
Output Performance Study on a Production
Petascale Filesystem

Bing Xie1(B), Jeffrey S. Chase1, David Dillow2, Scott Klasky3, Jay Lofstead3,
Sarp Oral3, and Norbert Podhorszki3

1 Department of Computer Science, Duke University, Durham, USA
bingxie@cs.duke.edu

2 Oak Ridge National Laboratory, Oak Ridge, USA
dave@thedillows.org

3 Center for Computing Research, Sandia National Laboratories,

Albuquerque, USA

Abstract. This paper reports our observations from a top-tier super-
computer Titan and its Lustre parallel file stores under production load.
In summary, we find that supercomputer file systems are highly variable
across the machine at fine time scales. This variability has two major
implications. First, stragglers lessen the benefit of coupled I/O paral-
lelism (striping). Peak median output bandwidths are obtained with par-
allel writes to many independent files, with no striping or write-sharing
of files across clients (compute nodes). I/O parallelism is most effective
when the application—or its I/O middleware system—distributes the
I/O load so that each client writes separate files on multiple targets, and
each target stores files for multiple clients, in a balanced way. Second, our
results suggest that the potential benefit of dynamic adaptation is lim-
ited. In particular, it is not fruitful to attempt to identify “good spots”
in the machine or in the file system: component performance is driven by
transient load conditions, and past performance is not a useful predictor
of future performance. For example, we do not observe regular diurnal
load patterns.

Keywords: Parallel I/O · Petascale filesystem · Output performance

1 Introduction

Output bandwidth is a precious resource in supercomputers. Trends suggest
that this limitation is not likely to change. Therefore it is crucial for software to
make efficient use of the bandwidth. In principle, large write bursts can stream
effectively and achieve full bandwidth. In practice, delivered bandwidth is highly
sensitive to the application’s use of storage APIs and its data layout, placing an
unwelcome burden on domain scientists to manage I/O performance tradeoffs at
the application level.

In this paper, we summarize results from systematic I/O benchmarking—
focusing on output bandwidth—of the production supercomputer Titan, the 4th
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 187–200, 2017.
https://doi.org/10.1007/978-3-319-67630-2_16

188 B. Xie et al.

fastest supercomputer in the world. We extended the methodology used to study
the Jaguar supercomputer in [21], and designed a set of experiments to stress
load on individual stages of Titan’s multi-stage write path. These experiments
yield distributions of performance behaviors on Titan over time and across the
machine, enabling us to assess the impact of key configuration parameters and
choices. By studying the results through sequences of such experiments, we can
characterize the behaviors of individual stages in the write path over time.

The key contribution of our study is to enhance understanding of performance
behaviors for a state-of-the-art parallel filesystem as currently deployed in a
leadership-class production facility. The study is useful to understand the current
Titan deployment and also to build models that predict output absorption time
as a function of various parameter settings [22]. Although some factors may
be unique to Lustre and/or Titan, we expect that many of our observations
are representative of large-scale computing systems and their I/O performance
behaviors. Here is a summary of the primary conclusions:

– We find that a small proportion of storage targets (< 20%) are straggling at
any given interval, but that stragglers are transient: over time, any target may
appear as a straggler for some intervals. Stragglers throttle the write pipelines,
limiting striping bandwidth and reducing the benefits of parallelism.

– As configured on Titan, the Lustre write pipelines do not allow a single client
to obtain the full bandwidth of a storage target. The results suggest that in
the ideal case each client writes to multiple files spread across multiple targets,
with multiple clients per target.

– The I/O performance delivered on Titan is highly variable. Our study sug-
gests that historical performance data and monitoring do not enable adaptive
middleware to locate “good spots” in the supercomputer or in the file system.
Local performance behavior is transient and unpredictable.

– Delivered aggregate output bandwidth is sensitive to location (density) of a
job’s compute nodes for large bursts, under a static node-to-router mapping
policy adopted by Titan in its internal network configuration.

