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Abstract. Ab-initio Molecular Dynamics (AIMD) methods are an
important class of algorithms, as they enable scientists to understand
the chemistry and dynamics of molecular and condensed phase systems
while retaining a first-principles-based description of their interactions.
Many-core architectures such as the IntelR© Xeon PhiTM processor are an
interesting and promising target for these algorithms, as they can provide
the computational power that is needed to solve interesting problems in
chemistry. In this paper, we describe the efforts of refactoring the exist-
ing AIMD plane-wave method of NWChem from an MPI-only imple-
mentation to a scalable, hybrid code that employs MPI and OpenMP to
exploit the capabilities of current and future many-core architectures. We
describe the optimizations required to get close to optimal performance
for the multiplication of the tall-and-skinny matrices that form the core
of the computational algorithm. We present strong scaling results on the
complete AIMD simulation for a test case that simulates 256 water mole-
cules and that strong-scales well on a cluster of 1024 nodes of Intel Xeon
Phi processors. We compare the performance obtained with a cluster of
dual-socket IntelR© XeonR© E5–2698v3 processors.

Keywords: Xeon Phi · Many-core · Chemistry · AIMD · Ab-initio ·
Molecular dynamics

1 Introduction

One of the more computationally demanding scientific simulations used exten-
sively on today’s large-scale parallel computers is Ab-initio Molecular Dynamics
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(AIMD) [4,5,7,9,10,13,14,20,25,28]. In this type of simulation the motions of
the atoms are simulated using Newton’s laws in which the forces on the atoms
are calculated directly from the electronic Schrödinger equation, or more specif-
ically in this work, the Kohn-Sham Density Functional Theory (DFT) equations
[18,24]. These simulations are computationally expensive because the DFT equa-
tions, which are already expensive in their own right for systems beyond a few
atoms, are solved at every time integration step in the simulation.

For an AIMD simulation to be viable for the scientist, each step in the full
DFT calculation must take the order of a second or less [5] to complete. The need
for such fast DFT calculations is driven primarily by the fact that the time step
of a conventional AIMD simulation can be quite small (∼ 0.2 femtoseconds = 2×
10−16 s) along with the fact that the length of the simulation will need be at least
10 picoseconds. For many chemical processes of interest, the simulations will need
to run on the order of nanoseconds (10−9 s and larger). A scientific simulation
of about 10 picoseconds requires solving 500,000 DFT calculations in sequence,
which takes about 5.8 days assuming that a single DFT calculation (time-step)
completes within one second, about 50.8 days with a 10-second time step, and
about 1/2 year with a 30 second time step. Compared to merely optimizing a
molecule or crystal, which require at most a few 100 evaluations, this is extremely
expensive.

It should be noted that, for carrying out geometry optimizations only, the
need for extremely fast DFT calculations is not as important as calculating
larger numbers of atoms. As a consequence the focus of HPC DFT algorithm
development has almost exclusively been on weak parallel scaling algorithms that
maintain parallel efficiency as the system size grows. In contrast, the focus of
HPC AIMD algorithm development has focused on truly strong parallel scaling
algorithms, rather than weak parallel scaling, since the time per step needs to
be as small as possible.

With the advent of new HPC systems with multiple levels of parallelism
composed of many-core CPUs, e. g., the second generation Intel R© Xeon PhiTM

processor (code-named “Knights Landing”, KNL) [29], and connected by high-
speed networking, such as the Cray* Aries* network, algorithms can now be
developed that take advantage of fast data movement and fast synchroniza-
tion between threads on the CPUs. These new systems have the potential for
improved strong parallel scaling, however, new algorithms need to be developed
that can make use of these massively parallel processor architectures [15].

Although the MPI (or MPI-only) model can be used on many of today’s archi-
tectures with large numbers of cores [16], and in principle can take advantage
of the fact that memory is shared, this programming model has several draw-
backs. Performance hits can happen using this programming model because of
its lack of ability to control memory at the node resulting in a lack of memory
coherency, higher latencies, and slower synchronizations. A more suitable app-
roach for developing strong scaling algorithms on large core architectures is to
use a hybrid execution model [27], where data movement between nodes is han-
dled by MPI and the data movement and execution within a node is handled by
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a multi-threading model such as OpenMP* [11,12,23]. The advantages of this
model are that synchronizing between threads is faster, extra data movements
can be avoided, and the memory footprint is potentially smaller since particular
data structures may not need to be duplicated among threads.

