
PIOM-PX: A Framework for Modeling the I/O
Behavior of Parallel Scientific Applications

Pilar Gomez-Sanchez1(B), Sandra Mendez2, Dolores Rexachs1,
and Emilio Luque1

1 Computer Architecture and Operating Systems Department,
Universitat Autónoma de Barcelona, Campus UAB, Edifici Q,

08193 Bellaterra, Barcelona, Spain
{pilar.gomez,dolores.rexachs,emilio.luque}@uab.es

2 High Performance Systems Division, Leibniz Supercomputing Centre (LRZ),
85748 Garching bei München, Germany

sandra.mendez@lrz.de

Abstract. Current parallel scientific applications generate a huge
amount of data that must be managed efficiently for the HPC storage
systems. However, the I/O performance depends on the application I/O
behavior and the configuration of the underlying I/O system. To under-
stand the I/O behavior in the software stack and its impact on the I/O
operations defined in the application logic, we propose a design frame-
work named PIOM-PX, which allows to define an I/O behavior model
based on the I/O phases of HPC applications at POSIX-IO level. We
validate our framework using the IOR benchmark for four I/O patterns
and we analyze the I/O behavior of NAS BT-IO.

1 Introduction

Nowadays, parallel applications produce a huge amount of data that represents
a challenge for modern I/O systems. The variability of the I/O patterns and
diversity of storage architectures are other issues that make it difficult to take
advantage of the I/O performance capacity of the HPC-IO systems. Depending
on the I/O behavior of parallel applications and the processing performed in each
layer of the I/O software stack, the performance obtained can differ significantly
from the maximum performance expected.

Understanding I/O behavior is fundamental to evaluate the I/O performance
of the HPC applications. Several works [1–5] have focused on the extraction of the
I/O patterns to understand I/O behavior and to propose techniques to optimize
I/O performance in different layers of the I/O software stack [6,7]. Several tools
exist to analyze the application’s I/O behavior both for performance analysis and
for I/O profiling such as Darshan [8] I/O profiling tool, SIOX [9] and Vampir
[10] tool.

Due to the fact that most parallel applications are repetitive, and this repeti-
tive behavior for I/O operations is observed as I/O bursts or I/O phases, we use

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 160–173, 2017.
https://doi.org/10.1007/978-3-319-67630-2_14

PIOM-PX: A Framework for Modeling the I/O Behavior 161

the phase concept as the representation unit of the behavior of parallel appli-
cations. In this paper, we present a design framework named PIOM-PX, which
allows us to obtain the main parameters at POSIX-IO to define an I/O behavior
model.

We use PIOM-PX in order to evaluate the impact of the I/O phases on the
I/O system and to replicate the application’s I/O behavior in different HPC sys-
tems. The I/O phases are determined by identifying the global spatial and tem-
poral pattern for each file opened during the execution of the parallel application.
Our approach allows us to determine the I/O requirements of the application
and to evaluate their impact on different I/O configurations.

This paper is organized as follows: Sect. 2 describes the proposed framework,
Sect. 3 presents the validation of PIOM-PX and Sect. 4 explains the experimental
results. Finally, in Sect. 5, we explain our conclusions and future work.

2 Proposed Framework

The I/O model of application is defined based on the I/O phase concept and the
key characteristics, which are independent of the I/O system. We classify the
application features as parameters for PIOM-PX into three levels: application,
file, and phase. Table 1 summarizes the parameters for each level.

We define a design framework to obtain an I/O behavior model at POSIX-IO
level named PIOM-PX. Figure 1 presents the steps of PIOM-PX structured in
two main stages: tracing and post-processing.

Fig. 1. Framework to extract the application’s I/O behavior model based on identifying
the I/O phases.

162 P. Gomez-Sanchez et al.

Table 1. PIOM-PX model parameters

Identifier Application

app np Number of processes that the application needs to be executed

app nfiles Number of files used by the application

app st Storage capacity required by the application for the input files,
temporal files and input/output files.