Our study offers insights that can inform design and deployment choices
for exascale facilities and also technical choices for the ongoing development
of integrated software stacks for parallel storage including parallel file systems
and I/O middleware systems such as ADIOS [12]. ADIOS implements a variety
of techniques to improve output performance, and many applications now use
ADIOS, e.g., S3D [3], XGC [10] fusion codes, and M8 earthquake simulations [5].
For example, ADIOS enables applications to configure their output buffer size.
It can issue writes to multiple independent files to avoid performance problems
associated with write-shared files and striping, and it reorganizes output data
for better read performance. The results in this study provide a foundation to
understand and quantify the impacts of these techniques, and may expose new
opportunities to manage I/O performance.

This paper summarizes some key aspects of our methodology and results. We
are preparing a full-length paper to present the results in more detail.

Output Performance Study on a Production Petascale Filesystem 189

2 Output Behavior on Titan

This section summarizes selected aspects of the burst absorption behavior of
Titan and two of its Lustre file systems (see Table 1): Spider (Widow1) and
Spider 2 (Atlas2). We design a sequence of experiments to stress the components
and stages of the write pipeline using the methodology in [21]. Each experiment is
a set of identical runs; each run varies one or more parameters across a sequence
of values in each round. The experiments yield one instance (a sample point) in
each round for each value of a varying parameter. Each instance reports output
bandwidth delivered to a group of nodes writing a synchronized output burst
from an IOR benchmark program. The runs occur at regular intervals over the
measurement period. In this way, we profile Titan’s write path statistically with
multiple samples spread over time. We use several measures of output bandwidth:

– Bandwidth is measured as MB/s per client node.
– Aggregate Bandwidth, measured in MB/s, is bandwidth summed across all

client nodes in an instance.
– Effective Aggregate Bandwidth (EAB) is aggregate bandwidth normalized to

the peak bandwidth achievable from the number of targets written in an
instance under a given set of parameters.

Table 1. File systems on Titan. A Lustre client (compute node) issues I/O oper-
ations to RAID targets (OSTs) attached to Object Storage Servers (OSSes). The I/O
path traverses the internal interconnect to a selected I/O node, which acts as a router
to forward I/O traffic between the internal interconnect and an external storage net-
work. In Titan the mapping of compute nodes to I/O nodes is static (“fine-grained”)
when all I/O nodes are functioning normally [7].

File systems Service time Partitions Routing policy I/O nodes OSSes OSTs

Spider Jan. 2008–Dec. 2013 4 Fine-grained 192 192 336 × 4

Spider 2 Nov. 2013–present 2 Fine-grained 432 288 1008 × 2

2.1 Pipeline Efficiency

We evaluated the efficiency of the write pipeline from a single client: a single
process running on a single core to a single target (OST), as a function of burst
size. The data is based on the measurements taken from March to July 2013 on
Spider/Widow1. This experiment has 200 runs with 3 rounds each.

Figure 1 gives the results. Each boxplot displays a quantile distribution of
samples for the corresponding parameter value on the x-axis, with “whiskers
and dots” for the outliers. Each boxplot contains one point from each of the
rounds—the result of the instance for the corresponding parameter value from
that round. The upper and lower borders of each box are the 25th and 75th
percentile values (lower quartile Q1 and upper quartile Q3). The band within

190 B. Xie et al.

1MB 4MB 16MB 64MB 256MB 1GB 4GB 16GB 64GB
0

50

100

150

200

250

300

350

400

B
an

dw
id

th
 o

f a
 P

ip
el

in
e,

 U
ni

t:M
B

/s

Fig. 1. Bandwidth of a single pipeline as a function of burst size. This graph shows
results for a single process on a single core writing a single file on a single target. Other
results (not shown) indicate that more client processes do not help: the configured
write pipeline is not deep enough for one client to obtain full bandwidth from a target.

each box denotes the median value. The value Q3-Q1 is the interquartile range
or IQR; thus 50% of the y-values reside within the box, and the IQR is the height
of the box. The upper and lower whiskers cover the points outside of the box,
except that the upper and lower bounds of the whisker do not extend beyond
Q3 + 1.5 ∗ IQR and Q1 − 1.5 ∗ IQR respectively. All y-values outside of this
whisker range are outliers and are plotted as individual points.

Figure 1 shows that single-pipeline bandwidth is sensitive to burst size, and
that the write pipeline obtains its maximum overall bandwidth with a write burst
of 2 GB or more. With these burst sizes the pipeline runs at full bandwidth for
long enough to dominate the time to fill and drain the pipeline.