In this paper, recent developments of adding thread-level parallelism to the
plane-wave density functional theory (DFT) methodology in NWChem are pre-
sented [2,4,6,10]. In our current development, thread-level parallelism is inte-
grated into a MPI-only code using OpenMP constructs and threaded mathe-
matical libraries, such as the Intel R© Math Kernel Library. Similar efforts are
underway with other codes [1], however, to our knowledge our development is at
present unique in that the focus is on having ab-initio molecular dynamics sim-
ulations AIMD with very fast iteration times (i. e., very small times per AIMD
step). The target platform for our work is the NERSC-8 supercomputer “Cori”,
which employs a mix of Intel R© Xeon R© and Intel Xeon Phi processors that are
connected through the Cray Aries fabric.

2 Prior Work

There are three key kernels in AIMD that need be efficiently parallelized: 3D
FFTs, non-local pseudopotential, and Lagrange multiplier kernels that are used
for maintaining orthogonality of Kohn-Sham orbitals [4,7,14,22,32].

In the MPI-only parallel AIMD code in NWChem, the parallel efficiency of
the 3D FFT is by far the worst performing kernel, and the best algorithms are
only able to use N MPI tasks for a 3D FFT of an N × N × N grid. The lack of
parallel performance of 3D FFTs is well-known [3,8] and is related to the presence
of global all-to-all operations. To overcome this bottleneck, algorithms have been
developed that distribute the Kohn-Sham orbitals in addition to partitioning the
simulated space [5,7,14,32]. This results in a 2D processor geometry of Np =
Npi · Npj processors or MPI ranks (see Fig. 1).

The drawback of this strategy is that the Lagrange multiplier kernel becomes
less efficient as Npj becomes larger. In general, increasing Npj significantly
improves the efficiency of the 3D FFT and the non-local pseudopotential kernels,
while increasing Npi favors the Lagrange multiplier kernel. Hence, the best par-
allel performance is found by balancing the individual performance of the three
kernels with respect to Npi and Npj . It should be noted that clusters of Xeon Phi
processors have the potential to improve strong parallel scaling of the 3D FFT,
and as a consequence the overall scaling of AIMD, due to improved memory per-
formance of the high-bandwidth and on-package memory. Using multi-threading
instead of MPI primitives, synchronization times of the large numbers of threads
within the node can be reduced to increase execution efficiency of the kernels.

Recently, we have reported results from adding thread-level parallelism to
the AIMD code in NWChem [15]. The work focused on single-node performance
and showed promising results for the multi-threaded implementation of the key
kernels in the AIMD calculation. It was shown that through careful optimiza-
tions of tall-and-skinny matrix products, which are at the heart of the Lagrange
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Fig. 1. Possible types of parallel distributions of the Kohn-Sham orbitals in plane-wave
DFT software. (a) Each of the Kohn-Sham orbitals is identically spatially decomposed.
(b) Each Kohn-Sham orbital is located on different MPI tasks. (c) The 2D-parallel
distribution suggested by Gygi et al. [14], where the total Kohn-Sham orbital set are
block decomposed.

multiplier and non-local pseudopotential kernels, as well as other optimizations
for 3D FFTs, our OpenMP implementation delivered excellent strong scaling
for the 68 cores of the Xeon Phi Knights Landing processor. Moreover, it was
shown that the straightforward and naive approach of calling a multi-threaded
BLAS library from a serial (MPI) rank does not yield a satisfactory level of
performance for the Lagrange multiplier and non-local pseudopotential kernels.
A roofline model analysis [33] of the Lagrange multiplier verified that our imple-
mentation was close to the roofline model of the execution platform for various
problem sizes.

3 AIMD Implementation for the Intel Xeon Phi
Processor

The bulk of the computational work in AIMD revolves around the solution of
Ne eigenvalue equations, Hψi = εiψi, for the electron orbitals ψi, appearing as
a result of the DFT approximation to the Schrödinger equation.

