
The Technological Roadmap of Parallware
and Its Alignment with the OpenPOWER

Ecosystem

Manuel Arenaz1(B), Oscar Hernandez2, and Dirk Pleiter3

1 University of A Coruna and Appentra Solutions, A Coruña, Spain
manuel.arenaz@appentra.com

2 Oak Ridge National Laboratory, Oak Ridge, TN, USA
oscar@ornl.gov

3 Julich Supercomputing Center, Jülich, Germany
d.pleiter@fz-juelich.de

Abstract. Accelerated, heterogeneous systems are becoming the norm
in High Performance Computing (HPC). The challenge is choosing the
right parallel programming framework to maximize performance, effi-
ciency and productivity. The design and implementation of benchmark
codes is important in many activities carried out at HPC facilities. Well
known examples are fair comparison of R+D results, acceptance tests for
the procurement of HPC systems, and the creation of miniapps to better
understand how to port real applications to current and future super-
computers. As a result of these efforts there is a variety of public bench-
mark suites available to the HPC community, e.g., Linpack, NAS Parallel
Benchmarks (NPB), CORAL benchmarks, and Unified European Appli-
cation Benchmark Suite. The upcoming next generation of supercomput-
ers is now leading to create new miniapps to evaluate the potential perfor-
mance of different programming models on mission critical applications,
such as the XRayTrace miniapp under development at the Oak Ridge
National Laboratory. This paper presents the technological roadmap of
Parallware, a new suite of tools for high-productivity HPC education
and training, that also facilitates the porting of HPC applications. This
roadmap is driven by best practices used by HPC expert developers in the
parallel scientific C/C++ codes found in CORAL, NPB, and XRayTrace.
The paper reports preliminary results about the parallel design patterns
used in such benchmark suites, which define features that need to be sup-
ported in upcoming realeases of Parallware tools. The paper also presents
performance results using standards OpenMP 4.5 and OpenACC 2.5,
compilers GNU and PGI, and devices CPU and GPU from IBM, Intel
and NVIDIA.

Keywords: Hybrid heterogeneous programming models · OpenACC ·
OpenMP4 · Static analysis tools · LLVM · Performance portability · Use
of parallware on minsky

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 237–253, 2017.
https://doi.org/10.1007/978-3-319-67630-2_19

238 M. Arenaz et al.

1 Introduction

Science, Technology, Engineering and Mathematics (STEM) plays a key role in
the sustained growth and stability of the economy world-wide. There is a huge
and urgent need in training STEM people in parallel programming, as well as
in providing STEM people with better programming environments that help
in porting scientific applications to modern supercomputers. It is key for code
modernization, specially to exploit the computational power of new devices such
as NVIDIA GPUs and Intel Xeon Phi.

The new specifications of directive-based parallel programming standards
OpenMP 4.5 [24] and OpenACC 2.5 [23] are increasingly complex in order to sup-
port heterogeneous computing systems. There is some debate regarding the pre-
scriptive nature of OpenMP 4.5 compared to the descriptive capabilities available
in OpenACC. In addition, performance portability is not guaranteed by OpenMP
4.5 specification, and currently there is divergence in features supported by dif-
ferent vendors (e.g., PGI, Cray, IBM, Intel, GNU) in different devices (e.g., CPU,
GPU, KNC/KNL). Overall, the responsibility falls on the developer to choose
best practices that facilitate performance portability [18,20].

The new Parallware tools [2] aim at going one step forward towards support-
ing best practices for performance portability. It is useful to track the progress
of new features in OpenMP 4.5 and OpenACC 2.5, as well as the availability
and performance of their implementation in each available compiler and target
device. We expect Parallware tools to be of interest for HPC facilities in the
following use cases:

– Improvement of current HPC education and training environments in order
to provide experiential learning to STEM people.

– Design and implementation of new miniapps to help porting HPC applications
to next generation supercomputers.

– Creation of acceptance tests for HPC systems procurement.
– Port of HPC applications to upcoming (pre-)exascale supercomputers.

The rest of the paper is organized as follows. Section 2 discusses best prac-
tices from HPC expert developers in the parallel programming of CORAL
Benchmarks [9], NAS Parallel Benchmarks [6] and XRayTrace miniapp [19].
The nomenclature of the parallel design patterns used internally in Parallware
technology is introduced in order to compare the parallelization of the bench-
mark codes. Section 3 presents the new tool Parallware Trainer using as a guide
the CORAL microbenchmark HACCmk. The technological challenges to be
addressed in Parallware core technology in order to support modern HPC appli-
cations are described. It also introduces the foreseen tool Parallware Assistant
oriented to development of HPC codes. Section 4 presents the current technolog-
ical roadmap of Parallware tools. Finally, Sect. 6 presents conclusions and future
work.

The Technological Roadmap of Parallware and Its Alignment 239

2 Analysis of Benchmarks: CORAL, NPB
and XRayTrace

Benchmark suites are designed to test the performance of supercomputers at
a hardware/software level, ranging from processor architecture, memory, inter-
connection network, I/O, file system, operating system, up to user applications
that are mission critical for HPC facilities. In this study we analyze OpenMP
and OpenACC parallel implementations of the compute-intensive C/C++ codes
found in XRayTrace [19], CORAL [9] and NPB [6].

2.1 Parallel Design Patterns of Parallware

Several approaches try to divide programs into (parallel) algorithmic patterns and
follow a pattern-based analysis of the code (see McCool et al. [22], Mattson et
al. [21], Berkeley’s dwarfs (or motifs) [5]). However, such patterns seem to be too
difficult to apply in practice [25]. In contrast, we use the parallel design patterns
detected by the Parallware technology [4], which have been successfully applied to
real programs from the NAS Parallel Benchmarks [16], and from the fields compu-
tational electromagnetics [10], oil & gas [3] and computational astrophysics [12].