The results suggest that the conservative flow control configuration for output
pipelines in Lustre (e.g., at most eight outstanding RPCs per client-target pair)
prevents a single client from obtaining the full bandwidth of any target. This
was true in the Jaguar study as well, and has continued to be true on the Titan
Lustre deployment. One possible cause is that enhancements for asynchronous
journaling (see [16]) may delay the RPC replies from the targets, requiring a
larger number of outstanding RPCs for effective write streaming.

We determined from the multi-core experiment (not shown) that using mul-
tiple cores on a client does not help. In the multi-core experiment, each client
runs multiple single-threaded IOR processes, each issuing a single output burst
to a separate file on the single target, synchronized with MPI barriers. Using
multiple cores from a client improves the delivered bandwidth by at most 5%.

Output Performance Study on a Production Petascale Filesystem 191

Figure 1 also shows that many of the trials deliver low bandwidths. The
results show substantial outliers on the low side (3% to 5% of all samples).
Other experiments suggest that these are due to intermittent contention on the
internal Titan interconnect.

Fig. 2. Template for the many-pairs experiment. Each client node runs a single
process that issues a 64 MB burst to an unstriped file on a selected target. Each client
selects a different target. The bursts are synchronized. We vary the number of client-
target pairs and measure aggregate bandwidth and the bandwidth (or completion time)
for each client-target pair.

2.2 Many-Pairs Bandwidth and Stragglers

The “many pairs” experiment probe the aggregate I/O bandwidths achievable on
Titan and the consistency of performance in different parts of the machine. The
runs use equal numbers of clients and targets grouped in client-target pairs: each
client runs a single process that writes a single file on a single target, following
the template of Fig. 2. We ran this experiment from February to July 2013 on
Spider/Widow1 and produced 200 runs with 3 rounds each. At the largest scale
we use 336 compute nodes to write to all 336 targets in the Widow1 storage
system on Titan. The results reported here use a fixed burst size of 64 MB for
each node-target pair.

A key factor in this experiment is the variance in completion times for the
pairs in each instance. The bursts for all pairs are synchronized, and the aggre-
gate bandwidth (or EAB) is determined by the completion time of the slowest
pair. Some pairs in each instance complete quickly while others are “stragglers”
that limit the aggregate bandwidth.

To quantify the impact of stragglers, Fig. 3 plots the cumulative distributions
of completion times across all client-target pairs for each instance of the exper-
iment. In all cases, more than 95% of the synchronized bursts complete within
2 s, but almost every trial has a tail of stragglers, which cause other pairs in the
instance to idle while waiting for the stragglers to finish. The impact of strag-
glers grows as we increase the number of pairs: both the number of stragglers
and their completion times increase substantially.

192 B. Xie et al.

0 0.5 1 1.5 2 2.5
0

0.5
1

50 Clients to 50 Targets

0 0.5 1 1.5 2 2.5
0

0.5
1

100 Clients to 100 Targets

0 0.5 1 1.5 2 2.5
0

0.5
1

200 Clients to 200 Targets

0 0.5 1 1.5 2 2.5
0

0.5
1

300 Clients to 300 Targets

0 0.5 1 1.5 2 2.5
0

0.5
1

Response Time Unit: sec

336 Clients to 336 Targets

Fig. 3. CDFs of completion times for the instances of the many-pairs exper-
iment. Each subgraph has 600 CDF lines, one for a trial of an instance. Each line
shows the distribution of completion times for the pairs of one trial. Each line of the
five types of instances has 50, 100, 200, 300 and 336 points (pairs) respectively. It is
easy to see that almost every trial has good performance in some parts of the machine,
as well as stragglers that limit the aggregate bandwidth.

Stragglers may be caused by bottlenecks in the interconnect, and not neces-
sarily in the targets themselves. Using all 336 targets, the completion times of
even the fastest pairs are noticeably higher, indicating that the run has triggered
congestion in intermediate stages, uniformly affecting all pairs.

