
Experiences Evaluating Functionality
and Performance of IBM POWER8+ Systems

Verónica G. Vergara Larrea(B), Wayne Joubert, Mark Berrill, Swen Boehm,
Arnold Tharrington, Wael R. Elwasif, and Don Maxwell

Oak Ridge National Laboratory, Oak Ridge, TN, USA
{vergaravg,joubert,berrillma,boehms,arnoldt,elwasifwr,maxwellde}@ornl.gov

Abstract. In preparation for Summit, Oak Ridge National Labora-
tory’s next generation supercomputer, two IBM Power-based systems
were deployed in late 2016 at the Oak Ridge Leadership Computing Facil-
ity (OLCF). This paper presents a detailed description of the acceptance
of the first IBM Power-based early access systems installed at the OLCF.
The two systems, Summitdev and Tundra, contain IBM POWER8+
processors with NVIDIA Pascal GPUs and were acquired to provide
researchers with a platform to optimize codes for the Power architec-
ture. In addition, this paper presents early functional and performance
results obtained on Summitdev with the latest software stack available.

1 Introduction

The Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) was
launched in 2014 by the U.S. Department of Energy (DOE) [14]. The CORAL
collaboration is led by Office of Science and National Nuclear Security Admin-
istration (NNSA) facilities which include the Oak Ridge Leadership Comput-
ing Facility (OLCF) at Oak Ridge National Laboratory (ORNL), the Argonne
Leadership Computing Facility (ALCF) at Argonne National Laboratory (ANL),
and Lawrence Livermore National Laboratory (LLNL). This joint effort between
three DOE national laboratories aims to build high performance computing
(HPC) technologies to support DOE’s mission and procure next generation large-
scale systems for each participating laboratory. Two distinct architectures were
selected for CORAL, one based on Intel’s manycore processors, and another
based on IBM Power processors with NVIDIA Volta accelerators. As a result of

Notice of Copyright. This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the article for pub-
lication, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 254–274, 2017.
https://doi.org/10.1007/978-3-319-67630-2_20

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan


Experiences Evaluating Functionality and Performance 255

CORAL three new systems will be deployed in the 2018 timeframe: Aurora
at ANL, Summit at ORNL, and Sierra at LLNL. Aurora will be based on
Intel’s third generation Xeon Phi manycore architecture and is expected to have
over 50,000 compute nodes and provide 180 PFLOPS [1]. Summit is ORNL’s
next generation supercomputer and will be based on IBM’s POWER9 architec-
ture with multiple NVIDIA Volta GPUs per node interconnected via NVLink.
Summit is expected to have approximately 3,400 compute nodes and to deliver
more than 5 times the performance of Titan, ORNL’s flagship supercomputer
today [11]. Sierra will also be based on IBM’s POWER9 processors and NVIDIA
Volta GPUs and is expected to have 4–6 times the performance of Sequoia,
LLNL’s production supercomputer [9].

In preparation for the arrival of Summit, the OLCF procured two early access
(EA) systems, Summitdev and Tundra, which are one generation removed from
Summit’s architecture. The goal of the EA systems is to give researchers an
opportunity to optimize their applications for the Power architecture and to
use multiple GPUs per node. Summitdev is the main system supporting the
Center for Accelerated Application Readiness (CAAR) efforts [2]. In addition,
Summitdev will be used by several researchers as part of the Exascale Computing
Project [5]. Tundra, on the other hand, will be used as an internal system to test
new software and gain a better understanding of the IBM ecosystem.

The EA systems were installed in November of 2016. In order to ensure that
each system would be able to fulfill its main purpose, the OLCF developed an
acceptance test plan that focused on functionality and reflected the needs of the
CAAR applications. Acceptance of the EA systems was completed in December
2016. Both Summitdev and Tundra were officially released to users in January
2017.

This paper describes the novel features of the hardware and software stack,
the test plan and procedures used to accept the system, and early results
obtained from running real-world applications and benchmarks on this new
architecture. Section 2 describes the system configuration, followed by a high-
level description of the acceptance test plan in Sect. 3. Sections 4–8 describe the
benchmarks and applications used, why they were chosen, and present individual
results. Section 9 discusses several challenges and lessons learned from accept-
ing the EA systems. Finally, Sect. 10 presents initial conclusions based on the
experience the ORNL team gained from using the IBM Power architecture.

2 System Configuration

Summitdev and Tundra are the two POWER8+ early access (EA) systems
deployed at the OLCF in late 2016. The main building block for the EA systems
is the IBM Power System S822LC server, which is the first IBM Power-based
system to provide NVIDIA NVLink Technology. Summitdev is comprised of 54
IBM POWER8 S822LC compute nodes. It has access to an NFS file system that
provides home directories, as well as two high performance parallel file systems:
the OLCF’s center-wide Lustre parallel file system, Spider 2 [24], and a dedicated



256 V.G. Vergara Larrea et al.

GPFS file system, Leto. The Tundra system is based on the same server offering
as Summitdev but contains 18 compute nodes. Tundra has access to a separate
NFS file system that provides home directories as well as project workspaces.

Hardware. Each compute node has two IBM POWER8 processors running at
2.860 GHz in normal operation and at 3.492 GHz in turbo mode. Each processor
has 10 cores, each capable of up to 8-way simultaneous multithreading (SMT),
i.e., each core supports up to 8 hardware threads. Each CPU is connected to
two NVIDIA Tesla P100 Pascal GPUs via NVIDIA NVLink Technology which
provides a bandwidth of 80 GB/s from the CPU to the GPUs and between
GPUs. Each NVIDIA Tesla P100 GPU is capable of delivering 5.3 TFLOPS of
double precision, 10.6 TFLOPS of single precision, and 21.2 TFLOPS of half
precision floating point performance. Furthermore, the P100 GPU is the first
accelerator to use High Bandwidth Memory 2 (HBM2) and includes four vertical
stacks of four memory dies totaling 16 GB of HBM2 memory and providing 732
GB/s peak memory bandwidth [7]. The compute node also has 256 GB of DDR4
memory capable of 340 GB/s peak memory bandwidth as well as one 1.6 TB Non-
Volatile Memory (NVMe) device [12,20]. All compute nodes are interconnected
via Mellanox EDR InfiniBand in a full fat-tree network that provides two links
each with 100 Gbps bandwidth between compute nodes. Figure 1 shows the
high-level structure of the compute node architecture used in Summitdev and
Tundra.