The pseudocodes presented in Fig. 1 describe three parallel design patterns
detected by Parallware technology. The Parallel Forall of Listing 1.1 represents
parallel computations without race conditions at run-time. In each iteration of
for j, a new value A[j] is computed. The value T is a loop temporary computed
in each iteration of for j, where B[j] denotes read-only values. The Parallel
Scalar Reduction of Listing 1.2 represent a reduction operation whose result is
a single value A, where + is a commutative, associative operator. The Parallel
Sparse Reduction of Listing 1.3 represent a reduction operation whose result is a
set of values. Each iteration of for j updates a single value A[B[j]], where the
access pattern can only be determined at run-time and thus there may appear
race conditions during the parallel execution.

Examples of parallel design patterns are presented in source code snippets
of XRayTrace and HACCmk. In Listing 1.5, the loop for i contains a parallel
forall where the output is vx1, where dx1 is a loop temporary and fcoeff is a
read-only value. In Listing 1.6, the loop for j contains a parallel scalar reduction
whose output is xi, where dxc is a loop temporary and fcxx1oeff is a set of
read-only values. Finally, Listing 1.4, the loop for it contains parallel sparse
reductions where the outputs image and I ang have access patterns that are
known at run-time only.

Listing 1.1. Fully Paral-
lel Loop.

1 f o r (j =0; j<n ; j++)
2 {
3 T = B [j] ;
4 A [j] = T ;
5 }

Listing 1.2. Parallel
Scalar Reduction.

1 f o r (j =0; j<n ; j++)
2 {
3 T = B [j] ;
4 A += T ;
5 }

Listing 1.3. Parallel
Sparse Reduction.

1 f o r (j =0; j<n ; j++)
2 {
3 T = B [j] ;
4 A [B [j]] += T ;
5 }

Fig. 1. Pseudocodes of the parallel design patterns used in Parallware.

240 M. Arenaz et al.

Listing 1.4. In XRayTrace version of routine RayTraceImageLoop

1 #d e f i n e KMAX 100 // Maximum number o f f r e quen c i e s
2 void RayTrac e ImageLoop (
3 i n t N , i n t nx , i n t ny , i n t na , i n t nb , i n t nv ,
4 const double ∗x , const double ∗y , const double ∗a ,
5 const double ∗b , double dx , double dy , double dz ,
6 double da , double db , const double ∗dv ,
7 const RayTrace : : r a y g a i n s t r u c t ∗ g a i n i n ,
8 const RayTrace : : r a y s e e d s t r u c t ∗ s e e d i n ,
9 i n t method , const s t d : : v e c t o r <r a y s t r u c t > &r a y s ,

10 double s c a l e , double ∗ image , double ∗ I a n g ,
11 unsigned i n t & f a i l u r e c o d e ,
12 s t d : : v e c t o r <r a y s t r u c t > & f a i l e d r a y s) {
13 [. . .]
14 #pragma acc data copyin (x [0 : nx] , y [0 : ny] , a [0 : na] ,

b [0 : nb] , dv [0 : nv] , rays2 [0 : N rays])
dev i c ept r (gain , seed) copyout (image [0 : nx ∗ ny ∗ nv] ,
I ang [0 : na ∗ nb]) {

15 // I n i t i a l i z e d e v i c e imag e s
16 #pragma acc p a r a l l e l loop
17 f o r (i n t i = 0 ; i < nx ∗ ny ∗ nv ; ++i)
18 image [i] = 0 ;
19 #pragma acc p a r a l l e l loop
20 f o r (i n t i = 0 ; i < na ∗ nb ; ++i)
21 I a n g [i] = 0 ;
22 // Loop t h r o u g h y , x , b , a
23 #pragma acc p a r a l l e l loop gang vector ve c t o r l eng th (32)
24 f o r (i n t i t = 0 ; i t < N r a y s ; ++ i t) {
25 const r a y s t r u c t r a y = r a y s 2 [i t] ;
26 double I v [K MAX] ;
27 r a y s t r u c t r a y 2 ;
28 i n t e r r o r = R a y T r a c e c a l c r a y (
29 ray , N , dz , ga i n , s e ed , nv , method , Iv ,
30 r a y 2) ;
31 // Get t h e i n d i c e s t o t h e c e l l s i n image
32 // and I a n g
33 i n t i 1 , i 2 , i 3 , i 4 ;
34 i n t i 1 = s t a t i c c a s t <int >(f i n d f i r s t s i n g l e (
35 x , nx , r a y 2 . x − 0 .5 ∗ dx)) ;
36 i f (r a y 2 . x < x [0] − 0 .5 ∗ dx | |
37 r a y 2 . x > x [nx − 1] + 0 .5 ∗ dx)
38 i 1 = −1; // The ray ’ s z p o s i t i o n i s o u t
39 // o f t h e r an g e o f image
40 [. . .]
41 // Copy I o u t i n t o image
42 i f (i 1 >= 0 && i 2 >= 0) {
43 double ∗ I v 2 =
44 &image [nv ∗ (i 1 + i 2 ∗ nx)] ;
45 f o r (i n t i v = 0 ; i v < nv ; i v++) {
46 #pragma acc atomic update
47 I v 2 [i v] += I v [i v] ∗ s c a l e ;
48 }
49 }
50 // Copy I o u t i n t o I a n g
51 i f (i 3 >= 0 && i 4 >= 0) {
52 double tmp = 0 . 0 ;
53 f o r (i n t i v = 0 ; i v < nv ; i v++)
54 tmp += 2.0 ∗ dv [i v] ∗ I v [i v] ;
55 #pragma acc atomic update
56 I a n g [i 3 + i 4 ∗ na] += tmp ;
57 }
58 }
59 } // pragma ac c d a t a r e g i o n s c o p e
60 }

The Technological Roadmap of Parallware and Its Alignment 241

Listing 1.5. CORAL microbenchmark HACCmk (file main.c).

