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Abstract. With the decline and eventual end of historical rates of litho-
graphic scaling, we arrive at a crossroad where synergistic and holis-
tic decisions are required to preserve Moore’s law technology scaling.
Numerous emerging technologies aim to extend digital electronics scal-
ing of performance, energy efficiency, and computational power/density,
ranging from devices (transistors), memories, 3D integration capabilities,
specialized architectures, photonics, and others. The wide range of tech-
nology options creates the need for an integrated strategy to understand
the impact of these emerging technologies on future large-scale digital
systems for diverse application requirements and optimization metrics.
In this paper, we argue for a comprehensive methodology that spans
the different levels of abstraction – from materials, to devices, to com-
plex digital systems and applications. Our approach integrates compact
models of low-level characteristics of the emerging technologies to inform
higher-level simulation models to evaluate their responsiveness to appli-
cation requirements. The integrated framework can then automate the
search for an optimal architecture using available emerging technologies
to maximize a targeted optimization metric.

1 Introduction

Far from a physical law, Moore’s law is a techno-economic observation on dou-
bling the number of transistors per square inch of an integrated circuit. This
led to Moore’s subsequent observation that “shrinking the dimensions on an
integrated structure makes it possible to operate the structure at higher speed
for the same power per unit area” [8]. The expectation that early in the next
decade 2D lithography will cease scaling, threatens the future of Moore’s law.
In response, a number of promising emerging technologies have been proposed.
These alternative technologies appear throughout all levels of computing devices,
ranging from transistors (devices), memory technologies and 3D integration to
hybrid architectures, specialization, etc. [4]. While it is unlikely that a single
technology will prevail to drive Moore’s law, a combination of emerging tech-
nologies together with explicit understanding of application requirements is likely
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 115–123, 2017.
https://doi.org/10.1007/978-3-319-67630-2_10



116 D. Vasudevan et al.

the solution [8]. This realization contradicts today’s common practice of devel-
oping and evaluating each technology in isolation. Therefore, it is imperative
to develop a comprehensive strategy to determine the optimal path forward to
preserve digital computing performance scaling. To achieve this, we argue for a
two-fold strategy that is composed of:

– an algorithmic methodology that takes into account each candidate tech-
nology’s characteristics, and produces an optimal combination of emerging
technologies for a given metric and application.

– a simulation and evaluation infrastructure across different levels (e.g., devices,
circuits, architectures), that supports performance and cost models of emerg-
ing technologies.

2 Motivation and Background

Numerous emerging devices follow the traditional CMOS model but offer
improved voltage–current characteristics. Devices such as tunnel FETs and car-
bon nanotube FETs have been demonstrated in practice, and initial studies
discuss their impact to chip multiprocessors [1,7]. A recent influential study
projected the future potential of several devices in terms of the energy–delay
product to implement a 32-bit adder [5]. Similarly, new memory technologies
offer attractive bandwidth, latency, and cost tradeoffs compared to traditional
DRAM [6]. In fact, some memories such as resistive RAM are non-volatile and
can be placed close to computational cores. Furthermore, 3D integration is grow-
ing capable of tens to hundreds of memory layers with fast and cheap inter-layer
communication, and is projected to enable multiple logic layers as well in differ-
ent interleaved patterns. Moreover, specialization is an attractive technique to
remove performance and cost overhead of general-purpose architecture. Numer-
ous other technologies are also promising candidates to preserve digital comput-
ing performance scaling, such as photonics and stochastic computing.

The heterogeneity of emerging technologies creates a challenge because differ-
ent technologies are more suited for different applications and no clear winner is
expected to emerge. In addition, a choice of one technology affects other choices
when designing a complete chip or system. Finally, previous studies typically
develop one solution in isolation and do not investigate any synergistic opportu-
nities with other technologies. We propose a comprehensive strategy that paves
the road forward for extending Moore’s law using the entire range of emerging
technologies.