Fig. 1. IBM POWER8 S822LC compute node obtained from [20].

Software Stack. IBM provides a specialized software stack that targets their
HPC offerings. The products included in IBM’s HPC software stack as well as
IBM’s partners, NVIDIA and PGI, are described in Table 1. After Summitdev
and Tundra were accepted and IBM’s HPC software stack was officially released,
both systems were upgraded to use the generally available (GA) software. The
versions used in production are listed under the “GA” column in Table 1. Since
then, the software stack has continued to mature, and the systems now have
newer pre-release versions of certain components. The current versions available
on the EA systems are listed under the “Production” column.



Experiences Evaluating Functionality and Performance 257

Table 1. EA systems software stack

Feature Product Acceptance GA Production Vendor

Batch scheduler Spectrum LSF 10.1.0a 10.1.0.1 10.1.0.1 IBM

MPI library Spectrum MPI 10.1.0.2b 10.1.0.2 10.1.0.2 IBM

Math libraries ESSL 5.5b 5.5 5.5 IBM

Compilers XL C/C++ 13.1.5b 13.1.5 14.1.0b IBM

XL Fortran 15.1.5b 15.1.5 16.1.0b IBM

PGI 16.10a 17.1 17.3 PGI

clang 3.8.0b 3.8.0b 3.8.0b IBM

(LLVM C/C++)

xlflang 4.0.0b 4.0.0b 4.0.0b IBM

(LLVM Fortran)

GCC 4.8.5 4.8.5 4.8.5 RedHat

CUDA support CUDA Toolkit 8.0.44− 1b 8.0.54 8.0.54 NVIDIA

CUDA Driver 361.103 361.107 375.51 NVIDIA

Parallel file system Spectrum Scale (GPFS) 4.2.1.2 4.2.1.2 4.2.3 IBM
a Patched version.
b Beta version.

3 Acceptance Test

The OLCF developed a comprehensive acceptance test (AT) plan to verify the
functionality of the EA systems. The AT plan contains three test phases: a
hardware test (HWT), an I/O test (IOT), and a functionality test (FT). The
AT on the EA systems took approximately three days to complete.

Hardware Test (HWT). The HWT is designed to ensure that all the hardware
components are functioning correctly. This is accomplished by running vendor-
provided hardware diagnostics as well as the HPL High Performance Linpack
benchmark both to identify slow nodes and to ensure that each node meets or
exceeds expected performance levels. The HWT also includes system adminis-
tration tasks that are commonly needed in production. First, the full system is
rebooted twice to ensure that it can be put back into production in a reasonable
amount of time. Then, an MPI application is used to start multi-node jobs across
the system and a node failure is simulated. The test is considered successful if
the node failure only impacts the job that was allocated on that node. If all tests
in the HWT phase succeed, the IOT is started.

I/O Test (IOT). As previously mentioned, Summitdev has access to a small
GPFS file system called Leto and to the Spider 2 Lustre file system. For the
IOT, only Leto was tested given that the OLCF will have a center-wide GPFS
file system in the Summit timeframe. The IOT basic functionality tests include
measuring metadata performance with the mdtest benchmark, measuring I/O



258 V.G. Vergara Larrea et al.

bandwidth of POSIX, HDF5, and MPI-IO using the IOR benchmark, and cre-
ating a 10 TB file in the file system. If no issues are observed during the IOT,
the FT starts.

Functionality Test (FT). The FT phase includes tests to evaluate the func-
tionality of compilers, math and I/O libraries, MPI implementation, and tools.
To accomplish this a set of miniapps, benchmarks, and real-world applications
is used. These were selected to ensure high coverage of features commonly used
by scientific application developers. Table 2 summarizes the codes used during
the FT phase and each code’s test objectives.

Table 2. FT benchmarks, miniapps, and applications

Test Purpose

Intel MPI Benchmarks MPI bandwidth and latency

OpenMP 3.1 verification and
validation suite

OpenMP 3.1 specification

CUDA & GPU Direct tests CUDA, CUDA Fortran
CUDA MPS, and GPU Direct

NVLink Tests CPU↔GPU, GPU↔GPU bandwidth

SPEC OMP2012 OpenMP 3.1 functionality and performance

SPEC ACCEL ACC suite OpenACC 1.0 functionality and performance

SPEC ACCEL OMP suite
(pre-release)

OpenMP 4.5 functionality and performance

ScaLAPACK tests Parallel dense linear algebra (DLA) operations

Minisweep Radiation transport miniapp with OpenMP 3.1
and CUDA support

NUCCOR kernels Nuclear physics miniapp; DLA operations using:
LAPACK, OpenBLAS, ESSL; programming
models: OpenMP 3.1, OpenMP 4.5, OpenACC

XRayTrace Ray propagation miniapp; uses: C++11 threads,
OpenMP, OpenACC, CUDA

Nekbone CORAL benchmark; simulates Nek5000

HACCmk CORAL benchmark; simulates HACC

QBOX CORAL benchmark; first-principles molecular
dynamics application

GTC Gyrokinetic 3D particle-in-cell application

During the FT phase, each code is compiled with each target compiler. Then,
a single job for each test is submitted. Once each test has completed successfully
at least once, the entire set of tests is launched continuously for a period of
at least 8 h. During that period, any job failure is investigated and classified.



Experiences Evaluating Functionality and Performance 259

The test phase is considered complete if there are no job failures, or in the event
that there are failures, if the root cause for each failure has been identified and
a remediation or a fix exists.

4 Benchmarks

Several benchmarks and standard tests were used to evaluate the functionality
of the EA systems. A set of performance tests was also used to verify that
the hardware met vendor specifications; this set included bandwidth intra-node
tests (i.e., between node components) and inter-node tests (i.e., between compute
nodes).