1 #i nclude <s t d i o . h>
2 #i nclude <s t d l i b . h>
3 #i nclude <omp . h>
4 #d e f i n e N 15000
5 i n t main (i n t a r g c , char ∗ a r g v [])
6 {
7 s t a t i c f l o a t xx [N] , yy [N] , z z [N] , mass [N] , vx1 [N] , vy1 [

N] , vz1 [N] ;
8 f l o a t f s r rmax 2 , mp rsm2 , f c o e f f , dx1 , dy1 , dz1 ;
9 i n t c o u n t = 327 ;

10 . . .
11 f o r (n = 400 ; n < N ; n = n + 20)
12 {
13 . . .
14 #pragma omp p a r a l l e l f o r p r i va t e (dx1 , dy1 , dz1)
15 f o r (i = 0 ; i < c o u n t ; ++i)
16 {
17 S t e p 1 0 o r i g (n , xx [i] , yy [i] , z z [i] , f s r rmax 2 ,

mp rsm2 , xx , yy , zz , mass , &dx1 , &dy1 , &dz1) ;
18 vx1 [i] = vx1 [i] + dx1 ∗ f c o e f f ;
19 vy1 [i] = vy1 [i] + dy1 ∗ f c o e f f ;
20 vz1 [i] = vz1 [i] + dz1 ∗ f c o e f f ;
21 }
22 . . .
23 }
24 }

Listing 1.6. CORAL microbenchmark HACCmk (file Step10 orig.c).

1 #i nclude <math . h>
2

3 void S t e p 1 0 o r i g (i n t c oun t1 , f l o a t xx i , f l o a t yy i , f l o a t
z z i , f l o a t f s r rmax 2 , f l o a t mp rsm2 , f l o a t ∗xx1 ,

f l o a t ∗yy1 , f l o a t ∗ zz1 , f l o a t ∗mass1 , f l o a t ∗ dx i ,
f l o a t ∗ dy i , f l o a t ∗ d z i)

4 {
5 const f l o a t ma0 = 0.269327 , ma1 = −0.0750978 , ma2 =

0.0114808 , ma3 = −0.00109313 , ma4 = 0.0000605491 ,
ma5 = −0.00000147177;

6 f l o a t dxc , dyc , dzc , m, r2 , f , x i , y i , z i ;
7 i n t j ;
8 x i = 0 . ; y i = 0 . ; z i = 0 . ;
9 f o r (j = 0 ; j < c o u n t 1 ; j++)

10 {
11 dxc = xx1 [j] − x x i ;
12 dyc = yy1 [j] − y y i ;
13 dz c = z z 1 [j] − z z i ;
14 r 2 = dxc ∗ dxc + dyc ∗ dyc + dz c ∗ dz c ;
15 m = (r 2 < f s r rm a x 2) ? mass1 [j] : 0 . 0 f ;
16 f = pow (r 2 + mp rsm2 , −1.5) − (ma0 + r 2 ∗(ma1

+ r 2 ∗(ma2 + r 2 ∗(ma3 + r 2 ∗(ma4 + r 2 ∗ma5))))) ;
17 f = (r 2 > 0 .0 f) ? m ∗ f : 0 . 0 f ;
18 x i = x i + f ∗ dxc ;
19 y i = y i + f ∗ dyc ;
20 z i = z i + f ∗ dz c ;
21 }
22 ∗ d x i = x i ;
23 ∗ d y i = y i ;
24 ∗ d z i = z i ;
25 }

242 M. Arenaz et al.

The results in Table 1 reveal the usage of Parallware’s parallel design pat-
terns by HPC expert developers. The pattern Parallel Forall implementation
ParallelForLoopImpl corresponds to a fully parallel loop implemented with prag-
mas parallel for in OpenMP and pragmas parallel loop in OpenACC. In con-
trast, the design patterns Parallel Scalar Reduction and Parallel Sparse Reduc-
tion add synchronization to guarantee correctness during parallel execution.
Only three different implementations are used in the benchmarks: AtomicImpl,
which prevents race conditions by adding pragmas atomic that guarantee atomic
memory accesses to the reduction variable; ReductionImpl, which uses clause
reduction to compute thread-local temporary results that are later reduced into
the output reduction value; and PrivateImpl, which is a hand-made implemen-
tation of the clause reduction using clauses private/shared and pragma critical.
The numbers show that atomic is not used for scalar reductions. In addition,
reduction is not used for sparse reductions because the clause does not support
arrays in OpenMP 3.1.

Table 1. Parallel design patterns used by HPC developers in the C/C++ imple-
mentation of NPB, CORAL and XRayTrace. (*) XRayTrace provides one OpenACC
implementation; the remaining bechmark codes are OpenMP implementations only.

Benchmark Parallel Design Pattern
Parallel Parallel Scalar Reduction Parallel Sparse Reduction
Forall

Parallel Atomic Reduction Private Atomic Reduction Private
ForLoop Impl Impl Impl Impl Impl Impl

Impl

ORNL miniapp 0 0 0 0 2 0 0

XRayTrace (*)2

CORAL 24 0 1 1 0 0 4

lulesh 22 4
MILCmk 1 1 1
HACCmk 1

NPB 168 0 17 2 5 0 24

BT 25 14
CG 12 6 4
EP 2 1
FT 7 1
IS 5 1
LU 28 3 2
MG 9 1 1 2
SP 32 2
UA 50 4 4

The Technological Roadmap of Parallware and Its Alignment 243

2.2 Case Study: ORNL’s Miniapp XRayTrace

Work in progress at ORNL is focused on creating the miniapp XRayTrace, a new
benchmark that will be used to evaluate the performance of pre-exascale Summit
supercomputer. The Listing 1.4 shows an excerpt of the GPU code implemented
by the HPC expert using OpenACC 2.5. The miniapp also provides an OpenMP
3.1 version to run on multicore CPUs.