These eigenvalue equations are subject to orthogonality constraints
∫

Ω

ψi(r)ψj(r)dr = δi,j (1)

Most standard AIMD algorithms use non-local pseudopotentials and plane-wave
basis sets to perform the DFT calculations and are typically solved using a
conjugate gradient algorithm or a Car-Parrinello algorithm [4,20]. For DFT, the
Hamiltonian operator H may be written as

Hψi =
(− 1

2∇2 + Vl + VNL + VH [ρ]
+Vxc[ρ]

)
ψi (2)
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Fig. 2. Operation count of Hψi in a plane-wave DFT simulation.

where the one-electron density is given by

ρ(r) =
∑

|ψi(r)|2 (3)

The local and non-local pseudpotentials, Vl and VNL, represent the electron-ion
interaction. The Hartree potential VH is given by

∇2VH = −4πρ (4)

and the exchange and correlation potential is Vxc. The algorithmic cost to eval-
uate Hψ and maintain orthogonality are shown in Fig. 2.

Due to their computational complexity, the electron gradient Hψi and
orthogonalization need to be calculated as efficiently as possible. The main para-
meters that determine the cost of a calculation are Ng, Ne, Na, and Nproj , where
Ng is the size of the three-dimensional FFT grid, Ne is the number of occupied
orbitals, Na is the number of atoms, Nproj is the number of projectors per atom,
and Npack is the size of the reciprocal space. Detailed estimates for the scalabil-
ity of these calculations in terms of the AIMD parameters can be derived and
fit in terms of a finite set of rates and bandwidths that are machine dependent
(e.g., see Bylaska et al. [5]). Fitting the machine dependent parameters was not
performed in this initial parallel benchmark study, because a large number of
calculations is needed for accurate fitting.

As shown in Fig. 2, the evaluation of the electron gradient (and orthogonality)
contains three major computational pieces:

– applying VH and Vxc, involving the calculation of 2Ne 3D FFTs;
– the non-local pseudopotential, VNL, dominated by the cost of the matrix mul-

tiplications W = PT Y , and Y2 = PW , where P is an Npack × (Nproj · Na)
matrix, Y and Y2 are Npack×Ne matrices, and W is an (NprojNa)×Ne matrix;

– enforcing orthogonality, where the most expensive matrix multiplications are
S = Y T Y and Y2 = Y S, where Y and Y2 are Npack × Ne matrices, and S is
an Ne × Ne matrix.
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In the next subsections, we focus on the main components of an AIMD step
that need to be parallelized both at the shared-memory and the distributed-
memory levels to achieve good parallel performance. All invocations of MPI
primitives in NWChem are done from within an OpenMP master region, requir-
ing the MPI THREAD FUNNELLED threading level to be used [21]. This keeps mes-
sages size larger and all threads then work on the same data block that was send
once, instead of having each thread communicate a smaller block.

3.1 3D FFTs

For each iteration of an AIMD simulation, Ne Kohn-Sham orbitals, ψ(G, 1 : Ne),
are converted from reciprocal space to real space and Ne orbital gradients are
transformed from real space to reciprocal space. This corresponds to computing
Ne reverse 3D FFTs and Ne forward 3D FFTs. In reciprocal space, only a sphere
of radius Ecut (or hemisphere for a Γ-point code), and contained within the 3D
FFT block, is needed and saved in the program.

Each 3D FFT consists of six distinct steps, each of which is executed for each
of the Ne Kohn-Sham orbitals in a pipelined fashion as illustrated in Fig. 3. For
the forward 3D FFT, the steps are (in reverse order for backward FFTs):

1. Unpack the reciprocal space sphere into a 3D cube, where the leading dimen-
sion of the cube is in the z-direction, second dimension is the x-direction, and
the third dimension is the y-direction.

2. Perform nx × ny FFTs along the z-direction. Note that only the arrays that
intersect the sphere need to be computed.

3. Rotate the cube so that the first dimension is the y-direction, z, x, y → y, z, x.
4. Perform nz × nx 1D FFTs along the y-direction.
5. Rotate the cube so that the first dimension is the x-direction, y, z, x → x, y, z.
6. Perform ny × nz 1D FFTs along the x-direction.