GPU Specific Tests. A set of tests (i.e., CUDA tests) was created to ensure
correct functionality of the NVIDIA CUDA driver, the NVIDIA CUDA Toolkit,
and the P100 GPUs. The set includes modified versions of the NVIDIA CUDA
Toolkit code samples [4], in particular the “Simple References” examples.

Specific tests were also developed to evaluate GPUDirect capabilities (i.e.,
GPU Direct tests), NVLink Technology (i.e., NVLink tests), and Unified Virtual
Addressing (NVLink UVA tests). Three simple GPUDirect codes were created:
PingPong, Stencil, and Collective. Variations of each code were also created to
test CUDA MPS, CUDA Fortran, and managed memory. Tests with 1, 4, and
25 compute nodes were created for each code, and each was built with XL,
PGI, GCC, and LLVM. Three additional tests were created to measure the
host-device and device-device bandwidths as well as ensure proper functionality
of each device. These tests are based on the bandwidthTest, deviceQuery, and
topologyQuery code samples provided in the “Utilities” section of the CUDA
SDK examples. The bandwidthTest example was also extended to include support
for unified memory. The bandwidth values measured using the NVLink tests are
shown in Fig. 2.

Fig. 2. NVLink host-device and device-host bandwidth using memcpy and unified
memory.



260 V.G. Vergara Larrea et al.

During Summitdev’s acceptance, the CUDA, GPU Direct, and NVLink tests
were able to identify several issues on the system. The Collective CUDA Fortran
tests triggered a bug in the CUDA driver that caused the GPU to hang instead
of returning an appropriate error. The Collective OpenACC test was able to
identify an issue in how a pre-release version of Spectrum MPI was launching
OpenACC code. The NVLink tests identified a performance regression between
CUDA drivers as well as find two Summitdev compute nodes in which peer-to-
peer access between GPUs 2 and 3 was not functioning correctly.

MPI Tests. The Intel MPI Benchmarks suite (IMB) [6] provides a set of tests
of MPI capabilities and performance on parallel platforms. The test suite was
run on Summitdev to thoroughly check functionality and evaluate target perfor-
mance measurements of MPI over the EDR InfiniBand network.

Fig. 3. MPI point-to-point bandwidth

Figure 3 shows point-to-point communication results. Maximum bandwidths
attained were 21.793 unidirectional (resp. 39.062 bidirectional) GB/sec, com-
paring favorably to theoretical peak values of 25 (resp. 50) GB/sec; measured
latencies were 1.29 (resp. 1.43) µs. This test was performed using 2 MPI ranks
on 2 nodes without any special action to specify node placement.

5 Compiler Tests

The following test suites were selected to evaluate the different compiler imple-
mentations available on Summitdev. The test suites were chosen both to evaluate
the implementation against the corresponding programming model specification
and also to evaluate the functionality and performance of each compiler.



Experiences Evaluating Functionality and Performance 261

OpenMP Verification and Validation Suite. The OpenMP 3.1 Validation
Testsuite [29] is a portable and robust validation test suite execution environ-
ment to validate the OpenMP implementation in several compilers. This test
suite targets version 3.1 of the OpenMP specification, which does not support
offloading to accelerators. OpenMP offloading was tested using the pre-release
SPEC ACCEL suite for OpenMP. We used the version of the test suite that is
included in the ongoing work to incorporate OpenMP offloading support into
Clang and LLVM [18].

Table 3. OpenMP validation suite results

NTHREADS C Fortran

GNU PGI XL CLANG GNU PGI XL

2 94.3% 94.3% 94.3% 93.5% 88.5% 85.4% 88.5%

8 95.9% 95.9% 95.9% 95.1% 88.5% 85.4% 88.5%

16 95.9% 94.3% 95.9% 93.5% 88.5% 85.4% 87.5%

64 95.9% 94.3% 95.1% 93.5% 88.5% 85.4% 86.5%

The test suite included a total of 219 tests (123 tests for C and 96 for Fortran)
that cover 115 OpenMP constructs (62 C constructs and 53 using Fortran). The
test suite framework includes four varieties of tests for a target OpenMP direc-
tive; normal tests check that the directive (or clause) is implemented correctly,
cross tests checks the impact of removing the target construct from the code.
More details can be found in [29].

The test suite was exercised using different numbers of OpenMP threads for
each of the available compilers. No special binding and mapping controls were
used. Table 3 shows the percentage of successful tests for the combination of
compilers, languages, and number of threads. Only GA versions of the compilers
as listed in Table 1 were used. For GCC, the gomp-4 0-branch branch of the
GCC 6.3 compiler suite was used.

The test suite results show better support for OpenMP C bindings among all
tested compilers than for Fortran binding. The testing matrix for all OpenMP
constructs across all compilers and using different number of threads helps iden-
tify issues with the compiler implementation (or in some cases, with the testing
suite itself). For this evaluation, a total of 15 tests (2 C tests and 13 Fortran
tests) failed for all combinations of compilers and number of threads, possibly
indicating a problem in the tests themselves. Some tests show a different failure
behavior as the number of threads change. In such cases, comparing the failure
pattern with results for the same tests from other compilers may help identify if
the failure is due to compiler implementation bug or an issue with the test itself
that makes it invalid for certain thread counts.



262 V.G. Vergara Larrea et al.

SPEC ACCEL and SPEC OMP2012. The Standard Performance Evalua-
tion Corporation (SPEC) releases a variety of realistic and standardized bench-
marks to evaluate the performance of computer systems. For acceptance, two
SPEC benchmark suites were used to evaluate the different compilers avail-
able for the EA systems. The benchmarks used were SPEC OMP2012 and
SPEC ACCEL. The SPEC OMP2012 benchmark measures the performance
of OpenMP-based applications. It includes 14 applications and is focused on
OpenMP 3.1. SPEC ACCEL is a benchmark suite of computationally inten-
sive applications and measures the performance of accelerator based systems.
SPEC ACCEL supports OpenCL and OpenACC. Support for OpenMP 4.5 is
currently in development and is expected to be released this year. In this work,
a pre-release version of SPEC ACCEL with OpenMP 4.5 support was used to
evaluate offloading capabilities of the available compilers.