The routine RayTraceImageLoop() (see Listing 1.4, line 2) basically consists
of a loop for it that computes a parallel design pattern Parallel Sparse Reduc-
tion on variables I ang and image using an AtomicImpl implementation (see
#pragma acc atomic, lines 48 and 57). It is the best choice from the point of
view of maintainability, as it provides a compact, easy-to-understand implemen-
tation. It is also applicable across standards and devices, all of which provide
performant support for atomic operations. As shown in Table 1, it is noticeable
that AtomicImpl was not the preferred implementation in NPB and CORAL,
where PrivateImpl was largely the option of choice by HPC expert developers.

The OpenACC 2.5 implementation is optimized to reduce CPU-to/from-
GPU data transfers, as this is a critical performance factor according to best
practices for GPUs today [17]. The key issue here is to handle data scoping for
scalar and array variables. The HPC expert developer has specified the array
ranges in clauses copyin and copyout for arrays x, y, a, b, dv, rays2,
image, I ang (see Listing 1.4, line 14). In order to avoid unnecessary CPU-
to/from-GPU data transfers, temporary array variables gain and seed have
been allocated only in the device using the clause deviceptr and the API calls
copy device() and free device().

Finally, the C/C++ features used in the code1 also pose technological chal-
lenges on the Parallware core technology. There are calls to the auxiliary func-
tions RayTrace calc ray() and findfirstsingle() (see Listing 1.4, lines 29
and 35), aliases that temporarily point to the output array (see double *Iv2
pointing to double *image, lines 45–46), as well as user-defined datatypes
ray gain struct, ray seed struct and ray struct (e.g. see lines 7, 8 and 9).

The execution times and speedups of Table 2 were measured on the Juron
system at the Julich Supercomputing Centre (JSC). The hardware setup is a
IBM S822LC with CPU 2x POWER8NVL, 10 cores each (8xSMT) and NVIDIA
P100 GPUs (only 1 used for these runs). The tested setups are CPU-based
sequential execution (CPU Serial), CPU-based parallel execution with OpenMP
3.1 (CPU OMP3.1) and GPU-based parallel execution with OpenACC 2.5 (GPU
ACC2.5). The compiler flags for GCC 6.3 are -fopenmp -O2 (thus, CPU Serial is
measured as CPU OMP3.1 with 1 thread). The flags for PGI 16.10 are -mp -O2
for CPU Serial and CPU OMP3.1, and -acc -O2 -ta=tesla for GPU ACC2.5.
Four increasing test sizes were considered: Small ASE (399000 rays, 3 lengths),
Medium ASE (399000 rays, 8 lengths), Small Seed (7803000 rays, 3 lengths)
and Medium Seed (7803000 rays, 8 lengths). The numbers show that GCC is
1 The code also uses the C++ STL (std::vector &failed rays). However, we do

not consider it a key challenge because it has been commented out in the OpenACC
code (the same may stand for OpenMP as well).

244 M. Arenaz et al.

Table 2. Execution times (in seconds) and speedups of XRayTrace in Finisterrae (CPU
Intel Xeon and NVIDIA GPU P100).

Test size Original

Small ASE Medium ASE Small seed Medium seed

Compiler GCC 6.3

CPU serial 4.42 − 10.69 − 46.21 − 94.33 −
CPU OMP3.1 0.14 31× 0.294 36× 1.579 29× 2.99 31×
Compiler PGI 16.10

CPU serial 3.19 − 8.10 − 50.27 − 120.55 −
CPU OMP3.1 17.80 0.18× 49.07 0.08× 1126.21 0.04× 907.95 0.13×
GPU ACC2.5 0.04 79× 0.11 73× 0.73 68× 1.99 60×

the best choice for multi-threaded execution on the CPU (minimum speedup is
29× using 160 threads, with respect to CPU Serial). In contrast, PGI enables
efficient execution on the GPU, which is 1.5×−3.5× faster than CPU OMP3.1
using GCC (minimum speedup is 60×, with respect to CPU Serial).

Finally, the execution times and speedups of Table 3 were measured on the
Finisterrae system at the Supercomputing Centre of Galicia (CESGA). The test
platform is a dual Intel Xeon E5-2680 v3 CPU, 12 cores each, running at 2.5 GHz
(hyperthreading is disabled). The GPU accelerator for OpenACC computing is
a Tesla K80. It is remarkable that, using the GCC compiler, CPU OMP3.1
is significantly faster on Minsky nodes than on Intel-based nodes (minimum
speedup is 29× on Juron, compared to 5.7× on Finisterrae). Regarding the PGI
compiler, CPU OMP3.1 does not perform well on Minsky nodes because the
support of POWER ISA is very recent in PGI compilers, and more investigations
on the correct usage of the PGI compiler are needed.

3 Parallware Trainer

Parallware Trainer [2] is a new interactive tool for high-productivity HPC edu-
cation and training using OpenMP 4.5 and OpenACC 2.5. It allows experiential
learning by providing an interactive, real-time GUI with editor capabilities to
interact with the Parallware technology for source-to-source automatic paral-
lelization of sequential codes.

Hereafter, the current strengths and weaknesses of Parallware Trainer binary
release 0.4 (May 2017) are discussed using as a guide the CORAL microbench-
mark HACCmk. Next, the suite of Parallware tools under development is pre-
sented, describing the key technological differences with respect to other tools
available to the HPC community.

The Technological Roadmap of Parallware and Its Alignment 245

3.1 Case Study: CORAL Microbenchmark HACCmk

The Listings 1.5 and 1.6 show an excerpt of the source code of the CORAL
microbenchmark HACCmk, written in C and parallelized using OpenMP 3.1 by
an HPC expert developer. The main program consists of a loop that defines
increasing tests sizes n, ranging from 400 up to 15000. The HPC expert devel-
oper has used a parallel design pattern Fully Parallel Loop. For each test size, the
pragma #pragma omp parallel for enables the conflict-free multi-threaded
computation of the output arrays vx1, vy1 and vz1.