Fig. 3. Illustration of the pipelined 3D FFT
algorithm used in the NWChem AIMD code.

Fig. 4. Multithreading scheme
of the FFM operation.
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The 3D FFTs used in this paper were implemented by modifying the exist-
ing parallel 3D FFTs contained in the NWChem plane-wave module (called
NWPW). More details on the implementation of these FFTs can be found in
prior work by Bylaska et al. [5,6,16].

In the initial parallel FFT code, the 3D cube is distributed along the 2nd

and 3rd dimension. This distribution is block-mapped using a two-dimensional
Hilbert curve spanning the grid of the second and third dimensions (see [6]). This
two-dimensional Hilbert parallel FFT was built using a 1D FFT and a parallel
block rotation. The FFTPACK library [30] is used to perform the 1D FFTs, and
the parallel block rotation was implemented using non-blocking MPI primitives.

We generalized the FFTs to a hybrid MPI-OpenMP model by making the
following changes. The planes of 1D FFTs in steps 2, 4, and 6 execute on multiple
threads through an OpenMP DO directive so that a single 1D FFT is carried out
on one thread. The data rearrangement in steps 1, 3, and 5 is threaded using a
DO directive on the loops that perform the data-copying on the node.

3.2 Lagrange Multipliers and Non-local Pseudopotentials on 1D
and 2D Processor Grids

At each step of an AIMD simulation, wave functions need to be orthogonalized.
This is the purpose of the Lagrange multiplier method. Details on the algorithm
itself can be found in [4,20,26]. The Lagrange multiplier method solves sev-
eral matrix Riccatti equations [19] at every step. We have introduced a highly
scalable multi-threaded implementation of the Lagrange multiplier for the Xeon
Phi processor in [15]. In the following, we go through the different steps that
were required to derived a scalable hybrid MPI-OpenMP implementation for a
distributed memory many-core cluster.

The Lagrange multiplier algorithm can be described as a sequence of matrix-
matrix products of different sizes. In [15], we have introduced the following for-
malism. The letter F refers to an Npack × Ne or an Ne × Npack matrix, and M

Fig. 5. Dependencies between operations of the Lagrange multiplier algorithm.
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refers to an Ne×Ne matrix. A matrix product C = AB can then be described by
a sequence of three letters, the first referring to matrix A, the second to matrix
B, and the last one to matrix C. In general, Npack >> Ne, thus, F matrices or
their transpose are tall-and-skinny matrices.

The Lagrange multipliers method requires three types of matrix product
to be computed: MMM, FMF, and FFM. The dependencies between these
operations is depicted in Fig. 5.

The FFM type of matrix product is the most expensive part of the Lagrange
multiplier method. For this particular matrix shape, multi-threaded implemen-
tations available in vendor libraries do not scale well. In [15], we have introduced
an OpenMP algorithm that scales better than vendor solutions and that blends
well with the outer-level parallelism of an active OpenMP parallel region. The
parallelization scheme used in this approach is depicted in Fig. 4.

In order to exploit distributed memory processor grids (cf. Sect. 2), we have
implemented a version of the Scalable Universal Matrix Multiplication Algorithm
(SUMMA) [31]. The rationale behind SUMMA is to leverage the efficiency of
MPI collective communications. When computing C = AB on a Npi × Npj 2D
process grid, SUMMA broadcasts the current block of matrix A within row of
processes and the current block of B across a column a processes. The product
between these two blocks is then added to the local block of C. These local
contributions are computed using the OpenMP multi-threaded algorithm intro-
duced in [15]. In the case of the FFM operation, matrix A is of size Ne ×Npack,
and is distributed over a Npj ×Npi grid of MPI ranks. The C matrix is Ne ×Ne

and is replicated over Np = Npi · Npj copies. SUMMA is applied followed by a
global reduction of C to produce replicated matrices.