For the evaluation, “base” runs were produced following SPEC rules. All
benchmarks were built using common optimization flags, and were run with
the test and train problem sizes, and 3 iterations of the benchmarks with the
reference problem sizes. All of the metrics presented in this section are measured
estimates. To build the benchmarks the “Production” compilers listed in Table 1
were used with the exception of the GCC compilers. For GCC, the development
version of GCC 6.3.1 built from the gomp-4 0-branch branch was used because
it provides partial support for OpenACC.

All SPEC OMP2012 runs are executed on a dedicated node for each bench-
mark run. For these tests 160 OpenMP threads were used to fully utilize the
hardware threads available on the Power architecture. SPEC ACCEL bench-
marks are also executed on a dedicated node for each benchmark run. While 4
P100 GPUs are available on the compute node, only one is used for the execution
of the benchmarks.

PGI is the only production compiler that delivers successful results for SPEC
OMP2012 and SPEC ACCEL for OpenACC. The measured estimates for the
SPEC OMP2012 and SPEC ACCEL compute performance metrics can be seen

Table 4. Overview of execution of the SPEC OMP2012 suite.

Benchmark

3
5
0
.m

d

3
5
1
.b

w
av

es

3
5
2
.n

a
b

3
5
7
.b

t3
3
1

3
5
8
.b

o
ts

a
lg

n

3
5
9
.b

o
ts

sp
a
r

3
6
0
.i
lb

d
c

3
6
2
.f
m

a
3
d

3
6
3
.s

w
im

3
6
7
.i
m

a
g
ic

k

3
7
0
.m

g
ri

d
3
3
1

3
7
1
.a

p
p
lu

3
3
1

3
7
2
.s

m
it

h
w

a

3
7
6
.k

d
tr

ee

XL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PGI ✓ ✓ ✓ ✓ ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GNU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LLVM ✗a ✓ ✓ ✗a ✓* ✓ ✓ ✗a ✗a ✓ ✗a ✗a ✓ ✓
a Compile Error.



Experiences Evaluating Functionality and Performance 263

Table 5. Overview of execution of the SPEC ACCEL OpenACC suite.

Benchmark

3
0
3
.o

st
en

ci
l

3
0
4
.o

lb
m

3
1
4
.o

m
ri

q

3
5
0
.m

d

3
5
1
.p

a
lm

3
5
2
.e

p

3
5
3
.c

lv
rl

ea
f

3
5
4
.c

g

3
5
5
.s

ei
sm

ic

3
5
6
.s

p

3
5
7
.c

sp

3
5
9
.m

in
iG

h
o
st

3
6
0
.i
lb

d
c

3
6
3
.s

w
im

3
7
0
.b

t

PGI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GNU ✓ ✓ ✓

Table 6. Overview of execution the SPEC ACCEL OpenMP suite.

Benchmark

5
0
3
.p

o
st

en
ci

l

5
0
4
.p

o
lb

m

5
1
4
.p

o
m

ri
q

5
5
0
.p

m
d

5
5
1
.p

p
a
lm

5
5
2
.p

ep

5
5
3
.p

cl
v
rl

ea
f

5
5
4
.p

cg

5
5
5
.p

se
is

m
ic

5
5
6
.p

sp

5
5
7
.p

cs
p

5
5
9
.p

m
in

iG
h
o
st

5
6
0
.p

il
b
d
c

5
6
3
.p

sw
im

5
7
0
.p

b
t

XL ✓ ✓ ✗b ✗b ✗a ✗b ✗b ✗b ✗b ✗b ✗a ✗b ✓ ✗c ✗a

LLVM ✓ ✓ ✗b ✗a ✗a ✓ ✗a ✗b ✓ –d ✗a ✗a ✗c ✗a ✓
a Compile Error.
b Runtime Error.
c Verification Error.
d 556.psp is a mixed C and Fortran code, and cannot be compiled.
clang and xlflang cannot be used together.

in Tables 7 and 8. The compute performance metric (labeled as “Overall”) is the
geometric mean of the normalized ratios of all the benchmarks in a particular
SPEC benchmark suite.

The measured estimates for OMP2012 with the IBM XL compiler can be
found in Table 7. ACCEL estimates for OpenMP with the XL compiler are not
presented here because the compiler does not provide full support for OpenMP
4.5 yet. The current status of ACCEL for OpenMP with the XL compiler is
summarized in Table 6. While most of the benchmarks successfully compile, only
3 pass the verification. All other benchmarks currently either do not compile or
link correctly, experience runtime errors, or do not pass the verification.

Measured estimates for OMP2012 using the GCC compilers can be found
in Table 7. The GCC compiler provides partial support for OpenACC offload-
ing, and because it does not yet support acc kernels only three benchmarks in
ACCEL OpenACC, as shown in Table 5, are parallelized. GCC does not currently
provide OpenMP 4.0 offloading for GPU targets, therefore ACCEL OpenMP was
not included. For GCC, measured estimates obtained with the reference problem
size are reported.



264 V.G. Vergara Larrea et al.

Table 7. Measured estimates of the SPEC OMP2012 suite (higher is better).

XL PGI GNU

350.md 6.38 6.88 1.41

351.bwaves 0.898 10.90 2.14

352.nab 3.98 4.49 5.93

357.bt331 10.20 7.50 9.95

358.botsalgn 3.78 3.30 3.74

359.botsspar 2.97 3.39 3.42

360.ilbdc 8.93 8.84 0.132

362.fma3d 4.30 4.19 6.17

363.swim 10.8 9.85 11.20

367.imagick 8.63 9.15 7.71

370.mgrid331 8.52 7.67 8.75

371.applu331 11.10 8.99 12.20

372.smithwa 7.40 8.26 12.60

376.kdtree 3.78 4.46 13.50

Overall 5.53 6.50 4.74

Table 8. Measured estimates of the SPEC ACCEL for OpeACC (higher is better).

