Performance Portability Analysis for Real-Time

Simulations of Smoke Propagation Using
OpenACC

Anne Kiisters'®)@®, Sandra Wienke?3®, and Lukas Arnold!

1 JSC, Forschungszentrum Jiilich GmbH, Wilhelm-Johnen-Strafle,
52428 Jilich, Germany
a.kuesters@fz-juelich.de
2 IT Center, RWTH Aachen University, Seffenter Weg 23,
52074 Aachen, Germany
3 JARA-HPC, 52074 Aachen, Germany

Abstract. Real-time simulations of smoke propagation during fires in
complex geometries challenge engineers, physicists, mathematicians and
computer scientists due to the complexity of fluid dynamics and the large
number of involved physical and chemical processes. Recently, several
application scenarios emerged that require real-time predictions during
an incident to support the rescue teams. Therefore, we develop the CFD-
based simulation software JuROr aiming to run in real-time by leverag-
ing parallel computer architectures like CPUs and GPUs. For that, we
parallelize the code with OpenACC directives that promise maintenance
of a single source base by delegating some architecture-agnostic opti-
mizations to the compiler. We investigate the performance portability of
JuROr using PGI’s OpenACC implementation across four Intel CPUs
and three NVIDIA GPUs. We present the achieved performance shares
as part of a roofline model where we focus on traditionally-computed
arithmetic code intensities, as well as on a measurement approach based
on performance counters.

Keywords: Parallel CFD applications - Fire safety engineering - GPU
computing - OpenACC - Performance portability - Roofline model

1 Introduction

In almost all underground stations in Germany, the equipment for smoke extrac-
tion remains rare to find. To support effective firefighting measures and tactics,
the long-term goal is to develop a decision making tool for firefighters in cases
of complex geometries where air and smoke flows are both complex and hard

The original version of this chapter was revised: The ORCIDs of second and third
authors have been corrected. The erratum to this chapter is available at https://doi.
org/10.1007/978-3-319-67630-2_54

© Springer International Publishing AG 2017

J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 477-495, 2017.
https://doi.org/10.1007/978-3-319-67630-2_35

http://orcid.org/0000-0002-8172-7791
http://orcid.org/0000-0002-5794-3662
http://orcid.org/0000-0002-5939-8995
https://doi.org/10.1007/978-3-319-67630-2_54
https://doi.org/10.1007/978-3-319-67630-2_54

478 A. Kisters et al.

to predict. Therefore, concepts must adapt to the current situation dynamically
and scenario-based.

During the last decade, computational fluid dynamics (CFD) has gained
much attention in fire safety engineering by simulating smoke propagation. How-
ever, currently, users of commercial or open source smoke simulation tools widely
apply these methods to simplified geometries that do not fit the regulatory pre-
scription of the Pattern Building Code (e.g. enabling escape, rescue and effective
fire fighting measures). Thus, these complex geometries need individual evalua-
tion. Furthermore, it remains a challenge for them to meet the crucial constraint
of simulating the smoke propagation in real time or less.

To simulate smoke propagation in complex 3D geometries, we develop a
C++-based CFD solver, called ‘JuROr’ (Jilich’s Real-Time Simulation within
Orpheus). The goal of the Orpheus project funded by the ‘Federal Ministry
of Education and Research’ (BMBF) is the improvement of personal safety in
underground stations in case of fire. Further information can be found in [1].

We parallelize the CPU-based solver JuROr using the directive-based pro-
gramming model OpenACC and leverage the compute power of CPUs and
GPUs to enable real-time simulations. One advantage of using OpenACC over
a low-level accelerator model is the delegation of the responsibility of producing
performance-portable code to the compiler. Here, we investigate the performance
portability of PGI’s OpenACC implementation across various hardware archi-
tectures: NVIDIA Kepler and Pascal GPUs, and Intel Xeon Sandy Bridge, Ivy
Bridge, Haswell and Broadwell CPUs (using PGI’s multicore target). For that,
we build roofline models [2] for the different architectures, i.e., we model per-
formance limiters such as Flop/s and memory bandwidth on base of the appli-
cation’s arithmetic intensity. Then, we present performance portability of the
real-world code JuROr as percentage of sustainable peak performance.

Thus, our main contributions are:

— A CFD solver and its parallelization with OpenACC to enable the prediction
of smoke propagation in complex rooms

— Analysis of its performance portability using the roofline model based on
manually-computed arithmetic intensity vs. measured intensity, and hardware
performance counters

— Investigation of various hardware architectures: three NVIDIA GPUs, four
Intel CPUs

The paper is structured as follows: Sect.2 presents related work regard-
ing CFD solvers utilizing GPUs as well as performance portability analysis of
OpenACC codes. We introduce JuROr’s CFD methods solving weakly compress-
ible Navier-Stokes equations for a turbulent flow in Sect. 3 and its parallelization
using OpenACC in Sect.4. In Sect.5, we describe our approach for modeling
and measuring performance. We present our results on performance portability
in Sect. 6. Finally, we conclude and give a short outlook in Sect. 7.

Performance Portability of Real-Time Simulations of Smoke Propagation 479

2 Related Work

So far, no possible solutions exist in the field of flow simulations for smoke prop-
agation in real-time using CFD and covering complex rooms while taking sensor
data into account. Yet, interest in producing real-time predictions, like those
investigated in the FireGrid project [3], already exists. However, the utilized fire
simulation model in FireGrid is a zone model, which splits the domain of interest
into very few zones (cf. [4]). Properties like temperature or smoke density are
computed via a set of coupled ordinary differential equations (ODEs) and thus
only allow for very crude approximations and applications on simple geometries.