3 Towards an Integrated Methodology for Comprehensive
Evaluation of Optimal Architectures

Developing an integrated methodology to preserve Moore’s law performance scal-
ing by designing future architectures that use emerging technologies is made par-
ticularly challenging by the sheer number of options (technologies) available at
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each level, the dependencies between these options, and the increasing demands
from the applications. Namely, some of these options are:

– Heterogeneous or homogeneous architectures. This includes the entire range
from fully to partially and then to non-programmable fixed-function special-
ized hardware.

– Devices like TFET (Tunnel Field-Effect Transistor), CNFET (Carbon-
Nanotube FET), NCFET (Negative Capacitance FET) and superconducting
circuits like RSFQ (Rapid Single Flux Quantum) devices, and many others.
There are to the order of a dozen emerging devices in today’s literature in
different stages of maturity [5].

– Future memory technologies like MRAM, STT-RAM etc., some of which are
non-volatile and can be integrated close to computation cores. There are to
the order of ten emerging memory technologies.

– 3D integration with memory such as conventional DRAM or HMC (Hybrid
Memory Cube), as well as future capabilities of deep 3D integration with
hundreds of interleaved logic and memory layers, and different inter-layer
technologies.

– Implementation constraints like thermal equilibrium, area and power budgets
and other factors like floating point versus fixed point representation, SIMD
(Single Instruction Multiple Data), PIM (Processing In Memory) based archi-
tectures etc.

To illustrate the dependency between application demands for performance
per watt and area and the several choices impacting architecture design, let
us consider a sample set of applications: namely a climate modeling applica-
tion code (MPES), a memory intensive graphics application, and the Fourier
transform (FFT). These applications are power constrained, perform complex
computations, but also demand high throughput of data from memory. Given
these application constraints, as well as an optimization metric such as per-
formance per watt, the globally optimal architecture using the most optimal
technologies in each layer from the ones mentioned previously could be the one
shown in Fig. 1. That architecture uses accelerators implemented with CNFETs
to satisfy computational demands, HMC memory to satisfy high memory access
bandwidth, high heterogeneity to optimize for power, and other choices in both
architectures and other technologies such as devices and memories always to
satisfy application demands and optimization metrics. Note that to truly be the
globally optimal solution, it must consider how a choice of technology affects
others and avoid locally optimal solutions.

Our goal is to design a comprehensive methodology to perform multi-objective
optimization and systematically design a globally optimal architecture for a given
metric and for a given set of application characteristics, using all available tech-
nology options from all the different layers previously explained. To achieve this
we have to operate and optimize at various levels of the system architecture from
devices, circuits, accelerators and others, but also to include potential modifica-
tions to programming languages, compilers, ISAs, and others.
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(a) Future Architecture (b) Proposed Methodology

Fig. 1. a. An example of a future architecture implemented with heterogeneous devices,
b. Comprehensive and synergistic methodology for finding a global optimum by explor-
ing the different levels of system design, including emerging devices and specialized
architectures (only a subset of options is shown)

Methodology: Figures 1 and 2 shows our proposed methodology that involves
seven constructive steps to be taken to arrive at a globally optimal architecture.
The steps are:

1. Gathering any software engineering requirements of the application (func-
tional and non-functional), such as any compiler and programming language
requirements.

2. Secondly, this methodology requires comprehensive details and models of
available emerging technologies in several levels of the system ranging from
devices to architecture (logic design). In this step, a set of optimization met-
rics is also provided.

3. Next, characterization of the application code for compute, memory and
control intensive instructions, to derive performance and other application
requirements such as data movement, floating point computation, etc.

4. In the next step, the inputs generated from the previous three steps drive the
optimal architecture finding algorithm. This step includes constraint opti-
mization to make sure the solution is acceptable. This algorithm is further
described below.

5. The fifth step produces a baseline architecture using the choices in technolo-
gies made by the algorithm in the previous step.