These stragglers are significant in part because of their impact on perfor-
mance with striping. We found and reported in [21] that straggling targets gate
the bandwidth of striped write operations. This situation improved when the
Lustre client software was upgraded to improve internal concurrency using a
pool of threads to handle RPC load in the client [19]. But the average write
bandwidth with striping is still substantially lower than the bandwidth achiev-
able using independent writes.

2.3 Performance Variability of Individual Components

To probe the stability of stragglers and further explore the opportunity to locate
and avoid stragglers with adaptive I/O tools (e.g., ADIOS), we design a new
experiment template to quantify the persistence of stragglers. It follows the
template of the many-pairs experiment (Fig. 2): in each instance N synchronous
processes from N clients write to a sequence of N OSTs. However, in this exper-
iment each client is paired to one of the N -length OST sequence according to a
round-robin policy across consecutive instances in a run. In each run, the group

Output Performance Study on a Production Petascale Filesystem 193

0 20 40 60 80 100 120
Low Performance Sequence of OSTs with 32MB Bursts, Unit:Second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

LEB, t=0.05
PEB, t=0.05
LEB, t=0.1
PEB, t=0.1
LEB, t=0.2
PEB, t=0.2

0 20 40 60 80 100 120
Low Performance Sequence of OSTs with 128MB Bursts, Unit:Second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

LEB, t=0.05
PEB, t=0.05
LEB, t=0.1
PEB, t=0.1
LEB, t=0.2
PEB, t=0.2

Fig. 4. CDFs of low behavior sequences of OSTs. From left to right, each subfig-
ure shows the CDF of the time durations of the low-performance periods with 32MB
and 128MB bursts respectively; in each subfigure, a line shows the CDF of the low-
performance sequences determined by the quantile threshold t (defined in Sect. 2.3).

of clients, the candidate OSTs, and the burst size are all fixed. We conducted 8
such experiments on Titan/Atlas2 with 1008 OSTs (see Table 1) from January
to February 2017: in each experiment 126 coordinated clients focus bursts on a
different sequence of 126 OSTs with 32 MB and 128 MB bursts respectively. In
this set of experiments, the time duration of a run ranges from 0.5–1.7 h; the
time interval between two consecutive measures in a run ranges from 7–15 s.

To quantify the performance of individual components, we assign each node-
target pair in an instance two relative measures: LEB (Lag Effective Bandwidth)
and PEB (Pair Effective Bandwidth).

– The LEB score is the pair’s bandwidth normalized to the fastest pair in its
instance. The fastest pair (LEB = 1) gives a rough measure (a lower bound)
of the performance achievable under the parameters and general system con-
ditions for that instance.

– The PEB score is the pair’s bandwidth normalized to the fastest pair measure
within similar instances, which share identical parameter settings but run at
different times. Such similar instances form an equivalent instance set. The
fastest pair in a set (PEB = 1) gives a rough measure of the performance
achievable for the set under ideal conditions: it is the best observed perfor-
mance for any pair using those parameter settings.

We use these relative measures of component performance to compensate for
the effect of general contention (e.g., in the interconnect) that affects a large
share of the machine. We find that over 99.5% of the LEB/PEB scores of indi-
vidual compute nodes and storage targets are within the range in 0.4—0.9 across
experiments and burst sizes. These measures allowed us to identify targets that
were persistent stragglers due to a load imbalance in an early Titan configura-
tion; this problem has since been fixed.

194 B. Xie et al.

We take a two-step approach to quantify the stability of performance behav-
ior for individual components over time:

1. Label a LEB/PEB score of the component as low or normal performance
according to a threshold: if the score of the component is below the thresh-
old, it is considered a low performance measure; otherwise, it is a normal
performance measure. We determine a threshold according to a chosen quan-
tile (t) of LEB/PEB scores obtained from each equivalent instance set, i.e.,
of all instances with the same parameter setting.

2. Measure the lengths of consecutive sequences of low/normal performance
measures for the component across its time series. Long sequences indicate
that performance states are stable over time; short sequences suggest that
they are not.

We focus on three quantiles: t= 0.05, =0.1, =0.2. Figure 4 shows the sum-
mary of low performance periods for storage targets. It suggests that for 32 MB
(or 128 MB) bursts more than 96% (or 100%) of storage targets showing low
performance return to normal within a minute (or 2 min). Similar analyses sug-
gest that a node showing low performance tends to return to normal within
2 min, and any component showing normal performance tends to switch to low
performance within 10 min.