PGI GNU

303.ostencil 7.66 3.26

304.olbm 11.10 8.86

314.omriq 8.86

350.md 13.70

351.palm 2.98

352.ep 8.47

353.clvrleaf 8.43

354.cg 7.18

355.seismic 8.16

356.sp 8.21

357.csp 8.94

359.miniGhost 6.67

360.ilbdc 9.33 4.39

363.swim 5.61

370.bt 18.70

Overall 8.31



Experiences Evaluating Functionality and Performance 265

The 358.botsalgn benchmark in the OMP2012 suite does not successfully
run for the test and train problem sizes when compiled with the PGI and the
GCC compilers. Running the benchmarks with the “ref” problem size, however,
produces valid runs. The benchmarks are marked with a * in Table 4 since they
will currently not produce a reportable run according to the SPEC reporting
rules [10].

6 CORAL Benchmarks

The CORAL Benchmark codes are a suite of benchmarks and mini-applications
designed to represent the workloads of the laboratories involved in the CORAL
collaboration and will be used to evaluate the systems when deployed. More
information about the CORAL Benchmark codes and unmodified versions of
the applications can be found in [3].

Nekbone. Nekbone is a CORAL benchmark used to capture the basic structure
and user interface of the Nek5000 software. Nek5000 is a high order, incompress-
ible Navier-Stokes solver based on the spectral element method. Nekbone solves
a standard Poisson equation using a conjugate gradient iteration with a simple
preconditioner on a block or linear geometry. The benchmark is highly scal-
able and can accommodate a wide range of problem sizes. The benchmark is
intrinsically well load balanced, with each process having the same number of
spectral elements and point-to-point communication with up to 26 surrounding
neighbors.

For the purposes of acceptance, a modified version of Nekbone to utilize the
GPUs based on CUDA using the XL compiler was used. A single node was
used to run a small problem and verify the correct output using the accelerated
version of the application.

HACCmk. The Hardware Accelerated Cosmology Code (HACC) framework
uses N-body techniques to simulate the formation of structure in collisionless
fluids under the influence of gravity in an expanding universe. The HACC frame-
work was designed with great flexibility making it easily portable between differ-
ent platforms. HACC uses MPI and OpenMP and depends on an external FFT
library.

For acceptance, a modified version of the HACC microkernel to utilize the
GPUs based on CUDA using the XL compiler. A small problem utilizing 2 nodes
and 8 processes (1 process/GPU) was used to verify the correct output using
the accelerated version of the application. Detailed performance data was not
collected, and a comparison of runtime across different node counts, problem
sizes, and CPU vs. GPU was not performed.

QBOX. QBOX is a scalable first-principles molecular dynamics (FPMD) appli-
cation used to compute properties of materials. QBOX is written in C++ and
uses MPI [8,26].



266 V.G. Vergara Larrea et al.

Fig. 4. QBOX results for a 640-atom bcc magnesium oxide system.

For the Summitdev acceptance, a single test case was run using 4 MPI ranks
with 4 OpenMP threads per rank on a single node. To better understand the
scalability of the code, four additional cases were created with 8, 16, 32, and
64 MPI ranks. Figure 4 shows the results obtained when running the standard
GPU-enabled QBOX benchmark which simulates a large bcc magnesium oxide
system with 640 atoms. The results show that the case does not scale well
beyond 2 nodes. Further investigation is needed to better understand the scala-
bility of QBOX.

7 Mini-applications

ScaLAPACK Tests. ScaLAPACK [21] is a Fortran library for performing
dense linear algebra operations on distributed CPU-based systems using MPI.
It is required by some OLCF applications including one of the thirteen Summit
early readiness applications targeted by the ORNL CAAR program. For this test
case, the xsgsep code is executed, a symmetric eigensolver test from the ScaLA-
PACK test suite. The test executes with four MPI ranks on one Summitdev
node.

ScaLAPACK must be built against a version of the LAPACK [17] library.
For this we tested two options: use of the standard LAPACK distribution, or
use of the optimized LAPACK functionality found in ESSL [15]. For the latter,
since ESSL is missing some required routines of the standard LAPACK version
needed by ScaLAPACK, the code build’s linker step was set up to use standard
LAPACK as a backing library to satisfy any unsatisfied references, and repeated
references to LAPACK routines were ignored. Also, the ScaLAPACK version
included in the standard release of the PGI compiler was tested.

Cases run are shown in Table 9. All cases were successful except for those
involving LLVM. The LLVM xlflang compiler used is an early beta version still
in development. It is expected that robustness will improve as the compiler
becomes more mature.



Experiences Evaluating Functionality and Performance 267

Table 9. ScaLAPACK cases tested

Compiler LAPACK version ScaLAPACK version Status

GCC Standard Standard Passed

GCC ESSL Standard Passed

PGI Standard Standard Passed

PGI ESSL Standard Passed

PGI Standard PGI Passed

LLVM Standard Standard Failed

LLVM ESSL Standard Failed

XL Standard Standard Passed

XL ESSL Standard Passed

Though not attempted here, ScaLAPACK use cases employing ESSL can in
principle be modified to use the CPU-threaded or the CUDA-enabled version of
ESSL to accelerate the performance of ScaLAPACK on Summitdev.

Minisweep. Minisweep is a miniapp designed to mimic the behavior of the
sweep operation of the Denovo Sn radiation transport code [16]. It can be built
with OpenMP 3.1 or CUDA support under multiple compilers in single processor
or MPI mode.

Figure 5 shows the results obtained from running Minisweep using 8 MPI
ranks on 2 compute nodes under the three different configurations: MPI-only,
MPI with 2 OpenMP threads per rank, and MPI with CUDA. Minisweep built
with the XL compiler shows a smaller performance improvement when OpenMP
threads are enabled. This will require further investigation to understand how
thread pinning and placement will impact performance.

(a) CPU only. (b) CPU and GPU.

Fig. 5. Minisweep results using the XL and GCC production compilers.