As part of the non-local pseudopotentials computation, a sequence of FFM,
MMM, and FMF matrix products also need to be computed. This is similar
to the Lagrange multipliers method except that M refers to a (NaNproj) × Ne

matrix and F refers to either a Npack × Ne or Npack × (NaNproj) matrix, where
Na is the number of atoms and Nproj is the average number of projectors per
atoms. For most systems, Ne is approximately NaNproj . Note that the matrix
operations for non-local pseudopotentials (and Projector Augmented Wave pro-
jectors) are separable across atoms (and, for some pseudopotentials, separable
across projectors), that is, C is block diagonal between atoms, and can be evalu-
ated atom by atom, although blocking is usually done to improve the efficiency.

4 Performance Evaluation

Our evaluation of the plane-wave DFT AIMD method has been performed on
the “Cori” system at NERSC. We use both partitions of the system to com-
pare the performance of the new code on both Intel Xeon processors (codename
“Haswell”) and Intel Xeon Phi processors (codename “Knights Landing” or KNL
for short).

The “Haswell” partition is a Cray XC40 system and consists of 2388 dual-
socket nodes with Intel Xeon E5-2698v3 processors running 16 cores per socket.
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Fig. 6. Scalability of the multi-threaded
NWPW code within a single Xeon and Xeon
Phi node for 64 water molecules.

Fig. 7. Speedups of the Xeon Phi
processors over the Xeon proces-
sors the “water256” benchmark at
different numbers of nodes.

The nodes are configured without Hyper-Threading, run at frequency of 2.3 GHz,
and are equipped with 128 GB of DDR4 memory with 2133 MHz. The nodes are
connected through the Cray Aries interconnect with Dragonfly topology [17].

The “Knights Landing” partition is also a Cray XC40 system with 9688
single-socket nodes with Intel Xeon Phi 7250 processors. Each processor fea-
tures 68 cores with four hardware threads per core. The cores are running at a
frequency of 1.4 GHz. Each node contains 96 GB of DDR4 memory running at
2400 MHz. For our evaluation, the 16 GB on-package high-bandwidth memory
has been configured to run in quadrant mode and is used in cache mode [29].
Similarly to the Xeon partition, the Xeon Phi partition uses the Cray Aries
interconnect with the Dragonfly topology.

In order to compare the performance of a node of the Xeon partition of Cori
to that of a node of the Xeon Phi partition, we conducted an intra-node strong
scaling study with a benchmark that simulates 64 water molecules (“water64”).
The pertinent dimensions for this system are Ne = 512, Ng = 1, 259, 712 (1083)
and Npack = 106, 456. To assess cluster performance, we use a larger input deck
that simulates 256 water molecules (“water256”). The matrix dimensions for this
system are Ne = 2056, Ng = 5, 832, 000 (1803) and Npack = 437, 600. We run
the “water256” benchmark on up to 256 nodes of the Xeon partition to establish
the baseline performance and to compare it with the Xeon Phi nodes. We then
scale the benchmark to up to 1024 nodes of the Xeon Phi partition to show the
feasibility of the AIMD plane-wave algorithm at a large-scale many-core system.

The first set of experiments aims at comparing the single-node performance
of the processors. This gives insight into the relative speed-up of the Xeon Phi
processor over the Xeon processor without the effects of the interconnect fabric.
Increasing number of threads from one to the maximum available physical cores,
we observe that a Xeon Phi node achieves a 1.8x speedup over a Xeon node when
used at full capacity (see Fig. 6). The Haswell processor shows a flat performance
profile at about 16 threads, as it reaches its memory-bandwidth limits, whereas
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Fig. 8. Scalability of major components of an AIMD step on the Xeon partition for
“water256”.

Fig. 9. Scalability of major components of an AIMD step on the Xeon Phi partition
for “water256”.

the Knights Landing processor still provides a speed-up with all physical cores
utilized due to the high-bandwidth on-package memory.