Based on these system-wide measurements at small time scales, we conclude
that local performance in Titan’s I/O system is highly variable over time. This
high variability suggests that it is not fruitful to identify “good spots” in the
machine or in the file system for the purpose of improving I/O performance.

2.4 Performance Variability and Node Locality

This section probes performance variation across compute node locations. To
this end, we examine the many-pairs experiment again (the template in Fig. 2)
with 16 MB and 256 MB bursts from each of 1008 compute nodes to a different
storage target. We also extend the methodology to group the runs into sets each
comprising multiple identical runs with the same group of compute nodes, closely
spaced in time. Different sets executed on different groups of compute nodes and
at different times.

Our analysis is based on measurements taken from May to June 2015. We
collected 95 sets with a total of 103 runs; a few sets have multiple runs. Each run
comprises 15 rounds of instances with 16 MB and 256 MB bursts respectively.

To explore the set behaviors for different burst sizes, we estimate the node
distribution of each set by measuring the average path length (L) between the
nodes in all pairs of nodes drawn from the set. A smaller L indicates a more
tightly packed (denser) node set; a larger L indicates a more widely scattered
node set. To measure the distance for each node pair in a set, we choose a
common metric, L1 routing distance: the length of a path between two points
in Titan’s 3d torus. For a node pair at positions (x1, y1, z1) and (x2, y2, z2), the
distance (d) of the pair is given by:

d = |x1 − x2| + |y1 − y2| + |z1 − z2| (1)

Output Performance Study on a Production Petascale Filesystem 195

10.61 11.55 12.66 14.38 15.96 17.24 19.18 23.18
Average Length of Node Pair Paths in a Set, unit: hop

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

A
B

10.61 11.55 12.66 14.38 15.96 17.24 19.18 23.18
Average Length of Node Pair Paths in a Set, unit: hop

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
A

B

Fig. 5. EABs of the 95 sets with 16 MB and 256MB bursts. From left to right,
a subfigure reports the boxplots of the EABs of the 103 runs from the 95 sets with
16MB and 256 MB bursts respectively. In each subfigure, the x-axis represents the 95
node sets sorted by L (defined in Sect. 2.4); the corresponding y values summarize the
distribution of measured bandwidths (EABs) for that node set.

The L values of the 95 sets vary from 10.61 to 23.18 hops. To explore the
correlation between output performance and set density, Fig. 5 plots their EABs
ranked by density, for 16 MB and 256 MB bursts.

Figure 5 shows that for 16 MB bursts the EABs of all sets are distributed
in a wide range and are only weakly correlated with density. Small bursts are
sensitive to transient contention on the shared intermediate stages or on the
storage servers/targets. However, for the 256 MB bursts, the sets with larger L
are more likely to deliver higher aggregate bandwidths.

To quantify the behaviors of the sample-size bursts on various set densities,
we further partition the 95 sets into three ranges of average hop distance: 10.61–
15, 15.01–20 and 20.01–23.18. Figure 6 shows the output bandwidths (EABs)
for the instances in each range. It suggests that, for 256 MB bursts, above 80%
of the instances in the L range 1, range 2 and range 3 report ∼0.4, ∼0.52 and
∼0.67 EABs respectively. For the larger bursts the sets with larger L tend to
deliver higher aggregate bandwidths.

We conclude that while the bandwidth of small bursts is dominated by tran-
sient contention, the performance of large bursts is impaired by denser node sets.
Of course, the job scheduler prefers dense node sets because a densely packed job
experiences less cross-contention from other jobs on the internal interconnect.
However, denser sets may experience self-contention on the internal interconnect
and also are locked into using a smaller set of I/O routers, since the binding of
nodes to routers is static and determined by node location (Table 1). More dis-
persed sets spread their loads across a larger portion of the interconnect and a
larger number of I/O routers, and tend to show higher bandwidth accordingly.

