
Julian M. Kunkel · Rio Yokota
Michela Taufer · John Shalf (Eds.)

 123

LN
CS

 1
05

24

ISC High Performance 2017 International Workshops
DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH, IXPUG,
P^3MA, VHPC, Visualization at Scale, WOPSSS
Frankfurt, Germany, June 18–22, 2017, Revised Selected Papers

High Performance
Computing

Lecture Notes in Computer Science 10524

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Julian M. Kunkel • Rio Yokota
Michela Taufer • John Shalf (Eds.)

High Performance
Computing
ISC High Performance 2017 International Workshops
DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH, IXPUG,
P^3MA, VHPC, Visualization at Scale, WOPSSS
Frankfurt, Germany, June 18–22, 2017
Revised Selected Papers

123

Editors
Julian M. Kunkel
Deutsches Klimarechenzentrum (DKRZ)
Hamburg, Hamburg
Germany

Rio Yokota
TITECH
Tokyo
Japan

Michela Taufer
Department of Computer Science
University of Delaware
Newark, DE
USA

John Shalf
Lawrence Berkeley National Laboratory
Berkeley, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-67629-6 ISBN 978-3-319-67630-2 (eBook)
https://doi.org/10.1007/978-3-319-67630-2

Library of Congress Control Number: 2017955780

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017, corrected publication 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

A separate workshop day attached to the ISC High Performance, formerly known as the
International Supercomputing Conference, was first added to the Technical Program in
2015 under the leadership of Bernd Mohr (Forschungszentrum Jülich GmbH). ISC
High Performance has renewed and further extended the workshop program this year
welcoming 646 attendees to 21 workshops. This year Michela Taufer (University of
Delaware, USA) served as workshop chair and led the workshop organization with
workshop deputy chair John Shalf (Lawrence Berkeley National Laboratory). Julian
Kunkel (German Climate Computing Center) served as the proceedings chair and
managed the organization of proceedings for the workshops with Rio Yokota (Tokyo
Institute of Technology) as the proceedings deputy chair.

The 21 workshops at ISC High Performance provided a focused, in-depth platform
with presentations, discussion, and interaction on topics related to all aspects of
research, development, and application of large-scale, high-performance experimental
and commercial systems. Workshop topics included HPC computer architecture and
hardware; programming models, system software, and applications; solutions for
heterogeneity, reliability, power efficiency of systems; virtualization and containerized
environments; big data and cloud computing; as well as international collaborations.
Workshops were selected with a peer-review process by an international committee of
12 experts in the field from Europe, the United States, and Asia.

As in 2016, ISC High Performance provided a platform for workshops with their
own call for papers and an individual peer-review process through an early deadline in
December 2016. In all, 11 workshop proposals were submitted before this deadline
from organizers all over the world; because of their high quality, all proposals were
accepted by the committee (seven full-day and four half-day workshops) after a rig-
orous review process in which each proposal received at least three reviews. Addi-
tionally, each reviewer was given the possibility to discuss all the submissions.

Workshops without a call for papers were invited to submit their proposals in
February 2017. For this second deadline, 15 workshop proposals were submitted and
10 workshops (one full-day and nine half-day workshops) were accepted by the
committee with the same rigorous peer-review process as for workshops with
proceedings.

The 21 workshops were held on Thursday, June 22, 2017, at the Frankfurt Marriott
Hotel with 646 registered attendees, about 170 presentations, and over a dozen panel
discussions. Workshop organizers were asked to collect the slides of all presentations at
their workshops. PDF versions of the presentation slides were included in the ISC 2017
online proceedings, which were made available online to conference attendees a few
days after the conference.

The workshop proceedings volume collects all accepted papers of the workshops
received after the call for papers and a handful of invited papers. Each chapter of the

book contains the accepted and revised papers for one of the workshops. For some
workshops, an additional preface describes the review process for the workshop and
provides a summary of the outcome.

June 2017 Julian M. Kunkel
Michaela Taufer

Rio Yokota
John Shalf

VI Preface

Organization

ISC High Performance Workshops Chair

Michela Taufer University of Delaware, USA

ISC High Performance Workshops Deputy Chair

John Shalf Lawrence Berkeley National Laboratory, USA

ISC High Performance Workshops Committee

Rosa M. Badia Barcelona Supercomputing Center, Spain
François Bodin IRISA, France
Bronis R. de Supinski Lawrence Livermore National Laboratory, USA
Jay Lofstead Sandia National Laboratories, USA
Naoya Maruyama Lawrence Livermore National Laboratory, USA
Simon McIntosh-Smith University of Bristol, UK
Bernd Mohr Jülich Supercomputing Centre, Germany
Marie-Christine Sawley Intel, France
Seetharami Seelam IBM T.J. Watson Research Center, USA
John Shalf Lawrence Berkeley National Laboratory, USA
Michela Taufer University of Delaware, USA
Carsten Trinitis Technische Universität München, Germany
Antonino Tumeo Pacific Northwest National Laboratory, USA
Didem Unat Koç Universitesi, Turkey
Rio Yokota Tokyo Institute of Technology, Japan

ISC High Performance Workshops Proceedings Chair

Julian Kunkel DKRZ, Germany

ISC High Performance Workshops Proceedings Deputy Chair

Rio Yokota Tokyo Institute of Technology, Japan

Experiences on Intel Knights Landing at the One-Year Mark

Organizing Committee

Estela Suarez Jülich Supercomputing Centre, Germany
Michael A. Lysaght ICHEC, Ireland

Simon J. Pennycook Intel, USA
Richard Gerber NERSC, USA

Program Committee

Damian Alvarez Jülich Supercomputing Centre, Germany
Carlo Cavazzoni CINECA, Italy
Gilles Civario DELL, USA
Doug Doerfler Lawrence Berkeley National Laboratory, USA
Richard Gerber Lawrence Berkeley National Laboratory/NERSC, USA
Clayton Hughes Sandia National Laboratories, USA
Balint Joo Thomas Jefferson National Accelerator Facility, USA
Rakesh Krishnaiyer Intel, USA
Michael A. Lysaght ICHEC, Ireland
Simon McIntosh-Smith University of Bristol, UK
Andrew Mallinson Intel, UK
David E. Martin Argonne National Laboratory, USA
Hideki Saito Intel, USA
Thomas Steinke Zuse Institute Berlin, Germany
Estela Suarez Jülich Supercomputing Centre, Germany
Zhengji Zhao Lawrence Berkeley National Laboratory, USA

HPC I/O in the Data Center

Organizing Committee

Julian Kunkel DKRZ, Germany
Jay Lofstead Sandia National Laboratory, USA
Colin McMurtrie CSCS, Switzerland

Program Committee

Wolfgang Frings Jülich Supercomputing Center, Germany
Javier Garcia Blas University Carlos III of Madrid, Spain
Rob Ross Argonne National Laboratory, USA
Carlos Maltzahn University of California, Santa Cruz, USA
Thomas Bönisch HLRS, Germany
Sai Narasimhamurthy Seagate, UK
Jean-Thomas Acquaviva DDN, France
Julian Kunkel DKRZ, Germany
Jay Lofstead Sandia National Laboratory, USA
Colin McMurtrie CSCS, Switzerland

VIII Organization

Workshop on Performance and Scalability of Storage Systems
(WOPSSS)

Organizing Committee

Jean-Thomas Acquaviva DDN, France
Jalil Boukhobza Université de Bretagne Occidentale, France
Philippe Deniel CEA/DIF, France
Massimo Lamanna CERN, Switzerland
Pedro Javier García University of Castilla-La Mancha, Spain
Allen D. Malony University of Oregon, USA

Program Committee

Julien Bigot CEA, France
Jason Chun Xue City University of Hong Kong, Hong Kong, SAR China
Stefano Cozzini CNR, Italy
Jesus Escudero-Sahuquillo University of Castilla-La Mancha, Spain
Maria E. Gomez Polytechnic University of Valencia, Spain
Pilar Gonzalez Ferez Universidad de Murcia, Spain
Denis Gutfreund ATOS, France
Julian Kunkel DKRZ, Germany
Duo Liu Chongqing University, China
Manolis Marazakis Forth, Greece
Lars Nagel Johannes Gutenberg-Universität Mainz, Germany
Ramon Nou BSC, Spain
Juan Piernas Cánovas Universidad de Murcia, Spain
Rekha Singhal Tata Consultancy Services, India
Josef Weidendorfer TUM, Germany
Soraya Zertal University of Versailles, France

ExaComm: Third International Workshop on Communication
Architectures for HPC, Big Data, Deep Learning and Clouds
at Extreme Scale

Organizing Committee

Hari Subramoni The Ohio State University, USA
Dhabaleswar

K. (DK) Panda
The Ohio State University, USA

Organization IX

Program Committee

Taisuke Boku University of Tsukuba, Japan
Ron Brightwell Sandia National Laboratories, USA
Hans Eberle NVIDIA, USA
Jesus Escudero-Sahuquillo University of Castilla-La Mancha, Spain
Ada Gavrilovska Georgia Institute of Technology, USA
Brice Goglin Inria, France
Dror Goldenberg Mellanox Technologies, Israel
R. Govindarajan Indian Institute of Science, India
Ryan Grant Sandia National Laboratories, USA
Hai Jin Huazhong University of Science and Technology, China
Sven Karlsson Technical University of Denmark, Denmark
Nectarios Koziris National Technical University of Athens, Greece
Takeshi Nanri University of Kyushu, Japan
Dimitrios Nikolopoulos Queen’s University of Belfast, UK
Antonio Pena Barcelona Supercomputing Center, Spain
Sebastien Rumley Columbia University, USA
Smruti Ranjan Sarangi Indian Institute of Technology, India
Martin Schulz Lawrence Livermore National Laboratory, USA
John M. Shalf Lawrence Berkeley National Laboratory, USA
Tor Skeie Simula Research Laboratory, Norway
Sayantan Sur Intel, USA
Xin Yuan Florida State University, USA
Jidong Zhai Tsinghua University, China

12th Workshop on Virtualization in High-Performance
Cloud Computing (VHPC’17)

Organizing Committee

Michael Alexander scaledinfra technologies, Austria
Anastassios Nanos OnApp, UK
Balazs Gerofi RIKEN, Japan

Program Committee

Stergios Anastasiadis University of Ioannina, Greece
Jakob Blomer CERN, Europe
Ron Brightwell Sandia National Laboratories, USA
Eduardo César Universidad Autonoma de Barcelona, Spain
Julian Chesterfield OnApp, UK
Stephen Crago USC ISI, USA
Christoffer Dall Columbia University, USA
Patrick Dreher MIT, USA

X Organization

Robert Futrick Cycle Computing, USA
Maria Girone CERN, Europe
Kyle Hale Northwestern University, USA
Romeo Kinzler IBM, Switzerland
Brian Kocoloski University of Pittsburgh, USA
Nectarios Koziris National Technical University of Athens, Greece
John Lange University of Pittsburgh, USA
Che-Rung Lee National Tsing Hua University, Taiwan
Giuseppe Lettieri University of Pisa, Italy
Qing Liu Oak Ridge National Laboratory, USA
Nikos Parlavantzas IRISA, France
Kevin Pedretti Sandia National Laboratories, USA
Amer Qouneh University of Florida, USA
Carlos Reaño Technical University of Valencia, Spain
Thomas Ryd CFEngine, Norway
Na Zhang VMWare, USA
Borja Sotomayor University of Chicago, USA
Craig Stewart Indiana University, USA
Anata Tiwari San Diego Supercomputer Center, USA
Kurt Tutschku Blekinge Institute of Technology, Sweden
Yasuhiro Watashiba Osaka University, Japan
Nicholas Wright Lawrence Berkeley National Laboratory, USA
Chao-Tung Yang Tunghai University, Taiwan

Visualization at Scale: Deployment Case Studies
and Experience Reports

Organizing Committee

Glendon Holst KAUST, Saudi Arabia
Thomas Theussl KAUST, Saudi Arabia
Julien Jomier Kitware, France
Joachim Pouderoux Kitware, France

Program Committee

Second International Workshop on Performance Portable
Programming Models for Accelerators (P3MA)

Organizing Committee

Sunita Chandrasekaran University of Delaware, USA
Graham Lopez ORNL, USA

Organization XI

Program Committee

Samuel Thibault Inria, University of Bordeaux, France
James Beyer NVIDIA, USA
Wei Ding AMD, USA
Saber Feki KAUST, Saudi Arabia
Robert Henschel Indiana University, USA
Eric Stotzer Texas Instruments, USA
Amit Amritkar University of Houston, USA
Guido Juckeland Helmholtz-Zentrum Dresden-Rossendorf, Germany
Will Sawyer ETH, Zurich
Sameer Shende University of Oregon, USA
Costas Bekas IBM, Zurich
Toni Collis University of Edinburgh, UK
Adrian Jackson University of Edinburgh, UK
Henri Jin NASA, USA
Andreas Knuepfer TU Dresden, Germany
Steven Olivier Sandia National Laboratory, USA
Suraj Prabhakaran TU Darmstadt, Germany
Bora Ucar ENS De Lyon, France
Veronica Vergara Larrea ORNL, USA
Manisha Gajbe Intel, USA
Daniel Tian PGI, USA

Second International Workshop on OpenPOWER
for HPC (IWOPH’17)

Organizing Committee

Dirk Pleiter Jülich Supercomputing Centre, Germany
Jack Wells Oak Ridge National Laboratory, USA

Program Committee

Nishant Agrawal TCS, India
Carlo Cavazzoni CINECA, Italy
Norbert Eicker Jülich Supercomputing Centre, Germany
Holger Fröning University of Heidelberg, Germany
Christoph Hagleitner IBM Research, Switzerland
Oscar Hernandez Oak Ridge National Laboratory, USA
Guido Juckeland Helmholtz-Zentrum Dresden-Rossendorf, Germany
M. Graham Lopez Oak Ridge National Laboratory, USA
Lena Oden Jülich Supercomputing Centre, Germany
Dirk Pleiter Jülich Supercomputing Centre, Germany
Swaroop Pophale Oak Ridge National Laboratory, USA

XII Organization

Tiago Quintino ECMWF, UK
Sebastiano F. Schifano University and INFN Ferrara, Italy
Sameer Shende University of Oregon, USA
Tjerk Straatsma Oak Ridge National Laboratory, USA
Xiaonan Tian NVIDIA, USA
Piero Vicini INFN, University of Rome Sapienza, Italy
Jack Wells Oak Ridge National Laboratory, USA
Michael Wolfe PGI, USA
Bronis de Supinski Lawrence Livermore National Laboratory, USA

First International Workshop on Data Reduction
for Big Scientific Data (DRBSD-1)

Organizing Committee

Ian Foster National Laboratory/University of Chicago, USA
Scott Klasky Oak Ridge National Laboratory, USA
Gary Liu New Jersey Institute of Technology, USA
Mark Ainsworth Brown University/Oak Ridge National Laboratory, USA

Program Committee

Frank Cappello Argonne National Laboratory, USA
Peter Lindstrom Lawrence Livermore National Laboratory, USA
Tamara Kolda Sandia National Laboratory, USA
Todd Munson Argonne National Laboratory, USA
George Ostrouchov Oak Ridge National Laboratory, USA
Scott Klasky Oak Ridge National Laboratory, USA
Mark Ainsworth Brown University/Oak Ridge National Laboratory, USA
John Wu Lawrence Berkeley National Laboratory, USA
Todd Munson Argonne National Laboratory, USA
Eric Suchyta Oak Ridge National Laboratory, USA
Martin Burtscher Texas State University, USA

Organization XIII

Contents

The 1st International Workshop on Data Reduction
for Big Scientific Data (DRBSD-1)

Toward Decoupling the Selection of Compression Algorithms
from Quality Constraints . 3

Julian Kunkel, Anastasiia Novikova, Eugen Betke,
and Armin Schaare

On the Scalability of Data Reduction Techniques in Current
and Upcoming HPC Systems from an Application Perspective 15

Axel Huebl, René Widera, Felix Schmitt, Alexander Matthes,
Norbert Podhorszki, Jong Youl Choi, Scott Klasky,
and Michael Bussmann

Toward a Multi-method Approach: Lossy Data Compression
for Climate Simulation Data . 30

Allison H. Baker, Haiying Xu, Dorit M. Hammerling, Shaomeng Li,
and John P. Clyne

Exploration of Pattern-Matching Techniques for Lossy Compression
on Cosmology Simulation Data Sets . 43

Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello

Third International Workshop on Communication Architectures
for HPC, Big Data, Deep Learning and Clouds
at Extreme Scale (ExaComm)

Design Space Exploration of the Dragonfly Topology 57
Min Yee Teh, Jeremiah J. Wilke, Keren Bergman, and Sébastien Rumley

High-Throughput Sockets over RDMA for the Intel Xeon
Phi Coprocessor . 75

Aram Santogidis and Spyros Lalis

Workshop on HPC Computing in a Post Moore’s Law World (HCPM)

Reconfigurable Silicon Photonic Interconnect for Many-Core Architecture . . . 89
Hang Guan, Sébastien Rumley, Ke Wen, David Donofrio,
John Shalf, and Keren Bergman

Instruction Set Architectures for Quantum Processing Units 98
Keith A. Britt and Travis S. Humble

Eliminating Dark Bandwidth: A Data-Centric View of Scalable,
Efficient Performance, Post-Moore . 106

Jonathan C. Beard and Joshua Randall

Towards an Integrated Strategy to Preserve Digital Computing Performance
Scaling Using Emerging Technologies . 115

Dilip Vasudevan, Anastasiia Butko, George Michelogiannakis,
David Donofrio, and John Shalf

HPC I/O in the Data Center (HPC-IODC)

HPC I/O in the Data Center Workshop (HPC-IODC). 127
Julian Kunkel, Jay Lofstead, and Colin McMurtrie

Simulation of Hierarchical Storage Systems for TCO and QoS 132
Jakob Luettgau and Julian Kunkel

GPU Erasure Coding for Campaign Storage . 145
Walker Haddock, Matthew L. Curry, Purushotham V. Bangalore,
and Anthony Skjellum

PIOM-PX: A Framework for Modeling the I/O Behavior of Parallel
Scientific Applications . 160

Pilar Gomez-Sanchez, Sandra Mendez, Dolores Rexachs,
and Emilio Luque

Real-Time I/O-Monitoring of HPC Applications with SIOX,
Elasticsearch, Grafana and FUSE . 174

Eugen Betke and Julian Kunkel

Output Performance Study on a Production Petascale Filesystem. 187
Bing Xie, Jeffrey S. Chase, David Dillow, Scott Klasky, Jay Lofstead,
Sarp Oral, and Norbert Podhorszki

Second International Workshop on OpenPOWER for HPC (IWOPH’17)

GPU-Accelerated Particle-in-Cell Code on Minsky 205
Andreas Herten, Dirk Brömmel, and Dirk Pleiter

Pushing Big Data into Accelerators: Can the JVM
Saturate Our Hardware? . 220

Johan Peltenburg, Ahmad Hesam, and Zaid Al-Ars

The Technological Roadmap of Parallware and Its Alignment
with the OpenPOWER Ecosystem. 237

Manuel Arenaz, Oscar Hernandez, and Dirk Pleiter

XVI Contents

Experiences Evaluating Functionality and Performance
of IBM POWER8+ Systems . 254

Verónica G. Vergara Larrea, Wayne Joubert, Mark Berrill,
Swen Boehm, Arnold Tharrington, Wael R. Elwasif, and Don Maxwell

Power/Performance Controlling Techniques in OpenPOWER 275
Todd Rosedahl, Martha Broyles, Charles Lefurgy, Bjorn Christensen,
and Wu Feng

Performance Evaluation of Container-Based High Performance
Computing Ecosystem Using OpenPOWER . 290

Animesh Kuity and Sateesh Kumar Peddoju

Pre-exascale Architectures: OpenPOWER Performance
and Usability Assessment for French Scientific Community 309

Gabriel Hautreux, Alfredo Buttari, Arnaud Beck, Victor Cameo,
Dimitri Lecas, Dominique Aubert, Emeric Brun, Eric Boyer,
Fausto Malvagi, Gabriel Staffelbach, Isabelle d’Ast, Joeffrey Legaux,
Ghislain Lartigue, Gilles Grasseau, Guillaume Latu, Juan Escobar,
Julien Bigot, Julien Derouillat, Matthieu Haefele, Nicolas Renon,
Philippe Parnaudeau, Philippe Wautelet, Pierre-Francois Lavallee,
Pierre Kestener, Remi Lacroix, Stephane Requena, Anthony Scemama,
Vincent Moureau, Jean-Matthieu Etancelin, and Yann Meurdesoif

Experiences on Intel Knights Landing at the One-Year Mark (IXPUG)

IXPUG: Experiences on Intel Knights Landing at the One Year Mark 327
Estela Suarez, Michael Lysaght, Simon J. Pennycook,
and Richard A. Gerber

Analyzing Performance of Selected NESAP Applications
on the Cori HPC System . 334

Thorsten Kurth, William Arndt, Taylor Barnes, Brandon Cook,
Jack Deslippe, Doug Doerfler, Brian Friesen, Yun (Helen) He,
Tuomas Koskela, Mathieu Lobet, Tareq Malas, Leonid Oliker,
Andrey Ovsyannikov, Samuel Williams, Woo-Sun Yang,
and Zhengji Zhao

On the Mitigation of Cache Hostile Memory Access Patterns
on Many-Core CPU Architectures . 348

Tom Deakin, Wayne Gaudin, and Simon McIntosh-Smith

From Knights Corner to Landing: A Case Study Based
on a Hodgkin-Huxley Neuron Simulator . 363

George Chatzikonstantis, Diego Jiménez, Esteban Meneses,
Christos Strydis, Harry Sidiropoulos, and Dimitrios Soudris

Contents XVII

Porting Tissue-Scale Cardiac Simulations to the Knights
Landing Platform . 376

Johannes Langguth, Chad Jarvis, and Xing Cai

KART – A Runtime Compilation Library for Improving HPC
Application Performance . 389

Matthias Noack, Florian Wende, Georg Zitzlsberger, Michael Klemm,
and Thomas Steinke

Performance Evaluation of NWChem Ab-Initio Molecular Dynamics
(AIMD) Simulations on the Intel® Xeon Phi™ Processor. 404

Eric J. Bylaska, Mathias Jacquelin, Wibe A. de Jong, Jeff R. Hammond,
and Michael Klemm

Performance Variability on Xeon Phi. 419
Brandon Cook, Thorsten Kurth, Brian Austin, Samuel Williams,
and Jack Deslippe

Optimizing Fusion PIC Code Performance at Scale on Cori Phase Two 430
Tuomas Koskela and Jack Deslippe

amask: A Tool for Evaluating Affinity Masks in Many-Core Processors 441
Kent Milfeld

Second International Workshop on Performance Portable
Programming Models for Accelerators (P^3MA)

Analyzing Offloading Inefficiencies in Scalable Heterogeneous
Applications . 457

Robert Dietrich, Ronny Tschüter, Guido Juckeland,
and Andreas Knüpfer

Performance Portability Analysis for Real-Time Simulations of Smoke
Propagation Using OpenACC . 477

Anne Küsters, Sandra Wienke, and Lukas Arnold

Tuning and Optimization for a Variety of Many-Core Architectures
Without Changing a Single Line of Implementation Code
Using the Alpaka Library. 496

Alexander Matthes, René Widera, Erik Zenker, Benjamin Worpitz,
Axel Huebl, and Michael Bussmann

An Embedded Domain Specific Language for General
Purpose Vectorization . 515

Przemysław Karpiński and John McDonald

XVIII Contents

Exploiting Auto-tuning to Analyze and Improve Performance Portability
on Many-Core Architectures . 538

James Price and Simon McIntosh-Smith

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 557
Kyle Friedline, Sunita Chandrasekaran, M. Graham Lopez,
and Oscar Hernandez

12th Workshop on Virtualization in High-Performance
Cloud Computing (VHPC’17)

A Survey of Fast Packet I/O Technologies for Network
Function Virtualization . 579

Giuseppe Lettieri, Vincenzo Maffione, and Luigi Rizzo

Machine Learning Using Virtualized GPUs in Cloud Environments. 591
Uday Kurkure, Hari Sivaraman, and Lan Vu

A Locality-Aware Communication Layer for Virtualized Clusters 605
Simon Pickartz, Jonas Baude, Stefan Lankes, and Antonello Monti

YASMIN: Efficient Intra-node Communication Using Generic Sockets 617
Michalis Rozis, Stefanos Gerangelos, and Nectarios Koziris

Dynamic Paging Method Switching - An Implementation for KVM 629
Yu Zhang, Peter Tröger, and Matthias Werner

Aggregating and Managing Memory Across Computing Nodes
in Cloud Environments . 642

Luis A. Garrido and Paul Carpenter

Visualization at Scale: Deployment Case Studies and Experience Reports

In-situ Visualization for Computation Workflows . 655
Alejandro Ribes, Ovidiu Mircescu, Anthony Geay, and Yvan Fournier

From Big Data to Big Displays High-Performance Visualization
at Blue Brain . 662

Stefan Eilemann, Marwan Abdellah, Nicolas Antille, Ahmet Bilgili,
Grigory Chevtchenko, Raphael Dumusc, Cyrille Favreau,
Juan Hernando, Daniel Nachbaur, Pawel Podhajski, Jafet Villafranca,
and Felix Schürmann

Contents XIX

Workshop on Performance and Scalability of Storage Systems (WOPSSS)

An MPI-IO In-Memory Driver for Non-volatile Pooled Memory
of the Kove XPD . 679

Julian Kunkel and Eugen Betke

HetFS: A Heterogeneous File System for Everyone 691
Georgios Koloventzos, Ramon Nou, Alberto Miranda, and Toni Cortes

Scientific Applications Performance Evaluation on Burst Buffer 701
George S. Markomanolis, Bilel Hadri, Rooh Khurram, and Saber Feki

JULEA: A Flexible Storage Framework for HPC . 712
Michael Kuhn

Delivering LHC Software to HPC Compute Elements with CernVM-FS 724
Jakob Blomer, Gerardo Ganis, Nikola Hardi, and Radu Popescu

Scaling the EOS Namespace. 731
Andreas J. Peters, Elvin A. Sindrilaru, and Georgios Bitzes

Erratum to: Performance Portability Analysis for Real-Time Simulations of
Smoke Propagation Using OpenACC. E1

Anne Küsters, Sandra Wienke, and Lukas Arnold

Author Index . 741

XX Contents

The 1st International Workshop on Data
Reduction for Big Scientific Data

(DRBSD-1)

Toward Decoupling the Selection of Compression
Algorithms from Quality Constraints

Julian Kunkel1(B), Anastasiia Novikova2, Eugen Betke1,
and Armin Schaare2

1 Deutsches Klimarechenzentrum, Hamburg, Germany
kunkel@dkrz.de

2 Universität Hamburg, Hamburg, Germany

Abstract. Data intense scientific domains use data compression to
reduce the storage space needed. Lossless data compression preserves
the original information accurately but on the domain of climate data
usually yields a compression factor of only 2:1. Lossy data compression
can achieve much higher compression rates depending on the tolerable
error/precision needed. Therefore, the field of lossy compression is still
subject to active research. From the perspective of a scientist, the com-
pression algorithm does not matter but the qualitative information about
the implied loss of precision of data is a concern.

With the Scientific Compression Library (SCIL), we are developing a
meta-compressor that allows users to set various quantities that define
the acceptable error and the expected performance behavior. The ongo-
ing work a preliminary stage for the design of an automatic compression
algorithm selector. The task of this missing key component is the con-
struction of appropriate chains of algorithms to yield the users require-
ments. This approach is a crucial step towards a scientifically safe use of
much-needed lossy data compression, because it disentangles the tasks of
determining scientific ground characteristics of tolerable noise, from the
task of determining an optimal compression strategy given target noise
levels and constraints. Future algorithms are used without change in the
application code, once they are integrated into SCIL.

In this paper, we describe the user interfaces and quantities, two com-
pression algorithms and evaluate SCIL’s ability for compressing climate
data. This will show that the novel algorithms are competitive with state-
of-the-art compressors ZFP and SZ and illustrate that the best algorithm
depends on user settings and data properties.

1 Introduction

Climate science is data intense. For this reason, the German Climate Computing
Center spends a higher percentage of money on storage compared to compute.
While providing a peak compute performance of 3.6 PFLOPs, a shared file sys-
tem of 54 Petabytes and an archive complex consisting of 70,000 tape slots is
provided. Compression offers a chance to increase the provided storage space
or to provide virtually the same storage space but with less costs. Analysis has
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 3–14, 2017.
https://doi.org/10.1007/978-3-319-67630-2_1

4 J. Kunkel et al.

shown that with proper preconditioning and algorithm, a compression factor
of roughly 2.5:1 can be achieved with lossless compression, i.e., without loss of
information/precision [1]. However, the throughput of compressing data with the
best available option is rather low (2 MiB/s per core). By using the statistical
method in [2] to estimate the actual compression factor that can be achieved on
our system, we saw that LZ4fast yield a compression ratio1 of 0.68 but with a
throughput of more than 2 GiB/s on a single core. Therefore, on our system it
even outperforms algorithms for optimizing memory utilization such as BLOSC.

Lossy compression factors can yield a much lower ratio but at expense of
information accuracy and precision. Therefore, users have to carefully define
the acceptable loss of precision and properties of the remaining data properties.
There are several lossy algorithms around that target scientific applications.

However, their definition of the retained information differs: some allow users
to define a fixed ratio useful for bandwidth limited networks and visualization;
most offer an absolute tolerance and some even relative quantities. The charac-
teristics of the algorithm differs also on input data. For some data, one algorithm
yields a better compression ratio than another. Scientists struggle to define the
appropriate properties for these algorithms and must change their definition
depending on the algorithm decreasing code portability.

In the AIMES project we develop libraries and methods to utilize lossy com-
pression. The SCIL library2 provides a rich set of user quantities to define from,
e.g., HDF5. Once set, the library shall ensure that the defined data quality meets
all criteria. Its plugin architecture utilizes existing algorithms and aims to select
the best algorithm depending on the user qualities and the data properties.

Contributions of this paper are: (1) Introduction of user defined quantities
data precision and performance; (2) Description of two new lossy compression
algorithms; (3) The analysis of lossy compression for climate data.

This paper is structured as follows: We give a review over related work in
Sect. 2. The design is described in Sect. 3. An evaluation of the compression ratios
is given in Sect. 4. Finally, in Sect. 5 a summary is provided.

2 Related Work

The related work can be structured into: (1) algorithms for the lossless data com-
pression; (2) algorithms designed for scientific data and the HPC environment;
(3) methods to identify necessary data precision and for large-scale evaluation.

Lossless algorithms: The LZ77 [3] algorithm is dictionary-based and uses a “slid-
ing window”. The concept behind this algorithm is simple: It scans uncompressed
data for two largest windows containing the same data and replaces the second
occurrence with a pointer to the first window. DEFLATE [4] is a variation of

1 We define compression ratio as r = size compressed
size original

; inverse is the compr. factor.
2 The current version of the library is publicly available under LGPL license:

https://github.com/JulianKunkel/scil.

https://github.com/JulianKunkel/scil

Toward Decoupling the Selection of Compression Algorithms 5

LZ77 and uses Huffman coding [5]. GZIP [6] is a popular lossless algorithm based
on DEFLATE.
Lossy algorithms for floating point data: FPZIP [7] was primarily designed for
lossless compression of floating point data. It also supports lossy compression and
allows the user to specify the bit precision. The error-bounded compression of
ZFP [7] for up to 3 dimensional data is accurate within machine epsilon in lossless
mode. The dimensionality is insufficient for the climate scientific data. SZ [8] is
a newer and effective HPC data compression method. Its compression ratio is at
least 2x better than the second-best solution of ZFP. In [1], compression results
for the analysis of typical climate data was presented. Within that work, the
lossless compression scheme MAFISC with preconditioners was introduced; its
compression ratio was compared to that of standard compression tools reducing
data 10% more than the second best algorithm. In [9], two lossy compression
algorithms (GRIB2, APAX) were evaluated regarding to loss of data precision,
compression ratio, and processing time on synthetic and climate dataset. These
two algorithms have equivalent compression ratios and depending on the dataset
APAX signal quality exceeds GRIB2 and vice versa.
Methods: Application of lossy techniques on scientific datasets was already dis-
cussed in [10–15]. The first efforts for determination of appropriate levels of
precision for lossy compression method were presented in [16]. By doing statis-
tics across ensembles of runs with full precision or compressed data, it could be
determined if the scientific conclusions drawn from these ensembles are similar.

In [2], a statistical method is introduced to predict characteristics (such as pro-
portions of file types and compression ratio) of stored data based on representative
samples. It allows file types to be estimated and, e.g., compression ratio by scan-
ning a fraction of the data, thus reducing costs. This method has recently been
converted to a tool3 that can be used to investigate large data sets.

3 Design

The main goals of the compression library SCIL is to provide a framework to
compress structured and unstructured data using the best available (lossy) com-
pression algorithms. SCIL offers a user interface for defining the tolerable loss
of accuracy and expected performance as various quantities. It supports various
data types. In Fig. 1, the data path is illustrated. An application can either use
the NetCDF4, HDF5 or the SCIL C interface, directly. SCIL acts as a meta-
compressor providing various backends such as the existing algorithms: LZ4,
ZFP, FPZIP, and SZ. Based on the defined quantities, their values and the char-
acteristics of the data to compress, the appropriate compression algorithm is
chosen4. SCIL also comes with a pattern library to generate various relevant syn-
thetic test patterns. Further tools are provided to plot, add noise or to compress
CSV and NetCDF3 files. Internally, support functions simplify the development
of new algorithms and the testing.
3 https://github.com/JulianKunkel/statistical-file-scanner.
4 The implementation for the automatic algorithm selection is ongoing effort and not

the focus of this paper. SCIL will utilize a model for performance and compression
ratio for the different algorithms, data properties and user settings.

https://github.com/JulianKunkel/statistical-file-scanner

6 J. Kunkel et al.

SCIL Framework

Application

NetCDF4

+ Quantities support

HDF5

+ Quantities support

+ SCIL Filter

SCIL

C-API

SCIL Tools

HDF5-File

SZ

ZFP

...

1
quantities
and data

2
quantities
and data

3

quantities
and data

4
compressed

data
5

compressed
data

Fig. 1. SCIL compression path and components

3.1 Supported Quantities

The tolerable error on lossy compression and the expected performance behavior
can be defined. Quantities define the properties of the residual error (r = v− v̂):

– absolute tolerance: compressed value v̂ = v ± abstol
– relative tolerance: v/(1 + reltol) ≤ v̂ ≤ v · (1 + reltol)
– relative error finest tolerance: used together with rel tolerance; absolute

tolerable error for small v’s. If relfinest > |v ·(1±reltol)|, then v̂ = v±relfinest
– significant digits: number of significant decimal digits
– significant bits: number of significant digits in bits

Additional, the performance behavior can be defined for both compression and
decompression (on the same system). The value can be defined according to: (1)
absolute throughput in MiB or GiB; or (2) relative to network or storage speed.
Thus, SCIL must estimate the compression rates for the data. The system’s
performance must be trained for each system using machine learning.
An example for using the low-level C-API:
1 #include <scil.h>
2 int main(){
3 double data [10][20]; // our raw data , we assume it contains sth. useful
4
5 // define the quantities as hints , all specified conditions will hold
6 scil_user_hints_t hints;
7 hints.relative_tolerance_percent = 10;
8 hints.absolute_tolerance = 0.5;
9 hints.significant_digits = 2;

10 // define permformance limit on decompression speed
11 hints.decomp_speed.unit = SCIL_PERFORMANCE_GIB ;
12 hints.decomp_speed.multiplier = 3.5;
13 // ... add more limitations if desired
14 // create a compression context for a given datatype

Toward Decoupling the Selection of Compression Algorithms 7

15 scil_context_t* ctx;
16 scil_create_context (&ctx , SCIL_TYPE_DOUBLE , 0, NULL , &hints);
17
18 // the multi - dimensional size of the data , here 10 x20
19 scil_dims_t dims; scil_initialize_dims_2d (& dims , 10, 20);
20
21 // the user is responsible to allocate memory for the output/tmp

buffers
22 size_t buffer_size = scil_get_compressed_data_size_limit (& dims ,

SCIL_TYPE_DOUBLE);
23 byte * compressed_data = malloc(buffer_size);
24
25 size c_size; // will hold the number of bytes of the compressed buffer
26 scil_compress(compressed_data , buffer_size , data , &dims , &c_size , ctx);
27 // now do something with the data in compressed_data

3.2 Algorithms

The development of the two algorithms sigbits and abstol has been guided by
the definition of the user quantities. Both algorithms aim to pack the number of
required bits as tightly as possible into the data buffer. We also consider these
algorithms useful baselines when comparing any other algorithm.

Abstol. This algorithm guarantees the defined absolute tolerance. Pseudocode
for the Abstol algorithm:
1 compress(data , abstol , outData){
2 (min ,max) = computeMinMax(data)
3 // quantize the data converting it to integer , according to abstol
4 tmp[i] = round((data[i] - min) * abstol)
5 // compute numbers of mantissa bits needed to store the data
6 bits = ceil(log2 (1.0 + (max - min) / abstol))
7 // now pack the neccessary bits from the integers tightly
8 outData = packData(tmp , bits)
9 }

Sigbits. This algorithm preserves the user-defined number of precision bits from
the floating point data. One precision bit means we preserve the floating point’s
exponent and sign bit as floating point implicitly adds one point of precision.
All other precision bits are taken from the mantissa of the floating point data.
Note that the sign bit must only be preserved, if it is not constant in the data.
Pseudocode for the Sigbits algorithm:
1 compress(data , precisionBits , outData){
2 // preserve the exponent always
3 (sign , min , max) = computeExponentMinMax(data)
4 // compute numbers of bits needed to preserve the data
5 bits = sign + bits for the exponent + precisionBits - 1
6 // convert preserved bits into an integer using bitshift operators
7 tmp[i] = sign | exponent range used | precisison Bits
8 // now pack the bits tightly
9 outData = packData(tmp , bits)

10 }

8 J. Kunkel et al.

3.3 Compression Chain

Internally, SCIL creates a process which can involve several compression algo-
rithms. Algorithms may be preconditioners to optimize data layout for subse-
quent compression algorithms, converters from one data format to another, or,
on the final stage, a lossless compressor. Floating point data can be first con-
verted into integer data and then into a byte stream. Intermediate steps can be
skipped. Based on the basic datatype that is supplied, the initial stage of the
chain is entered. Figure 2 illustrates the chain.

3.4 Tools

SCIL comes with tools useful for evaluation and analysis: (1) To create well-
defined multi-dimensional data patterns of any size; (2) To modify existing data
adding a random noise based on the hint set; (3) To compress existing CSV and
NetCDF data files.

4 Evaluation

In the evaluation, we utilize SCIL to compress the data with various algorithms.
In all cases, we manually select the algorithm. The test system is an Intel i7-6700
CPU (Skylake) with 4 cores @ 3.40 GHz.

4.1 Test Data

A pool of (single precision floating point) data is created from several synthetic
patterns generated by SCIL’s pattern library such as constant, random, linear
steps, polynomial, sinusoidal or by the OpenSimplex [17] algorithm. An example
is given for the Simplex data in Fig. 3; original data and the compressed data
for the Sigbits algorithm preserving 3 bits from the mantissa.

Additionally, utilize the output of the ECHAM atmospheric model [18] which
stored 123 different scientific variables for a single timestep as NetCDF. This
scientific data varies in terms of properties and in particular, the expected data
locality. Synthetic data are kept in CSV-files.

Array of
Type-To-Type
Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compr.
data

process data process data

float float int any anydata

Fig. 2. SCIL compression chain. The choice of blocks and the resulting data path
depend on input data.

Toward Decoupling the Selection of Compression Algorithms 9

4.2 Experiments

For each of the test files, the following setups are run5:
– Lossy compression preserving T significant bits

• Tolerance: 3, 6, 9, 15, 20 bits
• Algorithms: zfp, sigbits, sigbits+lz46

– Lossy compression with a fixed absolute tolerance
• Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of the data maximum value7

• Algorithms: zfp, sz, abstol, abstol+lz4

In each test, only one thread of the system is used for the compression/de-
compression. Each configuration is run 10 times measuring compression and
decompression time and compression ratio.

(a) Original data (b) Compressed sigbits 3bits (ratio 11.3:1)

Fig. 3. Example synthetic pattern: Simplex 206 in 2D

4.3 Compression Ratio Depending on Tolerance

Firstly, we investigate the compression factor depending on the tolerance level.
The graphs in Fig. 4 show the mean compression factor for all scientific data files
varying the precision for the algorithms ZFP, SZ, Sigbits and Abstol. The mean
is computed on the pool of data, i.e., after compression, a factor of 50:1 means
the compressed files occupy only 2% of the original size.

With 0.2% absolute tolerance, the compression ratio of abstol+lz4 is better
than our target of 10:1; on average 3.2 bits are needed to store a single float.
The SZ algorithm yields similar results than abstol+LZ4. The LZ4 stage boosts
the factor for Abstol and Sigbits significantly.
5 The versions used are SZ from Mar 5 2017 (git hash e1bf8b), zfp 0.5.0, LZ4 (May 1

2017, a8dd86).
6 This applies first the Sigbits algorithm and then the lossless LZ4 compression.
7 This is done to allow comparison across variables regardless of their min/max. In

practice, a scientist would set the reltol or define the abstol depending on the variable.

10 J. Kunkel et al.

(a) Absolute tolerance (% of max value) (b) Relative tolerance

Fig. 4. Mean harmonic compression factor based on user settings

For the precision bits, when preserving three mantissa bits, roughly 9:1 could
be achieved with sigbits+LZ4. Note that in roughly half the cases, ZFP could
not hold the required precision, as it defines the number of bits for the output
and not in terms of guaranteed precision8.

4.4 Fixed Absolute Tolerance

To analyze throughput and compression ratio across variables, we selected an
absolute tolerance of 1% of the maximum value.

Mean values are shown in Table 1. Synthetic random patterns serve as base-
line to understand the benefit of the lossy compression; we provide the means
for 5 different random patterns. For abstol, a random pattern yields a ratio of
0.229 (factor of 4.4:1) and for climate data the ratio is slightly better. But when
comparing SZ and Abstol+LZ4, we can observe a decrease of the compression
ratio to 1/3rd of the random data. Compression speed is similar for random and
climate data but decompression improves as there is less memory to read.

The results for the individual climate variables are shown in Fig. 5; the graph
is sorted on compression ratio to ease identification of patterns. The x-axis rep-
resents the different data files, each point in the synthetic data represents one
pattern of the given class created with different parameters. It can be observed
that Abstol+LZ4 yields mostly the best compression ratio and the best com-
pression and decompression speeds. For some variables, SZ compresses better,
this is exactly the reason why SCIL should be able to automatically pick the
best fitting algorithm below a common interface.

4.5 Fixed Precision Bits

Similarly to our previous experiment, we now aim to preserve 9 precision bits
for the mantissa. The mean values are shown in Table 2. Figure 6 shows the ratio
and performance across climate variables. The synthetic random patterns yield
a compression factor of 2.6:1. It can be seen that Sigbits+LZ4 outperforms ZFP
mostly, although ZFP does typically not hold the defined tolerance.
8 Even when we added the number of bits necessary for encoding the mantissa to ZFP.

Toward Decoupling the Selection of Compression Algorithms 11

Table 1. Harmonic mean compressing with an absolute tolerance of 1% max

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

abstol 0.19 260 456
abstol,lz4 0.062 196 400
sz 0.078 81 169
zfp-abstol 0.239 185 301

(a) For ECHAM data files

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

abstol 0.194 265 482
abstol,lz4 0.151 226 456
sz 0.165 74 147
zfp-abstol 0.295 161 266

(b) For 5 different random patterns

Fig. 5. Compressing various climate data variables with abstol of 1% max

12 J. Kunkel et al.

Table 2. Harmonic mean compressing with 9 precision bits

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

sigbits 0.448 462 615
sigbits,lz4 0.228 227 479
zfp-precision 0.299 155 252

(a) For ECHAM data files

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

sigbits 0.369 528 672
sigbits,lz4 0.304 466 599
zfp-precision 0.232 175 314

(b) For 5 different random patterns

Fig. 6. Compressing various climate data variables with 9 Bits precision

Toward Decoupling the Selection of Compression Algorithms 13

5 Summary

This paper introduces the concepts for the scientific compression library (SCIL)
and compares novel algorithms implemented with the state-of-the-art compres-
sors. It shows that these algorithms can compete with ZFP/SZ when setting the
absolute tolerance or precision bits. In cases with steady data, SZ compresses
better than abstol. Since SCIL aims to choose the best algorithm, it ultimately
should be able to take benefit of both algorithms. Ongoing work is the develop-
ment of a single algorithm honoring all quantities and the automatic chooser for
the best algorithm.

Acknowledgements. This work was supported in part by the German Research
Foundation (DFG) through the Priority Programme 1648 “Software for Exascale Com-
puting” (SPPEXA) (GZ: LU 1353/11-1).

References

1. Hubbe, N., Kunkel, J.: Reducing the HPC-Datastorage Footprint with MAFISC -
Multidimensional Adaptive Filtering Improved Scientific data Compression. Com-
puter Science - Research and Development, pp. 231–239 (2013)

2. Kunkel, J.: Analyzing Data Properties using Statistical Sampling Techniques -
Illustrated on Scientific File Formats and Compression Features. In Taufer, M.,
Mohr, B., Kunkel, J., eds.: High Performance Computing: ISC High Performance
2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG,
IWOPH, P3MA, VHPC, WOPSSS, 130–141. Number 9945 2016 in Lecture Notes
in Computer Science. Springer, Heidelberg (2016)

3. LZ77. https://cs.stanford.edu/people/eroberts/courses/soco/projects/
data-compression/lossless/lz77/example.htm. Accessed 04 Oct 2016

4. DEFLATE algorithm. https://en.wikipedia.org/wiki/DEFLATE. Accessed 04 Oct
2016

5. Huffman coding. A Method for the Construction of Minimum-Redundancy Codes.
Accessed 04 Oct 2016

6. GZIP algorithm. http://www.gzip.org/algorithm.txt. Accessed 04 Oct 2016
7. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data.

IEEE Trans. Visual Comput. Graphics 12(5), 1245–1250 (2006)
8. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ

(2015)
9. Hübbe, N., Wegener, A., Kunkel, J.M., Ling, Y., Ludwig, T.: Evaluating lossy

compression on climate data. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.)
ISC 2013. LNCS, vol. 7905, pp. 343–356. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38750-0 26

10. Bicer, T., Agrawal, G.: A compression framework for multidimensional scientific
datasets. In: 2013 IEEE 27th International Parallel and Distributed Processing
Symposium Workshops and PhD Forum (IPDPSW), pp. 2250–2253 (2013)

11. Laney, D., Langer, S., Weber, C., Lindstrom, P., Wegener, A.: Assessing the effects
of data compression in simulations using physically motivated metrics. Super Com-
puting (2013)

https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossless/lz77/example.htm
https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossless/lz77/example.htm
https://en.wikipedia.org/wiki/DEFLATE
http://www.gzip.org/algorithm.txt
http://dx.doi.org/10.1007/978-3-642-38750-0_26
http://dx.doi.org/10.1007/978-3-642-38750-0_26

14 J. Kunkel et al.

12. Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham, R., Ross, R.,
Samatova, N.F.: Compressing the incompressible with isabela: in-situ reduction
of spatio-temporal data. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par
2011. LNCS, vol. 6852, pp. 366–379. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23400-2 34

13. Iverson, J., Kamath, C., Karypis, G.: Fast and effective lossy compression algo-
rithms for scientific datasets. In: Kaklamanis, C., Papatheodorou, T., Spirakis,
P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 843–856. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32820-6 83

14. Gomez, L.A.B., Cappello, F.: Improving floating point compression through binary
masks. In: 2013 IEEE International Conference on Big Data (2013)

15. Lindstrom, P.: Fixed-Rate Compressed Floating-Point Arrays. IEEE Trans. Visu-
alization Comput Graphics 2012 (2014)

16. Baker, A.H., et al.: Evaluating lossy data compression on climate simulation data
within a large ensemble. Geosci. Model Dev. 9, 4381–4403 (2016)

17. OpenSimplex Noise in Java. https://gist.github.com/KdotJPG/
b1270127455a94ac5d19. Accessed 05 Feb 2017

18. Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M.,
Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., et al.: The Atmospheric
General Circulation Model ECHAM 5. Model description, PART I (2003)

http://dx.doi.org/10.1007/978-3-642-23400-2_34
http://dx.doi.org/10.1007/978-3-642-23400-2_34
http://dx.doi.org/10.1007/978-3-642-32820-6_83
https://gist.github.com/KdotJPG/b1270127455a94ac5d19
https://gist.github.com/KdotJPG/b1270127455a94ac5d19

On the Scalability of Data Reduction Techniques
in Current and Upcoming HPC Systems

from an Application Perspective

Axel Huebl1,2(B) , René Widera1 , Felix Schmitt2,3, Alexander Matthes1,2 ,
Norbert Podhorszki4 , Jong Youl Choi4, Scott Klasky4,

and Michael Bussmann1(B)

1 Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
{a.huebl,m.bussmann}@hzdr.de

2 Technische Universität Dresden, Dresden, Germany
3 NVIDIA ARC GmbH, Berlin, Germany

4 Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract. We implement and benchmark parallel I/O methods for
the fully-manycore driven particle-in-cell code PIConGPU. Identifying
throughput and overall I/O size as a major challenge for applications on
today’s and future HPC systems, we present a scaling law characterizing
performance bottlenecks in state-of-the-art approaches for data reduc-
tion. Consequently, we propose, implement and verify multi-threaded
data-transformations for the I/O library ADIOS as a feasible way to
trade underutilized host-side compute potential on heterogeneous sys-
tems for reduced I/O latency.

1 Introduction

Production-scale research simulation codes have been optimized in the last years
to achieve maximum compute performance on leadership, heterogeneous com-
puting systems such as the Titan supercomputer at Oak Ridge National Labora-
tory (ORNL). With close to perfect weak scaling domain scientists can increase
spatial and temporal resolution of their simulation and explore systems without
reducing dimensionality or feature resolution.

We present the consequences of near-perfect weak-scaling of such a code
in terms of I/O demands from an application perspective based on production
runs using the particle-in-cell (PIC) code PIConGPU [8,17]. PIConGPU demon-
strates a typical use case in which a PFlops/s-scale, performance portable sim-
ulation [29,30] leads automatically to PByte-scale output even for single runs.

This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No. 654220. An award of com-
puter time was provided by the Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) program. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 15–29, 2017.
https://doi.org/10.1007/978-3-319-67630-2_2

http://orcid.org/0000-0003-1943-7141
http://orcid.org/0000-0003-1642-0459
http://orcid.org/0000-0002-6702-2015
http://orcid.org/0000-0001-9647-542X
http://orcid.org/0000-0002-8258-3881

16 A. Huebl et al.

1.1 PIConGPU

PIConGPU is an electro-magnetic PIC code [5,14] implemented via abstract,
performance portable C++11 kernels on manycore hardware utilizing the Alpaka
library [29,30]. Its applications span from general plasma physics, over laser-
matter interaction to laser-plasma based particle accelerator research.

Since its initial open-source release in 2013 with CUDA support, PIConGPU
is reportedly the fastest particle-in-cell code in the world in terms of sustained
peak Flops/s [8]. We achieved this by not only porting the bottlenecks of the
PIC algorithm to new compute hardware but the complete code, thus minimizing
data transfer. PIConGPU data structures are tiled and swapping of frequently
updated data residing on device memory over low-bandwidth bottlenecks such
as the PCI bus is avoided [6].

The overall simulation is spatially domain decomposed and only nearby bor-
der areas need to be communicated across compute nodes (and accelerators)
inbetween iterations. Iterations in PIConGPU are performed with a frequency
of about 10 Hz on current accelerator architectures (GPUs) when simulating 3D
spatial domains and up to 60 Hz for two-dimensional domains. Each iteration
updates electro-magnetic fields and plasma particles, which together constitute
the simulation’s state.

1.2 Physical Observables

We will define primary observables as variables directly accessible and iterated
within the simulation. In terms of an electro-magnetic PIC code these are electric
field, magnetic field and plasma particles’ properties such as position, momen-
tum, charge to mass ratio and weighting. Primary observables are convenient for
the domain expert for exploration, of limited use for theories and models and
nearly always inaccessible directly in experiments.

We define secondary observables as computable on-the-fly, PIC examples
being the electric current density, position-filtered energy histograms or pro-
jected phase space distributions. In practice, analysis of a specific setup needs
multiple additional, study-specific derivations from already derived observables
which we summarize as tertiary observables. Examples in the domain of plasma
physics are integrals over phase-space trajectories, time-averaged fields, sample
trajectories or particle distributions in gradients of fields, flux over time, growth-
rates, etc. Usually, observables accessible by experiments fall in this last category
and can be compared to theoretical model predictions.

1.3 Two Example Workflows to Explore Complex Systems

In daily modeling work we usually iterate between two operational modes while
investigating a new physical system. We start with an exploratory phase guided
by initial hypotheses, looking at primary observables via visualizations or uti-
lizing existing analysis pipelines to iterate over the result of strongly reduced

On the Scalability of Data Reduction Techniques in Current 17

secondary and tertiary observables. During this phase, we develop new study-
specific analysis steps and working hypotheses.

The second phase continues with a high-resolution, high-throughput scan
of an identified regime of the physical system to prove or falsify our working
hypotheses. Due to higher resolution and full physical modeling, new observa-
tions will emerge from that step. Research is then about iterating both steps
in a refined manner until a system is well understood and a model is found to
describe the complex processes of interest.

1.4 Structure of This Paper

As our guiding example, we describe the Titan and Summit systems at ORNL
and their I/O bandwidth hierarchies from the special perspective of a fully GPU-
driven, massively parallel PIC code. We then evaluate the performance of PICon-
GPU’s I/O implementation, the overhead it introduces and mitigation strate-
gies via on-the-fly data reductions. We address issues in current state-of-the-art
compression schemes for our application and compare them to self-implemented
compression schemes that make optimal use of underutilized hardware compo-
nents. More specifically, we integrated the meta compression library blosc [2] into
ADIOS, thereby for the first time enabling multi-threaded compression within
ADIOS.

2 ORNL Titan and Summit Systems

With the launch of the Titan supercomputer to the public in 2013, manycore
powered supercomputing finally became accessible on large-scale installations.
Since then, the share of accelerator hardware in the TOP 100 systems has risen
to one third [24]. Such heterogeneous systems concentrate their compute per-
formance in the accelerator component, usually outnumbering the host system’s
compute potential by an order of magnitude, a trend that seems to continue on
upcoming systems such as Summit.

2.1 I/O Limitations in State-of-the-Art Systems

The parallel file system Atlas at ORNL, partitioned in two islands of 14 PBytes
each, provides an overall design parallel bandwidth of Bparallel = 1 TByte/s. It
is worth noting that if a hypothetical application would be constantly writing
at this maximum parallel bandwidth, Atlas would run out of disk memory in
less than 9 hour. We managed to write within each 8 hour production run of
our plasma simulation code PIConGPU about 1 PByte of (zlib) compressed
data, sampling the full system state every 2000 iteration steps. PIConGPU thus
presents a realistic use case that can consume a significant fraction of those
resources. With the upper limit of shared storage in mind, it is clear that data
reduction comes with great value. Additionally, fast migration to and from tape

18 A. Huebl et al.

storage and a strictly imposed short data lifetime on Atlas also encourage users
to avoid occupying disk memory for too long.

An equally severe limitation for I/O besides maximum data size is the over-
all time tI/O for file I/O compared to one iteration of the simulation, including
data preparation time tprep. Compared to the time twithout I/O one iteration takes
without I/O this tI/O introduces an overhead to the application run time, so that
the single iteration runtime with I/O becomes twith I/O = twithout IO+tI/O. When
considering applications scaling to the full Titan system, reaching TByte/s over-
all throughput results in a maximum node-average throughput of 55 MByte/s.
Applications with near perfect scaling can generate GPU data at two-digit Hz
levels amounting to data rates as high as 10×6 GiByte/s (device global memory)
on a node-local level, outnumbering the file system performance by three orders
of magnitude. Asynchronous I/O lowers this dramatic gap temporarily, but still
throttles the application at least to 1/10th of the bandwidth of the CPU-GPU
interconnect, not accounting for data reorganization from tiled GPU memory to
per-node contiguous memory as expected by parallel I/O APIs.

2.2 Staging, Burst Buffers and I/O Backlog

Even at moderate data rates, asynchronous writing can quickly overlap with the
next consecutive write period. Staging [1,10], if operating off-node, can reduce
that data pressure but is similarly limited by another order of magnitude gap in
throughput as soon as the interconnect is accessed.

Systems such as NERSC’s Cori recently introduced so-called burst-buffers [4].
Located either off-node similar to I/O nodes or in-node as with the upcoming
Summit system, overall size of those burst buffers is usually similar to that of the
global host RAM with access bandwidth ranging between network-interconnect
and parallel filesystem bandwidth.

Burst buffers provide an interesting mean for temporary checkpointing and
error-recovery. Coupled applications that only act as either a data sink or a
source for the main application are also major beneficiaries of burst buffers.
A prominent example in HPC are in situ visualizations copying on demand
snapshots [3,28] or accessing the primary observables directly [21,23,25].

Nevertheless, with the current absolute sizes of burst-buffers it is close to
impossible to keep data between application lifetime and parallel filesystem data
lifetime, simply because they cannot store a useful multiple of primary observ-
ables. As soon as a single stage in the I/O hierarchy is not drained as fast as it
is filled, a backlog throughout all previous stages is inevitable even when buffers
are used.

3 I/O Measurements

PIConGPU implements I/O for outputs and checkpoints within its plugin sys-
tem. Plugins are tightly coupled algorithms that can register within the main

On the Scalability of Data Reduction Techniques in Current 19

application for execution after selected iterations. They share full access to pri-
mary observables (read and write) of the application.

I/O modules implemented are parallel HDF5 [27] and ADIOS (1.10.0) [20].
In order to tailor domain-specific needs for particle-mesh algorithms, libSplash
is used as an abstraction layer [16]. Data objects are described by the meta-
data standard openPMD [15] in human- and machine-readable markup, allow-
ing for cross-application exchangeability as needed in post- and pre-processing
workflows.

3.1 Preparation of PIConGPU Primary Observables for I/O

In preparation of GPU device data for I/O libraries, PIConGPU field data are
copied from device to host via CUDA 3D memory copies while plasma particle
attributes stored in tiled data structures are copied via the mallocMC [11] heap
manager. Subsequently, scalar particle attributes are concatenated in prepa-
ration for efficient parallel I/O in a parallelized manner using OpenMP. The
single GPU data size needed for saving a complete system state is typically
S = 4 GiByte (assuming 2/3rd of device global memory for primary observables).
The overall time for preparing these 4 GiByte of data for one GPU is typically
tprep = 1 s on the systems considered in this publication.

3.2 I/O Performance in a Realistic Production Scenario

Measurements of the I/O performance are based on one of the default
benchmarks implemented in PIConGPU, a simulation of the relativistic
Kelvin-Helmholtz Instability [8,12]. Starting from two spatially homogeneous,
counterpropagating neutral plasma streams, a shear flow instability develops. This
scenario shows good load-balancing due to nearly homogeneous data distribution
across all GPUs with data size per output and GPU of S = 4 GiByte. We thus
assume in our following analysis for sake of simplicity that indeed each node has
the same output size, the same bandwidth and I/O operations have the same
impact on all N nodes of a system.

Our benchmark systems are Titan (ORNL) and the K20 queue of Hypnos
(HZDR), see Table 1. We choose the second system intentionally, since it has
roughly the same age, similar ratio of Flops/s between CPU host an GPU device,
multiple GPUs per node as in upcoming systems, even less CPU cores per GPU
and an even higher single node average filesystem bandwidth compared to Titan.
All measurement input and results of the following sections are available in the
supplementary materials [18] and all software used is open source.

Most relevant from an application point of view is the absolute overhead tI/O
in seconds caused by enabling I/O since it equals ‘wasted’ computing time that
could be otherwise spent to iterate the problem further or in higher resolution.
We define the effective parallel I/O throughput Teff in GiByte/s as

Teff ≡ N × S

twith I/O − twithout I/O
=

N × S

tI/O
(1)

20 A. Huebl et al.

Table 1. PIConGPU I/O benchmark systems, both commissioned in 2012/13: relevant
system characteristics and single node average filesystem throughput TFS, defined as
the design parallel bandwidth Bparallel divided by N nodes

Titan Hypnos (queue: ‘k20’)

GPUs/node 1× K20x 4× K20m

CPUs/node 1× AMD Opteron 6274 2× Intel Xeon E5-2609

CPU-cores/GPU 16 (8 FP) 2

GPU/CPU Flop/s (DP) 9.3 : 1 7.6 : 1

File system Spider/Lustre GPFS

Bparallel = TFS * N [GiByte/s] 1000 20

TFS [GiByte/s] 0.055 1.25

CPU Tmemcpy [GiByte/s] 6.0 6.1

Maximum number of nodes Nmax 18000 16

with the number of nodes N , the data size per node S and the difference between
execution time with I/O twith I/O and without I/O twithout I/O as tI/O. Besides
the (included) correction for intrinsic overheads in scaling the application, all
measurements are performed as a weak scaling of PIConGPU, which is near-
perfect up to the full size of Titan [8]. We average over 11 outputs within 2000
iterations with an average application iteration frequency of one Hertz.

In the following we model the I/O time per node by

tsimple
I/O ≡ tprep + toff RAM = tprep +

S

TFS
(2)

defining tprep as the time to concatenate data into large, I/O-API compatible
chunks and toff RAM ≡ S/TFS as the time to synchronously send the data off RAM.
This preparation time can potentially be lowered by reorganizing data on the
accelerator, where RAM is usually in full utilization from the application alone,
while asynchronous (non-blocking) writes that hide data transfer latency require
large enough temporary buffers to avoid backlog (see discussion in Sect. 2.2) and
I/O library support. It is thus S/TFS that will dominate overhead compared to
iterations without I/O.

Figure 1 shows the achieved effective parallel I/O throughput Teff on Titan.
We noticed HDF5 I/O overhead getting prohibitively large for production runs
as its parallelism is currently limited by the number of allocatable Lustre OSTs
(≤160) on which one global file needs to be strided over. After optimizing HDF5
performance with MPI-I/O and HDF5 hints, first manually via best-practices
and later using T3PIO [22], we turned down the strategy of parallel output in one
global file (June 2014) and started adopting ADIOS aggregators, which enable
transparently striding on subgroups of processes over a limited number of OSTs

On the Scalability of Data Reduction Techniques in Current 21

1 10 100 1000 10000
number of GPUs N

0.01

0.1

1

10

100

eff
ec

ti
ve

pa
ra

lle
l
I/

O
th

ro
ug

hp
ut

T
e
ff

[G
iB

yt
e/

s]
ADIOS: no transform

ADIOS: zlib

PHDF5 with T3PIO

labels: no. of OSTs
2nd argument: ADIOS aggregators

Fig. 1. PIConGPU I/O weak scaling on Titan from 1 to 16384 K20x GPUs (nodes).
Zlib was only supported serially with compression mode fast. MPI Info hints for parallel
HDF5 set via T3PIO (v2.3). For ADIOS, labels denote number of OSTs|aggregators,
resulting for N ≥ 32 in a striping of each aggregated process group over four OSTs.
Lustre filesystem limits enforced 160 OSTs for (single-file) parallel HDF5 writes.

(latest benchmark: September 2015). When using ADIOS in this manner, we
were able to reach an overall application throughput close to 280 GByte/s, see
Fig. 2. We are not aware of substantial changes in the Atlas filesystem during
this period of time, expecting both benchmarks to be comparable.

It is important to note that measuring the I/O throughput indirectly via
introduced overhead masquerades the actual filesystem bandwidth BFS which
is always higher than the previously defined effective parallel throughput Teff

for raw, untransformed data as seen by the application. This is very important
to keep in mind as the effective parallel throughput determines the application
performance in most realistic scenarios.

As mentioned in Sect. 2.1, absolute I/O size during production runs quickly
becomes a show-stopper. Compressing data streams on the fly seems to suggest
itself as data reduction technique, either lossless or lossy, depending on applica-
tion needs. In ADIOS, compression schemes are implemented transparently for
the user as so-called data transforms. One would not only expect a reduction
in data size but also an increase in effective bandwidth since the size of the
compressed data SC written to the filesystem is lowered by a compression ratio
fC ≡ SC/S ≤ 1 compared to the initial size S. We observed that this expectation
could not be fulfilled using even the fastest compression algorithm implemented
at the time in ADIOS, zlib, see Fig. 1.

22 A. Huebl et al.

Write
Read

300

200

100

7:30 PM 7:50 PM 8:10 PM

at
la

s
th

ro
ug

hp
ut

 B
pa

ra
lle

l

[G
iB

yt
e/

s]

Fig. 2. Actual filesystem throughput as seen by Atlas 2 (ORNL) during run no. 2489794
(Sep 23rd, 2015) on 16384 nodes according to user support (data: DDNTool, Splunk).

We therefore expanded our model to account for the time treduce ≡ S/TC it
takes to reduce the data by compression or other means and copy it from an
application-side buffer to an I/O library buffer. Up to now, data transforms in
ADIOS are performed before starting to send the data off-node, while parallel
HDF5 does not yet support data compression1. In order to account for data
reduction, Eq. (2) needs to be extended to add synchronous reduction over-
head by

treduce
I/O (treduce) ≡ tprep + treduce + fC × toff RAM

= tprep +
S

TC
+

fC × S

TFS

= tprep +
S

TC × Tmemcpy
+

fC × S

TFS × Tmemcpy
(3)

fC ≡ SC

S
TC ≡ TC

Tmemcpy
TFS ≡ TFS

Tmemcpy
.

TC and TFS characterize throughput for compression and filesystem writes,
respectively, normalized to in-node memory copy throughput Tmemcpy. We
acknowledge that treduce +fC × toff RAM could in principle be lowered by copying
the data to an I/O stage immediately and performing compression there, again
within the limits of the discussion in Sect. 2.2.

Consequently, for a given normalized per-node filesystem throughput TFS any
data reduction algorithm C needs to fulfill the relation

TC × (1 − fC)
1 − TC

> TFS (4)

in order to not only reduce data size by fC but also perceived write time. This
inequality arises from Eq. (3) assuming a reduce operation that is as fast as
1 An experimental development preview with compression support in parallel HDF5

was announced after our measurements in February 2017.

On the Scalability of Data Reduction Techniques in Current 23

4 8 16 32 64
number of GPUs N × 4

0

5

10

15

20
eff

ec
ti

ve
pa

ra
lle

l
I/

O
th

ro
ug

hp
ut

T
e
ff

[G
iB

yt
e/

s]
no transform

lz4: 2 threads, bitshuffle

zlib: 1 threads, noshuffle

zstd: 2 threads, bitshuffle

Fig. 3. Weak scaling of PIConGPU with implemented I/O methods on Hypnos from
4 to 64 K20m GPUs (16 nodes). In contrast to Titan and Summit nodes, on Hypnos
only two physical CPU cores are available per GPU, resulting in I/O performance with
zlib and zstd [9] below the untransformed output.

possible by setting the second term of the sum treduce ≡ tmemcpy and thus com-
paring treduce

I/O (treduce) < treduce
I/O (tmemcpy). The left-hand side of Eq. (4), which

we call the break-even threshold for a given data transform algorithm and single
(parallel) I/O stage, is discussed in greater detail in the following section.

In order to confirm this observation, we measured I/O performance on the
K20 queue of the HZDR compute cluster Hypnos, see Fig. 3 (data points ‘no
transform’ and ‘zlib’). Following Eq. (4) it should be even harder for a com-
pression algorithm, lossless or lossy, to fulfill the requirements for break-even
on Hypnos. Therefore, an improvement in the latter case will be automatically
favorable for Titan or a Summit-like system.

3.3 Measurement of Compression Performance

In the interest of exploring feasible compression methods for PIConGPU data,
we performed ex situ benchmarks on generated data. Visualized in Fig. 4, such
a measurement directly allows a prediction for individual systems and user data
when comparing to our model, Eq. 4.

PIConGPU currently only utilizes one host thread per GPU, so we decided
to implement and explore compression throughput for blosc as an example for a
multi-threaded algorithm and compare it to other, previously implemented com-
pression algorithms. Blosc provides several bitshuffle pre-conditioners, which we
found of great importance for floating-point compression performance in agree-
ment with recent studies [7]. Further benchmarks with four threads on Hypnos’
K20 queue, limited to two host threads per GPU without oversubscription, indi-
cated that on Hypnos application throughput would benefit from more physical
CPU cores per GPU since the recent filesytem upgrade to GPFS.

24 A. Huebl et al.

compression throughput TC [Tmemcpy]
10−2 10−1 100

0.00

0.25

0.50

0.75

1.00

co
m

pr
es

si
on

ra
ti

o
f C

break-even

Titan

10−2 10−1 100

break-even

Hypnos

Fig. 4. Compression throughput TC and ratio fC measured on PIConGPU particle data
(32 Bit floating point and integers). Lower fC and higher TC is better. All operations
performed on contiguous, aligned, none-page-locked memory. The blosc [2] compression
level is 1 (fast). From available pre-conditioners (none, shuffle, bitshuffle), the latter
is shown due to the observed positive influence on fC with small impact on TC for
floating point data which otherwise could not be compressed with LZ4 (v1.7.5) and
snappy [13]. Zfp (v0.5.1) was used in fixed-precision mode with three uncompressed
bits per scalar [19].

4 Analysis

Fully accelerator driven applications can use ‘the last 10% of system perfor-
mance’ on the host side in order to trade compute performance for I/O latency.
The Titan system provides up to 16 physical CPU cores per GPU and Sum-
mit is expected to allow for an order of magnitude higher parallelization on the
host. This section explores the limits to data reduction methods in terms of data
reduction ratio and throughput for an individual I/O stage independently of the
method of data reduction and only exemplified for compression methods.

4.1 Overhead of Compression in Parallel I/O

From Eq. (3) the relative I/O performance ratio Γ when using data reduction
instead of direct pass-through in an I/O stage follows as:

Γ ≡
treduce
I/O (treduce)

treduce
I/O (tmemcpy)

=
Cprep + fC

TFS
+ T −1

C

Cprep + T −1
FS + 1

(5)

Cprep ≡ tprep

S
× Tmemcpy

where we assume that the time for reducing the data treduce ≥ tmemcpy at min-
imum is as long as for copying data from node RAM to I/O buffer. It is clear
that in terms of I/O throughput reduction algorithms are beneficial if Γ < 1
compared to I/O without reduction. Cases of Γ ≥ 1 and fC < 1 can still be

On the Scalability of Data Reduction Techniques in Current 25

compression throughput TC [Tmemcpy]
10−2 10−1 100

0

1

2

pe
rf

or
m

an
ce

ra
ti

o
Γ

fC = 0.1

fC = 0.5

fC = 1.0

Titan

10−2 10−1 100

fC = 0.1

fC = 0.5

fC = 1.0

Hypnos

Fig. 5. Visualization of Eq. (5) predicting the relative I/O overhead Γ > 1 (gain Γ ≤ 1)
of compression during parallel I/O. The break-even threshold discriminates between
feasible and overhead-adding compression algorithms at Γ = 1 (dashed line). Lower Γ
and higher TC is better. Iso-compression lines for user data are plotted for individual
systems (see Table 1) and compared to measured ex situ compression performance on
PIConGPU user data (see Fig. 4).

relevant in case of limited disk space. Note, that decreasing Cprep would increase
the gradient of Γ , but not affect the position TC for which we expect break-even.