File

file id File Identifier

file name File Name

file size File Size

file np Count of MPI processes that open the file file id

file accessmode This can be sequential, strided or random

file fileaccesstype Read only(R), write only (W) or write and read (W/R)

file accesstype file np processes can access to shared Files or 1 File per Process

file nphase Count of phases of the file.

I/O Phase (PhIO)

Ph id Identifier of an I/O Phase

Ph processid Identifier of Process implied in the phase

Ph np Number of processes implied in the phase

Ph weight Transferred data volume during the phase. It is expressed in
bytes

Ph nrep Number of repetitions per phase

Ph niop Number of I/O operations

IOP Data access operation type, which can be write, read, or
write/read

rs Request size or size of an I/O operation

offset Operation offset, which is a position in the file’s logical view

disp Displacement into file, which is the difference between the offset
of two consecutive I/O operations

dist Distance between two I/O operations, which is the difference
between

2.1 Tracing I/O Operations

To obtain the information defined in Table 1, we have implemented a tracer to
extract POSIX-IO events and to assign additional fields to detect I/O phases.
This tracer was integrated with PIOM-MP (former PAS2P-IO), which allows us
to trace I/O activities at MPI and POSIX-IO level.

Table 2 describes the fields included in a trace line (TL) of PIOM-PX. The
events are traced between the MPI Init and the MPI Finalize operations and a
trace file is generated for each MPI process. We trace the following operations:

PIOM-PX: A Framework for Modeling the I/O Behavior 163

POSIX-IO
open, open64, fopen64, close, fclose, write, fwrite, read, pread

pread64, pwrite, pwrite64,fread, fwrite, lseek, lseek64, fsync

creat, creat64, readv, writev, fseek, xstat, xstat64

Communication and MPI-IO
MPI_Send, MPI_Isend, MPI_Recv, MPI_Irecv, MPI_Wait, MPI_Allgather

MPI_Allreduce, MPI_Barrier, MPI_Bcast, MPI_Reduce, MPI_Sendrecv

MPI_Waitall, MPI_File_* // 51 I/O operations.

We define the tick concept to register the order of the MPI events and the
subtick concept for POSIX-IO events. The tick is increased for each MPI event
detected and the subtick is initialized after each MPI event and incremented for
consecutive POSIX-IO events.

Table 2. PIOM-PX trace line

Identifier Description

IdProcess Identifier of Process

file id Identifier of File

TypeOperation “MPI” or “POSIX”

NameOperation Name of POSIX-IO event

offset Operation offset, which is a position in the file’s logical view

rs Request size of for data access operations

Metadata-line

file name File Name

FileAccessType Open mode

Added fields

Time Logical time of the occurrence of a MPI or POSIX-IO event

Final compute Duration of the call of an MPI or POSIX-IO event

tick Order of occurrence of the MPI events

subtick Order of occurrence of the POSIX-IO events

In the Extracting I/O operations step, we extract the I/O operations per file
opened by the application of each trace file into a new file. Therefore, from this
step we obtain as many files as the application opens during its execution.

2.2 Updating I/O Operations

In this point, every file of I/O operations is reviewed to determine whether the
offset and request size (rs) informed require evaluating another operation to
obtain the real request or offset. For example, the case of the write and read
operations, where the offset depends on lseek operation.

164 P. Gomez-Sanchez et al.

To modify the offset, we have to take into account the whence parameter of
lseek operation: SEEK SET (the file offset is set to offset bytes), SEEK CUR (the
file offset is set to its current location plus offset bytes) and SEEK END (the file
offset is set to the size of the file plus offset bytes).

We calculate the field displacement (disp), added in the TL structure, to
identify the request size (rs) and how the displacement moves.

For Fortran program, the environment variable FORT BLOCKSIZE is evaluated
to determine the request size of a POSIX-IO event that the user actually wants
to work with.

2.3 Extracting Spatial and Temporal Pattern

To extract the spatial pattern, for each I/O file, both for the write and read
operation, we save the following fields: NameOperation, file id, file name,
offset and rs.

Besides, we calculate the offset difference for all operations that have the
same file id, file name and rs. The offset difference is calculated between two
consecutive operations (read-read or write-write) and the displacement (disp) is
calculated between two write operations and read operations.