Moreover, it is worth noting that for 16MB bursts, the results suggest
slightly better performance for denser node sets. Even dense sets are free of self-
contention for small bursts, and may benefit from the lack of cross-contention in

196 B. Xie et al.

0 0.2 0.4 0.6 0.8 1
EABs of the Instances for 16MB bursts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 L in range 1
 L in range 2
 L in range 3

0 0.2 0.4 0.6 0.8 1
EABs of the Instances for 256MB bursts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 L in range 1
 L in range 2
 L in range 3

Fig. 6. CDFs of the instance EABs of the 95 sets with 16MB bursts (left) and
256 MB bursts (right). In each subfigure, the lines (blue, red and yellow) depict the
CDFs of the instances examined on the sets with L in three hop ranges respectively:
10.61–15 (720 instances), 15.01–20 (720 instances), and 20.01–23.18 (105 instances).
(Color figure online)

the interconnect and I/O routers from other jobs on the machine. Even so, in a
busy and highly contended system like Titan, the transient system conditions on
the storage servers/targets dominates this effect. For longer bursts the transient
hot spots in the storage system tend to cancel out, and the results are dominated
by persistent self-contention in the interconnect and I/O routers. This suggests
that the I/O routing policy could be improved to spread load for large burst.
Moreover, in this scenario I/O adaptive tools (e.g., ADIOS) might be helpful to
move and redistribute the load across the machine.

3 Related Work

Several studies benchmark HPC file systems by measuring their performance
under real application workloads. Several influential studies were published in
the 1990s [4,6,8,14,15]. A significant recent study installs continuous monitoring
software on compute nodes to characterize the I/O requests of real application
workloads in real time, modulating the data collected to keep overhead within
acceptable limits [1,2,13].

Uselton et al. [20] propose a statistical method to collect and analyze I/O
events to more fully characterize the I/O behavior of ensembles. They also
observe the straggler phenomenon, suggesting that the straggler problem is a
general issue in supercomputers. Their work focuses on improving the I/O per-
formance of a given application in a given supercomputer system. Our goal is
to characterize the multi-stage write pipeline in a petascale file system, locate
write absorption bottlenecks, and capture component performance variability
that influence on the design and configuration choices for adaptive middleware
and HPC applications.

Output Performance Study on a Production Petascale Filesystem 197

Other previous studies use an approach similar to ours: stress the file system
with synthetic benchmarks. A number of HPC I/O benchmarks are designed to
be sufficiently flexible to emulate the typical I/O behaviors in supercomputer
environments, such as the FLASH I/O, IOR, and BTIO benchmarks. This flexi-
bility enables users to configure the benchmark for a desired pattern approximat-
ing an observed application behavior. In our work, we take IOR as a generator
and run different patterns and configurations to focus traffic on specific stages
and elements of the write pipeline to gain a complete picture of output burst
absorption in a production facility.

A recent study [11] uses a similar methodology to measure the performance
of the Intrepid file system at the Argonne Leadership Computing Facility. The
authors report the capacity of each I/O stage and measure the behavior of the
entire subfile system for large-scale runs of a set of benchmarks. The measure-
ments are taken on dedicated hardware before the supercomputer system was
running in production mode. Our work explores the delivered bandwidth of the
I/O stages in ongoing production use, reflects the impact of competing work-
loads under observed usage patterns in production, and shows how to filter noise
from competing workloads to obtain insights into the behavior of the underlying
hardware and software.

Earlier studies also use configurations of the IOR benchmark to analyze the
behavior of HPC systems [17,18]. Kim et al. [9] collect I/O performance data
from Titan’s predecessor Jaguar. That study is complementary to ours: it reports
monitoring data from the storage servers showing the combined workload on the
machine. We focus on the end-to-end behavior observed by jobs running on the
compute nodes, and the impact of write patterns and I/O configuration choices.

4 Conclusion

I/O bandwidth is a scarce resource on supercomputers. Output burst absorp-
tion can have a substantial impact on delivered performance, as demonstrated
by a simple performance model. Observed output bandwidth is sensitive to var-
ious uses of the storage system APIs and different supercomputer I/O system
conditions.