Parallware Trainer 0.4 does not discover parallelism across calls to user-
defined functions. It fails to find the fully parallel loop for i in main() because
of the call to Step10 orig() (see Listing 1.5, line 19). In contrast, Parallware
succeeds to parallelize the loop for j inside this routine (Listing 1.6, lines 10–22),
and reports the following user messages:

Step10_orig.c:3:1: info: Analyzed function ’Step10_orig’

Step10_orig.c:10:5: info:

Offloading to coprocessor device (use of target pragma)

Parallel loop

Dependencies due to temporary variables do not prevent parallelization:

’dxc’, ’m’, ’r2’, ’dzc’, ’f’, ’dyc’

Parallel reduction on variable ’zi’ with associative, commutative operator ’+’

Parallel reduction on variable ’yi’ with associative, commutative operator ’+’

Parallel reduction on variable ’xi’ with associative, commutative operator ’+’

Ranking of available parallelization strategies:

#1 Use of the clause <reduction> (*) selected

#2 Use of pragma <atomic> (memory optimized)

TODO list:

* Complete access range for variables: xx1, yy1, zz1, mass1}

The code contains a parallel design pattern Parallel Scalar Reduction involv-
ing three scalar variables xi, yi and zi. It also displays the ranking of avail-
able implementations: #1 being ReductionImpl and #2 being AtomicImpl (see
Table 1). Following best practices observed in CORAL and NPB, Parallware
selects ReductionImpl as the option that minimizes synchronization during the
execution of the parallel scalar reductions xi, yi and zi. The output source code
produced by Parallware contains OpenMP 3.1, OpenACC 2.5 and OpenMP 4.5
pragmas annotated on loop for j (see codes in Listings 1.7, 1.8 and 1.9).

246 M. Arenaz et al.

Listing 1.7. In CORAL microbenchmark HACCmk, version of routine
Step10 orig generated by Parallware Trainer using OpenMP 3.1.

1 #pragma omp p a r a l l e l d e f au l t (none) shared (count1 ,
fsrrmax2 , mass1 , mp rsm2 , xi , xx1 , xxi , yi , yy1 ,
yyi , z i , zz1 , z z i)

2 {
3 #pragma omp f o r pr i va t e (dxc , dyc , dzc , f , m, r2)

reduct ion (+: z i) reduct ion (+: y i) reduct ion (+: x i
) schedule (auto)

4 f o r (j = 0 ; j < c o u n t 1 ; j++)
5 {
6 . . .
7 x i = x i + f ∗ dxc ;
8 y i = y i + f ∗ dyc ;
9 z i = z i + f ∗ dz c ;

10 }
11 } // end p a r a l l e l

Listing 1.8. In CORAL microbenchmark HACCmk, version of routine
Step10 orig generated by Parallware Trainer using OpenACC 2.5.

1 #pragma acc data copy (xi , yi , z i) copyin (count1 ,
fsrrmax2 , mass1 [] , mp rsm2 , xx1 [] , xxi , yy1 [] ,
yyi , zz1 [] , z z i)

2 {
3 #pragma acc p a r a l l e l
4 {
5 #pragma acc loop reduct ion (+: z i) reduct ion (+: y i)

reduct ion (+: x i)
6 f o r (j = 0 ; j < c o u n t 1 ; j++)
7 {
8 . . .
9 x i = x i + f ∗ dxc ;

10 y i = y i + f ∗ dyc ;
11 z i = z i + f ∗ dz c ;
12 }
13 } // end p a r a l l e l
14 } // end d a t a

Listing 1.9. In CORAL microbenchmark HACCmk, version of routine
Step10 orig generated by Parallware Trainer using OpenMP 4.5.

1 #pragma omp ta rge t map(to : xxi , fsrrmax2 , mp rsm2 , xx1
[] , count1 , yyi , z z i , yy1 [] , zz1 [] , mass1 []) map(
tofrom : z i , yi , x i)

2 {
3 #pragma omp p a r a l l e l d e f au l t (none) shared (count1 ,

fsrrmax2 , mass1 , mp rsm2 , xi , xx1 , xxi , yi , yy1 ,
yyi , z i , zz1 , z z i)

4 {
5 #pragma omp f o r pr i va t e (dxc , dyc , dzc , f , m, r2)

reduct ion (+: z i) reduct ion (+: y i) reduct ion (+: x i
) schedule (auto)

6 f o r (j = 0 ; j < c o u n t 1 ; j++)
7 {
8 . . .
9 x i = x i + f ∗ dxc ;

10 y i = y i + f ∗ dyc ;
11 z i = z i + f ∗ dz c ;
12 }
13 } // end p a r a l l e l
14 } // end t a r g e t

The Technological Roadmap of Parallware and Its Alignment 247

The OpenMP annotations manage data scoping explicitly both on the
CPU version (Listing 1.7, lines 1–3, clauses default, private, shared and
reduction) as well as on the accelerated version (Listing 1.9, line 1, clause
map). Parallware also suggest a list of actions to be carried out by the user. For
array variables xx1, yy1, zz1 and mass1, the tool generates empty array ranges
because it cannot determine the array elements to be transferred between the
CPU and the accelerator (Listing 1.9, line 1, clause map(to:...,xx1[])). The
development of more precise array range analysis is planned in Parallware’s tech-
nological roadmap.