If the application uses a shared file, we identify the global spatial pattern
based on I/O operations traced for each MPI process that opens the shared file.

To detect the Temporal pattern we establish the tick and subtick (See Fig. 2).
The tick identifies the MPI and MPI-IO operations and the subtick identifies
the POSIX-IO operations. MPI Sends are interchanged between processes and

Fig. 2. Representation of the I/O phases of a parallel application. The view corresponds
to an I/O process for an access type 1 file per process. Tick and subtick are used to
obtain the order of occurrence of the application’s events. An I/O phase is a consecutive
sequence of similar I/O operations. Phase properties represent the transferred data
volume during a phase and the I/O pattern.

PIOM-PX: A Framework for Modeling the I/O Behavior 165

the tick of MPI Sends affects the operations of the processes that received this
MPI Send. If all processes write to one or more shared files, we must detect
the relationship between all the operations carried out by all the processes to
determine the actual logical order. This order helps us to detect dependencies
among all processes and it is necessary to redefine the ticks and the subticks.

3 Experimental Validation

In this section, we validate the PIOM-PX functionality and its integration with
PIOM-MP (former PAS2P-IO [4]). To do this, we define four experiments based
on IOR [11] benchmark, which allows us to generate different I/O patterns for
distinct I/O interfaces. We have executed IOR using intel and GNU compilers
to analyze their influence on the operations detected. The MPI distribution uti-
lized was Intel MPI 2017. Furthermore, to identify the impact of the parallel
file system at the POSIX-IO level, PIOM-PX is evaluated in two HPC systems
with IBM Spectrum Scale (former GPFS) and Lustre. Experiments were exe-
cuted in SuperMUC (LRZ) and Finisterrae2 (CESGA) supercomputers, which
are described in Table 3.

Table 3. HPC systems

Components Finisterrae2 SuperMUC

Compute nodes 306 9216

CPU cores (per node) 24 16

RAM memory 128 GB 32 GB

Local Filesystem ext4 ext3

Global Filesystem (GFS) NFS NFS

Capacity of GFS 1.1 TB 10×564×10TB

Global Filesystem (PFS) Lustre GPFS

Capacity of PFS 695 TB 12 PB

Data servers 4 OSS and 12 OSTs 80 NSD

Metadata servers 1

Stripe size 1 MiB 8 MiB

Interconnection IB FDR@56 Gbps IB FDR10

3.1 Experimentation

Four experiments were designed to evaluate the I/O strategies 1 File per
Process and 1 Single Shared File. Furthermore, we assess a nested strided
pattern by using the collective buffering technique in “enable” and “automatic”
mode. We executed the experiments for 16 MPI processes per compute node.
Each experiment is described as follows:

166 P. Gomez-Sanchez et al.

(a) 1 File per Process using POSIX interface:
– Objective: Detect the POSIX-IO operations for an application that only

uses POSIX as I/O library.
– Command Line:

IOR -a POSIX -s 1 -b 8m -t 1m -F

(b) 1 File per Process using MPI-IO interface:
– Objective: Detect the POSIX-IO operations generated by an application

that uses independent MPI-IO operations.
– Command Line:

IOR -a MPIIO -s 1 -b 8m -t 1m -F

(c) A single shared file using collective buffering technique in automatic mode
for a strided pattern:
– Objective: Detect the POSIX-IO operations generated by an application

that uses collective MPI-IO operations.
– Command Line:

IOR -c -a MPIIO -s 16 -b 512k -t 512k

(d) A single shared file using collective buffering technique in enable mode for
a strided pattern:
– Objective: Detect the POSIX-IO operations generated by an applica-

tion that uses collective operations with the collective buffering technique
enabled.

– Command Line:

romio_cb_read = enable
romio_cb_write = enable
IOR -c -a MPIIO -s 16 -b 512k -t 512k

Table 4 presents PIOM-PX model parameters for the four IOR experiments
at application and file level.

