PGI Compiler Targeting Various Architectures
	5.2 Comparison of Various PGI Compiler Versions
	5.3 Comparison of PGI 16.10 and PGI 17.3 Multicore Support
	5.4 The GNU Compiler's Accuracy to the OpenACC Specifications

	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	References