268 V.G. Vergara Larrea et al.

Fig. 6. NUCCOR kernels: configuration combinations tested

Fig. 7. NUCCOR kernels: timings for matrix products including transfers

During acceptance, the distributed version of Minisweep that uses CUDA and
is compiled with GCC resulted in the highest performance. Building Minisweep
with CUDA enabled with the PGI compiler resulted in build errors, and so did
the OpenMP and CUDA versions of the miniapp when built with the LLVM
compiler. The Minisweep test ran during acceptance was a small case to test
functionality only.

NUCCOR Kernels. The NUCCOR kernels code is designed to model the per-
formance of a significant computation of the NUCCOR nuclear physics applica-
tion [23]. NUCCOR kernels computes the matrix product C = AT

1 A2A3 for a
series of dense matrix triples (A1, A2, A3) of sizes representative of cases from
NUCCOR workloads.

NUCCOR kernels tests multiple combinations of compiler family, source lan-
guage, library and threading model. In practice, not all combinations of options
are allowed, and not all allowed combinations are tested. The purpose of the test
is to verify correctness for many supported combinations expected to be required
by users of Summitdev rather than test all combinations.



Experiences Evaluating Functionality and Performance 269

Figure 6 shows the combinations tested. The designator “OMP3” denotes
that the host code included OpenMP 3.1 constructs as a test for compatibil-
ity. In each LAPACK case, the library was entirely built by the respective
host compiler. PGI LAPACK is a custom CPU-only build of LAPACK pro-
vided by PGI. OpenMP 4 cases use offload constructs and hand-coded DGEMM
loops. The OpenACC/cuBLAS case uses OpenACC directives for offloading and
cuBLAS for the DGEMM. The designated LLVM tests used an early OpenMP 4
implementation [13] Every case tested ran successfully and gave correct results,
even though many of these combinations are very new, including XL/OpenMP 4,
PGI/POWER, LLVM/Fortran and LLVM/OpenMP 4. The capability of these
components to perform efficiently and interoperate correctly will be important
to our users going forward.

Figure 7 shows timings for selected cases using square matrices for a range
of sizes on a single GPU. The PGI Fortran compiler is used in both cases. Tim-
ings include data transfers to and from the GPU. The OpenACC+cuBLAS case
benefits from less transfer due to the ability to keep an intermediate matrix on
the GPU. The reasons for performance irregularities for the ESSL/SMPCUDA
case, particularly for the n = 4, 081 case, are unknown. For both cases, DGEMM
performance is a significant fraction of peak attainable. We expect performance
to improve as the software stack matures.

XRayTrace. The XRayTrace miniapp represents the primary computational
component for a 3D coupled atomic-physics/ray-propagation code used to sim-
ulate ASE (Amplified Spontaneous Emission) and seeded X-ray lasers [16,19].
XRayTrace consists in solving many independent rays in parallel, aggregating
the results to form an image that is used to couple the atomic physics in the full
application.

Most C++ standard compilers are supported, and multiple programming
models are tested including C++11 threads, OpenMP, OpenACC, and CUDA.
No external libraries are required and all programming models are optional.

For acceptance, XRayTrace was used to test the C++ compiler support for
the different programming models and to compare the relative performance of the
available compilers. All GPU tests used a single GPU only, while CPU tests used
all CPU cores. The timings listed in seconds only include the cost of the kernel
or work performed for one iteration within the main application. Table 10 shows
the results of the ASE/seeded problems for two common problem sizes. For all
cases, all compilers/parallel models produced the correct output. In general, all
compilers had similar timing results, CUDA showing the largest speedup. Ope-
nACC with PGI had similar performance to CUDA. An unknown issue occurs
when running OpenMP with PGI that causes a significant slowdown that was
not seen with other compilers, which will require more investigation. In all cases,
optimized flags for each compiler were chosen.



270 V.G. Vergara Larrea et al.

Table 10. XRayTrace timing results shown in seconds.

Problem Compiler Serial Threads OpenMP OpenAcc CUDA

ASE (small) GCC 3.902 0.178 0.278 — 0.035

PGI 3.296 0.197 12.082 0.038 —

XL 2.766 0.150 0.314 — 0.056

LLVM 3.898 0.197 0.409 — 0.059

ASE (medium) GCC 9.377 0.376 0.611 — 0.073

PGI 7.923 0.396 12.711 0.085 —

XL 7.177 0.308 0.637 — 0.071

LLVM 9.501 0.351 0.790 — 0.073

Seeded (small) GCC 49.759 1.734 1.950 — 0.472

PGI 49.996 1.969 619.476 0.453 —

XL 32.519 1.481 4.609 — 0.463

LLVM 51.546 1.776 3.991 — 0.456

Seeded (medium) GCC 103.923 3.281 6.266 — 0.678

PGI 117.806 4.326 371.055 0.734 —

XL 78.791 3.017 7.189 — 0.670

LLVM 111.715 3.558 6.529 — 0.666

8 OLCF Applications

To ensure that the system can support realistic workloads, a set of applications
commonly used at OLCF were selected for acceptance of the EA systems includ-
ing GTC [27], NAMD [25], and LSMS [22]. For this work, the GTC test cases
were extended and its results are presented in this section.

GTC. GTC [27] is a 3D particle-in-cell code developed by the Princeton Plasma
Physics Laboratory and the University of California at Irvine to study microtur-
bulence in magnetically confined fusion plasmas. [27]. It is scalable to hundreds
of thousands of processor cores and has been used previously for acceptance
testing of OLCF systems [28]. The version of GTC used here is an older mature
version based on MPI and OpenMP 3.1. Two cases are run, at 2 and 26 nodes
with 10 MPI ranks per node and 2 OpenMP threads per rank. The cases rep-
resent 10 simulation steps with 769 radial and 3,072 poloidal gridcells with two
electrons and two ions per gridcell.