To explain the I/O phases detected, we present snippets of trace files for
each experiment, where lines with “##” present the selected field of a trace
line. Furthermore, we detected two I/O phases for the four experiments because
this depends on the IOR logic. For this reason, we only show a detailed figure of
the I/O behavior for experiment (a). Each experiment is explained as follows:

(a) 1 File per Process using POSIX interface: IOR is configured to write 8 MiB
per MPI process by using the POSIX interface for the I/O strategy 1 File per
process. Each MPI process writes and reads in request size of 1 MiB (rs = 1
MiB). Figure 3 shows the I/O behavior for experiment (a). We detect two
I/O phases per file composed of eight operations (Ph niop = 8) each. For
each file, the first phase corresponds to 8 write operations and the second
phase to 8 read operations. Sixteen files are accessed in parallel. IOR starts
with a communication burst of 30 events between process 0 and the rest
of the processes (See Fig. 3). Later, a write phase begins in tick 30. In the
tick+subtick 50, an I/O Phase of read operations is generated.

PIOM-PX: A Framework for Modeling the I/O Behavior 167

Table 4. PIOM-PX Parameters for the IOR Benchmark

Identifier (a) (b) (c) (d)

app np 16 16 16 16

app nfiles 16 16 1 1

app st 128 MiB 128 MiB 128 MiB 128 MiB

File

file name testFile<IdProcess> testFile<IdProcess> testFile testFile

file size 8 MiB 8 MiB 128 MiB 128 MiB

file accessmode Seq Seq Strided Strided

file fileaccesstype W/R W/R W/R W/R

file accesstype 1Fx1Proc 1Fx1Proc Shared Shared

file nphase 2 2 2 2

file np 1 1 16 16

(a) File offset (b) Phase Weight

Fig. 3. IOR for POSIX interface configured for 16 MPI processes, 1 File per Process
for a sequential pattern. Bullet (smaller circle) corresponds to write operations and the
filled squares to read operations. Two I/O phases can be observed for each file. The
Phase 1 is composed of 8 write operations and Phase 2 of 8 read operations. The color
scale in (b) shows the weight, which is 1 MiB × file np per subtick. The weight for
both Phase 1 and Phase 2 is 8 MiB for each file per process. (Color figure online)

Snippet 1 presents part of the trace file of IdProcess 2, which shows part
of the operations of Phase 1. We can observe that a lseek64 operation is
called before each write and this also occurs for read operations.

168 P. Gomez-Sanchez et al.

Snippet 1: Trace file of IdProcess 2
IdProcess file_id file_name NameOperation tick subtick

2 6 testFile.00000002 open64 30 0

IdProcess file_id NameOperation offset tick subtick

2 6 lseek64 0 30 1

IdProcess file_id NameOperation offset rs tick subtick

2 6 write 0 1048576 30 2

2 6 lseek64 1048576 30 3

2 6 write 0 1048576 30 4

...

(b) 1 File per Process using MPI-IO interface: the I/O phases for this case is
similar to experiment (a) (See Fig. 3). In Snippet 2, a part of the IdProcess
2 trace file for this experiment can be seen. The number of I/O oper-
ations at POSIX-IO level changes, a write operation is called for each
MPI File write at. For read case, each MPI File read at calls a read
operation.

Snippet 2: Trace file of IdProcess 2
IdProcess file_id NameOperation file_name tick

2 0x6e38b8 MPI_File_open testFile.00000002 31

IdProcess file_id file_name NameOperation tick subtick

2 22 testFile.00000002 open64 31 0

IdProcess file_id NameOperation offset rs tick

2 0x6e38b8 MPI_File_write_at 0 1048576 32

IdProcess file_id NameOperation offset rs tick subtick

2 22 write 0 1048576 32 0

2 0x6e38b8 MPI_File_write_at 1048576 1048576 33

2 22 write 0 1048576 33 0

...