Figure 5 shows the effect of threaded compression, keeping the compression
ratio along iso-compression lines. Following the graph to the right, the higher
the throughput of a compression algorithm the less importance it has on Γ
compared to the compression ratio fC. Thus, an important limit to Γ is the
high-throughput limit TC → 1 for fast compression algorithms below the break-
even threshold. For such, the performance ratio over non-compressed I/O can
barely be improved further via throughput but solely by compression ratio.

Exactly the opposite is true for any reduction algorithm with low throughput
TC, to the left of the graph. Above the break-even threshold (dashed line at Γ =
1), data reduction quickly becomes impractical for medium to high-throughput
tasks for a specific system, as the relatively wasted computing time never reaches
Γ ≤ 1 even for small fC.

Following the last argument one can further derive from Eq. (4) with ‘perfect
reduction’ fC → 0: For any given I/O stage with write and reduction throughput
TFS, TC the effective time an application spends in (synchronous) I/O can only
be reduced, if the data reduction operation provides at least a throughput of

TC

1 − TC
> TFS. (6)

5 Summary and Outlook

We implemented and benchmarked parallel I/O methods on top of state-of-the-
art I/O libraries for the massively parallel, fully-manycore driven, open source

26 A. Huebl et al.

PIC code PIConGPU. We outlined performance bottlenecks for medium to high-
throughput applications in general and the possibility to overcome these with
general data reduction techniques such as compression. We then derived and ver-
ified a scaling law that gives limits to expected application speed up when using
data reduction schemes for medium- to high-throughput applications. With this
we were able to derive a system- and application-specific break-even thresh-
old that allows for predicting when reducing data is benefitial in terms of I/O
throughput compared to I/O without reduction.

5.1 Compression Algorithms

For the special case of compression algorithms, future designs to soften I/O bot-
tlenecks first and foremost need to improve throughput for floating point data.
Even for a relatively large gap between local memory and filesystem throughput
as on the current Titan system, many single-threaded compression algorithms
that are still in use today do not fulfill the break-even threshold in Eq. (4).

Existing high-throughput compression algorithms would benefit from
research improving the compression ratio fC instead of throughput TC [7,26].
This case is of importance since, due to high entropy in HPC applications’
primary observables (e.g. floating point), only lossy compression algorithms
are likely to bridge the upcoming throughput gaps between node-local high-
bandwidth memory and storage accessible longer than application lifetime.

For ADIOS we proposed, implemented and benchmarked for the first time
host-side multi-threaded transform methods as a feasible step to reach the break-
even threshold. With that, we successfully traded unused compute performance
within a heterogeneous application for overall I/O performance.

5.2 I/O Libraries

Burst-buffers are identified as enablers to reduce blocking time of the application
caused by synchronous transformations within I/O libraries, but are vulnerable
to backlog. Nonetheless, burst-buffers alone cannot cover the gap that will arise
between expected I/O on system today and in the future. Further applications of
burst-buffers are coupled multi-scale simulations, in situ processing and check-
pointing and not in the scope of this paper.

Nevertheless, for both explorative-qualitative and medium- to high-through-
put quantitative studies I/O libraries need to act now to provide transparent and
easily programmable means for multi-stage I/O. For any practical application,
the first I/O stage should immediately start with a maximum-throughput mem-
copy from user RAM to I/O buffer, ideally asynchronously, while later stages
need to follow fully asynchronously. Copied memory (in unutilized RAM or burst-
buffers) will need several off-node user-programmable transformations which are
finally staged transparently through a subsequent non-blocking data reduction
(compression) pipeline. In each I/O stage, the break-even threshold derived in
this paper needs to be fulfilled or backlog will occur for successive outputs and
the overall application will be throttled by that specific bottleneck. With deeper

On the Scalability of Data Reduction Techniques in Current 27

memory hierarchies, user-programmability of stages will be a human bottle-
neck and needs to be addressed with easy and fast turnaround APIs to design
application- and study-specific stages, e.g. via Python/Numba.

In conclusion, introducing data reduction for I/O will be necessary because of
limited medium to long term storage size expected for future systems. Our analy-
sis and measurements show that even today one should however not expect I/O
performance gains when using reduction. Parallelization of reduction algorithms
is one way to gain overall I/O performance but requires compute resources in
addition to those used by the application. Even for fully GPU accelerated appli-
cations one should not assume resources to be ‘free’ for I/O and analysis tasks,
since loosely coupled application workflows and models that depend heavily on
hardly-parallelizable aspects such as atomic data lookups will in the future be
more widespread and compete for the exact same resources.

References

1. Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., Zheng, F.:
Datastager: scalable data staging services for petascale applications. Clust. Com-
put. 13(3), 277–290 (2010). doi:10.1007/s10586-010-0135-6

2. Alted, F.: blosc 1.11.4-dev, March 2017. https://github.com/Blosc/c-blosc
3. Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., Mauldin,

J.: ParaView catalyst: enabling in situ data analysis and visualization. In: Pro-
ceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization, ISAV2015, pp. 25–29. ACM (2015). doi:10.1145/
2828612.2828624

4. Bhimji, W., Bard, D., Romanus, M., Paul, D., Ovsyannikov, A., Friesen, B.,
Bryson, M., Correa, J., Lockwood, G.K., Tsulaia, V., et al.: Accelerating science
with the NERSC burst buffer early user program. In: Proceedings of Cray Users
Group (2016)

5. Birdsall, C., Langdon, A.: Plasma physics via computer simulation. The
Adam Hilger series on plasma physics. McGraw-Hill, New York (1985). ISBN
9780070053717

6. Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm,
U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic
particle-in-cell code for a gpu cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839
(2010)

7. Burtscher, M., Mukka, H., Yang, A., Hesaaraki, F.: Real-time synthesis of com-
pression algorithms for scientific data. In: SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 264–275,
November 2016. doi:10.1109/SC.2016.22

8. Bussmann, M., Burau, H., Cowan, T.E., Debus, A., Huebl, A., Juckeland, G.,
Kluge, T., Nagel, W.E., Pausch, R., Schmitt, F., Schramm, U., Schuchart, J.,
Widera, R.: Radiative signatures of the relativistic Kelvin-Helmholtz instability.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC 2013, pp. 5:1–5:12. ACM (2013). doi:10.
1145/2503210.2504564

9. Collet, Y., Skibinski, P., Terrell, N., Purcell, S.: Contributors: Zstandard (zstd)
1.1.4 - fast real-time compression algorithm, March 2017. https://github.com/
facebook/zstd

http://dx.doi.org/10.1007/s10586-010-0135-6
https://github.com/Blosc/c-blosc
http://dx.doi.org/10.1145/2828612.2828624
http://dx.doi.org/10.1145/2828612.2828624
http://dx.doi.org/10.1109/SC.2016.22
http://dx.doi.org/10.1145/2503210.2504564
http://dx.doi.org/10.1145/2503210.2504564
https://github.com/facebook/zstd
https://github.com/facebook/zstd

28 A. Huebl et al.

10. Docan, C., Parashar, M., Klasky, S.: DataSpaces: an interaction and coordination
framework or coupled simulation workflows. In: Proceedings of 19th International
Symposium on High Performance and Distributed Computing (HPDC 2010), June
2010. doi:10.1007/s10586-011-0162-y

11. Eckert, C.H.J.: Enhancements of the massively parallel memory allocator scatter-
alloc and its adaption to the general interface mallocMC, October 2014. doi:10.
5281/zenodo.34461

12. Grismayer, T., Alves, E., Fonseca, R., Silva, L.: dc-magnetic-field generation in
unmagnetized shear flows. Phys. Rev. Lett. 111, 015005 (2013). doi:10.1103/
PhysRevLett.111.015005

13. Gunderson, S.H., Evlogimenos, A.: Contributors: Snappy 1.1.1 - a fast compres-
sor/decompressor (2011). https://github.com/google/snappy

14. Hockney, R., Eastwood, J.: Computer Simulation Using Particles. Taylor & Francis,
Bristol (1988). ISBN: 9780852743928

15. Huebl, A., Lehe, R., Vay, J.L., Grote, D.P., Sbalzarini, I., Kuschel, S., Bussmann,
M.: openPMD 1.0.0: a meta data standard for particle and mesh based data,
November 2015. doi:10.5281/zenodo.33624

16. Huebl, A., Schmitt, F., Widera, R., Grund, A., Schumann, C., Eckert, C., Bukva,
A., Pausch, R.: libSplash: 1.6.0: SerialDataCollector filename API, October 2016.
doi:10.5281/zenodo.163609

17. Huebl, A., Widera, R., Grund, A., Pausch, R., Burau, H., Debus, A., Garten, M.,
Worpitz, B., Zenker, E., Winkler, F., Eckert, C., Tietze, S., Schneider, B., Knespel,
M., Bussmann, M.: PIConGPU 0.2.4: Charge of bound electrons, openPMD axis
range, manipulate by position, March 2017. doi:10.5281/zenodo.346005

18. Huebl, A., et al.: Supplementary materials: On the scalability of data reduction
techniques in current and upcoming HPC systems from an application perspective,
April 2017. doi:10.5281/zenodo.545780

19. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Com-
put. Graph. 20(12), 2674–2683 (2014). doi:10.1109/TVCG.2014.2346458

20. Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky, S.,
Tchoua, R., Lofstead, J., Oldfield, R., et al.: Hello ADIOS: the challenges and
lessons of developing leadership class I/O frameworks. Concurr. Comput. Pract.
Exp. 26(7), 1453–1473 (2014)

21. Matthes, A., Huebl, A., Widera, R., Grottel, S., Gumhold, S., Bussmann, M.:
In situ, steerable, hardware-independent and data-structure agnostic visualiza-
tion with ISAAC. Supercomputing Frontiers and Innovations 3(4) (2016). http://
superfri.org/superfri/article/view/114

22. McLay, R., James, D., Liu, S., Cazes, J., Barth, W.: A user-friendly approach for
tuning parallel file operations. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2014, pp.
229–236. IEEE Press (2014). doi:10.1109/SC.2014.24, https://github.com/TACC/
t3pio

23. Meredith, J.S., Ahern, S., Pugmire, D., Sisneros, R.: EAVL: The extreme-scale
analysis and visualization library. In: Childs, H., Kuhlen, T., Marton, F. (eds.)
Eurographics Symposium on Parallel Graphics and Visualization. The Eurograph-
ics Association (2012). doi:10.2312/EGPGV/EGPGV12/021-030

24. Meuer, H.W., Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: November 2016
— TOP500 Supercomputer Sites, June 2016. https://www.top500.org/lists/2016/
11/. Accessed 22 Mar 2017

25. Corporation, N.: NVIDIA IndeX 1.4. https://developer.nvidia.com/index

http://dx.doi.org/10.1007/s10586-011-0162-y
http://dx.doi.org/10.5281/zenodo.34461
http://dx.doi.org/10.5281/zenodo.34461
http://dx.doi.org/10.1103/PhysRevLett.111.015005
http://dx.doi.org/10.1103/PhysRevLett.111.015005
https://github.com/google/snappy
http://dx.doi.org/10.5281/zenodo.33624
http://dx.doi.org/10.5281/zenodo.163609
http://dx.doi.org/10.5281/zenodo.346005
http://dx.doi.org/10.5281/zenodo.545780
http://dx.doi.org/10.1109/TVCG.2014.2346458
http://superfri.org/superfri/article/view/114
http://superfri.org/superfri/article/view/114
http://dx.doi.org/10.1109/SC.2014.24
https://github.com/TACC/t3pio
https://github.com/TACC/t3pio
http://dx.doi.org/10.2312/EGPGV/EGPGV12/021-030
https://www.top500.org/lists/2016/11/
https://www.top500.org/lists/2016/11/
https://developer.nvidia.com/index

On the Scalability of Data Reduction Techniques in Current 29

26. Tao, D., Sheng, D., Chen, Z., Cappello, F.: Significantly improving lossy com-
pression for scientific data sets based on multidimensional prediction and error-
controlled quantization. In: IPDPS 2017: Proceedings of the 31th IEEE Interna-
tional Parallel and Distributed Processing Symposium, May 2017

27. The HDF Group: Hierarchical data format version 5 (C-API: 1.8.14) (2000–2017).
http://www.hdfgroup.org/HDF5

28. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation
with a fully featured visualization system. In: Kuhlen, T., Pajarola, R., Zhou,
K. (eds.) Eurographics Symposium on Parallel Graphics and Visualization. The
Eurographics Association (2011). doi:10.2312/EGPGV/EGPGV11/101-109

29. Zenker, E., Widera, R., Huebl, A., Juckeland, G., Knüpfer, A., Nagel, W.E.,
Bussmann, M.: Performance-portable many-core plasma simulations: porting
PIConGPU to openpower and beyond. In: Taufer, M., Mohr, B., Kunkel, J.M.
(eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 293–301. Springer, Cham
(2016). doi:10.1007/978-3-319-46079-6 21

30. Zenker, E., Worpitz, B., Widera, R., Huebl, A., Juckeland, G., Knüpfer, A., Nagel,
W.E., Bussmann, M.: Alpaka-an abstraction library for parallel kernel acceleration.
In: 2016 IEEE International on Parallel and Distributed Processing Symposium
Workshops, pp. 631–640. IEEE (2016)

http://www.hdfgroup.org/HDF5
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.1007/978-3-319-46079-6_21

Toward a Multi-method Approach: Lossy Data
Compression for Climate Simulation Data

Allison H. Baker(B), Haiying Xu, Dorit M. Hammerling, Shaomeng Li,
and John P. Clyne

The National Center for Atmospheric Research, Boulder, CO 80305, USA
{abaker,haiyingx,dorith,shaomeng,clyne}@ucar.edu

Abstract. Earth System Model (ESM) simulations are increasingly
constrained by the amount of data that they generate rather than by
computational resources. The use of lossy data compression on model
output can reduce storage costs and data transmission overheads, but
care must be taken to ensure that science results are not impacted.
Choosing appropriate compression algorithms and parameters is not triv-
ial given the diversity of data produced by ESMs and requires an under-
standing of both the attributes of the data and the properties of the cho-
sen compression methods. Here we discuss the properties of two distinct
approaches for lossy compression in the context of a well-known ESM,
demonstrating the different strengths of each, to motivate the develop-
ment of an automated multi-method approach for compression of climate
model output.

1 Introduction

The Community Earth System Model (CESM) [9] is a popular earth system
model code based at the National Center for Atmospheric Research (NCAR). A
high-resolution CESM simulation can easily generate over a terabyte of data per
compute day (e.g., [22]), outputting time slices of data for hundreds of variables
at hourly, daily, and monthly sampling rates. In fact, the raw data requirements
for CESM for the current Coupled Model Comparison Project (Phase 6) [19] are
expected to exceed 10 petabytes [20]. The massive data volumes generated by
CESM strain NCAR’s resources and motivated the work in [2], a first step in
advocating for the use of lossy data compression on CESM output. In [2], errors
in reconstructed CESM data (data that had undergone compression) resulting
from multiple lossy compression methods were evaluated primarily in the context
of an ensemble of simulations. The idea was that the effects of lossy compression
on the original climate simulation should not, at a minimum, be statistically
distinguishable from the natural variability of the climate system. Preliminary
results indicated that this requirement could be met with a respectable com-
pression rate with the fpzip compressor [18].

A more recent study in [1] applied fpzip lossy compression to a subset of the
data from the CESM Large Ensemble (CESM-LE) Community Project [12],
which was made available to climate researchers to examine features of the
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 30–42, 2017.
https://doi.org/10.1007/978-3-319-67630-2_3

Toward a Multi-method Approach: Lossy Data Compression 31

data relevant to their interests (e.g., extremes, variability patterns, mean cli-
mate characteristics). The results from several of these studies are discussed in
[1], and the authors conclude that while it is possible to detect compression
effects in the data in some features, the effects are often unimportant or dis-
appear in post-processing analyses. For this study, each CESM output variable
was assessed individually to maximize compression such that the reconstructed
data passed the ensemble-based quality metrics in [2]. This costly “brute force”
approach required the generation of multiple ensembles and exhaustive testing
of the compression algorithm’s parameter space.

Our goal is to simplify the process of determining appropriate compression
for a given CESM dataset that both maximizes data reduction and preserves the
scientific value of the data. Therefore, we must be able to detect problematic
compression artifacts with metrics that do not require ensemble data. Further,
because a single compression algorithm cannot obtain the best compression rate
(and quality) on every CESM variable, we explore applying multiple types of
compression methods to a CESM dataset. Once a particular method has been
matched to a variable, then the amount of compression (i.e., parameters) must be
chosen inexpensively as well. In this work, we progress toward identifying which
type of compression method to use based on a variable’s characteristics and
determining the strengths and weaknesses of different types of lossy compression
algorithms in the context of CESM output. We also demonstrate the potential
of a multi-method compression approach for CESM.

2 Challenges

Our ultimate goal is to develop an automated tool to integrate lossy compression
into the CESM workflow. Given a CESM dataset, this tool must be able to
efficiently determine which compression algorithm(s) to apply and evaluate the
impact of the information loss. These two capabilities are particularly challenging
for CESM simulation output due to the diversity of variables, and a variable’s
characteristics determine how effectively it can be compressed. CESM variables
may be smooth, constant, or contain abrupt changes. Variables may have large
ranges of data values, artificial “fill” values, unpredictable missing values, or large
numbers of zero values. Further, the same variable field may “look” different at
different spatial and temporal resolutions.

The work in [2] customizes how aggressively each CESM variable is com-
pressed by adjusting algorithm-specific parameters that control the amount of
compression. However, here we further suggest using different compression algo-
rithms on different variables. The benefit of a multi-method approach is that, for
example, a compression method that does poorly on data with sharp boundaries
but extremely well on smooth data would not be excluded from consideration,
but simply applied only to smooth variables. The challenge of a multi-method
approach is that determining the rules to automate the process of matching
variables to appropriate lossy compression algorithms requires a thorough under-
standing of the features of each variable, the strengths and weaknesses of each

32 A.H. Baker et al.

compression method, and the evaluation metrics in the context of CESM data.
Further, once a lossy compression method has been chosen, method-specific para-
meters must be optimized as well.

Determining appropriate metrics to evaluate the impact of information loss is
also challenging due to the diversity of data (e.g., smooth data may be easier to
compress, but perhaps there is less tolerance for error). However, a second issue
stems from not knowing in advance how a large publicly-available CESM dataset
will be analyzed. Indeed, if we know how data will be analyzed, compression
can be tailored to well preserve features of interest (e.g., top of the atmosphere
surface radiation balance) in the reconstructed data. Finally, computational cost
is a consideration. While the ensemble-based quality metrics that leverage the
climate model systems’s variability were needed to establish the feasibility of
applying lossy compression to CESM output in [2], an ensemble-based approach
is expensive. On the other hand, simple metrics such as the root mean squared
error (RMSE) or peak signal-to-noise ratio (PSNR) are insufficient for detecting
features potentially relevant to climate scientists.

3 Lossy Compression Algorithms

Lossy compression algorithms for general floating-point scientific data have
received attention recently (e.g., [3,4,6,11,14–18,21]) due to their ability to
compress much more agressively than lossless approaches. A few studies have
focused on applying lossy algorithms to climate simulation data in particular
(e.g., [2,8,25]). Compression schemes can be described in terms of their mod-
eling and encoding phases, and available compression algorithms differ in how
these phases are executed. Predictive schemes and transform methods are com-
mon choices for the modeling phase in lossy compression algorithms. We focus on
a representative algorithm of each type to explore how the two different types of
compression algorithms differ in the context of CESM data. While not discussed
in this work, note that algorithm performance and ease-of-use are important
and desirable lossy compression method properties for CESM data are discussed
in [2].

The fpzip compressor [18] models the floating-point numbers via predictive
coding; as the data are traversed, values are predicted based on data already
visited. The idea behind a predictive method is that the residual between the
actual and predicted floating-point value is smaller than the original value and,
therefore, can be encoded with fewer bits. The fpzip compressor [18] may be
lossless or lossy depending on whether all bits are retained (or a number of least
significant bits are truncated) before the floating-point values are converted to
integers. Integer residual values are then encoded by a fast entropy encoder.
In lossy mode, because discarding of bits effectively rounds toward zero, some
introduction of bias is possible [15].

A tranform compression method aims to model the original data with a rela-
tively small number of basis coefficients (i.e., those with the largest magnitudes)
and then encode those coefficients. The compressor that we refer to as SPECK

Toward a Multi-method Approach: Lossy Data Compression 33

uses a discrete wavelet basis and encodes with the set partitioned embedded
block coder algorithm [10]. In this research we adopted the SPECK implemen-
tation from QccPack [7], with the CDF 9/7 wavelet transformation [5]. For 2D
variables, a 2D transform was applied to each horizontal slice; for 3D variables,
an additional 1D transform was applied along the Z axis. Normally a trans-
form method cannot support a lossless option due to floating-point inaccuracies
associated with the transform, and SPECK is no exception. The amount of com-
pression with SPECK is controlled by specifying a target bit per voxel (i.e., a
fixed rate). For example, for single precision data (32-bits), specifying a bit per
voxel of 8 would yield a compression ratio (CR) of approximately 0.25, where
(CR) is defined as the ratio of the size of the compressed file to that of the
original file. Other examples of transform approaches include JPEG2000 (e.g.
[25]) and zfp [17], the latter of which targets numerical simulation data.

4 Metrics

Three of the four metrics in [2] for evaluating information loss in CESM due
to lossy compression are ensemble-based. We move away from ensemble-based
metrics in this study largely due to cost considerations, though a second hin-
derance to automation with ensemble-based metrics is that variable properties
across the ensemble cannot be known in advance to determine allowable error.
For example, if a variable is constant across the ensemble, then there may be
no tolerance for any error no matter how small. Therefore, for our comparison
of the two lossy approaches here, we use the three metrics described next, as
well as the Pearson correlation coefficient as in [2]. We do not claim that the
following metrics (and tolerances) are comprehensive (notably absent are mul-
tivariate metrics and temporal considerations), but they reflect our evolution in
terms of suitable metrics that measure different aspects of the data and illustrate
the differences between the two lossy approaches that we compare in this work.
Indeed, determining comprehensive and efficient metrics is a subject of on-going
long-term research.

We consider a single temporal step for our analysis and denote the original
spatial dataset X as X = {x1, x2, . . . , xN}, with xi a scalar and i the spatial
index, and the reconstructed dataset X̃ by X̃ = {x̃1, x̃2, . . . , x̃N}. The range of
X is denoted by RX . The normalized maximum pointwise error (enmax) is the
maximum norm, normalized by RX , and the normalized RMSE (nrmse) is the
RMSE between the original and reconstructed data, normalized by RX .

Pearson correlation coefficient: The Pearson correlation coefficient (PCC)
indicates the strength of the linear relationship between the original and recon-
structed data, and a value of one indicates a perfect (positive) correlation. Lossy
compression should not degrade this relationship, and as such, we require that
PCC ≥ 0.99999 as the acceptance threshold for this test [2]. The PCC is useful
as it is sensitive to outliers in the data (but is invariant to mean shifts).

Kolmogorov-Smirnov Test: The two-sample Kolmogorov-Smirnov (KS) test
detects a potential shift in the distribution. The KS test is a nonparametric

34 A.H. Baker et al.

hypothesis test for evaluating whether two datasets are drawn from the same
probability distribution (the null hypothesis) and is based on the supremum
distance between two empirical cumulative density functions (CDFs). We use
the SciPy statistical functions package two-sample KS test at the 5% confidence
level. Note that the KS test benefits from large sample size, which we have here,
making it more accurate/sensitive. This test should detect smoothing, skew, or
other distribution-changing features in the reconstructed data. For example, if
many points with the same value in the distribution are systematically under- or
overestimated (by even a tiny amount), this test will fail even if the discrepancy
is undetectable in the sample mean and standard deviation.

Spatial relative error: While checking the maximum norm of the error gives
a minimum guarantee of precision, the error may only be large at one single
point. On the other hand, a measure of average error (e.g., RMSE) can hide an
error at a single or a few point(s). To better describe the spatial extent of the
error, we determine the percentage of spatial grid locations at which the relative
error is greater than a specified tolerance δ. In particular, for each variable X at
each grid point, we calculate the relative error: rexi

= (xi − x̃i)/xi (if xi == 0,
then we calculate the absolute error). If percentage of grid points with rexi

> δ
exceeds 5%, this test will fail. We are compressing single-precision (32-bit) data
in CESM, and for our experiments we use δ = 1e−4.

Structural similarity index: The structural similarity Index (SSIM) was
developed to measure the perceived change in structural information between
two images, as the commonly used RMSE is typically not well suited to such
a task [23]. Data visualization is a key component in many climate simula-
tion post-processing analyses, as evidenced by the popularity of the Atmosphere
Working Group Diagnostics Package (AMWG-DP). Clearly, visual evidence of
information loss due to compression in post-processing image analysis would be
problematic, particularly if scientific conclusions are affected. Computing the
SSIM for 2D slices of the original and reconstructed data provides an indica-
tion as to whether the difference is noticeable. An SSIM score of one indicates
that two images are identical, while lower scores indicate some degree of differ-
ence. Most threshold values for minimum allowable SSIM for compression in the
medical imaging research field, which focuses on “diagnostically lossless” [13],
range from .95 to .99. While an appropriate SSIM threshold is clearly application
dependent (and requires further research for CESM), we use .98 in this study as
it is commonly cited as the level of visual indistinguishability (e.g., [24]).

5 Multi-method Comparison

We limit our investigation to output from the atmospheric model component
of CESM, the Community Atmosphere Model (CAM), evaluating the same
data as in [2], which were annual averages obtained from the 1.1 release ver-
sion of CESM, using a spectral element (SE) dynamical core on a cubed-
sphere 1-degree global grid (48,602 horizontal grid-points and 30 vertical levels).

Toward a Multi-method Approach: Lossy Data Compression 35

Table 1. Representative CESM variable characteristics

Variable name Description Dim. xmin xmax % zeros

H2O2 H2O2 concentration 3D 9.44e-13 3.55e-9 0.1

FSNTC Clearsky net solar flux
(top of model)

2D 4.57e1 3.80e2 0.0

TS Surface temperature 2D 2.15e2 3.04e2 0.0

TAUY Zonal surface stress 2D −2.66e-1 2.44e-1 0.0

CLOUD Cloud fraction 3D 0.0 8.95e-1 22.3

PRECSC Convective snow rate 2D 0.0 6.80e-9 75.8

TOT ICLD VISTAU Total in-cloud visible sw
optical depth

3D 0.0 6.75e1 27.3

PRECCDZM Convective precipitation
rate (ZM deep)

2D 0.0 2.39e-7 4.6

OMEGAT Vertical heat flux 3D −2.74e2 2.01e2 0.0

FLNS Net longwave flux at
surface

2D 1.14e1 1.50e2 0.0

VQ Meridional water
transport

3D −9.21e-2 1.07e-1 0.0

NUMLIQ Grid box averaged cloud
liquid num

3D 1.00e-12 1.10e8 43.1

WSUB Diagnostic sub-grid
vertical velocity

3D 2.00e-1 1.30e0 0.0

CESM data are written to single-precision (truncated from double-precision),
and we use all 198 default output variables, 101 of which are two-dimensional
(2D) and 97 three-dimensional (3D). We define fpzip Y as fpzip where Y indi-
cates the number of bits to retain before quantization, and we evaluate with
Y = {8, 12, 16, 20, 24, 28, 32}. Therefore, fpzip 8 is the most aggressive and
fpzip 32 is lossless. We define speck M as SPECK where M indicates the bit tar-
get rate and evaluate with M = {1, 2, 4, 8, 12, 16, 24, 32}. Therefore, speck 1
is the most aggressive and speck 32 is the least (closest to lossless). Note that
because the CAM SE data is output as a 1D array for each horizontal level (space-
filling curve ordering), we reorder the CAM data to be spatially coherent data
before applying the transform method. In particular, the original 48,602 horizon-
tal grid points were mapped to the six cubed-sphere faces (91x91x1), and SPECK
is applied to each face independently (3D variables have 91x91x30 input arrays).
SPECK also takes two additional parameters related to the wavelet transform
levels; given that the wavelet transform kernel size is 9, we set XY-level to 4
(log2(91/9) + 1) and Z-level to 2 (log2(30/9) + 1).

36 A.H. Baker et al.

Table 2. A list of the lowest CR variants of SPECK and fpzip for each representative
CESM variable

Variable name SPECK fpzip DWT→IDWT

Variant enmax nrmse CR Variant enmax nrmse CR Max. abs. error

H2O2 speck 2 2.47e-4 2.47e-5 0.06 fpzip 20 2.56e-4 2.05e-5 0.23 0.0

FSNTC speck 8 1.75e-4 2.08e-5 0.26 fpzip 24 2.33e-5 1.18e-5 0.36 0.0

TS speck 4 1.46e-3 1.95e-4 0.13 fpzip 24 8.71e-5 4.95e-5 0.28 0.0

TAUY speck 12 8.04e-6 1.24e-6 0.38 fpzip 24 1.41e-5 7.92e-7 0.54 0.0

CLOUD – – – – fpzip 24 1.70e-5 2.42e-6 0.36 8.88e-16

PRECSC – – – – fpzip 16 4.01e-3 1.97e-4 0.12 2.53e-24

TOT ICLD VISTAU – – – – fpzip 24 2.68e-5 5.84e-7 0.38 8.88e-15

PRECCDZM speck 24 7.44e-9 1.61e-9 0.77 fpzip 16 3.89e-3 4.16e-4 0.24 5.29e-23

OMEGAT speck 16 2.24e-8 3.11e-9 0.51 fpzip 24 1.09e-5 2.04e-7 0.52 0.0

FLNS speck 12 1.38e-5 2.72e-6 0.38 fpzip 24 2.81e-5 5.19e-6 0.42 0.0

VQ speck 16 3.50e-9 3.82e-10 0.51 fpzip 24 9.53e-6 6.52e-7 0.48 0.0

NUMLIQ – – – – fpzip 32 0.0 0.0 0.46 5.96e-8

WSUB – – – – fpzip 32 0.0 0.0 0.43 0.0

5.1 Detailed Investigation of Representative Variables

We examine a subset of the variables in detail (Table 1). For each variable, we
determine the most aggressive (i.e., lowest CR) variant of SPECK and fpzip
that pass the four tests described in Sect. 4 (see Table 2). Comparing SPECK to
fpzip is complicated by the fact that SPECK uses a fixed-rate specification and
fpzip does not. Values for enmax and nrmse are listed in Table 2, but are not
used as selection metrics, and the rightmost column is discussed in Sect. 6.

The top section in Table 2 lists four variables, H2O2, FSNTC, TS, and TAUY,
which have a lower CR with SPECK than with fpzip. These variables all have
either very few or no zeroes. Each variable is also quite smooth (intuitive for
surface temperature, TS). For H2O2, while the range is a bit larger overall, the
range within each horizontal level is smaller. Note that fpzip does not do poorly

Fig. 1. Absolute error between the original and reconstructed data with speck 8 (left)
and fpzip 24 (right) for variable TS. Both methods shown attain a similar CR.

Toward a Multi-method Approach: Lossy Data Compression 37

Fig. 2. Variable H2O2 (level 7) in original data (left) and after speck 1 compression
(right). The SSIM index for the images is below the 0.98 threshold. Colorbars for these
two plots have been omitted as they are identical and do not contribute information.

on these four variables, but SPECK compresses more aggressively. Figure 1 illus-
trates the difference in the two methods via the absolute error for TS with speck 8
(left) and fpzip 24 (right), which achieve a similar CR of .26 and .28, respec-
tively. The error with SPECK is uniformly smaller at this same compression
ratio, which makes sense given that more aggressive compression via speck 4 is
acceptable (Table 2). Note that the cubed-sphere faces are evident in Fig. 1. For
FNSTC, TS, and TAUY, more aggressive variants of the two compressors fail
the spatial relative error test. For H202, though, the more aggressive variant of
SPECK fails the SSIM test, which can be visually confirmed by the noticeable
difference in Fig. 2 along the contour between blue and light blue.

Fig. 3. Variable CLOUD (level 4) in the original data.

The second section in Table 2 lists four variables that achieve a lower
CR with fpzip. The first three of these variables (CLOUD, PRECSC,
TOT ICLD VISTAU) contain sizable percentages of zeros, which SPECK typ-
ically does not exactly preserve. Even the least aggressive SPECK variant,
speck 32 (which does not reduce the file size) cannot pass the KS test, which
detects the shift in distribution caused by reconstructing zero values in the orig-
inal data as very small values (positive and negative). These fields also contain

38 A.H. Baker et al.

Fig. 4. Absolute error between the original and reconstructed data with speck 16 (left)
and fpzip 24 (right) for variable CLOUD (level 4).

more abrupt jumps in the data, which are not favorable to a transform method.
For example, the 3D variable CLOUD contains many zero values, very small
numbers, and large ranges. Some levels have ranges of eight orders of magni-
tude, half of the levels have no zeros, the surface level (level 0) has all zeros, and
level 4 (Fig. 3) is 95% zeros with a range of five orders of magnitude. Figure 4
shows the absolute error for CLOUD on level 4 with fpzip 24 (CR = .36 and
passes all metrics) and speck 16 (CR = .51 and does not pass), and it is clear that
this variable is challenging for a transform method. The fourth variable, PREC-
CDZM, has fewer zeros but a large range, and can be compressed with SPECK,
but not as aggressively as fpzip. More aggressive variants of SPECK and fpzip
on PRECCDZM fail the KS test and correlation coefficient test, respectively.

The third section in Table 2 contains variables for which both approaches
achieve a similar CR. These variables all fail the spatial relative error test if
compressed more aggressively with either method. Note that while the CR is
similar, both nmrse and enmax are notably smaller with SPECK for variables
OMEGAT and VQ. Finally, the bottom of Table 2 lists two variables for which
only lossless compression can pass the metrics. Lossy compression of NUMLIQ
(which has both a huge range and a high percentage of zeros) resulted in KS
and SSIM test failures for both SPECK and fpzip. In contrast, WSUB does
not have a large range, but it does have a large number of non-zero constants
(29% of the data values are equal to 0.2). Neither lossy approach preserved this
prevalent constant, resulting in KS test failures indicating a shifted distribution.
We note that fpzip lossless compression is slightly better than NetCDF4 lossless
compression (essentially gzip), which results in CR of 0.48 for both variables.
Lossless compression achieves a respectable CR on these two variables due to
their large numbers of constant values.

5.2 Full Set of Variables

Now we look at all 198 variables and divide them into five categories according
to which lossy compression approach passes the Sect. 4 metrics with a lower CR
(Table 3). We find that 87 variables do better with SPECK than fpzip, and the

Toward a Multi-method Approach: Lossy Data Compression 39

Table 3. All variables (198) categorized by method with lowest CR.

Category Number of
Variables

SPECK averages fpzip averages

enmax nrmse CR enmax nrmse CR

SPECK better 87 4.23e-4 5.62e-5 0.16 1.35e-4 2.25e-5 0.30

fpzip better 12 4.26e-7 5.91e-8 0.45 7.76e-4 1.09e-4 0.37

fpzip/SPECK similar 24 5.31e-6 9.58e-7 0.32 2.59e-4 1.18e-5 0.32

fpzip (SPECK fails) 63 – – – 1.38e-3 6.71e-5 0.29

lossless (fpzip 32) 12 – – – 0.0 0.0 0.50

average CR and error measurements for that subset of variables is given in the
first row of Table 3. The average CR is approximately a factor of two smaller with
SPECK for these variables. The second and third row of Table 3 show that fpzip
outperforms SPECK on only 12 variables and that they perform similarly in
terms of CR on 24 variables. However, in both of these cases the SPECK average
errors are a couple of orders of magnitude smaller, indicating that traditional
error metrics may be insufficient for identifying certain problematic features.
Finally, for the remaining 75 variables (rows 4 and 5), SPECK is not an option
as it fails the metrics even with its least aggressive variant. Of these, twelve of
the variables cannot pass with fpzip in lossy mode either and require the lossless
variant of fpzip (fpzip 32).

6 Characterizing Data

The two lossy compression approaches that we evaluated have different strengths.
Unsurprisingly, transform methods are challenged by CESM datasets with
abrupt changes and large ranges of values. They can also be problematic when
zeros or constants must be preserved for post-processing analyses. However, for
smooth CESM data, our results indicate that transform methods can compress
more aggressively and more accurately than a predictive method like fpzip. On
the other hand, fpzip’s general utility and effectiveness is valuable; it can be
applied successfully to every CESM variable and its lossless option is a neces-
sity.

An automated tool for a multi-method approach must be able to assess easily
measurable properties of a variable’s data to determine which type of compres-
sion approach will be most effective. Our experimental results with SPECK and
fpzip indicate that if the least aggressive variant of SPECK (speck 32) is able to
pass the metrics, then the “best” (i.e., lowest CR that passes metrics) SPECK
variant is likely to be as good or better than that of the best fpzip variant.
When speck 32 fails on CESM variables, the reason is a KS test failure. CESM
variables with many zero values (or many constants in general) are particularly
problematic as zeros are frequently reconstructed as small (positive or negative)
values, causing the underlying distribution to shift and the KS test to fail.

40 A.H. Baker et al.

In an attempt to predict SPECK effectiveness, we looked at a variety of
variable properties (range, gradient, number of zeros, etc.) and investigated the
cause of the speck 32 failures. We found that the key to the failures was SPECK ’s
CDF 9/7 wavelet transformation (DWT), which can suffer from floating-point
computation induced-error. We refer to the process of applying DWT followed
immediately by an inverse DWT (IDWT) as DWT→IDWT, which is lossless in
infinite precision. In practice, DWT→IDWT was lossless for some CESM vari-
ables and lossy for others, as indicated by the maximum absolute error between
the original data and the data after DWT→IDWT in the rightmost column in
Table 2 (e.g., a zero value indicates lossless). For all but 4 of the 198 total vari-
ables, we found that variables with non-zero absolute errors after DWT→IDWT
indicate that SPECK is not appropriate for these variables. Note that WSUB in
Table 2 is an exception as it requires lossless despite its zero DWT→IDWT error
(and is a target of future study). Therefore, applying a standalone DWT→IDWT
test (e.g., via QccPack) is promising method for automating the decision as to
whether to use a wavelet transform method such as SPECK.

7 Concluding Remarks

Transform methods are enticing due to their ability to compress both aggres-
sively and accurately. Unfortunately, SPECK was unsuitable for 38% of the vari-
ables in our test CESM dataset (though issues with preserving zeros or other
constants could conceivably be addressed by a pre-processing step). However,
the 2x improvement of SPECK over fpzip indicates that an automated multi-
method approach is worth pursuing. Indeed, large climate simulations commonly
produce data volumes measured in hundreds of terabytes or even petabytes, and
even a modest reduction in CR is quite significant in terms of data reduction and
impact on storage costs. Future work includes more research on appropriate met-
rics, as the selection of the most appropriate type of compression scheme must
now be followed by a specification of the parameters that control the amount
of compression. Further, we note that we chose rather conservative tolerances
for our metrics that, if relaxed, would likely be more favorable to a transform
method.

References

1. Baker, A.H., Hammerling, D.M., Mickleson, S.A., Xu, H., Stolpe, M.B., Naveau,
P., Sanderson, B., Ebert-Uphoff, I., Samarasinghe, S., De Simone, F., Carbone,
F., Gencarelli, C.N., Dennis, J.M., Kay, J.E., Lindstrom, P.: Evaluating lossy data
compression on climate simulation data within a large ensemble. Geosci. Model
Dev. 9(12), 4381–4403 (2016). http://www.geosci-model-dev.net/9/4381/2016/

2. Baker, A., Xu, H., Dennis, J., Levy, M., Nychka, D., Mickelson, S., Edwards,
J., Vertenstein, M., Wegener, A.: A methodology for evaluating the impact of
data compression on climate simulation data. In: Proceedings of the 23rd Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
HPDC 2014, pp. 203–214 (2014)

http://www.geosci-model-dev.net/9/4381/2016/

Toward a Multi-method Approach: Lossy Data Compression 41

3. Bicer, T., Yin, J., Chiu, D., Agrawal, G., Schuchardt, K.: Integrating online com-
pression to accelerate large-scale data analytics applications. In: International Par-
allel and Distributed Processing Symposium, pp. 1205–1216 (2013)

4. Burtscher, M., Ratanaworabhan, P.: FPC: a high-speed compressor for double-
precision floating-point data. IEEE Trans. Comput. 58, 18–31 (2009)

5. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly sup-
ported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

6. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In:
2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2016, Chicago, IL, USA, 23–27 May 2016, pp. 730–739 (2016). http://dx.doi.org/
10.1109/IPDPS.2016.11

7. Fowler, J.E.: Qccpack: An open-source software library for quantization, compres-
sion, and coding. In: International Symposium on Optical Science and Technology,
pp. 294–301. International Society for Optics and Photonics (2000)

8. Hübbe, N., Wegener, A., Kunkel, J.M., Ling, Y., Ludwig, T.: Evaluating lossy
compression on climate data. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.)
ISC 2013. LNCS, vol. 7905, pp. 343–356. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38750-0 26

9. Hurrell, J., Holland, M., Gent, P., Ghan, S., Kay, J., Kushner, P., Lamarque, J.F.,
Large, W., Lawrence, D., Lindsay, K., Lipscomb, W., Long, M., Mahowald, N.,
Marsh, D., Neale, R., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W.,
Hack, J., Kiehl, J., Marshall, S.: The community earth system model: a framework
for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013)

10. Islam, A., Pearlman, W.A.: Embedded and efficient low-complexity hierarchical
image coder. In: Electronic Imaging’99, pp. 294–305. International Society for
Optics and Photonics (1998)

11. Iverson, J., Kamath, C., Karypis, G.: Fast and effective lossy compression algo-
rithms for scientific datasets. In: Kaklamanis, C., Papatheodorou, T., Spirakis,
P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 843–856. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32820-6 83

12. Kay, J., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J.,
Bates, S., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque,
J.F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K.,
Polvani, L., Vertenstein, M.: The Community Earth System Model (CESM) large
ensemble project: A community resource for studying climate change in the pres-
ence of internal climate variability, vol. 96. Bulletin of the American Meteorological
Society (2015)

13. Kowalik-Urbaniak, I., Brunet, D., Wang, J., Koff, D., Smolarski-Koff, N., Vrscay,
E.R., Wallace, B., Wang, Z.: The quest for ‘diagnostically lossless’ medical image
compression: a comparative study of objective quality metrics for compressed med-
ical images. In: Medical Imaging 2014: Image Perception, Observer Performance,
and Technology Assessment, Proceedings of SPIE. vol. 9037 (2014)

14. Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham, R., Ross, R.,
Samatova, N.F.: Compressing the incompressible with ISABELA: in-situ reduction
of spatio-temporal data. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par
2011. LNCS, vol. 6852, pp. 366–379. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23400-2 34

http://dx.doi.org/10.1109/IPDPS.2016.11
http://dx.doi.org/10.1109/IPDPS.2016.11
http://dx.doi.org/10.1007/978-3-642-38750-0_26
http://dx.doi.org/10.1007/978-3-642-38750-0_26
http://dx.doi.org/10.1007/978-3-642-32820-6_83
http://dx.doi.org/10.1007/978-3-642-23400-2_34
http://dx.doi.org/10.1007/978-3-642-23400-2_34

42 A.H. Baker et al.

15. Laney, D., Langer, S., Weber, C., Lindstrom, P., Wegener, A.: Assessing the effects
of data compression in simulations using physically motivated metrics. In: Super-
computing (SC 2013) In: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, SC 2013. pp. 76:1–76:12
(2013)

16. Li, S., Gruchalla, K., Potter, K., Clyne, J., Childs, H.: Evaluating the efficacy of
wavelet configurations on turbulent-flow data. In: Proceedings of IEEE Symposium
on Large Data Analysis and Visualization (LDAV), pp. 81–89, Chicago, IL, October
2015

17. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Visual.
Comput. Graph. 20(12), 2674–2683 (2014)

18. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data.
IEEE Trans. Visual. Comput. Graph. 12, 1245–1250 (2006)

19. Meehl, G., Moss, R., Taylor, K., Eyring, V., Stouffer, R., Bony, S., Stevens, B.:
Climate model intercomparisons: preparing for the next phase. Eos, Trans. Am.
Geophys. Union 95(9), 77–78 (2014)

20. Paul, K., Mickelson, S., Xu, H., Dennis, J.M., Brown, D.: Light-weight parallel
Python tools for earth system modeling workflows. In: IEEE International Confer-
ence on Big Data, pp. 1985–1994, October 2015

21. Sasaki, N., Sato, K., Endo, T., Matsuoka, S.: Exploration of lossy compression
for application-level checkpoint/restart. In: Proceedings of the 2015 IEEE Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2015, pp. 914–922
(2015)

22. Small, R.J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F., Caron, J.,
Dennis, J., Gent, P., Hsu, H.m., Jochum, M., Lawrence, D., Muoz, E., diNezio, P.,
Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y.H., Vertenstein, M.: A new synoptic
scale resolving global climate simulation using the community earth system model.
J. Adv. Model. Earth Syst. 6(4), 1065–1094 (2014)

23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

24. Wegener, A.: Compression of medical sensor data. IEEE Signal Process. Mag.
27(4), 125–130 (2010)

25. Woodring, J., Mniszewski, S.M., Brislawn, C.M., DeMarle, D.E., Ahrens, J.P.:
Revisiting wavelet compression for large-scale climate data using JPEG2000 and
ensuring data precision. In: Rogers, D., Silva, C.T. (eds.) IEEE Symposium on
Large Data Analysis and Visualization (LDAV), pp. 31–38. IEEE (2011)

Exploration of Pattern-Matching Techniques
for Lossy Compression on Cosmology

Simulation Data Sets

Dingwen Tao1(B), Sheng Di2, Zizhong Chen1, and Franck Cappello2,3

1 University of California, Riverside, CA, USA
{dtao001,chen}@cs.ucr.edu

2 Argonne National Laboratory, Lemont, IL, USA
{sdi1,cappello}@anl.gov

3 University of Illinois at Urbana-Champaign, Champaign, IL, USA

Abstract. Because of the vast volume of data being produced by
today’s scientific simulations, lossy compression allowing user-controlled
information loss can significantly reduce the data size and the I/O bur-
den. However, for large-scale cosmology simulation, such as the Hard-
ware/Hybrid Accelerated Cosmology Code (HACC), where memory
overhead constraints restrict compression to only one snapshot at a time,
the lossy compression ratio is extremely limited because of the fairly low
spatial coherence and high irregularity of the data. In this work, we pro-
pose a pattern-matching (similarity searching) technique to optimize the
prediction accuracy and compression ratio of SZ lossy compressor on
the HACC data sets. We evaluate our proposed method with different
configurations and compare it with state-of-the-art lossy compressors.
Experiments show that our proposed optimization approach can improve
the prediction accuracy and reduce the compressed size of quantization
codes compared with SZ. We present several lessons useful for future
research involving pattern-matching techniques for lossy compression.

1 Introduction

Because of ever-increasing parallel execution scale, today’s scientific simulations
are producing volumes of data too large to be accommodated in storage systems.
The limitation comes from the limited storage capacity and I/O bandwidth of
parallel file systems in production facilities. Cosmology simulations such as the
Hardware/Hybrid Accelerated Cosmology Code (HACC) [12] are typical exam-
ples of parallel executions facing this issue. HACC solves an N-body problem
involving domain decomposition, a medium-/long-range force solver based on
a particle-mesh method, and a short-range force solver based on a particle-
particle/particle-mesh algorithm. According to cosmology researchers, the num-
ber of particles to simulate can be up to 3.5 trillion in today’s simulations (and
even more in the future), which leads to 60 PB of data to store; yet a system
such as the Mira supercomputer has only 26 PB of file system storage. Currently,
HACC users rely on decimation in time, storing only a fraction of the simulation
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 43–54, 2017.
https://doi.org/10.1007/978-3-319-67630-2_4

44 D. Tao et al.

snapshots, to reduce the pressure on the storage system. A reduction factor of
80% to 90% is commonly used. At exascale, temporal decimation will not be
enough to address the limitations of the storage system: snapshots will be so
large (each in the range of 5 PB) that the time to store each snapshot (83 min
on a storage system offering a sustained bandwidth of 1 TB/s) will become a
serious problem. HACC is not a special case. As indicated by [11], nearly 2.5 PB
of data were produced by the Community Earth System Model for the Coupled
Model Intercomparison Project (CMIP) 5, which further introduced 170 TB of
postprocessing data submitted to the Earth System Grid [3]. Estimates of the
raw data requirements for the CMIP6 project exceed 10 PB [2]. At exascale,
storing each full snapshot in this case would also take too long, however, so that
on-line/in situ compression of each snapshot is needed.

In this paper, we explore pattern-matching techniques for lossy compression,
focusing on individual snapshots of the scientific data sets produced by cosmol-
ogy simulations. Because of the constraints of memory consumption, we cannot
leverage the smoothness of a particle’s trajectory (such as smoothness along
the time dimension) to reduce the data size; hence, we must perform compres-
sion on individual snapshots. Unlike the mesh data produced by conventional
simulations, such as fluid dynamics, the data of particles in cosmology simula-
tions, such as coordinate and velocity data, are stored in separate 1D arrays. In
the HACC application, the indices of each 1D array are kept consistent for the
same cosmology particle. Specifically, the HACC simulation data contains six
1D arrays: three coordinate fields (xx, yy, zz) and three velocity fields (vx, vy,
vz). Because of the lack of correlation between adjacent particles in the HACC
data set, state-of-the-art lossy compressors, such as FPZIP [16], ZFP [15] and
SZ [9,20], reach relatively low compression ratios/factors (2 to 5 with the error
bound set to 10−4).

The rest of the paper is organized as follows. In Sect. 3, we formulate the data
compression problem based on cosmology simulation data sets and the assess-
ment of several state-of-the-art lossy compressors on the HACC data sets. In
Sect. 4, we discuss the well-known dictionary-based lossless compression algo-
rithm LZ77 and propose our pattern-matching-based optimization method for
SZ lossy compression for low spatial coherence and highly irregular data, such
as the velocity variables in the HACC data sets. In Sect. 5, we evaluate the
compression ratios of our proposed optimization method and compare it with
one variant of the SZ lossy compressor. We discuss related work in Sect. 2 and
provide conclusions in Sect. 6.

2 Related Work

Data compression has been extensively studied for decades and can be split into
two categories: lossless compression and lossy compression. The main limitation
of the lossless compressors (such as GZIP [9]) is their fairly low compression
ratio on scientific data sets composed of floating-point values, as confirmed by
[10,20,22].

Exploration of Pattern-Matching Techniques for Lossy Compression 45

Fig. 1. Overview of SZ lossy compression algorithm.

Recently, many lossy compressors have been designed and implemented for
scientific data. Most of them are designed for mesh data sets, which are expected
to have strong coherence among the nearby data in the data set, but the quality
of their compression declines on cosmology simulation data sets. For example,
SZ [10,22] has five main steps including (1) data prediction for each point by
its preceding neighbors in the multidimensional space, (2) error-controlled linear
quantization, (3) customized Huffman coding [13] (i.e., variable-length encod-
ing) to shrink the data size significantly, (4) unpredictable data compression,
and (5) customized LZ77 coding (i.e., dictionary-based encoding). The compres-
sion framework of SZ is shown in Fig. 1. ZFP [16] splits the whole data set into
many small blocks with an edge size of 4 along each dimension and compresses
the data in each block separately by a series of carefully designed steps (including
alignment of exponent, orthogonal transform, fixed-point integer conversion, and
binary representation analysis with bit-plane encoding). FPZIP [17] adopts pre-
dictive coding and ignores insignificant bit planes in the mantissa based on the
analysis of IEEE 754 binary representation [7]. SSEM [21] splits data into a high-
frequency part and low-frequency part by wavelet transform [8] and then uses
vector quantization and GZIP. ISABELA [15] sorts the data and then performs
the data compression by B-spline interpolation; but it has to store an extra index
array to record the original location for each point, and it suffers significantly
from low compression ratio. Compression of particle simulation data sets has also
been studied for years, but most of the methods proposed are based on smooth
temporal trajectory of the same particles, which requires loading/keeping mul-
tiple snapshots during the compression/simulation [1,6,14,18,23]. Thus, they
are not suitable for extremely large-scale simulation in which only one snapshot
is allowed to be loaded into the memory. Omeltchenko et al. [19] proposed a
lossy compression method (called CPC2000 in this paper) that does not rely on
temporal coherence and relies on only a single snapshot. Its main steps involve
reorganizing all particles in the space onto a zigzag-similar space-filling curve [5],
sorting the particles based on the R-indices by a radix-similar sorting method in
each block, and compressing the difference of the adjacent indices by adaptive
variable-length coding.

3 Problem Formulation

Scientific data compression algorithms can be classified into two categories: loss-
less compression and lossy compression. The main limitation of lossless compres-
sors is their limited data reduction capability, that is, up to 2:1 in general [20] and

46 D. Tao et al.

even lower on cosmology simulation simulation data sets. In this work, therefore,
we focus on lossy compression methods for cosmology simulations.

Cosmology simulations generate multiple snapshots. Because of considera-
tions of memory consumption, we focus on single-snapshot compression without
using temporal coherence in this work. Such simulations contain many variables
each representing one data field of particles. In the HACC simulation data con-
sidered in this study, the variables are stored in separate 1D arrays. Specifically,
each snapshot of HACC simulation contains six single-precision floating-point
variables: xx, yy, zz, vx, vy, and vz. The first three indicate coordinate infor-
mation, and the other three indicate velocity along the three dimensions. The
six variables are stored in separate floating-point arrays. Unlike regular multi-
dimensional mesh data, the particle elements in each array are allowed to be
reordered in the reconstructed data set, whereas the locations or indices of the
elements with regard to the same particle must be consistent across arrays.

The main objective of our work is to optimize the single-snapshot lossy com-
pression ratio for cosmology simulation data sets, provided that the compression
errors are controlled within a user-specified bound for each data point. Compres-
sion ratio is the ratio of the original data size to the compressed data size. Table 1
shows the compression ratios of several state-of-the-art lossy compressors on the
HACC data sets under the value-range-based relative error bound 10−4, denoted
by ebrel = 10−4. The version of the SZ lossy compressor we focus on in this work
is “SZ-LV”, which is based on the last-value prediction model. Note that for
CPC2000, ZFP, and SZ, we use the absolute error bounds computed based on
ebrel = 10−4 and the value range of each variable; for FPZIP, we set the number
of retained bits to 21 as approximate ebrel = 10−4 for all the variables. The SZ
lossy compressor has higher compression ratios on the coordinate variables (i.e.,
xx, yy, zz) than on the velocity variables (i.e., vx, vy, vz). Therefore, in this work
we focus on optimizing the prediction accuracy and compression ratios based on
SZ lossy compression for the velocity variables in the HACC data.

Table 1. Compression ratios of different variables with different compressors on HACC
data sets under value-range-based relative error bound 10−4.

Compressor xx yy zz vx vy vz

CPC2000 7.1 7.1 7.1 2.3 2.3 2.3

FPZIP 5.8 5.7 4.4 2.2 2.2 2.2

ZFP 2.3 2.3 2.2 2.3 2.3 2.3

SZ 8.2 8.3 5.9 4.0 4.0 4.0

4 Pattern-Matching Techniques for Lossy Compression

In this section, we first discuss the well-known dictionary-based lossless com-
pression algorithm Lempel-Ziv 77 (LZ77). It can encode a sequence of symbols

Exploration of Pattern-Matching Techniques for Lossy Compression 47

and compress the input source by using the information of recently frequent con-
secutive symbols. Inspired by LZ77’s classic idea, we then propose our pattern-
matching-based lossy compression method, called SZ-PM. Because of different
input sources, we propose many tailored designs for dealing with lossy compres-
sion and floating-point scientific data.

4.1 LZ77: String Matching Based Lossless Compression

while look-ahead buffer is not empty do
go backwards in search buffer to find longest match of the look-ahead
buffer;
if match found then

output (offset, length, next symbol in look-ahead buffer);
shift sliding window by length+1;

else
output (0, 0, first symbol in look-ahead buffer);
shift sliding window by 1;

end
end

Algorithm 1. Pseudo code of the LZ77 algorithm

The Lempel-Ziv 77 (LZ77) lossless compression algorithm is the first Lempel-
Ziv compression algorithm. Unlike scientific data compression, LZ77 is designed
for encoding a sequence of symbols byte by byte based on a dictionary con-
structed from a portion of the recently encoded sequence. Specifically, LZ77
encodes the input sequence through a sliding window composed of two buffers,
a search buffer and a look-ahead buffer, as shown in Fig. 2. The search buffer
contains the most recently compressed symbols, while the look-ahead buffer con-
tains multiple uncompressed symbols. The algorithm searches the longest prefix
of the look-ahead buffer that is also contained in the search buffer. The details of
LZ77 are shown in Algorithm 1. The LZ77 algorithm searches all the consecutive
symbols in the search buffer to identify whether these symbols match the con-
secutive symbols in the look-ahead buffer. The offset in the algorithm represents
the distance of the longest match’s first symbol (in the search buffer) from the
look-ahead buffer, and length represents the length of the longest match. There-
fore, the general idea of LZ77 is to save storage by using the information from
the recent symbol sequences based on a string-matching approach. It inspires us
to design a similar matching technique for lossy scientific data compression.

4.2 SZ-PM: Pattern-matching-based Lossy Compression

We propose a pattern-matching-based lossy compression method called SZ-PM.
The idea of pattern matching is similar to the string matching idea used in LZ77.
It is also designed to use the information of recent floating-point sequences with
similar pattern in order to improve the prediction accuracy and compression

48 D. Tao et al.

Fig. 2. Overview of LZ77 lossless compression algorithm.

ratio of SZ lossy compression for irregular data. Unlike the lossless compres-
sion algorithm for symbols (one byte per symbol), however, the lossy compres-
sion for scientific data is designed mainly for single/double floating-point data
(4/8 bytes per value) and can tolerate compression errors within user-controlled
error bounds. Therefore, we can design many tailored features for the pattern-
matching method.

Let us first define necessary notations. Similar to LZ77, our algorithm also
maintains two buffers in the sliding window during the compression: a search
buffer and a look-ahead buffer. Let the search buffer size be m and the look-ahead
buffer size be n. Here the buffer size represents the number of data points in the
buffer. Let the m compressed data points in the search buffer be {s1, s2, ..., sm}
and the n uncompressed data points in the look-ahead buffer be {l1, l2, ..., ln}.
Let the m − n + 1 sequences with length of n in the search buffer to be
X1,X2, ...,Xm−n+1, where X1 = {s1, ..., sn},X2 = {s2, ..., sn+1}, ...,Xm−n+1 =
{sm−n+1, ..., sm}. Let the one sequence with length of n in the search buffer be
Y = {l1, l2, ..., ln}.

We now describe our tailored designs of pattern matching for lossy com-
pression and scientific data. For compression, (1) we fix the length of match-
ing sequences to be the size of look-ahead buffer (i.e., n). In other words, we
attempt to identify the most similar sequence in the search buffer for the whole
look-ahead buffer with length n. (2) We sort the n data points in each sequence,
including X1, X2, ..., Xm−n+1 from the search buffer and Y from the look-ahead
buffer. (3) For each sorted sequence, we subtract the mean value of the sequence
from each value. In other words, we shift the sequence by its mean value as
X = (x1 − X,x2 − X, ..., xn − X) and Y = (y1 − Y , y2 − Y , ..., yn − Y), where

X = 1
n

n∑

i=1

xi and Y = 1
n

n∑

i=1

yi. (4) We attempt to match the sequences from

the search buffer for the look-ahead buffer, but we relax the “matching” con-
dition. Specifically, the matching condition of LZ77 algorithm is that two sym-
bol sequences are exactly the same; but in our algorithm we define two shifted
floating-data sequences X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) as “matched”

if (
n∑

i=1

|xi − yi|p)1/p < θ, where θ is a given threshold, X is one shifted sequence

from the search buffer, and Y is the shifted sequence of the look-ahead buffer.

Exploration of Pattern-Matching Techniques for Lossy Compression 49

Note that the search buffer can have multiple matched sequences. (5) We pick
the matched sequence X∗ with the smallest distance from the multiple matched
sequences as the most similar sequence for Y . We denote the values in X∗ by
{x∗

1, x
∗
2, ..., x

∗
n}. We name this matching process as “pattern matching” and the

sequence X∗ as the “pattern matched sequence” for Y . (6) We always shift the
sliding window by length of n after we go over the m − n + 1 sequences in the
search buffer. Unlike LZ77, we also shift the sliding window by length of n, even
if we cannot find a matched sequence under the threshold θ. (7) We use X∗ as
the prediction sequence for Y , if the pattern matched sequence can be found.
Specifically, we take x∗

i − X∗ as the prediction value for yi − Y of data point i.
We use SZ’s original prediction model proposed in [22] to generate the prediction
values for Y , if no matched sequence exists in the search buffer. Therefore, we
must use an extra bit, denoted by bitpredmd, to represent the prediction method
of each sequence. For example, we use bitpredmd = 0 to indicate that the sequence
is predicted by pattern-matching method and bitpredmd = 1 to indicate that the
sequence is predicted by SZ’s original prediction model. (8) Similar to LZ77, if
the sequence is predicted by the pattern-matching method, we still have to store
the offset; but we do not need to store the length due to the fixed length. We also
have to store the mean value of Y in order to reconstruct the data during the
decompression. (9) We use the linear quantization method and the customized
Huffman coding proposed in [22] to encode the differences between prediction
values and real values for Y and compress the quantization codes based on the
user-set error bound. Because of space limitations, we do not describe them in
detail here.

For decompression, we use the same decompression method proposed in [22]
to construct the differences between prediction values and real values for each
sequence. For example, in decompressing the sequence Y , we denote the differ-
ence of data point i in Y by ydiff

i . We then construct the prediction values of Y
by its corresponding prediction method known from bitpredmd. If bitpredmd indi-
cates Y is predicted by SZ’s original prediction model during the compression,
we construct its prediction values using the same process described in [22]; if
bitpredmd indicates Y is predicted by the pattern-matching approach during the
compression, we use the stored offset and mean value to construct the predic-
tion values. Specifically, we can construct the prediction value of data point i
by ypred

i = x∗
i − X∗ + Y , where X∗ is the pattern-matched sequence that has

already been decompressed. After constructing the prediction values for Y , we
can reconstruct the value of data point i by ydecomp

i = ypred
i + ydiff

i .
Algorithm 2 shows the pseudo code of our proposed pattern-matching-based

lossy compression method. Figure 3 shows an example of two pattern-matched
sequences transformed by sorting and shifting. We have several remarks here. (1)
For our matching condition, we treat the two n-length floating-point sequences
as two data points in the n-dimensional space and define them as “matched”
if their distance in Lp norm is smaller than the threshold θ. According to [4],
we set θ to 0.5 of the search buffer size. (2) From our initial study we find
that p > 1 cannot reduce the size of the compressed quantization codes on the

50 D. Tao et al.

HACC data; hence we set p = 1/2 in our algorithm and the following evaluation.
(We will research the optimal p in the future.) (3) As a result of the sorting
process, the reconstructed data is recorded in one sequence. But as described in
Sect. 3, the particle elements in each 1D array are allowed to be reordered in the
reconstructed data sets. Hence, we do not have to extra storage to record the
initial index information. (4) We use extra memory space to sort and shift the
sequences without any modifications of the original data. The reason for sorting
and shifting is to increase the possibility of matching sequences due to the high
irregularity of the data and the relatively large value range of the floating-point
data.

while look-ahead buffer is not empty do
sequence Y is composed of the n data points of the look-ahead buffer;
search buffer contains m − n + 1 sequences {X1,X2, ...,Xm−n+1};
sort each sequence including X1,X2, ...,Xm−n+1 and Y ;
compare sorted Y with {X1,X2, ...,Xm−n+1} and find sequence X∗

with the smallest distance (in Lp norm) from Y, i.e., dist(X∗, Y);
if dist(X∗, Y) < θ then

bitpredmd = 0;
store (offset, mean value Y);
prediction values of Y are calculated by ypred

i = x∗
i − X∗ + Y ;

else
bitpredmd = 1;
use SZ’s original prediction model to predict values of Y ;

end
calculate differences between real value yi and prediction value ypred

i ;
encode differences using linear quantization method based on user-set
error bound;
compute and record decompressed value;
shift sliding window by length of n;

end
compress linear quantization codes using Huffman coding;
compress unpredictable data by SZ’s binary representation analysis;

Algorithm 2. Pseudo code of SZ-PM algorithm

5 Empirical Evaluation

In this section, we evaluate our proposed lossy compression method, SZ-PM, on
the velocity variables in the HACC data sets, and we compare it with the SZ
lossy compressor [22]. Note that the SZ lossy compressor we evaluate in this
study is a variant of the original SZ. It first splits the original data into multiple
segments. The segment size is consistent with the look-ahead buffer size. It then
performs a sorting within each segment. After that, it conducts the original SZ
compression on the transformed data. The reason of using this variant version

Exploration of Pattern-Matching Techniques for Lossy Compression 51

Fig. 3. Example of two pattern matched sequences after sorting and shifting.

Fig. 4. Distribution produced by linear quantization encoder in (a) SZ and (b) SZ-PM
on the velocity variable vx in the HACC data sets with 511 quantization intervals.

is that we want to evaluate the effects of the pattern-matching method without
impact from the sorting technique and to compare SZ and SZ-PM in a fair level.

As described in [22], the distribution produced by linear quantization encoder
can significantly affect the performance of Huffman coding [13]. Generally speak-
ing, the more concentrated the distribution, the higher the compression ratio that
the Huffman coding can achieve. Figure 4 shows the distributions produced by
linear quantization encoder in the SZ and our proposed SZ-PM lossy compression
method on the velocity variable vx in the HACC data sets. Note that we use
a 10−4 value-range-based relative error bound and 511 quantization intervals.
Based on our observation, 511 quantization intervals can cover more than 99.9%
data points during the linear quantization in this case. The figure illustrates that
our proposed SZ-PM can improve the prediction accuracy and make the distri-
bution of quantization code more concentrated. (We will show the incremental
results in detail later.)

Table 2 shows the experimental results of our evaluation for SZ-PM on the
HACC data sets. In the experiments, we set the search buffer size to 1024;
hence, we need to use 10 bits (210 = 1024) to represent the offset value for each
sequence that is predicted by the pattern-matching method during compression.
We test SZ-PM with different configurations of three look-ahead buffer sizes:
8, 16, and 32. The size of each category presented in the table is the atomized

52 D. Tao et al.

Table 2. Evaluation of our proposed SZ-PM on the velocity variable vx in the HACC
data sets with different sizes of sorting/matching sequence.

Size of

quantiza-

tion code

(bits/value)

Size of

bitpredmd

(bits/value)

Ratio of

PM

sequence

(%)

Size of

offset

(bits/value)

Size of

mean value

(bits/value)

Overall

bit-rate

(bits/value)

Compression

ratio

CPC2000 / / / / / 13.9 2.30

SZ(8) 7.31 / / / / 7.3 4.38

SZ-PM(8) 5.45 1/8 99.6% 1.25 3.98 10.5 2.96

SZ(16) 6.75 / / / / 6.8 4.74

SZ-PM(16) 6.01 1/16 93.1% 0.58 1.86 8.5 3.76

SZ(32) 6.16 / / / / 6.2 5.19

SZ-PM(32) 6.07 1/32 66.3% 0.04 0.66 6.8 4.71

size (i.e., bits per value). Note that the original data type of the HACC data
is single floating-point (i.e., 32 bits per value); hence, the compression ratio
can be calculated by 32/overall size. The number in each bracket represents
the segment size/sequence size; for example, SZ(8) means that the segment size
used for sorting in SZ is 8, and SZ-PM(8) means that the length of sequence used
in the pattern matching is 8. The column “Ratio of PM Sequence” means the
ratio of the sequences predicted by the pattern matching during compression.

We make several observations from Table 2. (1) SZ-PM can improve the pre-
diction accuracy and reduce the size of the compressed quantization codes. (2)
The shorter the matching sequence is, the more accurately the SZ-PM can pre-
dict. (3) For SZ-PM, the shorter the matching sequence is, the smaller the com-
pressed quantization codes will be; however, for SZ, on the contrary, the longer
the segment is, the smaller the compressed quantization codes will be. (4) The
longer the matching sequence is, the less the storage overhead that the offset
and mean values will have. (5) The reduced size of the compressed quantization
codes, achieved from the improvement of the prediction accuracy by SZ-PM, is
counteracted by the incremental overhead of storing offset and mean values.

From these observations, we derive some useful lessons for future research
with respect to the pattern-matching techniques in lossy compression as fol-
lows. (1) Our proposed pattern-matching technique can enhance the prediction
accuracy and reduce the size of compressed quantization codes, but the improve-
ment is not enough to cover the extra overhead introduced by storing offset and
mean values. (2) We should further improve the prediction accuracy using a
more advanced pattern-matching technique. (3) We should reduce/eliminate the
extra overhead of offset and mean values, especially the mean values of floating-
point data type. For example, we may shift the sequence by the value of the first
element in the sequence; consequently, we do not need to store the mean values.
(4) Currently, we consider reordering only one variable in the HACC data sets.
In future research, we need to consider the impact of reordering one variable to
the other variables, since we have to make all the variables consistent.

Exploration of Pattern-Matching Techniques for Lossy Compression 53

6 Conclusion

In this work, we explored pattern-matching techniques for lossy compression
based on the SZ compressor. The experiments demonstrate that our proposed
optimization method, SZ-PM, can improve the prediction accuracy and reduce
the size of compressed quantization codes on the HACC velocity data, but the
compression ratio cannot be improved because of storing extra information.
We plan to explore ways to improve the prediction accuracy with the pattern-
matching technique and to reduce the storage of extra information.