After acceptance, additional cases using 4, 8, 16, and 32 nodes were added
in order to better understand GTC’s scaling on the Power architecture. Results
obtained from running GTC with OpenMP enabled are shown in Fig. 8(a). In
addition, Fig. 8(b) shows a strong scaling plot of GTC when running on Sum-
mitdev. GTC was compiled using GCC.



Experiences Evaluating Functionality and Performance 271

(a) Constant work per process. (b) Strong scaling.

Fig. 8. GTC timing results. (a) Problem size is doubled with the number of processes
to keep the amount of work per process approximately constant. (b) Problem size is
kept constant and the number of MPI ranks is doubled with each experiment.

9 Lessons Learned

Several considerations are necessary when porting codes to the IBM Power archi-
tecture. First, on Power, chars are by default unsigned whereas on x86 the
default is signed. This is an important consideration as it can result in incor-
rect results. This was observed when running the SPEC OMP2012 benchmarks,
which required the addition of -qchars=signed, and -fsigned-char for the XL
and GCC compilers, respectively. Another difference to be aware of is that long
doubles on Power are by default 128-bits. It is also important to understand
the different optimization levels provided by each compiler. The XL compilers,
unlike GCC and PGI, provide up to optimization level -O5 so careful consider-
ation must be given to selection of optimization flags that match the compiler.
For example, the Minisweep OpenMP tests built the XL compiler required -O4
-qsmp=omp in order to achieve performance improvements when compared to
the MPI-only version of the code.

Looking at support for the different programming models, results showed
varied levels of support. OpenMP 3.1 is well supported by the four compilers
tested, however, some of the tests executed showed little or no performance
improvements as with Minisweep, while others showed lower performance as was
the case with Nekbone when built with PGI. This can be partially attributed
to the fact that by default in the Power environment, threads are not pinned.
This will require further investigation. As far as OpenMP 4.5 is concerned, two
compilers are scheduled to provide support: XL and LLVM. While XL provides
partial support OpenMP 4.5 offloading to the GPU, the implementation is still
maturing as shown by the SPEC ACCEL OMP results. Similarly, OpenMP
4.5 support in LLVM is currently in active development. OpenACC support on
Power is currently provided by the PGI compiler, which, as results of SPEC
ACCEL ACC show, is a mature implementation. Partial support for OpenACC
in GCC is currently provided in GCC 6.3 and is expected to be fully supported
in the GCC 7 release.



272 V.G. Vergara Larrea et al.

10 Conclusions

At roughly 1 PF of peak performance and only 54 nodes, Summitdev is a very
powerful system. The step-up in performance of the Summitdev nodes compared
to Titan nodes is immediately felt by applications.

As expected with a new system, some replacements of problematic hardware
were required shortly after delivery. Careful testing with multiple diagnostic
benchmark codes was valuable for uncovering these problems.

Programming the node is a more complex process, ostensibly due to the
presence of multiple GPUs per node, but also from other factors such as simul-
taneous multithreading (SMT) modes and the need to coordinate use of GPUs
and CPU threads across multiple NUMA domains. The interplay of LSF and
mpirun with respect to node execution configuration and the interaction of these
with OpenMP and CUDA environment variables, MPS, host code threading
and device selection must also be managed. This will most likely become more
tractable through time and experience.

Relationships between different compiler versions, supported features and
libraries have become complex and will require careful build configuration man-
agement by users. Newly developed compiler features, in some cases still in beta,
are expected to mature and harden over time. Vendors are aggressively working
to improve these products and respond to reported bugs.

We anticipate Summitdev to be an effective resource for preparing applica-
tions for Summit, and it has already begun to bear fruit in this regard.

Acknowledgements. The authors would like to thank the entire Summitdev Accep-
tance Test team for the development of tests for each phase. In addition to the authors,
the team also includes: Adam Simpson, Mike Brim, Dustin Leverman, Oscar Hernan-
dez, Chris Zimmer, Sarp Oral, Scott Atchley, and Matt Ezell.

This research used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

References

1. Aurora. http://aurora.alcf.anl.gov/
2. Center for Accelerated Application Readiness (CAAR). https://www.olcf.ornl.

gov/caar
3. CORAL Benchmark Codes. https://asc.llnl.gov/CORAL-benchmarks
4. CUDA Samples. http://docs.nvidia.com/cuda/cuda-samples/index.html#samples

-reference
5. Exascale Computing Project. https://exascaleproject.org/
6. Intel MPI Benchmarks User Guide. https://software.intel.com/en-us/imb-user-

guide
7. NVIDIA TESLA P100 GPU Accelerator. https://images.nvidia.com/content/

tesla/pdf/nvidia-tesla-p100-datasheet.pdf
8. Qbox: First-Principles Molecular Dynamics. http://qboxcode.org/
9. Sierra. https://asc.llnl.gov/coral-info

http://aurora.alcf.anl.gov/
https://www.olcf.ornl.gov/caar
https://www.olcf.ornl.gov/caar
https://asc.llnl.gov/CORAL-benchmarks
http://docs.nvidia.com/cuda/cuda-samples/index.html#samples-reference
http://docs.nvidia.com/cuda/cuda-samples/index.html#samples-reference
https://exascaleproject.org/
https://software.intel.com/en-us/imb-user-guide
https://software.intel.com/en-us/imb-user-guide
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.pdf
http://qboxcode.org/
https://asc.llnl.gov/coral-info


Experiences Evaluating Functionality and Performance 273

10. SPEC ACCEL Run and Reporting Rules. https://www.spec.org/accel/docs/
runrules.html

11. Summit: Scale New Heights Discover New Solutions. https://www.olcf.ornl.gov/
summit/

12. Summitdev Quickstart. https://www.olcf.ornl.gov/kb articles/summitdev-quick
start

13. Using OpenMP 4.5 in the CLANG/LLVM compiler toolchain. https://www.olcf.
ornl.gov/wp-content/uploads/2017/01/SummitDev Using-OpenMP-4.5-in-the-
CLANGLLVM-compiler-toolchain.pdf. Accessed 12 Apr 2017

14. Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL). Tech-
nical report, Department of Energy (2014). https://energy.gov/sites/prod/files/
2014/12/f19/CORAL%20Fact%20Sheet FINAL%20AS%20ISSUED UPDATED.
pdf