Instead of using a zone model, Glimberg et al. studied the governing math-
ematical models of CFD which describe the smoke propagation sufficiently
(cf. [5]). In their work, GPUs were employed to solve the governing equations
in highly simplified geometries using a fractional step method. This approach
resulted in a solution within less than a minute of runtime for ten seconds simu-
lation time. For comparison, the simulation took more than one hour on a CPU.
However, this approach did not include the coupling of sensor data.

On the basis of sensor data, Daniel and Rein implemented The Fire Navi-
gator forecasting the spread of building fires (cf. [6]). Using the techniques of a
cellular automata building fire model (instead of CFD), they employed sensor
data assimilation, inverse modeling and genetic algorithm techniques. With this
approach the governing parameters of a fire, such as the flame spread rate, the
smoke ceiling jet velocity and the outbreak location and time, can be indirectly
uncovered and then used to produce real-time as well as forecast maps of the
flame spread and smoke propagation. Therewith, the Fire Navigator achieves
positive lead times of several minutes meaning the predictions are actually fore-
casts (without the usage of GPUs). Nonetheless, cellular automata simulations
simplify the problem and do not produce results as accurate as computational
fluid dynamics.

Instead, in JuROr we aim to predict smoke propagation in complex geome-
tries deploying computational fluid dynamics and taking sensor data into account
in future works.

By leveraging parallel processing power of GPUs and CPUs, JuROr tackles
the real-time constraints for complex geometries. Its OpenACC parallelization
shall enable good performance across various kinds of clients’ hardware architec-
tures. Although the architecture-specific assembler optimization by OpenACC
compilers ease the maintenance of a single code base (e.g. over using OpenCL [7]),
the performance portability of OpenACC implementations have been scarcely
studied so far. While OpenACC performance comparisons across different archi-
tectures have been targeted in research, they have mostly been conducted by
taking absolute numbers such as the application’s runtime, floating point oper-
ations per second or speedup over CPU runs.

For example, Lopez et al. [8] show memory bandwidth or speedup numbers
for a Jacobi and n-body kernel for different OpenACC implementations (PGI,
Cray) on NVIDIA Kepler GPUs. They failed on using OpenACC on multicore
CPUs. Sabne et al. [9] evaluated the performance by showing speedup num-

480 A. Kisters et al.

bers based on OpenARC’s OpenACC implementation on NVIDIA GPUs, AMD
GPUs and Intel Xeon Phi coprocessors using 12 kernels. The hydrodynamic mini-
app CloverLeaf [10] has been tested on NVIDIA GPUs, Intel Xeon Phi Coproces-
sors, one AMD APP and different CPUs using the vendor OpenACC implemen-
tations from CAPS, PGI and Cray. For real-world codes, Nicolini et al. [11]
present runtimes of an aeroacoustic simulation software package using PGI’s
OpenACC implementation for NVIDIA Kepler GPUs and Intel CPUs. Calore et
al. [12] investigate a lattice Boltzmann application also using PGI’s OpenACC
implementation on NVIDIA GPUs, AMD GPU and Intel CPU.

However, performance portability investigations should not only consider
absolute numbers, but need to account for the hardware’s and application’s char-
acteristics. For that, some studies [9, 10, 12] compare their gained OpenACC per-
formance to hand-tuned low-level implementations written in CUDA or OpenCL,
or to libraries like MKL or CUBLAS. As a percentage of peak performance,
Lopez et al. [8] present their DAXPY and DGEMYV kernels. For two non-trivial
kernels, Calore et al. [12] show an OpenACC efficiency of 54% to 70% of peak
across different architectures for memory-bound code, while compute-bound
code achieves 14% to 24% efficiency.

Modeling OpenACC performance using a roofline model has only been con-
ducted by Wang et al. [13] who base their model on STREAM and Flop/s
measurements and apply CAPS’ OpenACC implementation to NVIDIA GPUs
and Intel Xeon Phi coprocessors. However, they only examine basic kernels from
the EPCC OpenACC Benchmark Suite. There, they get up to 82% of sustained
performance while most kernels achieve about 10%. In contrast, we do not only
focus on absolute performance, but especially apply the roofline model to the
real-world code JuROr.

Nomenclature
Cs Smagorinsky constant I6] thermal extension coefficient
f force (kgs—Qm) K thermal conductivity ()
g gravitational force (%) 1 dynamic viscosity (%)
N, number of cells in z-direction . L. . m2
Ny, number of cells in y-direction v kinematic viscosity (%)
D pressure (nfi 5) 3 density(%)
S stress tensor) filtered quantity
St source term (ki'zm) ()eps effective quantity
T temperature (K) Ay filter width
To ambient temperature (K) (‘)mot molecular quantity
t time (s) ()¢ turbulent quantity
u velocity (%) At size of time step (s)
up velocity at time t = 0 () Az grid size in z-direction (m)
X point in space (x,y) " (m) Ay grid size in y-direction (m)

Performance Portability of Real-Time Simulations of Smoke Propagation 481

3 Numerical Methods of JuROr

To simulate the transport of hot smoke, we first introduce the governing equa-
tions which mathematically describe the physics of smoke propagating. Then, we
describe the numerical methods approximating the solution of those equations.

3.1 Governing Equations

Smoke propagation can be described with the weakly compressible Navier-Stokes
equations (1) and (2) for a turbulent gas with velocity u, pressure p and tem-
perature T as well as no-slip boundary conditions (u = 0, Vp = 0) at the walls

1
ou+ (u-V)u—rvVviu+ ;Vp:f(T) (1)
V-u=0 (2)

KT + (u-V)T — kV?*T = Sr. (3)

Here, weakly compressible means that the density is dependent on the temper-
ature p = p(T) wherefore the energy equation (3) has to be solved. The force
density is described by £(T') = —3(T — Tpy)g, where [represents the thermal
extension coefficient, T is the ambient temperature and g is the gravitational
force.