We apply a statistical benchmarking approach to probe Lustre filesystem out-
put performance in Titan and its Spider and Spider 2 file stores. The measured
distributions quantify the frequency and severity of contention (stragglers) and
other transient system conditions. These imbalances lessen the benefit of coupled
I/O parallelism (striping). This effect motivates structuring choices to loosen the
coupling of parallel I/O. For example, on Titan’s I/O system under typical con-
ditions, the peak median output bandwidths are obtained with parallel writes to
many independent files, with no write-sharing or striping, and with each target
storing files for multiple clients, and each client writing files on multiple OSTs.

The prevalence of these imbalances motivates adaptive responses in the
I/O middleware layer. To evaluate the potential of adaptation, we studied the

198 B. Xie et al.

behavior of individual components to expose temporal usage patterns, slow com-
ponents and system-level performance variability that can lead to imbalances in
the write path. Our results show that these performance stutters are difficult to
predict, and that system changes state quickly and frequently, suggesting that
dynamic adaptation to congestion is not a fruitful approach.

Under a static node-to-router mapping policy adopted by Titan in its network
configuration, for large bursts output performance is sensitive to the density of
a job’s compute nodes, as measured by the mean pairwise routing path distance
within the node group.

Acknowledgment. We thank Chris Zimmer from OLCF for his detailed explanation
on the network configuration of Titan.

The work was supported by the U.S. Department of Energy, under FWP 16-018666,
program manager Lucy Nowell.

This research used resources of the Oak Ridge Leadership Computing Facility,
located in the National Center for Computational Sciences at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the Department of Energy
under Contract DE-AC05-00OR22725.

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

References

1. Carns, P., Harms, K., Allcock, W., Bacon, C., Lang, S., Latham, R., Ross, R.:
Understanding and improving computational science storage access through con-
tinuous characterization. ACM Trans. Storage 7(3), 8–26 (2011)

2. Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., Riley, K.: 24/7 characterization
of petascale I/O workloads. In: Proceedings of the IEEE International Conference
on Cluster Computing (CLUSTER 2009), pp. 1–10, New Orleans, LA (2009)

3. Chacón, L.: A non-staggered, conservative, finite-volume scheme for 3D implicit
extended magnetohydrodynamics in curvilinear geometries. Comput. Phys. Com-
mun. 163(3), 143–171 (2004)

4. Crandall, P.E., Aydt, R.A., Chien, A.A., Reed, D.A.: Input/output characteristics
of scalable parallel applications. In: Proceedings of the ACM/IEEE Conference on
Supercomputing (SC 1995), pp. 59–89, San Diego, CA (1995)

5. Cui, Y., Olsen, K., Jordan, T., Lee, K., Zhou, J., Small, P., Roten, D., Ely, G.,
Panda, D., Chourasia, A., Levesque, J., Day, S., Maechling, P.: Scalable earth-
quake simulation on petascale supercomputers. In: Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC 2010), pp. 1–20, Washington, DC (2010)

6. Cypher, R., Ho, A., Konstantinidou, S., Messina, P.: Architectural requirements of
parallel scientific applications with explicit communication. In: Proceedings of the
20th Annual International Symposium on Computer Architecture(ISCA 1993), pp.
2–13, San Diego, CA (1993)

Output Performance Study on a Production Petascale Filesystem 199

7. Ezell, M., Dillow, D., Oral, S., Wang, F., Tiwari, D., Maxwell, D., Leverman,
D., Hill, J.: I/O router placement and fine-grained routing on Titan to support
Spider II. In: Proceedings of the Cray User Group Conference (CUG 2014), pp.
1–6, Lugano, Switzerland (2014)

8. Ganger, G.R.: Generating representative synthetic workloads: an unsolved prob-
lem. In: Proceedings of the Computer Measurement Group Conference (CMG
1995), pp. 1263–1269, Nashville, TN (1995)

9. Kim, Y., Gunasekaran, R., Shipman, G.M., Dillow, D.A., Zhang, Z., Settlemyer,
B.W.: Workload characterization of a leadership class storage cluster. In: Proceed-
ings of the 5th Petascale Data Storage Workshop (PDSW 2010), pp. 1–5, New
Orleans, LA (2010)