References

1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans.
Comput. 100(1), 90–93 (1974)

2. Baker, A.H., Xu, H., Dennis, J.M., Levy, M.N., Nychka, D., Mickelson, S.A.,
Edwards, J., Vertenstein, M., Wegener, A.: A methodology for evaluating the
impact of data compression on climate simulation data. In: HPDC 2014, pp. 203–
214 (2014)

3. Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A.,
Cinquini, L., Drach, B., Foster, I., Fox, P., et al.: The earth system grid: support-
ing the next generation of climate modeling research. Proc. IEEE 93(3), 485–495
(2005)

4. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proceedings
of the 15th International Conference on Data Engineering, pp. 126–133. IEEE
(1999)

5. Chanussot, J., Lambert, P.: Total ordering based on space filling curves for multi-
valued morphology. Comput. Imaging Vis. 12, 51–58 (1998)

6. Chen, Z., Son, S.W., Hendrix, W., Agrawal, A., Liao, W., Choudhary, A.N.:
NUMARCK: machine learning algorithm for resiliency and checkpointing. In: SC
2014, pp. 733–744 (2014)

7. Committee, I.S., et al.: 754–2008 IEEE standard for floating-point arithmetic.
IEEE Comput. Soc. Std 2008 (2008)

8. Daubechies, I.: The wavelet transform, time-frequency localization and signal
analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

9. Deutsch, L.P.: GZIP file format specification version 4.3 (1996)
10. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In:

2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2016, Chicago, IL, USA, 23–27 May 2016, pp. 730–739 (2016)

11. Gleckler, P.J., Durack, P.J., Stouffer, R.J., Johnson, G.C., Forest, C.E.: Industrial-
era global ocean heat uptake doubles in recent decades. Nat. Clim. Chang. (2016)

12. Habib, S., Pope, A., Finkel, H., Frontiere, N., Heitmann, K., Daniel, D., Fasel,
P., Morozov, V., Zagaris, G., Peterka, T., et al.: Hacc: simulating sky surveys on
state-of-the-art supercomputing architectures. New Astron. 42, 49–65 (2016)

13. Huffman, D.A., et al.: A method for the construction of minimum-redundancy
codes. Proc. IRE 40(9), 1098–1101 (1952)

14. Kumar, A., Zhu, X., Tu, Y.-C., Pandit, S.: Compression in molecular simula-
tion datasets. In: Sun, C., Fang, F., Zhou, Z.-H., Yang, W., Liu, Z.-Y. (eds.)
IScIDE 2013. LNCS, vol. 8261, pp. 22–29. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-42057-3 4

http://dx.doi.org/10.1007/978-3-642-42057-3_4
http://dx.doi.org/10.1007/978-3-642-42057-3_4

54 D. Tao et al.

15. Lakshminarasimhan, S., Shah, N., Ethier, S., Ku, S., Chang, C., Klasky, S.,
Latham, R., Ross, R.B., Samatova, N.F.: ISABELA for effective in situ compres-
sion of scientific data. Concurr. Comput. Pract. Exp. 25(4), 524–540 (2013)

16. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Com-
put. Graph. 20(12), 2674–2683 (2014)

17. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data.
TVCG 12(5), 1245–1250 (2006)

18. Meyer, T., Ferrer-Costa, C., Pérez, A., Rueda, M., Bidon-Chanal, A., Luque, F.J.,
Laughton, C., Orozco, M.: Essential dynamics: a tool for efficient trajectory com-
pression and management. J. Chem. Theory Comput. 2(2), 251–258 (2006)

19. Omeltchenko, A., Campbell, T.J., Kalia, R.K., Liu, X., Nakano, A., Vashishta,
P.: Scalable i/o of large-scale molecular dynamics simulations: A data-compression
algorithm. Comput. Phys. Commun. 131(1), 78–85 (2000)

20. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast lossless compression of scientific
floating-point data. In: Proceedings of the Data Compression Conference, DCC
2006, pp. 133–142. IEEE (2006)

21. Sasaki, N., Sato, K., Endo, T., Matsuoka, S.: Exploration of lossy compression for
application-level checkpoint/restart. In: 2015 IEEE International on Parallel and
Distributed Processing Symposium (IPDPS), pp. 914–922. IEEE (2015)

22. Tao, D., Di, S., Chen, Z., Cappello, F.: Significantly improving lossy compression
for scientific data sets based on multidimensional prediction and error-controlled
quantization. In: 2017 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2017, Orlando, Florida, USA, 29 May–2 June, 2017, pp. 1129–
1139 (2017)

23. Yang, D.Y., Grama, A., Sarin, V.: Bounded-error compression of particle data
from hierarchical approximate methods. In: Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing, SC 1999. ACM, New York, NY, USA (1999)

Third International Workshop on
Communication Architectures for HPC,
Big Data, Deep Learning and Clouds at

Extreme Scale (ExaComm)

Design Space Exploration of the Dragonfly
Topology

Min Yee Teh1(B), Jeremiah J. Wilke2, Keren Bergman1,
and Sébastien Rumley1

1 Lightwave Research Laboratory, Columbia University, New York, NY 10027, USA
mt3126@columbia.edu

2 Scalable Modeling and Analysis, Sandia National Labs,

Livermore, CA 94551, USA

Abstract. We investigate possible options of creating a Dragonfly topol-
ogy capable of accommodating a specified number of end-points. We first
observe that any Dragonfly topology can be described with two main
parameters, imbalance and density, dictating the distribution of routers
in groups, and the inter-group connectivity, respectively. We then intro-
duce an algorithm that generates a dragonfly topology by taking the
desired number of end-points and these two parameters as input. We
calculate a variety of metrics on the generated topologies resulting from
a large set of parameter combinations. Based on these metrics, we isolate
the subset of topologies that present the best economical and perfor-
mance trade-off. We conclude by summarizing guidelines for Dragonfly
topology design and dimensioning.

Keywords: Topologies · Dragonfly · Optical interconnects

1 Introduction

The Dragonfly topology, introduced by Kim et al. [1], is a direct topology, in
which every router accommodates a set of terminal connections leading to end-
points, and a set of topological connections leading to other routers. The Dragon-
fly concept fundamentally relies on the notion of groups. A collection of routers
belonging to the same group are connected with intra-group connections, while
router pairs belonging to different groups are connected with inter-group connec-
tions. In practical deployments, routers and associated end-points belonging to a
group are assumed to be compactly colocated in a very limited number of chas-
sis or cabinets. This permits connections between routers and terminals within
a group to be implemented using short-distance, low-cost electrical transmis-
sion links. Meanwhile, inter-group connections are based on optical equipment
capable of spanning inter-cabinet distances in the range of tens of meters.

Modularity is one of the main advantages provided by the dragonfly topology.
Owing to the clear distinction between intra- and inter-group links, the wiring
within a group is independent of the total number of groups in the topology.
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 57–74, 2017.
https://doi.org/10.1007/978-3-319-67630-2_5

58 M.Y. Teh et al.

Vendors can therefore propose all-included, all-equipped cabinets corresponding
to a group, while supercomputer operators are free to decide how many such
groups/cabinets they want to acquire. For instance, the XC40 architecture pro-
posed by Cray consists of 1 to 241 groups [3]. The fixed intra-group wiring also
makes upgrading a dragonfly based supercomputer relatively straightforward
from a hardware point-of-view, as only existing inter-group links may have to
be reorganized. In some cases, incumbent inter-group links can even be kept in
place, and simply complemented with additional inter-group links connecting
the incumbent groups with several interconnected new groups.

A dragonfly topology also guarantees a large path diversity between end-
points, enabling various flavors of adaptive, non-minimal routing schemes [1].
In the presence of congestion between two groups, traffic can first be deflected
to third party groups, then forwarded to the correct destination. This feature
allows the bandwidth available between two groups to be virtually multiplied by
a factor of up to g − 2, where g is the number of groups.

Besides its modularity and capability to leverage non-minimal routing
schemes, the Dragonfly topology also clearly distinguishes optical from electrical
cables connecting the routers. Although the price gap is shrinking, optical links
are still generally more expensive than their electrical counterpart, and thus
represent a considerable fraction of an interconnect’s total cost. There is there-
fore a motivation to allow fine-tuning of the expensive “optical bandwidth”.
A dragonfly cleanly separates the most expensive fraction of the bandwidth
(optical) outside the cabinets while leaving the least expensive part (electrical)
“hard-wired” inside the cabinets. As not all parallel applications require the
same balance between bandwidth and computation, being able to adapt the
bandwidth available at procurement time is an interesting feature. For instance,
supercomputer operators interested in compute power and less concerned with
bandwidth-intensive workloads can save on the “optical-bandwidth” and invest
in additional cabinets.

All these interesting features make the Dragonfly topology the default choice
for the whole XC series of Cray [4], and is thus widely adopted in the largest
supercomputing platforms. The dragonfly concept also triggered sustained inter-
est from the scientific community, with research papers addressing congestion in
dragonflies [5] or optimizing throughput [6], and possible inclusion of optical
switching [7].

One can note across literature, however, the varying ideas of what consti-
tutes a Dragonfly. Here we aim to clarify the definition of the Dragonfly and
then show what a Dragonfly can and cannot be. We first make the relatively
trivial but important statement that a Dragonfly with fully-meshed intra-group
connectivity can be assimilated into a 2-dimensional Flattened Butterfly (2D-
FB) [2], but with partial connectivity in one dimension (the one wired with
optical cables). We then show that a Dragonfly topology can be described by
a) the varying sizes of the two dimensions of the underlying 2D-FB, and b) the
number of links in the optical dimension. Having reduced the shape of a Drag-
onfly topology to these two parameters, we perform a thorough exploration of

Design Space Exploration of the Dragonfly Topology 59

the Dragonfly design space. We finally analyze the value of the identified designs
by means of a cost model. Our analyses are related to the those reported by
Camarero et al. [8], but with a focus on practical insights rather than graph
theory.

2 Dragonfly Variants Description and Construction

2.1 Definitions

We begin by introducing a notation much inspired by the one originally given by
Kim et al. [1]. We consider a Dragonfly as being made of g groups with a routers
in each group, therefore with a total of S = ag routers. Each router accommo-
dates p terminal connections to end-points. Because we uniquely consider Drag-
onflies with fully-meshed intra-group connectivity in this paper, each router also
accommodates a − 1 intra-group connections to the other a − 1 routers of the
group. Finally, each router has h inter-group connections to routers located in
other groups. We immediately remark that under these assumptions, each router
must offer at least radix = p+h+a−1 ports and that the topology can scale to
N = Sp = agp terminals. The topology is also made of ga(a−1)/2 bi-directional
electrical links, and gah/2 optical ones.

We additionally introduce Δ as the global average distance in the Dragonfly
graph, i.e. the average of the minimal number of hops separating every possible
node pair (a node in the graph represents a router). We note that Δ is a func-
tion of the a, g and h parameters, nevertheless we privilege the Δ notation to
Δ(a, g, h) for brevity. Next to the global average distance Δ, we also introduce δi

as the minimal distance separating node i from another node on average, which

relates to Δ as Δ = 1
S

S∑

i=1

δi.

We set the imbalance coefficient b ∈ [−1, 1] to represent the relative size mis-
match between the optical and electrical dimensions, and the density coefficient
d ∈ [0, 1] to represent the degree of connectivity in the optical dimension. These
two parameters will be further described in Sect. 2.4. Finally, because we are
interested in comparing Dragonflies of similar scales, we introduce Sdesired as
a parameter imposing a minimal number of routers (hence S ≥ Sdesired), and
Ndesired to impose a minimal number of end-points (N ≥ Ndesired).

2.2 Dragonfly Construction

Six examples of Dragonflies all made of S = Sdesired = 42 nodes are illustrated in
Fig. 1. We call the case drawn in Fig. 1a the canonical design. We take this case
as the starting point for our explorations. A Dragonfly is said to be canonical
when g = a + 1 and h = 1. In that case, the number of inter-group connections
associated to a group is ha = g − 1, i.e. a group is exactly connected once to
every other group. This is in contrast with the case shown in Fig. 1b, which
has the same g and a values as the canonical case but has h = 6 inter-group

60 M.Y. Teh et al.

with a = 6, g = 7, h = 1.
(b) Dragonfly variant with
a = 6, g = 7, and h = 6

(c) Dragonfly variant with
a = 14, g = 3, and h = 1

(d) Dragonfly variant with
a = 3, g = 14, and h = 1

(e) Dragonfly variant with
a = 7, g = 6, and h = 1

(f) Dragonfly variant with
a = 21, g = 2, and h = 1

Fig. 1. Examples of Sdesired = 42 Dragonfly variants parameterized using different
combinations of a, g, and h. Purple links represent inter-group optical links, while blue
links represent intra-group electrical links (Color figure online).

links per router. In this case, not only is every group connected to every other
group, but every router is directly connected to every other group (as h = g−1).
As a result, the Dragonfly becomes effectively a 2D-FB with a maximal optical
dimension. Through this example, we see that every router can be characterized
by a point described by coordinate (x, y) in a 2D-lattice, with x giving the
router’s position in the electrical dimension (i.e. within a group) and y giving
the group the router belongs to. We further remark that the size of the electrical
dimension is a (as x ∈ [0, a − 1]), and the size of the optical dimension is g
(y ∈ [0, g − 1]). The optical dimension is minimally populated when h = 1 and
maximally populated with h = g − 1. We also note that the cases in Fig. 1a
and b have similar sizes in both the optical and electrical dimensions, with
Fig. 1b having maximal optical connections (note h = g − 1 = 6) while Fig. 1a
has minimal optical connections (note h = 1). We can therefore describe the
canonical dragonfly as a case with minimal optical wiring (since h = 1), in which
routers are identically distributed across both electrical and optical dimensions.
Note that this canonical construction still allows every group pair to be directly
connected.

Figure 1c shows a case of great discrepancy between electrical and optical
dimensions, with the electrical dimension (a = 14) much larger than the optical
one (g = 3). We note that each group has ah = 14 inter-group links, the total
number of inter-group links is gah/2 = 21, and that each pair of groups is

Design Space Exploration of the Dragonfly Topology 61

connected through 7 connections. This means that exactly half of the routers in,
say, group 0 are connected to group 1, and the other half to group 2.

Figure 1d shows an opposite case with a small electrical dimension (a = 3,
g = 14). Since only one inter-group link is allocated to each router, the number
of inter-group links leaving each group is only ah = 3, which does not permit full
inter-group connectivity. Also note that it is not straightforward to pick which 3
among 13 other groups to form an inter-group connection with, since there are
many such possible combinations. A similar problem of links/group-mismatching
is faced in the example shown in Fig. 1e: each group has ah = 7 inter-group links
at its disposal, whereas only g − 1 = 5 neighboring groups must be reached. To
allocate inter-groups links in these “inharmonious” cases, a wiring algorithm is
introduced in the next subsection. Finally, Fig. 1f shows a case of when h = g−1.
Due to this equality, the resulting topology is a 2D-FB, and although h = 1, it is
incidentally also equals to g−1, and thus cannot be scaled larger. Through these
examples, we see that the design space for a Dragonfly with S = 42 is already
quite wide, demonstrating the richness of designs when S scales to 1, 000 or
higher.

2.3 Dragonfly Graph Wiring Algorithm

As discussed in the previous subsection, in order to explore the entire design
space, we need to be able to generate a Dragonfly topology described by any
arbitrary combination of a, g, and h parameters. Given this set of parameters,
we would like to distribute the inter-group links between groups such that the
diameter and global average distance Δ are minimized, while maintaining fair-
ness by avoiding unevenly-connected nodes (indicated by high variance of δi).

The problem of distributing inter-group links is that to achieve optimal fair-
ness, diameter or Δ (or a combination thereof) is NP-hard. Instead of targeting
global optimality, the wiring algorithm we introduce is a greedy heuristic. The
algorithm starts by considering every group as a vertex in a secondary graph
G = (V,E), and by allocating a × h links to each vertex Vk ∈ V , effectively
creating an inter-group topology. The destination group Vi of each newly added
link is chosen by considering the sum of two factors: (a) the total number of con-
nections Vi has with every other vertex in G, and (b) the number of connections
Vi has with the target group, Vk, specifically. To maintain wiring fairness and
minimize diameter, the Vi that corresponds to the lowest sum of the aforemen-
tioned two factors is picked. As a result of this policy, the algorithm may select
Vi even though one or more links have already been awarded to the (Vk, Vi) pair.
Once the link has been allocated to said group pair, the algorithm then identifies
the routers within groups k and i with the least number of connections so far,
and connects these two routers.

When the graph G is sparsely occupied by edges, every group is equally likely
to be picked to form a link with Vk, and inter-group link allocation resembles
the relative global link arrangement as discussed in E. Hastings et al. [11]. As
G becomes more saturated with edges, the algorithm tends to distribute links

62 M.Y. Teh et al.

Algorithm 1. Dragonfly Wiring Algorithm
1: define G := (V, E), s.t V is set of all the Dragonfly groups and E is the set of

inter-group links
2: initialize ηij := 0, ∀ i, j ∈ V
3: for k ∈ V do
4: for d := 0, ..., a × h do
5: for i ∈ V where i �= k do
6: define μi := ηik +

∑

j∈V

ηij, ∀ i, j s.t j �= k

7: pick i s.t μi = min
i′∈V

μi′ and
∑

j∈V

ηij < (a × h)

8: ηik := ηik + 1
9: end for

10: end for
11: end for

in a fair way by selecting groups currently with the lowest number of formed
connections, thus making inter-group link arrangement seem more random.

In the preceding pseudocode, ηij is used to represent the total number of
inter-group links connecting group i to group j. Since G is an undirected graph,
symmetry dictates that ηij = ηji. μi denotes the “score” of the group i, which
is used to account for the sum of both how many inter-group links the current
target group k shares with destination group i (accounted for by ηik term),
and how many inter-group links destination group i currently shares with other
groups (accounted for by

∑
ηij term).

We evaluated the topologies obtained with our wiring algorithm in terms of
global average distance Δ, diameter, and fairness. To measure wiring fairness,
we consider two metrics: the first identifies δmin and δmax among all δ values, i.e.
the average distances seen from the best and worst connected node, respectively,
and calculate the greatest percentage difference, d, using d = 100(δmax−δmin

δmin
).

The second metric calculates the squared coefficient of variation across the δi

set. Results for a set of topologies with at least Sdesired = 1000 are displayed
in Fig. 2. We observe that global average distances Δ generally decreases as
more links are added to the optical dimension. In general, the larger the groups,
g (thus smaller group sizes, a), the more reliant the Dragonfly is on optical

5 10 15 20
Number of optical links per router h

1.5

2

2.5

3

3.5

G
lo

ba
l a

ve
ra

ge
 d

is
ta

nc
e

Δ

5 10 15 20
Number of optical links per router h

2

3

4

5

To
po

lo
gy

 d
ia

m
et

er

5 10 15 20
Number of optical links per router h

0

5

10

M
ax

. d
iff

. i
n

av
e.

 d
is

ta
nc

e
(in

 %
)

g=12
g=21
g=33
g=45

5 10 15 20
Number of optical links per router h

0

1

2

3

4

C
V2 (σ

/μ
2)

×10-4

g=12
g=21
g=33
g=45

g=12
g=21
g=33
g=45

g=12
g=21
g=33
g=45

Fig. 2. (a) Global average distance Δ, (b) topology diameter, (c) maximum difference
between smaller and larger node average distance δi, and (d) squared coefficient of
variation of δi.

Design Space Exploration of the Dragonfly Topology 63

links to “reach” routers in other groups, as opposed to reaching them directly
via the intra-group electrical links. This translates into larger Δ values for the
same h. Note that ripples appear for g = 45, revealing some limitations in the
wiring algorithm. More importantly, when a × h reaches or exceeds g − 1, both
dimensions are fully populated, and we obtain a 2D-FB topology with diameter
of 2. At this point, additional inter-group links are parallel to existing links,
which does not affect Δ. In contrast, when g = 45, and a = �Sdesired

g � = 23, the
diameter is 5 for h = 1 as shown in Fig. 2b. Hence, with ah = 23 inter-group
links per group, all-to-all group connectivity cannot be guaranteed anymore.

Figure 3 shows the sorted δi values for 16 datapoints of Fig. 2. The maximum
difference d between δmin and δmax is also displayed. For (g = 12, a = 84,
h = 15), (g = 21, a = 48, h = 15) and (g = 21, a = 48, h = 10), the average
distance δi is the same for all nodes and d is therefore null (ideal fairness). In
the first case, h is larger than g − 1 leading to a saturation of the connectivity
in the optical dimension thus to a 2D-FB topology. In the second case, each
group has a × h = 48 × 15 = 720 inter-group links, which is a round multiple of
g − 1 = 20. Every group pair is thus awarded 720/20 = 36 links. The fact that
these 36 links must be further allocated to the a = 48 routers composing each
group is not causing unfairness, a fact that validates the viability of the wiring
algorithm. The same situation occurs in the third case (g = 21, a = 48, h = 10):
there are 480 inter-group links per group, which is also a round multiple of 20.

1 500 1008

2.674

2.675

2.525

2.53

1.913

1.915

1.9
1.95

1 500 1008

2.812

2.813

2.72

2.725

2.2

2.3

2

2.1

1 500 1023
2.9

2.98

2.818

2.822

2.35

2.45

2.19

2.23

1 500 1035
3.3

3.7

2.867

2.87

2.48

2.55

2.3

2.4

d=0.04% d=0.04%

d=2.22% d=9.21%

d=0.16%

d=0%

d=2.78% d=3.01%

d=0.16%

d=0.15% d=0.14% d=0.1%

d=0% d=0% d=2.42% d=4.37%

Av
er

ag
e

di
st

an
ce

 fr
om

 n
od

e
δ i

Origin node Origin node Origin node Origin node

g=12, a=84, h=15 g=21, a=48, h=15 g=33, a=31, h=15 g=45, a=23, h=15

g=12, a=84, h=10 g=21, a=48, h=10 g=33, a=31, h=10 g=45, a=23, h=10

g=12, a=84, h=2 g=21, a=48, h=2 g=33, a=31, h=2 g=45, a=23, h=2

g=12, a=84, h=1 g=21, a=48, h=1 g=33, a=31, h=1 g=45, a=23, h=1

Fig. 3. Distributions of average distances of graph as viewed from each node. d in each
plot denotes the percentage of greatest difference in average distance, δi

When a × h (the number of inter-group links per group) is not a multiple
of g − 1, some group pairs receive extra links (the “remainder” links). These
specific routers that are given the “remainder” links are consequently favored.
Looking at the general behavior on Fig. 2(c-d), we observe that unfairness tend
to grow with large h values, and with the number of groups g. In general, the

64 M.Y. Teh et al.

more remainder links and group pairs, the harder it is to maintain fairness. Also
note the bottom right cases on Fig. 3 (h = 1, g = 33 or 45): with less than one
inter-group link per group pair on average, all-to-all inter-group connectivity is
not maintained, causing the diameter to be 5. Such cases are also subject to
increased unfairness.

2.4 Exploring the Dragonfly Using Imbalance and Density
Parameters

As mentioned above, we introduce two parameters to control the shape of a Drag-
onfly topology. The imbalance coefficient b ∈ [−1, 1] represents the relative size
mismatch between the optical electrical dimensions, and the density coefficient
d ∈ [0, 1] represents to what extent the optical dimension is inter-connected. The
density d parameter implicitly controls h through:

h = max(0, �1 + d(g − 2)�), where 0 ≤ d ≤ 1 and g > 1 (1)

For d = 0, h is always equal to one (minimal inter-group connectivity). In
contrast, for d = 1, h = g − 1, each router is connected to its counterpart
in every other group, and the topology is thus a 2D-FB (maximal inter-group
connectivity). For the imbalance parameter, b = 0 should reflect a situation as
close to the canonical dragonfly as possible with g = a − 1. We define b = −1
as the case where the optical dimension is down-sized to g = 1, i.e. the topology
is made of a single, large group with a = S routers. On the other extreme,
we define b = 1 to describe a topology with g = S groups, each composed
of a single router (a = 1). In order to control a and g using b, we first need to
identify the sizes of the electrical and optical dimensions of a canonical Dragonfly
corresponding to Sdesired. Noting that ag ≥ Sdesired and that g = a + 1, we can
write Sdesired ≥ a(a+1). Equality is achieved when acanonical = −1+

√
1+4Sdesired

2 .
From there we can define:

a =

{
�acanonical − b(Sdesired − acanonical)� when − 1 ≤ b < 0
�1 + (1 − b)(acanonical − 1)� when 0 ≤ b ≤ 1

(2)

g = �Sdesired/a� (3)

The above equations do permit us to obtain (i) a = Sdesired and g = 1 when
b = −1; (ii) a = 1 and g = Sdesired when b = 1; and (iii) a construction close to
one of the canonical dragonflies for b = 0. In the last case, taking for instance
Sdesired = 2000, we have acanonical 	 45.22 thus a = �acanonical� = 46 and
g = �Sdesired/a� = 44.

However, for negative b values, a linear control of a with b is ineffective.
Hence, for −1 < b < −0.5, Eq. 2 returns Sdesired − 1 > a > Sdesired/2. When
introduced into Eq. 3, these values all return g = 2. To avoid this pitfall, we
use b to control g instead of a for negative b values. First, we similarly obtain
gcanonical = 1+

√
1+4Sdesired

2 . We then modify Eq. 3 into:

Design Space Exploration of the Dragonfly Topology 65

-1 -0.5 0 0.5 1
Imbalance parameter b

100

101

102

103

Routers in group a
Number of groups g
Total number of routers S

(a) (b)

Fig. 4. (a) Effect of imbalance parameter b on Dragonfly parameters. (b) Illustration of
the Dragonfly design space. Each point within this space represents a unique Dragonfly
variant.

g = �1 + (b + 1)(gcanonical − 1)�, a = �Sdesired/g� when − 1 ≤ b < 0 (4)

a = �1 + (1 − b)(acanonical − 1)�, g = �Sdesired/a� when 0 ≤ b ≤ 1 (5)

Fig. 4a shows the obtained a, g and S values for Sdesired = 1500 as a function
of b. Defined this way, Eqs. 4 and 5 allow b to control a and g values while
minimizing ag − Sdesired.

Having introduced the mapping of (b, d) to (a, g, h), we can represent the
Dragonfly design space as a rectangular space with x ∈ [−1, 1] and y ∈ [0, 1]. The
corner cases in the design space are drawn in Fig. 4b. Along the b = −1 line, the
obtained topology is an electrical full-mesh. Since the optical dimension is non-
existent, topologies along this line are not affected by density d. At coordinate
(1, 0) we find an optical ring. An optical full-mesh appears at coordinate (1, 1).
Finally, along the d = 1 line, we find all the 2D-FB constructs of size Sdesired,
except for b = −1 or b = 1 where either g or a, respectively, equals 1. We can also
reverse-evaluate the imbalance and density coefficients of the designs shown in
Fig. 1. In Fig. 1a, the canonical Dragonfly logically maps to (0, 0) while the 2D-
FB in Fig. 1b maps to (0, 1). The other topologies of Fig. 1 are also reproduced
in Fig. 4b along with their corrresponding coordinates in the design space.

Figure 5a and b depict how the ratio of optical links is affected by the two
parameters b and d. As expected, when imbalance is b = −1 or b = 1 the topol-
ogy has only one dimension, which is either fully electrical or optical. Figure 5c
shows how the topology diameter is influenced by the density and imbalance.
For b = −1, the topology is an electrical full-mesh of diameter 1. For b = 1 with
densities d = 0.5 and d = 0.8, the resulting topologies are not 2D-FB, but the
wiring density is large enough to always conserve one of the two 2-hop paths
between each node pairs that a regular 2D-FB offers, resulting in diameter 2
topologies. When density d = 0 and b = 1, the topology becomes a ring with a
diameter of 750. Figure 5d and e depict the impact of parameters on the global

66 M.Y. Teh et al.

-1 -0.5 0 0.5 1
Imbalance parameter b

0

0.5

1

Pr
op

or
tio

n
of

 e
le

c.
 li

nk
s

density d=0
density d=0.2
density d=0.5
density d=0.8

(a)

0 0.5 1
Density parameter d

0

0.5

1

Pr
op

or
tio

n
of

 e
le

c.
 li

nk
s

b= -0.8
b= -0.3
b= 0
b= 0.3
b= 0.8

(b)

-1 -0.5 0 0.5 1
Imbalance parameter b

5

10

15

20

D
ia

m
et

er

density d=0
density d=0.2
density d=0.5
density d=0.8

(c)

-1 -0.5 0 0.5 1
Imbalance parameter b

1

2

3

4

5

Av
er

ag
e

di
st

an
ce

 Δ density d=0
density d=0.2
density d=0.5
density d=0.8

(d)

0 0.5 1
Density parameter d

1.5

2

2.5

3

3.5

4
Av

er
ag

e
di

st
an

ce
 Δ Imbalance b=-0.8

Imbalance b=-0.3
Imbalance b=0.3
Imbalance b=0.8

(e)

0 0.5 1
Density parameter d

0

5

10

15 × 104

b=-0.8
b=-0.3
b=0
b=0.3
b=0.8

(f)

To
ta

l l
in

ks
 in

 to
po

lo
gy

Fig. 5. Characteristics of Dragonfly topologies accommodating at least Sdesired = 1500
routers.

average distance. As the imbalance leans toward negative values, Δ decreases,
which is expected since more routers can be reached in 1 hop owing to the large
intra-group electrical-mesh. Interestingly, positively imbalanced topologies also
show lower Δ’s than strictly balanced ones, provided enough density is given.
This is mostly due to the high value that h can take when the number of groups
g increases (as h = max (0, �1 + d(g − 2)�)). Looking closer at the b = 0.8 case,
we observe that the topology made from 167 groups translates into h = 83 when
d = 0.5. The many inter-group links cause the vast majority of node pairs to be
separated by two hops (electrical-optical, optical-electrical, and optical-optical).
When d = 1 (2D-FB cases), graph diameter is at most 2, hence Δ converges to
1 as imbalance grows and the topology approaches a full-mesh.

These analyses highlight the diversity of Dragonfly designs, notably in terms
of the proportion of optical links, average distance and diameter. However, this
diversity also translates into a highly-varied total topological bandwidth (i.e.
total number of links shown in Fig. 5f). Each topology thus possesses the ability
to support different number of terminals (Fig. 5f) and corresponds to different
implementation costs. In order to compare the diversely dense and balanced
Dragonflies, we first show in the next section how to adapt our exploration
space to exclusively identify topologies capable of accomodating a given number
of terminals, Ndesired. Then, in Sect. 4, we introduce a cost model to evaluate the
cost of each design and elaborate on topologies supporting Ndesired terminals.

Design Space Exploration of the Dragonfly Topology 67

3 Constructing Dragonflies for a Minimal Number of
End-Points

In our explorations so far, we have let the parameter p which denotes the number
of terminals per router untouched. p is, however, a key factor in the Dragonfly
construction, as it determines not only the final scalability of the topology, but
also the required router radix. Moreover, we observe in Fig. 5f that the total
number of links employed in the Dragonflies explored greatly varies with b and
d, and consequently the available bandwidth of each topology also varies signifi-
cantly. If a substantial amount of bandwidth is available within the topology, e.g.
when the Dragonfly is heavily electrically-balanced (b = −0.8 as in Fig. 5f), we
can populate the S routers with more terminals to ideally exploit the available
bandwidth.

We can make the number of terminal attached to a router, p, proportional
to the number of links attached to this same router p ≈ (a − 1 + h). This is the
approach used in Kim et al. original Dragonfly proposal [1]. Since a Dragonfly is
a diameter 3 topology, each transmitted bit is, in the worse case, forwarded twice
onto a local link, once onto a global link, and once onto the destination’s terminal
link. This relationship gives us p = a

2 = h. This approach, however, is too limited
in our case, as our wiring algorithm may return topologies of variable diame-
ter. Furthermore, for topologies strongly negatively-balanced (highly-negative b
and large electrical groups), much of traffic remains within the groups, which
contradicts the worst case assumption that every bit transits across groups.

To obtain a number of terminals p most suited to each of our designs, we
start by remarking that the total traffic carried over a topology is proportional
to the average path lengths (assuming no locality – every node pair have equal
probability to exchange traffic). Thus, the total bandwidth made available by
the topology should be proportional to Δ, and the number of traffic injectors
should be inversely proportional to Δ. Since we cannot easily add bandwidth
over the topology, we compensate Δ by changing p. This relationship can be
expressed as follows:

p ≈ S(a − 1 + h)
Δ

(6)

In applying the methodology proposed by Rumley et al. [9], we can pick p such
that the total traffic injected under uniform traffic must not exceed the total
bandwidth installed, i.e. NΔ ≤ S(a − 1 + h) which can be rewritten as:

p =
N

S
≤ (a − 1 + h)

Δ
(7)

If we target an almost saturated topology under uniform traffic, pselected =
�(a − 1 + h)/Δ� terminals should be connected to every router. Note that the
resulting network utilization (still under uniform traffic assumption) can be writ-
ten as:

H =
pselected

((a−1+h)
Δ)

(8)

68 M.Y. Teh et al.

If equality is reached in Eq. 7, utilization is maximal (100%). In constrast, when
equality in Eq. 7 is not met, pselected is smaller than a−1+h

Δ due to rounding, and
utilization is consequently driven down.

Equation 7 is not entirely satisfying as it implies that the number of routers,
S, best suited to support N terminals is already known – either dictated by
a, g and h, or, when using our exploration mechanisms, given as a parameter
alongside b and d. The resulting total number of terminals supported N = pS
might thus clearly differ from the original Ndesired goal. We can circumvent
this limitation by iteratively testing a sequence of p values. As soon as p is
fixed, Sdesired can be obtained as Sdesired = �Ndesired/p�, a Dragonfly topology
of parameters b, d and S can be produced and its global average distance Δ
subsequently obtained, which ultimately permits us to evaluate the bandwidth
utilization (Eq. 8). The value pselected for which the utilization is the closest to 1
should be retained. To find pselected, we note that the utilization necessarily grows
with p. Hence, for very small p values, the number of routers S is large, which
results greater number of links. As p is increases, the Dragonfly topology shrinks
and so does its bandwidth. There is necessarily a pexcess for which utilization
exceeds 1. Finding the p that maximizes the utilization can thus simply be
achieved by considering incremental integer p values until reaching pexcess. This
is computationally acceptable as p is typically smaller than 50 for most Dragonfly
designs. One may also cap p by the limiting the router radix which equals p+h+
a−1. Most modern routers available in the market today (year 2017) are limited
to radices of ≈ 100. Meanwhile, Δ can be easily obtained as a side product of
the wiring algorithm.

It is important to recognize the limitations of Eq. 7, as it only considers
p such that the total bandwidth can support a uniform traffic, but does not
guarantee that this bandwidth is available where the highest congestion occurs.
For instance, Eq. 7 would not hold when the topology is one with two large
groups connected by a single optical link, since the single optical link would
need to support roughly half the traffic. Even with uniform traffic injection, the
optical link would be subjected to extreme congestion, bottlenecking the network
bandwidth at a lower bound than what the right-hand side of Eq. 7 provides.
To prevent such situations, the utilization of each link could be individually
evaluated and p selected in a way that would ensure that every link’s utilization
is below 1.

Figure 6 reports the properties of many Dragonflies generated with the tech-
nique described above, all of which capable of supporting at least Ndesired =
10, 000 terminals. We first observe how the value p corresponding to highest
utilization, H, varies across designs (Fig. 6a). Through the S = �Ndesired/p�
relationship, the number of routers S (Fig. 6b) is also affected and not stable as
previously seen in Fig. 4a. Notice that the changing of S and density parameter
also significantly affects the shape of the a and g curves of Fig. 6c.

We observe that the global average distances Δ in Fig. 6d is very much com-
parable to the constant Sdesired case depicted in Fig. 5d. This is because the
average distance is mostly related to the structure of the topology, hence to b

Design Space Exploration of the Dragonfly Topology 69

-1 -0.5 0 0.5 1
Imbalance parameter b

0

10

20

30

40

50
Te

rm
in

al
s

pe
r r

ou
te

r p density d=0
density d=0.3
density d=0.5
density d=0.8

(a)

-1 -0.5 0 0.5 1
Imbalance parameter b

500

1000

1500

2000

N
um

be
r o

f r
ou

te
rs

 S

density d=0
density d=0.3
density d=0.5
density d=0.8

(b)

-1 -0.5 0 0.5 1
Imbalance parameter b

5

50

500

R
ou

te
rs

 p
er

 g
ro

up
, a

, a
nd

nu
m

be
r o

f g
ro

up
s,

 g

density d=0
density d=0.3
density d=0.5
density d=0.8

Routers in each
group, a

Number of
groups, g

(c)

-1 -0.5 0 0.5 1
Imbalance parameter b

1

2

3

4

5

Av
er

ag
e

di
st

an
ce

 Δ density d=0
density d=0.3
density d=0.5
density d=0.8

(d)

-1 -0.5 0 0.5 1
Imbalance parameter b

1

2

3
N

um
be

r o
f l

in
ks

 in
 to

po
lo

gy

× 104

density d=0
density d=0.3
density d=0.5
density d=0.8

(e)

-1 -0.5 0 0.5 1
Imbalance parameter b

50

100

150

R
eq

ui
re

d
ro

ut
er

 ra
di

x
p

+
 h

 +
 a

 -
 1

density d=0
density d=0.3
density d=0.5
density d=0.8

(f)

Fig. 6. Characteristics of Dragonfly topologies accommodating at least Ndesired =
10, 000.

and d, and only marginally related to its size. The shapes of the Δ curves propa-
gates into the ones of p (Fig. 6a), as p is inversely proportional to Δ, and finally
into the shapes of S. The number of links present in each topology (Fig. 6e) is
also roughly proportional to Δ, and is overall less affected by the Dragonfly-
“shaping” parameters b and d than previously when we explored topologies with
a constant Sdesired.

Figure 6f finally shows the impact of imbalance and density on the required
radix. We note that when density is maximal, the radix requirements is mini-
mized when topologies are balanced, which is a known property of Flattened-
Butterflies. When density decreases, positively imbalanced topologies tend to
favor low-radix routers. For minimal density d = 0, the required radix con-
stantly decreases until the topology becomes a ring. It is interesting to note that
designs with high b and low d becomes more favorable due to their low radix
requirements. Figure 6b supports this as it shows that low router radices are
required when there are more numerous routers in the Dragonfly. To clarify the
value of these different option, we introduce in the next section a cost model for
routers and links.

4 Design Selection via Cost Comparison

In this section we aim at estimating the cost a high-end HPC packet router switch
of any radix. Based on pricing information available on ColfraxDirect [10], we
considered a low-tier 24-port router currently priced at $7095, and a high-tier
48-port router at $10455, taken from the same supplier and both working at
100 Gb/s. These two data points are used to derive the following cost model.

70 M.Y. Teh et al.

We assume the marginal cost of adding a port to an existing router to be a U-
shaped quadratic function with a minimum point at radix = 36. The rationales
are the following: adding a port would benefit from economics of scale, but is
also subject to technical complexity; the global minimum of the U-shaped curve
correspond to the port count where the two effects negate each other. We place
the minimum marginal cost in the middle of the low-tier and high-tier designs,
assuming that with more resources, the supplier may incorporate a “mid-tier”
36-port router into its product line. Since this is not the case, two designs equally
distant from the optimal cost will fulfill the market demands better. This causes
the derivative of our cost model to be written as d

dr cost(r) = c1(r − 36)2 + c2,
where c1 and c2 are constants. Solving for the polynomial constants using the
discussed price points, we arrive at the following cost model:

cost(r) = 0.0901r3 − 9.73r2 + 477r (9)

where r is the radix/port count of the router, and cost(r) is in the units of $’s.
The resulting cost and it’s derivative with respect to port-count for port counts
between 0 and 128 are shown in Fig. 7a and b. We emphasize here that obtaining
a model with a growing marginal cost per port is necessary to ensure that the
router radix is not infinitely scalable. If the cost of a router is simply assumed a
linear function of the number of ports, the cheapest topology becomes the one
consisting of a single router with Ndesired ports. Provided that routers always
have a radix multiple of 8 or 12, we then use this cost model to pinpoint the
cost of routers with a range of radices. Logically, our model returns $7095 and
$10,460 for 24-port and 48-port routers, respectively ($296 and $218 per port).
A putative 64-port router is $14,320 ($228 per port). For 96 ports, this price
grows to $35,884 ($374 per port).

For links, we consider a 100 Gb/s electrical link to be $80 [10]. As we are
interested in analyzing the impact the optical/electrical cost ratio has on the
Dragonfly topology selection, we consider optical links to have cost comprised
between $80 (same as electrical) and $800 (ten times more expensive). As of
today (2017), optical links are about five times more expensive than their elec-
trical counterparts.

0 50 100 150
Radix, r

0

500

1000

1500

2000

2500

D
er

iv
at

iv
e

of
 c

os
t w

ith

re
sp

ec
t t

o
ra

di
x

($
/ra

di
x)

(a)

0 50 100 150
Radix, r

0

2

4

6

8

10

C
os

t (
$)

104

(b)

Fig. 7. Cost model for predicting router price as a function of radix/port count

Design Space Exploration of the Dragonfly Topology 71

-1 0 1
Imbalance parameter b

0

0.5

1

D
en

si
ty

 p
ar

am
et

er
 d

Interconnect cost per terminal

$860

$1020

$1215

$1445

$1720

$2045

(a)

-1 0 1
Imbalance parameter b

0

0.5

1

D
en

si
ty

 p
ar

am
et

er
 d Radix 36

Radix 48
Radix 60
Radix 72

(b)

-1 -0.5 0 0.5 1
Imbalance parameter b

800

1000

1200

In
te

rc
on

ne
ct

 c
os

t
pe

r t
er

m
in

al
 ($

)

density d=0
density d=0.3
density d=0.6
density d=1

(c)

Fig. 8. Cost analysis of Dragonflies accomodating at least Ndesired = 10, 000 terminals

Results of the cost analysis are depicted in Fig. 8 for Ndesired = 10, 000, and
considering radices of [36, 48, 60, 72]. Figure 8a shows how the cost evolves with
the design space when considering $400 for optical links. We note a correlation
between Fig. 8a and b. The cheapest solutions are the ones that make the best
use of the ports available. Figure 8c shows that the cheapest design found in our
exploration is obtained for b = −0.5 and d = 0.6, which correspond to g = 17
groups of a = 32 routers, p = 19 terminals per router and h = 10 inter-group
links per router. The proportion of electrical links to all links is 76%. We note
that this cheapest design requires 60-port routers and dominates all designs
requiring 72 ports. As expected, it is found in the negatively-balanced region
that favors electrical links.

Figures 9a, b and c illustrate the cost per terminal by considering an optical
link price of $80, $400 and $800, respectively. We note that as the price of optics
increases, negatively-balanced designs tend to become cheaper. Interestingly, in
the presence of optical links that are equally expensive as electrical ones, six
designs that achieve the cheapest cost are found at a cost of $733.86 per terminal,
with densities of 0.7 or 0.8, and imbalance spanning from −0.2 to 0.7. In the
$800 case, the cheapest design is a strongly imbalanced case (b = −0.8, d = 0.5)
with only 10 groups made of 45 routers per group, and 23 terminals per router.

We complete our analysis by exploring designs supporting Ndesired = 25, 000
terminals (Fig. 9d). Here we assume radices of [48, 64, 80] are available. We note
first that the cost per terminal is slightly higher than that of the Ndesired =
10, 000 case, as the larger network scale incurs a cost premium. Even though we
consider here $400 for each optical link, it is still surprising to see the cheapest
design being positively-balanced (b = 0.2). Our analyses show that for very large
scale topologies, the positively-balanced designs emerge as among the cheap-
est options due to their lower radix requirements (as visible in Fig. 6f). In the
Ndesired = 25, 000 case, the cheapest design found (b = 0.2 with a moderate
density of d = 0.3) has 43 groups, 34 routers per group, h = 13 inter-group links
per router, and p = 18 terminals per router. It still guarantees a high proportion
of electrical links (72%), and requires routers with radix of 64.

72 M.Y. Teh et al.

-1 0 1
Imbalance parameter b

700

800

900

1000

1100

1200

In
te

rc
on

ne
ct

 c
os

t
pe

r t
er

m
in

al
 ($

)

0

0.2

0.4

0.6

0.8

1

D
en

si
ty

(a)

-1 0 1
Imbalance parameter b

700

800

900

1000

1100

1200

In
te

rc
on

ne
ct

 c
os

t
pe

r t
er

m
in

al
 ($

)

0

0.2

0.4

0.6

0.8

1

D
en

si
ty

(b)

-1 0 1
Imbalance parameter b

700

800

900

1000

1100

1200

In
te

rc
on

ne
ct

 c
os

t
pe

r t
er

m
in

al
 ($

)

0

0.2

0.4

0.6

0.8

1

D
en

si
ty

(c)

-1 0 1
Imbalance parameter b

1000

1200

1400

1600

In
te

rc
on

ne
ct

 c
os

t
pe

r t
er

m
in

al
 ($

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

D
en

si
ty

(d)

Fig. 9. Cost analysis for when optical links are set to (a) $80, (b) $400, (c) $800 with
Ndesired = 10, 000 and when optical links set to (d) $400 when Ndesired = 25, 000

5 Conclusion

The Dragonfly topology, while having recently garnered much attention from
the HPC community, have been subjected to different interpretations across
literature. In this paper, we aim at formalizing the definition of a Dragonfly
topology. To do so, we first state that any Dragonfly variant can be represented
as 2D-Flattened Butterfly. In other words, a router can be represented in terms
of its (x, y) coordinate in a 2-D lattice, where x (electrical dimension) represents
the router’s position in a group, and y (optical dimension) represents the group
said router belongs to. Next, we introduce two Dragonfly-shaping parameters,
namely: (a) the imbalance parameter, b ∈ [−1, 1], which controls the relative
sizes of the optical dimension to the electrical dimension, and (b) the density
parameter, d ∈ [0, 1], which controls a router’s inter-group connectivity in the
optical dimension. The space spanned by b and d creates the Dragonfly design
space.

Using the wiring algorithm presented in Sect. 2.2, we generated various drag-
onflies in the design space, and subsequently identified several interesting designs.
By studying dragonflies with 1500 routers, we found that as long as d �= 0, the
average global distance of the network remains fairly constant over the range of
the imbalances, and only tending towards 1 when either the optical or electri-
cal dimensions get downsized to 1. This is due to the topology approaching a

Design Space Exploration of the Dragonfly Topology 73

full-mesh (when optical dimension is downsized to 1) or a flattened-butterfly
(when electrical dimension is downsized to 1). In general, the number of links in
the topology also increases as b becomes more negative due to the larger electri-
cal dimension, in which more router pairs are directly-linked as a result of the
larger full-mesh intra-group topology.

We found that topologies with a density of 0 exhibit poor network char-
acteristics, since each router only has one inter-group link at its disposal. This
minimal connectivity in the optical dimension incurs a higher global average dis-
tance on these topologies, an effect that is even more pronounced as the optical
dimension expands (imbalance tending to more positive values). Our results in
Sect. 4 indicate that if given access to routers with higher radices, it is generally
worth maximizing the utilization of the allocated port counts to obtain inter-
connect designs of more optimal costs. This can be done either by (a) expanding
bandwidth in the electrical dimension by opting for more nagatively-balanced
Dragonflies or by (b) expanding bandwidth in the optical dimension by opting
for Dragonflies with higher densities.

Finally, the effects of varying the cost of optical links relative to electronic
links on cost-efficiency are explored on dragonflies supporting 10, 000 terminals.
Our results show that as the cost of optical links increases, negatively-balanced
Dragonfly variants tend to be more cost-efficient due to their larger electrical
dimension. A similar exploration done on topologies with 25, 000 terminals, how-
ever, showed that positively-balanced Dragonfly offer more cost-efficient designs,
despite considering optical links at 5× the cost of electrical links. These results
unanimously indicate that density should generally be greater than 0 to yield
cost-efficient designs with reasonable global average network distances. On the
other hand, it is difficult to draw a conclusion on the range of imbalance that
yields the most cost-optimal Dragonfly designs. We recognize that the regions in
the design space corresponding to the most cost-optimal dragonflies vary signifi-
cantly based on the targeted system scale (defined by number of terminals), the
available router radix, and the cost of the network components (e.g. links and
routers). However, the methodology employed to study cost-efficiency is valid,
and we plan to investigate the ideal imbalance to scale relationship in the future
by means of workload simulations.

References

1. Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-scalable drag-
onfly topology. In: 2008 International Symposium on Computer Architecture, pp.
77–88, June 2008

2. Kim, J., Dally, W., Abts, D.: Flattened butterfly: a cost-efficient topology for high-
radix networks. In: Proceedings of the 34th Annual International Symposium on
Computer Architecture, ISCA 2007, New York, NY, USA, pp. 126–137 (2007)

3. Alverson, B., Froese, E., Kaplan, L., Roweth, D.: Cray XC series network (2012),
http://www.cray.com/sites/default/files/resources/CrayXcnetwork.pdf

http://www.cray.com/sites/default/files/resources/CrayXcnetwork.pdf

74 M.Y. Teh et al.

4. Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., Johnson,
T., Kopnick, J., Higgins, M., Reinhard, J.: Cray cascade: a scalable HPC system
based on a dragonfly network. In: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC 2012, Los
Alamitos, CA, USA, pp. 103:1–103:9. IEEE Computer Society Press (2012)

5. Bhatele, A., Jain, N., Livnat, Y., Pascucci, V., Bremer, P.T.: Analyzing network
health and congestion in dragonfly-based supercomputers. In: 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pp. 93–102, May
2016

6. Jain, N., Bhatele, A., Ni, X., Wright, N.J., Kale, L.V.: Maximizing throughput
on a dragonfly network. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2014, Piscataway,
NJ, USA, pp. 336–347. IEEE Press (2014)

7. Wen, K., Samadi, P., Rumley, S., Chen, C.P., Shen, Y., Bahadroi, M., Bergman, K.,
Wilke, J.: Flexfly: enabling a reconfigurable dragonfly through silicon photonics.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, Piscataway, NJ, USA, pp. 15:1–15:12.
IEEE Press (2016)

8. Camarero, C., Vallejo, E., Beivide, R.: Topological characterization of hamming
and dragonfly networks and its implications on routing. ACM Trans. Archit. Code
Optim. 11, 39:1–39:25 (2014)

9. Rumley, S., Glick, M., Hammond, S.D., Rodrigues, A., Bergman, K.: Design
methodology for optimizing optical interconnection networks in high performance
systems. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance 2015. LNCS,
vol. 9137, pp. 454–471. Springer, Cham (2015). doi:10.1007/978-3-319-20119-1 32

10. http://www.colfaxdirect.com/. Accessed 16 Apr 2017
11. Hastings, E., Rincon-Cruz, D., Spehlmann, M., Meyers, S., Bunde, D.P., Leung,

V.J.: Comparing global link arrangements for dragonfly networks. In: 2015 IEEE
International Conference on Cluster Computing, Chicago, IL, USA, pp. 361–370
(2015)

http://dx.doi.org/10.1007/978-3-319-20119-1_32
http://www.colfaxdirect.com/

High-Throughput Sockets over RDMA for the
Intel Xeon Phi Coprocessor

Aram Santogidis1,2(B) and Spyros Lalis3

1 Maynooth University, Maynooth, Ireland
aram.santogidis@cern.ch

2 CERN, Geneva, Switzerland
3 University of Thessaly, Volos, Greece

lalis@uth.gr

Abstract. In this paper we describe the design, implementation and
performance of Trans4SCIF, a user-level socket-like transport library for
the Intel Xeon Phi coprocessor. Trans4SCIF library is primarily intended
for high-throughput applications. It uses RDMA transfers over the native
SCIF support, in a way that is transparent for the application, which
has the illusion of using conventional stream sockets. We also discuss
the integration of Trans4SCIF with the ZeroMQ messaging library, used
extensively by several applications running at CERN. We show that this
can lead to a substantial, up to 3x, increase of application throughput
compared to the default TCP/IP transport option.

Keywords: RDMA · Fast data transfer · Stream sockets · Manycore
processors · Intel Xeon Phi · ZeroMQ · High performance computing

1 Introduction

One of the systems used at CERN to process the data generated from the LHC
experiments [12] is the O2 online-offline distributed system, developed by the
ALICE collaboration [1]. O2 consists of over hundred different kinds of processes
that perform data acquisition from the particle detectors, particle trajectory
reconstruction, data compression and storage, as well as detector monitoring and
calibration. They form a distributed data processing pipeline, interconnected via
a message passing fabric based on the ZeroMQ [7] and NanoMSG [18] libraries.

With the introduction of the Intel Xeon Phi coprocessor [5], we started to
investigate the possibility of taking advantage of this manycore architecture in
order to increase the efficiency of O2 workloads. Indeed, several O2 computations
could greatly profit from the high core count and high memory bandwidth of the
Intel Xeon Phi coprocessor. However, our tests [17] have shown that the host-
coprocessor communication throughput of ZeroMQ and NanoMSG over TCP/IP
is up to 20x lower than what could be achieved using the RDMA support of the
Symmetric Communication Interface (SCIF) [8], the native transport mechanism
of the Intel Xeon Phi platform.
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 75–86, 2017.
https://doi.org/10.1007/978-3-319-67630-2_6

http://orcid.org/0000-0002-1896-7207
http://orcid.org/0000-0003-2232-3559

76 A. Santogidis and S. Lalis

For this reason, we decided to provide a high-throughput transport service
over SCIF-RDMA, called Trans4SCIF, with two goals in mind. On the one hand,
it should be straightforward to integrate this transport with the ZeroMQ mes-
saging library, so that the O2 stack can enjoy improved performance in a trans-
parent way. On the other hand, this transport should be easy to use in other
applications as well, offering the familiar abstraction of streaming sockets.

This paper describes the implementation of Trans4SCIF and discusses its
integration with ZeroMQ. The main contributions are: (i) we present a socket-
based RDMA-capable transport library with streaming semantics for the Intel
Xeon Phi coprocessor; (ii) we introduce a novel synchronization algorithm for
RDMA-based transport mechanisms; (iii) we discuss how the ZeroMQ library
was extended with support for RDMA-based data transfers through Trans4SCIF
(iv) we provide an evaluation showing that Trans4SCIF can lead to significant
performance improvements vs. TCP/IP based data transfers for intra-node com-
munication. We note that the developed support is also relevant for the second
generation Intel Xeon Phi coprocessor (given that this was released in Q2 of 2017,
after the paper was written, here we report results only for the first generation).

The rest of the paper is organized as follows. Section 2 describes the
implementation of the Trans4SCIF library. Section 3 discusses the integration
of Trans4SCIF with ZeroMQ. Section 4 provides a performance evaluation.
Section 5 gives an overview of related work. Finally, Sect. 6 concludes the paper
and points to some directions for future work.

2 The Trans4SCIF Library

We give an overview of the Symmetric Communication Interface of the Intel
Xeon Phi coprocessor, and describe how Trans4SCIF was implemented on top
of it. The code is available for download at goo.gl/ynrmSL.

2.1 The Symmetric Communication Interface (SCIF)

SCIF supports intra-node communication over the PCIe bus [8]. For small data
transfers, it offers familiar POSIX-like send()/recv() operations. For bulk trans-
fers, SCIF offers an RDMA interface that can fully utilize the capabilities of the
PCIe bus. While this can lead to much higher throughput, it is harder to use due
to the memory management and synchronization issues that must be handled
by the programmer, in particular, registering the memory regions to be used
for remote reading/writing, and detecting the completion of RDMA transfers.
These issues also exist in other RDMA implementations [13].

Besides the classic RDMA read/write operations, SCIF offers the
scif mmap() function, which maps a pre-registered remote address region into
the address space of the calling process. If successful it returns a pointer that can
be used to transparently access that memory region of a remote process. This
method enables a direct sharing of data structures between processes running on

High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor 77

the coprocessor and the host. It also has the lowest communication latency [9],
which makes it attractive for inter-process synchronization via shared state.

Data transfers via RDMA occur concurrently to normal program execution.
One way to notify the program that the requested data transfers have been per-
formed, is to use the scif fence signal() function. When called, it internally marks
all transfers that have been scheduled so far, and upon their completion writes
a given value into a specified local or remote memory location (or both). This is
done asynchronously, and the program must check/read that memory location
in an explicit way to determine whether the transfers have been completed.

2.2 Trans4SCIF API

To make SCIF-RDMA transport more accessible to application programmers,
as well as to pave the way towards exploiting it through the messaging libraries
of the O2 stack, we have developed Trans4SCIF, a user-level library that uses
the RDMA mechanism of SCIF and exposes an easy to use socket-like interface.

class Socket {
{uint8_t*, size_t} getSendBuffer (); // free region of internal send buffer
size_t send(const uint8_t *data , size_t data_size); // non -blocking
size_t recv(uint8_t *data , size_t data_size); // non -blocking
void waitIn(long timeout); // block until there is data to receive

};

Fig. 1. Basic API of the Trans4SCIF library.

The basic primitives of the Trans4SCIF API are shown in Fig. 1 in simplified
C++ syntax. In a nutshell, send() copies the data for transmission to an internal
pre-registered buffer and schedules a corresponding RDMA-write operation. If
the internal buffer is full, send() returns zero, indicating that the application
should retry at a later point in time. To avoid data copying, the application
can get a handle on the internal transport buffer via getSendBuffer(), and write
data directly into it. Data reception is done via recv(), which immediately returns
zero when no data is available. If desired, the application can block until data
becomes available by calling waitIn().

2.3 Trans4SCIF Implementation

We now turn to the implementation of the sending and receiving side of Trans4-
SCIF, henceforth referred to as sender and receiver, respectively. Each side main-
tains its own pre-registered data buffer, the sender for the data that is written
by the application, and the receiver for the data that is read by the applica-
tion. Data copying between the two buffers is performed via RDMA-write. The
synchronization between the sender and the receiver is done using two auxiliary
data structures, the so-called Buffer Records Table (BRT) and Write Records

78 A. Santogidis and S. Lalis

Table (WRT). These are shared between the two sides via scif mmap(). The size
of the data buffers can be set by the application at the initialization time; the
size of the WRT and other parameters can be set at library compilation time.

The BRT resides in the memory of the sender, and is used to keep track of
the free buffer space at the receiver. Each entry contains the starting and ending
offset of a region in the remote receiver buffer that is available for writing over
RDMA. For example, in Fig. 2, the sender checks the BRT and discovers that
there are two regions available for RDMA writes, the first being [0x0..0x400] and
the second [0xE00..0x1000]. Given that data chunks are written in the receiver
buffer in the spirit of a circular buffer, there can be at most two regions available
for write operations, thus the BRT only needs to have two entries.

0
1

0
1
2

N

3

1 2 3

Fig. 2. Snapshot of the registered address spaces of a pair of Trans4SCIF endpoints.
The sender’s space contains the send buffer and the BRT, while the receiver’s space
contains the receive buffer and the WRT.

The WRT resides in the memory of the receiver, and is used to keep track of
the RDMA writes performed by the sender in the receiver’s data buffer. Similarly
to a BRT entry, each WRT entry contains the start and end offset of a region
in the receiver’s data buffer. Taking a look at Fig. 2, the receiver knows that
several writes have been performed in its data buffer, the first one in the region
[0x400..0x7DB] followed by [0x800..0x9D0] and [0xA00..0xE00]. Note that a sep-
arate entry is needed for each individual data transfer. This is because although
a write starts at a cache-aligned offset it may end at an arbitrary (non cache-
aligned) offset. As a result the receiver’s data buffer may have gaps that contain
garbage, to be skipped when reading out data. Some WRT entries, like the first
and last one in Fig. 2, can be empty (free to use by the sender to denote subse-
quent RDMA transfers), in which case the start and end fields have an invalid
value (infinity). Like the receiver’s actual data buffer, the WRT is filled by the
sender and consumed by the receiver in the spirit of a circular buffer.

The pseudo-code in Algorithm 1 gives a high-level description of the sender
and receiver logic. In a nutshell, the sender checks the BRT to see if there is

High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor 79

available space in the receiver’s data buffer, in which case it subsequently checks
the next WRT entry to see if it is empty, and if so, proceeds with the data transfer
and updates the BRT and WRT accordingly. Similarly, the receiver checks the
next WRT entry to see if it is filled, in which case it reads out the corresponding
region of its data buffer and updates the BRT and WRT. If the next WRT entry
is empty the receiver knows no data is available.

Algorithm 1. High-level sender and receiver logic of Trans4SCIF
1: procedure Send(data, data size)
2: if buf space = 0 or free WRT slots = 0 then
3: return 0
4: sz ← min(buf space, data size, BUFSIZE/2)
5: sz ← round up(sz) � to cacheline size boundary
6: memcpy(send buf, data, sz) � destination, source, size
7: rdma write to(recv buf, send buf, sz) � schedule asynchronous RDMA
8: scif fence signal() � commission update of WRT upon completion
9: scif send(token) � send notification (blocking but fast)

10: update(BRT)
11: return sz + Send(data + sz, data size − sz)

12:
13: procedure Recv(data, data size)
14: if pending notifications > 0 then
15: scif recv(tokens) � consume notifications (non-blocking)

16: if buf fill = 0 then � buffer is empty
17: return 0
18: sz ← min(buf fill, data size)
19: memcpy(data, recv buf, sz) � destination, source, size
20: update(BRT); update(WRT)
21: if WRT entry was consumed then
22: pending notifications + +

23: return sz + Recv(data + sz, data size − sz)

24:
25: procedure WaitIn(timeout)
26: if pending notifications > 0 then
27: scif recv(tokens) � consume all notifications (blocking)
28: pending notifications ← 0

29: scif poll(timeout)(timeout) � wait for notification (blocking)

The tail recursion in the send and recv procedures is merely for presentation
purposes; in reality, this is implemented using a loop. At the sender, a repetition
is performed when wrapping-around the sender’s or the receiver’s data buffer,
in which case two distinct RDMA transfers are scheduled. At the receiver, a
repetition is required when wrapping-around the local data buffer, leading to
two distinct memory copy operations into the application buffer.

Since the BRT and WRT are directly shared via scif mmap() they are trans-
parently synchronized with the lowest possible latency. Special attention was

80 A. Santogidis and S. Lalis

paid to avoid race conditions, by eliminating concurrent writes on a single field.
Importantly, when no data is available, the receiver only accesses a single entry
of the (local) WRT. In a similar vein, when the receiver’s data buffer is full, the
sender only accesses the (local) BRT. Note that in principle it is possible for
the receiver’s data buffer to have free space and all WRT entries to be filled—in
this case the sender cannot proceed with any further data transfers. This can
happen if the sending program writes many small messages and the receiving
program does not retrieve these messages fast enough. We consider this to be a
marginal case given that Trans4SCIF is intended for large data transfers. Also,
the application can avoid this by choosing a suitable size for the WRT.

Memory copies, local or remote, are faster when memory addresses are
aligned to cacheline boundaries. This is even more crucial for DMA transfers
over the PCIe bus [8]. Thus, to achieve good performance, the sender rounds up
the amount of data to send to the cacheline boundary and communicates the
actual data size to the receiver via the WRT entry. Moreover, the sender bounds
the size of each data transfer up to the half of the buffer size. This way it becomes
possible to pipeline consecutive data transfers, as the local data copy operation
into the sender’s buffer (of the next transfer) can be performed in parallel to the
RDMA operation into the receiver’s buffer (of the previous transfer); note that
the asynchronous update of the WRT, when the scheduled transfer completes,
is performed by SCIF outside the scope of the Trans4SCIF send() operation.

Finally, for each scheduled RDMA transfer the sender sends a notification
message to the receiver. This allows the receiving side to block via scif poll()
(which in turn invokes the poll() system call) instead of busy-waiting until the
next WRT entry becomes valid, in case the application wishes to wait until data
arrives. Otherwise these notifications do not cause significant overhead since they
are small and can be consumed by the receiver in lazy/non-blocking manner.

3 Integration of Trans4SCIF with ZeroMQ

ZeroMQ is a versatile and portable messaging technology for building distributed
systems. Compared to other technologies, such as MPI, it provides higher-level
communication abstractions that can lead to better programmer productivity.
Many groups at CERN, including the ALICE collaboration, have chosen ZeroMQ
as one of the main communication technologies for performance-critical distrib-
uted computing. The popularity of ZeroMQ at CERN as well as elsewhere [16,19]
motivated us to extend it with support for SCIF in order to improve performance
for programs running on the Intel Xeon Phi coprocessor. In the following, we
give an overview of ZeroMQ, and describe how this was extended to support
high-bandwidth data transfers via the Trans4SCIF transport.

3.1 Technical Overview of the ZeroMQ Messaging Library

The API of ZeroMQ is based on sockets, which can be configured to employ
different lower-level transports, such as TCP/IP, UDP/IP and SCTP for

High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor 81

communication over the network, Unix domain sockets for local inter-process
communication, and shared memory between threads. Also, ZeroMQ sockets can
be connected to several peers at the same time in order to form elaborate com-
munication topologies. For instance, one can develop publish-subscribe schemes
and processing pipelines with out-of-the-box load balancing and reconnection
functionality. Another key feature of ZeroMQ is that it works in a direct peer-
to-peer fashion, and does not require an intermediate messaging server/broker.

Once a connection is established between two ZeroMQ sockets, each socket
instantiates a session object, which is used to keep the state of the connection.
In turn, each session object is associated with an engine object, which is respon-
sible for sending and receiving data over a lower-level transport service, e.g.,
TCP/IP or UDP/IP. Figure 3a depicts the relationship between theses objects.
The transport engine provides two callback methods for sending and receiving
data through the underlying transport. These callbacks are invoked by a so-
called poller thread, which monitors a file descriptor for input/output readiness
events (I/O events). The engine registers this file descriptor with the ZeroMQ
runtime environment as part of the initialization procedure. To improve perfor-
mance, the ZeroMQ runtime may be configured to keep a pool of poller threads,
which are shared between the sockets created by the application.

Fig. 3. The ZeroMQ architecture.

Figure 3b illustrates the relationship between a poller thread and the engine’s
file descriptor and callback functions. The poller thread monitors the file descrip-
tor using a suitable POSIX operation, such as epoll(), kqueue() or select(). When
a POLLOUT event is raised, indicating that the file descriptor is ready for
output, the out event() callback of the engine is invoked. This pulls the next
application message from the session’s output queue, encodes it into a byte-blob
according to the ZMTP protocol [7] of ZeroMQ, and sends it to the other side
using the underlying transport service. Similarly, a POLLIN event leads to the
invocation of the in event() callback, which retrieves the raw byte-blob from the
underlying transport, decodes it into a ZeroMQ message, and pushes it into the
session’s input queue.

82 A. Santogidis and S. Lalis

3.2 The Trans4SCIF Engine for ZeroMQ

To enable the usage of SCIF-RDMA through ZeroMQ, we have developed a new
ZeroMQ engine that uses Trans4SCIF as the underlying transport service, in the
spirit of Fig. 3b. The application can select the Trans4SCIF engine for a ZeroMQ
socket simply by prefixing the target address with scif:// (e.g., instead of the
prefix tcp:// for TCP/IP). The API of the ZeroMQ library is left untouched
and can be used in the same way as for all other transports.

When invoked by the ZeroMQ poller threads, the Trans4SCIF engine per-
forms the data transmission and reception via the send() and recv() operations
of the Trans4SCIF library. Recall that ZeroMQ requires the underlying transport
to be accessible through a proper file descriptor that can be monitored through
the standard POSIX polling mechanism. Fortunately, the SCIF API provides
access to the underlying OS file descriptor that corresponds to a SCIF endpoint
(and each Trans4SCIF socket is internally associated with such an endpoint).
But note that the I/O readiness of this file descriptor depends on the state of
SCIF’s internal message buffers, and is not related to the actual RDMA transfers.
At the receiver, POLLIN events are properly generated thanks to the arrival of
the respective notification tokens that are issued by the sender for each RDMA
transfer. This triggers the invocation of the in event() callback which in turn
calls the Trans4SCIF recv() function to retrieve the data from the local buffer.
At the sender, the SCIF file descriptor is always ready for writing, and POLL-
OUT events lead to the invocation of out event() and the Trans4SCIF send()
operation, irrespectively of the state of the local data buffer. These invocations
are needed to poll the BRT and determine when free space is created so as to
proceed with the next transfer.

Finally, the Trans4SCIF engine unregisters the sender’s file descriptor from
the ZeroMQ polling mechanism when the session output queue has no more
application messages. The file descriptor is registered back again when ZeroMQ
informs the engine to restart output operation when an application message
is added to the output queue. In a similar vein, the receiver’s file descriptor is
unregistered when the input message queue reaches its capacity, and is registered
again as soon as ZeroMQ asks the engine to resume input operation.

4 Performance Tests

Our experimental testbed consists of two Intel Xeon Phi 7120 coprocessors with
61 cores clocked at 1.23 GHz and 16 GB GDDR memory. The host is a dual
socket Intel Xeon E5-2690 server with 64 GB RAM. We run the Intel MPSS
v3.8.1 on CentOS Linux kernel 3.10.0-514.2.2.el7.x86 64. For software building
we have used the icc compiler v17.0.2 (gcc 6.2 compatibility) with optimizations
enabled. Finally, we used ZeroMQ v4.2 and Trans4SCIF v2.4 for the experiments.

Figure 4a shows the results obtained when using the standalone Trans4SCIF
library for host-to-coprocessor and coprocessor-to-host transfers. We transfer
a total of 1 GB, in chunks ranging from 4 KB up to 256 MB. The bench-
mark is executed with varying internal buffer sizes, from 0.5 up to 128 MB.

High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor 83

(a) The Trans4SCIF data through-
put for different internal buffer
sizes.

(b) The ZeroMQ data throughput with
the TCP/IP and Trans4SCIF en-
gines.

Fig. 4. Trans4SCIF and ZeroMQ throughput results.

The data points are the (arithmetic) mean values of 100 repetitions for each
chunk size. As can be seen, throughput stabilizes at 2.5–3 GB/s for chunk sizes
larger than 4 MB. Note that increasing the internal buffer size of Trans4SCIF
above 32 MB does not improve performance. In previous work [17] we observed
that the maximum throughput that could be achieved with zero-copy RDMA
over SCIF was slightly over 6 GB/s on average. Although Trans4SCIF performs
memory copies to/from intermediate buffers and needs to synchronize the sender
and receiver in order to properly manage buffer occupancy, it still delivers over
40% of raw SCIF performance, which we consider quite acceptable. One also
observes that coprocessor-to-host transfers are consistently slower than the ones
in the reverse direction. This is attributed to the fact that the RDMA transfers
scheduled by the coprocessor are slower than the ones scheduled by the host;
this is in line with our previous observations [17].

Figure 4b shows the performance results obtained with ZeroMQ using the
Trans4SCIF engine vs. the TCP/IP engine. In the same spirit as above, we
transfer again a total of 1 GB, in chunks ranging from 64 B (one cacheline) up to
256 MB, with the internal data buffers of Trans4SCIF and TCP/IP set to 16 MB.
It can be seen that ZeroMQ-Trans4SCIF transfers are 2-3x faster than ZeroMQ-
TCP (but one has to keep in mind that the former is limited to communication
over the PCIe bus whereas the latter can also be used for communication over a
network). This is a significant improvement for the ZeroMQ-based applications
targeting the Intel Xeon Phi platform. However, the throughput achieved by
ZeroMQ-Trans4SCIF is only 50% of that of standalone Trans4SCIF. This heavy
drop in performance can be explained considering that encoding and decoding of
the data stream to ZeroMQ messages incurs non-trivial computational overhead.
Moreover, the receiver makes one additional data copy from the Trans4SCIF
buffer into the decoder’s internal buffer, which further diminishes the perfor-
mance (at the sender side, the encoder avoids an extra memory copy by writing
directly into the internal Tans4SCIF buffer). We believe that this memory copy is

84 A. Santogidis and S. Lalis

also responsible for the sharp performance drop in host-to-coprocessor transfers
with ZeroMQ-Trans4SCIF for chunk sizes larger than 2 MB. When chunk sizes
are small, the RDMA transfers are pipelined to a certain extent with the memory
copies performed by the decoder. However, as chunk sizes grow, RDMA trans-
fers scale better than the respective memory copies, which in turn eliminates
this pipelining effect. The coprocessor-to-host transfers are not severely affected
due to the better single-core performance of the host CPU vs. the coprocessor.
But even this highly non-optimal host-to-coprocessor throughput of ZeroMQ-
Trans4SCIF at roughly 600 MB/s is still 3x faster than ZeroMQ-TCP at slightly
over 200 MB/s.

We also measured the round-trip-times for the above transports. For chunk
sizes up to 64 KB the RTT is stable at about 110 microseconds for Trans4SCIF
and 1 millisecond for ZeroMQ-TCP and ZeroMQ-Trans4SCIF. We attribute
this order of magnitude difference mainly to two reasons. First, ZeroMQ per-
forms extra encoding/decoding on the application messages, whereas standalone
Trans4SCIF leaves application data untouched. Secondly, ZeroMQ blocks for
incoming data by waiting to receive an explicit (notification) message from the
sending side, whereas standalone Trans4SCIF directly polls the WRT which is
updated via the fast scif mmap() method. Still, we do not expect this increased
latency to have a notable effect on O2 computations, which typically push large
messages upstream along a uni-directional data-flow pipeline.

5 Related Work

Work on circumventing the limitations of TCP/IP on the Intel Xeon Phi
coprocessor by exploiting SCIF-RDMA has also been done in [4,11], in the con-
text of the ROOT software package [2]. However, the approach is more mission-
specific, geared towards the parallel composition of output files, and also tightly
coupled with the internal architecture of ROOT. In contrast, Trans4SCIF offers
a general-purpose stream-based transport abstraction, which is also reused to
enhance the performance of ZeroMQ.