The execution times and speedups of Table 4 were measured on the Juron
system at JSC (Table 5 shows similar numbers on the Finisterrae at CESGA).
Running the OpenMP 3.1 version with 160 threads, we observe that HACCmk’s
original implementation runs faster than Parallware’s automatically generated
version (speedups 18× and 0.9×, respectively). The reason is that the HPC
expert developer exploits coarser grain parallelism (number of parallel regions is
730 in Listing 1.5, line 13), while Parallware versions incur in high parallelization
overhead because a parallel region is created/destroyed in each call to procedure
Step10 orig() (number of parallel regions is 730×327 = 238710 in Listing 1.7).
The PGI compiler provides worse performance for the original HACCmk (run-
ning time 9.14 versus 7.42 of GCC). However, the performance with Parallware
version performs poorly, probably due to the fact that the PGI run-time incurs
in higher overhead in creation/destruction of parallel regions. Work-in-progress
aims at adding support for interprocedural detection of parallelism. By manag-
ing procedure calls that write only on scalar variables passed by reference (see
Listing 1.5, line 19, parameters &dx1, &dy1, &dz1), Parallware will successfully
detect and parallelize the fully parallel loop for i (Listing 1.5, lines 17–23). By
matching the HPC expert’s parallel implementation, we expect Parallware to
provide acceptable performance similar to the original version.

Finally, note that OpenACC-enabled version with PGI 16.10 does not accel-
erate CPU OMP3.1, probably because HACCmk requires many CPU-to/from-
GPU data transfers of small size. However, it is remarkable that Parallware still
achieves an speedup 4.8× with respect to the serial code. The numbers show that
while thread creation/destruction is very expensive on the CPU, its overhead is
not so critical on the GPU.

Overall, the experiments show that Parallware supports the parallel design
pattern Fully Parallel Loop, but it needs improvements in inter-procedural analy-
sis to exploit coarser-grain parallelism with OpenMP and OpenACC.

3.2 The Parallware Suite

Parallware technology [1,4] uses an approach for parallelism that does not rely on
loop-level classical dependence analysis. The classical approach builds systems
of mathematical equations whose solutions allow to identify pairs of memory ref-
erences in the loop body that might lead to race conditions during the parallel
execution of the loop. In contrast, Parallware uses a fast, extensible hierarchi-
cal classification scheme to address dependence analysis. It splits the code into

248 M. Arenaz et al.

Table 3. Execution times (in seconds) and speedups of HACCmk in Finisterrae (CPU
Intel Xeon and NVIDIA GPU Tesla K80).

Test size Original

Small ASE Medium ASE Small seed Medium seed

Compiler GNU 4.8.2

CPU Serial 3.57 − 8.82 − 41.23 − 90.42 −
CPU OMP3.1 0.47 7.6× 0.99 8.9× 7.27 5.7× 13.68 6.6×
Compiler PGI 16.10

CPU Serial 3.24 − 8.09 − 41.36 − 96.87 −
CPU OMP3.1 1.17 2.8× 1.26 6.4× 33.74 1.2× 117.25 0.8×
GPU ACC2.5 0.24 13.5× 0.42 19.3× 2.91 14.2× 6.19 15.6×

a small domain-independent computational kernels (e.g. assignment, reduction,
recurrence, etc.), combining multiple static analysis techniques including array
access patterns, array access ranges, and alias analysis. Next, it checks contex-
tual properties between the kernels in order to discover parallelism and to select
the most appropriate paralleling strategy for the loop. Finally, Parallware adds
the corresponding OpenMP/OpenACC directives and performs code transforma-
tions as needed (e.g. array privatization in parallel reductions, which is natively
supported by OpenMP in Fortran but not in C). Parallware is also based on the
production-grade LLVM compiler infrastructure.

Parallware Trainer [2] is a new interactive tool for high-productivity HPC
education and training. It allows experiential learning by providing an interac-
tive, real-time GUI with editor capabilities to assist in the design and imple-
mentation of parallel code. Powered by the hierarchical classification engine of
Parallware technology, it discovers parallelism, provides a ranking of parallel
design patterns, and implements those designs using standards OpenMP 4.5
and OpenACC 2.5 (see video tutorials How to use Parallware Trainer available
at www.parallware.com). Overall, the main advantages of Parallware Trainer
are high availability 24× 7, reduction of costs, and broader audience of STEM
people in far-away geographical locations.

Parallware Assistant, currently under development, will be the next tool of
the suite. The Parallware Trainer is oriented to HPC education and training,
so its GUI only shows the key information needed to understand why a code
snippet can be parallelized (e.g., contains a scalar reduction with an associative,
commutative sum operator), and how it can be executed in parallel safely (e.g.,
atomic update of the sum operator). In contrast, the Parallware Assistant will
provide detailed information about every operator and every variable of the code,
for instance, detailed data scoping and detailed array access ranges.

www.parallware.com

The Technological Roadmap of Parallware and Its Alignment 249

Table 4. Execution times (in seconds) and speedups of HACCmk in Juron (CPU IBM
Power8 and NVIDIA GPU P100).

Original Parallware

Compiler GCC 6.3

CPU serial 137.99 −
CPU OMP3.1 7.42 18× 157.68 0.9×
Compiler PGI 16.10

CPU serial 92.91 −
CPU OMP3.1 9.14 10.8× 268.07 0.35×
GPU ACC2.5 n/a n/a 19.13 4.8×

Table 5. Execution times (in seconds) and speedups of HACCmk in Finisterrae (CPU
Intel Xeon and NVIDIA GPU Tesla K80).

Original Parallware

Compiler GCC 6.3

CPU serial 126.26 −
CPU OMP3.1 12.37 10.2× 708.44 0.18×
Compiler PGI 16.10

CPU serial 104.21 −
CPU OMP3.1 10.17 10.3× 236.64 0.44×
GPU ACC2.5 n/a n/a 32.11 3.2×

4 The Technological Roadmap of Parallware

Following current startup business practices, we seek to attain the minimum
viable product (MVP) as quickly as possible. At the same time we are doing the
MVP work, we are testing the market from the business side. We are discussing
the sales cycle, price sensitiveness and business value to the target customers. We
are conducting an early access program for Parallware Trainer, our first product
for high-productivity STEM education and training in parallel programming for
undergraduate and PhD levels.