For the sake of computing time, we neglect pyrolysis, combustion, and heat-
ing/ cooling of surrounding walls and therefore, we focus only on the transport
of hot smoke. For this case, we only take the fire far field into account and there-
fore, we simply consider pyrolysis and combustion by prescribing a mass and
heat source.

3.2 Numerical Approach

To solve the governing equations, we take a finite difference (FD) approach on a
regular grid. In space, we use central finite differences of 2"¢
backwards differencing of 15¢ order.

Therewith, we implement a fractional step method which follows the scheme
outlined in Glimberg’s work [5]:

order and in time

duy = — (0 - V) (4)
Opuy = vV3uy (5)
dpaz = £(T) (6)
dpuy = —1Vp. (7)

Advection via a Semi-Lagrangian Approach. The idea is to trace back velocities
in time to find the current velocities since they do not change along streamlines
according to the method of characteristics. Thus, we calculate the starting point

482 A. Kisters et al.

from the current position (back tracing) x4 = x — Atug to calculate the current
velocity in (4) with bilinear interpolation u; = ug (x4(—At, x)). This method is
stable in time since it is true that max(|u;|) < max(|ug|) holds for all times.

Diffusion with an Implicit Jacobi Method. After applying backwards differencing
in time to (5)
U — Uy
At

we get a linear system of equations (I — AtVVQ) uy = u; which is solved with
Jacobi’s method

= vV?u,,

k1) 1 (k)
.Ti = aiu bl — ;aijxj

for A = (If Atz/VQ), X =1uy and b =u;.

Ezxternal Forces via Euler Scheme. With an explicit Euler scheme in time, we get
a discretized version of Eq. (6) uz = ua+Atf. In order to update the temperature
T, we need to additionally solve the energy equation

T + (u-V)T — kV?*T = Sy,

where k characterizes the thermal diffusion coefficient and St a temperature
source term. Since the energy equation again describes advection and diffusion
with a source term, all of the above methods can be applied here.

Pressure Equation with a Geometric Multigrid Method. After backwards differ-
encing the Laplace equation (7) in time to get uy = uz — %Vp, we deploy the
incompressibility of uy yielding

At
O:V~u4:V~u3—7V2p.

Now, we solve the pressure-poisson equation V2?p = V - uz with the multigrid
method reusing the Jacobian method in the relaxation phases.

Incompressibility Through Projection. We establish incompressibility through
orthogonal projection using the Helmholtz-Hodge decomposition by Chorin [14].
Therefore, we define a linear orthogonal projection of u onto P via P(us) = uy
such that ug = P(u3) + Vp with P(Vp) =0 to get uqy = uz — Vp.

Turbulence with an Implicit, Constant Smagorinsky-Lilly Large Eddy Simulation
(LES). We are solving the LES equations for the spatially filtered velocity @ and
temperature T with filter width A; = (AzAy)? and an effective viscosity of

lffeff _ Hmol + 1253

U, =
=5 5

Performance Portability of Real-Time Simulations of Smoke Propagation 483

where p; = ﬁCgYAﬂS’ | with Smagorinsky constant Cg [15] (commonly set to
Cs = 0.2) and the norm of the filtered stress tensor |S| = 1/25;;S;;, where
Sij = % (8%.@1' + 8;811]])

4 Parallelization with OpenACC

The OpenACC parallelization of the JuROr software is based on a serial runtime
profile that can be seen in Fig. 1. The diffusion and pressure methods (depicted
in blue) take 50% to 65% (in sum) of the runtime on an Intel Sandy Bridge
CPU. The shares for diffusion and pressure highly depend on the problem size,
i.e. we get 65% for N, = N, = 512 and 50% for N, = N, = 2048. Within the
two methods of diffusion and pressure, the 5-point Jacobian stencil operation
takes 20% to 80% of the serial runtime when measured by Intel VTune’s hotspot
analysis. Thus, the Jacobian stencil describes the hotspot of the CPU code and
has been parallelized first using OpenACC’s kernels and data regions.

Advection | 0 t:'maximu‘m
Diffusion 7 15 2 minimum
Pressure [£27727772727 7777770777777 38 | 62

Other [p227222020722277227222135 | 50

0 10 20 30 40 50 60 70
%

Fig. 1. Share of runtime for different JuROr kernels on one Intel Sandy Bridge core
with N, = N, € {512,...,4096} (Color figure online)

After parallelizing the hotspot, all outstanding parallelizable methods (e.g.,
advection, pressure, boundary conditions) were also ported to the GPU. While
we marked all applicable loop nests as parallelizable independent loops, we did
not specify a certain loop schedule in order to leave it up to the compiler to
choose an appropriate loop schedule for the corresponding target architecture.
This is an important step in reaching performance portability. Furthermore, we
maximized the parallelism across loops by merging smaller loops into one kernel.
To reduce the kernel launch latency, we enabled pipelining by asynchronous ker-
nel launching from the CPU. Data management optimizations include the min-
imization of data transfers. For example, the access to C++ member attributes
in parallelized subroutines caused unnecessary CPU-to-GPU and GPU-to-CPU
transfers which were avoided by introducing local variables. In the OpenACC
CPU versions, all data transfers are automatically ignored by the compiler so
that we can use the same code base for GPU and CPU execution.