6. In this step, the architecture constructed is further tuned toward a subset of
target optimization metrics.

7. Finally, a set of architectures and choice of emerging technologies targeting
the given application will be generated. Each architecture will be a globally
optimal solution for a choice of given metrics.
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To formulate the inputs that step four (the algorithm) requires, we need a way
to first identify and record the relevant characteristics and needs of applications,
and then input those to our framework. This includes an array of factors such
as data movement, memory access, floating point compute, and others shown
as a row named “other factors” in Fig. 1. Each application’s needs translate to
different weights for each of these factors. Another input is the available tech-
nologies (step two). For those, we need to quantify the impact of each technology
to application needs. Doing so requires reliable performance and cost models for
each technology, which we describe in Sect. 4.

Algorithm: The algorithm itself (step four) will be formulated as a graph opti-
mization problem with the design space represented as a graph with weighted
vertices and edges. The algorithm is illustrated in Fig. 2. As shown, each vertex
represents one computational unit, which is comprised of a choice of device tech-
nology (dev), memory technology (mem), logic design (logic), and as a result of
these and other microarchitectural and emerging technology choices has a certain
energy–delay (ED) product. Only four parameters are shown in this example. In
other words, each vertex is just one of the possibly many computational units
of the architecture. Edges, on the other hand, represent cost of communication
in delay and energy between computational units. Using this notation, finding
an optimal architecture (step six in the Figure) is a multi-objective graph opti-
mization problem of finding a path in the graph where a given metric, such
as performance over watt, is optimized. This path represents an architecture
where the different components were chosen because their corresponding ver-
tices were in the chosen path of the graph. This algorithm builds from obtaining
and embedding into the feature vector of each vertex (step two in the Figure)
simulation and energy–delay (ED) results for the various general-purpose cores,
adders, multipliers, FFT accelerator blocks, and other computational blocks, for
a given set of devices, memories, logic design, etc. From the chosen path, a new
feature vector will be constructed for each computation block in the resulting
architecture (step five in the Figure). In the example in Fig. 2, the feature vec-
tors found in the enumerated red path will suggest a computational block with
2 adders, a multiplier, a FFT implemented using different devices and a 32KB
MRAM for a constraint of low power for multiplier and a high memory density.

The outcome of this algorithm is an architecture with combination of tech-
nologies that reach a global maximum for a specific metric and application. From
this, we can “average out” for a general-purpose solution and shape a general
strategy to preserve digital computing scaling. Certainly, this output should con-
sider the potential each technology has on top of its current state. Thus, for the
example set of applications (MPES and FFT and graphics) introduced earlier
in this section, the algorithm will find an optimal set of input parameters (tech-
nologies) while considering optimization metrics such as for power and memory
bandwidth, and arrive at the selected parameters shown in step five in Fig. 1.
After further tuning of the derived architecture using these metrics in step six
will generate the required optimal architectures tuned for a specific set of metrics
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Fig. 2. Illustration of the algorithm for the optimal architecture selection. The energy–
delay (ED) graphs are for illustration purposes only and not in scale.

shown as step seven in Fig. 1. Therefore, for our applications we will arrive at
possibly at a different architecture per application.

4 Modeling Environment

4.1 Simulation Infrastructure

In order to generate the technology models necessary to conduct realistic
experiments and therefore guide our methodology, we propose our simulation
infrastructure as shown in Fig. 3. The proposed infrastructure consists of four
main modeling levels: (i) device models, (ii) logic gates, (iii) logic and memory
blocks and (iv) architecture. Each level contains three key components illus-
trated with colored blocks. Yellow blocks represent the Target Modeling Unit,
which can be a device model, logic gate, accelerator, etc. depending on the mod-
eling level. Blue blocks represent a set of Evaluation tools capable of providing
target Output metrics. These output metrics are then used as Input metrics in
the next modeling level. Here, we describe each modeling level in detail.