(c) A single shared file using collective buffering technique in automatic for a
strided pattern:

Snippet 3: Trace file of IdProcess 0
IdProcess file_id NameOperation file_name tick

0 0x2124fc8 MPI_File_open testFile3 31

IdProcess file_id file_name NameOperation tick subtick

0 6 testFile3 open64 0 66 31 0

0 0x2124fc8 MPI_File_get_info 32

IdProcess file_id NameOperation offset rs tick

0 0x2124fc8 MPI_File_write_at_all 0 524288 33

IdProcess file_id NameOperation offset rs tick subtick

0 6 write 0 524288 33 0

0 0x2124fc8 MPI_File_write_at_all 8388608 524288 34

IdProcess file_id NameOperation offset tick subtick

0 6 lseek64 8388608 34 0

0 6 write 0 524288 34 1

...

We define the strided pattern by setting the parameters blocksize (-b) and
transfer size (-t) with the same value. Furthermore, to obtain a total I/O

PIOM-PX: A Framework for Modeling the I/O Behavior 169

equal to experiment (a) and (b), the segment count (-s) is set to 16. In total,
each process writes and reads 8 MiB using a request size of 512 KiB.
In Snippet 3, we can observe a lseek64 and write operation for each MPI-
File write at all, except for the first collective write. The displacement
is equal to file np × rs = 8388608 Bytes, where file np = 16 and rs =
t = 524288 Bytes. In this case, each MPI process produces a similar trace
file, with the exception of the offset, where the initial offset is equal to
IdProcess × rs and offset(i + 1) = offset(i) + rs × file np × (i − 1) +
IdProcess × rs with i ∈ {1..s}, where s is the number of segments set up
for IOR benchmark.

(d) A single shared file using collective buffering technique enabled for a strided
pattern:

Snippet 4: Trace file of IdProcess 0
IdProcess file_id NameOperation file_name tick

0 0xac80f0 MPI_File_open testFile3 31

IdProcess file_id file_name NameOperation tick subtick

0 6 testFile3 open64 31 0

0 0xab9338 MPI_File_get_info 32

IdProcess file_id NameOperation offset rs tick

0 0xab9338 MPI_File_write_at_all 0 524288 33

IdProcess file_id NameOperation offset rs tick subtick

0 6 write 0 8388608 33

0 0xab9338 MPI_File_write_at_all 8388608 524288 34

IdProcess file_id NameOperation offset tick subtick

0 6 lseek64 8388608 34 0

0 6 write 0 8388608 34 1

...

To trace the I/O operations for applications that use collective buffering
enabled, we set up the ROMIO hints for this technique. The strided pattern
discussed in experiment (c) is the same than we employed in this experiment.
In Snippet 4, we can observe similar I/O operations to experiment (c), but
the request size at POSIX level is different, in this case, it corresponds to
file np× rs(MPI) = 8388608 Bytes, where rs(MPI) is the request size of
the MPI-IO operations. This behavior is to be expected, because we select
the IOR parameters to observe the collective behavior at POSIX-IO level.

3.2 Discussion

IOR benchmark allows us to reproduce more common I/O patterns of HPC
applications. PIOM-PX detected the spatial and temporal pattern for POSIX-
IO level and it represented them through I/O phases.

The results showed that the spatial pattern depends on the type of I/O oper-
ation and I/O method. We have selected the same amount of data, the number
of MPI processes and similar I/O strategy, but the behavior is influenced by the
I/O techniques and the I/O interface. We have detected that collective buffering
technique was not working in automatic mode because all MPI processes were

170 P. Gomez-Sanchez et al.

carrying out I/O and we only expected an I/O aggregator per compute node. As
has been observed in experiments (c) and (d), MPI-IO operations are the same,
but at POSIX level they depend on the hint values of the ROMIO library and
the hints explicitly defined in the application. PIOM-PX considers this property
to provide information to the user in order to help them understand what the
I/O library is doing with the operations defined in the application logic.

4 Experimental Results

In this section, we analyze the BT-IO benchmark [12], which is part of the parallel
benchmark suite NPB-MPI developed by the NASA Advanced Supercomputing
Division. BT-IO presents a block-tridiagonal partitioning pattern on a three-
dimensional array across a square number of processes.