484 A. Kisters et al.

For all performance measurements, we run a benchmark test case of JuROr
in double precision. This test case describes a 2D Navier-Stokes equation com-
prising advection, diffusion and pressure (without turbulence or external forces)
in a [0,27])? cube, which are solved using the methods in Sect.3. The underly-
ing uniform grid varies from being coarse (with 8 x 8 cells) to very fine (with
4096 x 4096 cells), where each single cell stores the local values of the variables u
and p. Additionally, we introduced ghost cells (two in each direction) to handle
the boundary conditions properly. Thus, the memory size of one matrix of our
biggest data set comprises roughly 4098 x 4098 x 8 ~ 135 MB. While this data
set fits into our CPU main memory and GPU global memory, it exceeds the
CPU and GPU cache sizes.

5 Roofline Model

To investigate the performance portability of our JuROr parallelization using the
PGI compiler, we setup a roofline performance model that allows comparison of
achieved performance as percentage share of (sustainable) peak performance.

The roofline model [2] builds upon peak floating point performance and sus-
tainable memory bandwidth. It assumes that computation and communication
can be completely overlapped and takes only the slowest data path into account.
Based on this assumptions, we build our roofline model for seven different hard-
ware architectures that are listed in Table 1: four Intel CPUs and three NVIDIA
GPUs. It is noteworthy that we use either one CPU socket or one GPU chip
of the given hardware, and do not consider GPU-CPU hybrid computations for
now. Correspondingly, we only model performance bounds for either the CPU
or GPU chip, even though the host of a GPU-based system actually adds the-
oretical peak performance to the GPU performance limiters. The latter would
also require a corresponding two-device roofline model with inclusion of data
transfers which is out of the scope of this paper. Further, we compute the the-
oretical arithmetic intensity (A.L) of JuROr and compare it to the measured
value by using performance counters. We present the corresponding approaches
in the following subsections.

For clarification, we will use the following terminology for our performance
numbers:

— theoretical: values defined in or computed from technical hardware specifica-
tions or from manual code investigations

— sustainable: upper performance values that might be obtained in real world
usually using benchmarks

— measured/ achieved: actual measured performance values with real codes on
real hardware.

Performance Portability of Real-Time Simulations of Smoke Propagation 485

5.1 Peak Floating-Point Performance and Sustainable Memory
Bandwidth

To get the architectural performance limiters, we compute the peak double-
precision floating-point performance and measure the bandwidth using (micro)
benchmarks.

Calculating Flop/s numbers, we need to consider that most architectures
nowadays provide boosting capabilities of the clock frequency that are applied if
thermal processor conditions allow it. Since this is difficult to track, we disable
auto boosting where possible and base our Flop/s computations on the base
operational frequency of the CPU or GPU given in Table 1. This approach is in
line with the reporting rules of the Rpeak value of the Top 500 list [17].

Regarding the memory bandwidth measurement, it holds that achievable
memory bandwidth can be significantly lower than the theoretical peak band-
width. This is especially true for systems that employ error correcting code
(ECC) such as our given architectures do. Therefore, we use benchmarks to
obtain the sustainable memory bandwidth. For the GPU systems, we take the
CUDA version of the GPU-STREAM benchmark [19,20] and evaluate the band-
width of the triad kernel. We verify our measurements using the SHOC bench-
mark [21] as well as comparing them with the published results on the GPU-
STREAM website (where possible). For the CPU systems, we take the triad
results of McCalpin’s OpenMP STREAM benchmark [18] using the Intel Com-
piler with the flag ~qopt-streaming-stores=always. We verify these results
using Intel VTune’s memory access analysis that automatically evaluates the
local DRAM single-package bandwidth using a (not further specified) micro
benchmark. This micro benchmark delivers slightly higher bandwidth numbers

Table 1. Used hardware architectures and compilers

Name | Hardware Used Compiler and
Flags
BDW | 2-socket Intel Xeon Broadwell E5-2650 v4 1 socket | PGI 16.10
@2.20 GHz, 2 x 12 cores -ta=multicore
HSW | 2-socket Intel Xeon Haswell E5-2680 v3 1 socket | PGI 16.1
@2.50 GHz, 2 x 12 cores -ta=multicore
SNB | 2-socket Intel Xeon Sandy Bridge E5-2650 0 1 socket | PGI 16.1
@2.00 GHz, 2 x 8 cores -ta=multicore
IVB | 2-socket Intel Xeon Ivy Bridge E5-2640 v2 1 socket | PGI 16.1
@2.00 GHz, 2 x 8 cores -ta=multicore
P100 | NVIDIA Pascal P100 SMX2 GPU, 1328 MHz, |1 GPU |PGI 16.10
16 GB, autoboost off, ECC on, BDW host -ta=tesla:cc60
K80 | NVIDIA Kepler K80 with 2 GPUs, 562 MHz, |1 GPU |PGI 16.1
2 x 12 GB, autoboost off, ECC on, HSW host -ta=tesla:cc35
K40 |NVIDIA Kepler K40 GPU, 745 MHz, 1 GPU |PGI 16.1
12 GB, autoboost N/A, ECC on, SNB host -ta=tesla:cc35

486 A. Kisters et al.

Table 2. Floating-point performance and memory bandwidth (BW) of the hardware
architectures under investigation

Machine | Peak GFlop/s | Peak BW [GB/s] | STREAM BW [GB/s] | VTune BW [GB/s]
BDW 422.40 76.80 60.71 68.00
HSW 240.00 68.00 55.76 61.00
SNB 128.00 51.20 35.88 43.00
IVB 128.00 51.20 40.43 43.00
P100 4759.55 720.00 550.35 N/A
K80 935.17 240.00 149.70 N/A
K40 1430.40 288.00 191.20 N/A

why we base our CPU performance portability investigations on these values.
All results can be found in Table 2.