15. ESSL Guide and Reference (2016). https://publib.boulder.ibm.com/epubs/pdf/
a2322688.pdf

16. Miniapps derived from production HPC applications using multiple programing
models. Int. J. High Perform. Comput. Appl. 1094342016668241 (2016). doi:10.
1177/1094342016668241

17. Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz,
J., Hammerling, S., Demmel, J., Bischof, C., Sorensen, D.: LAPACK: a portable
linear algebra library for high-performance computers. In: Proceedings of the 1990
ACM/IEEE Conference on Supercomputing, Supercomputing 1990, CA, USA, pp.
2–11 (1990). http://dl.acm.org/citation.cfm?id=110382.110385

18. Antao, S.F., Bataev, A., Jacob, A.C., Bercea, G.T., Eichenberger, A.E., Rokos,
G., Martineau, M., Jin, T., Ozen, G., Sura, Z., Chen, T., Sung, H., Bertolli, C.,
O’Brien, K.: Offloading Support for OpenMP in Clang and LLVM. In: Proceedings
of the Third Workshop on LLVM Compiler Infrastructure in HPC, LLVM-HPC
2016, pp. 1–11. IEEE Press, Piscataway (2016). doi:10.1109/LLVM-HPC.2016.6

19. Berrill, M.: Modeling of laser-created plasmas and soft x-ray lasers. Ph.D. thesis,
Colorado State University (2010)

20. Caldeira, A., Haug, V., Vetter, S.: IBM Power Systems S822LC for High Perfor-
mance Computing: Technical Overview and Introduction. Technical report, IBM,
September 2016

21. Choi, J., Dongarra, J.J., Pozo, R., Walker, D.W.: ScaLAPACK: a scalable linear
algebra library for distributed memory concurrent computers. In: 1992, Fourth
Symposium on the Frontiers of Massively Parallel Computation, pp. 120–127. IEEE
(1992). http://ieeexplore.ieee.org/document/234898/. Accessed 11 Oct 2016

22. Eisenbach, M., Zhou, C., Nicholson, D.M., Brown, G., Larkin, J., Schulthess, T.C.:
Thermodynamics of magnetic systems from first principles: WL-LSMS

23. Hagen, G., Jansen, G.R., Papenbrock, T.: Structure of 78Ni from first-principles
computations. Phys. Rev. Lett. 117, 172501 (2016). https://link.aps.org/doi/
10.1103/PhysRevLett.117.172501

24. Oral, S., Dillow, D.A., Fuller, D., Hill, J., Leverman, D., Vazhkudai, S.S., Wang, F.,
Kim, Y., Rogers, J., Simmons, J., et al.: OLCFs 1 TB/s. Next-Generation Lustre
File System

25. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,
Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with
NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005). doi:10.1002/jcc.20289

26. Schlipf, M., Gygi, F.: Optimization algorithm for the generation of ONCV
pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015). http://www.
sciencedirect.com/science/article/pii/S0010465515001897

https://www.spec.org/accel/docs/runrules.html
https://www.spec.org/accel/docs/runrules.html
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart
https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart
https://www.olcf.ornl.gov/wp-content/uploads/2017/01/SummitDev_Using-OpenMP-4.5-in-the-CLANGLLVM-compiler-toolchain.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2017/01/SummitDev_Using-OpenMP-4.5-in-the-CLANGLLVM-compiler-toolchain.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2017/01/SummitDev_Using-OpenMP-4.5-in-the-CLANGLLVM-compiler-toolchain.pdf
https://energy.gov/sites/prod/files/2014/12/f19/CORAL%20Fact%20Sheet__FINAL%20AS%20ISSUED_UPDATED.pdf
https://energy.gov/sites/prod/files/2014/12/f19/CORAL%20Fact%20Sheet__FINAL%20AS%20ISSUED_UPDATED.pdf
https://energy.gov/sites/prod/files/2014/12/f19/CORAL%20Fact%20Sheet__FINAL%20AS%20ISSUED_UPDATED.pdf
https://publib.boulder.ibm.com/epubs/pdf/a2322688.pdf
https://publib.boulder.ibm.com/epubs/pdf/a2322688.pdf
http://dx.doi.org/10.1177/1094342016668241
http://dx.doi.org/10.1177/1094342016668241
http://dl.acm.org/citation.cfm?id=110382.110385
http://dx.doi.org/10.1109/LLVM-HPC.2016.6
http://ieeexplore.ieee.org/document/234898/
https://link.aps.org/doi/10.1103/PhysRevLett.117.172501
https://link.aps.org/doi/10.1103/PhysRevLett.117.172501
http://dx.doi.org/10.1002/jcc.20289
http://www.sciencedirect.com/science/article/pii/S0010465515001897
http://www.sciencedirect.com/science/article/pii/S0010465515001897


274 V.G. Vergara Larrea et al.

27. Tang, W., Wang, B., Ethier, S., Lin, Z.: Performance portability of HPC discovery
science software: fusion energy turbulence simulations at extreme scale. Supercom-
puting Front. Innovations 4(1), 83–97 (2017)

28. Tharrington, A., Hai Ah Nam, W.J., Brown, W.M., Anantharaj, V.G.: Early appli-
cations experience on the cray XK6 at the Oak Ridge leadership computing facility.
In: Cray User Group Meeting CUG (2012)

29. Wang, C., Chandrasekaran, S., Chapman, B.: An OpenMP 3.1 validation test-
suite. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 237–249. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30961-8 18

http://dx.doi.org/10.1007/978-3-642-30961-8_18
http://dx.doi.org/10.1007/978-3-642-30961-8_18

	Experiences Evaluating Functionality and Performance of IBM POWER8+ Systems
	1 Introduction
	2 System Configuration
	3 Acceptance Test
	4 Benchmarks
	5 Compiler Tests
	6 CORAL Benchmarks
	7 Mini-applications
	8 OLCF Applications
	9 Lessons Learned
	10 Conclusions
	References