Extensive research has been done to optimize MPI for the Intel Xeon Phi
coprocessor. For instance, the implementation described in [14,15] employs a
zero-copy rendezvous protocol over SCIF to achieve high data throughput for
intra-node communication on the coprocessor MPI proxy. While the goal is simi-
lar to ours, such support is not easily reusable in the context of ZeroMQ, because
the internal design of ZeroMQ does not support integration of RDMA-based
transports. In particular, there is no consideration for memory registration and
aligned allocations, which is a requirement not only for SCIF but also for numer-
ous other RDMA-enabled interconnects.

An extension for the MVAPICH2 MPI library has been implemented to sup-
port transparent data movement between GPUs in a cluster environment with
MPI primitives [20]. To hide the overhead of data movement over the PCIe
bus, GPU-to-host memory copies are pipelined with node-to-node MPI RDMA
transfers. We have adopted a similar approach in Trans4SCIF for the Xeon Phi

High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor 85

coprocessor, by pipelining the memory copies to the internal buffer with the
RDMA transfers. Also, our data transfer mechanism comes in the form of a
standalone library which can be used for socket-oriented host-coprocessor com-
munication. However, MVAPICH2-GPU also enables GPU-to-GPU communica-
tion over the network, while Trans4SCIF only works over the PCIe bus.

The work in [10] discusses the performance improvement of UNH-EXS library
for data streaming over RDMA. A hybrid data transfer algorithm is presented,
which under certain conditions switches to non-zero copy transfers by employing
an intermediate circular receive buffer. Once data is copied out from this buffer,
the receiver sends notifications back to the sender. Trans4SCIF differs from this
approach by eliminating the receiver-to-sender notifications via explicit messag-
ing. Instead, the desired synchronization on the sender side is achieved through
shared data structures that are polled locally. However, Trans4SCIF does adopt
an explicit notification approach in order to eliminate polling at the receiver side
and avoid busywaiting when applications wait for data/messages to arrive.

The Rsockets protocol [6], a successor of the Sockets Direct Protocol
(SDP) [3], aims at supporting TCP/IP-like streaming over RDMA by perform-
ing remote write operations into pre-exposed data buffers. As these buffers are
consumed, new ones become available at the receiving end, for which the sender
is notified via control messages. As mentioned, in Trans4SCIF the sender does
not need to receive/handle such notifications. To avoid polling at the sender
side, Trans4SCIF could be extended following a similar approach. However, the
reception of notification messages at the sender would also complicate integration
with ZeroMQ significantly.

6 Conclusions

In this paper we have described the design, implementation and performance
of the Trans4SCIF library and its integration with the ZeroMQ library. We
believe that the synchronization algorithm of Trans4SCIF is generic enough to be
used with other RDMA-based transport protocols. Our performance tests show
that standalone Trans4SCIF can achieve high data throughput over a second
generation PCIe, even with relatively modest internal buffers of a few megabytes.
Furthermore, when used through the ZeroMQ messaging library, Trans4SCIF
yields a significant improvement over the TCP/IP transport option.

In the future we wish to extend Trans4SCIF to support zero-copy and block-
ing transfers on both the sender and receiver side, and to exploit these features
through ZeroMQ. We will also investigate whether data encoding/decoding can
be bypassed in the next versions of ZeroMQ-Trans4SCIF. Last but not least, we
plan to port Trans4SCIF on the next generation of the Xeon Phi coprocessor
and measure the performance enhancement on actual O2 workloads.

Acknowledgments. Many thanks for the great support we received from Kristina
Gunne, Omar Awile and Luca Atzori from CERN openlab and the CERN IT depart-
ment.

86 A. Santogidis and S. Lalis

References

1. ALICE Collaboration: Upgrade of the Online - Offline computing system (CERN-
LHCC-2015-004; ALICE-TDR-019)

2. Antcheva, I., et al.: ROOT - A C++ framework for petabyte data storage, sta-
tistical analysis and visualization. Comput. Phys. Commun. 180(12), 2499–2512
(2009)

3. Balaji, P., et al.: Sockets Direct Protocol over InfiniBand in clusters: is it benefi-
cial? In: IEEE International Symposium on Performance Analysis of Systems and
Software, pp. 28–35, IEEE (2004)

4. Farrell, S., Dotti, A., Asai, M., Calafiura, P., Monnard, R.: Multi-threaded Geant4
on the Xeon-Phi with complex high-energy physics geometry. In: IEEE Nuclear
Science Symposium and Medical Imaging Conference, pp. 1–4 (2015)

5. George, C.: Intel Xeon Phi Coprocessor, the architecture. Intel Whitepaper (2014)
6. Hefty, S.: Rsocket, https://goo.gl/2uOsmZ
7. Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly, Sebastopol

(2013)
8. Intel Corporation: Symmetric Communications Interface (SCIF) For Intel Xeon

Phi Product Family Users Guide , revision: 3.5 (2015)
9. Linux. https://www.kernel.org/doc/Documentation/mic/mic overview.txt

10. MacArthur, P., Russell, R.D.: An efficient method for stream semantics over
RDMA. In: IEEE International Parallel and Distributed Processing Symposium,
pp. 841–851 (2014)

11. Monnard, R.: Concurrent I/O from Xeon Phi accelerator cards. Masters thesis,
Haute Ecole Specialisee de Suisse Occidentale de Fribourg, Switzerland (2015)

12. Nowak, A., et al.: Does the Intel Xeon Phi processor fit HEP workloads?. J. Phys.
Conf. Seri. 513(5) (2014). article no. 052024

13. Pfister, G.F.: An introduction to the infiniband architecture. High Perfor. Mass
Storage and Parallel I/O 42, 617–632 (2001)

14. Potluri, S., Hamidouche, K., Bureddy, D., Panda, D.K.: MVAPICH2-MIC: A high
performance MPI library for Xeon Phi clusters with Infiniband. In: Extreme Scal-
ing, Workshop, pp. 25–32 (2013)

15. Potluri, S., Venkatesh, A., Bureddy, D., Kandalla, K., Panda, D.K.: Efficient intra-
node communication on Intel-MIC clusters. In: IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, pp. 128–135 (2013)

16. Radford, N.A., et al.: Valkyrie: NASA’s first bipedal humanoid robot. J. Field
Robot. 32(3), 397–419 (2015)

17. Santogidis, A., Hirstius, A., Lalis, S.: Evaluating the transport layer of the ALFA
framework for the Intel Xeon Phi Coprocessor. J. Phys. Conf. Ser. 664(9) (2015).
article no. 092021

18. Sustrik, M.: NanoMSG. http://nanomsg.org/
19. Toshniwal, A., et al.: Storm@ twitter. In: ACM SIGMOD International Conference

on Management of Data, pp. 147–156 (2014)
20. Wang, H., et al.: MVAPICH2-GPU: optimized GPU to GPU communication for

InfiniBand clusters. In: Comput. Sci. Res. Dev. 26(3–4), p. 257 (2011)

https://goo.gl/2uOsmZ
https://www.kernel.org/doc/Documentation/mic/mic_overview.txt
http://nanomsg.org/

Workshop on HPC Computing in a Post
Moore’s Law World (HCPM)

Workshop on Hpc Computing in a Post
Moore’s Law WorlD (HCPM) 2017

Co-chairs: George Michelogiannakis (LBNL)
and Jeff Vetter (ORNL & Georgia Tech)

This year’s HCPM is the first in the series held in conjunction with the international
supercomputing conference (ISC). The workshop debated the forecoming challenges in
digital computing after MOSFET scaling ends and with it Moore’s law. This discussion
included emerging technologies that promise to preserve Moore’s law that can be new
devices, memories, 3D stacking, specialization, and optics. The other half of the
workshop debated neuromorphic computing and quantum computing. We discussed
the challenges of adoption of these new technologies, their potential, and the possible
kinds of problems they can solve.

The workshop attracted world-renounced experts of relevant fields. We had four
high-quality paper submissions on various aspects of the topics covered by this
workshop. We also had two 90-minute roundtable discussions after paper presentations
and some short presentations by invited speakers. Finally, we had two keynotes from
well-known speakers on digital computing and also quantum computing.

HCPM will continue next year and will debate important problems to prepare the
HPC community for the end of traditional performance scaling. HCPM is not only
relevant to experts in these fields but also the broader community and especially
algorithm, runtime, and compiler designers so they can better prepare for future
architectures.

In the next pages please find the four accepted papers of HCPM 2017.

Reconfigurable Silicon Photonic Interconnect
for Many-Core Architecture

Hang Guan1(&), Sébastien Rumley1, Ke Wen1, David Donofrio2,
John Shalf2, and Keren Bergman1

1 Department of Electrical Engineering, Columbia University,
New York, NY 10027, USA
hg2388@columbia.edu

2 Lawrence Berkeley Lab, Berkeley, CA 94720, USA

Abstract. In the context of declining Moore and Dennard Laws, efficient uti-
lization of chip area and transistor is more than ever required. The portion of
transistors devoted to compute operations can be maximized by off-loading as
much as possible data-storage onto memory chips. This, however, requires wide
off-chip IO bandwidth, and furthermore increases Network-on-chip (NoC) traf-
fic. In this paper, we first present a concept of optically connected memory
modules, delivering enough bandwidth to allow for cache reduction and
memory externalization. Second, we show that connecting these memory
modules in a reconfigurable interconnect permit to substantially offload NoC
traffic.

Keywords: Silicon photonic � Multiprocessor interconnection

1 Introduction

Performance scalability of next generation computing systems is becoming increasingly
constrained by limitations in memory access. From a programmer’s perspective and
performance point-of-view, computing resources (CPUs, GPUs, accelerators, etc.)
would ideally hold all their memory needs locally. This approach, however, is uneco-
nomical, as memory resources can be provided at a much lower cost on a dedicated chip
fabricated in a memory specific semiconductor process. For this reason, local data
storage units have been turned into caches of limited sizes, and IO logic blocks added to
reach off-chip memory modules. The forecasted end of Moore’s Law is expected to
exacerbate this reliance on off-chip memories for data-storage. Hence, with transistors
available in limited amounts on a single chip, there is an incentive to exploit them as
much as possible for compute operations, therefore to further limit cache sizes [1].

Heavy reliance on off-chip memories implies that memory modules (1) are avail-
able in large enough quantities and (2) can be accessed with sufficiently ample
bandwidths and low latencies. These requirements are, however, hard to meet with
conventional means. First, the number of IO pins or bumps available to “escape” a chip
is limited, both technologically (difficulty to fabricate pins or bumps of ever smaller
sizes) and economically (fabrication and packaging costs balloon as bumps are
miniaturized). Second, the volume immediately available around the chip is inherently

© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 89–97, 2017.
https://doi.org/10.1007/978-3-319-67630-2_7

limited. High data-rate signals are therefore required to overcome pin/bumps limita-
tions, and to be routed over possibly long distances to reach the most distant memory
modules. Meeting these requirements requires complex thus transistor and power avid
IO blocks. If pushed too far, these IO blocks can reclaim the transistors made available
by reducing caches, thereby negating the advantages of a heavily off-chip memory
based approach.

The photonic solution has been considered to meet high bandwidth and longer
communication distance requirements of modern memory systems at a lower transistor
and area costs [2–5]. Chip integrated silicon photonics (SiP) optical modulator and
receivers have been demonstrated. “Optical pins”, i.e. fiber-chip optical couplers, to be
disposed around the die, have similarly been shown. Processors and memory can be
connected to the photonic IOs through monolithic integration [6], flip-chip bonding [7],
and through-silicon via [8–10], as illustrated in Fig. 1. All combined, these technolo-
gies should enable IO blocks offering wide bandwidths over distance up to the meter.
With *600–800 Gb/s per “pin”, i.e. per fiber [11, 12], and up to 100 fibers per chip, a
total bandwidth of 10 TB/s (5 TB/s bi-directional) can be made available to the
compute resources concentrated on a single chip. 5 TB/s bi-directional allows for
instance a 10 TeraFLOPs many-core chips to received *0.5 byte/FLOP, a desirable
metric.

In addition to providing the necessary bandwidth, optical interconnects can
moreover offer an extra level of re-configurability to future memory system through
optical switching [13, 14]. An optical switch, similarly integrated within a chip using
silicon photonics, can be inserted between the compute chip optical IOs and the
memory modules. In this paper, we investigate the benefits of such optically recon-
figurable memory systems. We show how such an optical switch can be used to convey
more effectively data from memory modules to the cores of a many-core chip.

2 Memory Traffic Induced Bottlenecks

We start by considering a system composed of multiple (i) cores and (ii) memory
gateways interconnected with a Network-on-Chip NoC with a 2D mesh topology. Each
memory gateway is assumed to lead to a unique memory module. Still from a

Processor Core

Through-Silicon Via

Photonic
Chip

Processor
Chip

Memory
Chip

Photonic Control Logic

Modulator Waveguide I/O pad

Memory Die

Switch Photodetector

BCB

Fig. 1. Integration of photonic and electronic chips using through-silicon-via (TSVs).

90 H. Guan et al.

programmer’s perspective, the ideal case would consist in having all memory resources
monolithically available in a single memory module, accessible over a unique gateway.
However, despite recent drastic improvements, the bandwidth (byte/s) and storage
capacity (bytes) of a single memory module are by far too limited to satisfy require-
ments of modern many-core processors. Second, such a “memory monolith” would
lead to a major traffic imbalance once connected to a 2D-mesh organized NoC. Hence,
all the data-traffic to and from this module would concentrate on a single spot of the
NoC intersection, forcing one to over-dimension the NoC, or adopt an ad-hoc NoC
topology. To provide adequate amounts of bandwidth and capacity to the cores,
multiple modules are connected to the processor in parallel. For example, Intel “Knight
Landing” Xeon Phi has no less than 10 distinct gateways leading to as many inde-
pendent memory modules [15]. These multiple gateways can be disseminated across
the NoC, which helps to more harmoniously inject or eject traffic.

Nevertheless, even with distributed traffic injection/ejection, the system remains
potentially subject to severe memory traffic induced NoC bottlenecks. Two main types
of bottleneck can be pinpointed: those arising when multiple cores need to commu-
nicate with one or more diametrically opposed gateways, and the bottlenecks caused by
intensive exchanges between many cores and a unique “victim” gateway. In the first
case, the data flows traversing the NoC may saturate the bisection bandwidth if they are
too many (Fig. 2(a)). In the second case, the part of the NoC located around the victim
gateway is saturated (Fig. 2(b)). In both cases, NoC bottlenecks prevent the “expen-
sive” off-chip bandwidth to be fully utilized. Moreover, long journeys across the NoC
(as depicted in either Fig. 2(a) or Fig. 2(b)) also increase latency of memory requests,
which is also detrimental to performance.

Adversarial situations as depicted in Fig. 2 can be avoided or limited by means of
shrewd allocation of memory addresses across the cores: as long as cores exclusively
communicate with the nearest memory gateway, no excess traffic is injected onto the
NoC. Realizing a precise and always coherent allocation of memory blocks is, how-
ever, a hard task, especially when processes may be shifted around by the OS over their
lifetime. Of course, bottlenecks can also be solved by mean of NoC bandwidth
over-provisioning. However, in relationship with the argument developed in the
introduction, the number of transistors allocated to the NoC is to be minimized.

memory 1

memory 2

memory 3

memory 4

gateway 1

gateway 3

(a)

gateway 1 memory 1

memory 2

memory 3

memory 4

(b)

Fig. 2. (a) Multiple cores need to communicate with one or more diametrically opposed
gateways (b) the part of the NoC located around the victim gateway is saturated.

Reconfigurable Silicon Photonic Interconnect for Many-Core Architecture 91

To relieve the NoC from memory induced bottlenecks without bandwidth
over-provisioning and without shifting the burden onto the programmer and/or com-
piler, an optical switch is inserted in between the gateways and the memory modules.
The rationale of the concept can be described through a few examples: in situations
where the memory storage available in a single module is actively solicited by
numerous cores, the SiP switch can be used to shuffle the mapping between gateways
and the heavily solicited module (Fig. 3). This module’s gateway successively “ap-
pears” in proximity of every core, permitting to distribute the memory traffic over
different sections of the NoC and thereby alleviating the bottlenecks.

The SiP switch can also be leveraged to reduce the distance between cores and
gateways, as shown in Fig. 4(a) and (b). The geometrical organization of many-core
processors obliges requests to travel over a variable and potentially large number of
NoC links. In architectures involving 4 memory gateways located in the edge middle,
as depicted in Figs. 2 and 3, the hop distance between a core and a gateway can range
from 1 (minimum hop counts) to 3/2n–1 (maximum hop counts) in an n-by-n mesh
network, as shown in Fig. 4(c). In the worse-case the traffic scales with 1.5n. Figure 4
(c) also shows the average memory access hop count, across all cores, when each core
uniquely accesses (i) its nearest memory interface (perfect locality – scaling as 0.31n),
equally accesses all the memory interfaces (uniform access – scaling as 0.75n), or
(iii) accesses its farthest memory interface (adversarial access – scaling with n). There
is a wide gap between perfect locality and adversarial accesses. Asymptotically,
adversarial memory traffic scales 3 times faster than perfectly local traffic, thus calls for

gateway 1 memory 1

memory 2

memory 3

memory 4

memory 1

memory 2

memory 3

memory 4

gateway 1

4x4 switch

tn

gateway 2

4x4 switch

tn+1

memory 1

memory 2

memory 3

memory 4

gateway 3
4x4 switch

tn+2

memory 1

memory 2

memory 3

memory 4

gateway 4

4x4 switch

tn+3

memory 1

memory 2

memory 3

memory 4

Time

(a)

)c()b(

(d)(e)

Fig. 3. (a) 21-core 4-memory system without photonic switch (b) At time tn, traffic from
memory 1 is directed to gateway 1, feeding the nearby processor cores, (c) at time tn+1, the traffic
from memory 1 is re-shuffled to gateway 2, (d) at time tn+2, the traffic from memory 1 is
re-shuffled to gateway 3, (e) at time tn+3, the traffic from memory 1 is re-shuffled to gateway 4.

92 H. Guan et al.

3 times larger NoC bandwidth to obtain the same congestion. Of course, inserting a SiP
switch will not turn any adversarial situation into a perfectly local one, yet the room for
progression is appreciable. Even the SIP switch reduces the hop count by a factor of
1.5x “only” (instead of 3x), the NoC bandwidth can be reduced by 1–1/1.5 = 33%.

Reducing the number of hops also participate to reduce the latency. Request
latencies, however, are also negatively affected, as memory traffic is interrupted
whenever the switch connectivity is adapted. To guarantee efficiency, the connectivity
of the optical switch must be adapted with coarse time granularity rather than on a
per-packet basis. However, if too coarse, the waiting time for the appropriate switch
configuration (i.e. in Fig. 3, packets issued by memory 1 and destined to gateways 2, 3
and 4) starts to dominate the latency. The choice of the time separation switch adap-
tation is thus a fine trade-off, which we explore in the next section.

3 Simulation

3.1 Simulation Parameters and Benchmarks

We use Structural Simulation Toolkit (SST) [16] to evaluate the potential of our
approach. We consider a simulation model consisting of 4 memory gateway models
and 21 core models connected in a 5 � 5 mesh network (Fig. 5). Our simulation model
is largely inspired by the Lightweight architecture model described in Voskuilen et al.
[17], which itself seeks at mimicking an Intel Knights Landing Xeon Phi architecture.

A memory gateway (MG) tile consists of a router and a directory controller, which
controls an external DRAM clocked at 300 MHz. A core tile consists of one SST
Miranda lightweight processor, one router, 32 KB of L1 cache and 256 KB of L2
cache (private cache). The clock frequency of both cores and NoC is assumed to be
2.1 GHz. Considering, for instance, a width of 8 B for each direction, and a 25% NoC
communication overhead (header, flow-control, etc.) this results in a bidirectional NoC
link bandwidth of 12.6 GB/s (6B � 2.1 GHz). We assume only the read (from
memory to the NoC) direction to use the SiP switching functionality, while the write
direction still uses fixed connections. Miranda cores run a synthetic benchmark,

gateway 1

Core (2,1)

memory 1

memory 2

memory 3

memory 4

memory 1

memory 2

memory 3

memory 4

gateway 3 4x4 switchCore (2,1)

5 7 9 11 13
0

5

10

15

20

NoC Dimension

N
u

m
b

er
 o

f
H

o
p

s

Minimum
Perfect Locality
Uniform Access
Adversarial Access
Maximum

(a) (b) (c)
1.5

1

0.75

0
0.31

Fig. 4. (a) A many-core multi-memory architecture using electronic interconnects. Red path: 5
hop on NoC for memory 1 to reach core (2, 1), (b) a many-core multi-memory architecture using
a 4 � 4 switch as reconfigurable memory fabric. Green path: 1 hop for memory 1 to reach core
(2, 1), (c) number of average hops of all the cores vs. NoC dimension.

Reconfigurable Silicon Photonic Interconnect for Many-Core Architecture 93

STREAM, intended to measure sustainable memory bandwidth for simple vector
kernels. To mimic a situation where a single DRAM module is heavily solicited by all
cores, the address space to be accessed by the benchmark is set to reside in the first
memory module exclusively.

Link re-configurability is modeled in a simplified way: the heavily accessed memory
module is connected to the different gateways in a round-robin fashion. A change of
gateway is triggered once a predefined number of memory responses M have been sent
to the current gateway. The time the switch stays in the same configuration is therefore
traffic dependent. For example, if M is fixed to 128, the switch remains at least for
1/300 MHz ∙ 128 = 426 ns in the same state, which is long enough to amortize link
unavailability times (resulting from the SiP reconfiguration) up to *100 ns. In general,
the larger M, the longer the switch stays in the same configuration.

3.2 Simulation Results

The execution time of stream kernel with fixed memory injection point vs.
TDM-switched injection point is shown in Fig. 6(a). We observe that the TDM-switched
injection achieves lower execution time than the fixed injection when NoC bandwidth is
available in limited amounts, i.e. inferior to 15.5 GB/s (equivalent to 10B width). This is
expected: since the NoC traffic is linearly reduced by the reduced number of hops, the
architecture tolerates more traffic before reaching the congestion point.

The insertion of an optical switch allows a substantial down-grading of the NoC
bandwidth to reach the same performance level. For instance, in the ideal TDM = 0 ns
case, the bandwidth required to execute the benchmark in less than 75us is 12 GB/s,
whereas 22 GB/s are required to achieve the same performance in the fixed case
(thereby enabling a 45% under-dimensioning). Figure 6(c)–(d) compare the cumulated
load offered to the 25 routers during the simulation. The impact of the optical switch on
the load distribution appears clearly. Figure 6(b) illustrates the performance impact of
the M parameter, which dictates the frequency of switching occurrences. The NoC
bandwidth is fixed to 12 GB/s. As expected, M is subject to a trade-off and should be
selected taking the switch reconfiguration time into consideration.

Figure 7(a)–(d) show the execution time of stream benchmark when changing the
NoC switching latency (input/output NoC latency) with a 6 GB/s, 12 GB/s, 18 GB/s,
and 24 GB/s NoC bandwidth. The SiP switch permits to limit the number of hops,
and thus makes the performance less affected by potentially high per-hop latencies.

Fig. 5. Simulated 21-core 4-MG architecture.

94 H. Guan et al.

In the 24 GB/s case, where bandwidth is abundant even for the fixed case, having
variable injection points does not provide performance gains when the latency is
hidden. In contrast, when NoC latency become significant, the reconfigurable archi-
tecture allows performance improvements, even with a relatively high switch recon-
figuration time.

4 Conclusion

We showed that optical re-configurability, implemented with silicon photonic switches,
can be used to offload network-on-chips from memory traffic. This enables a reduction
of area and power budgets allocated to the network-on-chip, and guarantees an optimal

6 8 10 12 14 16 18 20 22 24
50

100

150

200

250

300

Network−on−chip link bandwidth in GB/s

E
xe

cu
tio

n
tim

e
in

 µ
s

Fixed gateway

Switch reconfiguration time=0ns

Switch reconfiguration time=50ns

Switch reconfiguration time=100ns

Switch reconfiguration time=150ns

100 200 300 400 500
40

50

60

70

80

90

of responses separating switch reconfiguration M

E
xe

cu
tio

n
 t

im
e

 in
 µ

s

Switch reconfiguration time=50ns
Switch reconfiguration time=150ns

1
2

3
4

5

5
4

3
2

1

0

5000

10000

Mesh ID X
Mesh ID − Y

N
u

m
b

er
 o

f
S

en
t

P
ac

ke
t

1
2

3
4

5

5
4

3
2

1

0

5000

10000

Mesh ID X
Mesh ID − Y

N
u

m
b

er
 o

f
S

en
t

P
ac

ke
t

(a)

(c)

(b)

(d)

Fig. 6. (a) Execution time of stream benchmark under fixed or TDM-switched memory
connections, (b) performance impact of the M parameter, (c) number of sent packet of 25 routers
in mesh topology under fixed memory connection, and (d) under TDM-switched memory
connection.

Fig. 7. (a–d) execution time of stream benchmark when changing the NoC switching latency
(input/output NoC latency) with a 4 GB/s, 12 GB/s, 20 GB/s, and 24 GB/s NoC bandwidth.

Reconfigurable Silicon Photonic Interconnect for Many-Core Architecture 95

utilization of off-chip memory links. These features are expected to mitigate the impact
of declining Moore and Dennard’s law in the near future.

Acknowledgments. This work was supported by the ASCR Office in the DOE Office of Science
under contract number DE-AC02-05CH11231, and the DARPA Microsystems Technology
Office (MTO) under the PERFECT (Power Efficiency Revolution for Embedded Computing
Technologies) program.

References

1. Wen, K., Rumley, S., Samadi, P., Chen, C.P., Bergman, K.: Silicon photonics in post
Moore’s Law era: technological and architectural implications. In: Post-Moore’s Era
Supercomputing (PMES) Workshop, Salt Lake City. IEEE (2016)

2. Beamer, S., Sun, C., Kwon, Y.J., Joshi, A., Batten, C., Stojanović, V., Asanović, K.:
Re-architecting DRAM memory systems with monolithically integrated silicon photonics.
ACM SIGARCH Comput. Architect. News 38(3), 129–140 (2010)

3. Loh, G.H.: 3D-stacked memory architectures for multi-core processors. In: 35th Interna-
tional Symposium on Computer Architecture (ISCA), pp. 453–464. IEEE (2008)

4. Sun, C., Wade, M.T., Lee, Y., Orcutt, J.S., Alloatti, L., Georgas, M.S., Waterman, A.S.,
Shainline, J.M., Avizienis, R.R., Lin, S., Moss, B.R.: Single-chip microprocessor that
communicates directly using light. Nature 528(7583), 534–538 (2015)

5. Wen, K., Guan, H., Calhoun, D.M., Donofrio, D., Shalf, J., Bergman, K.: Silicon photonic
memory interconnect for many-core architectures. In: High Performance Extreme Comput-
ing Conference (HPEC), Waltham, pp. 1–7. IEEE, September 2016

6. Sun, C., Georgas, M., Orcutt, J., Moss, B., Chen, Y.H., Shainline, J., Wade, M., Mehta, K.,
Nammari, K., Timurdogan, E., Miller, D.: A monolithically-integrated chip-to-chip optical
link in bulk CMOS. IEEE J. Solid-State Circ. 50(4), 828–844 (2015)

7. Arakawa, Y., Nakamura, T., Urino, Y., Fujita, T.: Silicon photonics for next generation
system integration platform. IEEE Commun. Mag. 51(3), 72–77 (2013)

8. Kopp, C., Bernabe, S., Bakir, B.B., Fedeli, J.M., Orobtchouk, R., Schrank, F., Porte, H.,
Zimmermann, L., Tekin, T.: Silicon photonic circuits: on-CMOS integration, fiber optical
coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011)

9. Orcutt, J.S., Ram, R.J., Stojanović, V.: Integration of Silicon Photonics into Electronic
Processes, p. 86290F. Society of Photo-Optical Instrumentation Engineers (SPIE) (2013)

10. Luo, X., Cheng, Y., Song, J., Liow, T.Y., Wang, Q.J., Yu, M.: Wafer-scale dies-transfer
bonding technology for hybrid III/V-on-Silicon photonic integrated circuit application.
IEEE J. Sel. Top. Quantum Electron. 22(6), 443–454 (2016)

11. Bahadori, M., Rumley, S., Polster, R., Gazman, A., Traverso, M., Webster, M., Patel, K.,
Bergman, K.: Energy-performance optimized design of silicon photonic interconnection
networks for high-performance computing. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), Lausanne, pp. 326–331. IEEE (2017)

12. Bahadori, M., Rumley, S., Nikolova, D., Bergman, K.: Comprehensive design space
exploration of silicon photonic interconnects. J. Lightwave Technol. 34(12), 2975–2987
(2016)

13. Minkenberg, C., Rodriguez, G., Prisacari, B., Schares, L., Heidelberger, P., Chen, D.,
Stunkel, C.: Large-scale system partitioning using OCS. In: Photonics in Switching (PS),
Florence. IEEE (2015)

96 H. Guan et al.

14. Wen, K., Samadi, P., Rumley, S., Chen, C.P., Shen, Y., Bahadori, M., Wilke, J., Begman,
K.: Flexfly: enabling a reconfigurable dragonfly through silicon photonics. In: International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), Salt
Lake City. IEEE (2016)

15. Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hutsell, S.,
Agarwal, R., Liu, Y.C.: Knights landing: second-generation intel xeon phi product. IEEE
Micro 36(2), 34–46 (2016)

16. Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., Kersey, C., Oldfield, R., Weston, M., Risen,
R., Cook, J., Rosenfeld, P., CooperBalls, E., Jacob, B.: The structural simulation toolkit.
ACM SIGMETRICS Perform. Eval. Rev. 38(4), 37–42 (2011)

17. Voskuilen, G.R., Frank, M.P., Hammond, S.D., Rodrigues, A.F.: Evaluating the Opportu-
nities for Multi-Level Memory–An ASC 2016 L2 Milestone. Sandia Report (2016)

Reconfigurable Silicon Photonic Interconnect for Many-Core Architecture 97

Instruction Set Architectures for Quantum
Processing Units

Keith A. Britt(B) and Travis S. Humble

Quantum Computing Institute, Oak Ridge National Laboratory,
Oak Ridge, TN 37830, USA

{brittka,humblets}@ornl.gov
http://quantum.ornl.gov

Abstract. Progress in quantum computing hardware raises questions
about how these devices can be controlled, programmed, and inte-
grated with existing computational workflows. We briefly describe several
prominent quantum computational models, their associated quantum
processing units (QPUs), and the adoption of these devices as accel-
erators within high-performance computing systems. Emphasizing the
interface to the QPU, we analyze instruction set architectures based on
reduced and complex instruction sets, i.e., RISC and CISC architectures.
We clarify the role of conventional constraints on memory addressing and
instruction widths within the quantum computing context. Finally, we
examine existing quantum computing platforms, including the D-Wave
2000Q and IBM Quantum Experience, within the context of future ISA
development and HPC needs.

Keywords: Quantum · Accelerator · Instruction set architecture · qubit

1 Quantum Processing Units

The realization of quantum processing units (QPUs) represents a milestone in
computing. For decades theoretical computational complexity gains using QPUs
have served as a lure to solving conventionally intractable problems. As an exam-
ple, using two different models of quantum computing Grover’s quantum search
algorithm finds a marked item in an unordered database of size N in O(

√
N)

whereas the best classical approach, a sequential search, requires O(N) [1,2].
QPUs harness these gains in algorithmic efficiency by preparing quantum

physical systems using superposition and entanglement. Superposition is a state

K.A. Britt—This contribution has been authored by UT-Battelle, LLC, under Con-
tract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for publi-
cation, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for the United States Government
purposes. The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 98–105, 2017.
https://doi.org/10.1007/978-3-319-67630-2_8

Instruction Set Architectures for Quantum Processing Units 99

of a quantum mechanical particle storing mutually orthogonal values simultane-
ously within a single physical degree of freedom, e.g., position, spin, etc. Entan-
glement is the feature that the joint state of multiple particles may be correlated
even in the absence of a physical communication channel between them. Using
superposition and entanglement, QPUs initialize, store, and process quantum
bits of information, i.e., qubits, by manipulating registers of quantum physical
systems.

The gate model (or circuit model) of quantum computation closely matches
the discrete set of operations found in conventional computing models. Sequences
of one- and two-qubit gates represent the fundamental logic for transforming a
quantum state. However, there are several unique features for quantum comput-
ing including the inability to copy, or clone, arbitrary quantum states. Thus the
number of inputs into the circuit must be equivalent to the number of outputs [3].

Several small-scale QPUs based on gate model designs have been demon-
strated and a few are available for use outside of laboratory settings. Notably,
the IBM Quantum Experience is accessible via the internet and allows users to
construct a circuit using 5 qubits and up to 80 gates per qubit [4]. This capacity
for a QPU is still only useful in verifying not-to-scale quantum algorithms and
empirical analysis of the reliability of the physical components. Interesting toy
problems, like the half-adder depicted in Fig. 1 are also possible.

Fig. 1. This quantum circuit diagram describes the implementation of a half-adder
using the gate model. This implementation was made using the QPU available from
the IBM Quantum Experience [4]. The registers Q0 and Q1 are initialized to 1 using the
X gate. Due to hardware constraints, not all qubits can serve as the target of a CNOT
operation. Therefore, several swap operations are performed to facilitate interactions
between qubits. The results of the half-adder, Sum and Carry, are output on qubits
Q3 and Q1, respectively.

Another model of quantum computation is adiabatic quantum computation
(AQC), which operates without discrete operations and no sequential constraints
on the algorithmic steps [5]. In contrast to a discrete sequences of gates, the
AQC model uses a continuous-time process during which the energetic interac-
tions between register elements changes. Provided these changes are sufficiently
slow, i.e., adiabatic, the evolution of the register can be well-defined relative to
its energy eigenstates. In particular, if the register is initialized in an energetic
ground state of the system Hamiltonian, it will remain in the energetic ground
state under adiabatic evolution. The adiabatic model of computation is equiva-
lent to the gate model in terms of computational power and the set of problems
which can be efficiently solved. This equivalence arises through the influence of

100 K.A. Britt and T.S. Humble

energetic changes on the computational state. Because the computational state
is encoded by the energy eigenstates, changing these states is equivalent to per-
forming a logical operation. The fidelity of this operation is controlled through
the duration over which the energy changes.

AQC devices are also currently available from D-Wave Systems. These quan-
tum annealing devices implement a selected subset of the AQC model that
restricts the available problems to finding the energetic ground state of an
Ising Hamiltonian. Notably, the Ising problem is NP-Hard in general and also
equivalent to a Quantum Unconstrained Binary Optimization (QUBO) problem.
The latest D-Wave 2000Q hardware system is composed of approximately 2000
physical qubits arranged in a topology called Chimera (see Fig. 2) [6,7]. This
is a sufficient number of qubits to enable direct comparison with modest-sized
domain-specific problems. There has yet to be any demonstration that the D-
Wave hardware can outperform a best-in-class classical computing system for
any particular problem type, but there have been demonstrations where the D-
Wave outperforms with respect to specific problem instances. As a means to
address the probability of erroneous computations, the current D-Wave QPU
relies on statistical sampling over repeated runs of identical programs to boost
the confidence of observing the correct solution.

Fig. 2. The D-Wave Chimera graph in which each node represents a qubit and each
edge represents a coupler. The D-Wave 2000Q, contains approximately 2000 qubits,
expanding the grid of K4,4 unit cells from 4× 4 as shown here to 16× 16.

Practical quantum processing is expected to require tens of thousands of
qubits or more to solve problems with real world implications. The problem
sizes for which quantum systems will surpass conventional computing system is
still largely unknown due to the influence of engineering constraints on QPU
performance. Nevertheless, a large QPU capacity is expected to be necessary.
This requirement is underscored by additional technological realities. First, the
degree of connectivity for any qubit is likely to be limited due to hardware
fabrication constraints. This leads to the concept of virtualizing logical qubits
using many physical qubits. Second, QPUs require very low noise environments

Instruction Set Architectures for Quantum Processing Units 101

to suppress erroneous computation. This typically implies working at cryogenic
temperatures (below 1K), but even then quantum registers are vulnerable to
errors. Quantum error correction protocols are necessary to reach fault-tolerant
operation, and this incurs a substantial overhead for redundantly encoding a
logical qubit using many (virtualized) physical qubits. Finally, the large problem
sizes at which performance crossovers occur are very likely to require a large
number of intermediate variables in which the numerical representation of each
variable requires many logical qubits.

Despite their potential, QPUs are not expected to act as stand alone devices
but rather to require interactions with conventional central processing units
(CPUs) and memory. Even though universal quantum computation is theoret-
ically possible, near-term QPUs are most likely to be used as special-purpose
processors. For example, the use of QPUs as accelerators for high performance
computing (HPC) systems has already begun to mimic recent efforts with graph-
ical processing units (GPUs) and today’s leading scientific computing systems
[8–10].

To date, the CPU-QPU interface for gate-model processors has largely
focused on quantum assembly (QASM) instructions. Originally introduced as a
visual modeling language, QASM operates as a sequential, ordered list of discrete
instructions representing gates acting on qubits [11]. This language naturally
enforces the view that quantum instructions are pre-processed and queued for
execution on the quantum hardware, with all the operations in a given time slice
being executed simultaneously, e.g., within the same clock cycle. Similarly, the
special-purpose AQC device from D-Wave defines interactions between the CPU
and QPU via quantum machine instructions (QMI), a language that describes
the continuous-time change in state of the processor Hamiltonian. This means
the device settings for all the interactions between qubits are applied and exe-
cuted concurrently.

QASM and QMI are currently accepted by the quantum computing com-
munity as convenient methods for programming small-scale QPUs. Yet both
approaches are unlikely to scale to larger processor sizes due to growth in the
number of instructions and interactions defining a program and bottlenecks in
processing these instructions concurrently. In particular, we note that there is a
pending need to improve the message passing between CPU and QPU. This inter-
face raises concerns about the number of qubits and gates as well as matching the
clock between these different components. In this contribution, we address some
of the considerations for designing new instruction set architectures that may be
used to interface the CPU and QPU components, especially as these components
become more tightly integrated. Our starting point is the recognition that while
single and two-qubit gates may be easiest to implement within hardware, such
fine grain description may not be compatible with efficient, large-scale quantum
computing.

102 K.A. Britt and T.S. Humble

2 RISC and CISC

RISC architectures conform to a few main principals: segmentation of memory
and computational operations, supporting a limited number of basic operations,
instruction widths having a firm boundary, maximizing pipelining benefits, and
minimizing pipelining penalties [12]. These principals give RISC architectures
the advantage of standardization and instruction turnover efficiency, but they
limit how well RISC architectures can optimize the processing of any particular
or complex instruction sequence.

A fixed instruction width is what gives a RISC architecture the ability to
pipeline instructions and gives RISC architectures an advantage when compared
to CISC architectures for non-anticipated problem classes. As will be illustrated
below however, adhering to this fixed instruction width will limit the total usable
QPU register size.

Segmenting memory and computation is a given in AQC as the memory is
the state of the qubits (and their association to one another) and the computa-
tion is the fluctuation of system energy (or alternatively, the passage of time).
Segmenting memory and computation in a gate model QPU seems not to have
a clear analogy. In the gate model, there is no loading or copying of values into
registers between the beginning and ending of the algorithm. Quantum registers
(qubits) are simply initialized to a beginning state and then gates are applied to
the quantum registers. There are no memory operations other than initialization
and reading the final collapsed classical value.

CISC architectures follow the principals of: limited memory registers, empha-
sizing efficiency improvements through instruction creation and modification,
programmer ease, and non-standardized instruction widths [13]. CISC archi-
tectures become especially attractive in strict domain-oriented processing (like
process controllers or vector processors).

In a quantum architecture, the line between memory and computation is
inherently blurred as the computation is a process that happens to the memory
registers (of which the values cannot be copied), much like as is seen in in-place
or in-memory algorithms. However, the CISC concept of optimization through
dedicated hardware resources is something that might fit well into a QPU archi-
tecture as the use of a QPU is based on a priori knowledge that CPU resources
are theoretically inferior to the QPU in terms of processing time or resource
efficiency. Thus, a specific set of predefined functions (error correction, quantum
Fourier transform, etc.) operating on a specific set of qubits that can be cascaded
across other non-preallocated qubits, may be a feature of value in a quantum
ISA [14,15].

Limiting memory registers, for reasons outlined above, has no corollary in a
QPU. Non-standardized instruction widths may serve some purpose if predefined
functions are implemented in hardware, but the potential size of that library is
not explored in this contribution and only the need for a gate set capable of
universal quantum computation is described below. Given these considerations,
QPUs and their interfaces to classical controls don’t fit neatly into either a RISC

Instruction Set Architectures for Quantum Processing Units 103

or CISC silo as is true for most modern CPUs. However, both ISA models do
hold principals that are important in guiding how a QPU ISA should operate.

3 QPU ISA Message Considerations

In contemplating an ISA for a theoretical gate model QPU (like the IBM Quan-
tum Experience), we draw inspiration from the MIPS ISA J-type (RISC) instruc-
tion tuple of {opcode, address}. From this, we can imagine a similar ISA for
quantum hardware of the form {opcode, qubit}. Taking into account that most
circuits will require m qubit gates and that m qubit gates can be reduced to a
series of 2-qubit and 1-qubit gates, we expand this quantum ISA to the form
{opcode, target qubit, control qubit} [3]. Assuming that the number of elemen-
tal 1-qubit and 2-qubit gate types does not exceed 16, our opcode width is then
constrained to 24 [3]. Given a classical 64-bit computational and memory archi-
tecture, this leaves us 60 bits to specify our qubits. Assuming every qubit is able
to participate in any operation as either the target or the control, the target
qubit space must be the same width as the control qubit space. Thus, we have
30 bits to specify our target qubit and 30 bits to specify our control. This gives
us a hard limit as to how many physical qubits can be used by our system, 230 or
approximately 1.0737 ∗ 109. Therefore, a 64-bit classical computing architecture
limits us to a billion qubit system.

The most obvious solution to this ceiling would be to implement a 128-bit
processing and memory ISA, which would expand our addressable qubits to 262

or 4.6117 ∗ 1018. However, as of 2017, Intel, AMD, and Arch all have publicly
stated that there are no current plans to develop a 128-bit processor due to the
lack of need. There are possibilities for solutions under the umbrella of a 64-bit
architecture. Two qubit gates could be addressed via multiple ISA messages,
allowing for 260 qubits. This solution would require message management and
correlation at the compiler (likely) or even the programmer level (less likely).
In addition, this multiple message scheme might require the QPU to adhere
to an Execute-Wait-Execute model that would likely reduce the coherence of
the qubits in terms of number of gates before decoherence, limiting the depth
(length) of quantum circuits.

Additionally, the concept of multiple classical controllers attached to a single
QPU is a possibility, in essence dividing the QPU into several different sub-
QPUs that could be bridged together when needed [9]. This scheme would seem
to require synchronizing the controllers at the microsecond or even nanosecond
level given today’s quantum processing technology. In addition, it would seem to
imply that there would be specific qubits that are special and exclusive in terms
of their spatial relation to the adjoining sub-QPUs and this would complicate
instruction compilation, possibly necessitating a need for programmer knowledge
of the qubit hardware topology or artificially shrinking the size of quantum
registers available for logical computation.

We can draw inspiration from the D-Wave 2000Q concept of QMI when
contemplating an ISA for an adiabatic quantum computer. The structure of a

104 K.A. Britt and T.S. Humble

QMI instruction is {qubit, qubit, value} where if the first and second qubit are
equal, the value is the weight to assign to the qubit and if the first and second
qubit are not equal, the value is the strength to assign to the coupler between
the first qubit and second qubit. In addition to the QMI instructions is a header
line specifying metadata about how many QMIs are being used. If we strip away
the header line (which seems to be an unnecessary construct not at all vital to
the adiabatic algorithm), we have what looks to be a very RISC-like architecture
where the instruction widths are uniform and there is a strict segmentation of
memory and computation operations. Issues of limited operations types and
pipelining really don’t fit into the adiabatic model as there is no segmentation
of time or function within an adiabatic anneal.

While we don’t explore how these instructions are currently passed to the
quantum hardware, we theorize that the {qubit, qubit, value} is contained in
a single message. It has been demonstrated that the current bits of precision
(BOP) available in tuning a qubit or coupler in the D-Wave architecture is
10 BOP, which gives us a width for value [16]. While hardware connectivity
constraints don’t allow any arbitrary physical qubit to interact with another
arbitrary physical qubit, any qubit active in the D-Wave architecture can fill the
role of the first or second qubit, thus we must assume that the remaining bits of
the message are equally divided between the first and second qubit. Assuming a
64-bit architecture, each qubit would be allocated 27 bits of width, allowing for
227 or 1.34217728∗108 qubits in the system which would allow a fully connected
system of approximately 4096 logical qubits if the physical qubits had the same
degree of inter-unit-cell connectivity and double the intra-unit-cell connectivity
as available in the D-Wave 2000Q [7].

4 Conclusions

In examining how a QPU might fit into an HPC infrastructure and the neces-
sary interface between classical instructions and quantum processing, we describe
potential ISAs for both a gate model QPU and adiabatic model QPU. Our QPU
ISAs used a fixed-width message size of 64-bits that if implemented as described
would limit the addressable size of a gate model QPU to approximately 1 billion
to 4.5 billion qubits and the addressable size of an AQC QPU to approximately
134 million qubits. Considerations for logical embedding due to multi-qubit vari-
able types, physical qubit connectivity limitations, and error correction condense
the logical qubit work-space in both models.

In trying to create an analogy to classical RISC and CISC architectural fea-
tures, we find that gate model pipeline processing doesn’t seem to fit and a
fixed-width message size isn’t essential, but might be advantageous in trying to
maximize the coherence time of a quantum circuit. Also, issues of segmenting
memory from computational tasks are far less of an issue as memory and com-
putation are naturally conjoined (or disjoined depending on perspective) in both
the gate model and AQC. The concept of allocating specific quantum register
resources to predefined tasks may serve a useful purpose in the gate model (but
not likely AQC) as it does in a classical CISC architecture.

Instruction Set Architectures for Quantum Processing Units 105

Our recommendation is not to orient towards a RISC or CISC architecture
when designing future QPU ISAs, but rather we suggest considering the long
term consequences of the quantum-classical interface, in particular the message
format, on small scale QPUs that might grow into large scale QPUs. Of particular
importance is whether the QPU ISA will limit the addressable quantum register
size and place an artificial ceiling on QPU scaling.

References

1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC
1996, pp. 212–219 (1996)

2. Hen, I.: Realizable quantum adiabatic search [quant-ph] arXiv:1612.06012 (2016)
3. Nielsen, Michael A., Chuang, Isaac L.: Quantum Computation and Quantum Infor-

mation: 10th Anniversary Edition. Cambridge University Press, New York (2011)
4. IBM Research Quantum Experience. http://www.research.ibm.com/quantum/
5. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adi-

abatic evolution. Report MIT-CTP-2936, Massachusetts Institute of Technology
(2000)

6. The D-Wave 2000QTMSystem. https://www.dwavesys.com/d-wave-two-system
7. Hamilton, K.E., Humble, T.S.: Identifying the Minor Set Cover of Dense Connected

Bipartite Graphs via Random Matching Edge Sets (2016). arXiv:1612.07366
8. Top500.org: Global Supercomputing Capacity Creeps Up as Petascale Systems

Blanket Top 100. Top500.org (2016)
9. Britt, K.A., Humble, T.S.: High-performance computing with quantum processing

units. J. Emerg. Technol. Comput. Syst. 13(3) (2017). Article 39
10. Fu, X., Riesebos, L., Lao, L., Almudever, C.G., Sebastiano, F., Versluis, R., Char-

bon, E., Bertels, K.: A heterogeneous quantum computer architecture. In: Pro-
ceedings of the ACM International Conference on Computing Frontiers (CF 2016),
pp. 323–330. ACM, New York (2016)

11. Chuang, I.: qasm2circ. https://www.media.mit.edu/quanta/qasm2circ/
12. Patterson, David A.: Reduced instruction set computers. Commun. ACM 28(1),

8–21 (1985)
13. George, A.D.: An overview of RISC vs. CISC. In: Proceedings of The Twenty-

Second Southeastern Symposium on System Theory, pp. 436–438 (1990)
14. Calderbank, A.R., Shor, Peter W.: Good quantum error-correction codes exist.

Phys. Rev. A 54(2), 1098–1105 (1996)
15. Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and

applications. In: Proceedings 41st Annual Symposium on Foundations of Computer
Science, pp. 5115–525 (2000)

16. Britt, K.A., Humble, T.S.: QUBO computational reliability via hamiltonian engi-
neering. In: Adiabatic Quantum Computing Conference (2016)

17. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 15(103), 150502 (2009)

http://arxiv.org/abs/1612.06012
http://www.research.ibm.com/quantum/
https://www.dwavesys.com/d-wave-two-system
http://arxiv.org/abs/1612.07366
https://www.media.mit.edu/quanta/qasm2circ/

Eliminating Dark Bandwidth: A Data-Centric
View of Scalable, Efficient Performance,

Post-Moore

Jonathan C. Beard(B) and Joshua Randall

ARM Research, Austin, TX, USA
{jonathan.beard,joshua.randall}@arm.com

Abstract. Most of computing research has focused on the computing
technologies themselves versus how full systems make use of them (e.g.,
memory fabric, interconnect, software, and compute elements combined).
Technologists have largely failed to look at the compute system as a
whole, instead optimizing subsystems mostly in isolation. The result, for
example, is that systems are built where applications can only ask for
a fixed multiple of data (e.g., 64-bytes from DRAM), even if what is
required is far less. This is efficient from a hardware interface perspec-
tive, however, it results in consuming valuable bandwidth that is never
utilized by the core; this hidden bandwidth is effectively dark to the sys-
tem. The causes of dark bandwidth are systemic, built into the very core
of our virtual memory abstractions and memory interfaces. Continued
focus on newer, revolutionary memory technologies to improve surface
performance characteristics without a systems focus on reducing data
movement will simply push this problem off onto future systems. This
paper examines the problem of dark bandwidth and offers a holistic app-
roach to reduce overall data movement within future compute systems.

1 The Problem

Computation is typically not the bottleneck that it once was. Computing itself is
faster and less hungry (in terms of energy [7]) than the memory and interconnect
that supply the data for computation. Much computing research has focused on
providing efficient compute, resulting in the compute cores found in today’s CPU
sockets. The aforementioned compute devices perform very well for SPEC [4] and
LINPACK [3] workloads, however, the compute devices and accompanying sub-
systems optimized for these workloads do not necessarily perform well for the
applications executed by many HPC [2] and big data systems [12]. Two things are
clear: first, architecture researchers have produced a myriad of ways to compute
things efficiently, and second, research into ways to feed compute has not kept
up. The technical community has been working on a false thesis: that compute
systems efficiently utilize the bandwidth provided to the core by the memory

J. Randall—Partially supported by U.S. DoE FastForward-2 Contract - Subcontract
No. B609229.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 106–114, 2017.
https://doi.org/10.1007/978-3-319-67630-2_9

Eliminating Dark Bandwidth 107

subsystem. Not only does research suggest that this is often not the case, it shows
that many applications make use of only a small fraction of the data moved to
the compute elements [10]. The trend towards heterogeneous accelerators only
serves to exacerbate the problem as bus length and buffering increase. Recovering
this lost bandwidth and reducing superfluous data movement gives the system
more usable bandwidth for real computing. It is not just the size and speed of
the memory technology that matters, it is how you use it that will enable future
systems to utilize what is effectively dark or hidden memory bandwidth.

The type of compute elements today range from simple in-order cores to mas-
sively complex out-of-order ones. The compute elements within these go from
small arithmetic units to heavyweight vector engines. General purpose CPUs
are hobbled by the very fact that they must be general. For many applica-
tions the general purpose has given way to better adapted hardware [9]. The
general purpose graphics processing unit (GPGPU) revolution was launched by
the realization that vector units with many threads could operate on specific
workloads very efficiently without the constraints of things like having to run
an operating system. Many other accelerators have since become mainstream,
including FPGAs. Data must still be delivered to the accelerator, just as it must
be delivered to the CPU core itself. The main difference between the CPU, and
accelerators like the GPU is that memory hand-off must be coordinated by an
external agent: the CPU. No matter how efficient engineers and researchers make
cores and accelerators, the model of paging in data from memory one DDR burst
at a time [5], all coordinated by the general purpose core, limits the efficiency
and scalability of all future systems intended for more sparse workloads.

Cache line utilization is one way of measuring the bandwidth utilization of a
DRAM burst given that the burst and cache line granularity typically align (e.g.,
64-bytes). On average, when measured with profiling tools (e.g., DynamoRio),
HPC application utilization for the L1-D cache is between 20–80%, with spikes
for kernels like DGEMM up to 100% during “hot” loops. The numbers for the
L2 cache shift only slightly, with kernels like DGEMM exhibiting high reuse
at this level as well. The worst offenders are applications like GUPS whose
L1-D utilization stays at around 20%. Less bandwidth intensive applications
like LULESH also have room for improvement as elements from a lattice must
be gathered to contiguous memory and then scattered again. Simply increasing
the available bandwidth, as many memory and interconnect focused technologies
do, does nothing to address the critical problem of wasted data movement.

Even when a cache line is fully utilized, often it is quickly evicted and never
used again because of high reuse distance. Reuse distance is the amount of
relative time or number of bytes, depending on the metric used, between one use
of a data element and another. Even when cached data are fully utilized, often
the reuse distance is high. Most applications have varying phases where reuse can
range from immediate (zero bytes between subsequent accesses), to kilobytes, all
the way to infinity (perfectly streaming accesses). To make the most out of a
modern hierarchy, it is critical that systems designers find a way to maximize
the physical proximity of highly reused dense data to the best compute element

108 J.C. Beard and J. Randall

possible, while providing the best bandwidth possible for the streaming data
(high reuse distance). A cache hierarchy, which on a per component basis is
generally static in size, is a poor structure for workloads where reuse distance
scales with the data set size.

Sparse applications have both low utilization and high reuse distances. Irreg-
ular applications often share the aforementioned properties, but they also typ-
ically have unpredictable data access patterns (i.e., they are data dependent).
Sparse and irregular applications are found both in HPC (e.g., lattice and geo-
metric multigrid calculations) and big data analytics (e.g., MapReduce, data-
bases). These applications often explore only a few data points within a data
region (e.g., 4 KB page). In current systems, this often results in a page-sized
region being loaded from network or nonvolatile memory into DRAM (through
the main processor core) and then back to the core for computation. This results
in a lot of data movement (e.g., from source, to CPU, to DRAM, and then back
to core). This is very inefficient, however, the problem is worse. Performance-
enhancing technology such as the hardware prefetch unit, as well as the DDR
burst length itself, often inadvertently evict useful lines from the cache hierarchy,
while allowing useless data to hitchhike into the cache, wasting scarce bandwidth.
For off-chip accelerators (e.g., GPGPUs), additional hand-off and coordination
of virtual pages must also be managed, adding even more overhead.

Memory technologies are proverbially five years out; that is they often per-
petually remain science projects that fail to scale to production. Even when tech-
nologies do make it to production, more revolutionary technologies have a hard
time competing with incremental improvements on a cost and performance basis.
The time necessary to develop revolutionary technologies (e.g., MRAM) often
makes possible for incremental improvements in legacy technologies to outpace
the improvements that would come through adopting a newer, more revolution-
ary one. Even when new technologies come to market (dark bandwidth), they
will inherit systemic flaws that result in wasted data movement. Ignoring the
system deficiencies described in this section when bringing new technologies to
market, only means pushing the data movement problem into the future rather
than solving it.

2 Solutions

Data movement dominates computation at scale [1]. There are a few options
to increase bandwidth utilization and reduce data movement. Some researchers
suggest that byte-level addressing is the key to improving bandwidth utiliza-
tion. While true, when faced with the harsh reality of engineering a system with
addressing commands that equal the size of the data requested, at face value,
this idea seems quite impractical. A creative solution that arrives at the same
effect is in-/near-memory rearrangement [8], which effectively delivers byte-level
addressing through bulk data requests. Processing in- or near-memory (PINM)
is another solution quickly gaining traction with both academic and commer-
cial researchers. The idea, however promising, is faced with many hurdles.

Eliminating Dark Bandwidth 109

Increased proximity of memory cells and compute elements raise the risk of
heat-induced memory leakage, decreasing efficiency. In modern systems, the vir-
tual memory system is also an enemy of those wishing to reduce data movement.
What engineers developed to protect systems, improve multiplexing, and ease
system programmability, now hobbles scalability and performance.

2.1 Chopping Down Sparse Data

The efficiency of large, heavyweight compute units is extremely hard to beat.
A wide vector unit can churn through packed-data computation extremely well.
The issue with these is that data often does not come packed, so programmers
often use gather-scatter instructions. These are used to pack data from multiple
locations into a single vector register and then return it back to non-contiguous
memory. In practice, gather-scatter instructions are not as efficient as they could
be. The cache lines are still underutilized (only the register is packed) leading to
corresponding unused memory bandwidth (see Fig. 1). The only way to reduce
the data movement for applications in need of heavyweight compute (e.g., vector
units) with middle (8 KB) to high (>128 KB) reuse distances and potentially low
cache line utilization is through in-/near-memory or in-storage rearrangement
(there are better techniques for workloads with less compute intensity) (Fig. 2).

Fig. 1. Image A above shows the data movement pattern for a traditional gather
instruction as implemented on many architectures. Cache lines are gathered into the
cache hierarchy one-by-one, then offsets are accessed to pack data into a vector register.
Image B shows the potential for in- or near-memory rearrangement, which requires
relatively simple logic near memory to compact data from S before it reaches the
cache hierarchy S’.

110 J.C. Beard and J. Randall

Fig. 2. Benchmark of a random gather across a 1 GB data set using a leading vector
architecture’s gather instruction to compare to an emulated near-memory rearrange-
ment. Near-memory rearrangement results in a ∼50% reduction in L1-D misses and
a ∼30% reduction in LLC misses compared to a standard gather instruction. Both
results are normalized to the same code run without a gather instruction. In all cases,
the hardware and software stacks are kept the same.

2.2 Processing In- or Near-Memory

For applications with middle to high reuse distances and/or low cache line uti-
lization that can make do with less power hungry compute, PINM is a good
option. As an example, if an architecture has a load width of 128b/cycle, the
reuse distance of 8 KB gives 64-cycles to compute in cache. At a distance of
64 KB this grows to 512-cycles, which is more than enough for in-cache process-
ing (assuming a reasonable access time for caches). Many big data applications
fall into this category, as do database and string processing (e.g., genomics)
workloads. The options for compute elements within a PINM system range from
simple fixed-function state machines to putting heavyweight cores in- or near-
memory. The line blurs between what is PINM and what is simply a processor
with a shorter bus or giant cache made of high bandwidth memory. The defi-
nition that best fits is a processor closer to memory that is supplemental to a
general purpose processing core (essentially an accelerator for sparse and irregu-
lar applications). There are two possible locations for PINM, on- or off-chip. The
on-chip devices can be split into in-cache or in-system cache. The main advan-
tage for on-chip is the potential availability of low-latency links to retrieve virtual
to physical address translations. Off-chip devices fall into multiple categories as
well, in-component devices (e.g., SSD), in-controller (e.g., external memory con-
troller, interconnect), and in-memory devices (Fig. 3). A primary disadvantage
for off-chip devices: high latency off-chip virtual memory translation.

Functional considerations for on-chip PINM devices are many, especially
when coordinated from a general purpose core. Modern processors require things
like out-of-order issue, exception handling, and for PINM outside of the coher-
ence network (i.e., either on-chip or off-chip RAM) careful handling of virtual-to-
physical address translation is required. Building a PINM in-cache is relatively
simple, coordinating it as a system is quite difficult. With current virtual mem-
ory systems, off-chip PINM is hobbled by the fact that the software must be
coordinated to know where the memory is located. This leads to several issues

Eliminating Dark Bandwidth 111

that must be considered outside of those listed for on-chip PINM. PINM with
current virtual memory systems either must rely on the software to place pages
statically in memory for the PINM device, restrict operation to huge pages, or
rely on an input/output memory management unit (IOMMU). The IOMMU
translation bottlenecks for GPGPU found in literature largely apply to PINM
(e.g., 20x higher translation cost, 1–20 MPKI [6,11,12]), with some exceptions.
For PINM, the ideal processor technology is not the heavyweight GPGPU type
core, but many small simple cores. The access patterns are also different, instead
of lock-step data parallelism, PINM targets very sparse memory access patterns.
The usual solution of increasing page size (successful for GPGPU) typically fails
for PINM (Fig. 4).

Fig. 3. PINM involves sending instructions closer to where the data rests within the
memory device versus bringing the data to the core. Lightweight PINM cores could
exist at multiple places in the memory hierarchy.

The simplest embodiment of PINM hands a single page at a time to each in-
/near-memory processor (to reduce logic needed to handle contention), the use of
huge pages in this scenario limits the number of cores that can be utilized without
extra synchronization hardware, limiting the overall parallelism; ideally a smaller
page size (e.g., 4 KB) would be used. Figure 4 demonstrates the inefficiencies of
virtual memory for a PINM system using the preferred 4 KB page size. Removing
the bottleneck of virtual memory would enable PINM technology to be more
efficient. Without fixing the memory system, PINM technology will be forced
to limit solutions to a select range of applications (e.g., in-memory databases)
or force adoption of more restricted programming models (e.g., PGAS) to work
around the fundamental limitations of page-based virtual memory. The same
solution will likely enable faster, simpler, and easier implementation of a unified
memory space for accelerators (including ease of handling pages in virtualized
GPGPU clusters). The time is ripe for a rethink of virtual memory and a rethink
for the relationship of the operating system, memory system, and runtime.

112 J.C. Beard and J. Randall

3 A Common Problem: Translation

The biggest hurdle to implementing the data movement reduction technologies
described in the last section is page-based translation. The problem with page-
based translation is, first and foremost, the fixed-size pages themselves (pages
limit addressability and parallelism for tightly coupled accelerators and PINM
devices). Secondly, the reliance on page table caches for non-general purpose
compute elements becomes a bottleneck for all out-of-core accelerators [11]. As
architectures vie for more efficiency, the trend of late is towards specialized accel-
erators. In order to maximize the utility of accelerators, something must change
in the virtual memory system. Memory fabrics cannot continue to ignore the
software co-design to optimize the extension of the virtual memory abstraction
to all compute elements. Satisfactory solutions that would enable page-based
virtual memory to extend outside of general purpose cores (e.g., accelerators) in
a low overhead manner are yet to be found. The current state of the art results
in ∼1.5-cycles of translation overhead per cycle of compute for a PINM sparse
compute accelerator device (see Fig. 4). Nothing short of a rethink of the virtual
memory system will solve the problem.

Fig. 4. Projected cycles used on translation versus execution, estimated by measuring
actual application miss rates on a leading accelerator architecture (64-entry L1 TLB),
assuming a 1 GHz clocked multi-core main processor, an average of 582-cycles per
IOMMU page walk (times above estimated assuming a 60% IOMMU hit rate), PCIe
ATS protocol, and 50-cycles PCIe latency round trip (optimistic). No latency is taken
into account for page source (e.g., disk, RDMA), nor DRAM page open, making this
graph optimistic. Execution time does not include time spent stalled.

Reliance on a set of fixed-size pages (even with an assortment of sizes) has
the unfortunate characteristic that each page entry represents only N -bytes of
memory and there can only be a set number of entries in the physical hardware.
This results in the reach (range of addresses addressable by the translation look-
aside buffer, TLB) being fixed by the number of entries in the TLB multiplied

Eliminating Dark Bandwidth 113

by the size of the largest page size supported. TLB size has grown (as well as
number of entries and associativity), however, even the largest of TLBs can only
address a small fraction of the available address space (e.g., 1TB). What happens
when the memory space is a petabyte, then exabyte? It should be apparent that
the lack of TLB reach is quickly becoming an issue for general purpose cores in
addition to out-of-core devices. Any rethink of page-based virtual memory will
clearly pay dividends for all compute elements, not just accelerators.

4 Conclusion: It’s the System

Pulling the memory hierarchy into the compute system as a first class citizen, not
only to feed cores but as an active participant, will enable extracting more per-
formance from less revolutionary memory and compute technologies. Reducing
overall system data movement will likely net system designers far more over the
next decade than any revolutionary technology changes. Enabling small amounts
of computation in- or near-memory along with fixing the virtual memory system
could enable future systems to recapture dark bandwidth. Doing all of this, while
not breaking all extant software is a huge, but not insurmountable, challenge.
It’s not just the memory technology or compute alone that should be the focus,
it’s how the compute system as a whole uses it.

References

1. Data Movement Dominates. https://goo.gl/rro35D. Accessed Mar 2017
2. Dongarra, J., Heroux, M.A.: Toward a new metric for ranking high performance

computing systems. Sandia Report, SAND2013-4744 312 (2013)
3. Dongarra, J.J., Moler, C.B., Bunch, J.R., Stewart, G.W.: LINPACK Users’ Guide.

Society for Industrial and Applied Mathematics, Philadelphia (1979)
4. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.

Architect. News 34(4), 1–17 (2006)
5. Jacob, B., Ng, S., Wang, D.: Memory Systems: Cache, DRAM, Disk. Morgan Kauf-

mann (2010)
6. Karakostas, V., Gandhi, J., Cristal, A., Hill, M.D., McKinley, K.S., Nemirovsky,

M., Swift, M.M., Unsal, O.S.: Energy-efficient address translation. In: 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pp. 631–643. IEEE (2016)

7. Kestor, G., Gioiosa, R., Kerbyson, D.J., Hoisie, A.: Quantifying the energy cost of
data movement in scientific applications. In: 2013 IEEE International Symposium
on Workload Characterization (IISWC) (2013)

8. Lloyd, S., Gokhale, M.: In-memory data rearrangement for irregular, data-intensive
computing. Computer 48(8), 18–25 (2015). doi:10.1109/MC.2015.230

9. Markov, I.L.: Limits on fundamental limits to computation. Nature 512(7513),
147–154 (2014)

10. Srinivasan, J.R.: Improving cache utilisation. Technical report, University of Cam-
bridge, Computer Laboratory (2011)

https://goo.gl/rro35D
http://dx.doi.org/10.1109/MC.2015.230

114 J.C. Beard and J. Randall

11. Vesely, J., Basu, A., Oskin, M., Loh, G.H., Bhattacharjee, A.: Observations and
opportunities in architecting shared virtual memory for heterogeneous systems.
In: 2016 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 161–171. IEEE (2016)

12. Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi, Y.,
Zhang, S., et al.: Bigdatabench: a big data benchmark suite from internet services.
In: 2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), pp. 488–499. IEEE (2014)

Towards an Integrated Strategy to Preserve
Digital Computing Performance Scaling Using

Emerging Technologies

Dilip Vasudevan(B), Anastasiia Butko, George Michelogiannakis,
David Donofrio, and John Shalf

Computer Science Department, Lawrence Berkeley National Lab,
One Cyclotron Road, Berkeley, CA, USA

{dilipv,abutko,mihelog,ddonofrio,jshalf}@lbl.gov

Abstract. With the decline and eventual end of historical rates of litho-
graphic scaling, we arrive at a crossroad where synergistic and holis-
tic decisions are required to preserve Moore’s law technology scaling.
Numerous emerging technologies aim to extend digital electronics scal-
ing of performance, energy efficiency, and computational power/density,
ranging from devices (transistors), memories, 3D integration capabilities,
specialized architectures, photonics, and others. The wide range of tech-
nology options creates the need for an integrated strategy to understand
the impact of these emerging technologies on future large-scale digital
systems for diverse application requirements and optimization metrics.
In this paper, we argue for a comprehensive methodology that spans
the different levels of abstraction – from materials, to devices, to com-
plex digital systems and applications. Our approach integrates compact
models of low-level characteristics of the emerging technologies to inform
higher-level simulation models to evaluate their responsiveness to appli-
cation requirements. The integrated framework can then automate the
search for an optimal architecture using available emerging technologies
to maximize a targeted optimization metric.

1 Introduction

Far from a physical law, Moore’s law is a techno-economic observation on dou-
bling the number of transistors per square inch of an integrated circuit. This
led to Moore’s subsequent observation that “shrinking the dimensions on an
integrated structure makes it possible to operate the structure at higher speed
for the same power per unit area” [8]. The expectation that early in the next
decade 2D lithography will cease scaling, threatens the future of Moore’s law.
In response, a number of promising emerging technologies have been proposed.
These alternative technologies appear throughout all levels of computing devices,
ranging from transistors (devices), memory technologies and 3D integration to
hybrid architectures, specialization, etc. [4]. While it is unlikely that a single
technology will prevail to drive Moore’s law, a combination of emerging tech-
nologies together with explicit understanding of application requirements is likely
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 115–123, 2017.
https://doi.org/10.1007/978-3-319-67630-2_10

116 D. Vasudevan et al.

the solution [8]. This realization contradicts today’s common practice of devel-
oping and evaluating each technology in isolation. Therefore, it is imperative
to develop a comprehensive strategy to determine the optimal path forward to
preserve digital computing performance scaling. To achieve this, we argue for a
two-fold strategy that is composed of:

– an algorithmic methodology that takes into account each candidate tech-
nology’s characteristics, and produces an optimal combination of emerging
technologies for a given metric and application.

– a simulation and evaluation infrastructure across different levels (e.g., devices,
circuits, architectures), that supports performance and cost models of emerg-
ing technologies.

2 Motivation and Background

Numerous emerging devices follow the traditional CMOS model but offer
improved voltage–current characteristics. Devices such as tunnel FETs and car-
bon nanotube FETs have been demonstrated in practice, and initial studies
discuss their impact to chip multiprocessors [1,7]. A recent influential study
projected the future potential of several devices in terms of the energy–delay
product to implement a 32-bit adder [5]. Similarly, new memory technologies
offer attractive bandwidth, latency, and cost tradeoffs compared to traditional
DRAM [6]. In fact, some memories such as resistive RAM are non-volatile and
can be placed close to computational cores. Furthermore, 3D integration is grow-
ing capable of tens to hundreds of memory layers with fast and cheap inter-layer
communication, and is projected to enable multiple logic layers as well in differ-
ent interleaved patterns. Moreover, specialization is an attractive technique to
remove performance and cost overhead of general-purpose architecture. Numer-
ous other technologies are also promising candidates to preserve digital comput-
ing performance scaling, such as photonics and stochastic computing.

The heterogeneity of emerging technologies creates a challenge because differ-
ent technologies are more suited for different applications and no clear winner is
expected to emerge. In addition, a choice of one technology affects other choices
when designing a complete chip or system. Finally, previous studies typically
develop one solution in isolation and do not investigate any synergistic opportu-
nities with other technologies. We propose a comprehensive strategy that paves
the road forward for extending Moore’s law using the entire range of emerging
technologies.

3 Towards an Integrated Methodology for Comprehensive
Evaluation of Optimal Architectures

Developing an integrated methodology to preserve Moore’s law performance scal-
ing by designing future architectures that use emerging technologies is made par-
ticularly challenging by the sheer number of options (technologies) available at

Towards an Integrated Strategy to Preserve Digital Computing 117

each level, the dependencies between these options, and the increasing demands
from the applications. Namely, some of these options are:

– Heterogeneous or homogeneous architectures. This includes the entire range
from fully to partially and then to non-programmable fixed-function special-
ized hardware.

– Devices like TFET (Tunnel Field-Effect Transistor), CNFET (Carbon-
Nanotube FET), NCFET (Negative Capacitance FET) and superconducting
circuits like RSFQ (Rapid Single Flux Quantum) devices, and many others.
There are to the order of a dozen emerging devices in today’s literature in
different stages of maturity [5].

– Future memory technologies like MRAM, STT-RAM etc., some of which are
non-volatile and can be integrated close to computation cores. There are to
the order of ten emerging memory technologies.