LEVEL 1: Device Models. In this level, we start from low-level device physics
and generate current–voltage curves using Xyce, a open-source SPICE tool.
In this step, detailed knowledge of device physics and operating conditions is
required. Open-source Verilog-A models are already available for many of the
emerging devices, but care must be exercised in verification of those models,
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Fig. 3. Design space exploration flow. The example refers to results in Fig. 4. (Color
figure online)

capturing the future potential of each device, and generating models for devices
for which no models are available. Further metrics of interest such as error rates
can also be captured in this step.

LEVEL 2: Logic Gates and Blocks. In this level, we use device models from
the previous level to construct small functional blocks such as logic gates, adders,
ring oscillators, and others. We do this by adding Verilog-A models from the
previous emerging devices to Xyce, and describing the small functional blocks
of this level in an Xyce netlist that uses emerging device models. From these
experiments we extract delay and power for each block, and use that as inputs
to the next higher level. Adders and multipliers result shown in Fig. 4-a and b
are built using these logic gates.

LEVEL 3: Logic and Memory Blocks. In the logic and memory level, several
new technologies can be modeled such as memories, 3D integration, and special-
ized architectures. Emerging memories have sometimes vastly different access
times, energies, volatility, error rates, etc. In fact, memory access times for par-
ticular data may depend on the location of the data and the previous sequence
of requests, which means that a careful study is required to investigate the level
of accuracy that is sufficient versus the complexity of models. Furthermore, 3D
integration affects distances and relevant performance-cost tradeoffs between any
two points, especially when considering inter-layer communication technologies
such as TSVs. 3D integration models need to include future capabilities such
as deep integration with hundreds of layers, with multiple combinations of logic
and memory. Finally, specialized architectures such as accelerators and fixed-
function hardware have a range of different delays and energy costs to perform
an operation. Non-programmable application specific hardware.

In order to rapidly model the technologies of this level, we can extend a
modern HDL modeling tool such as Chisel [2] and use it to describe different



122 D. Vasudevan et al.

Fig. 4. a–d. Delay and Power comparison for adders and multipliers implemented with
TFET and CMOS, e. Execution time impact for a matrix-matrix multiply code using
an accelerator compared to a non-accelerated version. Results are for a single core
co-located with the accelerator. While the CMOS accelerator is 3× slower resulting in
two cycles instead of one for the TFET accelerator, the architectural-level impact is
negligible.

logic and memory blocks. Chisel can be extended to capture and back anno-
tate activity factors of logic gates and wires to models of emerging technologies
from the previous two levels, and therefore generate the output metrics (delay,
power, etc.) that are necessary for the next level. Figure 4-c and d show the delay
comparison of adders and multipliers implemented using CMOS and TFET. Nor-
malized delay and power shows that TFET based arithmetic units have higher
performance and power benefit.

LEVEL 4: Architectural Level. To conduct high-level experiments, we use a
software architectural-level simulator such as Gem5 [3]. A preliminary study of
the impact of accelerators using TFET and CMOS devices is shown in Fig. 4-e.
This shows that even though a TFET-based accelerator is 3× faster, the impact
to the application is negligible. Still, this different can become substantial for
large matrices, to which we are extending our study. This infrastructure will be
capable of evaluating potentially vastly heterogeneous systems with all emerging
technologies as options. This may require a parallel architecture simulator. In
addition, we plan to extend high-level area and power models to include new
devices.



Towards an Integrated Strategy to Preserve Digital Computing 123

5 Conclusion

Building systems using future devices and other technologies involves several
levels of modeling with many factors to consider. The choice of components
at each level impacts the choice in other levels and consequently the overall
power and performance of future systems. Optimizing at only one level, such
as solely focusing on new transistors/devices will lead only to a local optimal
optimization point. However, a holistic approach to optimize the system at all
levels for given optimization metrics and application needs will lead to a globally-
optimal solution. In this paper, we present both a comprehensive methodology
and a detailed modeling approach for emerging technologies capable of paving
the path forward for preserving the performance scaling of digital computing.
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