5.2 Arithmetic Intensity

To evaluate which performance boundary is hit by our JuROr code, we take
a look at its arithmetic intensity in Flop per Byte [Flop/B]. Since the concept
of arithmetic intensity does only make sense for individual kernels, we focus on
JuROr’s hotspot — the Jacobian stencil. While it takes up to 80% of the runtime
in serial execution, its parallelized version still takes up to 50% of the runtime
on a K40 for a 2D test case with N, = N, = 4096 grid cells in each direction.
Thus, again it describes the hotspot and we can apply (8) to compute its sus-
tainable performance with respect to its performance limiters:

sustainable performance [GFlop/s]
= min(sustainable BW [GB/s] - A.L. [Flop/B],
peak Flop/s performance [GFlop/s]). (8)

In a second step, we will use performance counters to measure the achievable
performance and compute its percentage share from sustainable peak:

measured performance of hotspot [GFlop/s]

(9)

f h = .
performance share [%] sustainable performance of hotspot [GFlop/s]

For determining the arithmetic intensity of the Jacobian stencil kernel, we differ-
entiate between theoretical arithmetic intensity and measured arithmetic inten-
sity. Here, theoretical arithmetic intensity refers to the traditional approach of
investigating the kernel’s source code and manually counting (double) floating-
point operations and transferred words. While this approach works well for small
regular kernels, it is very challenging for real-world codes that also employ special
built-in function calls or complex data access patterns. For example, a call of the
pow or sin function does not deliver an intuitive Flop per Byte ratio and, thus,

Performance Portability of Real-Time Simulations of Smoke Propagation 487

is little predictable. Therefore, we also examine a measured arithmetic intensity
of the JuROr’s hotspot which is based on performance counters.

Theoretical Arithmetic Intensity. Besides counting floating-point operations, we
only take the slowest data path into account, i.e., access to main memory (CPU)
or global memory (GPU). For that, we evaluate the cache reuse with layer con-
ditions to exclude corresponding data accesses. Furthermore, we verify that non-
temporal stores are used on the CPU systems. Overall, for JuROr’s hotspot we
have:

floating-point operations 12 Flops Flop

Al = = = 0.500 .
data movement (2 reads + 1 write) - 8 Bytes B

Measured Arithmetic Intensity. The approach of measured arithmetic intensity
has the advantage of being applicable for any kind of code. However, it might not
reflect the best possible arithmetic intensity, since it also tracks unnecessary data
transfers or occurring macho-Flop/s. To get the measured arithmetic intensity,
we run the code with performance counters for double-precision floating-point
operations and the transferred bytes. Since no common performance counter
interface is available across the selected machines, we manually track the counters
using different tools: NVIDIA’s nvprof 7.5 on the NVIDIA GPU systems and
Intel’s VTune Amplifier 2016/2017 on the Intel CPU systems. It must be noted
that a direct mapping from memory access counter values to our hotspot function
is not possible since they are based on uncore events. Therefore, we use VTune’s
filter capabilities to track our hotspot function within the timeline view and
read values from that timeline. To ease our calculations, we directly use VTune’s
calculated bandwidth numbers. A summary of the applied setups can be found
in Tables 3 and 4.

Due to known hardware restrictions on the Intel Haswell machine [16], we are
not able to use Flop performance counters on this architecture. Nevertheless, we
are able to run parts of the code with the Intel Advisor tool that shall be able
to measure arithmetic intensities for roofline models automatically. From the
intermediate result (before crashing), we take the achieved GFlop/s number on
the Haswell system. Unfortunately, the Intel Advisor is not capable of running
our real-world code successfully on all architectures due to crashes. Thus, we
rely on our own performance counter measurements as described above for the
other architectures.

Given the counters in Tables3 and 4, we can compute the measured arith-
metic intensity as follows:

X87 + SCALAR + SSE_PACKED - 2 4 256_PACKED - 4

Alcpu = (RD + WR) - 64 Bytes
~ X87+ SCALAR + SSE_PACKED - 2 + 256_PACKED - 4
B BW - runtimenotspot
as well as

flop_count_dp
read + write) - 32 [threads per warp]’

488 A. Kisters et al.

Table 3. Performance counters: Flops counters

Machine | Flops counter Tool

BDW FP_ARITHINST_RETIRED.SCALAR_-DOUBLE, VTune
FP_ARITH_INST_RETIRED.128B_.PACKED_DOUBLE,
FP_ARITH_INST_RETIRED.256B_.PACKED_DOUBLE,
INST_RETIRED.X87

HSW | N/A N/A
SNB | FP_.COMP_OPS_EXE.SSE_SCALAR_DOUBLE, VTune
FP_COMP_OPS_EXE.SSE_PACKED _DOUBLE,

SIMD_FP_256.PACKED_DOUBLE,
FP_.COMP_OPS_EXE.X87

IVB FP_.COMP_OPS_EXE.SSE_SCALAR_-DOUBLE, VTune
FP_.COMP_OPS_EXE.SSE_PACKED_DOUBLE,
SIMD_FP_256. PACKED_DOUBLE,
FP_.COMP_OPS_EXE.X87

P100 flop_count_dp nvprof
K80 flop_count_dp nvprof
K40 flop_count_dp nvprof

Table 4. Performance counters: Bytes counters

Machine | Bytes counter Tool

BDW UNC_M_CAS_COUNT:RD, UNC_M_CAS_COUNT:WR | VTune
HSW UNC_M_CAS_COUNT:RD, UNC_M_CAS_COUNT:WR | VTune
SNB UNC_M_CAS_COUNT:RD, UNC_M_CAS_COUNT:WR | VTune
IVB UNC_M_CAS_COUNT:RD, UNC_M_CAS_COUNT:WR | VTune

P100 dram_read_transactions, dram_write_transactions nvprof

K80 dram _read_transactions, dram_write_transactions nvprof

K40 dram_read_transactions, dram_write_transactions nvprof
where

read + write = dram_read_transactions + dram_write_transactions.