– 3D integration with memory such as conventional DRAM or HMC (Hybrid
Memory Cube), as well as future capabilities of deep 3D integration with
hundreds of interleaved logic and memory layers, and different inter-layer
technologies.

– Implementation constraints like thermal equilibrium, area and power budgets
and other factors like floating point versus fixed point representation, SIMD
(Single Instruction Multiple Data), PIM (Processing In Memory) based archi-
tectures etc.

To illustrate the dependency between application demands for performance
per watt and area and the several choices impacting architecture design, let
us consider a sample set of applications: namely a climate modeling applica-
tion code (MPES), a memory intensive graphics application, and the Fourier
transform (FFT). These applications are power constrained, perform complex
computations, but also demand high throughput of data from memory. Given
these application constraints, as well as an optimization metric such as per-
formance per watt, the globally optimal architecture using the most optimal
technologies in each layer from the ones mentioned previously could be the one
shown in Fig. 1. That architecture uses accelerators implemented with CNFETs
to satisfy computational demands, HMC memory to satisfy high memory access
bandwidth, high heterogeneity to optimize for power, and other choices in both
architectures and other technologies such as devices and memories always to
satisfy application demands and optimization metrics. Note that to truly be the
globally optimal solution, it must consider how a choice of technology affects
others and avoid locally optimal solutions.

Our goal is to design a comprehensive methodology to perform multi-objective
optimization and systematically design a globally optimal architecture for a given
metric and for a given set of application characteristics, using all available tech-
nology options from all the different layers previously explained. To achieve this
we have to operate and optimize at various levels of the system architecture from
devices, circuits, accelerators and others, but also to include potential modifica-
tions to programming languages, compilers, ISAs, and others.

118 D. Vasudevan et al.

(a) Future Architecture (b) Proposed Methodology

Fig. 1. a. An example of a future architecture implemented with heterogeneous devices,
b. Comprehensive and synergistic methodology for finding a global optimum by explor-
ing the different levels of system design, including emerging devices and specialized
architectures (only a subset of options is shown)

Methodology: Figures 1 and 2 shows our proposed methodology that involves
seven constructive steps to be taken to arrive at a globally optimal architecture.
The steps are:

1. Gathering any software engineering requirements of the application (func-
tional and non-functional), such as any compiler and programming language
requirements.

2. Secondly, this methodology requires comprehensive details and models of
available emerging technologies in several levels of the system ranging from
devices to architecture (logic design). In this step, a set of optimization met-
rics is also provided.

3. Next, characterization of the application code for compute, memory and
control intensive instructions, to derive performance and other application
requirements such as data movement, floating point computation, etc.

4. In the next step, the inputs generated from the previous three steps drive the
optimal architecture finding algorithm. This step includes constraint opti-
mization to make sure the solution is acceptable. This algorithm is further
described below.

5. The fifth step produces a baseline architecture using the choices in technolo-
gies made by the algorithm in the previous step.

6. In this step, the architecture constructed is further tuned toward a subset of
target optimization metrics.

7. Finally, a set of architectures and choice of emerging technologies targeting
the given application will be generated. Each architecture will be a globally
optimal solution for a choice of given metrics.

Towards an Integrated Strategy to Preserve Digital Computing 119

To formulate the inputs that step four (the algorithm) requires, we need a way
to first identify and record the relevant characteristics and needs of applications,
and then input those to our framework. This includes an array of factors such
as data movement, memory access, floating point compute, and others shown
as a row named “other factors” in Fig. 1. Each application’s needs translate to
different weights for each of these factors. Another input is the available tech-
nologies (step two). For those, we need to quantify the impact of each technology
to application needs. Doing so requires reliable performance and cost models for
each technology, which we describe in Sect. 4.

Algorithm: The algorithm itself (step four) will be formulated as a graph opti-
mization problem with the design space represented as a graph with weighted
vertices and edges. The algorithm is illustrated in Fig. 2. As shown, each vertex
represents one computational unit, which is comprised of a choice of device tech-
nology (dev), memory technology (mem), logic design (logic), and as a result of
these and other microarchitectural and emerging technology choices has a certain
energy–delay (ED) product. Only four parameters are shown in this example. In
other words, each vertex is just one of the possibly many computational units
of the architecture. Edges, on the other hand, represent cost of communication
in delay and energy between computational units. Using this notation, finding
an optimal architecture (step six in the Figure) is a multi-objective graph opti-
mization problem of finding a path in the graph where a given metric, such
as performance over watt, is optimized. This path represents an architecture
where the different components were chosen because their corresponding ver-
tices were in the chosen path of the graph. This algorithm builds from obtaining
and embedding into the feature vector of each vertex (step two in the Figure)
simulation and energy–delay (ED) results for the various general-purpose cores,
adders, multipliers, FFT accelerator blocks, and other computational blocks, for
a given set of devices, memories, logic design, etc. From the chosen path, a new
feature vector will be constructed for each computation block in the resulting
architecture (step five in the Figure). In the example in Fig. 2, the feature vec-
tors found in the enumerated red path will suggest a computational block with
2 adders, a multiplier, a FFT implemented using different devices and a 32KB
MRAM for a constraint of low power for multiplier and a high memory density.

The outcome of this algorithm is an architecture with combination of tech-
nologies that reach a global maximum for a specific metric and application. From
this, we can “average out” for a general-purpose solution and shape a general
strategy to preserve digital computing scaling. Certainly, this output should con-
sider the potential each technology has on top of its current state. Thus, for the
example set of applications (MPES and FFT and graphics) introduced earlier
in this section, the algorithm will find an optimal set of input parameters (tech-
nologies) while considering optimization metrics such as for power and memory
bandwidth, and arrive at the selected parameters shown in step five in Fig. 1.
After further tuning of the derived architecture using these metrics in step six
will generate the required optimal architectures tuned for a specific set of metrics

120 D. Vasudevan et al.

Fig. 2. Illustration of the algorithm for the optimal architecture selection. The energy–
delay (ED) graphs are for illustration purposes only and not in scale.

shown as step seven in Fig. 1. Therefore, for our applications we will arrive at
possibly at a different architecture per application.

4 Modeling Environment

4.1 Simulation Infrastructure

In order to generate the technology models necessary to conduct realistic
experiments and therefore guide our methodology, we propose our simulation
infrastructure as shown in Fig. 3. The proposed infrastructure consists of four
main modeling levels: (i) device models, (ii) logic gates, (iii) logic and memory
blocks and (iv) architecture. Each level contains three key components illus-
trated with colored blocks. Yellow blocks represent the Target Modeling Unit,
which can be a device model, logic gate, accelerator, etc. depending on the mod-
eling level. Blue blocks represent a set of Evaluation tools capable of providing
target Output metrics. These output metrics are then used as Input metrics in
the next modeling level. Here, we describe each modeling level in detail.

LEVEL 1: Device Models. In this level, we start from low-level device physics
and generate current–voltage curves using Xyce, a open-source SPICE tool.
In this step, detailed knowledge of device physics and operating conditions is
required. Open-source Verilog-A models are already available for many of the
emerging devices, but care must be exercised in verification of those models,

Towards an Integrated Strategy to Preserve Digital Computing 121

Fig. 3. Design space exploration flow. The example refers to results in Fig. 4. (Color
figure online)

capturing the future potential of each device, and generating models for devices
for which no models are available. Further metrics of interest such as error rates
can also be captured in this step.

LEVEL 2: Logic Gates and Blocks. In this level, we use device models from
the previous level to construct small functional blocks such as logic gates, adders,
ring oscillators, and others. We do this by adding Verilog-A models from the
previous emerging devices to Xyce, and describing the small functional blocks
of this level in an Xyce netlist that uses emerging device models. From these
experiments we extract delay and power for each block, and use that as inputs
to the next higher level. Adders and multipliers result shown in Fig. 4-a and b
are built using these logic gates.

LEVEL 3: Logic and Memory Blocks. In the logic and memory level, several
new technologies can be modeled such as memories, 3D integration, and special-
ized architectures. Emerging memories have sometimes vastly different access
times, energies, volatility, error rates, etc. In fact, memory access times for par-
ticular data may depend on the location of the data and the previous sequence
of requests, which means that a careful study is required to investigate the level
of accuracy that is sufficient versus the complexity of models. Furthermore, 3D
integration affects distances and relevant performance-cost tradeoffs between any
two points, especially when considering inter-layer communication technologies
such as TSVs. 3D integration models need to include future capabilities such
as deep integration with hundreds of layers, with multiple combinations of logic
and memory. Finally, specialized architectures such as accelerators and fixed-
function hardware have a range of different delays and energy costs to perform
an operation. Non-programmable application specific hardware.

In order to rapidly model the technologies of this level, we can extend a
modern HDL modeling tool such as Chisel [2] and use it to describe different

122 D. Vasudevan et al.

Fig. 4. a–d. Delay and Power comparison for adders and multipliers implemented with
TFET and CMOS, e. Execution time impact for a matrix-matrix multiply code using
an accelerator compared to a non-accelerated version. Results are for a single core
co-located with the accelerator. While the CMOS accelerator is 3× slower resulting in
two cycles instead of one for the TFET accelerator, the architectural-level impact is
negligible.

logic and memory blocks. Chisel can be extended to capture and back anno-
tate activity factors of logic gates and wires to models of emerging technologies
from the previous two levels, and therefore generate the output metrics (delay,
power, etc.) that are necessary for the next level. Figure 4-c and d show the delay
comparison of adders and multipliers implemented using CMOS and TFET. Nor-
malized delay and power shows that TFET based arithmetic units have higher
performance and power benefit.

LEVEL 4: Architectural Level. To conduct high-level experiments, we use a
software architectural-level simulator such as Gem5 [3]. A preliminary study of
the impact of accelerators using TFET and CMOS devices is shown in Fig. 4-e.
This shows that even though a TFET-based accelerator is 3× faster, the impact
to the application is negligible. Still, this different can become substantial for
large matrices, to which we are extending our study. This infrastructure will be
capable of evaluating potentially vastly heterogeneous systems with all emerging
technologies as options. This may require a parallel architecture simulator. In
addition, we plan to extend high-level area and power models to include new
devices.

Towards an Integrated Strategy to Preserve Digital Computing 123

5 Conclusion

Building systems using future devices and other technologies involves several
levels of modeling with many factors to consider. The choice of components
at each level impacts the choice in other levels and consequently the overall
power and performance of future systems. Optimizing at only one level, such
as solely focusing on new transistors/devices will lead only to a local optimal
optimization point. However, a holistic approach to optimize the system at all
levels for given optimization metrics and application needs will lead to a globally-
optimal solution. In this paper, we present both a comprehensive methodology
and a detailed modeling approach for emerging technologies capable of paving
the path forward for preserving the performance scaling of digital computing.

References

1. Aly, M.M.S., Gao, M., Hills, G., Lee, C.S., Pitner, G., Shulaker, M.M., Wu, T.F.,
Asheghi, M., Bokor, J., Franchetti, F., Goodson, K.E., Kozyrakis, C., Markov, I.,
Olukotun, K., Pileggi, L., Pop, E., Rabaey, J., Rè, C., Wong, H.S.P., Mitra, S.:
Energy-efficient abundant-data computing: the N3XT 1,000x. Computer 48(12),
24–33 (2015)

2. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Aviienis, R., Wawrzynek,
J., Asanovi, K.: Chisel: constructing hardware in a scala embedded language. In:
DAC Design Automation Conference 2012, pp. 1212–1221 (2012)

3. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness,
J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish,
N., Hill, M.D., Wood, D.A.: The Gem5 simulator. SIGARCH Comput. Archit. News
39(2), 1–7 (2011)

4. Cavin, R.K., Lugli, P., Zhirnov, V.V.: Science and engineering beyond Moore’s law.
In: Proceedings of the IEEE 100(Special Centennial Issue), pp. 1720–1749, May
2012

5. Esch, J.: Overview of beyond-CMOS devices and a uniform methodology for their
benchmarking. Proc. IEEE 101(12), 2495–2497 (2013)

6. Poremba, M., Mittal, S., Li, D., Vetter, J.S., Xie, Y.: DESTINY: a tool for modeling
emerging 3d NVM and eDRAM caches. In: 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 1543–1546, March 2015

7. Saripalli, V., Mishra, A., Datta, S., Narayanan, V.: An energy-efficient heteroge-
neous CMP based on hybrid TFET-CMOS cores. In: 2011 48th ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 729–734, June 2011

8. Shalf, J.M., Leland, R.: Computing beyond Moore’s law. Computer 48(12), 14–23
(2015)

HPC I/O in the Data Center
(HPC-IODC)

HPC I/O in the Data Center Workshop
(HPC-IODC)

Julian Kunkel1,2,3(B), Jay Lofstead1,2,3, and Colin McMurtrie1,2,3

1 Deutsches Klimarechenzentrum, Bundesstraße 45a, 20146 Hamburg, Germany
kunkel@dkrz.de

2 Center for Computing Research, Sandia National Laboratories, Albuquerque, USA
3 Swiss National Computing Center (CSCS), Lugano, Switzerland

1 Introduction

Many public and privately funded data centers host supercomputers for running
large scale simulations and analyzing experimental and observational data. These
supercomputers run usually tightly coupled parallel applications that require
hardware components that deliver the best performance. In contrast, commercial
data centers, such as Facebook and Google, execute loosely coupled workloads
with a broad assumption of regular failures. The dimension of the data centers
is enormous. A 2013 article summarizes commercial data centers’ dimensions [1].
It estimates, for example, that Facebook hosts around 100 PB of storage and
Google and Microsoft manage around 1 million servers each – although the
hardware is split among several physical data centers – a modus operandi not
suitable for HPC centers. With the hunger for information, the globally installed
storage capacity increases exponentially and is expected to hit 7,235 Exabytes
by 2017 [2]. This trend is visible in the sales reports of companies such as the
disk drive manufacturer Seagate. Within 5 years, they shipped 1 billion HDDs,
which means 700.000 units every day [3]. With state-of-the-art 8 TB disks, this
would already account for 5.5 exabyte of capacity by day.

Management of the huge amount of data is vital for effective use of the
contained information. However, with limited budgets, it is a daunting task for
data center operators, especially as design and storage system required hardware
depends heavily on the executed workloads. A co-factor of the increasing diffi-
culty is the increase in complexity of the storage hierarchy with the adoption of
SSD and memory class storage technology. The US Department of Energy recog-
nizes the importance of data management, listing it among the top 10 research
challenges for Exascale [4].

There are several initiatives, consortia and special tracks in conferences that
target RD&E audiences. Examples are the Storage Networking Industry Asso-
ciation (SNIA) for enterprises, the Big Data and Extreme-Scale Computing
(BDEC) initiative1, the Exascale10 workgroup [5], the Parallel Data Storage
Workshop/Data Intensive Scalable Computing Systems (PDSW-DISCS) and the
HEC FSIO workshop [6].
1 http://www.exascale.org/bdec/.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 127–131, 2017.
https://doi.org/10.1007/978-3-319-67630-2_11

http://www.exascale.org/bdec/

128 J. Kunkel et al.

There are many I/O workloads studies and performance analysis reports for
parallel I/O available. Additionally, many surveys of enterprise technology usage
include predictions of analysis for future storage technology and the storage
market such as [7]. However, analysis conducted for HPC typically focuses on
applications and not on the data center perspective. Information about data
center operational aspects is usually described in file system specific user groups
and meetings or described partially in research papers as part of the evaluation
environment.

In this workshop, we bring together I/O experts from data centers and appli-
cation workflows to share current practices for scientific workflows, issues and
obstacles for both hardware and the software stack, and R&D to overcome these
issues.

2 Organization of the Workshop

The workshop content consisted of three topics:

– Research paper presentations – authors needed to submit a paper regard-
ing relevant research for I/O in the datacenter.

– Talks from I/O experts – authors needed to submit a rough outline for
the talk related to the operational aspects of the data center.

– A moderated discussion to identify key issues and potential solutions in the
community.

The CFP has been issued beginning of January. Important deadlines were:

– Submission deadline: 2017-04-12 AoE
– Author notification: 2017-04-25
– Workshop: 2017-06-22
– Camera-ready papers: 2017-07-22

From all submissions, the programm committee selected four talks from I/O
experts and four research papers for presentation during the workshop.

2.1 Programm Committee

– Wolfgang Frings (Jülich Supercomputing Center, Germany)
– Javier Garcia Blas (University Carlos III of Madrid, Spain)
– Rob Ross (Argonne National Laboratory, USA)
– Carlos Maltzahn (University of California, Santa Cruz, USA)
– Thomas Boenisch (HLRS, Stuttgart, Germany)
– Sai Narasimhamurthy (Seagate, United Kingdom)
– Jean-Thomas Acquaviva (DDN, France)
– Julian Kunkel (DKRZ, Germany)
– Jay Lofstead (Sandia National Laboratory, USA)
– Colin McMurtrie (CSCS, Switzerland)

HPC I/O in the Data Center Workshop (HPC-IODC) 129

3 Workshop Summary

Throughout the day, on average 65 participants attended the workshop. We had
a good mix of talks from I/O experts, data center relevant research followed by a
short discussion. A short summary of the presentations is given in the following.
The slides of the presentations are available on the workshop’s webpage:
http://wr.informatik.uni-hamburg.de/events/2017/iodc.

3.1 Research Papers

The research session covered 5 accepted papers from 6 submissions:

– In the first talk, Walker Haddock presented results of the efficiency for GPU
offloaded erasure coding for Ceph. With a GPU plugin to support coding, a
1 GB/s full duplex performance is achievable for 100 shards.

– Eugen Betke introduced an online monitoring system for parallel I/O perfor-
mance based on SIOX. The novelty of the approach is non-intrusive monitor-
ing via an instrumented FUSE mountpoint allowing to cover mmap() opera-
tions.

– Jakob Lüttgau presented a simulator for hierarchical storage systems focusing
on tape systems. Queuing systems are used to model I/O on the different stor-
age tiers; the simulation allows to measure derived metrics in a fine-grained
fashion for instance to analyzing waiting times (quality of service) and drive
utilization.

– Jay Lofstead showed results for a large scale performance study for the IOR
benchmark to identify performance variability and stragglers across the differ-
ent OSTs. This demonstrated that for each measurement a small proportion
of storage targets (< 20%) are slower than the others but the performance of
storage targets changes over time changing the assignment slow/fast targets.

– The last talk of the research papers by Pilar Gomez-Sanchez introduced a
framework to recover the access pattern of MPI parallel applications on a
high-level. The methodology characterizes I/O behavior for individual appli-
cation phases and introduces several derived metrics. A process starts another
phase when it invokes an instrumented MPI function.

3.2 Talks from Experts

The seven talks from experts included information about the site and typi-
cal application profiles but also contained information regarding I/O tools and
strategies applied to mitigate pressing issues.

– In the first talk, Bryan Lawrence introduced the computation infrastructure in
the UK with a focus on Earth-Science. He described the JASMIN infrastruc-
ture in detail which is managed and designed by STFC. A main distinction is
that the infrastructure is continuously upgraded and the system architecture
is developed by themself and not any vendor.

http://wr.informatik.uni-hamburg.de/events/2017/iodc

130 J. Kunkel et al.

– Tiago Quintino shed light on the I/O challenges of ECMF. The center
observes the need to adapt workflows to deal with paradigm shifts in technol-
ogy. For example, to move from compute centric to a data centric paradigm
minimizing data movement and shipping compute to data.

– Roland Laifer introduces the HPC systems at KIT. Highlights of his talk are
results on using Lustre on a wide area Infiniband connection, their analysis
approach by capturing I/O statistics, and the approach for disaster recovery.

– Yuichi Tsujita presented the K Computer and storage systems. He focused on
obstacles due to large scale parallelism: the metadata server load, client evic-
tion (loss of server connections), and cross node interference. Several strategies
to mitigate these issues are presented.

– Sandra Mendez introduces the LRZ HPC systems and then focuses on mon-
itoring of I/O patterns. The usage of deployed analysis tools PerSyst and
Darshan are illustrated on several applications.

– Clemens Grelck introduced the cHiPSet project which is an community effort
that fosters collaboration in the area of HPC and Big Data. The activity is
still open and new researcher may join the project: http://www.chipset-cost.
eu

– Rosemary Francis presented the tool Mistral that profiles I/O of large scale
applications to identify bad I/O patterns, foster optimizing and load balanc-
ing. The monitoring tool allows to detect rogue applications based on policies
such as limiting storage capacity or metadata. A case study shows the effec-
tiveness to tame non well-formed I/O.

From the individual talks, it can be concluded that analyzing and understand-
ing I/O behavior and achieving consistent performance is still the top priority
for researchers and data centers.

3.3 Discussion Round

The major distinguishing feature for this workshop compared to other venues
is the discussion rounds. The opportunity for themed, open discussions about
issues both pressing and relevant to the data center community facilitates sharing
experiences, solutions, and problems.

This year we focused on the community development of an IO-500 bench-
mark, see http://io500.org. The IO-500 benchmark consists of data and meta-
data benchmarks to identify performance boundaries for optimized and subop-
timal applications. Each benchmark is run in an easy and hard mode to identify
best-case performance for optimized applications and typical performance for
applications with a suboptimal access pattern. Unlike other competitive bench-
marks, “gaming” the system to get optimal results is encouraged because all
configurations on how the performance results were achieved must be shared
as part of any submission to the list. This transparency achieves three goals:
(1) best practices for each different kind of storage on a platform are documented
for users, (2) configurations and platform validation approaches can be better
understood, and 3) a detailed catalog of storage options on various platforms over

http://www.chipset-cost.eu
http://www.chipset-cost.eu
http://io500.org

HPC I/O in the Data Center Workshop (HPC-IODC) 131

time with configurations for achieving specific performance is collected. The last
of these will offer a long-term archive to understand the evolution of platform
storage.

The Virtual Institute for I/O (VI4IO)2 supports this activity and tracks com-
prehensive data from sites, supercomputers and storage on the high-performance
storage list. This data allows for an in-depth analysis of system characteristics
and fosters the understanding of I/O systems.

References

1. Blog, S.: Facts and stats of world’s largest data centers, July 2013, https://
storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-
centers/

2. International Data Corporation, http://www.businesswire.com/news/home/
20131021005243/en/IDCs-Outlook-Data-Byte-Density-Globe-Big

3. Seagate: Storage Solutions Guide, http://www.seagate.com/files/www-content/
product-content/ cross-product/en-us/docs/seagate-storage-and-application-guide
-apac.pdf

4. Lucas, R., Committee members: Top ten exascale research challenges, February
2014, http://science.energy.gov/∼/media/ascr/ascac/pdf/meetings/20140210/Top
10reportFEB14.pdf

5. Brinkmann, A., Cortes, T., Falter, H., Kunkel, J., Narasimhamurthy, S.: E10 -
Exascale IO, June 2014

6. Bancroft, M., Bent, J., Felix, E., Grider, G., Nunez, J., Poole, S., Ross, R., Salmon,
E., Ward, L.: HEC FSIO 2008 workshop report. In: High End Computing Inter-
agency Working Group (HECIWG), Sponsored File Systems and I/O Workshop
HEC FSIO (2009)

7. IDC: Enterprise storage services survey, http://www.idc.com/getdoc.jsp?
containerId=254468

2 http://vi4io.org.

https://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-centers/
https://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-centers/
https://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-centers/
http://www.businesswire.com/news/home/20131021005243/en/IDCs-Outlook-Data-Byte-Density-Globe-Big
http://www.businesswire.com/news/home/20131021005243/en/IDCs-Outlook-Data-Byte-Density-Globe-Big
http://www.seagate.com/files/www-content/product-content/_cross-product/en-us/docs/seagate-storage-and-application-guide-apac.pdf
http://www.seagate.com/files/www-content/product-content/_cross-product/en-us/docs/seagate-storage-and-application-guide-apac.pdf
http://www.seagate.com/files/www-content/product-content/_cross-product/en-us/docs/seagate-storage-and-application-guide-apac.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://www.idc.com/getdoc.jsp?containerId=254468
http://www.idc.com/getdoc.jsp?containerId=254468
http://vi4io.org

Simulation of Hierarchical Storage Systems
for TCO and QoS

Jakob Luettgau(B) and Julian Kunkel

Deutsches Klimarechenzentrum GmbH, Bundesstraße 45a, 20146 Hamburg, Germany
{luettgau,kunkel}@dkrz.de

http://www.dkrz.de/

Abstract. Due to the variety of storage technologies deep storage hier-
archies turn out to be the most feasible choice to meet performance
and cost requirements when handling vast amounts of data. Long-term
archives employed by scientific users are mainly reliant on tape storage,
as it remains the most cost-efficient option. Archival systems are often
loosely integrated into the HPC storage infrastructure. In expectation
of exascale systems and in situ analysis also burst buffers will require
integration with the archive. Exploring new strategies and developing
open software for tape systems is a hurdle due to the lack of affordable
storage silos and availability outside of large organizations and due to
increased wariness requirements when dealing with ultra-durable data.
Lessening these problems by providing virtual storage silos should enable
community-driven innovation and enable site operators to add features
where they see fit while being able to verify strategies before deploying
on production systems. Different models for the individual components
in tape systems are developed. The models are then implemented in a
prototype simulation using discrete event simulation. The work shows
that the simulations can be used to approximate the behavior of tape
systems deployed in the real world and to conduct experiments without
requiring a physical tape system.

Keywords: Modeling · Simulation · Tape · Long-term archive ·
Hierarchical storage systems · Performance · Total cost of ownership

1 Introduction

With the increasing demand for long-term storage, automated tape libraries will
likely remain an integral part of the storage hierarchy for many years to come.
Tape as a storage medium has many attractive properties. It is fairly robust and
provides high data densities, but the most important factor is that tape is very
affordable in comparison to other storage technologies. Standardization efforts
such as LTO make tape attractive and future proof, thus protecting investments.
Despite tapes long history, the technology is still competitive [3,4], but incen-
tives to turn technological improvements in capacity and performance In an effort
to speed up innovation and to enable also newcomers and experts and without
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 132–144, 2017.
https://doi.org/10.1007/978-3-319-67630-2_12

Simulation of Hierarchical Storage Systems for TCO and QoS 133

access to large scale tape systems to contribute, the objectives of this work were
to develop a simulator, tools, and primarily appropriate models required to repro-
duce the dynamics of hierarchical storage systems and tape libraries. Modeling a
complete tape system is a complex task, because many different components are
involved. It was possible to identify a number of key components that are essential
to any tape system. It was further possible to provide comprehensive models to
describe the dynamics of many of these key components. In particular, models for
hardware and software components were proposed and isolated in such a way that
turning to more accurate models is possible.

2 Related Work

Efforts to improve tape storage systems often focus on advancing the technology
that is used to read and write tape. This is mostly in the domain of vendors and
not much of the research conducted is published to protect a business advantage.
More openly discussed are strategies for data placement on tape [1,8,9] and the
magnetic representation [2]. Such strategies maybe exploited by higher level
algorithms, but tape drives and hardware generally do not expose fine-grained
control to the users. Another form of placement which was researched but has
not yet found its way into many production system is RAIT [4] or TapeRAID
and combinations of RAID and tape [6]. Pure tape systems cease in relevance
and hybrid and hierarchical storage systems promise to provide cost-efficient
solutions with the best properties of multiple technologies. Dee et al. [2] stress
the opportunities of automation, which enabled scalable solutions that seamlessly
integrate into existing the storage hierarchy. Koltsidas et al. [5] focus especially
on the integration of disk and tape. Zhang et al. [10] explore different object
placement strategies within tape libraries to optimize tape switch, data seek and
transfer times using a simulation. More recently, Mäsker et al. [7] use workload
traces of the European Centre for Medium-Range Weather Forecasts (ECMWF)
to simulate tape libraries, albeit not integrated into the hierarchical storage
system of the data center.

3 Simulation Overview

To simulate tape libraries within hierarchical storage systems a huge variety
of subsystems and software components can be modeled and implemented for
simulation. Figure 1 provides an overview of some components that are of interest
because they offer opportunities for optimization. In particular the simulator is
designed to consider the following hardware components:

– Multiple clients or groups of clients that act together
– I/O Servers and server local disk/flash caches
– A global online based cache as is used with, e.g., HPSS
– Multiple libraries and the position of tapes and robots within the library
– Multiple drives and tape generations (e.g., LTO)

134 J. Luettgau and J. Kunkel

Fig. 1. An overview of different subsystems and software components that are relevant
when simulating hierarchical storage systems and tape libraries.

More aspects about the network and library modeling are covered in Sect. 4
From the software side (see Sect. 5) the simulation has to implement the following
components to drive the hardware:

– Various book-keeping and resource management components to keep track of
files, tapes, free library slots and robots.

– Different I/O and network scheduling algorithms to grant resource allocation
– Cache displacement strategies for files in I/O node local or global caches
– (Potentially) load balancing mechanisms on different levels

Not all of these systems are implemented at this time. For example RAIT
and easily exchangeable load balancing and caching policies are not supported.
Besides functional components the simulator has to provide facilities to collect
data that is relevant to compare different configurations of virtual systems. Dif-
ferent helpers to sanitize workload traces as well as R scripts to generate plots
from the virtual monitoring data are provided.

4 Hardware Models

The problem with computer systems is the complexity that unfolds because of
the large number of possible combinations for hardware and software. Model-
ing hardware is particular cumbersome because in the real world the system

Simulation of Hierarchical Storage Systems for TCO and QoS 135

performance emerges as a result of the laws of physics, but for a virtual model
the dynamics have to be understood and abstracted. For standardized compo-
nents it is often relatively easy to find a model that is adequately applicable
for the whole class of components. Composite components, such as the library
topologies turn out to be harder to generalize in a simple way than expected. By
mixing mostly 2D and graph-based topology approaches, good approximations
of the library dynamics could be achieved. Another problem occurs with propri-
etary designs for which detailed information is hard to find. The same is true for
benchmarks and a comprehensive catalog of performance parameters. The net-
work is an integral part of hierarchical storage systems and can be used to model
and simulate even low-level components (e.g., chip level) and communication.

4.1 Network Topology and Data Transfers

The network topology is represented using directed graphs. The approach is
straight forward so that network devices such as compute nodes, I/O nodes and
switches are represented by the vertices and edges are used for the individual
links used to connect them. Each link may specify a latency and bandwidth. The
network topology then is keeping track of available capacities. As data is moved
between components, it is possible to allocate and release network allocations.
This schema was used to reduce the number of events in comparison to a packet
based network simulation. But the approach does not scale for large network
topologies where determining the max-flow can become prohibitively expensive.

Fig. 2. Available capacities (left) and a flow from Drive:B to Client:A (right).

136 J. Luettgau and J. Kunkel

4.2 Library Topology

To model the library hardware we start with a coarse grained graph-based topol-
ogy that connects individual components and combine it with detailed models
where the graph-based model appears insufficient.

Graph-Based Topology Model: A coarse grained structure (e.g., the way
multiple library units are connected to form library complexes including Pass-
Through-Ports and elevators) is modeled using a graph that describe the paths
a tape/a robot can travel. A vertex in the graph consequently is used for com-
ponents and edges can be used to store distance or travel times from component
to component. For each vertex or edge also callbacks can be registered, to allow
individual components to use sophisticated models underneath (e.g., to account
for their current state). In principle, the approach is very flexible and fairly accu-
rate depending on the level of detail. For highly detailed models, the approach
can be tedious to configure and will be more expensive to compute. When choos-
ing low levels of detail, errors may accumulate rapidly. Figure 3 illustrates the
concept, and in this case mixes distances and times; this is just one of many ways
to interpret edges and nodes in a graph based topology. By using graphs mod-
eling becomes intuitive and e.g., the task of serving a tape that sits in Shelf-2
to Drive-1 becomes the problem of finding the shortest path between the two.
As we want to calculate the time penalty for the next event, for two vertexes vi
and vj and edges evi,vj

the time TG to get from vi to vj calculates in principle
as follows. vrobot is used to denote the maximum robot velocity:

get time(evi,vj
or v) :=

⎧
⎪⎨

⎪⎩

t if evi,vj
or v have time t set

get distance(vi,vj)
vrobot

if e but no time is set
0 otherwise

TG(va, vb) =
∑

v ∈ shortest path(va,vb)

get time(v) + get time(ev,v+1)

Shelf 1
50cm

Shelf -1

4 sec

Elevator, 10 sec

Elevator, 10 sec

Robot

5m/s

Drive 1

Drive 2

...

Shelf 220cm ...get_distance()

Shelf -23 sec ...get_time()

Fig. 3. The graph based topology for coarse grained relationships including library
complexes, Pass-Through-Ports and Elevators connecting multiple rails.

Simulation of Hierarchical Storage Systems for TCO and QoS 137

2D Topology Model: Sometimes projecting complete robot libraries into
a two-dimensional representation yields very good approximations. For the
SL8500, this seems to be an efficient approach (see Fig. 4). The reasoning is
that many significant movements that can be performed by the robots or the
library are at most two-dimensional anyways. Finding a path within a 2D model
then becomes calculating the Euclidean-distance between a number of points and
a check if the robot is crossing a forbidden area or an obstacle, in which case
additional measures have to be taken. Movements are usually decomposed of
multiple linear movements, thus care must be taken when calculating distances
and travel times. Logical components are resolved to coordinates by providing a
mapping function for, e.g., slots and drives. Mounting a tape placed in Slot-6,9
to Drive 2 requires visiting multiple coordinates. May T2D(path) be the time it
takes to traverse a path ∈ {(p1, ..., pn) | pi ∈ (x, y);x, y ∈ R}. Assuming different
robot velocities vx and vy for each axis, the total travel time may be defined
by the sum of the time traversing between two points T2D(pi, pj) and possibly
occurring work and wait times Twait/work:

T2D(pj , pi) = max

(|pix − pjx|
vx

,
|piy − pjy|

vy

)

T2D(path) =
path∑

pi,pj

T2D(pi, pj) + Twait/work

Fig. 4. The StorageTek SL8500 library in a two-dimensional model.

An easing function e(|pid − pjd|, vmax) can to be applied before taking the
maximum, should gradual robot acceleration be taken into account. The exact
times also depend on other robots, which reinforce the need for a component
that guards the behavior of robots as was discussed for graph-based topologies.
In general, we assume hybrid approaches that mix graph-based and 2D models
to achieve good approximations at reasonable effort.

138 J. Luettgau and J. Kunkel

Fig. 5. Serpentine Tape Model

4.3 Tape-Seek- and Drive-Busy-Time Models

Commonly there are three layouts for writing data on tape (linear, linear-
serpentine and helical-scan). We will consider only linear-serpentine tape as it
appears to be the most relevant on modern systems. Figure 5 takes the perspec-
tive of the tape drive and illustrates how data is actually read or written on
tape. An array of read/write heads can be positioned relative to the tape in two
dimensions and imprint or read a magnetic signature as the tape passes under-
neath. When spooling to a specific position it is possible to move the tape quite
fast, when reading or writing lower speeds yield the best results. By determining
the following characteristics, it should become possible to approximate the time
it takes to serve a request and how long a drive remains busy:

– pos := (x, t): a tuple describing horizontal x and vertical (track) t displace-
ments relative to the tape. posBOT , posEOT are used to reference the Begin-
of-tape and End-of-tape. A single reel cartridge is mounted and unmounted
with posBOT .

– Tmount and Tunmount: the time it takes to mount and unmount a tape
– vspool, vhead: the speeds to reposition the tape and read-heads
– vread, vwrite: the speed in, e.g., bytes/second to read and write

The time to transition from a current position posi to target position posj is
calculated as follows:

Tseek(posj , posi) = max

(|posix − posjx|
vspool

,
|posit − posjt|

vhead

)

The time Tread/write to read or write from tape is calculated as follows:

Tread/write(bytes) =
bytes

vread/write

The time a tape drive remains busy Tbusy would account for possibly multiple
seek and reading phases, before it ejects the tape and becomes available again.

Tbusy = Tmount +

⎛
⎝

BOT,...,BOT∑
posi,posi+1

Tseek(posi, posj) + Tread/write(bytesi)

⎞
⎠+ Tunmount

Simulation of Hierarchical Storage Systems for TCO and QoS 139

5 Software Models

To stress the virtual tape library, a request object can be instantiated and sub-
mitted to the simulation. In addition to explicit submission, it possible to register
event providers to the simulation which are polled for future events until they
indicate they have been drained. A workload provider also could create requests
on the fly according to a script, a probability distribution or a trace file. For a
proof of concept it often seemed sufficient to turn to “naive” implementations.

Request Processing: A request is modeled by a process that waits for allo-
cations to use a particular resource. Figures 6 and 7 illustrate the processing of
a request. Writes occur in two-phases with the clients only waiting for the first
phase. Tape I/O can be performed asynchronously for writes. Reads are handled
based on their presence in the global disk cache.

Fig. 6. Handling of read and write like requests for the HSM tape system.

Fig. 7. Different resources and queues required to govern request handling.

140 J. Luettgau and J. Kunkel

6 Evaluation

This section outlines how the models are verified (see Sect. 6.1) and how simula-
tion with alternative configurations can be used to minimize TCO. Two scenarios
are discussed to show the potential.

6.1 Workload Trace Replay for Verification and Optimization

Workload Description: For verification and fine-tuning of the simulation
HPSS request logs and monitoring records were used. Not all activities that
occur in an actual tape system are included in these traces. As a result service
workloads, and temporarily disabled drives are not accounted for. In addition,
components in this simulation do not fail for the lack of reliable failure rates. The
trace includes a week of scheduled downtime, which is interesting to compare the
recovery of the virtual and the actual system. Figure 8 shows the distribution of
file sizes and also the ratio of reads/writes that hit the system. Figure 9 shows
the distribution of reads and writes over time. The following table provides a
total count of requests as well as the number of involved files and clients:

501312:stseuqeRsyad53:emarfemiT

16958:setirW658511:seliF

441721:sdaeR265:stneilC

0

20000

40000

60000

0.001 1 1000 1e+06
megabytes

fre
qu

en
cy

0

20

40

60

read write
type

%

Fig. 8. Frequency of different request sizes. With a large peak for requests with a size
of 10 GB, which is a result of the data centers pricing schema.

Staging Behavior and Wait-Times: To verify that the simulation can repro-
duce the run-time behavior from a virtual tape system two important factors
are: (1) the number of busy drives and (2) the wait-times for requests over time.
The number of busy drives is directly related to the number of stages, which is a
metric provided by the HPSS monitoring. Figure 10 lists two plots each showing
the number of FTP requests and the number of stages occurring as observed
by (a) the HPSS monitoring and (b) the simulation. Figure 11 similarly plots
the wait-times for queued requests, again (a) HPSS monitoring left and (b) the
simulation result on the left. While there are differences in the perceived work-
loads, the peak times and magnitudes match in principle. The verification at
this point also reveals that some components require further fine-tuning to more
accurately approximate the original system. Yet, in comparison to conventional
methods when procuring systems, the simulation allows taking site specific run-
time behavior into account.

Simulation of Hierarchical Storage Systems for TCO and QoS 141

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

type read write

0

10

20

co
un

t

Fig. 9. Observed request types over time for a period of 3 weeks.

(a) FTP jobs and stage counts as reported
by the monitoring.

(b) FTP Jobs as observed in the trace file
and stages as occurred in the simulation.

Fig. 10. FTP activity for a period of three weeks. Validation of stage-counts by com-
paring the DKRZ monitoring (a) to the results of the simulation (b).

6.2 TCO and QoS Optimization Under Varying Drive Configuration

Among the most expensive components also being procured on a regular basis
are tape drives. The reason for this is, that every 2–3 years a new LTO generation
is released, usually doubling the capacity of tape cartridges in combination with
modest improvements on read and write speeds. Depending on the use-case for
a long-term archive in a data center different objectives may have priority, but
common strategic decisions may relate to the following concerns:

– What is the lowest number of drives to meet a certain quality of service, e.g.,
serve every request to cold data within 10 min.

– What is the optimal placement for drives and tapes when considering library
complexes, partitions and multiple service level agreements?

– When and how to switch to a new drive generation?
• Under an expected change in workloads (e.g., additional users) when will

the available resource fail to meet the requirements?
• Tape media and drives become cheaper over time. What would be a good

gradual transition strategy? Is it cheaper?

142 J. Luettgau and J. Kunkel

Fig. 11. The number of requests waiting in queue based on their wait-time.

0.00

0.05

0.10

0.15

0.20

0.25

0 50 100 150 200
duration in seconds

de
ns

ity

type
read

write

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
duration in seconds

y

type
read

write

(a) A example configuration with fewer drives.

0.00

0.05

0.10

0.15

0.20

0 50 100 150 200
duration in seconds

de
ns

ity

type
read

write

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
duration in seconds

y

type
read

write

(b) A example configuration with more drives.

Fig. 12. Example comparison of request latency for different runs.

• Is it cheaper to run on a library with many slots and use more older
drives? How would using RAIT effect this?

Figure 12 shows two configurations (a) fewer drives and (b) more drives. For
each configuration the distribution of request latency is plotted. A second graph
plots the same data using an empirical distribution functions to allow to easily
determine, e.g., quality of service guarantees that can be made for a certain
percentage of requests. In many cases these curves stabilize after handling a few
thousand requests allowing to spin up only short simulations, and use similar or
more advanced criteria for an optimization problem.

Power Consumption: Besides performance characteristics we can collect load
statistics for individual components. One use for these statistics is the estimation
of power consumption. Figure 13 shows a plot of the drive utilization over time.
It is reasonable to assume that a busy drive consumes more energy than an
idle drive. Thus, again only considering changes to the drive configuration, even

Simulation of Hierarchical Storage Systems for TCO and QoS 143

Fig. 13. Drive utilization as well as the total number of available drives over time. The
trace in this case did not provide any data about enabled/disabled drives.

without concrete power consumption figures for a particular drive, it is possible
to compare systems. For a more accurate estimate of power consumption, we can
measure the power consumption for idle and busy phases of a tape drive and then
aggregate busy and idle times to derive the estimate for a given configuration.
This also allows to evaluate the switch to different power tariffs, e.g. a day/night
tariff.

7 Summary

Equipped with comprehensive models and a simulator to approximate tape
archives within hierarchical storage systems, it is possible to improve modern
tape libraries without requiring a physical tape library for testing. Workflows
to experiment and asses the performance directly influenced the design of the
simulator, consequently the next step is to put it to use in experiments. Also,
gradually turning the simulator into an open source tape library management
solution for production systems could be an option. From a research perspective
the interesting part of a simulation is to apply it to practical problems to learn
and generate new insight. The next step is to carefully construct experiments
with the current system and iteratively improve the tools required to conduct
more experiments. In particular, this might include parameterized Monte-Carlo
methods to optimize for budgets or quality of service. The foundation to perform
these kinds of experiments is provided with this work. In addition, it would be
useful to have a comprehensive database for benchmarks that collect the char-
acteristics of tape drives, libraries and other devices. The database should also
include component prices, though utilizing online price comparison APIs to fetch
prices on demand may also be an option when provided with ways to apply a
correction factor for discounts.

Acknowledgments. This work is part of the ESiWACE project which received fund-
ing from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 675191.

144 J. Luettgau and J. Kunkel

References

1. Dashti, A., Shahabi, C.: Data placement techniques for serpentine tapes. In: Pro-
ceedings of the 33rd Hawaii International Conference on System Sciences, pp. 1–10
(2000). http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=927005

2. Dee, R.H.: Magnetic tape for data storage: an enduring technology. Proc. IEEE
96(11), 1775–1785 (2008)

3. Fontana, R.E., Decad, G.M., Hetzler, S.R.: The impact of areal density and millions
of square inches (MSI) of produced memory on petabyte shipments of TAPE,
NAND flash, and HDD storage class memories. In: 2013 IEEE 29th Symposium on
Mass Storage Systems and Technologies (MSST), pp. 1–8. IEEE (2013). http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6558421

4. Hughes, J., Fisher, D., Dehart, K., Wilbanks, B., Alt, J.: HPSS RAIT Architecture.
White paper of the HPSS collaboration (2009). http://www.hpss-collaboration.
org/documents/HPSS RAIT Architecture.pdf

5. Koltsidas, I., Sarafijanovic, S., Petermann, M., Haustein, N., Seipp, H.: Seamlessly
Integrating Disk and Tape in a Multi-tiered Distributed File System, pp. 1328–1339
(2015)

6. Lingfang Zeng, D.F.: Hybrid RAID-Tape-Library Storage System for Backup. In:
Second International Conference on Embedded Software and Systems (ICESS
2005), pp. 31–36 (2005). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1609854

7. Mäsker, M., Nagel, L., Süß, T., Brinkmann, A., Sorth, L.: Simulation and Per-
formance Analysis of the ECMWF Tape Library System. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 22: 1–22: 12. SC 2016, IEEE Press, Piscataway (2016). http://
dl.acm.org/citation.cfm?id=3014904.3014934

8. Pantazi, A., Furrer, S., Rothuizen, H.E., Cherubini, G., Jelitto, J., Lantz, M.A.:
Nanoscale track-following for tape storage, pp. 2837–2843 (2015)

9. Pease, D., Amir, A., Villa Real, L., Biskeborn, B., Richmond, M., Abek, A.: The
linear tape file system. In: 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies, MSST2010 4 (2010)

10. Zhang, X., He, D., Du, D., Lu, Y.: Object placement in parallel tape stor-
age systems. In: Proceedings of the 2006 International Conference on Parallel
Processing (ICPP 2006), pp. 0–7 (2006). http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=1690610

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=927005
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6558421
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6558421
http://www.hpss-collaboration.org/documents/HPSS_RAIT_Architecture.pdf
http://www.hpss-collaboration.org/documents/HPSS_RAIT_Architecture.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1609854
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1609854
http://dl.acm.org/citation.cfm?id=3014904.3014934
http://dl.acm.org/citation.cfm?id=3014904.3014934
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1690610
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1690610

GPU Erasure Coding for Campaign Storage

Walker Haddock1(B), Matthew L. Curry2, Purushotham V. Bangalore1,
and Anthony Skjellum3

1 Department of Computer and Information Sciences,
University of Alabama at Birmingham, Birmingham, USA

whaddock@uab.edu
2 Center for Computing Research, Sandia National Laboratories, Albuquerque, USA

3 Department of Computer Science and Engineering and McCrary Institute

for Critical Infrastructure Protection and Cyber Systems,

Auburn University, Auburn, USA

Abstract. High-performance computing (HPC) demands high band-
width and low latency in I/O performance leading to the development
of storage systems and I/O software components that strive to provide
greater and greater performance. However, capital and energy budgets
along with increasing storage capacity requirements have motivated the
search for lower cost, large storage systems for HPC. With Burst Buffer
technology increasing the bandwidth and reducing the latency for I/O
between the compute and storage systems, the back-end storage band-
width and latency requirements can be reduced, especially underneath
an adequately sized modern parallel file system. Cloud computing has
led to the development of large, low-cost storage solutions where design
has focused on high capacity, availability, and low energy consumption
at lowest cost. Cloud computing storage systems leverage duplicates and
erasure coding technology to provide high availability at much lower cost
than traditional HPC storage systems. Leveraging certain cloud storage
infrastructure and concepts in HPC would be valuable economically in
terms of cost-effective performance for certain storage tiers. To enable
the use of cloud storage technologies for HPC we study the architec-
ture for interfacing cloud storage between the HPC parallel file systems
and the archive storage. In this paper, we report our comparison of two
erasure coding implementations for the Ceph file system. We compare
measurements of various degrees of sharding that are relevant for HPC
applications. We show that the Gibraltar GPU Erasure coding library
outperforms a CPU implementation of an erasure coding plugin for the
Ceph object storage system, opening the potential for new ways to archi-
tect such storage systems based on Ceph.

1 Introduction

With the compute core density increasing per node in the past decade in high-
performance computing (HPC), a trend that will likely continue for the next

A. Skjellum—Present affilation: SimCenter, University of Tennessee at Chattanooga.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 145–159, 2017.
https://doi.org/10.1007/978-3-319-67630-2_13

146 W. Haddock et al.

decade, I/O bandwidth requirements per node have also increased. This increase
in computing power is applying pressure on the entire storage capacity and band-
width for HPC systems. To minimize the time required for applications to com-
plete I/O operations for initialization, checkpoint/restart (CR), and application
result outputs, it is necessary to provide I/O bandwidth to the compute nodes
that is much higher than today’s petascale supercomputers. The stated require-
ments for the exascale initiative is for applications to run 50 times faster than
they do on today’s 20 PFLOP systems [21]. Los Alamos National Labs (LANL)
is introducing Burst Buffers (BB) as an intermediate tier between the compute
nodes and the Parallel File System (PFS) on Trinity. These BBs use Solid State
Disks (SSDs) and Nonvolatile RAM (NVRAM) to provide high-speed storage to
meet the faster IOPS and bandwidth requirements. BBs enable the applications
to complete the IO operations in an acceptable time for CR or application record-
ing task and get back to making forward progress on the application problem
solution [10].

Both the BB and PFS file systems are expensive and, like registers and cache
in the CPU memory hierarchy, are at the top of the storage pyramid, having
minimal size but much greater performance [10]. Requirements also provide the
constraints that the life time of the data in the compute node RAM is hours, the
life time in the BBs is hours, and the life time in the PFS is weeks. The BBs are
referred to as tier-1 in the storage pyramid and the PFSs are referred to as tier-2.
Data that is needed to be kept for longer periods of time may be stored on lower
tiers of the storage pyramid where lower latency and bandwidth requirements
may be defined but with greater availability requirements due to the longer
life of the data residence. The third layer of the storage stack, tier-3 storage
is referred to as the “campaign” storage layer, a pre-archive, longer term, and
higher capacity disk store [12]. This campaign storage layer is a strong candidate
for lower-cost, cloud-type storage that provides availability with erasure coding
and higher bandwidth than the fourth tier, the archive tier, which is magnetic
tape [16] at LANL. The Campaign storage tier has been designed to store data
for a period of time while the research project is actively computing so that it
can be quickly moved to the PFS and BB when needed for computation or to
the archive for longer term storage.

The key contribution of this paper is as follows. To enable the use of cloud
storage technologies for HPC, we study the architecture for interfacing cloud
storage between the HPC parallel file systems and the archive storage. In this
paper we show that computing erasure coding for a high degree of sharding1 on
the Ceph Object File System [38] with GPUs outperforms a modern Intel CPU,
opening the potential for new ways to architect such storage system based on
Ceph. For use cases where data are moved to object storage systems via single
points of mediation, such as the File Transfer Appliances (FTAs) in the LANL

1 The literature uses the term “stripe” for a set of data that is protected by RAID
or erasure coding implementation. The stripe is divided into k data chunks and
protected by m parity or coding chunks. In this paper, the term “strip” and “shard”
are used synonymously and refer to these chunks.

GPU Erasure Coding for Campaign Storage 147

Trinity system, these mediators may be equipped with GPUs to perform erasure
encoding and recovery at high speed and utilization. High degrees of sharding
along with sufficient coding shards determined by the disk failure rate can result
in lower capital costs and lower operating costs [13].

The remainder of this paper is organized as follows. We first discuss the
architecture and performance of Ceph, a high performance distributed stor-
age systems [38], particularly the plugin feature for erasure coding modules,
review RAID and discuss the exascale campaign storage requirements for Trin-
ity (see Sect. 2). We also discuss the Gibraltar GPU erasure coding and decoding
library [4] there. In Sect. 3, we discuss our implementation of the Ceph erasure
coding plugin using Gibraltar. We present our findings from our measurements
of our experiments in Sect. 4. In Sect. 5 we discuss other research using GPU
erasure coding for HPC storage followed by our conclusions in Sect. 6.

2 Background

We utilize Ceph as a platform for our work because of its convenient plugin
architecture for erasure coding libraries. This structure enabled us to focus our
work on the Gibraltar library and to follow the implementation of the Ceph
plugin interfaces provided in its erasure code plugin classes. The existing erasure
coding plugins in Ceph provide us with well know baselines against which to
compare our results.

In previous work, we designed and reduced to practice a library that performs
erasure coding on GPU hardware, Gibraltar [3,4]; this approach can further lower
the price/performance for storage systems and provide opportunities for per-
forming compute close to the data. One of the consequences of erasure coding in
the design of high performance distributed file systems is the high computational
and data transfer costs of reconstruction of a failed disk. By including GPUs in
the architecture, we provide additional compute resources that can raise the
achievable performance. As common disk drive storage capacities have increased
from 750 GB in 2006 [9] to 10 TB in 2016 [34], this architecture performance
enhancement will become even more important by off-loading computation for
erasure coding to the GPU.

2.1 Ceph

Ceph is a distributed high performance file system that decouples metadata
from data and provides a deterministic function for mapping metadata to data
location, CRUSH – Controlled Replication Under Scalable Hashing [37]. It is an
object storage system that uses peer-to-peer sharing of a compact hierarchical
description of the cluster configuration and replication policy. This innovation
distributes the computation to determine replica placement to any member of the
cluster, including clients, thus eliminating the serialization that would otherwise
result from determining data placement on a centralized metadata service. The
CRUSH algorithm uses rule sets to define policies on data placement that result

148 W. Haddock et al.

in evenly distributed storage of data across all of the Object Storage Devices
(OSDs) in the cluster. These rules also enforce availability policies; for example,
replicas must not be in the same rack or other defined failure domain in the data
center. Ceph implements the data storage layer of file systems with the library
librados, which exposes an interface to the Ceph object store. Traditional block
based file systems can access the Ceph cluster object storage via the RADOS
Block Device, a driver for Linux kernels based on librbd [39]. The Ceph POSIX
file system (CephFS) uses the Metadata Service (MDS), which provides the
POSIX compatible file name space features as well as the management of atom-
icity for operations (file creation, file deletion, file renaming, attribute changes,
permissions, locks, etc.). CephFS consults the MDS to provide the client with
the layout of a given file upon which operations are being performed.

In 2013, the Ceph community implemented a plugin framework to provide
erasure coding features [8]. The Ceph development team used the framework to
implement a concrete erasure coding capability using the Jerasure library [17].
The plugin includes an ErasureCode, ErasureCodeInterface, ErasureCodePlu-
gin, and ErasureCodePluginRegistry classes. Implementers of concrete plugins
can follow the example of the Jerasure plugin module in order to wrap their own
erasure coding library into Ceph. The mechanism is activated by Ceph pools,
which are configured to use replication or erasure coding with specific parame-
ters. Erasure coding provides for various configuration selections based on the
concrete implementation to include the algorithm, number of data shards, k,
that object stripes will be divided into and the number of equally sized coding
shards, m, that will be used to store the objects [7]. Choosing between repli-
cation or erasure coding for reliability trades space for computation. Choosing
higher degrees of sharding distributes the object stripes over a greater number
of disks, which reduces the time required to put or get the data on the disk
by increasing parallelism. The disk read or write time for an object stripe is
inversely proportional to the degree of sharding because the size of the shards
are inversely proportional to the degree of sharding (k). Erasure coding can sur-
vive the loss of up to m shards. Where replication consumes raw storage at the
rate of n times the size of the object where n is equal to the number of replicas
+ 1, the proportion of space used by m shards is usually about 20% of the size
of the data (which can survive the loss of one shard out of five) [32,36].

2.2 RAID

Since the redundant array of inexpensive disks/devices (RAID) was introduced
in 1988 by Patterson, Gibson and Katz [27] that provided an economical way
for systems to be more resilient against data loss compared to other options
such as pure mirroring, research has continued to provide more techniques for
improving availability of data and improving performance. The principle meth-
ods for mitigating the loss of data resulting from media or system failure has
been replication, RAID and erasure coding. The design choices between these
methods must be balanced between the higher cost of storage for replication of

GPU Erasure Coding for Campaign Storage 149

n × r where n is the size of the data and r is the number of replicas plus one
versus the computational cost of parity generation for RAID and erasure coding.

Erasure coding provides a higher degree of durability in that the storage sys-
tem can survive the loss of a greater number of disks while using less additional
storage than replication [32,36]. The property that erasure coding can provide a
higher order of redundancy by generating more than two parity disks has been
heavily studied by James Plank [17,28–30]. Another consideration for data relia-
bility is locality. Storage subsystems that replicate data or store parity on direct
attached media can provide data storage services incurring a lower communi-
cations cost as compared to storage systems that distribute replicas or parity
throughout a set of storage nodes that are connected over a high speed network.
This particularly is the case of reconstructing parity for RAID-5, RAID-6 as com-
pared to erasure coding where the minimum set of data or coding shards must
be copied over the network and be assembled in a contiguous memory location
for the erasure coding program to recompute the missing data or coding. After
the data are reconstructed, the repaired shards must be copied back to their
storage locations over the network. There is strong evidence that using erasure
coding with commodity hardware for durability in high performance computing
is more economical and faster than dedicated storage subsystems [31,33]. For
instance, Microsoft has chosen to implement the storage systems in their Azure
cloud service using erasure coding [15]. A thorough treatment of performance
measurement for erasure coding is given in [14]. The power efficiency of erasure
coding has been discussed previously by Greenan [11]. Lastly, DACO proposes
a scheme where remote code is executed by disk drive controllers to update
parity directly on the media saving on the data transfer costs that are usually
associated with updates to erasure-coded stripes [20].

Storage services for high performance computing systems can be provided
by storage area networks (SANs), which provide data resilience and high speed
communications over specialized networks. Some high performance distributed
file systems rely on these types of storage providers where the responsibility
for data reliability is handled by the SAN [1,2]. These file systems can also be
configured to provide availability in the event of the loss of data serving nodes
by providing multi-path connections to the SAN storage. The SAN subsystems
present storage volumes to the storage servers in the form of LUNs; these are
logical volumes of media blocks formed by the SAN subsystem that have the
resilience properties that have been specified by the administrator, otherwise
providing the semantics of a local disk volume.

The Gibraltar project demonstrated that erasure codes could be efficiently
generated and decoded with GPUs [3–6]. The Gibraltar library was designed to
compute Reed-Solomon erasure codes for a wide range of k data shards and m
coding shards. We have used this library to provide GPU-assisted erasure coding
for Ceph through Ceph’s Erasure Coding Plugin subsystem.

150 W. Haddock et al.

2.3 System Requirements

The Los Alamos National Laboratory (LANL) has presented requirements for a
Campaign Storage System for the Trinity Super Computer [19]. The Campaign
Storage should have about 25 PB capacity with future expansion capability.
The bandwidth should be between 20 to 25 GB/s, which should increase with
capacity. The files stored in the campaign storage system will not be updated
in place. The system should use archive-grade hard disk drives, and gain perfor-
mance through large scale parallel access. The system should use erasure coding
for reliability. The system is not intended for high duty cycle workloads [19].
LANL expects to have 20 to 25 batch file transfer agents (FTAs) to move data
between user home storage, Lustre PFS systems, archive storage and the cam-
paign storage [19]. These requirements imply that the FTAs will be able to move
about 1 GB/s each not including enough additional performance to provide fault
tolerance.

LANL has also indicated the needed capability to store 1 PB sized check-
points in the near future [19]. Baselining with archive storage disk drives with
a capacity of 8 TB, it would require a minimum of 128 disk drives plus about
20% more for the erasure coding overhead to store 1 PB. Given this capacity
requirement, a reasonable approach would be to use 128 data shards to distrib-
ute the 1 PB file over this number of disk drives. Choosing a ratio of one coding
shard to five data shards would require another 25 disk drives. Using 8 TB disk
drives, the 25 PB campaign storage system would therefore contain a minimum
of 3,825 drives. The big advantage to this large degree of sharding is the lower
bandwidth requirement to each of the target disk drives, 8 MB/s in this exam-
ple where there are 128 shards and the FTA is delivering 1 GB/s to the storage
system, Eq. (1). In this case, the bandwidth requirement at the leaf OSD can be
met with a 100 Mb/s network and is well under the 150 MB/s peak performance
for the current archive type 8 TB disks.(

1GB
second

128 × shards

)
(1)

3 Ceph Erasure Coding Plugin Implementation
for Gibraltar

Ceph provides a well-defined interface for integrating erasure coding libraries
into the product. This mechanism provides a means to incorporate new erasure
coding libraries into the Ceph file system. The plugin architecture is modularized
into two functional areas: registration of erasure coding profiles and the interface
for the erasure coding/decoding services of the library [7]. Gibraltar can theoret-
ically provide up to 256 data and coding shards in a stripe [4], although practical
limits currently restrict k +m to fewer total shards (see Sect. 4.2). Ceph erasure
coded profiles can be constructed with many combinations of k and m.

The Ceph ErasureCodePlugin class is subclassed in our work in order to
instantiate a Gibraltar instance; this instance is configured according to the

GPU Erasure Coding for Campaign Storage 151

parameters provided by the Ceph administrator command to create an erasure
code profile. Gibraltar uses the NVIDIA R© CUDA R© library [25] to offload com-
putation and retrieve results from the K40 GPU [24] in our system. The subclass
ErasureCodePluginGibraltar calls the Gibraltar gib cuda driver function to ini-
tialize a CUDA context for the profile. The profile can then be used to create
an erasure coded pool in Ceph.

The Ceph ErasureCode class is subclassed in our work to implement the
Ceph ErasureCodeInterface functions for the Gibraltar library. We modified the
Gibraltar erasure code library application programmer interface (API) to make
it compatible with the Ceph architecture. Ceph uses a bufferlist data structure
and aggregates k + m shards for each erasure coded stripe where each shard is
referenced by a pointer to the head of the list data structure for the shard. The
call to Gibraltar has been modified to provide an array of these pointers and the
logic copies each shard of data onto a contiguously allocated GPU memory block.
The outputs of the coding or decoding are copied back to the Ceph bufferlist data
structures in a similar way. In Fig. 1, we show how data is passed to the plugin.
The plugin appends m coding shards onto the Bufferlist object and includes the
pointers to these data structures in the array. New versions of the Gibraltar
functions to encode and regenerate were created, whereas the original functions
operated on a contiguous data block that was passed in the call. The original

Ceph

call

Gibraltar

erasure coding

plugin

Gibraltar

CUDA

encode/decodereturn return

Interface to the Gibraltar Library
in the Ceph Plugin

Bufferlist is divided into k data shards
and m coding shards

Ceph Bufferlist Object

k 0 k 1 m n-2 m n-1

...

Fig. 1. Ceph calls the erasure coding module with a Bufferlist object containing the
stripe to be written to the object. The Plugin divides the Bufferlist into k data shards
and adds m coding shards. Gibraltar is called to perform the coding or recovery.

152 W. Haddock et al.

library interface for Gibraltar had proved sufficient for the target RAID system
when originally designed, and was chosen to reduce register pressure in the GPU
by reducing the number of variables [3].

4 Evaluation and Measurement

Here, we discuss the configuration of the system used to perform the experiments
and then we show the results that we obtained.

4.1 System Description

We conducted the measurements on a Dell R730 server with a GPU. Table 1
lists the configuration of our test system.

Table 1. Dell R730 with GPU Configuration

CPUs 2x Xeon E5-2650 v3 @ 2.3 GHZ (HT-enabled: 40 threads)

RAM 128 GB 2133 MT/s RDIMM

Network 2 port Mellanox ConnectX-3 MCX354A-FCBS

Intel X520 DP 10Gb DA/SFP+, I350 DP 1Gb Ethernet

GPU NVIDIA R© K40m GPU

System Drives 2x 300 GB 10K SAS 2

2x 200 GB INTEL SSDSC2BG20 SATA

2x 400 GB TOSHIBA PX02SMF040 SAS 3

4.2 Erasure Code Generation and Reconstruction Performance

Four experiments were conducted to understand the benefits of GPU erasure
coding for the campaign storage application. The first two experiments were run
using the ISA-L [35] erasure coding plugin included in Ceph v12.0.0 to provide
a baseline for reference to our Gibraltar plugin performance. The Cauchy algo-
rithm was selected for ISA-L because it was able to perform the encoding and
decoding with the number of shards we needed to test while the ISA-L Vander-
monde matrix implementation was limited to a maximum of 32 data shards in
Ceph in order to guarantee an MDS codec (see ErasureCodeIsa.cc). The Reed-
Solomon algorithm with the Vandermone matrix is well suited to computation
on a GPU using a precomputed lookup table that has been implemented in the
Gibraltar library. We selected a range of degrees of shardings between 20 and
128 based on experiments that are being conducted for Trinity campaign storage
at LANL. Coding and decoding tests for 1 GB data size used degrees of sharding
ranging between 50 and 128. Erasure decoding for Gibraltar is currently limited

GPU Erasure Coding for Campaign Storage 153

to 118 shards. We selected the number of coding shards for each data sharding
choice to meet the one to five ratio. Test data set sizes of 512 MB and 1 GB were
used for the experiments. We used the erasure coding benchmark tool included
with v12.0.0 of Ceph to run the test cases. The benchmark tool instantiates an
erasure coding profile as specified in our execution parameters and then runs a
series of encoding generations and reconstructions over a set of data. We set the
CPU core affinity to use a single core on the first CPU in the system because
the NVIDIA R© GPU is connected to the PCI bus of this CPU socket. In each
experiment, the same CPU core was used for each erasure coding library. A set
of 10 iteration runs were made totaling 10 GB of data for each run and the
average reported. The results in Fig. 2 show that the Gibraltar library generates
parity at five times the rate of ISA-L in the 50 +10 test and at seven times
ISA-L performance for 128 +24 test. The ISA-L method was stable between the
512 MB and 1 GB data sizes but the Gibraltar method was 5% faster for the 1
GB data size with 128 shards than the corresponding 512 MB test.

In Figs. 3 and 4 we show the performance of reconstructing erasures for our
second experiment. Times are shown for reconstructing one and four erasures in
the configurations tested. At the 1 GB test data size, Gibraltar performance is
43% better than the ISA-L’s performance with the 50 +10 test with one erasure
but is only 84% as fast as the ISA-L’s 118 + 24 with one erasures. At the 1 GB test
data size, Gibraltar performance is 3.77 times faster than the ISA-L performance
for 50 +10 test with four erasures and is 2.98 times the performance of ISA-L
with four erasures at the 118 +24 test data size.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120 140

Ba
nd

w
id

th
 G

B/
s

Number of shards

Erasure Encoding

Legend
Gibraltar encode 1GB
Gibraltar encode 512MB
ISA-L encode 1GB
ISA-L encode 512MB

Fig. 2. Erasure coding bandwidth results with increasing number of shards. Coding
shards are held to a ratio of one coding shard to five data shards.

154 W. Haddock et al.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 20 40 60 80 100 120 140

Ba
nd

w
id

th
 G

B/
s

Number of Shards

Erasure Decoding, 1 Erasure

Legend
Gibraltar decode 1GB
Gibraltar decode 512MB
ISA decode 1GB
ISA decode 512MB

Fig. 3. Erasure recovery bandwidth results with increasing number of shards and one
erasure. Coding shards are held to a ratio of one coding shard to five data shards.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 20 40 60 80 100 120 140

Ba
nd

w
id

th
 G

B/
s

Number of Shards

Erasure Decoding, 4 Erasures

Legend
Gibraltar decode 1GB
Gibraltar decode 512MB
ISA decode 1GB
ISA decode 512MB

Fig. 4. Erasure recovery bandwidth results with increasing number of shards and four
erasures. Coding shards are held to a ratio of one coding shard to five data shards.

Figure 5 shows the shard sizes for the 512 MB and 1 GB data sizes that we
used in the experiments. A larger degree of sharding results in smaller chunks of
the data, lowering the bandwidth requirements to copy the shard to the OSD.

The third experiment measured the Gibraltar encoding execution using the
CUDA nvprof program. The same test configurations were used as in the first

GPU Erasure Coding for Campaign Storage 155

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120 140

Sh
ar

d
Si

ze
 M

B

Number of Shards

Shard Size

Legend
Shard sizes 1G
Shard sizes 512M

Fig. 5. Shard sizes used in the erasure coding and decoding measurements.

two experiments. We ran 10 iterations with 1 GB test data. For the 128 + 24
configuration we measured 25% of the time was spent copying the data to the
GPU memory, 70% of the time was spent generating the erasure coding shards
and the remaining 5% of the time was spent copying the coded shards back to
the host.

The fourth experiment measured the reconstruction using the 118 + 24 con-
figuration and four erasures. In the Gibraltar reconstruction, the Galois inversion
matrix is computed on the host and copied to the GPU for the specific erasures
that are present in the data. The Galois computation consumed 15% of the time.
We measured 55% of the time was spent copying the data to the GPU memory,
23% of the time was spent reconstructing the data and parity, and 4% of the time
was spent copying the four reconstructed data shards from the GPU memory to
the host.

These experiments show that the Gibraltar GPU library can sustain a high
bandwidth performance with larger degrees of sharding. For recovery, the Gibral-
tar GPU library can recover multiple erasures without loss of performance
as compared to the ISA-L library. Using higher performance GPUs like the
NVIDIA R© Pascal [23] with NVLink R© should provide even greater performance
where more bandwidth is required.

5 Previous Work

Ceph provides an erasure coding plugin class as an extensible way for erasure
coding libraries to be implemented in the product. Currently, in release 12.0.0,
there are four erasure coding libraries implemented, namely: Jerasure [17], ISA-
L [35], lrc [26] and Shingled Erasure Code (SHEC) [22]. Our study has shown

156 W. Haddock et al.

that the Gibraltar library [5] can perform about half as well as these libraries
for a sharding degree less than 40 while Gibraltar performs better than these for
greater degrees of sharding. Khasymski et al., showed that GPU-assisted erasure
coding and reconstruction can be performed on the Lustre file system. Their work
required a software shim to integrate into Lustre, which has no defined interface
for erasure coding libraries. Their work only implemented RAID-6, providing
m=2, but showed that the approach was feasible and can provide strong fault
tolerance [18] without depending on RAID subsystems and failover mechanisms
for availability.

6 Conclusion

We have implemented the Gibraltar GPU erasure coding library [4] as a plugin in
the Ceph product and shown that it provides high bandwidth for large degrees of
sharding. This capability can increase the value of cloud storage technologies in
HPC by increasing the number of coding shards to provide extended availability
and reducing the need for recovery of failed members. In these experiments,
the Gibraltar library performance proved much greater than ISA-L [35] on the
Intel E5-2650 v3 CPU. To achieve ISA-L performance measured here, it was
necessary to dedicate a single core of the host computer whereas the Gibraltar
library required 70% of the NVIDIA R© K40 GPU’s total capacity for generation
and 23% of the NVIDIA R© K40 GPU for reconstruction of four shards.

Our measurements show that the Ceph Gibraltar plugin can generate over
120 shards at nearly 1.5 GB/s while the ISA-L plugin has dropped to less than
250 MB/s. The Ceph Gibraltar plugin continues to reconstruct erasures at over
3 GB/s for one or four erasures with 118 shards while the ISA-L Ceph plugin
drops from 3 GB/s for one erasure to 1.5 GB/s for four erasures. Ceph with
the Gibraltar plugin can meet or exceed the current requirements for Trinity
campaign storage with respect to erasure coding and reconstruction.

We have shown that erasure coding with ISA-L can be performed concur-
rently on multiple cores with linear speedup, which can increase bandwidth but
does not improve latency of encoding or decoding data with the stripe sizes hav-
ing large sharding degree as tested [13]. These results should inform the design
of campaign storage systems to the selection of the most appropriate solution.

7 Future Work

The architecture for campaign storage at LANL moves all data between the
campaign storage system and the other storage systems via File Transfer Appli-
ances (FTAs) [19]. Generation of erasure codes requires data locality and is
ideally performed on the file transfer appliance (FTA). The FTAs having GPU
accelerator devices can generate coding and reconstruct shards efficiently where
there is a high degree of sharding. Gibraltar can provide greater than m=2
parity to support higher fault tolerance, which is needed for larger capacity disk
drives. Using the FTAs to perform erasure coding and reconstruction in a Ceph

GPU Erasure Coding for Campaign Storage 157

implementation will require modification of the current interfaces and concepts
for the Ceph erasure coding plugin architecture. The current implementation of
erasure coding in Ceph only provides for OSDs to perform erasure coding and
reconstruction.