10. Ku, S., Chang, C.S., Adams, M., Cummings, J., Hinton, F., Keyes, D., Klasky, S.,
Lee, W., Lin, Z., Parker, S.: The CPES team: Gyrokinetic particle simulation of
neoclassical transport in the pedestal/scrape-off region of a Tokamak plasma. J.
Phys. 46(1), 87–91 (2006)

11. Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., Allcock, W.: I/O performance
challenges at leadership scale. In: Proceedings of the ACM/IEEE International
Conference for High Performance Computing Networking, Storage and Analysis
(SC 2009), pp. 40–52, Portland, OR (2009)

12. Lofstead, J., Zheng, F., Klasky, S., Schwan, K.: Adaptable, metadata-rich I/O
methods for portable high performance I/O. In: Proceedings of the 23rd IEEE
International Parallel & Distributed Processing Symposium (IPDPS 2009), pp.
1–10, Rome, Italy (2009)

13. Luu, H., Winslett, M., Gropp, W., Ross, R., Carns, P., Harms, K., Prabhat, M.,
Byna, S., Yao, Y.: A multiplatform study of I/O behavior on petascale supercom-
puters. In: Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing (HPDC 2015), pp. 33–44, Portland, OR (2015)

14. Narasimha Reddy, A.L., Banerjee, P.: A study of I/O behavior of perfect bench-
marks on a multiprocessor. In: Proceedings of the 17th Annual International Sym-
posium on Computer Architecture (ISCA 1990), pp. 312–321, Seattle, WA (1990)

15. Nieuwejaar, N., Kotz, D., Purakayastha, A., Ellis, C.S., Best, M.L.: File-access
characteristics of parallel scientific workloads. IEEE Trans. Parallel Distrib. Syst.
7(10), 1075–1089 (1996)

16. Oral, S., Wang, F., Dillow, D., Shipman, G., Miller, R., Drokin, O.: Efficient object
storage journaling in a distributed parallel file system. In: Proceedings of the 8th
USENIX Conference on File and Storage Technologies (FAST 2010), pp. 143–154,
San Jose, CA (2010)

17. Shan, H., Antypas, K., Shalf, J.: Characterizing and predicting the I/O perfor-
mance of HPC applications using a parameterized synthetic benchmark. In: Pro-
ceedings of the ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC 2008), pp. 42–54, Austin, TX (2008)

18. Shan, H., Shalf, J.: Using IOR to analyze the I/O performance for HPC plat-
forms. In: Proceedings of the Cray User Group Meeting (CUG 2007), pp. 1–15,
Washington, DC (2007)

19. Shipman, G., Dillow, D., Fuller, D., Gunasekaran, R., Hill, J., Kim, Y., Oral, S.,
Reitz, D., Simmons, J., Wang, F.: A next-generation parallel file system environ-
ment for the OLCF. In: Proceedings of the Cray User Group Conference (CUG
2012), pp. 1–12, Stuttgart, Germany (2012)

200 B. Xie et al.

20. Uselton, A., Howison, M., Wright, N.J., Skinner, D., Keen, N., Shalf, J., Kar-
avanic, K.L., Oliker, L.: Parallel I/O performance: from events to ensembles. In:
Proceedings of the 24th IEEE International Parallel & Distributed Processing Sym-
posium(IPDPS 2010), pp. 1–11, Atlanta, GA (2010)

21. Xie, B., Chase, J., Dillow, D., Drokin, O., Klasky, S., Oral, S., Podhorszki, N.:
Characterizing output bottlenecks in a supercomputer. In: Proceedings of the
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC 2012), pp. 1–11, Salt Lake City, UT (2012)

22. Xie, B., Huang, Y., Chase, J.S., Choi, J.Y., Klasky, S., Lofstead, J., Oral, S.:
Predicting output performance of a petascale supercomputer. In: Proceedings of
the 26th International Symposium on High-Performance Parallel and Distributed
Computing (HPDC 2017), pp. 1–12, Washington D.C. (2017)

	Output Performance Study on a Production Petascale Filesystem
	1 Introduction
	2 Output Behavior on Titan
	2.1 Pipeline Efficiency
	2.2 Many-Pairs Bandwidth and Stragglers
	2.3 Performance Variability of Individual Components
	2.4 Performance Variability and Node Locality

	3 Related Work
	4 Conclusion
	References