Table 5. PIOM-PX parameters for the BT-IO benchmark subtype FULL

Identifier Class A Class B Class C

app np 16 16 36

app nfiles 1 1 1

app st 400 MiB 1.6 GiB 6.4 GiB

File

file name btio.full.out btio.full.out btio.full.out

file size 400 MiB 1.6 GiB 6.4 GiB

file accessmode Strided Strided Strided

file fileaccesstype W/R W/R W/R

file accesstype Shared Shared Shared

file nphase 41 41 41

file np at MPI-IO level 16 16 36

file np at POSIX-IO level 1 1 3

We selected BT-IO to show the temporal pattern considering the tick and
subtick concepts. Due to the fact that an I/O phase is identified depending on the
communication events and compute part, BT-IO allows us to analyze a case with
compute and communication events. BT-IO is implemented in Fortran, therefore
we can evaluate the influence of Fortran I/O library in the request size at POSIX-
IO level. We have selected the subtype FULL, which implements the I/O part
with collective operations, derived data type, MPI File view and MPI Info for
enabled collective buffering in the application logic. We have executed BT-IO in
SuperMUC and Finisterra2 supercomputers (See Table 3).

Figure 4 depicts the I/O phases at MPI-IO (Fig. 4(a)) and POSIX-IO
(Fig. 4(b)) level. PIOM-PX parameters are described in Table 5 for Classes A, B

PIOM-PX: A Framework for Modeling the I/O Behavior 171

(a) File offset at MPI level by using PIOM-MP

(b) File offset at POSIX-IO level (c) Phase Weight at POSIX-IO level

Fig. 4. BT-IO subtype FULL, Class A using 16 MPI processes for a strided pattern.
The bullets (smaller circles) correspond to write operations and the shaded squares
to read operations. Each first forty I/O phases (circles) are composed of 1 MPI write
operation and Phase 41 of 40 read operations. At MPI-IO level, the weight of the Phase
1 to Phase 40 is 655360 Bytes × file np for each one and for Phase 41 it is 10 MiB ×
np × 40. At POSIX-IO level, the colored scale in Fig. 4(c) shows the weight for Phase
1 to Phase 40, which is 10 MiB and the Phase 41 weight is 10 MiB ×40.

172 P. Gomez-Sanchez et al.

and C at application and file level. As can be observed in Table 5, 41 I/O phases
are identified in a single shared file for a strided access mode.

In Fig. 4(a) each bullet line (y-axis) represents an I/O phase composed of
file np write operations. The red square represents Phase 41, which is com-
posed of 40 × file np read operations. The operation size is similar for read
and write operations. At MPI-IO level, the number of MPI processes per I/O
phase correspond to the file np. In Fig. 4(b), we can observe the effect of the
collective buffering techniques at POSIX level, where only process 0 performs
I/O operations. In this layer, the number of processes per I/O phase is equal to
the number of compute nodes utilized for running the application.

5 Conclusions

We have validated PIOM-PX with the IOR benchmark for four cases. Our app-
roach allows us to obtain the application’s I/O behavior at phase level. The I/O
behavior helps to understand the relationship between the application and the
I/O system. PIOM-PX is modular to facilitate the integration of more function-
ality or steps. Our framework makes it possible to have accurate information
over the I/O phases. Despite the fact that number of MPI processes evaluated
in validation and experimentation is small, as the I/O behavior model depends
on the application logic, our approach is applicable for a larger number of MPI
processes.

The next step, it is to execute the real applications and to acquire their I/O
behavior at I/O phase level.

Acknowledgments. This research has been supported by the MINECO Spain under
contract TIN2014-53172-P. The research position of the PhD student P. Gomez has
been funded by a research collaboration agreement, with the “Fundación Escuelas
Universitarias Gimbernat”. P. Gomez awarded with the SEBAP Research Mobility
Grant to fund her three-month research stay at Leibniz Supercomputing Centre (LRZ,
Germany).

The authors thankfully acknowledge the resources provided by the Centre of Super-
computing of Galicia (CESGA, Spain) and the Leibniz Supercomputing Centre (LRZ,
Germany).