Parallware’s technological roadmap is driven by the best practices observed
in CORAL, NPB and XRayTrace. Our go-to-market strategy is based on engag-
ing with world-class HPC facilities, working together to better understand how
to help them with their mission-critical activities (e.g., technology scouting, cre-
ation of benchmark codes, porting of HPC applications). Thus, we are partici-
pating in strategic partnership programs (BSC, ORNL and TACC) and deploy-
ing Parallware Trainer in real production environments (BSC, ORNL, NERSC,
LRZ).

As of writing, our priorities for the technological development of Parallware
Trainer in the short and medium term are (in order of priority):

250 M. Arenaz et al.

1. Improve the usability of the GUI to facilitate the analysis, compilation and
execution of scientific programs. Analyze programs across multiple source
code files that use MPI, OpenMP and OpenACC. Integrate the GUI with
compilers from different vendors (e.g., IBM, PGI) in production-level super-
computers (e.g. modules, job queuing systems).

2. Improve the support for parallel design patterns parallel scalar reduction
and parallel sparse reduction. As of writing, Parallware already supports the
AtomicImpl and ReductionImpl implementations for OpenMP 4.5 and Ope-
nACC 2.5, both for CPU and GPU devices. Work-in-progress aims at adding
support for the PrivateImpl implementation as well.

3. Provide a ranking of parallel implementations, suggesting the “best” option
for a given parallel programming standard, compiler and device. Mechanisms
for the user to select the preferred implementation will be added.

4. Provide a list of suggestions for the user to improve the parallel implemen-
tation generated by the Parallware tools. Current work aims at improving
data scoping support though advanced techniques for array range analy-
sis and detection of temporary arrays. This information is useful to mini-
mize CPU-to/from-GPU data transfers, for example by allocating temporary
arrays directly on the GPU device.

5. Improve the Parallware core technology to discover parallelism across pro-
cedure calls. Inter-procedural analysis (IPA)2 usually requires handling user-
defined data structures (e.g. struct), auxiliary pointer variables that alias with
output variables (aliasing), and C++ STL classes (e.g. std::vector).

Finally, our go-to-market strategy is aligned with world-class exhibitions ISC
High Performance 2017 (ISC’17) and Supercomputing 2017 (SC17). During 2017,
we plan to commercially launch Parallware Trainer, an interactive, real-time edi-
tor with GUI features to facilitate the learning, usage, and implementation of
parallel programming. We also plan to test a prototype of Parallware Assistant,
a new software tool that will offer a high-productivity programming environ-
ment to help HPC experts to manage the complexity of parallel programming.
Example of technical features are detailed data scoping at the loop and functions
levels, and visual browsing of the parallelism found in the code.

5 Related Work

Parallelization tools have been built in the past that discover parallelism in
loops via symbolic equations, where the user can input ranges of values given
a set of inputs. Some of these tools include SUIF [15], Polaris [7], Cetus [8],
iPAT/OMP [11] and ParaWise [13] (CAPTools/CAPO). However, these tools
are extremely hard to use with real applications, even for advanced application
developers because they rely on research compilers with complex user interfaces
and they take significant amount of time to complete their analysis. Some of

2 Requirement for porting HPC applications, not for HPC education and training.

The Technological Roadmap of Parallware and Its Alignment 251

them are restricted to the older Fortran 77 standard or focus on loop level paral-
lelism for simple array operations. In contrast, Parallware uses a fast, extensible
hierarchical classification scheme to address dependence analysis. Based on the
production-grade LLVM compiler infrastructure, Parallware is beginning to show
success on the parallelization of C codes that defeat the other tools.

6 Conclusions and Future Work

Preliminary results suggest that the parallel design patterns used by HPC expert
developers have not changed significantly across NPB, CORAL and new bech-
marks such as XRayTrace. The latest updates in OpenMP 4.5 and OpenACC
2.5 improve support for reductions and atomic operations. This is expected to
simplify implementations, leading to better productivity and maintainability.

Writing performance portable code is a challenge and a responsability for
the programmer. Parallware tools are a step forward to help in this regard by
supporting best practices for OpenMP 4.5 and OpenACC 2.5 across different
compilers and devices. The parallel design patterns used in Parallware technology
have been shown to be an effective approach to discover the parallelism available
in the benchmark NPB, CORAL and XRayTrace.

As future work, we plan to finish this study with NPB, CORAL, XRayTrace
and other well-known benchmark suites such as SPECaccel. We are aware of
the importance of Fortran, and we are working to support it as soon as the new
Fortran front-end is available for LLVM [14].

Acknowledgements. The authors gratefully acknowledge the access to the HPB PCP
Pilot Systems at Julich Supercomputing Centre, which have been partially funded by
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 604102 (HPB). Also thanks to the Supercomputing Centre of Galicia
(CESGA) for providing access to the FinisTerrae supercomputer.