Following those two approaches — of theoretical vs. measured arithmetic
intensity — we present our results in the following section.

6 Results

Following the methodology introduced in Sect. 5, we present performance porta-
bility results with respect to the theoretical and measured arithmetic intensity.

Performance Portability of Real-Time Simulations of Smoke Propagation 489

6.1 Measurement Setup

In addition to the hardware setups given in Table 1, we compile all code versions
with -fast -03. We run all performance and counter measurements three times
and take the corresponding average value while runtime deviations are below
0.6%. Furthermore, all measurements are executed on machines with exclusive
access. For OpenACC runs on our CPU systems, we also enable thread binding to
ensure good data affinity: ACC_NUM_CORES=<#cores> ACC_BIND=yes MP_BIND=yes
MP_BLIST=0,1,<...#cores-1>.

Since selecting OpenACC loop schedules is left to the compiler, Table 5 gives
an overview on the PGI compiler’s choice for the Jacobian stencil on different
hardware setups. For our CPUs, the outer loop of the Jacobian loop nest gets
distributed across gangs (i.e. CPU cores), while the compiler attempts to vec-
torize the inner loop. Contrarily, the compiler choses a two-dimensional work
distribution on the GPUs: Each dimension gets distributed across the GPU’s
multiprocessors (gangs) and the double-precision logic units (vector). While
the overall thread tile size is the same across all GPUs, i.e., 128 threads per
block, the compiler selects different distributions within the tiles for Kepler and
Pascal GPUs.

Table 5. Loop schedules for loop nests of Jacobian stencil kernel chosen and reported
by the PGI compiler

Machine | Outer loop Inner loop

BDW gang vector sse + prefetching
HSW gang vector sse + prefetching
SNB gang vector sse + prefetching
IVB gang vector sse + prefetching
P100 gang vector(32) | gang vector(4)

K80 gang vector(4) | gang vector(32)

K40 gang vector(4) | gang vector(32)

6.2 Theoretical and Measured Arithmetic Intensity

Results for the theoretical and measured arithmetic intensity of the Jacobian
stencil are presented in Table6. Values of the measured arithmetic intensity
show only little deviation with values in the range of 0.332 to 0.498 Flop/B
across all architectures. In addition, they are roughly in line with the theoretical
arithmetic intensities of 0.500 since the Jacobian stencil does not exhibit any
special built-in functions or macho-Flop/s.

490 A. Kisters et al.

Table 6. Theoretical and measured A.I. of the Jacobian stencil kernel

Machine | Theoretical A.I. [%] Measured A.I [%] Performance limiter
BDW 0.500 0.340 | Memory bandwidth
HSW 0.500 0.332 | Memory bandwidth
SNB 0.500 0.386 | Memory bandwidth
IVB 0.500 0.354 | Memory bandwidth
P100 0.500 0.498 | Memory bandwidth
K80 0.500 0.416 | Memory bandwidth
K40 0.500 0.418 | Memory bandwidth

6.3 Performance Portability

As an overview, two exemplary roofline models for JuROr running on the Broad-
well CPU in Fig. 2 and the Pascal GPU in Fig. 3 illustrate the theoretical inten-
sity (vertically dashed line) and measured arithmetic intensity (circle marker)
while also visualizing the performance limiters as rooflines. This representation
also shows the achieved performance (circle marker) in comparison to the sus-
tainable memory bandwidth.

4096 ‘ _
2018 [| Theoretical A.I = 0.500 Flop/B] L

1024 -
S e — -7
256

/ Measured A.I. = 0.340 Flop/B

Memory bound Compute bound

T T T T T T 1

1 2 4 8 16 32 64

N e

I
B
ool=
=

Arithmetic Intensity [Flop/B]

Fig. 2. Roofline of BDW based on data set size of N, = N, = 4096

For our detailed analysis, we list the absolute performance numbers in Table 7
that are derived by our performance counter measurements running the JuROr
code. All these numbers, i.e., GFlop/s, GB/s and runtime in seconds, highly
differ across the architectures giving the impression of having non-portable code
with respect to performance.

Performance Portability of Real-Time Simulations of Smoke Propagation 491

8192 P
4096 TR e
i Theoretical A.I. = 0.500 Flop/ﬂ
2048
1024
512

256
'\g 128 :
S 64 i
[1 Measured A.I. = 0.498 Flop/B
o 32 2
16 |
8 i
4 :
) ! Memory bound Compute bound
:
1 T T T ' T T T T T T 1
5 % 5 ¥ 3 1 2 4 8 16 32 6

Arithmetic Intensity [Flop/B|

Fig. 3. Roofline of P100 based on data set size of N, = N, = 4096

Table 7. Flop/s, memory bandwidth and runtime measurement for Jacobian stencil
kernel. Bandwidths given in brackets are based on ECC overhead.

Machine | Measured GFlop/s | Measured BW [GB/s] | Kernel runtime [s]
BDW 21.66 63.71 4.97
HSW 19.81 59.59 5.29
SNB 14.93 38.65 8.54
IVB 14.90 42.04 7.70
P100 251.77 505.14 0.47
K80 71.17 170.91 (—29.08) 1.65
K40 91.47 218.79 (—36.30) 1.29

However, in the following, we express performance portability as performance
share to sustainable peak by applying our definition in (9). These results are
illustrated in Fig. 4.