References

1. Byna, S., Chen, Y., Sun, X.-H., Thakur, R., Gropp, W.: Parallel I/O prefetching
using MPI file caching and I/O signatures. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC 2008, Piscataway, NJ, USA, pp. 44:1–44:12.
IEEE Press, 2008. http://dl.acm.org/citation.cfm?id=1413370.1413415

2. He, J., Bent, J., Torres, A., Grider, G., Gibson, G., Maltzahn, C., Sun, X.-H.:
I/O acceleration with pattern detection. In: Proceedings of the 22nd International
Symposium on High-Performance Parallel and Distributed Computing, pp. 25–36.
ACM (2013)

http://dl.acm.org/citation.cfm?id=1413370.1413415

PIOM-PX: A Framework for Modeling the I/O Behavior 173

3. Kluge, M., Knüpfer, A., Müller, M., Nagel, W.E.: Pattern matching and I/O replay
for POSIX I/O in parallel programs. In: Sips, H., Epema, D., Lin, H.-X. (eds.)
Euro-Par 2009. LNCS, vol. 5704, pp. 45–56. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03869-3 8

4. Méndez, S., Rexachs, D., Luque, E.: Modeling parallel scientific applications
through their Input/Output phases. In: CLUSTER Workshops, vol. 12, pp. 7–15
(2012)

5. Carns, P., Harms, K., Allcock, W., Bacon, C., Lang, S., Latham, R., Ross, R.:
Understanding and improving computational science storage access through contin-
uous characterization. Trans. Storage 7(3), 8:1–8:26 (2011). doi:10.1145/2027066.
2027068

6. Behzad, B., Luu, H.V.T., Huchette, J., Byna, S., Prabhat, Aydt, R., Koziol, Q.,
Snir, M.: Taming parallel I/O complexity with auto-tuning. In: 2013 SC - Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pp. 1–12, November 2013

7. Behzad, B., Byna, S., Prabhat, Snir, M.: Pattern-driven parallel I/O tuning. In:
Proceedings of the 10th Parallel Data Storage Workshop, PDSW 2015, pp. 43–48.
ACM, New York (2015). doi:10.1145/2834976.2834977

8. Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., Riley, K.: 24/7 Character-
ization of petascale I/O workloads. In: 2009 IEEE International Conference on
Cluster Computing and Workshops, pp. 1–10. IEEE (2009)

9. Kunkel, J.M., Zimmer, M., Hübbe, N., Aguilera, A., Mickler, H., Wang, X., Chut,
A., Bönisch, T., Lüttgau, J., Michel, R., Weging, J.: The SIOX architecture –
coupling automatic monitoring and optimization of parallel I/O. In: Kunkel, J.M.,
Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp. 245–260. Springer,
Cham (2014). doi:10.1007/978-3-319-07518-1 16

10. Knüpfer, A., et al.: The Vampir performance analysis tool-set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting, pp. 139–155. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68564-7 9

11. Loewe, W., MacLarty, T., Morrone, C.: IOR Benchmark (2012). https://github.
com/chaos/ior/blob/master/doc/USER GUIDE. Accessed 14 May 2016

12. Wong, P., Wijngaart, R.F.V.D.: NAS parallel benchmarks i/o version 2.4, Com-
puter Sciences Corporation, NASA Advanced Supercomputing (NAS) Division,
Technical report (2003)

http://dx.doi.org/10.1007/978-3-642-03869-3_8
http://dx.doi.org/10.1007/978-3-642-03869-3_8
http://dx.doi.org/10.1145/2027066.2027068
http://dx.doi.org/10.1145/2027066.2027068
http://dx.doi.org/10.1145/2834976.2834977
http://dx.doi.org/10.1007/978-3-319-07518-1_16
http://dx.doi.org/10.1007/978-3-540-68564-7_9
https://github.com/chaos/ior/blob/master/doc/USER_GUIDE
https://github.com/chaos/ior/blob/master/doc/USER_GUIDE

	PIOM-PX: A Framework for Modeling the I/O Behavior of Parallel Scientific Applications
	1 Introduction
	2 Proposed Framework
	2.1 Tracing I/O Operations
	2.2 Updating I/O Operations
	2.3 Extracting Spatial and Temporal Pattern

	3 Experimental Validation
	3.1 Experimentation
	3.2 Discussion

	4 Experimental Results
	5 Conclusions
	References