Next, we compare results obtained of the “water256” benchmark on 16, 32,
64, 128, and 256 nodes of each partition. We use 32 threads per Xeon node and
66 threads per Xeon Phi node. Leaving two cores of the Xeon Phi processor for
the operating system is best for performance. The Xeon Phi partition achieves a
speedup of 1.86x, 1.68x, 1.5x, and 1.3x over the Xeon partition on 16, 32, 64, and
128 nodes (see Fig. 7), showing that NWChem is able to exploit the additional
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Fig. 10. Scalability of AIMD on 256 water molecules (Npj = 1 and Npj = 16).

computing power of Xeon Phi nodes. It is important to note that as the number
of nodes grows, the local amount of work per node is reduced while the impact of
the interconnect and communication increases. This explains why the speedup of
KNL nodes over Xeon nodes decreases when the number of nodes increases. Ulti-
mately, the local work per node becomes too small to occupy the network fully
and thus the performance advantage of the Xeon Phi processor vanishes. When
using 256 nodes, Xeon nodes become faster than Xeon Phi nodes in this latency-
limited regime due to the 2x higher clock frequency, 0.5x flops/cycle, and 0.25x
bytes/sec of the Xeon nodes. Figure 8 and Fig. 9 illustrate the scalability of the
most expensive components of the AIMD simulation, which are the calculation
of the FFTs, the Lagrange multipliers method, and the non-local pseudopoten-
tials computation. The results show that all components scale well on both Xeon
and Xeon Phi nodes. However, it is interesting to note that due to the differences
in the underlying processor architectures, the relative cost of each component is
different on Xeon and Xeon Phi. The computation of non-local pseudopotentials
and Lagrange both dominate the cost on Xeon, while the Lagrange multiplier is
the dominating kernel on Xeon Phi. Computing the non-local pseudopotentials
is a similar process as the Lagrange multiplier, with fewer intermediate steps
between the FFM operations. As the Xeon Phi nodes use more threads than
the Xeon nodes, the Npack dimension is split in smaller blocks. Therefore, each
thread receives a smaller amount of work. For the Lagrange multipliers method,
the dependencies between the FFM operations and the MMM operations are
such that the effect of this trend is less visible (see Fig. 5).

Figure 10 shows the effect of changing the processor grid by increasing the
Npj dimension, as briefly described in Sect. 2. As can be seen from Fig. 10,
the scalability of the computation can be improved from 128 to 1024 nodes
by balancing Npi and Npj to favor the calculation of 3D FFTs and non-local
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pseudopotentials. For the sake of brevity, we did not fully explore the full para-
meter space of node counts and the shape of the (Npi × Npj)-grid distribution.
We plan to conduct such an analysis as a future work.

5 Conclusion and Future Work

The parallelism available on machines with many-core processors requires to
revisit the implementation of their programs to efficiently use the available
resources. In this paper, we have demonstrated that rewriting key kernels in
NWChem’s plane-wave AIMD module to use a hybrid MPI-OpenMP that pro-
vides good scalability on a many-core cluster based on the Intel Xeon Phi Proces-
sor. However, to achieve this level of performance for large AIMD simulations
the parallelism within a node must be implemented at a very fine grain level and
needs careful orchestration of MPI-level parallelism and OpenMP threading.

The unique implementations of key kernels used in AIMD such as sphere to
cube 3D FFTs and the matrix multiplication of tall-skinny matrices require spe-
cial attention and are not well for suited standard computational math libraries.
For example, due to the shape the matrices, standard BLAS libraries such as
Intel Math Kernel Library have a hard time to provide close-to-optimal perfor-
mance on a many-core system. However, by rewriting these kernels from scratch
using the hybrid MPI-OpenMP model at a required very fine grain level we were
able to obtain good performance.

For this paper, we simulated up to 256 water molecules, a standard bench-
mark for AIMD, to test our implementation. The experiments showed strong
scaling up to 1024 KNL nodes (69632 cores) for 256 water molecules. The tim-
ings of the major kernels, the pipelined 3D FFTs, non-local pseudopotential, and
Lagrange multiplier kernels all displayed significant speedups. Further, compar-
isons between the KNL and Haswell nodes showed that that Xeon Phi partition
was able to attain more than 1.5x speedup over the Xeon partition.

As future work, we plan to implement hybrid MPI-OpenMP algorithms for
exact exchange kernels needed for hybrid DFT calculations, as well as propagate
our current developments into the band structure code in NWChem. We also plan
to explore the parameter space in more detail and determine the best setting
of Npi and Npj for various node counts. Lastly, we are planning to carry out
runs at scale of a multiple of thousands of many-core cluster nodes to simulate
a problem that is of interest to the chemistry and geochemistry communities.
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