Looking at the theoretical arithmetic intensities, the Jacobian stencil achieves
64% to 69% of sustainable memory bandwidth (given by Intel VTune’s micro
benchmarks) across the CPUs. For the GPU systems, it achieves higher perfor-
mance shares that range from 91% to 96% with respect to the GPU-STREAM
results. Since the measured arithmetic intensities are slightly below the theoret-
ical values, they also assume a lower sustainable peak performance in GFlop/s
(exemplary illustrated in Fig. 2). Therefore, we see higher performance shares
for the measured arithmetic intensities ranging from 90% to 98% on the CPUs
with respect to Intel VTune’s bandwidth micro benchmark and from 104% to
108% with respect to the OpenMP STREAM benchmark results. Thus, our

492 A. Kiisters et al.

120%

00% of peak w/ measured A.I.

100% 00% of peak w/ theoretical A.IL -

80%

60%

Performance share

40%

20%

0% bL—
BDW HSW SNB IVB P100 K80 K40
Architecture

GFlop/s w/ theor. AL.| 34.00 30.50 21.50 21.50 275.17 74.85 95.60

GFlop/s w/ meas. AL | 23.12 20.27 16.60 15.24 274.30 62.34 79.93

Measured GFlop/s 21.66 19.81 14.93 14.90 251.77 71.17 91.47

Fig. 4. Performance share of all considered architectures for N, = N, = 4096

hotspot delivers higher bandwidth measurements than the STREAM bench-
mark which may be due to additional transferred bytes for prefetching. For
the GPU performance shares, initially, we see a similar behavior with values
from 92% to 114%. When investigating the appearance of the GPU performance
shares above 100% further, i.e., for the two Kepler architectures K80 and K40,
we find that NVIDIA’s device memory performance counters also track trans-
actions caused by ECC overhead (cf. Table 7). Since these extra ECC bytes
do not contribute to the bandwidth achieved by the application, we subtract
corresponding values (counters ecc_transactions/ ecc_throughput) from the
measured bandwidth of the Jacobian stencil. In contrast, the Pascal architecture
supports ECC natively and, hence, does not show ECC effects on bandwidth.
With that, we get more realistic performance shares for JuROr of 92% to 95%
across the GPUs.

Overall, although absolute performance numbers suggest otherwise, the
results that are based on the specific hardware and software characteristics show
that for our real-world OpenACC code the PGI compiler is capable in produc-
ing performance portable code across different target architectures with a single
source code base.

7 Conclusion and Outlook

In the context of the OpenACC-parallel real-world C++-code JuROr that simu-
lates smoke propagation based on computational fluid dynamics, we investigated

Performance Portability of Real-Time Simulations of Smoke Propagation 493

the performance portability of its memory-bound hotspot using PGI’'s OpenACC
across four Intel CPUs and three NVIDIA GPUs.

For our analysis of performance portability, we setup roofline models for all
architectures and computed the arithmetic intensity of the code’s hotspot — the
Jacobian stencil. We examined this theoretical arithmetic intensity, as well as
measured arithmetic intensities that were obtained using performance counters
for floating-point operations and memory transfers. Our measured arithmetic
intensities are in the range of 0.332 to 0.498 Flop/B for all architectures and,
thereby, roughly in line with the theoretical arithmetic intensity of 0.500 Flop/B.

Using the theoretical arithmetic intensity, we obtained 64% to 69% of sus-
tainable bandwidth on the CPUs and 91% to 96% on the GPUs. Regarding
the measured arithmetic intensities, the performance shares increased to 90% to
98% on the CPUs and remained roughly constant with 92% to 95% on the GPUs
referring to the according STREAM bandwidths, respectively. Our investigations
show that it is important to account for ECC overhead in memory bandwidth
on Kepler GPUs when using NVIDIA’s device memory performance counters.
Pascal GPUs lift this problem by natively supporting ECC in hardware.

Due to the similar performance shares across architectures, our OpenACC
parallelization of JuROr shows good performance portability relying on the PGI
compiler. While hand-tuned or low-level code might generally achieve higher per-
formance, our OpenACC approach gives us the possibility to maintain one source
code base for different architectures while still delivering good performance.

In future, to achieve further parallelization and acceleration, we will con-
stantly optimize the code for both, CPU and GPU usage and model the data
transfer for the roofline. Moreover, we will investigate OpenACC performance on
AMD GPUs. While we could already show that our OpenACC code is runnable
on AMD Tahiti GPUs, problems with the measurement infrastructure hindered
us in presenting portability results in this paper. Currently, we are working on a
3D code to handle 3D geometries, where we will further include handling of inner
boundaries to expand the code to complex 3D geometries. Complex 3D geome-
tries (e.g., several rooms) will then be used for the validation of the OpenACC
code.

Acknowledgements. This study was performed within the project ORPHEUS
funded by the Federal Ministry of Education and Research (BMBF) Program on
‘Research for Civil Security - Protection and Rescue in complex Disaster Situations’
(funding code 13N13266). Some simulations were performed with computing resources
granted by RWTH Aachen University under project rwth0207.