A higher degree of sharding spreads the volume of data over a correspond-
ingly large number of disk drives. The input bandwidth to the FTA is fanned
out by the sharding degree resulting in the opportunity to use lower bandwidth
communications for the Object Storage Nodes without reducing throughput per-
formance of the FTA. This provides an opportunity for reducing the cost of
campaign storage. We are currently studying the configuration options of cam-
paign storage with regard to sharding degree, throughput, reliability and cost in
greater depth.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grants Nos. ACI-1541310, CNS-0821497 and CNS-1229282.
Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

This material is based upon work supported by Sandia National Laboratories. San-
dia National Laboratories is a multi-mission laboratory managed and operated by San-
dia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

References

1. Braam, P.J., Schwan, P.: Lustre: the intergalactic file system. In: Ottawa Linux
Symposium, p. 50 (2002)

2. Corbett, P.F., Feitelson, D.G., Prost, J.P., Almasi, G.S., Baylor, S.J.,
Bolmarcich, A.S., Hsu, Y., Satran, J., Snir, M., Colao, R., Herr, B.D., Kavaky, J.,
Morgan, T.R., Zlotek, A.: Parallel file systems for the IBM SP computers. IBM
Syst. J. 34(2), 222–248 (1995), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5387272

3. Curry, M.L., Skjellum, A., Lee Ward, H., Brightwell, R.: Accelerating reed-solomon
coding in RAID systems with GPUs. In: Proceedings of the 2008 IEEE Interna-
tional Parallel & Distributed Processing Symposium, pp. 1–6. IEEE, Miami, April
2008, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4536322

4. Curry, M.L., Skjellum, A., Lee Ward, H., Brightwell, R.: Gibraltar: a reed-solomon
coding library for storage applications on programmable graphics processors. Con-
currency Comput. Pract. Exp. 23(18), 2477–2495, December 2011, http://doi.
wiley.com/10.1002/cpe.1810

5. Curry, M.L., Ward, H.L., Skjellum, A., Brightwell, R.: A lightweight, GPU-based
software RAID system. In: 2010 39th International Conference on Parallel Process-
ing, pp. 565–572. IEEE, San Diego, September 2010, http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=5599249

6. Curry, M.L.: A highly reliable GPU-based RAID system. Ph.D. thesis,
University of Alabama at Birmingham (2010), http://contentdm.mhsl.uab.edu/
cdm/ref/collection/etd/id/854

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5387272
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5387272
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4536322
http://doi.wiley.com/10.1002/cpe.1810
http://doi.wiley.com/10.1002/cpe.1810
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5599249
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5599249
http://contentdm.mhsl.uab.edu/cdm/ref/collection/etd/id/854
http://contentdm.mhsl.uab.edu/cdm/ref/collection/etd/id/854

158 W. Haddock et al.

7. Dachary, L.: Ceph Replication vs Erasure Coding, July 2013, http://dachary.org/?
p=2171

8. Dachary, L., Just, S.: Erasure Code, August 2013, https://github.com/dachary/
ceph/blob/wip-4929/doc/dev/osd internals/erasure-code.rst

9. Farrance, R.: Timeline: 50 Years of Hard Drives, September 2006, http://www.
pcworld.com/article/127105/article.html

10. Grider, G.: HPC Storage and IO Trends and Workflows, April 2016, http://
salishan.ahsc-nm.org/program.html

11. Greenan, K.: Reliability and Power-Efficiency in Erasure-Coded Storage Systems.
Tech. Rep. UCSC-SSRC-09-08, University of California, Santa Cruz, December
2009

12. Grider, G.: MarFS, May 2015, http://storageconference.us/2015/Presentations/
Grider.pdf

13. Haddock, W., Curry, M.L., Bangalore, P., Skjellum, A.: Using GPU erasure coding
to lower HPC pre-archive storage costs. In: TBD (2017)

14. Hafner, J.L., Deenadhayalan, V., Kanungo, T., Rao, K.: Performance metrics for
erasure codes in storage systems. IBM Res. Rep. RJ 10321 (2004)

15. Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J., Yekhanin,
S.: Erasure coding in windows azure storage. In: Usenix Annual Technical Confer-
ence, pp. 15–26, Boston, MA (2012)

16. Inman, J., Grider, G., Chen, H.B.: Cost of tape versus disk for archival storage.
In: 2014 IEEE 7th International Conference on Cloud Computing, pp. 208–215.
IEEE, Anchorage, June 2014, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6973743

17. Plank, J.S., Simmerman, S., Schuman, C.D.: Jerasure: A Library in C/C++ Facil-
itating Erasure Coding for Storage Applications. Tech. Rep. Technical Report CS-
08-627, University of Tennessee, Knoxville, TN 37996 (2008), http://www.cs.utk.
edu/plank/plank/papers/CS-08-627.html

18. Khasymski, A., Rafique, M.M., Butt, A.R., Vazhkudai, S.S., Nikolopoulos, D.S.:
On the use of GPUs in realizing cost-effective distributed RAID. In: 2012 IEEE
20th International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, pp. 469–478, August 2012, http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6298207

19. Lamb, K.: Trinity Campaign Storage and Usage Model, August 2015, https://
www.lanl.gov/projects/trinity/ assets/docs/trinity-usage-model-presentation.pdf

20. Li, M., Shu, J.: DACO: a high-performance disk architecture designed specially
for large-scale erasure-coded storage systems. IEEE Trans. Comput. 59(10), 1350–
1362 (2010)

21. Messina, P.: A Path to Capable Exascale Computing, July 2016, http://press3.
mcs.anl.gov/atpesc/files/2016/07/MessinaJul31.dinner.pdf

22. Miyamae, T., Nakao, T., Shiozawa, K.: Erasure code with shingled local par-
ity groups for efficient recovery from multiple disk failures. In: 10th Workshop
on Hot Topics in System Dependability (HotDep 2014). USENIX Association,
Broomfield, CO, October 2014, https://www.usenix.org/conference/hotdep.14/
workshop-program/presentation/miyamae

23. NVIDIA: NVIDIA Tesla P100, http://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper-v1.2.pdf

24. NVIDIA: Tesla K40 GPU Active Accelerator, November 2013, https://www.nvidia.
com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001 v03.pdf

25. NVIDIA: CUDA Parallel Computing Platform, March 2017, http://www.nvidia.
com/object/cuda home new.html

http://dachary.org/?p=2171
http://dachary.org/?p=2171
https://github.com/dachary/ceph/blob/wip-4929/doc/dev/osd_internals/erasure-code.rst
https://github.com/dachary/ceph/blob/wip-4929/doc/dev/osd_internals/erasure-code.rst
http://www.pcworld.com/article/127105/article.html
http://www.pcworld.com/article/127105/article.html
http://salishan.ahsc-nm.org/program.html
http://salishan.ahsc-nm.org/program.html
http://storageconference.us/2015/Presentations/Grider.pdf
http://storageconference.us/2015/Presentations/Grider.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6973743
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6973743
http://www.cs.utk.edu/plank/plank/papers/CS-08-627.html
http://www.cs.utk.edu/plank/plank/papers/CS-08-627.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6298207
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6298207
https://www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf
https://www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf
http://press3.mcs.anl.gov/atpesc/files/2016/07/MessinaJul31.dinner.pdf
http://press3.mcs.anl.gov/atpesc/files/2016/07/MessinaJul31.dinner.pdf
https://www.usenix.org/conference/hotdep.14/workshop-program/presentation/miyamae
https://www.usenix.org/conference/hotdep.14/workshop-program/presentation/miyamae
http://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper-v1.2.pdf
http://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper-v1.2.pdf
https://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf
https://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

GPU Erasure Coding for Campaign Storage 159

26. Papailiopoulos, D.S., Dimakis, A.G.: Locally repairable codes. IEEE Trans. Inf.
Theory 60(10), 5843–5855 (2014)

27. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive
disks (RAID). In: Proceedings of the 1988 ACM SIGMOD International Conference
on Management of Data, pp. 109–116. SIGMOD 1988, NY, USA (1988), http://
doi.acm.org/10.1145/50202.50214

28. Plank, J.S.: A tutorial on reed-solomon coding for fault-tolerance in RAID-like
systems. Softw. Pract. Exp. 27(9), 995–1012 (1997)

29. Plank, J.S., Blaum, M., Hafner, J.L.: SD codes: erasure codes designed for how
storage systems really fail. In: FAST, pp. 95–104. San Jose, CA, USA, February
2013

30. Plank, J.S., Thomason, M.G.: A practical analysis of low-density parity-check era-
sure codes for wide-area storage applications. In: 2004 International Conference on
Dependable Systems and Networks, pp. 115–124. IEEE (2004)

31. Rashmi, K., Shah, N.B., Gu, D., Kuang, H., Borthakur, D., Ramchandran, K.:
A “hitchhiker’s” guide to fast and efficient data reconstruction in erasure-coded
data centers. In: Proceedings of the 2014 ACM Conference on SIGCOMM, vol.
44, pp. 331–342. ACM Press, Chicago (2014), http://dl.acm.org/citation.cfm?
doid=2619239.2626325

32. Rodrigues, R., Liskov, B.: High availability in DHTs: erasure coding vs. replication.
In: Castro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 226–239.
Springer, Heidelberg (2005). doi:10.1007/11558989 21

33. Saito, Y., Frlund, S., Veitch, A., Merchant, A., Spence, S.: FAB: building dis-
tributed enterprise disk arrays from commodity components. In: Proceedings of
the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XI, pp. 48–58. ACM Press, Boston
(2004), http://portal.acm.org/citation.cfm?doid=1024393.1024400

34. Shilov, A.: Seagate Unveils 10 TB Helium filled Hard Disk Drive, January
2016, http://www.anandtech.com/show/9955/seagate-unveils-10-tb-heliumfilled-
hard-disk-drive

35. Tucker, G.: ISA-L open source v2.14 API doc, April 2016, https://01.org/sites/
default/files/documentation/isa-l open src 2.10.pdf

36. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: a quanti-
tative comparison. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 328–337. Springer, Heidelberg (2002). doi:10.1007/
3-540-45748-8 31

37. Weil, S., Brandt, S., Miller, E., Maltzahn, C.: CRUSH: controlled, scalable, decen-
tralized placement of replicated data. In: Proceedings of the ACM/IEEE on SC
2006 Conference, pp. 31–31. IEEE, Tampa, November 2006, http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4090205

38. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C.: Ceph: A scalable,
high-performance distributed file system. In: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, pp. 307–320. USENIX Association
(2006)

39. Weil, S.A., Leung, A.W., Brandt, S.A., Maltzahn, C.: RADOS: a scalable, reliable
storage service for petabyte-scale storage clusters. In: Proceedings of the 2nd Inter-
national Workshop on Petascale Data Storage: Held in Conjunction with Super-
computing 2007 (PDSW 2007), p. 35. ACM Press, Reno (2007), http://portal.acm.
org/citation.cfm?doid=1374596.1374606

http://doi.acm.org/10.1145/50202.50214
http://doi.acm.org/10.1145/50202.50214
http://dl.acm.org/citation.cfm?doid=2619239.2626325
http://dl.acm.org/citation.cfm?doid=2619239.2626325
http://dx.doi.org/10.1007/11558989_21
http://portal.acm.org/citation.cfm?doid=1024393.1024400
http://www.anandtech.com/show/9955/seagate-unveils-10-tb-heliumfilled-hard-disk-drive
http://www.anandtech.com/show/9955/seagate-unveils-10-tb-heliumfilled-hard-disk-drive
https://01.org/sites/default/files/documentation/isa-l_open_src_2.10.pdf
https://01.org/sites/default/files/documentation/isa-l_open_src_2.10.pdf
http://dx.doi.org/10.1007/3-540-45748-8_31
http://dx.doi.org/10.1007/3-540-45748-8_31
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4090205
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4090205
http://portal.acm.org/citation.cfm?doid=1374596.1374606
http://portal.acm.org/citation.cfm?doid=1374596.1374606

PIOM-PX: A Framework for Modeling the I/O
Behavior of Parallel Scientific Applications

Pilar Gomez-Sanchez1(B), Sandra Mendez2, Dolores Rexachs1,
and Emilio Luque1

1 Computer Architecture and Operating Systems Department,
Universitat Autónoma de Barcelona, Campus UAB, Edifici Q,

08193 Bellaterra, Barcelona, Spain
{pilar.gomez,dolores.rexachs,emilio.luque}@uab.es

2 High Performance Systems Division, Leibniz Supercomputing Centre (LRZ),
85748 Garching bei München, Germany

sandra.mendez@lrz.de

Abstract. Current parallel scientific applications generate a huge
amount of data that must be managed efficiently for the HPC storage
systems. However, the I/O performance depends on the application I/O
behavior and the configuration of the underlying I/O system. To under-
stand the I/O behavior in the software stack and its impact on the I/O
operations defined in the application logic, we propose a design frame-
work named PIOM-PX, which allows to define an I/O behavior model
based on the I/O phases of HPC applications at POSIX-IO level. We
validate our framework using the IOR benchmark for four I/O patterns
and we analyze the I/O behavior of NAS BT-IO.

1 Introduction

Nowadays, parallel applications produce a huge amount of data that represents
a challenge for modern I/O systems. The variability of the I/O patterns and
diversity of storage architectures are other issues that make it difficult to take
advantage of the I/O performance capacity of the HPC-IO systems. Depending
on the I/O behavior of parallel applications and the processing performed in each
layer of the I/O software stack, the performance obtained can differ significantly
from the maximum performance expected.

Understanding I/O behavior is fundamental to evaluate the I/O performance
of the HPC applications. Several works [1–5] have focused on the extraction of the
I/O patterns to understand I/O behavior and to propose techniques to optimize
I/O performance in different layers of the I/O software stack [6,7]. Several tools
exist to analyze the application’s I/O behavior both for performance analysis and
for I/O profiling such as Darshan [8] I/O profiling tool, SIOX [9] and Vampir
[10] tool.

Due to the fact that most parallel applications are repetitive, and this repeti-
tive behavior for I/O operations is observed as I/O bursts or I/O phases, we use

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 160–173, 2017.
https://doi.org/10.1007/978-3-319-67630-2_14

PIOM-PX: A Framework for Modeling the I/O Behavior 161

the phase concept as the representation unit of the behavior of parallel appli-
cations. In this paper, we present a design framework named PIOM-PX, which
allows us to obtain the main parameters at POSIX-IO to define an I/O behavior
model.

We use PIOM-PX in order to evaluate the impact of the I/O phases on the
I/O system and to replicate the application’s I/O behavior in different HPC sys-
tems. The I/O phases are determined by identifying the global spatial and tem-
poral pattern for each file opened during the execution of the parallel application.
Our approach allows us to determine the I/O requirements of the application
and to evaluate their impact on different I/O configurations.

This paper is organized as follows: Sect. 2 describes the proposed framework,
Sect. 3 presents the validation of PIOM-PX and Sect. 4 explains the experimental
results. Finally, in Sect. 5, we explain our conclusions and future work.

2 Proposed Framework

The I/O model of application is defined based on the I/O phase concept and the
key characteristics, which are independent of the I/O system. We classify the
application features as parameters for PIOM-PX into three levels: application,
file, and phase. Table 1 summarizes the parameters for each level.

We define a design framework to obtain an I/O behavior model at POSIX-IO
level named PIOM-PX. Figure 1 presents the steps of PIOM-PX structured in
two main stages: tracing and post-processing.

Fig. 1. Framework to extract the application’s I/O behavior model based on identifying
the I/O phases.

162 P. Gomez-Sanchez et al.

Table 1. PIOM-PX model parameters

Identifier Application

app np Number of processes that the application needs to be executed

app nfiles Number of files used by the application

app st Storage capacity required by the application for the input files,
temporal files and input/output files.

File

file id File Identifier

file name File Name

file size File Size

file np Count of MPI processes that open the file file id

file accessmode This can be sequential, strided or random

file fileaccesstype Read only(R), write only (W) or write and read (W/R)

file accesstype file np processes can access to shared Files or 1 File per Process

file nphase Count of phases of the file.

I/O Phase (PhIO)

Ph id Identifier of an I/O Phase

Ph processid Identifier of Process implied in the phase

Ph np Number of processes implied in the phase

Ph weight Transferred data volume during the phase. It is expressed in
bytes

Ph nrep Number of repetitions per phase

Ph niop Number of I/O operations

IOP Data access operation type, which can be write, read, or
write/read

rs Request size or size of an I/O operation

offset Operation offset, which is a position in the file’s logical view

disp Displacement into file, which is the difference between the offset
of two consecutive I/O operations

dist Distance between two I/O operations, which is the difference
between

2.1 Tracing I/O Operations

To obtain the information defined in Table 1, we have implemented a tracer to
extract POSIX-IO events and to assign additional fields to detect I/O phases.
This tracer was integrated with PIOM-MP (former PAS2P-IO), which allows us
to trace I/O activities at MPI and POSIX-IO level.

Table 2 describes the fields included in a trace line (TL) of PIOM-PX. The
events are traced between the MPI Init and the MPI Finalize operations and a
trace file is generated for each MPI process. We trace the following operations:

PIOM-PX: A Framework for Modeling the I/O Behavior 163

POSIX-IO
open, open64, fopen64, close, fclose, write, fwrite, read, pread

pread64, pwrite, pwrite64,fread, fwrite, lseek, lseek64, fsync

creat, creat64, readv, writev, fseek, xstat, xstat64

Communication and MPI-IO
MPI_Send, MPI_Isend, MPI_Recv, MPI_Irecv, MPI_Wait, MPI_Allgather

MPI_Allreduce, MPI_Barrier, MPI_Bcast, MPI_Reduce, MPI_Sendrecv

MPI_Waitall, MPI_File_* // 51 I/O operations.

We define the tick concept to register the order of the MPI events and the
subtick concept for POSIX-IO events. The tick is increased for each MPI event
detected and the subtick is initialized after each MPI event and incremented for
consecutive POSIX-IO events.

Table 2. PIOM-PX trace line

Identifier Description

IdProcess Identifier of Process

file id Identifier of File

TypeOperation “MPI” or “POSIX”

NameOperation Name of POSIX-IO event

offset Operation offset, which is a position in the file’s logical view

rs Request size of for data access operations

Metadata-line

file name File Name

FileAccessType Open mode

Added fields

Time Logical time of the occurrence of a MPI or POSIX-IO event

Final compute Duration of the call of an MPI or POSIX-IO event

tick Order of occurrence of the MPI events

subtick Order of occurrence of the POSIX-IO events

In the Extracting I/O operations step, we extract the I/O operations per file
opened by the application of each trace file into a new file. Therefore, from this
step we obtain as many files as the application opens during its execution.

2.2 Updating I/O Operations

In this point, every file of I/O operations is reviewed to determine whether the
offset and request size (rs) informed require evaluating another operation to
obtain the real request or offset. For example, the case of the write and read
operations, where the offset depends on lseek operation.

164 P. Gomez-Sanchez et al.

To modify the offset, we have to take into account the whence parameter of
lseek operation: SEEK SET (the file offset is set to offset bytes), SEEK CUR (the
file offset is set to its current location plus offset bytes) and SEEK END (the file
offset is set to the size of the file plus offset bytes).

We calculate the field displacement (disp), added in the TL structure, to
identify the request size (rs) and how the displacement moves.

For Fortran program, the environment variable FORT BLOCKSIZE is evaluated
to determine the request size of a POSIX-IO event that the user actually wants
to work with.

2.3 Extracting Spatial and Temporal Pattern

To extract the spatial pattern, for each I/O file, both for the write and read
operation, we save the following fields: NameOperation, file id, file name,
offset and rs.

Besides, we calculate the offset difference for all operations that have the
same file id, file name and rs. The offset difference is calculated between two
consecutive operations (read-read or write-write) and the displacement (disp) is
calculated between two write operations and read operations.

If the application uses a shared file, we identify the global spatial pattern
based on I/O operations traced for each MPI process that opens the shared file.

To detect the Temporal pattern we establish the tick and subtick (See Fig. 2).
The tick identifies the MPI and MPI-IO operations and the subtick identifies
the POSIX-IO operations. MPI Sends are interchanged between processes and

Fig. 2. Representation of the I/O phases of a parallel application. The view corresponds
to an I/O process for an access type 1 file per process. Tick and subtick are used to
obtain the order of occurrence of the application’s events. An I/O phase is a consecutive
sequence of similar I/O operations. Phase properties represent the transferred data
volume during a phase and the I/O pattern.

PIOM-PX: A Framework for Modeling the I/O Behavior 165

the tick of MPI Sends affects the operations of the processes that received this
MPI Send. If all processes write to one or more shared files, we must detect
the relationship between all the operations carried out by all the processes to
determine the actual logical order. This order helps us to detect dependencies
among all processes and it is necessary to redefine the ticks and the subticks.

3 Experimental Validation

In this section, we validate the PIOM-PX functionality and its integration with
PIOM-MP (former PAS2P-IO [4]). To do this, we define four experiments based
on IOR [11] benchmark, which allows us to generate different I/O patterns for
distinct I/O interfaces. We have executed IOR using intel and GNU compilers
to analyze their influence on the operations detected. The MPI distribution uti-
lized was Intel MPI 2017. Furthermore, to identify the impact of the parallel
file system at the POSIX-IO level, PIOM-PX is evaluated in two HPC systems
with IBM Spectrum Scale (former GPFS) and Lustre. Experiments were exe-
cuted in SuperMUC (LRZ) and Finisterrae2 (CESGA) supercomputers, which
are described in Table 3.

Table 3. HPC systems

Components Finisterrae2 SuperMUC

Compute nodes 306 9216

CPU cores (per node) 24 16

RAM memory 128 GB 32 GB

Local Filesystem ext4 ext3

Global Filesystem (GFS) NFS NFS

Capacity of GFS 1.1 TB 10×564×10TB

Global Filesystem (PFS) Lustre GPFS

Capacity of PFS 695 TB 12 PB

Data servers 4 OSS and 12 OSTs 80 NSD

Metadata servers 1

Stripe size 1 MiB 8 MiB

Interconnection IB FDR@56 Gbps IB FDR10

3.1 Experimentation

Four experiments were designed to evaluate the I/O strategies 1 File per
Process and 1 Single Shared File. Furthermore, we assess a nested strided
pattern by using the collective buffering technique in “enable” and “automatic”
mode. We executed the experiments for 16 MPI processes per compute node.
Each experiment is described as follows:

166 P. Gomez-Sanchez et al.

(a) 1 File per Process using POSIX interface:
– Objective: Detect the POSIX-IO operations for an application that only

uses POSIX as I/O library.
– Command Line:

IOR -a POSIX -s 1 -b 8m -t 1m -F

(b) 1 File per Process using MPI-IO interface:
– Objective: Detect the POSIX-IO operations generated by an application

that uses independent MPI-IO operations.
– Command Line:

IOR -a MPIIO -s 1 -b 8m -t 1m -F

(c) A single shared file using collective buffering technique in automatic mode
for a strided pattern:
– Objective: Detect the POSIX-IO operations generated by an application

that uses collective MPI-IO operations.
– Command Line:

IOR -c -a MPIIO -s 16 -b 512k -t 512k

(d) A single shared file using collective buffering technique in enable mode for
a strided pattern:
– Objective: Detect the POSIX-IO operations generated by an applica-

tion that uses collective operations with the collective buffering technique
enabled.

– Command Line:

romio_cb_read = enable
romio_cb_write = enable
IOR -c -a MPIIO -s 16 -b 512k -t 512k

Table 4 presents PIOM-PX model parameters for the four IOR experiments
at application and file level.

To explain the I/O phases detected, we present snippets of trace files for
each experiment, where lines with “##” present the selected field of a trace
line. Furthermore, we detected two I/O phases for the four experiments because
this depends on the IOR logic. For this reason, we only show a detailed figure of
the I/O behavior for experiment (a). Each experiment is explained as follows:

(a) 1 File per Process using POSIX interface: IOR is configured to write 8 MiB
per MPI process by using the POSIX interface for the I/O strategy 1 File per
process. Each MPI process writes and reads in request size of 1 MiB (rs = 1
MiB). Figure 3 shows the I/O behavior for experiment (a). We detect two
I/O phases per file composed of eight operations (Ph niop = 8) each. For
each file, the first phase corresponds to 8 write operations and the second
phase to 8 read operations. Sixteen files are accessed in parallel. IOR starts
with a communication burst of 30 events between process 0 and the rest
of the processes (See Fig. 3). Later, a write phase begins in tick 30. In the
tick+subtick 50, an I/O Phase of read operations is generated.

PIOM-PX: A Framework for Modeling the I/O Behavior 167

Table 4. PIOM-PX Parameters for the IOR Benchmark

Identifier (a) (b) (c) (d)

app np 16 16 16 16

app nfiles 16 16 1 1

app st 128 MiB 128 MiB 128 MiB 128 MiB

File

file name testFile<IdProcess> testFile<IdProcess> testFile testFile

file size 8 MiB 8 MiB 128 MiB 128 MiB

file accessmode Seq Seq Strided Strided

file fileaccesstype W/R W/R W/R W/R

file accesstype 1Fx1Proc 1Fx1Proc Shared Shared

file nphase 2 2 2 2

file np 1 1 16 16

(a) File offset (b) Phase Weight

Fig. 3. IOR for POSIX interface configured for 16 MPI processes, 1 File per Process
for a sequential pattern. Bullet (smaller circle) corresponds to write operations and the
filled squares to read operations. Two I/O phases can be observed for each file. The
Phase 1 is composed of 8 write operations and Phase 2 of 8 read operations. The color
scale in (b) shows the weight, which is 1 MiB × file np per subtick. The weight for
both Phase 1 and Phase 2 is 8 MiB for each file per process. (Color figure online)

Snippet 1 presents part of the trace file of IdProcess 2, which shows part
of the operations of Phase 1. We can observe that a lseek64 operation is
called before each write and this also occurs for read operations.

168 P. Gomez-Sanchez et al.

Snippet 1: Trace file of IdProcess 2
IdProcess file_id file_name NameOperation tick subtick

2 6 testFile.00000002 open64 30 0

IdProcess file_id NameOperation offset tick subtick

2 6 lseek64 0 30 1

IdProcess file_id NameOperation offset rs tick subtick

2 6 write 0 1048576 30 2

2 6 lseek64 1048576 30 3

2 6 write 0 1048576 30 4

...

(b) 1 File per Process using MPI-IO interface: the I/O phases for this case is
similar to experiment (a) (See Fig. 3). In Snippet 2, a part of the IdProcess
2 trace file for this experiment can be seen. The number of I/O oper-
ations at POSIX-IO level changes, a write operation is called for each
MPI File write at. For read case, each MPI File read at calls a read
operation.

Snippet 2: Trace file of IdProcess 2
IdProcess file_id NameOperation file_name tick

2 0x6e38b8 MPI_File_open testFile.00000002 31

IdProcess file_id file_name NameOperation tick subtick

2 22 testFile.00000002 open64 31 0

IdProcess file_id NameOperation offset rs tick

2 0x6e38b8 MPI_File_write_at 0 1048576 32

IdProcess file_id NameOperation offset rs tick subtick

2 22 write 0 1048576 32 0

2 0x6e38b8 MPI_File_write_at 1048576 1048576 33

2 22 write 0 1048576 33 0

...

(c) A single shared file using collective buffering technique in automatic for a
strided pattern:

Snippet 3: Trace file of IdProcess 0
IdProcess file_id NameOperation file_name tick

0 0x2124fc8 MPI_File_open testFile3 31

IdProcess file_id file_name NameOperation tick subtick

0 6 testFile3 open64 0 66 31 0

0 0x2124fc8 MPI_File_get_info 32

IdProcess file_id NameOperation offset rs tick

0 0x2124fc8 MPI_File_write_at_all 0 524288 33

IdProcess file_id NameOperation offset rs tick subtick

0 6 write 0 524288 33 0

0 0x2124fc8 MPI_File_write_at_all 8388608 524288 34

IdProcess file_id NameOperation offset tick subtick

0 6 lseek64 8388608 34 0

0 6 write 0 524288 34 1

...

We define the strided pattern by setting the parameters blocksize (-b) and
transfer size (-t) with the same value. Furthermore, to obtain a total I/O

PIOM-PX: A Framework for Modeling the I/O Behavior 169

equal to experiment (a) and (b), the segment count (-s) is set to 16. In total,
each process writes and reads 8 MiB using a request size of 512 KiB.
In Snippet 3, we can observe a lseek64 and write operation for each MPI-
File write at all, except for the first collective write. The displacement
is equal to file np × rs = 8388608 Bytes, where file np = 16 and rs =
t = 524288 Bytes. In this case, each MPI process produces a similar trace
file, with the exception of the offset, where the initial offset is equal to
IdProcess × rs and offset(i + 1) = offset(i) + rs × file np × (i − 1) +
IdProcess × rs with i ∈ {1..s}, where s is the number of segments set up
for IOR benchmark.

(d) A single shared file using collective buffering technique enabled for a strided
pattern:

Snippet 4: Trace file of IdProcess 0
IdProcess file_id NameOperation file_name tick

0 0xac80f0 MPI_File_open testFile3 31

IdProcess file_id file_name NameOperation tick subtick

0 6 testFile3 open64 31 0

0 0xab9338 MPI_File_get_info 32

IdProcess file_id NameOperation offset rs tick

0 0xab9338 MPI_File_write_at_all 0 524288 33

IdProcess file_id NameOperation offset rs tick subtick

0 6 write 0 8388608 33

0 0xab9338 MPI_File_write_at_all 8388608 524288 34

IdProcess file_id NameOperation offset tick subtick

0 6 lseek64 8388608 34 0

0 6 write 0 8388608 34 1

...

To trace the I/O operations for applications that use collective buffering
enabled, we set up the ROMIO hints for this technique. The strided pattern
discussed in experiment (c) is the same than we employed in this experiment.
In Snippet 4, we can observe similar I/O operations to experiment (c), but
the request size at POSIX level is different, in this case, it corresponds to
file np× rs(MPI) = 8388608 Bytes, where rs(MPI) is the request size of
the MPI-IO operations. This behavior is to be expected, because we select
the IOR parameters to observe the collective behavior at POSIX-IO level.

3.2 Discussion

IOR benchmark allows us to reproduce more common I/O patterns of HPC
applications. PIOM-PX detected the spatial and temporal pattern for POSIX-
IO level and it represented them through I/O phases.

The results showed that the spatial pattern depends on the type of I/O oper-
ation and I/O method. We have selected the same amount of data, the number
of MPI processes and similar I/O strategy, but the behavior is influenced by the
I/O techniques and the I/O interface. We have detected that collective buffering
technique was not working in automatic mode because all MPI processes were

170 P. Gomez-Sanchez et al.

carrying out I/O and we only expected an I/O aggregator per compute node. As
has been observed in experiments (c) and (d), MPI-IO operations are the same,
but at POSIX level they depend on the hint values of the ROMIO library and
the hints explicitly defined in the application. PIOM-PX considers this property
to provide information to the user in order to help them understand what the
I/O library is doing with the operations defined in the application logic.

4 Experimental Results

In this section, we analyze the BT-IO benchmark [12], which is part of the parallel
benchmark suite NPB-MPI developed by the NASA Advanced Supercomputing
Division. BT-IO presents a block-tridiagonal partitioning pattern on a three-
dimensional array across a square number of processes.

Table 5. PIOM-PX parameters for the BT-IO benchmark subtype FULL

Identifier Class A Class B Class C

app np 16 16 36

app nfiles 1 1 1

app st 400 MiB 1.6 GiB 6.4 GiB

File

file name btio.full.out btio.full.out btio.full.out

file size 400 MiB 1.6 GiB 6.4 GiB

file accessmode Strided Strided Strided

file fileaccesstype W/R W/R W/R

file accesstype Shared Shared Shared

file nphase 41 41 41

file np at MPI-IO level 16 16 36

file np at POSIX-IO level 1 1 3

We selected BT-IO to show the temporal pattern considering the tick and
subtick concepts. Due to the fact that an I/O phase is identified depending on the
communication events and compute part, BT-IO allows us to analyze a case with
compute and communication events. BT-IO is implemented in Fortran, therefore
we can evaluate the influence of Fortran I/O library in the request size at POSIX-
IO level. We have selected the subtype FULL, which implements the I/O part
with collective operations, derived data type, MPI File view and MPI Info for
enabled collective buffering in the application logic. We have executed BT-IO in
SuperMUC and Finisterra2 supercomputers (See Table 3).

Figure 4 depicts the I/O phases at MPI-IO (Fig. 4(a)) and POSIX-IO
(Fig. 4(b)) level. PIOM-PX parameters are described in Table 5 for Classes A, B

PIOM-PX: A Framework for Modeling the I/O Behavior 171

(a) File offset at MPI level by using PIOM-MP

(b) File offset at POSIX-IO level (c) Phase Weight at POSIX-IO level

Fig. 4. BT-IO subtype FULL, Class A using 16 MPI processes for a strided pattern.
The bullets (smaller circles) correspond to write operations and the shaded squares
to read operations. Each first forty I/O phases (circles) are composed of 1 MPI write
operation and Phase 41 of 40 read operations. At MPI-IO level, the weight of the Phase
1 to Phase 40 is 655360 Bytes × file np for each one and for Phase 41 it is 10 MiB ×
np × 40. At POSIX-IO level, the colored scale in Fig. 4(c) shows the weight for Phase
1 to Phase 40, which is 10 MiB and the Phase 41 weight is 10 MiB ×40.

172 P. Gomez-Sanchez et al.

and C at application and file level. As can be observed in Table 5, 41 I/O phases
are identified in a single shared file for a strided access mode.

In Fig. 4(a) each bullet line (y-axis) represents an I/O phase composed of
file np write operations. The red square represents Phase 41, which is com-
posed of 40 × file np read operations. The operation size is similar for read
and write operations. At MPI-IO level, the number of MPI processes per I/O
phase correspond to the file np. In Fig. 4(b), we can observe the effect of the
collective buffering techniques at POSIX level, where only process 0 performs
I/O operations. In this layer, the number of processes per I/O phase is equal to
the number of compute nodes utilized for running the application.

5 Conclusions

We have validated PIOM-PX with the IOR benchmark for four cases. Our app-
roach allows us to obtain the application’s I/O behavior at phase level. The I/O
behavior helps to understand the relationship between the application and the
I/O system. PIOM-PX is modular to facilitate the integration of more function-
ality or steps. Our framework makes it possible to have accurate information
over the I/O phases. Despite the fact that number of MPI processes evaluated
in validation and experimentation is small, as the I/O behavior model depends
on the application logic, our approach is applicable for a larger number of MPI
processes.

The next step, it is to execute the real applications and to acquire their I/O
behavior at I/O phase level.

Acknowledgments. This research has been supported by the MINECO Spain under
contract TIN2014-53172-P. The research position of the PhD student P. Gomez has
been funded by a research collaboration agreement, with the “Fundación Escuelas
Universitarias Gimbernat”. P. Gomez awarded with the SEBAP Research Mobility
Grant to fund her three-month research stay at Leibniz Supercomputing Centre (LRZ,
Germany).

The authors thankfully acknowledge the resources provided by the Centre of Super-
computing of Galicia (CESGA, Spain) and the Leibniz Supercomputing Centre (LRZ,
Germany).

References

1. Byna, S., Chen, Y., Sun, X.-H., Thakur, R., Gropp, W.: Parallel I/O prefetching
using MPI file caching and I/O signatures. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC 2008, Piscataway, NJ, USA, pp. 44:1–44:12.
IEEE Press, 2008. http://dl.acm.org/citation.cfm?id=1413370.1413415

2. He, J., Bent, J., Torres, A., Grider, G., Gibson, G., Maltzahn, C., Sun, X.-H.:
I/O acceleration with pattern detection. In: Proceedings of the 22nd International
Symposium on High-Performance Parallel and Distributed Computing, pp. 25–36.
ACM (2013)

http://dl.acm.org/citation.cfm?id=1413370.1413415

PIOM-PX: A Framework for Modeling the I/O Behavior 173

3. Kluge, M., Knüpfer, A., Müller, M., Nagel, W.E.: Pattern matching and I/O replay
for POSIX I/O in parallel programs. In: Sips, H., Epema, D., Lin, H.-X. (eds.)
Euro-Par 2009. LNCS, vol. 5704, pp. 45–56. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03869-3 8

4. Méndez, S., Rexachs, D., Luque, E.: Modeling parallel scientific applications
through their Input/Output phases. In: CLUSTER Workshops, vol. 12, pp. 7–15
(2012)

5. Carns, P., Harms, K., Allcock, W., Bacon, C., Lang, S., Latham, R., Ross, R.:
Understanding and improving computational science storage access through contin-
uous characterization. Trans. Storage 7(3), 8:1–8:26 (2011). doi:10.1145/2027066.
2027068

6. Behzad, B., Luu, H.V.T., Huchette, J., Byna, S., Prabhat, Aydt, R., Koziol, Q.,
Snir, M.: Taming parallel I/O complexity with auto-tuning. In: 2013 SC - Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pp. 1–12, November 2013

7. Behzad, B., Byna, S., Prabhat, Snir, M.: Pattern-driven parallel I/O tuning. In:
Proceedings of the 10th Parallel Data Storage Workshop, PDSW 2015, pp. 43–48.
ACM, New York (2015). doi:10.1145/2834976.2834977

8. Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., Riley, K.: 24/7 Character-
ization of petascale I/O workloads. In: 2009 IEEE International Conference on
Cluster Computing and Workshops, pp. 1–10. IEEE (2009)

9. Kunkel, J.M., Zimmer, M., Hübbe, N., Aguilera, A., Mickler, H., Wang, X., Chut,
A., Bönisch, T., Lüttgau, J., Michel, R., Weging, J.: The SIOX architecture –
coupling automatic monitoring and optimization of parallel I/O. In: Kunkel, J.M.,
Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp. 245–260. Springer,
Cham (2014). doi:10.1007/978-3-319-07518-1 16

10. Knüpfer, A., et al.: The Vampir performance analysis tool-set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting, pp. 139–155. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68564-7 9

11. Loewe, W., MacLarty, T., Morrone, C.: IOR Benchmark (2012). https://github.
com/chaos/ior/blob/master/doc/USER GUIDE. Accessed 14 May 2016

12. Wong, P., Wijngaart, R.F.V.D.: NAS parallel benchmarks i/o version 2.4, Com-
puter Sciences Corporation, NASA Advanced Supercomputing (NAS) Division,
Technical report (2003)

http://dx.doi.org/10.1007/978-3-642-03869-3_8
http://dx.doi.org/10.1007/978-3-642-03869-3_8
http://dx.doi.org/10.1145/2027066.2027068
http://dx.doi.org/10.1145/2027066.2027068
http://dx.doi.org/10.1145/2834976.2834977
http://dx.doi.org/10.1007/978-3-319-07518-1_16
http://dx.doi.org/10.1007/978-3-540-68564-7_9
https://github.com/chaos/ior/blob/master/doc/USER_GUIDE
https://github.com/chaos/ior/blob/master/doc/USER_GUIDE

Real-Time I/O-Monitoring of HPC Applications
with SIOX, Elasticsearch, Grafana and FUSE

Eugen Betke(B) and Julian Kunkel(B)

Deutsches Klimarechenzentrum, 20146 Hamburg, Germany
{betke,kunkel}@dkrz.de

Abstract. The starting point for our work was a demand for an
overview of application’s I/O behavior, that provides information about
the usage of our HPC “Mistral”. We suspect that some applications are
running using inefficient I/O patterns, and probably, are wasting a sig-
nificant amount of machine hours. To tackle the problem, we focus on
detection of poor I/O performance, identification of these applications,
and description of I/O behavior.

Instead of gathering I/O statistics from global system variables, like
many other monitoring tools do, in our approach statistics come directly
from I/O interfaces POSIX, MPI, HDF5 and NetCDF. For interception
of I/O calls we use an instrumentation library that is dynamically linked
with LD PRELOAD at program startup.

The HPC on-line monitoring framework is built on top of open source
software: Grafana, SIOX, Elasticsearch and FUSE. This framework col-
lects I/O statistics from applications and mount points. The latter is used
for non-intrusive monitoring of virtual memory allocated with mmap(),
i.e., no code adaption is necessary. The framework is evaluated showing
its effectiveness and critically discussed.

1 Introduction

The moderate progress of network and storage technologies, and comparatively
fast increase of computational power over the last decades had a negative impact
on the balance of many current HPC systems. Especially, increasing number of
cores per node facilitates higher data processing rates that often exceed the
capabilities of network or storage. In data-intensive research fields, like climate
science, where data volumes are large and steadily increasing, I/O became an
annoying bottleneck. Nowadays, the imbalance between computational power,
network bandwidth and storage performance makes us re-think the usage of
I/O resources. Researchers in the I/O field propose various directions for new
HPC architectures (e.g. burst buffer), hardware solutions (e.g. SSDs), and non-
intrusive software solutions (e.g. compression), that solve partially the problem.
But in many cases, poor I/O performance is a result of inefficient I/O access
patterns of applications. These applications could probably be fixed, but the
difficulty is to detect these applications and to describe to what extend they are
affected by the problem. An insight of how application uses the underlying I/O
interface could be of great help.
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 174–186, 2017.
https://doi.org/10.1007/978-3-319-67630-2_15

Real-Time I/O-Monitoring of HPC Applications 175

In data-intensive science, MPI-IO [11] is one of the most frequently used high
I/O level interfaces. It was designed as a general purpose I/O interface, to facili-
tates parallel low level access to files. Most implementations contain a number of
optimizations like Two-Phase I/O, Collective I/O, and Data Sieving, which pur-
pose is to create from several I/O access, large and contiguous accesses, or other
techniques like Non-Blocking I/O, which handle data asynchronously. HDF5 and
NetCDF are high level, portable file formats, data models and libraries special-
ized to store large datasets. They also provide a set of tools for exploration and
manipulation of data. The data size is not limited by the specifications (but
limited by current implementations to 32 EiB). They run on a wide range of
computational platforms, from laptops to large scale HPCs. Although, POSIX
wasn’t designed with parallel file access in mind and has some limitations when
accessing shared file regions by multiple processes, it still remains one of the most
important interfaces, especially because most of the back-ends of the high-level
libraries use it to write data to storage.

Our long-term goals are the detection of poor performance and identification
of problematic HPC applications. This work is an important step in this direc-
tion. Here, we present a user-friendly way for on-line visualization and description
I/O of behavior of HPC applications. For that purpose, we build a monitoring
framework on top of open source software: SIOX, Elasticsearch, Grafana, and
FUSE. One of its features (and also our main contribution) is the novel app-
roach for a non-intrusive instrumentation of virtual memory allocated by mmap()
operation.

This paper has the following structure. Section 2 presents related work.
Section 3 introduces the framework components. In Sect. 4 we show the design of
our framework. In Sect. 5 we describe our experiments and evaluate the results
in Sect. 6.

2 Related Work

In this section we introduce three monitoring tools: Darshan, Vampir, and SIOX.
Unfortunately, it doesn’t contain any related work about monitoring of mmap(),
for the simple reason: even after a careful research, we didn’t found any serios
publication. This makes us think, our approach is a novelty.

Darshan. Darshan [1,6] is an analysis tool for characterization of I/O behavior
of HPC systems. It was developed to capture accurate pictures of application
behavior and properties, e.g., I/O access pattern on a file. For instrumentation
Darshan uses a number of different wrappers. They intercept I/O operations
of all files used by the application and produce output for each file. Instead of
storing all the data in a trace file, like conventional tools do, Darshan creates
statistics, that are reduced, compressed, and represented in a compact form.
After analysis, the data is written to a log file. The data in these files describes
the behavior of the entire application. This approach has a negligible overhead
and requires a limited amount of memory.

176 E. Betke and J. Kunkel

For analysis of log file Darshan provides a number of command line tools. One
of them is “darshan-job-summary”. As the name indicates, it creates a summary
of a log file. The Darshan instrumentation support different I/O interfaces. They
have full support for the POSIX and MPI-IO interfaces. HDF5 and PNetCDF
are supported partially. Darshan can be utilized in a broad spectrum of tasks,
beginning with optimization of applications and ending with analysis of I/O
behavior of entire HPC systems. The lightweight and efficient design of Darshan
makes it possible to use it for load characterization on large systems, even on
productive systems.

Darshan extended tracing (DXT) allows a more detailed profiling of I/O
software stack. It contains two main components, the logging and the analysis
tool. The former creates trace files while application runs and the latter can be
used for the offline analysis and visualization of the data. The features work
without any modification or recompilation of applications, provide a number of
useful statistics and work with a negligible overhead.

Vampir. Vampir [3,9] is a graphical tool for performance analysis of parallel
systems. It supports off-line analysis of parallel software (MPI, OpenMP, multi-
threaded) and hardware accelerated (CUDA and OpenCL) applications. The
analysis engine allows a scalable and efficient processing of large amounts of data.
Vampir uses the infrastructure of Score-P [2] for instrumenting of applications.
Score-P stores events in a file, that can be analysed by Vampir and converted
to different views, e.g., events can be presented on a time-axis, or compressed to
different statistics. Some views have elaborate filters and zoom functions, that
can provide an overview, but can also show details. Effective usage of Vampir
requires a deep understanding of parallel programming. Although, the program
makes it possible to capture and to analyse sequences of POSIX I/O operations,
it gives little or no information about the origin, or evaluation of I/O. The field
of application of Vampir is restricted through the missing support of on-line
analysis.

SIOX. SIOX [10] is a highly modular instrumentation, analysis and profiling
framework. It contains an instrumentation tool “siox-inst”, a trace reader “siox-
trace-reader”, and a set of plug-ins and wrappers.

Currently, there are wrappers for MPI, POSIX, NetCDF and HDF5 inter-
faces. They contain re-implementations of the original I/O functions. Inside a
reimplemented function is a call to the original function or syscall, and instru-
mentation code, that generates an activity after each execution. Activities in
SIOX are structures that contain various information about the calls. The wrap-
pers can be dynamically linked to an application by using the LD PRELOAD
feature.

Extreme modular design is one of the key features of SIOX. The tools siox-
inst and siox-trace-reader can be considered as pure plug-in infrastructures. In
other words, there is no functionality inside until some plug-ins and wrappers
are loaded. Usage of different sets of plug-ins and wrappers may result in “new”

Real-Time I/O-Monitoring of HPC Applications 177

tools, that fits exactly the problem. There is no restriction on the number of
wrappers and plug-ins can be loaded simultaneously, so that the functionality of
SIOX can be easily extended, e.g., to perform complex tasks.

Other two important features of SIOX are the support of on-line and off-line
analysis. On-line analysis can be done by siox-inst, by collecting activities from
the wrappers and forwarding them to the registered plug-ins. Off-line analysis is
based on both tools. In the first step siox-inst stores the activities in a file, by
using the activity-writer-plugin. In the second step siox-trace-reader reads the
activities from the file and forwards them to the loaded plug-ins. (The second
step is the actual off-line analysis.)

Most of the SIOX plug-ins are using plug-in interfaces that are supported by
siox-inst and siox-trace-reader, and consequentially these plug-ins can be used
by both tools.

3 Components

This section contains a short description of components used in our online mon-
itoring framework.

3.1 Elasticsearch

Elasticsearch [7] is a distributed, scalable, real-time search and analytics engine,
published under the Apache 2 license. It is built on top of the Apache Lucene
full-text search-engine library. The complexity of the library is hidden behind
a RESTful API. The indexing of all fields allow very fast lookups, and makes
it real-time capable. The library can be used on a broad range of devices. It is
suitable for a single machine as well as for large-scaled super computers.

3.2 Grafana

Grafana [5] is a feature-rich, interactive visualization and dashboard software.
For visualization, it provides different widgets, e.g., time series, tables, text fields
for single metrics. It also supports a many data sources, e.g., Graphite, Elastic-
search, InfluxDB, OpenTSDB.

Especially remarkable is the wide range of available features. Quick range
selection makes the navigation inside a time series precise and easy. It has zoom
and auto refreshing functions, and a set of predefined, often used ranges. In most
cases, a few mouse clicks are sufficient to visualize required range of data. Tem-
plating is one of the most powerful features of Grafana. Templates define arrays,
which are dynamically filled with values, depending on the current data or state
of Grafana. These array can be used on different places, e.g., in metric queries,
panel titles, automatic dashboard generation. The latter means, that it is possi-
ble to generate for each value in the array a graph or other widget, e.g., suppose
an array holds a list of node names, and performance graph was defined, then
this graph can be created for each node name automatically. When a new node

178 E. Betke and J. Kunkel

name appears in the array, the corresponding graph is automatically generated.
Grafana support annotations. This feature is useful, when some event should be
shown in the graph.

Grafana dashboards can be easily shared via URL. The URL is automatically
updated on dashboard changes.

3.3 IOFS: A FUSE-Based File System

FUSE (Filesystem in Userspace) [8] is a kernel interface for file system drivers,
which can be run in non-privileged mode. The FUSE project provides an imple-
mentation of this interface. It consists of two key components, the fuse kernel
module and libfuse library. The latter can be linked against a program to estab-
lish a connection to the fuse kernel module.

Virtual file system (VFS) is an abstraction that hides real file systems. Appli-
cations see VFS only, and communicate with file systems only over VFS. Figure 1
shows how I/O requests to a FUSE file system are processed. VFS and FUSE
modules act like switches. At VFS arriving I/O requests, which are addressed
to a FUSE file system, are routed to the FUSE kernel module and then to the
destination. The replies take the reverse route. How user level file system stores
and retrieves the data, is left to the implementation.

IOFS is a user level file system that implements the FUSE interface. It was
developed to be used as an auxiliary tool for instrumentation of mount points.
IOFS mounts a folder from an existing file system on some mount point. It runs
completely in user space and behaves like an ordinary application when started
in foreground, i.e., SIOX wrappers can be dynamically linked using LD PRELOAD.
One important feature of IOFS is that it has neither caches nor buffers, i.e., all

Fig. 1. FUSE I/O path.

Real-Time I/O-Monitoring of HPC Applications 179

I/O request are forwarded to VFS without delay. Furthermore, the implemen-
tation doesn’t call mmap() function. All this makes it to a perfect candidate for
instrumentation with SIOX.

3.4 SIOX + On-line Monitoring Plug-in

The SIOX-On-line-Monitoring plug-in captures data from SIOX activities,
SLURM and system environment variables, and uses system clock for time
stamp. The system clock is supposed to be synchronized. For performance rea-
sons we don’t collect all the data. Instead, in a defined time interval only relevant
values are aggregated to statistics, and are sent to Elasticsearch in JSON for-
mat using the REST-API. This approach ensures a low data transfer rate and
makes it independent from access pattern of applications. The data transfer rate
increases only with number of files used in the application.

Statistics. A data point or statistics (Table 1) consist of metrics, tags, and a
time stamp. The distinction is based on usage of the data in Grafana.

The current set of metrics consists of number of bytes (* bytes), dura-
tion (* duration), number of calls (* calls), and number of bytes per call
(* bytes per call) for read and write operations. Number of bytes and dura-
tion are obtained directly from SIOX activities. Number of calls is a counter of
occurred activities in a time interval. Derived metrics are calculated from more
than two metrics. They must be created inside the plug-in, because Elasticsearch
doesn’t support arithmetic operations on data, and Grafana is limited to scaling
with a constant value, e.g., write bytes per call is derived from basic metrics.

Tags provide additional information to the metrics. The tags username,
hostname, procid, jobid are obtained directly from SLURM environment vari-
ables. hostname is provided by the system. filename and access (access type:
write, read, . . .) are provided by SIOX activities. layer is a user defined tag and
can take any value, e.g., we use different values for monitoring applications and
mount points.

timestamp is playing a special role in data series. Currently, milliseconds are
the highest possible resolution supported by Elasticsearch.

Categories of Operations. Some I/O interfaces contain different functions
that do similar operations, e.g., POSIX offers writev(), write(), pwrite(),
pwrite64(), puts(), and other functions, which can do a write operation. For
our purposes it’s not necessary to know function names, but operation names is
fully sufficient. At the moment our prototype supports write and read operations.
Further operations can be added with a minimal effort.

Visualization. For visualization of I/O behavior we use several Grafana dash-
boards. Generally, metrics are used on the y-axis and time stamp on the x-axis.
The tags are used for filtering of data, e.g., we can choose a filename to show
I/O behavior of a specific file. Several tags can be used simultaneously.

180 E. Betke and J. Kunkel

Table 1. Statistics

Name Type Value

write duration metric (basic) time spent for writing

write bytes metric (basic) bytes written

write calls metric (basic) number of I/O operations

write bytes per call metric (derived) write bytes, write calls

read duration metric (basic) time spent for reading

read bytes metric (basic) bytes read

read calls metric (basic) number of I/O operations

read bytes per call metric (derived) read bytes, read calls

filename tag filename

access tag access type (write, read, . . .)

username tag SLURM USER

hostname tag HOSTNAME

procid tag SLURM PROCID

jobid tag SLURM JOBID

layer tag user defined

timestamp date system clock

4 Monitoring Framework Design

On a properly configured system monitoring is enabled by starting an application
with a SIOX wrapper. Virtually, one can think of SIOX as a function that takes
an executable as argument. For this we use the notation: SIOX(<exec>).

4.1 On-Line Monitoring of Applications

SIOX(Application) in Fig. 2 represents the instrumentation of an application.
SIOX creates activities from I/O calls and builds an activity stream to the
Online-Monitoring-Plugin. The plug-in aggregates the activities to statistics
and sends them to Elasticsearch. Grafana uses data from Eleasticsearch for visu-
alization.

Monitoring of Virtual Memory is not possible in this approach, because this
component runs in kernel space, but it can produce application related I/O, e.g.,
when the application maps a part of a file to virtual memory by using the mmap()
function and then accesses the content of the file through the memory.

4.2 On-Line Monitoring of Mount Points

The basic idea of this approach is to move I/O request produced by virtual
memory from kernel space to user space. This can be easily achieved with a

Real-Time I/O-Monitoring of HPC Applications 181

Fig. 2. Extended on-line monitoring

FUSE-based file system. In the first step IOFS mounts a folder, that contains
required files, to some mount point. In the second step, we make sure, our appli-
cation works on this directory. When the application applies the mmap() function
to some file on this mount point, all I/O requests from virtual memory to this
file will be forwarded to IOFS.

The monitoring works in the same way as SIOX(Application), but this time
we use SIOX(IOFS).

Now, the monitoring is closer to the system than to the application. It pro-
vides information about real communication that takes place on a specific mount
point. That means, in this way we can observe some thing that happens on sys-
tem level, e.g., optimizations that are done by the operation system; changed
access granularities or burst writes.

A nice side effect of this approach is the indirect instrumentation of POSIX
mmap operations. Remember, that the direct instrumentation was a problem,
because memory allocated by mmap is accessed directly without a syscall, and
therefore, couldn’t be instrumented by SIOX. In IOFS such accesses are trans-
formed to common read/write POSIX operations, which in turn are supported
by SIOX.

On-line monitoring of applications using this approach is possible only to a
limited extent. Firstly, the I/O requests on this mount point cannot be tracked
back to the application. There is an information loss. We must made an implicit

182 E. Betke and J. Kunkel

Fig. 3. Screenshot of the on-line monitoring dashboard

assumption, that we know which application works with the data and that all
I/O requests belong to the same application. Secondly, on each node we can
create only one mount point with the same name. This can be a disadvantage
for multi-threaded applications, because there is no way to track I/O requests
back the the threads. This information will also be lost, and there is no easy
way to solve this issue. Thirdly, not all I/O operations are directed to the mount
point. Typically, there is a number of files that are accessed outside the mount
point. This information will also not be registered (Fig. 3).

5 Experiments

In the first experiment we measure how many metrics we can send to Elastic-
search. For that purpose Elasticsearch was installed on a system equipped with
Intel i7-6700 CPU (Skylake) with 4 cores @ 3.40 GHz and 16 GB DDR3 RAM.
The metrics were generated on Mistral by 10 nodes and 20 processes per nodes
and sent over 1 GiB ethernet to Elasticsearch in JSON containers each containing
100 metrics.

Real-Time I/O-Monitoring of HPC Applications 183

In the second experiment, the measurement of overhead, we run a series of
experiments on system equipped with Intel Core i5-660 (Clarkdale), 4M Cache,
3.33 GHz, 12 GB DDR3 RAM, 2 TB HDD (test disk), 1 GB/s network, 500 GB
HDD (OS disk). The experiments were conducted with IOR and IOZone bench-
marks. IOR was used to produce independent streams of POSIX operation calls
and IOZone was started in mmap-mode. We varied the number of processes (NP)
and request size and run the experiments several times for all four configurations.

The mean values of I/O performance of benchmarks without monitor-
ing (NMON) were used as reference values. The same benchmarks were run
with monitoring of application (APPIO), mount point (IOFS), and with both
(BOTH). The experiments were repeated 10 times and the results are shown in
Figs. 4 and 5.

6 Evaluation

The primary goal of the framework is to provide enough information to identify
inefficient applications. Additionally, from the user perspective, the framework
must be convenient to use and from the perspective of HPC systems, it must be
scalable and perform well with low overhead. In this section we investigate both
aspects.

6.1 Performance

In our test environment, Elasticsearch processes about 750,000 metrics per sec-
ond, while the aggregated transfer rate stays below 10 MiB/s. Since our current
plug-in implementation uses 16 metrics, this is sufficient to capture I/O statistics
from about 46000 processes, simultaneously. The limiting factor is the CPU uti-
lization induced by Elasticsearch, but this bottleneck can be relaxed by scaling
up/out Elasticsearch.

6.2 Overhead

The Figs. 4 and 5 show relative overhead of monitoring (APPIO, IOFS, BOTH).
To enhance comparability, it also contains benchmark results of test runs without
monitoring (NMON). In these figures we can observe a negligible overhead for
file I/O. For mmap I/O there is also a negligible overhead, but only for read
operations. For write operations, the overhead is around 8% for file I/O and 3%
for mmap I/O. In our case this was mostly the case. The outliers in Fig. 4a can
be explained by a large number of function calls. For the outliers in Fig. 5b we
have no explanation at the moment.

6.3 User Experience

We paid particular attention to user experience, because we are convinced, that
software which is difficult to use or that doesn’t work properly finds little or

184 E. Betke and J. Kunkel

Fig. 4. Write overhead. (NMON: no monitoring; APPIO: file I/O; IOFS: mmap I/O;
BOTH: file and mmap I/O)

Fig. 5. Read overhead. (NMON: no monitoring; APPIO: file I/O; IOFS: mmap I/O;
BOTH: file and mmap I/O)

Real-Time I/O-Monitoring of HPC Applications 185

no acceptance by users. Although, the most parts of the framework meet our
expectations, after a closer look we found some limitations. The points below
refer to Grafana 4.2.0.

Firstly, the update of information inside the drop-down lists is not sophis-
ticated. Grafana provides two options: update on dashboard load and update on
time range change. Under some conditions the drop-down list are not updated
when new values are available in the database. Depending on the configuration,
there are two workarounds to get the jobid appear. It can be done by leaving
and entering the dashboard or by changing the time range. Both options are
non-intuitive for users. In general, if entries doesn’t appear in the drop-down
lists, they can be entered manually, but it is also inconvenient, especially when
several template values must be updated. A solution could be a third option
(which is not implemented), that updates the information in the drop-down list
automatically on each mouse-click.

Secondly, the zoom function doesn’t provide an auto range function which
shows all data for current template values or allows jumping to the beginning of
the data.

Thirdly, neither Grafana nor Elasticsearch provide possibilities to compute
new metrics from existing ones. This could be a problem for advanced users who
need derived metrics. At the moment, derived metrics must be computed by
SIOX and sent to Grafana, which means additional network overhead and more
storage space consumption.

7 Summary

The paper proposes an on-line monitoring framework for HPC systems, which
can help to detect and to describe the I/O behavior of parallel applications. It
is built on top of open source software: the instrumentation framework “SIOX”,
database “Elasticsearch”, visualization tool Grafana and a FUSE-based file sys-
tem “IOFS”.

SIOX is able to intercept the I/O requests from applications, and mount
point, when used with IOFS. The latter method can be used as a novel approach
for indirect interception of mmap I/O.

The performance of Elasticsearch on an office computer is sufficient to gather
750000 metrics per second. Since Elasticsearch is a distributed database this
value can be easily increased. The preliminary experiments on an office computer
showed that the overhead for file I/O is negligible in most cases. For mmap I/O
the overhead is around 8% for file I/O and 3% for mmap I/O. We intend to run
extended experiments on Mistral [4] as soon as the FUSE module is available,
paying particular attention to the outliers.

186 E. Betke and J. Kunkel

References

1. Darshan HPC I/O Characterization Tool (2015). http://www.mcs.anl.gov/
research/projects/darshan/

2. SCORE-P (2015). http://www.vi-hps.org/projects/score-p/
3. Vampir (2015). http://www.paratools.com/Vampir
4. Mistral (2016). https://www.dkrz.de/Nutzerportal-en/doku/mistral
5. Beautiful metric & analytic dashboards (2017). http://grafana.org/
6. Carns, P.: Darshan. In: High Performance Parallel I/O. Computational Science

Series, pp. 309–315. Chapman & Hall/CRC (2015)
7. Gormley, C., Tong, Z.: Elasticsearch: The Definitive Guide, 1st edn. O’Reilly

Media, Inc., Sebastopol (2015)
8. Kahanwal, B.: File System Design Approaches. CoRR abs/1403.5976 (2014).

http://arxiv.org/abs/1403.5976
9. Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler,

D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y.,
Philippen, P., Saviankou, P., Schmidl, D., Shende, S., Tschüter, R., Wagner,
M., Wesarg, B., Wolf, F.: Score-P: a joint performance measurement run-time
infrastructure for Periscope, Scalasca, TAU, and Vampir. In: Brunst, H., Müller,
M., Nagel, W., Resch, M. (eds.) Tools for High Performance Computing, pp. 79–91.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31476-6 7

10. Kunkel, J., Zimmer, M., Hübbe, N., Aguilera, A., Mickler, H., Xuan Wang, A.C.,
Thomas Bönisch, J.L., Michel, R., Weging, J.: The SIOX architecture – coupling
automatic monitoring and optimization of parallel I/O (2014)

11. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the Sixth Workshop on I/O in Parallel and
Distributed Systems, IOPADS 1999, pp. 23–32. ACM, New York (1999). http://
doi.acm.org/10.1145/301816.301826

http://www.mcs.anl.gov/research/projects/darshan/
http://www.mcs.anl.gov/research/projects/darshan/
http://www.vi-hps.org/projects/score-p/
http://www.paratools.com/Vampir
https://www.dkrz.de/Nutzerportal-en/doku/mistral
http://grafana.org/
http://arxiv.org/abs/1403.5976
http://dx.doi.org/10.1007/978-3-642-31476-6_7
http://doi.acm.org/10.1145/301816.301826
http://doi.acm.org/10.1145/301816.301826

Output Performance Study on a Production
Petascale Filesystem

Bing Xie1(B), Jeffrey S. Chase1, David Dillow2, Scott Klasky3, Jay Lofstead3,
Sarp Oral3, and Norbert Podhorszki3

1 Department of Computer Science, Duke University, Durham, USA
bingxie@cs.duke.edu

2 Oak Ridge National Laboratory, Oak Ridge, USA
dave@thedillows.org

3 Center for Computing Research, Sandia National Laboratories,

Albuquerque, USA

Abstract. This paper reports our observations from a top-tier super-
computer Titan and its Lustre parallel file stores under production load.
In summary, we find that supercomputer file systems are highly variable
across the machine at fine time scales. This variability has two major
implications. First, stragglers lessen the benefit of coupled I/O paral-
lelism (striping). Peak median output bandwidths are obtained with par-
allel writes to many independent files, with no striping or write-sharing
of files across clients (compute nodes). I/O parallelism is most effective
when the application—or its I/O middleware system—distributes the
I/O load so that each client writes separate files on multiple targets, and
each target stores files for multiple clients, in a balanced way. Second, our
results suggest that the potential benefit of dynamic adaptation is lim-
ited. In particular, it is not fruitful to attempt to identify “good spots”
in the machine or in the file system: component performance is driven by
transient load conditions, and past performance is not a useful predictor
of future performance. For example, we do not observe regular diurnal
load patterns.

Keywords: Parallel I/O · Petascale filesystem · Output performance

1 Introduction

Output bandwidth is a precious resource in supercomputers. Trends suggest
that this limitation is not likely to change. Therefore it is crucial for software to
make efficient use of the bandwidth. In principle, large write bursts can stream
effectively and achieve full bandwidth. In practice, delivered bandwidth is highly
sensitive to the application’s use of storage APIs and its data layout, placing an
unwelcome burden on domain scientists to manage I/O performance tradeoffs at
the application level.

In this paper, we summarize results from systematic I/O benchmarking—
focusing on output bandwidth—of the production supercomputer Titan, the 4th
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 187–200, 2017.
https://doi.org/10.1007/978-3-319-67630-2_16

188 B. Xie et al.

fastest supercomputer in the world. We extended the methodology used to study
the Jaguar supercomputer in [21], and designed a set of experiments to stress
load on individual stages of Titan’s multi-stage write path. These experiments
yield distributions of performance behaviors on Titan over time and across the
machine, enabling us to assess the impact of key configuration parameters and
choices. By studying the results through sequences of such experiments, we can
characterize the behaviors of individual stages in the write path over time.

The key contribution of our study is to enhance understanding of performance
behaviors for a state-of-the-art parallel filesystem as currently deployed in a
leadership-class production facility. The study is useful to understand the current
Titan deployment and also to build models that predict output absorption time
as a function of various parameter settings [22]. Although some factors may
be unique to Lustre and/or Titan, we expect that many of our observations
are representative of large-scale computing systems and their I/O performance
behaviors. Here is a summary of the primary conclusions:

– We find that a small proportion of storage targets (< 20%) are straggling at
any given interval, but that stragglers are transient: over time, any target may
appear as a straggler for some intervals. Stragglers throttle the write pipelines,
limiting striping bandwidth and reducing the benefits of parallelism.

– As configured on Titan, the Lustre write pipelines do not allow a single client
to obtain the full bandwidth of a storage target. The results suggest that in
the ideal case each client writes to multiple files spread across multiple targets,
with multiple clients per target.

– The I/O performance delivered on Titan is highly variable. Our study sug-
gests that historical performance data and monitoring do not enable adaptive
middleware to locate “good spots” in the supercomputer or in the file system.
Local performance behavior is transient and unpredictable.

– Delivered aggregate output bandwidth is sensitive to location (density) of a
job’s compute nodes for large bursts, under a static node-to-router mapping
policy adopted by Titan in its internal network configuration.

Our study offers insights that can inform design and deployment choices
for exascale facilities and also technical choices for the ongoing development
of integrated software stacks for parallel storage including parallel file systems
and I/O middleware systems such as ADIOS [12]. ADIOS implements a variety
of techniques to improve output performance, and many applications now use
ADIOS, e.g., S3D [3], XGC [10] fusion codes, and M8 earthquake simulations [5].
For example, ADIOS enables applications to configure their output buffer size.
It can issue writes to multiple independent files to avoid performance problems
associated with write-shared files and striping, and it reorganizes output data
for better read performance. The results in this study provide a foundation to
understand and quantify the impacts of these techniques, and may expose new
opportunities to manage I/O performance.

This paper summarizes some key aspects of our methodology and results. We
are preparing a full-length paper to present the results in more detail.

Output Performance Study on a Production Petascale Filesystem 189

2 Output Behavior on Titan

This section summarizes selected aspects of the burst absorption behavior of
Titan and two of its Lustre file systems (see Table 1): Spider (Widow1) and
Spider 2 (Atlas2). We design a sequence of experiments to stress the components
and stages of the write pipeline using the methodology in [21]. Each experiment is
a set of identical runs; each run varies one or more parameters across a sequence
of values in each round. The experiments yield one instance (a sample point) in
each round for each value of a varying parameter. Each instance reports output
bandwidth delivered to a group of nodes writing a synchronized output burst
from an IOR benchmark program. The runs occur at regular intervals over the
measurement period. In this way, we profile Titan’s write path statistically with
multiple samples spread over time. We use several measures of output bandwidth:

– Bandwidth is measured as MB/s per client node.
– Aggregate Bandwidth, measured in MB/s, is bandwidth summed across all

client nodes in an instance.
– Effective Aggregate Bandwidth (EAB) is aggregate bandwidth normalized to

the peak bandwidth achievable from the number of targets written in an
instance under a given set of parameters.

Table 1. File systems on Titan. A Lustre client (compute node) issues I/O oper-
ations to RAID targets (OSTs) attached to Object Storage Servers (OSSes). The I/O
path traverses the internal interconnect to a selected I/O node, which acts as a router
to forward I/O traffic between the internal interconnect and an external storage net-
work. In Titan the mapping of compute nodes to I/O nodes is static (“fine-grained”)
when all I/O nodes are functioning normally [7].

File systems Service time Partitions Routing policy I/O nodes OSSes OSTs

Spider Jan. 2008–Dec. 2013 4 Fine-grained 192 192 336 × 4

Spider 2 Nov. 2013–present 2 Fine-grained 432 288 1008 × 2

2.1 Pipeline Efficiency

We evaluated the efficiency of the write pipeline from a single client: a single
process running on a single core to a single target (OST), as a function of burst
size. The data is based on the measurements taken from March to July 2013 on
Spider/Widow1. This experiment has 200 runs with 3 rounds each.

Figure 1 gives the results. Each boxplot displays a quantile distribution of
samples for the corresponding parameter value on the x-axis, with “whiskers
and dots” for the outliers. Each boxplot contains one point from each of the
rounds—the result of the instance for the corresponding parameter value from
that round. The upper and lower borders of each box are the 25th and 75th
percentile values (lower quartile Q1 and upper quartile Q3). The band within

190 B. Xie et al.

1MB 4MB 16MB 64MB 256MB 1GB 4GB 16GB 64GB
0

50

100

150

200

250

300

350

400

Ba
nd

w
id

th
 o

f a
 P

ip
el

in
e,

 U
ni

t:M
B/

s

Fig. 1. Bandwidth of a single pipeline as a function of burst size. This graph shows
results for a single process on a single core writing a single file on a single target. Other
results (not shown) indicate that more client processes do not help: the configured
write pipeline is not deep enough for one client to obtain full bandwidth from a target.

each box denotes the median value. The value Q3-Q1 is the interquartile range
or IQR; thus 50% of the y-values reside within the box, and the IQR is the height
of the box. The upper and lower whiskers cover the points outside of the box,
except that the upper and lower bounds of the whisker do not extend beyond
Q3 + 1.5 ∗ IQR and Q1 − 1.5 ∗ IQR respectively. All y-values outside of this
whisker range are outliers and are plotted as individual points.

Figure 1 shows that single-pipeline bandwidth is sensitive to burst size, and
that the write pipeline obtains its maximum overall bandwidth with a write burst
of 2 GB or more. With these burst sizes the pipeline runs at full bandwidth for
long enough to dominate the time to fill and drain the pipeline.

The results suggest that the conservative flow control configuration for output
pipelines in Lustre (e.g., at most eight outstanding RPCs per client-target pair)
prevents a single client from obtaining the full bandwidth of any target. This
was true in the Jaguar study as well, and has continued to be true on the Titan
Lustre deployment. One possible cause is that enhancements for asynchronous
journaling (see [16]) may delay the RPC replies from the targets, requiring a
larger number of outstanding RPCs for effective write streaming.

We determined from the multi-core experiment (not shown) that using mul-
tiple cores on a client does not help. In the multi-core experiment, each client
runs multiple single-threaded IOR processes, each issuing a single output burst
to a separate file on the single target, synchronized with MPI barriers. Using
multiple cores from a client improves the delivered bandwidth by at most 5%.

Output Performance Study on a Production Petascale Filesystem 191

Figure 1 also shows that many of the trials deliver low bandwidths. The
results show substantial outliers on the low side (3% to 5% of all samples).
Other experiments suggest that these are due to intermittent contention on the
internal Titan interconnect.