References

1. Andión, J., Arenaz, M., Rodŕıguez, G., Touriño, J.: A novel compiler support for
automatic parallelization on multicore systems. Parallel Comput. 39(9), 442–460
(2013)

2. Appentra: Parallware Trainer, April 2017. http://www.parallware.com/
3. Arenaz, M., Domı́nguez, J., Crespo, A.: Democratization of HPC in the oil & gas

industry through automatic parallelization with parallware. In: 2015 Rice Oil and
Gas HPC Workshop, March 2015

4. Arenaz, M., Touriño, J., Doallo, R.: XARK: an extensible framework for auto-
matic recognition of computational kernels. ACM Trans. Program. Lang. Syst.
(TOPLAS) 30(6), 32:1–32:56 (2008)

5. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: a view from Berkeley. Technical report,
UC Berkeley (2006)

http://www.parallware.com/

252 M. Arenaz et al.

6. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V.,
Weeratunga, S.: The NAS parallel benchmarks - summary and preliminary results.
In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Supercom-
puting 1991, pp. 158–165. ACM (1991)

7. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T.,
Lee, J., Padua, D., Paek, Y., Pottenger, B., Rauchwerger, L., Tu, P.: Parallel
programming with Polaris. Computer 29(12), 78–82 (1996)

8. Dave, C., Bae, H., Min, S.-J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: a source-
to-source compiler infrastructure for multicores. IEEE Micro 42(12), 36–42 (2009)

9. Department of Energy (DoE): CORAL Benchmark Codes (2014). https://asc.llnl.
gov/CORAL-benchmarks/

10. Gómez-Sousa, H., Arenaz, M., Rubiños-López, O., Mart́ınez-Lorenzo, J.: Novel
source-to-source compiler approach for the automatic parallelization of codes based
on the method of moments. In: Proceedings of the 9th European Conference on
Antenas and Propagation, EuCap 2015, April 2015

11. Ishihara, M., Honda, H., Sato, M.: Development and implementation of an inter-
active parallelization assistance tool for OpenMP: iPat/OMP. IEICE Trans. Inf.
Syst. 89–D(2), 399–407 (2006)

12. Jiang, Q., Lee, Y.C., Zomaya, A., Arenaz, M., Leslie, L.: Optimizing scientific
workflows in the cloud: a montage example. In: Proceedings of the 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing (UCC), pp. 517–522.
IEEE, December 2014

13. Johnson, S., Evans, E., Jin, H., Ierotheou, C.: The ParaWise expert assistant –
widening accessibility to efficient and scalable tool generated OpenMP code. In:
Chapman, B.M. (ed.) WOMPAT 2004. LNCS, vol. 3349, pp. 67–82. Springer, Hei-
delberg (2005). doi:10.1007/978-3-540-31832-3 7

14. Lawrence Livermore National Laboratory: Open-Source Fortran Compiler Tech-
nology for LLVM (2015). https://www.llnl.gov/news/nnsa-national-labs-team-
nvidia-develop-open-source-fortran-compiler-technology

15. Liao, S.-W., Diwan, A., Bosch Jr., R.P., Ghuloum, A., Lam, M.S.: SUIF explorer:
an interactive and interprocedural parallelizer. In: Proceedings of the 7th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPopp
1999, pp. 37–48. ACM Press, New York (1999)

16. Lobeiras, J., Arenaz, M.: a success case using parallware: the NAS parallel bench-
mark EP. In: Proceedings of the OpenMPCon Developers Conference (2015)

17. Lobeiras, J., Arenaz, M., Hernández, O.: Experiences in extending parallware to
support OpenACC. In: Chandrasekaran, S., Foertter, F. (eds.) Proceedings of the
Second Workshop on Accelerator Programming using Directives, WACCPD 2015,
Austin, Texas, USA, 15 November 2015, pp. 4:1–4:12. ACM (2015)

18. Lopez, M.G., Larrea, V.V., Joubert, W., Hernandez, O., Haidar, A., Tomov, S.,
Dongarra, J.: Towards achieving performance portability using directives for accel-
erators. In: Proceedings of the Third International Workshop on Accelerator Pro-
gramming Using Directives, WACCPD 2016, pp. 13–24. IEEE Press, Piscataway
(2016)

19. Berril, M.: XRayTrace miniapp (2017). https://code.ornl.gov/mbt/RayTrace-
miniapp

20. Martineau, M., Price, J., McIntosh-Smith, S., Gaudin, W.: Pragmatic performance
portability with OpenMP 4.x. In: Maruyama, N., de Supinski, B.R., Wahib, M.
(eds.) IWOMP 2016. LNCS, vol. 9903, pp. 253–267. Springer, Cham (2016). doi:10.
1007/978-3-319-45550-1 18

https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
http://dx.doi.org/10.1007/978-3-540-31832-3_7
https://www.llnl.gov/news/nnsa-national-labs-team-nvidia-develop-open-source-fortran-compiler-technology
https://www.llnl.gov/news/nnsa-national-labs-team-nvidia-develop-open-source-fortran-compiler-technology
https://code.ornl.gov/mbt/RayTrace-miniapp
https://code.ornl.gov/mbt/RayTrace-miniapp
http://dx.doi.org/10.1007/978-3-319-45550-1_18
http://dx.doi.org/10.1007/978-3-319-45550-1_18

The Technological Roadmap of Parallware and Its Alignment 253

21. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st
edn. Addison-Wesley Professional (2004)

22. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Pat-
terns for Efficient Computation, 1st edn. Morgan Kaufmann Publishers Inc., San
Francisco (2012)

23. OpenACC Architecture Review Board: The OpenACC Application Programming
Interface, Version 2.5, October 2015. http://www.openacc.org

24. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.5, November 2015. http://www.openmp.org

25. Wienke, S., Miller, J., Schulz, M., Müller, M.S.: Development effort estimation
in HPC. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2016, pp. 10:1–10:12. IEEE
Press, Piscataway (2016)

http://www.openacc.org
http://www.openmp.org

	The Technological Roadmap of Parallware and Its Alignment with the OpenPOWER Ecosystem
	1 Introduction
	2 Analysis of Benchmarks: CORAL, NPB and XRayTrace
	2.1 Parallel Design Patterns of Parallware
	2.2 Case Study: ORNL's Miniapp XRayTrace

	3 Parallware Trainer
	3.1 Case Study: CORAL Microbenchmark HACCmk
	3.2 The Parallware Suite

	4 The Technological Roadmap of Parallware
	5 Related Work
	6 Conclusions and Future Work
	References