References

1. BMBF funded research project, Optimierung der Rauchableitung und Perso-
nenfithrung in U-Bahnhoéfen: Experimente und Simulationen (ORPHEUS) -
Teilvorhaben: Brand- und Personenstromsimulationen in unterirdischen
Verkehrsstationen (2015-2018). http://www.orpheus-projekt.de

http://www.orpheus-projekt.de

494

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

A. Kisters et al.

Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65-76 (2009)
Han, L., et al.: FireGrid: an e-infrastructure for next-generation emergency
response support. J. Parallel Distrib. Comput. 70(11), 1128-1141 (2010)

Koo, S.-H.: Forecasting fire development with sensor-linked simulation, Disserta-
tion, University of Edinburgh (2010)

Glimberg, S.L., Erleben, K., Bennetsen, J.: Smoke simulation for fire engineer-
ing using a multigrid method on graphics hardware. In: VRIPHYS, pp. 11-20.
Eurographics Association (2009)

Daniel, N., Rein, G.: The Fire Navigator: forecasting the spread of building fires
on the basis of sensor data, FPE Extra Issue 3, March 2016. http://www.sfpe.org/
general/custom.asp?page=FPEExtralssue3

Pennycook, S.J., Hammond, S.D., Wright, S.A., Herdman, J.A., Miller, I., Jarvis,
S.A.: An investigation of the performance portability of OpenCL. J. Parallel Dis-
trib. Comput. 73(11), 1439-1450 (2013)

Lopez, M.G., Larrea, V.V., Joubert, W., Hernandez, O., Haidar, A., Tomov,
S., Dongarra, J.: Towards achieving performance portability using directives for
accelerators. In: Third Workshop on Accelerator Programming Using Directives
(WACCPD), pp. 13-24 (2016)

Sabne, A., Sakdhnagool, P., Lee, S., Vetter, J.S.: Evaluating performance porta-
bility of OpenACC. In: Brodman, J., Tu, P. (eds.) LCPC 2014. LNCS, vol. 8967,
pp. 51-66. Springer, Cham (2015). doi:10.1007/978-3-319-17473-0_4

Herdman, J.A., Gaudin, W.P., Perks, O., Beckingsale, D.A., Mallinson, A.C.,
Jarvis, S.A.: Achieving portability and performance through OpenACC. In: First
Workshop on Accelerator Programming using Directives, pp. 19-26. IEEE Press
(2014)

Nicolini, M., Miller, J., Wienke, S., Schlottke-Lakemper, M., Meinke, M., Miiller,
M.S.: Software cost analysis of GPU-accelerated aeroacoustics simulations in C++
with OpenACC. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Perfor-
mance 2016. LNCS, vol. 9945, pp. 524-543. Springer, Cham (2016). do0i:10.1007/
978-3-319-46079-6_36

Calore, E., Gabbana, A., Kraus, J., Schifano, S.F., Tripiccione, R.: Performance
and portability of accelerated lattice Boltzmann applications with OpenACC. Con-
curr. Comput. Pract. Exper. 28(12), 3485-3502 (2016)

Wang, Y., Qin, Q., See, S.C.W., Lin, J.: Performance portability evaluation for
OpenACC on Intel Knights Corner and Nvidia Kepler. In: HPC China (2013)
Chorin, A.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22,
745-762 (1968)

Smagorinsky, J.: General circulation experiments with the primitive equations.
Mon. Weather Rev. 91(3), 99-164 (1963)

JURECA, Jilich Research on Exascale Cluster Architectures. http://www.
fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/ JURECA /JURECA _node.
html

Top500.org, Top500 List, November 2016. https://www.top500.org/list/2016/11/
McCalpin, J.D.: Memory bandwidth and machine balance in current high per-
formance computers. IEEE Comput. Soc. Techn. Committee Comput. Archit.
(TCCA) Newsl. 19-25 (1995). https://www.cs.virginia.edu/stream/

Deakin, T., McIntosh-Smith, S.: GPU-STREAM v1.0/ v3.1. https://github.com/
UoB-HPC/GPU-STREAM

http://www.sfpe.org/general/custom.asp?page=FPEExtraIssue3
http://www.sfpe.org/general/custom.asp?page=FPEExtraIssue3
http://dx.doi.org/10.1007/978-3-319-17473-0_4
http://dx.doi.org/10.1007/978-3-319-46079-6_36
http://dx.doi.org/10.1007/978-3-319-46079-6_36
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
https://www.top500.org/list/2016/11/
https://www.cs.virginia.edu/stream/
https://github.com/UoB-HPC/GPU-STREAM
https://github.com/UoB-HPC/GPU-STREAM

20.

21.

Performance Portability of Real-Time Simulations of Smoke Propagation 495

Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: GPU-STREAM v2.0:
benchmarking the achievable memory bandwidth of many-core processors across
diverse parallel programming models. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.)
ISC High Performance 2016. LNCS, vol. 9945, pp. 489-507. Springer, Cham (2016).
doi:10.1007/978-3-319-46079-6_34

Danalis, A., Marin, G., McCurdy, C., Meredith, J., Roth, P., Spafford, K.,
Tipparaju, V., Vetter, J.: The scalable heterogeneous computing (SHOC) bench-
mark suite. In: Proceedings of the Third Workshop on General-Purpose Compu-
tation on Graphics Processors (GPGPU 2010), pp. 63-74 (2010)

http://dx.doi.org/10.1007/978-3-319-46079-6_34

	Performance Portability Analysis for Real-Time Simulations of Smoke Propagation Using OpenACC
	1 Introduction
	2 Related Work
	3 Numerical Methods of JuROr
	3.1 Governing Equations
	3.2 Numerical Approach

	4 Parallelization with OpenACC
	5 Roofline Model
	5.1 Peak Floating-Point Performance and Sustainable Memory Bandwidth
	5.2 Arithmetic Intensity

	6 Results
	6.1 Measurement Setup
	6.2 Theoretical and Measured Arithmetic Intensity
	6.3 Performance Portability

	7 Conclusion and Outlook
	References