Fig. 2. Template for the many-pairs experiment. Each client node runs a single
process that issues a 64 MB burst to an unstriped file on a selected target. Each client
selects a different target. The bursts are synchronized. We vary the number of client-
target pairs and measure aggregate bandwidth and the bandwidth (or completion time)
for each client-target pair.

2.2 Many-Pairs Bandwidth and Stragglers

The “many pairs” experiment probe the aggregate I/O bandwidths achievable on
Titan and the consistency of performance in different parts of the machine. The
runs use equal numbers of clients and targets grouped in client-target pairs: each
client runs a single process that writes a single file on a single target, following
the template of Fig. 2. We ran this experiment from February to July 2013 on
Spider/Widow1 and produced 200 runs with 3 rounds each. At the largest scale
we use 336 compute nodes to write to all 336 targets in the Widow1 storage
system on Titan. The results reported here use a fixed burst size of 64 MB for
each node-target pair.

A key factor in this experiment is the variance in completion times for the
pairs in each instance. The bursts for all pairs are synchronized, and the aggre-
gate bandwidth (or EAB) is determined by the completion time of the slowest
pair. Some pairs in each instance complete quickly while others are “stragglers”
that limit the aggregate bandwidth.

To quantify the impact of stragglers, Fig. 3 plots the cumulative distributions
of completion times across all client-target pairs for each instance of the exper-
iment. In all cases, more than 95% of the synchronized bursts complete within
2 s, but almost every trial has a tail of stragglers, which cause other pairs in the
instance to idle while waiting for the stragglers to finish. The impact of strag-
glers grows as we increase the number of pairs: both the number of stragglers
and their completion times increase substantially.

192 B. Xie et al.

0 0.5 1 1.5 2 2.5
0

0.5
1

50 Clients to 50 Targets

0 0.5 1 1.5 2 2.5
0

0.5
1

100 Clients to 100 Targets

0 0.5 1 1.5 2 2.5
0

0.5
1

200 Clients to 200 Targets

0 0.5 1 1.5 2 2.5
0

0.5
1

300 Clients to 300 Targets

0 0.5 1 1.5 2 2.5
0

0.5
1

Response Time Unit: sec

336 Clients to 336 Targets

Fig. 3. CDFs of completion times for the instances of the many-pairs exper-
iment. Each subgraph has 600 CDF lines, one for a trial of an instance. Each line
shows the distribution of completion times for the pairs of one trial. Each line of the
five types of instances has 50, 100, 200, 300 and 336 points (pairs) respectively. It is
easy to see that almost every trial has good performance in some parts of the machine,
as well as stragglers that limit the aggregate bandwidth.

Stragglers may be caused by bottlenecks in the interconnect, and not neces-
sarily in the targets themselves. Using all 336 targets, the completion times of
even the fastest pairs are noticeably higher, indicating that the run has triggered
congestion in intermediate stages, uniformly affecting all pairs.

These stragglers are significant in part because of their impact on perfor-
mance with striping. We found and reported in [21] that straggling targets gate
the bandwidth of striped write operations. This situation improved when the
Lustre client software was upgraded to improve internal concurrency using a
pool of threads to handle RPC load in the client [19]. But the average write
bandwidth with striping is still substantially lower than the bandwidth achiev-
able using independent writes.

2.3 Performance Variability of Individual Components

To probe the stability of stragglers and further explore the opportunity to locate
and avoid stragglers with adaptive I/O tools (e.g., ADIOS), we design a new
experiment template to quantify the persistence of stragglers. It follows the
template of the many-pairs experiment (Fig. 2): in each instance N synchronous
processes from N clients write to a sequence of N OSTs. However, in this exper-
iment each client is paired to one of the N -length OST sequence according to a
round-robin policy across consecutive instances in a run. In each run, the group

Output Performance Study on a Production Petascale Filesystem 193

0 20 40 60 80 100 120
Low Performance Sequence of OSTs with 32MB Bursts, Unit:Second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

LEB, t=0.05
PEB, t=0.05
LEB, t=0.1
PEB, t=0.1
LEB, t=0.2
PEB, t=0.2

0 20 40 60 80 100 120
Low Performance Sequence of OSTs with 128MB Bursts, Unit:Second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

LEB, t=0.05
PEB, t=0.05
LEB, t=0.1
PEB, t=0.1
LEB, t=0.2
PEB, t=0.2

Fig. 4. CDFs of low behavior sequences of OSTs. From left to right, each subfig-
ure shows the CDF of the time durations of the low-performance periods with 32MB
and 128MB bursts respectively; in each subfigure, a line shows the CDF of the low-
performance sequences determined by the quantile threshold t (defined in Sect. 2.3).

of clients, the candidate OSTs, and the burst size are all fixed. We conducted 8
such experiments on Titan/Atlas2 with 1008 OSTs (see Table 1) from January
to February 2017: in each experiment 126 coordinated clients focus bursts on a
different sequence of 126 OSTs with 32 MB and 128 MB bursts respectively. In
this set of experiments, the time duration of a run ranges from 0.5–1.7 h; the
time interval between two consecutive measures in a run ranges from 7–15 s.

To quantify the performance of individual components, we assign each node-
target pair in an instance two relative measures: LEB (Lag Effective Bandwidth)
and PEB (Pair Effective Bandwidth).

– The LEB score is the pair’s bandwidth normalized to the fastest pair in its
instance. The fastest pair (LEB = 1) gives a rough measure (a lower bound)
of the performance achievable under the parameters and general system con-
ditions for that instance.

– The PEB score is the pair’s bandwidth normalized to the fastest pair measure
within similar instances, which share identical parameter settings but run at
different times. Such similar instances form an equivalent instance set. The
fastest pair in a set (PEB = 1) gives a rough measure of the performance
achievable for the set under ideal conditions: it is the best observed perfor-
mance for any pair using those parameter settings.

We use these relative measures of component performance to compensate for
the effect of general contention (e.g., in the interconnect) that affects a large
share of the machine. We find that over 99.5% of the LEB/PEB scores of indi-
vidual compute nodes and storage targets are within the range in 0.4—0.9 across
experiments and burst sizes. These measures allowed us to identify targets that
were persistent stragglers due to a load imbalance in an early Titan configura-
tion; this problem has since been fixed.

194 B. Xie et al.

We take a two-step approach to quantify the stability of performance behav-
ior for individual components over time:

1. Label a LEB/PEB score of the component as low or normal performance
according to a threshold: if the score of the component is below the thresh-
old, it is considered a low performance measure; otherwise, it is a normal
performance measure. We determine a threshold according to a chosen quan-
tile (t) of LEB/PEB scores obtained from each equivalent instance set, i.e.,
of all instances with the same parameter setting.

2. Measure the lengths of consecutive sequences of low/normal performance
measures for the component across its time series. Long sequences indicate
that performance states are stable over time; short sequences suggest that
they are not.

We focus on three quantiles: t=0.05, =0.1, =0.2. Figure 4 shows the sum-
mary of low performance periods for storage targets. It suggests that for 32 MB
(or 128 MB) bursts more than 96% (or 100%) of storage targets showing low
performance return to normal within a minute (or 2 min). Similar analyses sug-
gest that a node showing low performance tends to return to normal within
2 min, and any component showing normal performance tends to switch to low
performance within 10 min.

Based on these system-wide measurements at small time scales, we conclude
that local performance in Titan’s I/O system is highly variable over time. This
high variability suggests that it is not fruitful to identify “good spots” in the
machine or in the file system for the purpose of improving I/O performance.

2.4 Performance Variability and Node Locality

This section probes performance variation across compute node locations. To
this end, we examine the many-pairs experiment again (the template in Fig. 2)
with 16 MB and 256 MB bursts from each of 1008 compute nodes to a different
storage target. We also extend the methodology to group the runs into sets each
comprising multiple identical runs with the same group of compute nodes, closely
spaced in time. Different sets executed on different groups of compute nodes and
at different times.

Our analysis is based on measurements taken from May to June 2015. We
collected 95 sets with a total of 103 runs; a few sets have multiple runs. Each run
comprises 15 rounds of instances with 16 MB and 256 MB bursts respectively.

To explore the set behaviors for different burst sizes, we estimate the node
distribution of each set by measuring the average path length (L) between the
nodes in all pairs of nodes drawn from the set. A smaller L indicates a more
tightly packed (denser) node set; a larger L indicates a more widely scattered
node set. To measure the distance for each node pair in a set, we choose a
common metric, L1 routing distance: the length of a path between two points
in Titan’s 3d torus. For a node pair at positions (x1, y1, z1) and (x2, y2, z2), the
distance (d) of the pair is given by:

d = |x1 − x2| + |y1 − y2| + |z1 − z2| (1)

Output Performance Study on a Production Petascale Filesystem 195

10.61 11.55 12.66 14.38 15.96 17.24 19.18 23.18
Average Length of Node Pair Paths in a Set, unit: hop

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EA

B

10.61 11.55 12.66 14.38 15.96 17.24 19.18 23.18
Average Length of Node Pair Paths in a Set, unit: hop

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EA
B

Fig. 5. EABs of the 95 sets with 16 MB and 256MB bursts. From left to right,
a subfigure reports the boxplots of the EABs of the 103 runs from the 95 sets with
16MB and 256 MB bursts respectively. In each subfigure, the x-axis represents the 95
node sets sorted by L (defined in Sect. 2.4); the corresponding y values summarize the
distribution of measured bandwidths (EABs) for that node set.

The L values of the 95 sets vary from 10.61 to 23.18 hops. To explore the
correlation between output performance and set density, Fig. 5 plots their EABs
ranked by density, for 16 MB and 256 MB bursts.

Figure 5 shows that for 16 MB bursts the EABs of all sets are distributed
in a wide range and are only weakly correlated with density. Small bursts are
sensitive to transient contention on the shared intermediate stages or on the
storage servers/targets. However, for the 256 MB bursts, the sets with larger L
are more likely to deliver higher aggregate bandwidths.

To quantify the behaviors of the sample-size bursts on various set densities,
we further partition the 95 sets into three ranges of average hop distance: 10.61–
15, 15.01–20 and 20.01–23.18. Figure 6 shows the output bandwidths (EABs)
for the instances in each range. It suggests that, for 256 MB bursts, above 80%
of the instances in the L range 1, range 2 and range 3 report ∼0.4, ∼0.52 and
∼0.67 EABs respectively. For the larger bursts the sets with larger L tend to
deliver higher aggregate bandwidths.

We conclude that while the bandwidth of small bursts is dominated by tran-
sient contention, the performance of large bursts is impaired by denser node sets.
Of course, the job scheduler prefers dense node sets because a densely packed job
experiences less cross-contention from other jobs on the internal interconnect.
However, denser sets may experience self-contention on the internal interconnect
and also are locked into using a smaller set of I/O routers, since the binding of
nodes to routers is static and determined by node location (Table 1). More dis-
persed sets spread their loads across a larger portion of the interconnect and a
larger number of I/O routers, and tend to show higher bandwidth accordingly.

Moreover, it is worth noting that for 16MB bursts, the results suggest
slightly better performance for denser node sets. Even dense sets are free of self-
contention for small bursts, and may benefit from the lack of cross-contention in

196 B. Xie et al.

0 0.2 0.4 0.6 0.8 1
EABs of the Instances for 16MB bursts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 L in range 1
 L in range 2
 L in range 3

0 0.2 0.4 0.6 0.8 1
EABs of the Instances for 256MB bursts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 L in range 1
 L in range 2
 L in range 3

Fig. 6. CDFs of the instance EABs of the 95 sets with 16MB bursts (left) and
256 MB bursts (right). In each subfigure, the lines (blue, red and yellow) depict the
CDFs of the instances examined on the sets with L in three hop ranges respectively:
10.61–15 (720 instances), 15.01–20 (720 instances), and 20.01–23.18 (105 instances).
(Color figure online)

the interconnect and I/O routers from other jobs on the machine. Even so, in a
busy and highly contended system like Titan, the transient system conditions on
the storage servers/targets dominates this effect. For longer bursts the transient
hot spots in the storage system tend to cancel out, and the results are dominated
by persistent self-contention in the interconnect and I/O routers. This suggests
that the I/O routing policy could be improved to spread load for large burst.
Moreover, in this scenario I/O adaptive tools (e.g., ADIOS) might be helpful to
move and redistribute the load across the machine.

3 Related Work

Several studies benchmark HPC file systems by measuring their performance
under real application workloads. Several influential studies were published in
the 1990s [4,6,8,14,15]. A significant recent study installs continuous monitoring
software on compute nodes to characterize the I/O requests of real application
workloads in real time, modulating the data collected to keep overhead within
acceptable limits [1,2,13].

Uselton et al. [20] propose a statistical method to collect and analyze I/O
events to more fully characterize the I/O behavior of ensembles. They also
observe the straggler phenomenon, suggesting that the straggler problem is a
general issue in supercomputers. Their work focuses on improving the I/O per-
formance of a given application in a given supercomputer system. Our goal is
to characterize the multi-stage write pipeline in a petascale file system, locate
write absorption bottlenecks, and capture component performance variability
that influence on the design and configuration choices for adaptive middleware
and HPC applications.

Output Performance Study on a Production Petascale Filesystem 197

Other previous studies use an approach similar to ours: stress the file system
with synthetic benchmarks. A number of HPC I/O benchmarks are designed to
be sufficiently flexible to emulate the typical I/O behaviors in supercomputer
environments, such as the FLASH I/O, IOR, and BTIO benchmarks. This flexi-
bility enables users to configure the benchmark for a desired pattern approximat-
ing an observed application behavior. In our work, we take IOR as a generator
and run different patterns and configurations to focus traffic on specific stages
and elements of the write pipeline to gain a complete picture of output burst
absorption in a production facility.

A recent study [11] uses a similar methodology to measure the performance
of the Intrepid file system at the Argonne Leadership Computing Facility. The
authors report the capacity of each I/O stage and measure the behavior of the
entire subfile system for large-scale runs of a set of benchmarks. The measure-
ments are taken on dedicated hardware before the supercomputer system was
running in production mode. Our work explores the delivered bandwidth of the
I/O stages in ongoing production use, reflects the impact of competing work-
loads under observed usage patterns in production, and shows how to filter noise
from competing workloads to obtain insights into the behavior of the underlying
hardware and software.

Earlier studies also use configurations of the IOR benchmark to analyze the
behavior of HPC systems [17,18]. Kim et al. [9] collect I/O performance data
from Titan’s predecessor Jaguar. That study is complementary to ours: it reports
monitoring data from the storage servers showing the combined workload on the
machine. We focus on the end-to-end behavior observed by jobs running on the
compute nodes, and the impact of write patterns and I/O configuration choices.

4 Conclusion

I/O bandwidth is a scarce resource on supercomputers. Output burst absorp-
tion can have a substantial impact on delivered performance, as demonstrated
by a simple performance model. Observed output bandwidth is sensitive to var-
ious uses of the storage system APIs and different supercomputer I/O system
conditions.

We apply a statistical benchmarking approach to probe Lustre filesystem out-
put performance in Titan and its Spider and Spider 2 file stores. The measured
distributions quantify the frequency and severity of contention (stragglers) and
other transient system conditions. These imbalances lessen the benefit of coupled
I/O parallelism (striping). This effect motivates structuring choices to loosen the
coupling of parallel I/O. For example, on Titan’s I/O system under typical con-
ditions, the peak median output bandwidths are obtained with parallel writes to
many independent files, with no write-sharing or striping, and with each target
storing files for multiple clients, and each client writing files on multiple OSTs.

The prevalence of these imbalances motivates adaptive responses in the
I/O middleware layer. To evaluate the potential of adaptation, we studied the

198 B. Xie et al.

behavior of individual components to expose temporal usage patterns, slow com-
ponents and system-level performance variability that can lead to imbalances in
the write path. Our results show that these performance stutters are difficult to
predict, and that system changes state quickly and frequently, suggesting that
dynamic adaptation to congestion is not a fruitful approach.

Under a static node-to-router mapping policy adopted by Titan in its network
configuration, for large bursts output performance is sensitive to the density of
a job’s compute nodes, as measured by the mean pairwise routing path distance
within the node group.

Acknowledgment. We thank Chris Zimmer from OLCF for his detailed explanation
on the network configuration of Titan.

The work was supported by the U.S. Department of Energy, under FWP 16-018666,
program manager Lucy Nowell.

This research used resources of the Oak Ridge Leadership Computing Facility,
located in the National Center for Computational Sciences at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the Department of Energy
under Contract DE-AC05-00OR22725.

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

References

1. Carns, P., Harms, K., Allcock, W., Bacon, C., Lang, S., Latham, R., Ross, R.:
Understanding and improving computational science storage access through con-
tinuous characterization. ACM Trans. Storage 7(3), 8–26 (2011)

2. Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., Riley, K.: 24/7 characterization
of petascale I/O workloads. In: Proceedings of the IEEE International Conference
on Cluster Computing (CLUSTER 2009), pp. 1–10, New Orleans, LA (2009)

3. Chacón, L.: A non-staggered, conservative, finite-volume scheme for 3D implicit
extended magnetohydrodynamics in curvilinear geometries. Comput. Phys. Com-
mun. 163(3), 143–171 (2004)

4. Crandall, P.E., Aydt, R.A., Chien, A.A., Reed, D.A.: Input/output characteristics
of scalable parallel applications. In: Proceedings of the ACM/IEEE Conference on
Supercomputing (SC 1995), pp. 59–89, San Diego, CA (1995)

5. Cui, Y., Olsen, K., Jordan, T., Lee, K., Zhou, J., Small, P., Roten, D., Ely, G.,
Panda, D., Chourasia, A., Levesque, J., Day, S., Maechling, P.: Scalable earth-
quake simulation on petascale supercomputers. In: Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC 2010), pp. 1–20, Washington, DC (2010)

6. Cypher, R., Ho, A., Konstantinidou, S., Messina, P.: Architectural requirements of
parallel scientific applications with explicit communication. In: Proceedings of the
20th Annual International Symposium on Computer Architecture(ISCA 1993), pp.
2–13, San Diego, CA (1993)

Output Performance Study on a Production Petascale Filesystem 199

7. Ezell, M., Dillow, D., Oral, S., Wang, F., Tiwari, D., Maxwell, D., Leverman,
D., Hill, J.: I/O router placement and fine-grained routing on Titan to support
Spider II. In: Proceedings of the Cray User Group Conference (CUG 2014), pp.
1–6, Lugano, Switzerland (2014)

8. Ganger, G.R.: Generating representative synthetic workloads: an unsolved prob-
lem. In: Proceedings of the Computer Measurement Group Conference (CMG
1995), pp. 1263–1269, Nashville, TN (1995)

9. Kim, Y., Gunasekaran, R., Shipman, G.M., Dillow, D.A., Zhang, Z., Settlemyer,
B.W.: Workload characterization of a leadership class storage cluster. In: Proceed-
ings of the 5th Petascale Data Storage Workshop (PDSW 2010), pp. 1–5, New
Orleans, LA (2010)

10. Ku, S., Chang, C.S., Adams, M., Cummings, J., Hinton, F., Keyes, D., Klasky, S.,
Lee, W., Lin, Z., Parker, S.: The CPES team: Gyrokinetic particle simulation of
neoclassical transport in the pedestal/scrape-off region of a Tokamak plasma. J.
Phys. 46(1), 87–91 (2006)

11. Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., Allcock, W.: I/O performance
challenges at leadership scale. In: Proceedings of the ACM/IEEE International
Conference for High Performance Computing Networking, Storage and Analysis
(SC 2009), pp. 40–52, Portland, OR (2009)

12. Lofstead, J., Zheng, F., Klasky, S., Schwan, K.: Adaptable, metadata-rich I/O
methods for portable high performance I/O. In: Proceedings of the 23rd IEEE
International Parallel & Distributed Processing Symposium (IPDPS 2009), pp.
1–10, Rome, Italy (2009)

13. Luu, H., Winslett, M., Gropp, W., Ross, R., Carns, P., Harms, K., Prabhat, M.,
Byna, S., Yao, Y.: A multiplatform study of I/O behavior on petascale supercom-
puters. In: Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing (HPDC 2015), pp. 33–44, Portland, OR (2015)

14. Narasimha Reddy, A.L., Banerjee, P.: A study of I/O behavior of perfect bench-
marks on a multiprocessor. In: Proceedings of the 17th Annual International Sym-
posium on Computer Architecture (ISCA 1990), pp. 312–321, Seattle, WA (1990)

15. Nieuwejaar, N., Kotz, D., Purakayastha, A., Ellis, C.S., Best, M.L.: File-access
characteristics of parallel scientific workloads. IEEE Trans. Parallel Distrib. Syst.
7(10), 1075–1089 (1996)

16. Oral, S., Wang, F., Dillow, D., Shipman, G., Miller, R., Drokin, O.: Efficient object
storage journaling in a distributed parallel file system. In: Proceedings of the 8th
USENIX Conference on File and Storage Technologies (FAST 2010), pp. 143–154,
San Jose, CA (2010)

17. Shan, H., Antypas, K., Shalf, J.: Characterizing and predicting the I/O perfor-
mance of HPC applications using a parameterized synthetic benchmark. In: Pro-
ceedings of the ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC 2008), pp. 42–54, Austin, TX (2008)

18. Shan, H., Shalf, J.: Using IOR to analyze the I/O performance for HPC plat-
forms. In: Proceedings of the Cray User Group Meeting (CUG 2007), pp. 1–15,
Washington, DC (2007)

19. Shipman, G., Dillow, D., Fuller, D., Gunasekaran, R., Hill, J., Kim, Y., Oral, S.,
Reitz, D., Simmons, J., Wang, F.: A next-generation parallel file system environ-
ment for the OLCF. In: Proceedings of the Cray User Group Conference (CUG
2012), pp. 1–12, Stuttgart, Germany (2012)

200 B. Xie et al.

20. Uselton, A., Howison, M., Wright, N.J., Skinner, D., Keen, N., Shalf, J., Kar-
avanic, K.L., Oliker, L.: Parallel I/O performance: from events to ensembles. In:
Proceedings of the 24th IEEE International Parallel & Distributed Processing Sym-
posium(IPDPS 2010), pp. 1–11, Atlanta, GA (2010)

21. Xie, B., Chase, J., Dillow, D., Drokin, O., Klasky, S., Oral, S., Podhorszki, N.:
Characterizing output bottlenecks in a supercomputer. In: Proceedings of the
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC 2012), pp. 1–11, Salt Lake City, UT (2012)

22. Xie, B., Huang, Y., Chase, J.S., Choi, J.Y., Klasky, S., Lofstead, J., Oral, S.:
Predicting output performance of a petascale supercomputer. In: Proceedings of
the 26th International Symposium on High-Performance Parallel and Distributed
Computing (HPDC 2017), pp. 1–12, Washington D.C. (2017)

Second International Workshop on
OpenPOWER for HPC (IWOPH’17)

International Workshop on OpenPOWER
for HPC 2017

Oscar Hernandez1, M. Graham Lopez1, Dirk Pleiter2, and Jack Wells1

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
{oscar,lopezmg,wellsjc}@ornl.gov

2 Forschungszentrum Jülich, JSC, 52425 Jülich, Germany
d.pleiter@fz-juelich.de

Abstract. The second edition of the International Workshop on Open-
POWER for HPC (IWOPH17) continued to establish itself as a forum for
exchanging experience using technologies and architectures, which emerged
from this new ecosystem. The goal was to bring together experts for appli-
cations and the different technologies as well as data centre professionals.

Keywords: OpenPOWER � High-performance computing � Big data � GPU
acceleration � Power measurement � Containers � Programming tools

Four years have passed since the OpenPOWER Foundation was established as a
non-profit consortium to give its members the ability to innovate on software and
hardware solutions based on the POWER processor architecture. Meanwhile, various
OpenPOWER solutions targeting scientific computing and big data workloads are
proliferating. The goal of this workshop was to provide a venue for a broader com-
munity for sharing experience, to further understand OpenPOWER technologies, and to
discuss how they can be harnessed to address science and engineering challenges.

The workshop took place on 22 June, 2017 co-loctated with the ISC conference in
Frankfurt, Germany. After a welcome from the workshop organizers, a keynote address
was offered by Mr. Christoph Hagleitner. Contributed talks followed for the majority of
the day, and an hour long panel session closed the workshop with discussion between
experts on the Minsky system and the workshop attendees. Contributed papers were
chosen from a single-blind review process performed by reviewers from academia,
industry, and research laboratories. Overall, nine contributions were submitted, and
eight were selected for inclusion in the following workshop proceedings.

With IBM S822LC servers (also known as “Minsky”) becoming available, clusters
can be realised, which are first incarnations along a new HPC roadmap that soon will
result in pre-exascale systems. An outstanding feature is the tight integration of
IBM POWER processors and NVIDIA GPUs using the new NVLink technology.
Several papers presented during this workshop provided an overview on experience
using clusters of Minsky servers for a broader range of applications. V.G. Vergara
Larrea et al. [7] reported on the acceptance of the Summitdev cluster and presented
early results obtained from running CORAL benchmarks, different mini-applications
and Oak Ridge Leadership Computing Facility (OLCF) applications. Hautreux et al. [2]
explored the new architecture for a portfolio of applications that are representative for

the French scientific community. A. Herten et al. [3] presented an in-depth analysis for
a specific application, namely a particle-in-cell code.

The new Minsky server architecture is not only relevant for HPC applications, but
also for applications from the area of big data with its increasing interest in exploiting
accelerators. J. Peltenburg et al. [5] investigated the question whether software stacks
running on top of a Java Virtual Machine can exploit the new capabilities for moving
data between processor and accelerator.

Given the complexity of the heterogeneous Minsky node architecture and its
extreme level of parallelism, programming tools are critical for supporting developers
in parallelizing their applications and improving on productivity. M. Arenaz et al. [1]
presented the roadmap of Parallware tools, which allow for identification of parallel
design patterns and to aid parallization using the OpenMP or OpenACC programming
model.

Recently, containers started to receive increasing attention for providing a portable
environment, which is, e.g., of interest for complex software stacks. A. Kuity et al. [4]
presented a container-based HPC ecosystem using Open-POWER and explored pos-
sible performance impacts.

With power consumption becoming more and more the limiting factor for pushing
performance of future systems to higher levels, tools for managing and measuring
power are becoming increasingly relevant. T. Rosedahl et al. [6] provided an update on
design and implementation of the necessary measurement and management features
found in OpenPOWER systems.

Within an overall view, the contributions reflect further adoption of Open-POWER
technologies for addressing challenges in science and engineering. A concluding dis-
cussion session confirmed the need for providing opportunities for sharing experience
and to contribute to building a user community for Open-POWER technologies both in
the areas of HPC and big data.

References

1. Arenaz, M., Hernandez, O., Pleiter, D.: The technological roadmap of parallware
and its alignment with the OpenPOWER ecosystem. In: Kunkel, J.M., et al. (eds.)
ISC High Performance Workshops 2017. LNCS, vol. 10524, pp. 237–253.
Springer International Publishing, Cham (2017)

2. Hautreux, G., et al.: Pre-exascale architectures: OpenPOWER performance and
usability assessment for the French scientific community. In: Kunkel, J.M., et al.
(eds.) ISC High Performance Workshops 2017. LNCS, vol. 10524, pp. 309–324.
Springer International Publishing, Cham (2017)

3. Herten, A., Brömmel, D., Pleiter, D.: GPU-accelerated particle-in-cell code on
Minsky. In: Kunkel, J.M., et al. (eds.) ISC High Performance Workshops 2017.
LNCS, vol. 10524, pp. 205–219. Springer International Publishing, Cham (2017)

4. Kuity, A., Peddoju, S.K.: Performance evaluation of container-based high per-
formance computing ecosystem using OpenPOWER. In: Kunkel, J.M., et al. (eds.)
ISC High Performance Workshops 2017. LNCS, vol. 10524, pp. 290–308.
Springer International Publishing, Cham (2017)

International Workshop on OpenPOWER for HPC 2017 203

5. Peltenburg, J., Hesam, A., Al-Ars, Z.: Pushing Big Data into accelerators: can the
JVM saturate our hardware? In: Kunkel, J.M., et al. (eds.) ISC High Performance
Workshops 2017. LNCS, vol. 10524, pp. 220–236. Springer International Pub-
lishing, Cham (2017)

6. Rosedahl, T., Broyles, M., Lefurgy, C., Christensen, B., Feng, W.:
Power/performance controlling techniques in openpower. In: Kunkel, J.M., et al.
(eds.) ISC High Performance Workshops 2017. LNCS, vol. 10524, pp. 275–289.
Springer International Publishing, Cham (2017)

7. Vergara Larrea, V.G., Joubert, W., Berrill, M., Boehm, S., Tharrington, A.,
Elwasif, W.R., Maxwell, D.: Experiences evaluating functionality and performance
of IBM Power8+ systems. In: Kunkel, J.M., et al. (eds.) ISC High Performance
Workshops 2017. LNCS, vol. 10524, pp. 254–274. Springer International Pub-
lishing, Cham (2017)

204 O. Hernandez et al.

GPU-Accelerated Particle-in-Cell Code
on Minsky

Andreas Herten(B), Dirk Brömmel, and Dirk Pleiter

Forschungszentrum Jülich, JSC, 52425 Jülich, Germany
{a.herten,d.broemmel,d.pleiter}@fz-juelich.de

Abstract. Particle-in-cell (PIC) methods are widely used on today’s
supercomputers. In this paper we consider JuSPIC, an application for
which good scaling properties could be demonstrated on a 6PFlop/s
BlueGene/Q system. We report on efforts to port this application to
emerging supercomputing architectures based on IBM POWER proces-
sors and NVIDIA graphics processing units.

Keywords: POWER8 · GPU acceleration · Performance analysis ·
Minsky · OpenPOWER · NVIDIA Tesla P100

1 Introduction

Numerical methods are key for investigating laser-plasma interactions due to the
non-linear nature of the problem and the non-trivial geometries implied in the
problem. Most commonly used is the particle-in-cell (PIC) method for simulating
the motion of charged and neutral plasma particles. PIC codes solve Maxwell’s
equations on a grid using currents and charge densities calculated by weighting
discrete particles onto the grid. In each update step, position and momentum of
each particle are updated based on forces acting on them, which are obtained
from self-consistently calculated fields. The development and use of this methods
goes back into the 1950-60s [13].

Due to its intrinsic high level of parallelism, PIC applications simulating mil-
lions of particles are good candidates for massively-parallel computer architec-
tures. In this contribution we focus on a special type of such architectures, which
are based on IBM POWER processors and graphics processing units (GPU) from
NVIDIA. Such solutions have become available only recently and the ecosys-
tem for these is still emerging. In this paper we will explore the performance
for JuSPIC, a PIC code developed at Jülich Supercomputing Centre, on IBM
S822LC servers (also known as “Minsky”), which features novel tight integration
of processor and GPU based on the new NVLink technology.
This paper makes the following contributions:

1. A port of JuSPIC to the Minsky platform and report of experiences for dif-
ferent porting strategies.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 205–219, 2017.
https://doi.org/10.1007/978-3-319-67630-2_17

206 A. Herten et al.

2. Analysis of the performance as a function of different hardware settings
employing a semi-empirical performance modelling approach.

3. Report on experience in optimisation for this new platform.

The paper is organised as follows: After the introductory Sect. 2 we introduce
the architecture of the compute platform used in this paper in Sect. 3. We report
in Sect. 4 on porting JuSPIC to GPUs, before presenting performance results in
Sect. 5. After providing an overview on related work in Sect. 6 we summarise our
results and present our conclusions in Sect. 7.

2 JuSPIC

JuSPIC [1,8], the Jülich Scalable Particle-in-Cell (PIC) code is used to simulate
particles in electromagnetic fields. Like other PIC codes, it can be used as a
numerical tool in the field of intense laser-plasma interaction, e.g. to simulate
the generation of energetic electrons and ions with help of the radiation field of
a laser to study approaches for table-top particle accelerators. The code is based
on H. Ruhl’s Plasma Simulation Code (PSC) [7] and further developed at the
Jülich Supercomputing Centre (JSC) mainly for testing new HPC architectures
and programming models. But it has also been used to support experimental
investigations of relativistic, highly non-linear laser-plasma interaction acting as
Terahertz light-source [12].

Fig. 1. Core steps of JuSPIC. After initializing (Init), the E and B fields are computed
and communicated for a half-time step (Field Solver). Following this, the particle and
density information is updated. The Pusher uses information from the grid to update
particle information, the Reducer again takes this information to update the grid. A
communication step ensues, before this iterations concludes with another invocation of
the Field Solver. The algorithm is started again at the first Field Solver. Data can be
written/output after one chain (I/O).

The interaction between fields and plasma is described by the relativistic
Vlasov equation and Maxwell’s equations. JuSPIC uses a regular mesh for the
Maxwell fields and particle charge and current densities that are then integrated
using the Finite-Difference-Time-Domain (FDTD) scheme. Plasma particles are
modelled via distribution functions of quasi-particles with continuous coordi-
nates within the mesh. Finite element approximations of the distribution func-
tions are then used to integrate the Vlasov equation along the particle trajecto-
ries [6,15].

GPU-Accelerated Particle-in-Cell Code on Minsky 207

Omitting details about PIC codes in general, let us note that due to the
required high particle numbers, the coupled system of Vlasov and Maxwell equa-
tions requires two very time-consuming steps: First, the particle update, com-
puting new particle positions and velocities that requires the interpolation of
the electromagnetic fields from their mesh coordinates to the position of the
quasi-particles. We denote this part the pusher ; it is the main focus of our GPU
acceleration. The second step is the reduction of the continuous charge and par-
ticle densities of each quasi-particle onto the mesh (the reducer). This sparse
reduction poses a special challenge since it happens irregularly on very large
fields and is a non-local operation.

JuSPIC is written in modern Fortran and parallelised with MPI and
OpenMP. The basic operation of the algorithm is outlined in Fig. 1. It is capable
of scaling to the full JUQUEEN system, a 28-rack IBM BlueGene/Q using 1.8M
hardware threads and listed in the High-Q Club [2]. JuSPIC is Open Source [3].

3 Compute Platform

The performance results shown in this paper have been obtained in large parts
on JURON, a cluster based on IBM S822LC servers. Each server comprises 2
IBM POWER8 processors with 2 NVIDIA P100 GPUs each. One processor and
2 GPUs are interconnected in a ring topology using NVLink.

In this server, 4 out of 8 DMI channels per processor are used for attaching
Centaur memory chips to which the DDR4 memory is attached. The GPUs
use a new high-bandwidth memory technology called HBM2, which allows for
significantly higher memory bandwidth but limited memory capacity. Due to the
new NVLink connections, the bi-section bandwidth for data transport between
processor and GPUs is similar to the processor-memory bandwidth.

Key hardware performance numbers are summarised in Table 1.
Additionally, two x86 systems are referenced in parts of this paper:

JUHYDRA. A testing system with 2 Intel Xeon E5-2650 CPUs (2 GHz) and
2 NVIDIA Tesla K20Xm and K40m GPUs, each, attached via PCIe.

JURECA. Jülich’s large multi-purpose supercomputer with nodes with 2 Intel
Xeon E5-2680 CPUs (2.5 GHz) and 2 PCIe-attached NVIDIA Tesla K80
GPUs (appearing as 2 GPU devices, each).

4 Acceleration for GPUs

For JuSPIC, a hybrid approach in acceleration for GPUs has been chosen. Parts
of the code have been ported employing the OpenACC programming model,
parts use CUDA Fortran.

208 A. Herten et al.

Table 1. Selected (nominal) hardware parameters for the IBM S822LC servers.

IBM POWER8 processor

Number of processors 2

Default clock frequency 3491 MHz

Total number of cores 20

Aggregate throughput of floating-point operations (DP) 559 GFlop/s

Aggregate memory read bandwidth 77 GByte/s

Aggregate memory write bandwidth 154 GByte/s

Aggregate memory capacity 256 GByte

NVIDIA P100 GPU

Number of GPUs 4

Default clock frequency 1328 MHz

Total number of SMs 224

Aggregate throughput of floating-point operations (DP) 19038 GFlop/s

Aggregate memory bandwidth 2880 GByte/s

Aggregate memory capacity 128 GByte

Aggregate CPU-GPU bandwidth 160 GByte/s

4.1 OpenACC

In OpenACC, code to be accelerated is annotated with statements which are
interpreted by a capable compiler to create programs for GPUs or other many-
core systems. Since these compiler directives are usually in the form of comments
in the code, portability across many different systems is achieved. Depending
on the capabilities of the compiler, different accelerator architectures can be
targeted from the same code base. For JuSPIC, the PGI compiler (version 16.10)
is used. It features both support for OpenACC and CUDA Fortran.

OpenACC is used in JuSPIC to move data between the host and the device.
Data regions are created to move data, partly asynchronously, to device or host
memory depending on where the next part of the program operates. As an exam-
ple, the first region is created by !$acc enter data async copyin(e,b,ji)
which creates a copy of the matrices e, b, and ji on the GPU asynchronously.
Data is transferred back, and also updated as-needed in subsequent steps of the
algorithm. In the absence of any acceleration device, the compiler produces a
version of the program in which the data regions are omitted.

OpenACC is used furthermore to port the time propagation of the electric
and magnetic fields to the GPU. For each field, a three-fold nested loop updates
three directions in space for different indexes. The kernels directive is used,
giving the compiler the most freedom to accelerate the scope of the multiplica-
tion: !$acc kernels loop collapse(3) present(e,b). The three loops are
merged into a loop of one level by the collapse clause; the electro-magnetic

GPU-Accelerated Particle-in-Cell Code on Minsky 209

fields are already on the device, since they have been copied asynchronously
beforehand.

4.2 CUDA Fortran

By far the most compute-intensive part of JuSPIC is the update of particle
velocities and momenta in the pusher. In an initial attempt, this part was also
enabled for the GPU with OpenACC. Unfortunately, the structure of the code
was yet to be supported by the compiler. Many structured data types (e.g.
particles(i)%x(0)), operations on whole fields at once (b=a*2, where a and
b are both fields), as well as the amount of operations on the data prevented
efficient code generation by the compiler. The algorithm needed to be adapted
vastly to make it more recognisable for the compiler. With those changes, the
initially non-compiling OpenACC pusher did compile, but ran very slow. Only a
version of the algorithm, which had each operation on a whole field replaced by
operations on the individual elements of the field ran reasonably well. We decided
to rather return to the original pusher algorithm and use CUDA Fortran to port
it to the GPU. [14]

CUDA Fortran is a Fortran interface to NVIDIA’s CUDA C/C++ program-
ming model. It is developed by PGI and available in their Fortran compilers. It is
modelled closely alongside CUDA C/C++ and additionally implements features
of the Fortran programming language, like operations on whole fields.

Using CUDA Fortran, the pusher kernel is ported to the GPU. The origi-
nal, serial code is taken, the do loop over the particles removed, and replaced
with threadIdx %x-based indexing in typical CUDA . Compatibility to sys-
tems without GPUs or CUDA Fortran is ensured by wrapping the specialised
GPU parts with pre-processor macros. This way, either the original pusher loop
is called in the absence of CUDA Fortran, or the GPU kernel is called with
call gpupusher<<<dim3(nBlocks, 1, 1), dim3(nThreads, 1, 1)>>>

Writing the pusher kernel in CUDA Fortran enables the evaluation of differ-
ent strategies of handling the data of the particles. We study four cases:

1. All particles are stored in a single field, one particle after another, the field
is copied to and from the GPU with CUDA Fortran (Initial).

2. As above, but data is copied using OpenACC copy statements (Experiment
One (Exp 1)).

3. As above, data is copied with OpenACC statements, from pinned (zero-copy)
host memory (Experiment Two (Exp 2)).

4. Instead of one field holding all data from all particles, spatial and momentum
components for all particles are stored in separate fields (six fields in total);
data is copied with CUDA Fortran statements (Structure-of-Array Approach
(SoA)).

The results of the four cases are summarised in Table 2, averaged per invo-
cation of the GPU pusher. Shown is JURON (with a P100 GPU) and, as a
comparison, JUHYDRA (using a K40 GPU). In the table, Kernel denotes the

210 A. Herten et al.

Table 2. Runtimes of the particle pusher of JuSPIC on the GPU for different meth-
ods of data handling. Legend: Allocate – Allocate host-side memory region; LL2F –
Convert linked list data structure to field; H2D – Transfer data from host to device;
D2H – Transfer data from device to host; F2LL – Copy data from field to linked list
data structure.

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

JURON

Initial 8039.71 – 567.27 81.86 83.71 61.70 350.19 6884.87

Exp 1 10434.51 – 353.08 80.39 81.82 91.48 379.87 9440.10

Exp 2 9695.39 563.50 526.69 79.19 82.57 72.38 107.87 7972.61

SoA 7810.95 0.94 843.69 65.74 76.57 53.03 376.25 6386.24

JUHYDRA

Initial 4955.59 – 907.63 267.11 229.27 207.62 735.92 2600.14

Exp 1 4687.25 – 763.99 231.58 228.51 197.59 804.41 2455.00

Exp 2 5328.37 576.97 1026.94 223.56 229.65 192.17 23.17 2651.33

SoA 4879.61 1.05 785.84 204.14 207.58 173.40 826.55 2673.97

runtime of the GPU pusher kernel itself. H2D and D2H shows the time spent
for copying data to and from the GPU, respectively. Others incorporates the
time the GPU is not processing or copying data – the device usually waits for
instructions or synchronises. Allocate refers to the time needed to allocate a
memory region on the host side (for pinned memory in case of Exp 2 and for the
individual SoA fields in case of SoA). LL2F and F2LL are pre-processing steps:
The format in which JuSPIC stores particles is a linked list, with each particle
including a pointer to the next. To enable coalesced loads on the GPU, data
is copied from a linked list to a field before GPU kernel invocation and from a
field back to a linked list after completion – LL2F and F2LL, respectively. The
relatively high runtimes of these parts are analysed and discussed in Sect. 4.3.

Looking at each of the architectures, the runtimes of data copies and kernels
in the SoA approach is in all cases the fastest. The data layout is not only ben-
eficial for efficient execution but also for data movements. In case of preparing
the data in the LL2F step, SoA is the slowest. The explicit filling of two three-
vectors (position, momentum) to individual and distinct memory locations from
one packed source particle seems to take more time then the simple copy from
one memory position to another. For the post-processing F2LL step, the case
appears to be inverted (see also Sect. 4.3). For Exp 2, where pinned memory is
used, the overhead in form of waiting for data is the smallest. In this case, the
CUDA runtime can omit safety measures and directly access the data. Unfortu-
nately, the benefit in time is diminished by the overhead of allocating the pinned
memory.

Comparing the two GPU (and also system) architectures shows that the
P100 has, in nearly all cases, the lesser runtime (with F2LL being an important

GPU-Accelerated Particle-in-Cell Code on Minsky 211

deviation, see Sect. 4.3). About a factor of 3 in performance gain can be obtained
compared to using a K40m GPU.

Further potential optimization can be integrated combining the distinct bene-
fits of the individual approaches. In the current implementation of Exp 2, pinned
memory is allocated once before the pusher loop and deallocated afterwards.
Moving the data region one level up would enable a more data-economical app-
roach: Pinned memory can be allocated once at the beginning of the algorithm
and only reallocated if the number of particles changes during the run of the
algorithm. This is a strategy already employed by the SoA version. In the SoA
version, though, pinned memory has not yet been tested. Since pinned memory
leads to less overhead during the GPU pusher runtime, this could be a very rich
modification.

In the current state of the algorithm, data transfers to and from the device
take a significant fraction of time on the GPU. Our hope is that once the next
part of the algorithm, the reducer, is ported to the GPU as well, most of the data
transfers can be saved, since the majority of the data would stay on the GPU for
different iterations. This is the case as well for the changes in data layout (linked
list, fields). The Unified Memory feature of CUDA, which uses efficient page
faults in CUDA 8.0 and on Pascal GPUs, promises to be a productive technique
to reduce data migrations to a minimum.

4.3 Investigation of Slow Data Layout Conversion

Striking in the numbers of Table 2 are the times taken for copying data from
fields to linked lists, F2LL. The runtimes of 6ms to 9ms for each invocation of
the pusher are about 2.5× higher than on a x86 system.

In a benchmark study, we investigate the reason for this. We create linked
lists for different numbers of particles, fill them, and destroy them again. We
study different architectures: the two Intel-based architectures of JURECA and
JUHYDRA and the POWER8NVL system of JURON. Additionally, different
compilers are tested: the PGI Fortran compiler with and without an MPI wrap-
per1; the Fortran compiler from the GNU Compiler Collection (gfortran, GCC)
with and without MPI; and the XL Fortran compiler, XLF, if available. The part
of the benchmark code which fills the linked list – add one to list – is imple-
mented the following way:

Using this scheme, each particle is added to the list iteratively.
Figure 2 displays the time spent for adding one particle to a linked list for

different total list sizes and different compiler and system configurations. Sys-
tematically, on each system, GCC-compiled benchmarks take the least time for

1 The compiler ships with its own compiled OpenMPI version.

212 A. Herten et al.

Fig. 2. Runtimes for adding a particle to a linked list vs. total number of added particles
to the list for different compilers. Note: The data point of XLF for 100 000 particles is
missing as the program reported no meaningful time in this case.

the operation. The PGI case is always 30% to 60% slower, compared to the
respective runtime of a GCC-compiled program. On JURON, the XLF compiler
produces code which is about as fast as the GCC version. The time spent for
adding one particle to the list decreases with growing number of total particles
for most of the versions tested on x86 – in these cases, there seems to be a
undetermined overhead present which becomes more and more negligible2.

The most important feature of the plot is the runtime of benchmarks com-
piled with MPI and underlying PGI compiler on JURON. The PGIMPI case is
consistently at least 2× slower then the comparable PGI version. This is remark-
able, since in both versions the same pgfortran compiler is used with identical
compiler flags and resulting object code – just with an additional MPI wrapper
in one case.

Using PAPI [17,18], we measure the number of instructions completed in the
case of destroying a list in the benchmark. We choose destruction of a list over
creation because this part of the code involves even fewer overhead. The perfor-
mance counter measured with PAPI is PAPI TOT INS, which maps on JURON to
PM INST CMPL and on JUHYDRA to INSTRUCTION RETIRED. Table 3 summarises
the measurements for different compilers. PGIMPI* in this case is a custom
OpenMPI 2.0 version which is explicitly compiled for the benchmark test case.
JuSPIC has yet to be run with this custom MPI version, as it is not officially

2 Measurements show that the number of completed instructions is linear with the
number of particles, so the overhead seems to come from the timing operation.

GPU-Accelerated Particle-in-Cell Code on Minsky 213

Table 3. Number of instructions of and time spent for clearing a linked list. The values
are for a list of 10 million elements, but shown normalised per particle (pP). Time per
particle is rounded to the nearest integer.

System JURON JUHYDRA

Compiler GCC GCCMPI PGI PGIMPI PGIMPI* XLF PGI PGIMPI

Time pP/ns 36 37 46 154 – 41 32 32

Instructions pP 121 121 243 462 243 121 210 210

supported by the PGI compiler version. The version of GCC is 5.4.0, PGI is of
version 16.10 on JURON and 16.3 on JUHYDRA. On JURON, GCCMPI uses
OpenMPI 2.0.2 and PGIMPI uses OpenMPI 1.10.2 – the version shipped with
the PGI compiler. The XLF version is 16.1.0. The MPI version used together
with PGI on JUHYDRA is OpenMPI 1.8.1.

The results of runtimes already seen in Fig. 2 correlate with the number of
completed instructions. The PGI compiler produces code which is slightly slower
compared to the GCC version; in terms of instructions about twice as many are
completed. The PGIMPI case doubles the number of instructions of the MPI-less
PGI version further. At the same time, the number of instructions per cycle is
reduced from about 2 to about 0.8.

The source code for creating and destroying linked lists is very simple. The
only other operation apart from changing pointers is allocation and deallocation,
respectively, see the code snippet at the beginning of Sect. 4.3. We suspect that
the reason for the long runtimes lies in this allocation and deallocation.

When MPI is loaded on top PGI, a number of different libraries are linked
additionally compared to the bare PGI case. We reckon that one of the libraries
loaded replaces the memory allocation call with a particularly slow one in the
JURON case. We test this assumption by using the linker’s environment variable
LD PRELOAD to force loading of a specific malloc call when invoking JuSPIC–
we use LD PRELOAD=/lib64/libc.so.6. This indeed removes the instruction
overhead compared to the bare PGI case entirely.

A second test replaces the PGI-shipped OpenMPI version with our own
custom-compiled OpenMPI, PGIMPI*. Also in this case, the overhead is reduced
to zero. The overhead hence seems to be tightly connected to the specific MPI
version shipped with the PGI compiler on the POWER system3.

While the strategies employed during investigation (LD PRELOAD, custom
OpenMPI) can be easily applied to the benchmark case, further in-detail studies
are needed for the whole of JuSPIC to judge all ramifications and side-effects.

For the time being, we consider time spent for converting between linked lists
and fields in the F2LL and LL2F regions an overhead, which is anomalously high
in the system/compiler configuration at hand. The initial mitigation strategy in
the future will be to test our custom OpenMPI version thoroughly with JuSPIC;
a bug report with the vendor of the compiler has been filed. In a mid-range time

3 True for both PGI 16.10 and PGI 17.1.

214 A. Herten et al.

frame we hope to retire the linked list implementation of particles in JuSPIC
in favour of a field approach globally, to better match the requirements of mod-
ern many-core architectures. Linked lists were chosen in the original design of
JuSPIC because they were the fastest of the tested options to perform the sparse
global reduction after the particle pusher in a multi-threaded approach [8].

5 Performance Modelling

To compare different GPU architectures and understand the behaviour of
JuSPIC, we study the code in the scope of a simple performance model.

5.1 Determination of Effective Bandwidth

Our model incorporates the exchanged information of the kernel for a given
amount of processed particles. It is a lower limit of the achieved bandwidth of
the program. The model is parameterised by

t(Npart) = α + I(Npart)/β , (1)

where α and β are fit parameters and I is the exchanged information, resulting
in a kernel runtime of t. We call β the effective bandwidth. The tested version of
the pusher kernel reads 572 Byte and stores 40 Byte per particle.

Figure 3 shows results of the performance model in Eq. 1 for different numbers
of particles, leading to different amounts of exchanged information. Four different

Fig. 3. GPU kernel duration as a function of exchanged information for four different
GPUs: K20, K40, 1/2 K80, and P100. Shown in the legend are fit parameters to the
performance model.

GPU-Accelerated Particle-in-Cell Code on Minsky 215

NVIDIA GPUs are studied: Tesla K20 and K40 devices (both on JUHYDRA),
one part of a Tesla K80 GPU (1/2 K80; on JURECA), and the Pascal P100 on
JURON. In all cases, the GPU boost feature, which automatically increases the
graphics clock rate of the devices, has been disabled and the clock fixed to its
default size.

From the linear regressions, which are superimposed in Fig. 3, the effective
bandwidths as of the performance model can be deduced:

K20: 77 GB/s K40: 95 GB/s 1/2K80: 100 GB/s P100: 285 GB/s
The utilised bandwidth is higher for the K80 (42%) than for the K40 (33%),

since the maximum available bandwidth is lower for the K80 (240 GB/s) than
for the K40 (288 GB/s). The efficiency of JuSPIC on this device is higher. The
same bandwidth utilization of the K80 is achieved for the P100 device: About
40% of the available 720 GB/s bandwidth is used.4 The absolute value of utilised
bandwidth is higher (285 GB/s), caused by the new Pascal architecture features:
The higher bandwidth to the HBM2 memory offers more throughput of data,
while the greater number of multiprocessors leads to more computations per time
and more threads in flight. The occupancy of the GPU device is kept constant.
The pusher kernel can be expected to be limited by memory access latencies. A
larger number of active blocks could help hiding such latencies. However, such an
increase of device-side parallelism is not possible as the large number of registers
used by the kernel causes the number of available registers to become exhausted.

5.2 Clock Rates

Another parameter of GPU architectures are the clock rates with which the
GPU operates. The P100 device on JURON can operate with graphics clocks
between 544 MHz and 1480 MHz (the memory clock is fixed at 715 MHz); the
K40 device operates between 666 MHz and 875 MHz at a memory frequency
of 3004 MHz; the K80 can run with 562 MHz to 875 MHz at a slightly lower
memory frequency, compared to the K40, of 2505 MHz.

Building upon the performance model of Eq. 1 the following relation can
be formulated to model the effect of different GPU clock rates (C) on effective
bandwidths (β):

β(C) = γ + δC (2)

As before, γ and δ are fit parameters.
To obtain δ and γ for one device, each effective bandwidth β for a possible

clock rate is obtained per Eq. 1 – in each case the runtime of the GPU pusher
kernel is measured for different amounts of exchanged information (number of

4 Although the value of 720 GB/s is the design value of the P100, it might be different
from a practical achievable bandwidth. Indeed, we measure a bandwidth of about
520 GB/s for the four mini-benchmarks of the STREAM benchmark. Using this as
a reference value, the pusher kernel manages to use slightly more than 50% of this
empirically determined bandwidth limit.

216 A. Herten et al.

Fig. 4. Effective bandwidths from the performance model (see Eq. 1) for different
graphics clock frequency. Shown are three GPU devices: K40, 1/2 K80, and P100. Super-
imposed are δ values of linear fits to the respective measurements using Eq. 2.

particles), and the slope of the linear fit noted. The resulting measurements are
shown in Fig. 4 for the three GPUs.

The P100 covers a large range of possible clock rates, with the maximal val-
ues leading to bandwidths close to 300 GB/s. But also for frequencies below
875 MHz on which the K40 and K80 can operate on as well, the P100 surpasses
the older devices vastly. As already determined in Sect. 5.1, the pusher benefits
greatly from the increased memory bandwidth, and does so independently from
the clock rate. Additionally, the Pascal architecture increases the number of mul-
tiprocessors over the previous Kepler systems; JuSPIC is capable of exploiting
this as well. In total, the dependence of the bandwidth on the graphics clock is
δ = 0.146 (GB/s)/(MHz)

The chips on K40 and on K80 are very similar, which can be seen in the
values for the largest clock frequencies – they are close to identical. The per-
formance is different for smaller clock rates: The bandwidth is reduced less for
K80 devices. The chip seems to operate more efficiently. A distinct feature is
visible for the K80: The distribution has two parts. For lower clock rates the
effective bandwidth increases faster (0.138 (GB/s)/(MHz)) than for higher clock
rates (0.037 (GB/s)/(MHz)). The kink in the curve marks the position where
nearly the highest computing performance is reached – for further increase in
clock rate only little performance is gained. The model parameter for the K40
is 0.106 (GB/s)/(MHz).

GPU-Accelerated Particle-in-Cell Code on Minsky 217

Judging from the δ parameters, it can be seen that the P100 device not
only has the absolute best performance but also the largest increase in effective
bandwidth with each step in clock frequency.

6 Related Work

Various PIC codes have been ported to GPU. The PSC code, on which JuSPIC is
based, was later reimplemented in C and ported to GPUs [11]. More specifically,
the code has been ported to the Titan supercomputer at Oak Ridge National
Lab, a Cray XK7 system comprising just over 18 000 nodes with 1 GPU each.
The same system was used to demonstrate extreme scalability of the PIConGPU,
a PIC code specifically developed for GPU acceleration [9]. While PSC and
PIConGPU are full production codes, other efforts for GPU porting have been
performed using proof-of-concept codes [10,16,19].

As the Minksy platform is relatively new, not much work has been published
exploring the performance of scientific applications on this platform. Various
publications investigated the performance using the precursor platform where
NVDIA K40 or K80 GPUs where attached to POWER8 processors via a PCIe
GEN3 link. This included, e.g., evaluation of applications based on the Finite-
Difference Time-Domain (FDTD) method [4], based on the Density Function
Theory (DFT) method [5], or molecular dynamics simulations [20].

7 Summary and Conclusions

In this paper, we reported on our progress of accelerating the plasma physics
PIC code JuSPIC with GPU devices.

A heterogeneous approach of employed programming models is chosen.
We use OpenACC for data movement and simple kernels operating on three-
dimensional fields. OpenACC offers the ability of creating portable and back-
wards-compatible code with only few annotating compiler directives.

For the most compute-intensive routine, the particle pusher, we use CUDA
Fortran since earlier versions of PGI’s OpenACC compiler were not able to gener-
ate efficient code for the original data structures. Compatibility to systems with-
out GPUs is achieved by guarding the CUDA Fortran code with pre-processor
directives. For the CUDA Fortran kernel, we evaluate different data layouts. The
Structure-of-Array approach is fastest, providing best performance when mov-
ing data between host and device and smallest kernel runtime. In the future we
want to implement pinned host data for this case, learning from the benefits of
Experiment 2.

In the process of analysing the individual stages of the CUDA Fortran part
we notice unexpected high runtimes for pre- and post-processing steps. In these
steps the linked list of particles is copied to and from simple Fortran fields
(to be processed on the GPU). Using a boiled-down benchmark we investigate
this peculiarity and determine the performance issue to be a malloc call which
is issued by the OpenMPI version shipped with the POWER version of the

218 A. Herten et al.

PGI compiler. Although we find workarounds, a possible mitigation is yet to be
applied to JuSPIC.

Moving on, we study the performance of the kernel of the pusher with dif-
ferent number of particles in the scope of a simple information exchange model.
Four different GPU devices are investigated with the P100 of JURON provid-
ing by far the best performance. The GPU provides an effective bandwidth of
285 GB/s with its default clock setting. Subsequently, the performance model is
adapted to incorporate different GPU clock frequencies. The P100 provides the
most efficient scaling also in this case. An interesting additional investigation
objective for the future is the incorporation of energy measurements – which
device takes the least energy to come to a solution?

JuSPIC is a good fit for the new Pascal GPU architecture, benefiting well
from the increased memory bandwidth. Currently, only the part of the pusher is
ported to the GPU. We expect the performance gain from the GPU-accelerated
version to be significant, once also the reducer is ported to the GPU. The data
movements from and to the devices can be omitted in this case, reducing the
overhead. Once the single-node version is accelerated, a next step will be Multi-
GPU usage together with MPI. Currently, the OpenMP statements available
in JuSPIC are ignored for the GPU version, to solely focus on this part of
the acceleration and prevent race conditions. Once the GPU version is stable,
we should ensure leveraging all possibilities of potential parallelism and enable
OpenMP again.

Not only the GPU version of JuSPIC is currently developed, the code itself
is progressing further. Different data layouts are being investigated to possibly
remove storing particle data in linked lists, simplifying coalesced data handling.
Effective load-balancing using space-filling curves is also currently studied.

Acknowledgements. This work has been carried out in the context of the POWER
Acceleration and Design Center, a joined project between IBM, Forschungszentrum
Jülich and NVIDIA, as well as the NVIDIA Application Lab at Jülich, a joined project
between Forschungszentrum Jülich and NVIDIA. We acknowledge the support from
Jiri Kraus (NVIDIA) and various helpful discussions with him. Research leading to
these results has (in parts) been carried out on the Human Brain Project PCP Pilot
Systems at the Juelich Supercomputing Centre, which received co-funding from the
European Union (Grant Agreement no. 604102).

References

1. The Jülich Scalable Particle-in-Cell code, JuSPIC, http://www.fz-juelich.de/ias/
jsc/juspic/

2. JuSPIC in the High-Q Club, http://www.fz-juelich.de/ias/jsc/EN/Expertise/
High-Q-Club/JuSPIC/ node.html

3. JuSPIC Source Code Repository, https://trac.version.fz-juelich.de/juspic
4. Baumeister, P.F., Hater, T., Kraus, J., Pleiter, D., Wahl, P.: A performance model

for GPU-accelerated FDTD applications. In: 2015 IEEE 22nd International Con-
ference on High Performance Computing (HiPC), pp. 185–193, December 2015

http://www.fz-juelich.de/ias/jsc/juspic/
http://www.fz-juelich.de/ias/jsc/juspic/
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/JuSPIC/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/JuSPIC/_node.html
https://trac.version.fz-juelich.de/juspic

GPU-Accelerated Particle-in-Cell Code on Minsky 219

5. Baumeister, P.F., Bornemann, M., Bühler, M., Hater, T., Krill, B., Pleiter,
D., Zeller, R.: Addressing materials science challenges using GPU-accelerated
POWER8 nodes. In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS, vol.
9833, pp. 77–89. Springer, Cham (2016). doi:10.1007/978-3-319-43659-3 6

6. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. Series in
Plasma Physics. Taylor & Francis, New York (2005)

7. Bonitz, M., Semkat, D. (eds.): Introduction to Computational Methods in Many
Body Physics. Rinton Press, Princeton (2006)

8. Brömmel, D., Gibbon, P., Garcia, M., Lopez, V., Marjanovic, V., Labarta, J.:
Experience with the MPI/STARSS programming model on a large production
code. In: International Conference on Parallel Computing: Accelerating Computa-
tional Science and Engineering (CSE). Advances in Parallel Computing, vol. 25,
pp. 357–366, Munich, Germany, 10–13 September 2013. IOS Press (2014)

9. Bussmann, M., Burau, H., Cowan, T.E., Debus, A., Huebl, A., Juckeland, G.,
Kluge, T., Nagel, W.E., Pausch, R., Schmitt, F., Schramm, U., Schuchart, J.,
Widera, R.: Radiative signature of the relativistic Kelvin-Helmholtz instability. In:
2013 SC - International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 1–12, November 2013

10. Decyk, V.K., Singh, T.V.: Adaptable particle-in-cell algorithms for graphical
processing units. Comput. Phys. Commun. 182(3), 641–648 (2011), http://www.
sciencedirect.com/science/article/pii/S0010465510004558

11. Germaschewski, K., Fox, W., Abbott, S., Ahmadi, N., Maynard, K., Wang, L.,
Ruhl, H., Bhattacharjee, A.: The Plasma Simulation Code: A modern particle-in-
cell code with load-balancing and GPU support. ArXiv e-prints, October 2013

12. Gopal, A., Herzer, S., Schmidt, A., Singh, P., Reinhard, A., Ziegler, W., Brömmel,
D., Karmakar, A., Gibbon, P., Dillner, U., May, T., Meyer, H.G., Paulus, G.G.:
Observation of gigawatt-class THz pulses from a compact laser-driven particle
accelerator. Phys. Rev. Lett. 111(7), 074802 (2013)

13. Harlow, F.H.: The particle-in-cell method for numerical solution of problems in
fluid dynamics, March 1962, http://www.osti.gov/scitech/servlets/purl/4769185

14. Herten, A., Pleiter, D., Brömmel, D.: Accelerating Plasma Physics with GPUs
(Poster). Tech. rep., GPU Technology Conference (2017)

15. Hockney, R.W., Eastwood, J.W.: Computer simulation using particles. Institute of
Physics, Bristol (1988) (English)

16. Kong, X., Huang, M.C., Ren, C., Decyk, V.K.: Particle-in-cell simulations with
charge-conserving current deposition on graphic processing units. J. Comput.
Phys. 230(4), 1676–1685 (2011), http://www.sciencedirect.com/science/article/
pii/S0021999110006479

17. Mucci, P., ICL Team, T.: PAPI, the performance application programming inter-
face, http://icl.utk.edu/papi/

18. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: a portable interface to hardware
performance counters. In. Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7–10 (1999)

19. Stantchev, G., Dorland, W., Gumerov, N.: Fast parallel particle-to-grid interpola-
tion for plasma PIC simulations on the GPU. J. Parallel Distrib. Comput. 68(10),
1339–1349 (2008), http://dx.doi.org/10.1016/j.jpdc.2008.05.009

20. Weber, V., Malossi, A.C.I., Tavernelli, I., Laino, T., Bekas, C., Modani, M., Wilner,
N., Heller, T., Curioni, A.: First experiences with ab initio molecular dynamics on
OpenPOWER: the case of CPMD. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.)
ISC High Performance 2016. LNCS, vol. 9945, pp. 228–234. Springer, Cham (2016).
doi:10.1007/978-3-319-46079-6 16

http://dx.doi.org/10.1007/978-3-319-43659-3_6
http://www.sciencedirect.com/science/article/pii/S0010465510004558
http://www.sciencedirect.com/science/article/pii/S0010465510004558
http://www.osti.gov/scitech/servlets/purl/4769185
http://www.sciencedirect.com/science/article/pii/S0021999110006479
http://www.sciencedirect.com/science/article/pii/S0021999110006479
http://icl.utk.edu/papi/
http://dx.doi.org/10.1016/j.jpdc.2008.05.009
http://dx.doi.org/10.1007/978-3-319-46079-6_16

Pushing Big Data into Accelerators: Can the
JVM Saturate Our Hardware?

Johan Peltenburg(B), Ahmad Hesam, and Zaid Al-Ars

Computer Engineering Lab, Delft University of Technology, Delft, Netherlands
{j.w.peltenburg,z.al-ars}@tudelft.nl,a.s.hesam@student.tudelft.nl

Abstract. Advancements in the field of big data have led into an
increasing interest in accelerator-based computing as a solution for
computationally intensive problems. However, many prevalent big data
frameworks are built and run on top of the Java Virtual Machine (JVM),
which does not explicitly offer support for accelerated computing with
e.g. GPGPU or FPGA. One major challenge in combining JVM-based
big data frameworks with accelerators is transferring data from objects
that reside in JVM managed memory to the accelerator. In this paper, a
rigorous analysis of possible solutions is presented to address this chal-
lenge. Furthermore, a tool is presented which generates the required code
for four alternative solutions and measures the attainable data trans-
fer speed, given a specific object graph. This can give researchers and
designers a fast insight about whether the interface between JVM and
accelerator can saturate the computational resources of their accelerator.
The benchmarking tool was run on a POWER8 system, for which results
show that depending on the size of the objects and collections size, an
approach based on the Java Native Interface can achieve between 0.9 and
12 GB/s, ByteBuffers can achieve between 0.7 and 3.3 GB/s, the Unsafe
library can achieve between 0.8 and 16 GB/s and finally an approach
access the data directly can achieve between 3 and 67 GB/s. From our
measurements, we conclude that the HotSpot VM does not yet have stan-
dardized interfaces by design that can saturate common bandwidths to
accelerators seen today or in the future, although one of the approaches
presented in this paper can overcome this limitation.

1 Introduction

With the advance of the big data era, many different big data processing and
storage frameworks have been developed. Many of these frameworks are written
in languages that use a Java Virtual Machine (JVM) [10] as the underlying
platform to execute compiled programs. This allows a cluster to easily scale out,
adding nodes of any type of hardware, as long as they can run a JVM. A well
known example is Apache Spark [18] which is written in Scala and is generally
run on the OpenJDK HotSpot virtual machine.

Although the performance of programs run on the JVM can (in very specific
situations) come close to the performance of native implementations, the added
layers of abstraction still impose limits [8]. Speeding up JVM applications beyond
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 220–236, 2017.
https://doi.org/10.1007/978-3-319-67630-2_18

Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware? 221

Just-In-Time (JIT) compilation can be done using native libraries to squeeze out
the last bits of performance that the underlying platform has to offer, sacrificing
some of the portability of the application. While still a long way to go, the big
data field is slowly catching up with the performance known from the high-
performance computing (HPC) domain [1]. However, as the end of multicore
scaling approaches, scaling up even native CPU performance will be troublesome
in the near future [6].

Thus, as big data problems become bigger, there is a need to go even beyond
the performance that traditional multicore systems can offer. For this reason,
the research and industrial community is looking at other paradigms, such as
combining accelerators or near-memory computing with big data platforms. In
this paper, the focus is on accelerators.

GPGPU computing is currently the most popular method for accelerated
computing. GPUs offer superior performance for tasks with a lot of thread-
level parallelism and floating-point calculations. Effort is also put in the more
power-efficient FPGA accelerators, suitable for deeply pipelined datapaths and
other highly parallel algorithms. In either case, there is little explicit support
for accelerated computing in specifications or implementations of major JVMs
at the time of writing.

One of the major challenges during integration of JVM programs with accel-
erators is transferring the data represented as objects in the JVM memory to the
accelerator. The interface between the data stored in objects managed by the
JVM and an accelerator incurs a specific amount of overhead. If this overhead
is higher than the performance gained from the accelerator, there is no point in
investing effort to accelerate an algorithm.

Because we look at this matter within the context of big data frameworks, we
assume that there is an application that would like to perform a transformation
on a parallel collection of data items, represented as JVM objects. One example
is a map transformation, which is a common operation for big data applications.
The goal of this paper is now to give an overview of four different yet feasible
approaches in transferring the object data from the JVM to the accelerator. Fur-
thermore we attempt to quantify the overhead of this data transfer based on the
layout of the object and the approach taken. This can help future development
and integration of accelerators with JVM-based big data frameworks.

The contributions of this paper are:

– We give an overview of the most feasible approaches in transferring data
between JVM and accelerator.

– We present a benchmarking tool that quantifies the parameters of the model
for a given platform. This allows designers and researchers to get an esti-
mation of the performance of their accelerated implementation, when JVM
objects hold the source data. It will also give an indication on which approach
will suit their performance requirements. The tool can also be used as a static
analysis tool on custom object layouts.

– We measure the data transfer performance of each of the approaches on the
OpenJDK HotSpot VM running on a POWER8 system.

222 J. Peltenburg et al.

The organization of the paper is as follows. Section 2 will discuss related work.
In Sect. 3 a more thorough problem definition is given. In Sect. 4 we will give an
overview of four feasible approaches. Section 5 comprises the experimental setup.
In Sect. 6 the results are presented. A conclusion is given in Sect. 7.

2 Related Work

When accelerators are controlled by and attached to a host system, it is assumed
that the accelerator interface partially consists of a native library. Therefore, the
problem of transferring object data from JVM to accelerator is initially similar
to the problem of native function access to JVM memory.

For this reason, the JVM implements the Java Native Interface (JNI). Many
open-source projects exist (e.g. JNA [11], JavaCPP [2]) that mainly attempt
to simplify integration of native libraries with Java programs through sugaring
or abstraction of the JNI (which is normally used by writing C or C++ code).
We will measure the best case performance of JNI without any of the overhead
introduced by the frameworks.

Several researchers that attempt to integrate accelerators with JVM based
big data frameworks note that the JNI interface causes a major performance
bottleneck for their applications. In the work of [3,9], the massive latency that
the JNI introduces is hidden by task pipelining, effectively overlapping JNI access
with accelerator execution. Also, when a succession of transformations will take
place on the accelerator, intermediate data is cached in local memory and can
also be broadcast to other nodes as is.

Another interesting scheme is described in [7], which uses direct ByteBuffers
for which the backing array is mapped to a region accessible through direct
memory access by an FPGA. The authors use the Xilinx Zynq system, in which
the host CPU shares the same physical memory as the FPGA. Such hardware
setup enables easy access to the data from the accelerators, although it is not
yet common in today’s big data clusters.

In the Apache Spark project, with the introduction of the Tungsten engine,
data items can be stored in off-heap memory using DataFrames and Datasets. At
the time of writing, this is currently done mainly to prevent garbage collection
overhead on the large collections of data. The community has been discussing the
possibility of feeding data that is stored off-heap directly to native libraries, but
any design, implementation or measurements have not yet been presented [16].
Furthermore, objects are serialized into the off-heap memory using serializers
that in many cases will also introduce extra overhead by e.g. compressing the
data [13].

More recently, with TensorFrames [5], integration of GPGPU accelerated
computing in Spark using off-heap managed data is shown. However, internally
the data is first deserialized back into the JVM and then JavaCPP is used (which
is JNI based) to transfer the data row-wise through a native library to a GPGPU,
which is rather inefficient. In the work on Spark-GPU [17], a similar approach
is seen. Data items first have to be transferred to some off-heap memory region,

Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware? 223

before passing it to a GPGPU. In a specific case with string objects, the authors
show that reading back this data from a GPU-friendly projection in an off-heap
structure incurs significant overhead of between 10.5× to 18.3×.

Many of these previous works focus on accelerating a specific application,
in which the interface between JVM and accelerator is not the main point of
thorough investigation. In this work, we aim to give an overview and quantify
in detail the properties of this interface, since it is one of the most critical
components in such a system.

3 Problem Definition

In light of the advancing interest in accelerating JVM based big data applica-
tions and frameworks, the main question that this paper aims to address is as
follows. Which approaches exist to transfer data held by objects in a JVM to an
accelerator, and how efficient are they?

To scope the question, we assume that there is an application holding a
collection of objects that contain data of interest to be used in a transformation.
The transformation is implemented in an accelerator. This commonly means
that each object in the collection will be transformed to some new object, or it
will be reduced to some final result. We also assume the collection is parallel,
thus the transformation may be applied to the objects in parallel as well, i.e. the
objects within a collection do not refer to each other.

The fields of an object that represent its state and data, can be of the fol-
lowing types:

– A primitive (e.g. an integer, float or character).
– A reference to a child object or a child array object.

One exception is the array object type; it can hold multiple primitives or
references, where each primitive or reference does not have a separate field iden-
tifier, merely an index. For the sake of simplicity we will assume that there are
no loops in the reference graph of the object, i.e. all object reference graphs are
trees.

The main problem within this scope is due to the fact that a programmer
running applications on a JVM has no explicit control over the location or the
layout of the objects in memory. In a system where one has control over both
layout and location of objects, one may choose to lay out the data in such a way
that it is convenient for an accelerator interface to access. This usually means
that the data at least resides in a contiguous memory region.

Thus, to perform the transformation on one object of the collection, all prim-
itives that reside in the object tree must first be obtained. This involves travers-
ing the object tree, accessing all the primitives, whether they are in fields or in
arrays. When this data is collected and saved in a contiguous memory region,
this process is also known as serialization. Serialization is used to store the object
to disk or to transfer it over a network, hence the object must usually be placed
in a contiguous memory region so that it may fit in a file or a message. Later on,

224 J. Peltenburg et al.

ByteBuffer ByteBuffer Direct Unsafe JNI

Direct (copy) Direct (no-copy) * pointer passing

Mem.

CPU

JVM JNI

Object byte[] Off-heap

Application Native

Acc.
I/F1

2,3

4
5

6

* *
*

7

1

2,3

4

*

*
*

5

(a) ByteBuffer

JVM JNI

Object byte[] Off-heap

Application Native

Acc.
I/F1

2,3

4
5

*
*

*

(b) Unsafe

Mem.

CPU

JVM JNI

Object byte[] Off-heap

Application Native

Acc.
I/F

1

2

3

4

*
* *

(c) JNI

JVM JNI

Object byte[] Off-heap

Application Native

Acc.
I/F

*
*

*

1 3

*

* *

1

2

(d) Direct

Fig. 1. Four different approaches of transferring the object data to the native environ-
ment. The thick lines represent the data path, and pointer/reference passing between
different programs is shown with an asterisk. Label numbers indicate data flow order.

the serialized object is deserialized into the memory of another JVM. However,
for a transformation to take place in an accelerator, the primitives must merely
be transported to the accelerator’s local memory; not necessarily reconstructing
it in such a way that a JVM program can access it again.

Accelerators are often controlled by a host CPU. In most cases this CPU
will also run the JVM. Controlling the accelerator from the application will
therefore involve calling at least one, but possibly multiple native functions. In
major JVM implementations, this can be done using the Java Native Interface
(JNI). Therefore, there are two ways of where object traversal could take place;
either by bytecode running on the JVM itself or by a native function invoked
through the JNI.

To address the question posed at the beginning of this section, the next
section will give an overview of four feasible approaches to obtain the primitives
and transfer them to an accelerator.

Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware? 225

Table 1. Summary of characteristics of different approaches

Approach Traversal Serialized Copies Portability Support Seen in

ByteBuffer bytecode yes 1-2 high high [13]

ByteBuffer (off-heap) bytecode yes 1 high high [7]

Unsafe bytecode yes 1 medium low [5][17]

JNI native yes 1-2 medium high [11][2][4]

Direct (copy) native yes 1 low low —

Direct (no-copy) native no 0 low low —

4 Overview of Data Transfer Approaches

This section first discusses the approaches of accessing a single JVM object using
a single thread, and then how multiple objects can be accessed using multiple
threads.

4.1 Single-Object, Single-Thread Approaches

There are four basic approaches by which the data of an object could be trans-
ferred to an accelerator (also shown in Fig. 1), namely:

(a) ByteBuffer approach — Using the JVM to traverse the object tree and write
it into a byte array using the java.nio.ByteBuffer or its derivatives like
IntBuffer or FloatBuffer. The byte array is then passed to the accelerator
interface through the JNI.

(b) Unsafe approach — Using the JVM to traverse the object tree and write
it directly to off-heap memory using the sun.misc.Unsafe library. The
address of off-heap memory location of the object is then passed to the
accelerator interface.

(c) JNI approach — The object reference is passed as an argument through the
JNI to a native function. Then, the native function uses JNI functions such
as Get<Primitive>Field or Get<Primitive>ArrayElements to obtain the
primitives.

(d) Direct approach—Traversing the object tree directly while it resides inside
the JVM memory. The accelerator interface may directly load the data or
it may first be serialized in some off-heap memory location.

The following subsections will discuss each approach in more detail. A sum-
mary can be found in Table 1.
ByteBuffer approach: For this approach, the object tree is traversed using
JVM bytecode. Primitives and primitive arrays are copied to a ByteBuffer
using its put and get methods. ByteBuffers are objects that wrap around a byte
array (called the backing array). They allow an easy interface to load and store
primitives from and to the byte array. The reference to this byte array can be
passed through the JNI to a native function that interfaces with the accelerator.

226 J. Peltenburg et al.

To obtain the actual array, the JNI function Get<Primitive>ArrayElements
or GetPrimitiveArrayCritical can be used. This may1 cause another copy
(although less likely in the latter case) of the data, but in either case it makes
the array accessible to the native function. A variant to this approach is where
the ByteBuffers can also wrap around an off-heap byte array, if the byte array
is allocated using the allocateDirect method. In this case, the data only has
to be copied from VM memory to the byte array once. The address of the off-
heap byte array can be obtained in the native code by using the JNI function
GetDirectBufferAddress.

Unsafe approach: The Unsafe approach uses the sun.misc.Unsafe library.
This library allows C-like memory operations such as allocation and freeing of off-
heap memory. Within the Java programming paradigm it is considered ‘unsafe’
because usually memory management is not done explicitly by the programmer.
The library is tightly coupled with the HotSpot VM, but its interface is not
officially supported or standardized. Traversal of the tree is done using JVM
bytecode. Primitives and primitive arrays are copied to an off-heap allocated
memory location using put and get methods. This makes the Unsafe approach
quite similar to the ByteBuffer Direct approach. To access the data, the memory
address of the off-heap structure can be simply passed to a native function
interfacing with the accelerator using the JNI.

JNI approach: The JNI approach is less straightforward, since traversing the
object tree is done through JNI calls in the native code. First, the references to
the classes of the objects in a tree must be obtained using FindClass. Then, the
field IDs of the classes must be obtained using GetFieldID. Object references
can be traversed using GetObjectField. Finally, with Get<Primitive>Field,
primitive fields can be obtained. The functions Get<Primitive>ArrayElements
or GetPrimitiveArrayCritical can be used to obtain array values, where both
functions potentially copy the values into a newly allocated region that must be
released afterwards. Because an accelerator cannot call JNI functions directly,
it is assumed that when the JNI approach is used, the primitives are stored in
some memory allocated by the native code, and thus the object is serialized. The
serialized object is then passed to the accelerator interface.

Direct approach: The Direct approach involves traversing the object tree and
obtaining the values from the JVM memory itself. Traversing the object tree is
done through calculating pointers to the objects from JVM references directly.
Fields are taken from offsets on the object pointers. This approach has low
portability since the way in which references are represented and translated
to virtual memory addresses is not standardized across implementations. For
example, in the HotSpot VM, this depends on VM parameters and platform
address size. References (called ordinary object pointers or OOPs) can be 32-
or 64-bits, where the 64-bit representation is an actual native pointer, but the
32-bits representation might be a compressed OOP [12]. Also, the offsets or
1 this depends on whether the representation of the array in the VM is the same as

the native representation, and if the VM garbage collector supports “pinning”.

Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware? 227

implementation of field storage is not specified. Therefore, this approach is not
straightforward and is extremely platform-dependent.

If the accelerator has an interface that allows to initiate loads/stores from/to
the host application memory that is running the JVM (e.g. CAPI [15], or with
CPU + FPGA SoCs where the acceleration fabric shares the data bus of the
CPU [7], or with techniques such as NVIDIA’s Unified Memory in CUDA), it is
not required for the object to be serialized. Instead, the actual object traversal
may take place on the accelerator itself. Therefore, the Direct approach allows
serialized (copy) but also unserialized (no-copy) access to the object, which is
unique to this approach.

We have not found an accelerator interface leveraging this technique pub-
lished in literature. Note that for server-grade systems this technique seems yet
unfeasible, since the latency of contemporary accelerator interfaces is still in the
order of microseconds. When reference are traversed in large data structures
with small objects, this will result in poor performance, because the ratio of
requests to data is high.

It might appear that proper functioning of this approach can be endangered
by the JVM garbage collection mechanism. However, when starting the Direct
approach through a single JNI invocation that uses an object reference as a
parameter, this reference is made a local reference. This means that as long
as the JNI function has not yet returned, the garbage collector will not move
the object of this reference, or its children. The reference could even be made
global such that the object will not be garbage collected at all and can be passed
between different JNI invocations or threads.

4.2 Parallel Access of Collections of Objects

When there is a collection of objects to be processed by an accelerator, and the
objects of the collection do not refer to other objects in the collection, the collec-
tion may also be accessed in parallel. This can help to increase the throughput
on multicore systems. In case of the Direct approach with load/store capable
accelerators, loads for data of multiple objects could be pipelined.

To support parallel access for the ByteBuffer approaches, each thread gets its
own ByteBuffer object with backing array in order to prevent race conditions.
The backing arrays are obtained through the JNI and could be merged in the
native code. They could also be sent to the accelerator interface in sequence,
thus from the accelerator point of view, it will no longer be a single collection
per se. This might introduce some overhead or require a slightly more complex
control structure for the ByteBuffer approach.

For the Unsafe approach, the memory is allocated once, then each thread gets
its own instance of sun.misc.Unsafe, again to prevent race conditions. Then,
each thread operates on a different offset of the destination memory.

For the JNI approach, parallel access is more complicated. Because references
to objects are only valid in the corresponding thread that obtained them through
the JNI, the reference to the array holding the collection must first be made
global before it is passed to each thread. New threads must also register with

228 J. Peltenburg et al.

the JVM using the JNI function AttachCurrentThread before they may call
other JNI functions. After accessing the values, the threads must detach and the
global reference must be released to allow garbage collection to take place on
the objects.

For the Direct approach, parallel access is straightforward. Multiple threads
may have multiple outstanding accesses of JVM memory simultaneously, and
store them on different offsets of off-heap memory.

5 Experimental Setup

To measure the access times of the different approaches, a benchmarking tool was
implemented (see also Fig. 2). As an input to the tool, a layout of an object tree
is first specified. From this specification, Scala sources and ultimately JVM byte-
code is generated, containing the required object classes and an Instantiator
class which contains methods to instantiate the object tree and fill it with ran-
dom data. Furthermore, for each approach, in the top-level class, methods are
generated to serialize the object to a byte array or to off-heap memory corre-
sponding to the description of the ByteBuffer and Unsafe approach, respectively.
These classes are then compiled to JVM bytecode. For the JNI and Direct app-
roach, functions callable through the JNI are generated in C. They are then also
compiled to a shared library, together with functions that access the data for the
ByteBuffer and Unsafe approach. Finally, a second program (benchmark runner)
can take the class files and library as an input and run measurements of object
access time. The benchmarking tool is available as an open-source project [14].
Using this tool, it is possible to measure the access times of different types and

root

child childprim

arrayprim prim

Object graph

Code
Gener-
ator

C
source

Scala
source

C lib

Class
files

Bench
runner

Fig. 2. General flow of the benchmarking tool

sizes of object trees. It is possible to generate two types of object layouts. One
layout where the root object does not contain any references, except to primitive
arrays (a leaf object). A leaf object contains only a variable amount of primi-
tives and arrays of variable size. Another layout where the object has a specified
width W and depth D, such that at the root level it contains W references to
the second level, where each object contains max(W − 1, 1) references, until the
level equals D. Only at the last level, the primitives and arrays are instantiated.
This layout allows us to also make a linear object tree, by setting W = 1 and

Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware? 229

D > 1. It is also possible to supply a custom class layout or object tree to the
tool, such that it may be used as a static analysis tool for existing applications.

By varying the parameters of the aforementioned object tree layouts, it is
possible to obtain the parameters of the model for a specific platform and JVM
implementation. By varying the number of primitives in a leaf object, the average
time to copy a primitive can be measured. By increasing the array size of a leaf
object, the average array copy time per element can be measured. By varying
the depth in a linear object tree, the average time to traverse a reference can be
measured.

Parallel collection serialization and parallel access performance is also mea-
sured to get the peak performance for the platform. From the hardware point
of view, when more cores and hardware threads run in parallel, we may assume
that the internal memory infrastructure is at some point saturated, resulting
in peak performance for that platform. Thus, besides specifying the object tree
layout for a benchmark, it is also possible to generate a collection of N of these
objects and specify with how many threads to access the objects. Furthermore,
because run-time measurements on the JVM are very noisy, the experiments are
repeated R times and averaged. These numbers are reported per experiment in
Sect. 6.

The benchmarking system consists of two POWER8 CPUs running at
3.42 GHz on an IBM Power System S824L (8247-42L) with 256 GiB of total
RAM. We confine our measurements to one of the two CPUs only. Primitives
used are 32-bit integers. Attaching an actual accelerator is outside the scope of
this paper, but by accumulating all serialized primitives into a single value on the
CPUs we can validate the correctness of each approach and we can make a fair
comparison for the Direct (no-copy) case. This is in theory the fastest approach,
because it does not copy at all. Without any operations on the data it would
otherwise only have to resolve all references without accessing the data itself.
Native threads are controlled through OpenMP and JVM threads are statically
managed.

In a real application, more dimensions to the problem are relevant, such as
how to lay out the serialized objects in the memory such that its structure is
convenient to process in a specific accelerator, how to retain references within
the serialized format, how to deal with cyclic object graphs, how to deal with
static fields of classes, and more detailed problems which are commonly seen in
serialization. However, because we are primarily interested in the feasibility and
best-case performance, these dimensions are also outside the scope of this work.

6 Results

6.1 Single Object

In Fig. 3a, the access time of a leaf object with an increasing number of
primitive fields is shown. We found that the ByteBuffer, Unsafe and Direct
approaches show a mainly linear increase in access time, while the JNI approach
shows a significant quadratic increase when the number of fields increases in

230 J. Peltenburg et al.

Fig. 3. Average latency of accessing JVM objects.

Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware? 231

a leaf object. This is due to the use of the JNI function GetFieldID for this
particular experiment. This function looks up the field identifier string in the
HotSpot symbol table. Suppose the number of primitives is p. We must search
p symbols p times to access all primitives. Thus the time complexity to access a
field by using GetFieldID is O(p2).

In Fig. 3c the access time of a leaf object containing only an array is shown.
Accessing arrays of different sizes clearly shows the effect of the CPU cache hier-
archy. The derivative of the access time with respect to the array size is small in
regions where the array still fits in the cache. It becomes larger for array sizes
that do not fit in the cache. Any initial overhead of the copies becomes relatively
small. For each approach that has the same number of copies (see Table 1), for
large arrays, their access times converge, because internally array copies are usu-
ally performed by highly optimized memcpy calls (although variants depending
on the native platform exist, e.g. for the Unsafe and ByteBuffer approaches).

In Fig. 3e, the access time of a linear object tree is shown. We found that the
access times increases in a mainly linear manner with respect to the number of
references traversed.

6.2 Parallel Performance

In the case of a parallel collection, we first attempt to find a suitable number
of threads. For each approach we measuring three cases; 1. small objects (2
primitives and an array with 16 primitives) 2. medium objects (8 primitives and
an array of 1024 primitives) and 3. large objects (64 primitives and an array
of 800 × 600 primitives. Reference traversal performance is included in these
measurements since a collection consists of many references to all its objects.
The collections are of such a size that their serialized representation is over
several hundred MiB, to make sure each thread has enough work to justify the
overhead from spawning it. The results of these three measurements are seen in
Fig. 4.

From these measurements, we found that for all approaches except the Direct
approaches, the scalability is rather poor. This is most likely due to race condi-
tions on specific resources of the VM. These approaches scale very badly when
the ratio of reference to data is high (small objects case). In the case of a high
ratio of reference to data, the maximum number of threads even gives the best
performance for the Direct approaches. In the medium and large object cases,
the speedup increases all the way to the maximum number of threads only for the
Direct (no-copy) case. This approach only performs a single load and accumulate
on each data item. The gains from multi-threading are therefore more signifi-
cant than in the case of the Direct (copy) approach, because the computation
to communication ratio is three times higher. The Direct (copy) approach loads,
stores and then loads again and accumulates the data. The Unsafe approach also
scales rather well in the medium and large measurement, compared to the JNI
approaches, which scales only well for the large case. The ByteBuffer approach
does not scale very well beyond four threads. From these measurements we set
a suitable number of threads for each approach as shown in Table 2.

232 J. Peltenburg et al.

Fig. 4. Throughput and speedup of accessing collections of JVM objects.

Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware? 233

Table 2. Maximum throughput and corresponding number of threads for the small,
medium and large benchmark.

Approach Small
(threads)

MB/s Medium
(threads)

MB/s Large
(threads)

MB/s Threads
used for
Fig. 3

ByteBuffer 4 1142 4 2159 10 3121 4

ByteBuffer (off-heap) 6 706 6 2231 4 3346 4

Unsafe 4 914 58 9080 62 16604 10

JNI 4 389 6 6094 78 12332 4

Direct (copy) 56 3232 80 16273 76 18788 80

Direct (no-copy) 78 7366 76 47064 80 67381 80

6.3 Collection

In the case of a parallel collection, the same types of measurements are performed
as in the case for a single object, although on a collection of N of these objects.
These measurements are shown in Fig. 3.

From measurements shown in Fig. 3b, we found that the quadratic increase
in access time for the JNI approach is now relatively insignificant, because the
field identifiers only have to be looked up once for the whole collection. However,
the JNI approach is still slow, because for each field primitive, the function call
Get<Primitive>Field JNI must still be made.

Figure 3d shows that after different initialization times, approaches with the
same number of copies converge towards the same access latency as the arrays
get larger, as was the case for the single-thread single-object measurements.

Lastly, for the measurement of reference traversal in a linear object graph
(Fig. 3f), the direct approaches show similar access time, followed by the Unsafe
and ByteBuffer approaches. Theoretically, there should not be much difference
between the Unsafe and ByteBuffer approaches, because reference traversal is
done in the JVM in the same way for both approaches. The difference in average
time for the ByteBuffer approach is due to the overhead induced by spawning the
threads and ByteBuffer objects. For the Unsafe approach, this overhead is much
lower. Again, the JNI approach shows an order of magnitude worse performance.

6.4 Discussion

Contemporary commercially available accelerator cards are often connected via
PCI-e GEN3 with peak bandwidths of almost 8 GB/s or 16 GB/s, depending on
the configuration. One example includes the POWER8 system where the CAPI
interface can be used over such a link. Even newer interfaces such as NVIDIA
NVLink are expected to achieve up to 80 GB/s.

From the measurements presented in this section, it can be seen that the
ByteBuffer approaches are generally unfavorable, because they cannot achieve

234 J. Peltenburg et al.

near the bandwidths of the PCIe range easily. They are only faster than using
the JNI approach in the case of accessing a collection of small objects. The JNI
approach can be a feasible solution, but only when the ratio of references-to-
data is low (e.g. when there are few but large arrays in the objects). At the same
time, the Unsafe approach performs better in most cases and it is much easier
to program, because traversal of the object graph can be written or generated
in the JVM based source language. If it is necessary to saturate the link, with
small objects (a high reference/data ratio) the only feasible solution is to take
the Direct approach.

A major drawback of this approach is that it is highly platform dependent
and it could even be considered more ’unsafe‘ than the Unsafe approach, since it
accesses VM managed memory without some sort of interface that was designed
into the VM. To mitigate this drawback, the VM could by design include some
functionality to support fast object graph traversal, serialization and data trans-
fer to accelerator interfaces, implemented with native code and tightly coupled
with the VM as in the case of the Unsafe library.

7 Conclusion

In this paper, an overview is given for four different approaches for accelerator
interfaces to obtain data from JVM managed objects; using ByteBuffers, the
sun.misc.Unsafe library, the Java Native Interface (JNI) and to directly obtain
the data from JVM managed memory (Direct).

A benchmarking tool was implemented that generates code to serialize the
object or a collection of objects for use in an accelerator, using these four different
approaches (where two approaches have two variants). By measuring the access
times of single objects by a single thread, and access times of a parallel collection
of objects by multiple threads, the performance of a POWER8 system with
the HotSpot VM was measured. Furthermore, the throughput of a collection of
small, medium and large objects was measurement with respect to the number
of threads.

From the measurements we may conclude that the ByteBuffer approach does
not perform well in most cases (it can achieve between 0.7 and 3.3 GB/s of
throughput). Also, it does not scale well with the number of threads. The JNI
approach can perform well in situations where the ratio of references to data is
low, but also scales poorly with the number of threads (it can achieve between
0.9 and 12 GB/s of throughput). The Unsafe approach scales slightly better,
up to the number of physical cores of CPU, and is also able to provide enough
bandwidth to saturate common accelerator interfaces (it can achieve between
0.8 and 16 GB/s of throughput). The best approach in terms of performance is
the Direct approach. It scales well and offers more than enough bandwidth for
common accelerator interfaces, but its portability and ease of use is poor (it can
achieve between 3 and 67 GB/s).

The measurements of the benchmarking tool can effectively be used to predict
the interface speed of accelerators attached to a JVM. This may help researchers

Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware? 235

and developers to obtain a good estimation of the maximum speedup they may
get by combining accelerators with JVM-based applications.

As new accelerator interfaces with higher bandwidths are introduced, the
need for a faster interface that is integrated into the HotSpot VM by design is
high. This is especially the case if users of big data frameworks based on the
JVM want to make use of the computational power of accelerators.

Acknowledgment. The authors would like to thank Erik Vermij for his help using
the POWER8 system and the Texas Advanced Computing Center and their partners
for access to the hardware. This work was supported by the European Commission in
the context of the ARTEMIS project ALMARVI (project #621439).

References

1. Anderson, M., Smith, S., Sundaram, N., Capota, M., Zhao, Z., Dulloor, S., Satish,
N., Willke, T.L.: Bridging the gap between HPC and big data frameworks. Proc.
VLDB Endow. 10(8) (2017)

2. Bytedeco: JavaCPP, April 2017, https://github.com/bytedeco/javacpp
3. Chen, Y.T., Cong, J., Fang, Z., Lei, J., Wei, P.: When apache spark meets FPGAs: a

case study for next-generation DNA sequencing acceleration. In: The 8th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 2016) (2016)

4. Chen, Z.N., Chen, K., Jiang, J.L., Zhang, L.F., Wu, S., Qi, Z.W., Hu, C.M., Wu,
Y.W., Sun, Y.Z., Tang, H., et al.: Evolution of cloud operating system: from tech-
nology to ecosystem. J. Comput. Sci. Technol. 32(2), 224–241 (2017)

5. Databricks: TensorFrames: Experimental tensorflow binding for Scala and Apache
Spark, April 2017, https://github.com/databricks/tensorframes

6. Esmaeilzadeh, H., Blem, E., St Amant, R., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. In: ACM SIGARCH Computer Architec-
ture News, vol. 39, pp. 365–376. ACM (2011)

7. Ghasemi, E., Chow, P.: Accelerating apache spark big data analysis with FPGAs.
In: 2016 IEEE 24th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), p. 94, May 2016

8. Gouy, I.: The computer language benchmarks game, 20 March (2017), http://
benchmarksgame.alioth.debian.org/

9. Huang, M., Wu, D., Yu, C.H., Fang, Z., Interlandi, M., Condie, T., Cong, J.: Pro-
gramming and runtime support to Blaze FPGA accelerator deployment at datacen-
ter scale. In: Proceedings of the Seventh ACM Symposium on Cloud Computing,
pp. 456–469. ACM (2016)

10. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine Spec-
ification, Java SE, 8th edn. Oracle (2015)

11. Open-source project: Java Native Access, April 2017, https://github.com/
java-native-access/jna

12. Oracle: Java HotSpot virtual machine performance enhancements,
April 2017, http://docs.oracle.com/javase/8/docs/technotes/guides/vm/
performance-enhancements-7.html

13. Oracle: Object serialization stream protocol, April 2017, https://docs.oracle.com/
javase/8/docs/platform/serialization/spec/serialTOC.html

14. Peltenburg, J.: JVM-to-Accelerator Benchmark Tool, https://github.com/
johanpel/jvm2accbench

https://github.com/bytedeco/javacpp
https://github.com/databricks/tensorframes
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/
https://github.com/java-native-access/jna
https://github.com/java-native-access/jna
http://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html
http://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://github.com/johanpel/jvm2accbench
https://github.com/johanpel/jvm2accbench

236 J. Peltenburg et al.

15. Stuecheli, J., Blaner, B., Johns, C., Siegel, M.: CAPI: a coherent accelerator proces-
sor interface. IBM J. Res. Dev. 59(1), 1–7 (2015)

16. Weiss, P.: Off heap memory access for non-jvm libraries, March 2017, https://
issues.apache.org/jira/browse/SPARK-10399

17. Yuan, Y., Salmi, M.F., Huai, Y., Wang, K., Lee, R., Zhang, X.: Spark-GPU: an
accelerated in-memory data processing engine on clusters. In: 2016 IEEE Interna-
tional Conference on Big Data (Big Data), pp. 273–283, December 2016

18. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation, p. 2. USENIX Association
(2012)

https://issues.apache.org/jira/browse/SPARK-10399
https://issues.apache.org/jira/browse/SPARK-10399

The Technological Roadmap of Parallware
and Its Alignment with the OpenPOWER

Ecosystem

Manuel Arenaz1(B), Oscar Hernandez2, and Dirk Pleiter3

1 University of A Coruna and Appentra Solutions, A Coruña, Spain
manuel.arenaz@appentra.com

2 Oak Ridge National Laboratory, Oak Ridge, TN, USA
oscar@ornl.gov

3 Julich Supercomputing Center, Jülich, Germany
d.pleiter@fz-juelich.de

Abstract. Accelerated, heterogeneous systems are becoming the norm
in High Performance Computing (HPC). The challenge is choosing the
right parallel programming framework to maximize performance, effi-
ciency and productivity. The design and implementation of benchmark
codes is important in many activities carried out at HPC facilities. Well
known examples are fair comparison of R+D results, acceptance tests for
the procurement of HPC systems, and the creation of miniapps to better
understand how to port real applications to current and future super-
computers. As a result of these efforts there is a variety of public bench-
mark suites available to the HPC community, e.g., Linpack, NAS Parallel
Benchmarks (NPB), CORAL benchmarks, and Unified European Appli-
cation Benchmark Suite. The upcoming next generation of supercomput-
ers is now leading to create new miniapps to evaluate the potential perfor-
mance of different programming models on mission critical applications,
such as the XRayTrace miniapp under development at the Oak Ridge
National Laboratory. This paper presents the technological roadmap of
Parallware, a new suite of tools for high-productivity HPC education
and training, that also facilitates the porting of HPC applications. This
roadmap is driven by best practices used by HPC expert developers in the
parallel scientific C/C++ codes found in CORAL, NPB, and XRayTrace.
The paper reports preliminary results about the parallel design patterns
used in such benchmark suites, which define features that need to be sup-
ported in upcoming realeases of Parallware tools. The paper also presents
performance results using standards OpenMP 4.5 and OpenACC 2.5,
compilers GNU and PGI, and devices CPU and GPU from IBM, Intel
and NVIDIA.

Keywords: Hybrid heterogeneous programming models · OpenACC ·
OpenMP4 · Static analysis tools · LLVM · Performance portability · Use
of parallware on minsky

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 237–253, 2017.
https://doi.org/10.1007/978-3-319-67630-2_19

238 M. Arenaz et al.

1 Introduction

Science, Technology, Engineering and Mathematics (STEM) plays a key role in
the sustained growth and stability of the economy world-wide. There is a huge
and urgent need in training STEM people in parallel programming, as well as
in providing STEM people with better programming environments that help
in porting scientific applications to modern supercomputers. It is key for code
modernization, specially to exploit the computational power of new devices such
as NVIDIA GPUs and Intel Xeon Phi.

The new specifications of directive-based parallel programming standards
OpenMP 4.5 [24] and OpenACC 2.5 [23] are increasingly complex in order to sup-
port heterogeneous computing systems. There is some debate regarding the pre-
scriptive nature of OpenMP 4.5 compared to the descriptive capabilities available
in OpenACC. In addition, performance portability is not guaranteed by OpenMP
4.5 specification, and currently there is divergence in features supported by dif-
ferent vendors (e.g., PGI, Cray, IBM, Intel, GNU) in different devices (e.g., CPU,
GPU, KNC/KNL). Overall, the responsibility falls on the developer to choose
best practices that facilitate performance portability [18,20].

The new Parallware tools [2] aim at going one step forward towards support-
ing best practices for performance portability. It is useful to track the progress
of new features in OpenMP 4.5 and OpenACC 2.5, as well as the availability
and performance of their implementation in each available compiler and target
device. We expect Parallware tools to be of interest for HPC facilities in the
following use cases:

– Improvement of current HPC education and training environments in order
to provide experiential learning to STEM people.

– Design and implementation of new miniapps to help porting HPC applications
to next generation supercomputers.

– Creation of acceptance tests for HPC systems procurement.
– Port of HPC applications to upcoming (pre-)exascale supercomputers.

The rest of the paper is organized as follows. Section 2 discusses best prac-
tices from HPC expert developers in the parallel programming of CORAL
Benchmarks [9], NAS Parallel Benchmarks [6] and XRayTrace miniapp [19].
The nomenclature of the parallel design patterns used internally in Parallware
technology is introduced in order to compare the parallelization of the bench-
mark codes. Section 3 presents the new tool Parallware Trainer using as a guide
the CORAL microbenchmark HACCmk. The technological challenges to be
addressed in Parallware core technology in order to support modern HPC appli-
cations are described. It also introduces the foreseen tool Parallware Assistant
oriented to development of HPC codes. Section 4 presents the current technolog-
ical roadmap of Parallware tools. Finally, Sect. 6 presents conclusions and future
work.

The Technological Roadmap of Parallware and Its Alignment 239

2 Analysis of Benchmarks: CORAL, NPB
and XRayTrace

Benchmark suites are designed to test the performance of supercomputers at
a hardware/software level, ranging from processor architecture, memory, inter-
connection network, I/O, file system, operating system, up to user applications
that are mission critical for HPC facilities. In this study we analyze OpenMP
and OpenACC parallel implementations of the compute-intensive C/C++ codes
found in XRayTrace [19], CORAL [9] and NPB [6].

2.1 Parallel Design Patterns of Parallware

Several approaches try to divide programs into (parallel) algorithmic patterns and
follow a pattern-based analysis of the code (see McCool et al. [22], Mattson et
al. [21], Berkeley’s dwarfs (or motifs) [5]). However, such patterns seem to be too
difficult to apply in practice [25]. In contrast, we use the parallel design patterns
detected by the Parallware technology [4], which have been successfully applied to
real programs from the NAS Parallel Benchmarks [16], and from the fields compu-
tational electromagnetics [10], oil & gas [3] and computational astrophysics [12].

The pseudocodes presented in Fig. 1 describe three parallel design patterns
detected by Parallware technology. The Parallel Forall of Listing 1.1 represents
parallel computations without race conditions at run-time. In each iteration of
for j, a new value A[j] is computed. The value T is a loop temporary computed
in each iteration of for j, where B[j] denotes read-only values. The Parallel
Scalar Reduction of Listing 1.2 represent a reduction operation whose result is
a single value A, where + is a commutative, associative operator. The Parallel
Sparse Reduction of Listing 1.3 represent a reduction operation whose result is a
set of values. Each iteration of for j updates a single value A[B[j]], where the
access pattern can only be determined at run-time and thus there may appear
race conditions during the parallel execution.

Examples of parallel design patterns are presented in source code snippets
of XRayTrace and HACCmk. In Listing 1.5, the loop for i contains a parallel
forall where the output is vx1, where dx1 is a loop temporary and fcoeff is a
read-only value. In Listing 1.6, the loop for j contains a parallel scalar reduction
whose output is xi, where dxc is a loop temporary and fcxx1oeff is a set of
read-only values. Finally, Listing 1.4, the loop for it contains parallel sparse
reductions where the outputs image and I ang have access patterns that are
known at run-time only.

Listing 1.1. Fully Paral-
lel Loop.

1 f o r (j =0; j<n ; j++)
2 {
3 T = B [j] ;
4 A [j] = T ;
5 }

Listing 1.2. Parallel
Scalar Reduction.

1 f o r (j =0; j<n ; j++)
2 {
3 T = B [j] ;
4 A += T ;
5 }

Listing 1.3. Parallel
Sparse Reduction.

1 f o r (j =0; j<n ; j++)
2 {
3 T = B [j] ;
4 A [B [j]] += T ;
5 }

Fig. 1. Pseudocodes of the parallel design patterns used in Parallware.

240 M. Arenaz et al.

Listing 1.4. In XRayTrace version of routine RayTraceImageLoop

1 #d e f i n e KMAX 100 // Maximum number o f f r e quen c i e s
2 void RayTrac e ImageLoop (
3 i n t N , i n t nx , i n t ny , i n t na , i n t nb , i n t nv ,
4 const double ∗x , const double ∗y , const double ∗a ,
5 const double ∗b , double dx , double dy , double dz ,
6 double da , double db , const double ∗dv ,
7 const RayTrace : : r a y g a i n s t r u c t ∗ g a i n i n ,
8 const RayTrace : : r a y s e e d s t r u c t ∗ s e e d i n ,
9 i n t method , const s t d : : v e c t o r <r a y s t r u c t > &r a y s ,

10 double s c a l e , double ∗ image , double ∗ I a n g ,
11 unsigned i n t & f a i l u r e c o d e ,
12 s t d : : v e c t o r <r a y s t r u c t > & f a i l e d r a y s) {
13 [. . .]
14 #pragma acc data copyin (x [0 : nx] , y [0 : ny] , a [0 : na] ,

b [0 : nb] , dv [0 : nv] , rays2 [0 : N rays])
dev i c ept r (gain , seed) copyout (image [0 : nx ∗ ny ∗ nv] ,
I ang [0 : na ∗ nb]) {

15 // I n i t i a l i z e d e v i c e imag e s
16 #pragma acc p a r a l l e l loop
17 f o r (i n t i = 0 ; i < nx ∗ ny ∗ nv ; ++i)
18 image [i] = 0 ;
19 #pragma acc p a r a l l e l loop
20 f o r (i n t i = 0 ; i < na ∗ nb ; ++i)
21 I a n g [i] = 0 ;
22 // Loop t h r o u g h y , x , b , a
23 #pragma acc p a r a l l e l loop gang vector ve c t o r l eng th (32)
24 f o r (i n t i t = 0 ; i t < N r a y s ; ++ i t) {
25 const r a y s t r u c t r a y = r a y s 2 [i t] ;
26 double I v [K MAX] ;
27 r a y s t r u c t r a y 2 ;
28 i n t e r r o r = R a y T r a c e c a l c r a y (
29 ray , N , dz , ga i n , s e ed , nv , method , Iv ,
30 r a y 2) ;
31 // Get t h e i n d i c e s t o t h e c e l l s i n image
32 // and I a n g
33 i n t i 1 , i 2 , i 3 , i 4 ;
34 i n t i 1 = s t a t i c c a s t <int >(f i n d f i r s t s i n g l e (
35 x , nx , r a y 2 . x − 0 .5 ∗ dx)) ;
36 i f (r a y 2 . x < x [0] − 0 .5 ∗ dx | |
37 r a y 2 . x > x [nx − 1] + 0 .5 ∗ dx)
38 i 1 = −1; // The ray ’ s z p o s i t i o n i s o u t
39 // o f t h e r an g e o f image
40 [. . .]
41 // Copy I o u t i n t o image
42 i f (i 1 >= 0 && i 2 >= 0) {
43 double ∗ I v 2 =
44 &image [nv ∗ (i 1 + i 2 ∗ nx)] ;
45 f o r (i n t i v = 0 ; i v < nv ; i v++) {
46 #pragma acc atomic update
47 I v 2 [i v] += I v [i v] ∗ s c a l e ;
48 }
49 }
50 // Copy I o u t i n t o I a n g
51 i f (i 3 >= 0 && i 4 >= 0) {
52 double tmp = 0 . 0 ;
53 f o r (i n t i v = 0 ; i v < nv ; i v++)
54 tmp += 2.0 ∗ dv [i v] ∗ I v [i v] ;
55 #pragma acc atomic update
56 I a n g [i 3 + i 4 ∗ na] += tmp ;
57 }
58 }
59 } // pragma ac c d a t a r e g i o n s c o p e
60 }

The Technological Roadmap of Parallware and Its Alignment 241

Listing 1.5. CORAL microbenchmark HACCmk (file main.c).

1 #i nclude <s t d i o . h>
2 #i nclude <s t d l i b . h>
3 #i nclude <omp . h>
4 #d e f i n e N 15000
5 i n t main (i n t a r g c , char ∗ a r g v [])
6 {
7 s t a t i c f l o a t xx [N] , yy [N] , z z [N] , mass [N] , vx1 [N] , vy1 [

N] , vz1 [N] ;
8 f l o a t f s r rmax 2 , mp rsm2 , f c o e f f , dx1 , dy1 , dz1 ;
9 i n t c o u n t = 327 ;

10 . . .
11 f o r (n = 400 ; n < N ; n = n + 20)
12 {
13 . . .
14 #pragma omp p a r a l l e l f o r p r i va t e (dx1 , dy1 , dz1)
15 f o r (i = 0 ; i < c o u n t ; ++i)
16 {
17 S t e p 1 0 o r i g (n , xx [i] , yy [i] , z z [i] , f s r rmax 2 ,

mp rsm2 , xx , yy , zz , mass , &dx1 , &dy1 , &dz1) ;
18 vx1 [i] = vx1 [i] + dx1 ∗ f c o e f f ;
19 vy1 [i] = vy1 [i] + dy1 ∗ f c o e f f ;
20 vz1 [i] = vz1 [i] + dz1 ∗ f c o e f f ;
21 }
22 . . .
23 }
24 }

Listing 1.6. CORAL microbenchmark HACCmk (file Step10 orig.c).

1 #i nclude <math . h>
2

3 void S t e p 1 0 o r i g (i n t c oun t1 , f l o a t xx i , f l o a t yy i , f l o a t
z z i , f l o a t f s r rmax 2 , f l o a t mp rsm2 , f l o a t ∗xx1 ,

f l o a t ∗yy1 , f l o a t ∗ zz1 , f l o a t ∗mass1 , f l o a t ∗ dx i ,
f l o a t ∗ dy i , f l o a t ∗ d z i)

4 {
5 const f l o a t ma0 = 0.269327 , ma1 = −0.0750978 , ma2 =

0.0114808 , ma3 = −0.00109313 , ma4 = 0.0000605491 ,
ma5 = −0.00000147177;

6 f l o a t dxc , dyc , dzc , m, r2 , f , x i , y i , z i ;
7 i n t j ;
8 x i = 0 . ; y i = 0 . ; z i = 0 . ;
9 f o r (j = 0 ; j < c o u n t 1 ; j++)

10 {
11 dxc = xx1 [j] − x x i ;
12 dyc = yy1 [j] − y y i ;
13 dz c = z z 1 [j] − z z i ;
14 r 2 = dxc ∗ dxc + dyc ∗ dyc + dz c ∗ dz c ;
15 m = (r 2 < f s r rm a x 2) ? mass1 [j] : 0 . 0 f ;
16 f = pow (r 2 + mp rsm2 , −1.5) − (ma0 + r 2 ∗(ma1

+ r 2 ∗(ma2 + r 2 ∗(ma3 + r 2 ∗(ma4 + r 2 ∗ma5))))) ;
17 f = (r 2 > 0 .0 f) ? m ∗ f : 0 . 0 f ;
18 x i = x i + f ∗ dxc ;
19 y i = y i + f ∗ dyc ;
20 z i = z i + f ∗ dz c ;
21 }
22 ∗ d x i = x i ;
23 ∗ d y i = y i ;
24 ∗ d z i = z i ;
25 }

242 M. Arenaz et al.

The results in Table 1 reveal the usage of Parallware’s parallel design pat-
terns by HPC expert developers. The pattern Parallel Forall implementation
ParallelForLoopImpl corresponds to a fully parallel loop implemented with prag-
mas parallel for in OpenMP and pragmas parallel loop in OpenACC. In con-
trast, the design patterns Parallel Scalar Reduction and Parallel Sparse Reduc-
tion add synchronization to guarantee correctness during parallel execution.
Only three different implementations are used in the benchmarks: AtomicImpl,
which prevents race conditions by adding pragmas atomic that guarantee atomic
memory accesses to the reduction variable; ReductionImpl, which uses clause
reduction to compute thread-local temporary results that are later reduced into
the output reduction value; and PrivateImpl, which is a hand-made implemen-
tation of the clause reduction using clauses private/shared and pragma critical.
The numbers show that atomic is not used for scalar reductions. In addition,
reduction is not used for sparse reductions because the clause does not support
arrays in OpenMP 3.1.

Table 1. Parallel design patterns used by HPC developers in the C/C++ imple-
mentation of NPB, CORAL and XRayTrace. (*) XRayTrace provides one OpenACC
implementation; the remaining bechmark codes are OpenMP implementations only.

Benchmark Parallel Design Pattern
Parallel Parallel Scalar Reduction Parallel Sparse Reduction
Forall

Parallel Atomic Reduction Private Atomic Reduction Private
ForLoop Impl Impl Impl Impl Impl Impl

Impl

ORNL miniapp 0 0 0 0 2 0 0

XRayTrace (*)2

CORAL 24 0 1 1 0 0 4

lulesh 22 4
MILCmk 1 1 1
HACCmk 1

NPB 168 0 17 2 5 0 24

BT 25 14
CG 12 6 4
EP 2 1
FT 7 1
IS 5 1
LU 28 3 2
MG 9 1 1 2
SP 32 2
UA 50 4 4

The Technological Roadmap of Parallware and Its Alignment 243

2.2 Case Study: ORNL’s Miniapp XRayTrace

Work in progress at ORNL is focused on creating the miniapp XRayTrace, a new
benchmark that will be used to evaluate the performance of pre-exascale Summit
supercomputer. The Listing 1.4 shows an excerpt of the GPU code implemented
by the HPC expert using OpenACC 2.5. The miniapp also provides an OpenMP
3.1 version to run on multicore CPUs.

The routine RayTraceImageLoop() (see Listing 1.4, line 2) basically consists
of a loop for it that computes a parallel design pattern Parallel Sparse Reduc-
tion on variables I ang and image using an AtomicImpl implementation (see
#pragma acc atomic, lines 48 and 57). It is the best choice from the point of
view of maintainability, as it provides a compact, easy-to-understand implemen-
tation. It is also applicable across standards and devices, all of which provide
performant support for atomic operations. As shown in Table 1, it is noticeable
that AtomicImpl was not the preferred implementation in NPB and CORAL,
where PrivateImpl was largely the option of choice by HPC expert developers.

The OpenACC 2.5 implementation is optimized to reduce CPU-to/from-
GPU data transfers, as this is a critical performance factor according to best
practices for GPUs today [17]. The key issue here is to handle data scoping for
scalar and array variables. The HPC expert developer has specified the array
ranges in clauses copyin and copyout for arrays x, y, a, b, dv, rays2,
image, I ang (see Listing 1.4, line 14). In order to avoid unnecessary CPU-
to/from-GPU data transfers, temporary array variables gain and seed have
been allocated only in the device using the clause deviceptr and the API calls
copy device() and free device().

Finally, the C/C++ features used in the code1 also pose technological chal-
lenges on the Parallware core technology. There are calls to the auxiliary func-
tions RayTrace calc ray() and findfirstsingle() (see Listing 1.4, lines 29
and 35), aliases that temporarily point to the output array (see double *Iv2
pointing to double *image, lines 45–46), as well as user-defined datatypes
ray gain struct, ray seed struct and ray struct (e.g. see lines 7, 8 and 9).

The execution times and speedups of Table 2 were measured on the Juron
system at the Julich Supercomputing Centre (JSC). The hardware setup is a
IBM S822LC with CPU 2x POWER8NVL, 10 cores each (8xSMT) and NVIDIA
P100 GPUs (only 1 used for these runs). The tested setups are CPU-based
sequential execution (CPU Serial), CPU-based parallel execution with OpenMP
3.1 (CPU OMP3.1) and GPU-based parallel execution with OpenACC 2.5 (GPU
ACC2.5). The compiler flags for GCC 6.3 are -fopenmp -O2 (thus, CPU Serial is
measured as CPU OMP3.1 with 1 thread). The flags for PGI 16.10 are -mp -O2
for CPU Serial and CPU OMP3.1, and -acc -O2 -ta=tesla for GPU ACC2.5.
Four increasing test sizes were considered: Small ASE (399000 rays, 3 lengths),
Medium ASE (399000 rays, 8 lengths), Small Seed (7803000 rays, 3 lengths)
and Medium Seed (7803000 rays, 8 lengths). The numbers show that GCC is
1 The code also uses the C++ STL (std::vector &failed rays). However, we do

not consider it a key challenge because it has been commented out in the OpenACC
code (the same may stand for OpenMP as well).

244 M. Arenaz et al.

Table 2. Execution times (in seconds) and speedups of XRayTrace in Finisterrae (CPU
Intel Xeon and NVIDIA GPU P100).

Test size Original

Small ASE Medium ASE Small seed Medium seed

Compiler GCC 6.3

CPU serial 4.42 − 10.69 − 46.21 − 94.33 −
CPU OMP3.1 0.14 31× 0.294 36× 1.579 29× 2.99 31×
Compiler PGI 16.10

CPU serial 3.19 − 8.10 − 50.27 − 120.55 −
CPU OMP3.1 17.80 0.18× 49.07 0.08× 1126.21 0.04× 907.95 0.13×
GPU ACC2.5 0.04 79× 0.11 73× 0.73 68× 1.99 60×

the best choice for multi-threaded execution on the CPU (minimum speedup is
29× using 160 threads, with respect to CPU Serial). In contrast, PGI enables
efficient execution on the GPU, which is 1.5×−3.5× faster than CPU OMP3.1
using GCC (minimum speedup is 60×, with respect to CPU Serial).

Finally, the execution times and speedups of Table 3 were measured on the
Finisterrae system at the Supercomputing Centre of Galicia (CESGA). The test
platform is a dual Intel Xeon E5-2680 v3 CPU, 12 cores each, running at 2.5 GHz
(hyperthreading is disabled). The GPU accelerator for OpenACC computing is
a Tesla K80. It is remarkable that, using the GCC compiler, CPU OMP3.1
is significantly faster on Minsky nodes than on Intel-based nodes (minimum
speedup is 29× on Juron, compared to 5.7× on Finisterrae). Regarding the PGI
compiler, CPU OMP3.1 does not perform well on Minsky nodes because the
support of POWER ISA is very recent in PGI compilers, and more investigations
on the correct usage of the PGI compiler are needed.

3 Parallware Trainer

Parallware Trainer [2] is a new interactive tool for high-productivity HPC edu-
cation and training using OpenMP 4.5 and OpenACC 2.5. It allows experiential
learning by providing an interactive, real-time GUI with editor capabilities to
interact with the Parallware technology for source-to-source automatic paral-
lelization of sequential codes.

Hereafter, the current strengths and weaknesses of Parallware Trainer binary
release 0.4 (May 2017) are discussed using as a guide the CORAL microbench-
mark HACCmk. Next, the suite of Parallware tools under development is pre-
sented, describing the key technological differences with respect to other tools
available to the HPC community.

The Technological Roadmap of Parallware and Its Alignment 245

3.1 Case Study: CORAL Microbenchmark HACCmk

The Listings 1.5 and 1.6 show an excerpt of the source code of the CORAL
microbenchmark HACCmk, written in C and parallelized using OpenMP 3.1 by
an HPC expert developer. The main program consists of a loop that defines
increasing tests sizes n, ranging from 400 up to 15000. The HPC expert devel-
oper has used a parallel design pattern Fully Parallel Loop. For each test size, the
pragma #pragma omp parallel for enables the conflict-free multi-threaded
computation of the output arrays vx1, vy1 and vz1.

Parallware Trainer 0.4 does not discover parallelism across calls to user-
defined functions. It fails to find the fully parallel loop for i in main() because
of the call to Step10 orig() (see Listing 1.5, line 19). In contrast, Parallware
succeeds to parallelize the loop for j inside this routine (Listing 1.6, lines 10–22),
and reports the following user messages:

Step10_orig.c:3:1: info: Analyzed function ’Step10_orig’

Step10_orig.c:10:5: info:

Offloading to coprocessor device (use of target pragma)

Parallel loop

Dependencies due to temporary variables do not prevent parallelization:

’dxc’, ’m’, ’r2’, ’dzc’, ’f’, ’dyc’

Parallel reduction on variable ’zi’ with associative, commutative operator ’+’

Parallel reduction on variable ’yi’ with associative, commutative operator ’+’

Parallel reduction on variable ’xi’ with associative, commutative operator ’+’

Ranking of available parallelization strategies:

#1 Use of the clause <reduction> (*) selected

#2 Use of pragma <atomic> (memory optimized)

TODO list:

* Complete access range for variables: xx1, yy1, zz1, mass1}

The code contains a parallel design pattern Parallel Scalar Reduction involv-
ing three scalar variables xi, yi and zi. It also displays the ranking of avail-
able implementations: #1 being ReductionImpl and #2 being AtomicImpl (see
Table 1). Following best practices observed in CORAL and NPB, Parallware
selects ReductionImpl as the option that minimizes synchronization during the
execution of the parallel scalar reductions xi, yi and zi. The output source code
produced by Parallware contains OpenMP 3.1, OpenACC 2.5 and OpenMP 4.5
pragmas annotated on loop for j (see codes in Listings 1.7, 1.8 and 1.9).

246 M. Arenaz et al.

Listing 1.7. In CORAL microbenchmark HACCmk, version of routine
Step10 orig generated by Parallware Trainer using OpenMP 3.1.

1 #pragma omp p a r a l l e l d e f au l t (none) shared (count1 ,
fsrrmax2 , mass1 , mp rsm2 , xi , xx1 , xxi , yi , yy1 ,
yyi , z i , zz1 , z z i)

2 {
3 #pragma omp f o r pr i va t e (dxc , dyc , dzc , f , m, r2)

reduct ion (+: z i) reduct ion (+: y i) reduct ion (+: x i
) schedule (auto)

4 f o r (j = 0 ; j < c o u n t 1 ; j++)
5 {
6 . . .
7 x i = x i + f ∗ dxc ;
8 y i = y i + f ∗ dyc ;
9 z i = z i + f ∗ dz c ;

10 }
11 } // end p a r a l l e l

Listing 1.8. In CORAL microbenchmark HACCmk, version of routine
Step10 orig generated by Parallware Trainer using OpenACC 2.5.

1 #pragma acc data copy (xi , yi , z i) copyin (count1 ,
fsrrmax2 , mass1 [] , mp rsm2 , xx1 [] , xxi , yy1 [] ,
yyi , zz1 [] , z z i)

2 {
3 #pragma acc p a r a l l e l
4 {
5 #pragma acc loop reduct ion (+: z i) reduct ion (+: y i)

reduct ion (+: x i)
6 f o r (j = 0 ; j < c o u n t 1 ; j++)
7 {
8 . . .
9 x i = x i + f ∗ dxc ;

10 y i = y i + f ∗ dyc ;
11 z i = z i + f ∗ dz c ;
12 }
13 } // end p a r a l l e l
14 } // end d a t a

Listing 1.9. In CORAL microbenchmark HACCmk, version of routine
Step10 orig generated by Parallware Trainer using OpenMP 4.5.

1 #pragma omp ta rge t map(to : xxi , fsrrmax2 , mp rsm2 , xx1
[] , count1 , yyi , z z i , yy1 [] , zz1 [] , mass1 []) map(
tofrom : z i , yi , x i)

2 {
3 #pragma omp p a r a l l e l d e f au l t (none) shared (count1 ,

fsrrmax2 , mass1 , mp rsm2 , xi , xx1 , xxi , yi , yy1 ,
yyi , z i , zz1 , z z i)

4 {
5 #pragma omp f o r pr i va t e (dxc , dyc , dzc , f , m, r2)

reduct ion (+: z i) reduct ion (+: y i) reduct ion (+: x i
) schedule (auto)

6 f o r (j = 0 ; j < c o u n t 1 ; j++)
7 {
8 . . .
9 x i = x i + f ∗ dxc ;

10 y i = y i + f ∗ dyc ;
11 z i = z i + f ∗ dz c ;
12 }
13 } // end p a r a l l e l
14 } // end t a r g e t

The Technological Roadmap of Parallware and Its Alignment 247

The OpenMP annotations manage data scoping explicitly both on the
CPU version (Listing 1.7, lines 1–3, clauses default, private, shared and
reduction) as well as on the accelerated version (Listing 1.9, line 1, clause
map). Parallware also suggest a list of actions to be carried out by the user. For
array variables xx1, yy1, zz1 and mass1, the tool generates empty array ranges
because it cannot determine the array elements to be transferred between the
CPU and the accelerator (Listing 1.9, line 1, clause map(to:...,xx1[])). The
development of more precise array range analysis is planned in Parallware’s tech-
nological roadmap.

The execution times and speedups of Table 4 were measured on the Juron
system at JSC (Table 5 shows similar numbers on the Finisterrae at CESGA).
Running the OpenMP 3.1 version with 160 threads, we observe that HACCmk’s
original implementation runs faster than Parallware’s automatically generated
version (speedups 18× and 0.9×, respectively). The reason is that the HPC
expert developer exploits coarser grain parallelism (number of parallel regions is
730 in Listing 1.5, line 13), while Parallware versions incur in high parallelization
overhead because a parallel region is created/destroyed in each call to procedure
Step10 orig() (number of parallel regions is 730×327 = 238710 in Listing 1.7).
The PGI compiler provides worse performance for the original HACCmk (run-
ning time 9.14 versus 7.42 of GCC). However, the performance with Parallware
version performs poorly, probably due to the fact that the PGI run-time incurs
in higher overhead in creation/destruction of parallel regions. Work-in-progress
aims at adding support for interprocedural detection of parallelism. By manag-
ing procedure calls that write only on scalar variables passed by reference (see
Listing 1.5, line 19, parameters &dx1, &dy1, &dz1), Parallware will successfully
detect and parallelize the fully parallel loop for i (Listing 1.5, lines 17–23). By
matching the HPC expert’s parallel implementation, we expect Parallware to
provide acceptable performance similar to the original version.

Finally, note that OpenACC-enabled version with PGI 16.10 does not accel-
erate CPU OMP3.1, probably because HACCmk requires many CPU-to/from-
GPU data transfers of small size. However, it is remarkable that Parallware still
achieves an speedup 4.8× with respect to the serial code. The numbers show that
while thread creation/destruction is very expensive on the CPU, its overhead is
not so critical on the GPU.

Overall, the experiments show that Parallware supports the parallel design
pattern Fully Parallel Loop, but it needs improvements in inter-procedural analy-
sis to exploit coarser-grain parallelism with OpenMP and OpenACC.

3.2 The Parallware Suite

Parallware technology [1,4] uses an approach for parallelism that does not rely on
loop-level classical dependence analysis. The classical approach builds systems
of mathematical equations whose solutions allow to identify pairs of memory ref-
erences in the loop body that might lead to race conditions during the parallel
execution of the loop. In contrast, Parallware uses a fast, extensible hierarchi-
cal classification scheme to address dependence analysis. It splits the code into

248 M. Arenaz et al.

Table 3. Execution times (in seconds) and speedups of HACCmk in Finisterrae (CPU
Intel Xeon and NVIDIA GPU Tesla K80).

Test size Original

Small ASE Medium ASE Small seed Medium seed

Compiler GNU 4.8.2

CPU Serial 3.57 − 8.82 − 41.23 − 90.42 −
CPU OMP3.1 0.47 7.6× 0.99 8.9× 7.27 5.7× 13.68 6.6×
Compiler PGI 16.10

CPU Serial 3.24 − 8.09 − 41.36 − 96.87 −
CPU OMP3.1 1.17 2.8× 1.26 6.4× 33.74 1.2× 117.25 0.8×
GPU ACC2.5 0.24 13.5× 0.42 19.3× 2.91 14.2× 6.19 15.6×

a small domain-independent computational kernels (e.g. assignment, reduction,
recurrence, etc.), combining multiple static analysis techniques including array
access patterns, array access ranges, and alias analysis. Next, it checks contex-
tual properties between the kernels in order to discover parallelism and to select
the most appropriate paralleling strategy for the loop. Finally, Parallware adds
the corresponding OpenMP/OpenACC directives and performs code transforma-
tions as needed (e.g. array privatization in parallel reductions, which is natively
supported by OpenMP in Fortran but not in C). Parallware is also based on the
production-grade LLVM compiler infrastructure.

Parallware Trainer [2] is a new interactive tool for high-productivity HPC
education and training. It allows experiential learning by providing an interac-
tive, real-time GUI with editor capabilities to assist in the design and imple-
mentation of parallel code. Powered by the hierarchical classification engine of
Parallware technology, it discovers parallelism, provides a ranking of parallel
design patterns, and implements those designs using standards OpenMP 4.5
and OpenACC 2.5 (see video tutorials How to use Parallware Trainer available
at www.parallware.com). Overall, the main advantages of Parallware Trainer
are high availability 24× 7, reduction of costs, and broader audience of STEM
people in far-away geographical locations.

Parallware Assistant, currently under development, will be the next tool of
the suite. The Parallware Trainer is oriented to HPC education and training,
so its GUI only shows the key information needed to understand why a code
snippet can be parallelized (e.g., contains a scalar reduction with an associative,
commutative sum operator), and how it can be executed in parallel safely (e.g.,
atomic update of the sum operator). In contrast, the Parallware Assistant will
provide detailed information about every operator and every variable of the code,
for instance, detailed data scoping and detailed array access ranges.

www.parallware.com

The Technological Roadmap of Parallware and Its Alignment 249

Table 4. Execution times (in seconds) and speedups of HACCmk in Juron (CPU IBM
Power8 and NVIDIA GPU P100).

Original Parallware

Compiler GCC 6.3

CPU serial 137.99 −
CPU OMP3.1 7.42 18× 157.68 0.9×
Compiler PGI 16.10

CPU serial 92.91 −
CPU OMP3.1 9.14 10.8× 268.07 0.35×
GPU ACC2.5 n/a n/a 19.13 4.8×

Table 5. Execution times (in seconds) and speedups of HACCmk in Finisterrae (CPU
Intel Xeon and NVIDIA GPU Tesla K80).

Original Parallware

Compiler GCC 6.3

CPU serial 126.26 −
CPU OMP3.1 12.37 10.2× 708.44 0.18×
Compiler PGI 16.10

CPU serial 104.21 −
CPU OMP3.1 10.17 10.3× 236.64 0.44×
GPU ACC2.5 n/a n/a 32.11 3.2×

4 The Technological Roadmap of Parallware

Following current startup business practices, we seek to attain the minimum
viable product (MVP) as quickly as possible. At the same time we are doing the
MVP work, we are testing the market from the business side. We are discussing
the sales cycle, price sensitiveness and business value to the target customers. We
are conducting an early access program for Parallware Trainer, our first product
for high-productivity STEM education and training in parallel programming for
undergraduate and PhD levels.

Parallware’s technological roadmap is driven by the best practices observed
in CORAL, NPB and XRayTrace. Our go-to-market strategy is based on engag-
ing with world-class HPC facilities, working together to better understand how
to help them with their mission-critical activities (e.g., technology scouting, cre-
ation of benchmark codes, porting of HPC applications). Thus, we are partici-
pating in strategic partnership programs (BSC, ORNL and TACC) and deploy-
ing Parallware Trainer in real production environments (BSC, ORNL, NERSC,
LRZ).

As of writing, our priorities for the technological development of Parallware
Trainer in the short and medium term are (in order of priority):

250 M. Arenaz et al.

1. Improve the usability of the GUI to facilitate the analysis, compilation and
execution of scientific programs. Analyze programs across multiple source
code files that use MPI, OpenMP and OpenACC. Integrate the GUI with
compilers from different vendors (e.g., IBM, PGI) in production-level super-
computers (e.g. modules, job queuing systems).

2. Improve the support for parallel design patterns parallel scalar reduction
and parallel sparse reduction. As of writing, Parallware already supports the
AtomicImpl and ReductionImpl implementations for OpenMP 4.5 and Ope-
nACC 2.5, both for CPU and GPU devices. Work-in-progress aims at adding
support for the PrivateImpl implementation as well.

3. Provide a ranking of parallel implementations, suggesting the “best” option
for a given parallel programming standard, compiler and device. Mechanisms
for the user to select the preferred implementation will be added.

4. Provide a list of suggestions for the user to improve the parallel implemen-
tation generated by the Parallware tools. Current work aims at improving
data scoping support though advanced techniques for array range analy-
sis and detection of temporary arrays. This information is useful to mini-
mize CPU-to/from-GPU data transfers, for example by allocating temporary
arrays directly on the GPU device.

5. Improve the Parallware core technology to discover parallelism across pro-
cedure calls. Inter-procedural analysis (IPA)2 usually requires handling user-
defined data structures (e.g. struct), auxiliary pointer variables that alias with
output variables (aliasing), and C++ STL classes (e.g. std::vector).

Finally, our go-to-market strategy is aligned with world-class exhibitions ISC
High Performance 2017 (ISC’17) and Supercomputing 2017 (SC17). During 2017,
we plan to commercially launch Parallware Trainer, an interactive, real-time edi-
tor with GUI features to facilitate the learning, usage, and implementation of
parallel programming. We also plan to test a prototype of Parallware Assistant,
a new software tool that will offer a high-productivity programming environ-
ment to help HPC experts to manage the complexity of parallel programming.
Example of technical features are detailed data scoping at the loop and functions
levels, and visual browsing of the parallelism found in the code.

5 Related Work

Parallelization tools have been built in the past that discover parallelism in
loops via symbolic equations, where the user can input ranges of values given
a set of inputs. Some of these tools include SUIF [15], Polaris [7], Cetus [8],
iPAT/OMP [11] and ParaWise [13] (CAPTools/CAPO). However, these tools
are extremely hard to use with real applications, even for advanced application
developers because they rely on research compilers with complex user interfaces
and they take significant amount of time to complete their analysis. Some of

2 Requirement for porting HPC applications, not for HPC education and training.

The Technological Roadmap of Parallware and Its Alignment 251

them are restricted to the older Fortran 77 standard or focus on loop level paral-
lelism for simple array operations. In contrast, Parallware uses a fast, extensible
hierarchical classification scheme to address dependence analysis. Based on the
production-grade LLVM compiler infrastructure, Parallware is beginning to show
success on the parallelization of C codes that defeat the other tools.

6 Conclusions and Future Work

Preliminary results suggest that the parallel design patterns used by HPC expert
developers have not changed significantly across NPB, CORAL and new bech-
marks such as XRayTrace. The latest updates in OpenMP 4.5 and OpenACC
2.5 improve support for reductions and atomic operations. This is expected to
simplify implementations, leading to better productivity and maintainability.

Writing performance portable code is a challenge and a responsability for
the programmer. Parallware tools are a step forward to help in this regard by
supporting best practices for OpenMP 4.5 and OpenACC 2.5 across different
compilers and devices. The parallel design patterns used in Parallware technology
have been shown to be an effective approach to discover the parallelism available
in the benchmark NPB, CORAL and XRayTrace.

As future work, we plan to finish this study with NPB, CORAL, XRayTrace
and other well-known benchmark suites such as SPECaccel. We are aware of
the importance of Fortran, and we are working to support it as soon as the new
Fortran front-end is available for LLVM [14].

Acknowledgements. The authors gratefully acknowledge the access to the HPB PCP
Pilot Systems at Julich Supercomputing Centre, which have been partially funded by
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 604102 (HPB). Also thanks to the Supercomputing Centre of Galicia
(CESGA) for providing access to the FinisTerrae supercomputer.

References

1. Andión, J., Arenaz, M., Rodŕıguez, G., Touriño, J.: A novel compiler support for
automatic parallelization on multicore systems. Parallel Comput. 39(9), 442–460
(2013)

2. Appentra: Parallware Trainer, April 2017. http://www.parallware.com/
3. Arenaz, M., Domı́nguez, J., Crespo, A.: Democratization of HPC in the oil & gas

industry through automatic parallelization with parallware. In: 2015 Rice Oil and
Gas HPC Workshop, March 2015

4. Arenaz, M., Touriño, J., Doallo, R.: XARK: an extensible framework for auto-
matic recognition of computational kernels. ACM Trans. Program. Lang. Syst.
(TOPLAS) 30(6), 32:1–32:56 (2008)

5. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: a view from Berkeley. Technical report,
UC Berkeley (2006)

http://www.parallware.com/

252 M. Arenaz et al.

6. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V.,
Weeratunga, S.: The NAS parallel benchmarks - summary and preliminary results.
In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Supercom-
puting 1991, pp. 158–165. ACM (1991)

7. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T.,
Lee, J., Padua, D., Paek, Y., Pottenger, B., Rauchwerger, L., Tu, P.: Parallel
programming with Polaris. Computer 29(12), 78–82 (1996)

8. Dave, C., Bae, H., Min, S.-J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: a source-
to-source compiler infrastructure for multicores. IEEE Micro 42(12), 36–42 (2009)

9. Department of Energy (DoE): CORAL Benchmark Codes (2014). https://asc.llnl.
gov/CORAL-benchmarks/

10. Gómez-Sousa, H., Arenaz, M., Rubiños-López, O., Mart́ınez-Lorenzo, J.: Novel
source-to-source compiler approach for the automatic parallelization of codes based
on the method of moments. In: Proceedings of the 9th European Conference on
Antenas and Propagation, EuCap 2015, April 2015

11. Ishihara, M., Honda, H., Sato, M.: Development and implementation of an inter-
active parallelization assistance tool for OpenMP: iPat/OMP. IEICE Trans. Inf.
Syst. 89–D(2), 399–407 (2006)

12. Jiang, Q., Lee, Y.C., Zomaya, A., Arenaz, M., Leslie, L.: Optimizing scientific
workflows in the cloud: a montage example. In: Proceedings of the 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing (UCC), pp. 517–522.
IEEE, December 2014

13. Johnson, S., Evans, E., Jin, H., Ierotheou, C.: The ParaWise expert assistant –
widening accessibility to efficient and scalable tool generated OpenMP code. In:
Chapman, B.M. (ed.) WOMPAT 2004. LNCS, vol. 3349, pp. 67–82. Springer, Hei-
delberg (2005). doi:10.1007/978-3-540-31832-3 7

14. Lawrence Livermore National Laboratory: Open-Source Fortran Compiler Tech-
nology for LLVM (2015). https://www.llnl.gov/news/nnsa-national-labs-team-
nvidia-develop-open-source-fortran-compiler-technology

15. Liao, S.-W., Diwan, A., Bosch Jr., R.P., Ghuloum, A., Lam, M.S.: SUIF explorer:
an interactive and interprocedural parallelizer. In: Proceedings of the 7th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPopp
1999, pp. 37–48. ACM Press, New York (1999)

16. Lobeiras, J., Arenaz, M.: a success case using parallware: the NAS parallel bench-
mark EP. In: Proceedings of the OpenMPCon Developers Conference (2015)

17. Lobeiras, J., Arenaz, M., Hernández, O.: Experiences in extending parallware to
support OpenACC. In: Chandrasekaran, S., Foertter, F. (eds.) Proceedings of the
Second Workshop on Accelerator Programming using Directives, WACCPD 2015,
Austin, Texas, USA, 15 November 2015, pp. 4:1–4:12. ACM (2015)

18. Lopez, M.G., Larrea, V.V., Joubert, W., Hernandez, O., Haidar, A., Tomov, S.,
Dongarra, J.: Towards achieving performance portability using directives for accel-
erators. In: Proceedings of the Third International Workshop on Accelerator Pro-
gramming Using Directives, WACCPD 2016, pp. 13–24. IEEE Press, Piscataway
(2016)

19. Berril, M.: XRayTrace miniapp (2017). https://code.ornl.gov/mbt/RayTrace-
miniapp

20. Martineau, M., Price, J., McIntosh-Smith, S., Gaudin, W.: Pragmatic performance
portability with OpenMP 4.x. In: Maruyama, N., de Supinski, B.R., Wahib, M.
(eds.) IWOMP 2016. LNCS, vol. 9903, pp. 253–267. Springer, Cham (2016). doi:10.
1007/978-3-319-45550-1 18

https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
http://dx.doi.org/10.1007/978-3-540-31832-3_7
https://www.llnl.gov/news/nnsa-national-labs-team-nvidia-develop-open-source-fortran-compiler-technology
https://www.llnl.gov/news/nnsa-national-labs-team-nvidia-develop-open-source-fortran-compiler-technology
https://code.ornl.gov/mbt/RayTrace-miniapp
https://code.ornl.gov/mbt/RayTrace-miniapp
http://dx.doi.org/10.1007/978-3-319-45550-1_18
http://dx.doi.org/10.1007/978-3-319-45550-1_18

The Technological Roadmap of Parallware and Its Alignment 253

21. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st
edn. Addison-Wesley Professional (2004)

22. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Pat-
terns for Efficient Computation, 1st edn. Morgan Kaufmann Publishers Inc., San
Francisco (2012)

23. OpenACC Architecture Review Board: The OpenACC Application Programming
Interface, Version 2.5, October 2015. http://www.openacc.org

24. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.5, November 2015. http://www.openmp.org

25. Wienke, S., Miller, J., Schulz, M., Müller, M.S.: Development effort estimation
in HPC. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2016, pp. 10:1–10:12. IEEE
Press, Piscataway (2016)

http://www.openacc.org
http://www.openmp.org

Experiences Evaluating Functionality
and Performance of IBM POWER8+ Systems

Verónica G. Vergara Larrea(B), Wayne Joubert, Mark Berrill, Swen Boehm,
Arnold Tharrington, Wael R. Elwasif, and Don Maxwell

Oak Ridge National Laboratory, Oak Ridge, TN, USA
{vergaravg,joubert,berrillma,boehms,arnoldt,elwasifwr,maxwellde}@ornl.gov

Abstract. In preparation for Summit, Oak Ridge National Labora-
tory’s next generation supercomputer, two IBM Power-based systems
were deployed in late 2016 at the Oak Ridge Leadership Computing Facil-
ity (OLCF). This paper presents a detailed description of the acceptance
of the first IBM Power-based early access systems installed at the OLCF.
The two systems, Summitdev and Tundra, contain IBM POWER8+
processors with NVIDIA Pascal GPUs and were acquired to provide
researchers with a platform to optimize codes for the Power architec-
ture. In addition, this paper presents early functional and performance
results obtained on Summitdev with the latest software stack available.

1 Introduction

The Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) was
launched in 2014 by the U.S. Department of Energy (DOE) [14]. The CORAL
collaboration is led by Office of Science and National Nuclear Security Admin-
istration (NNSA) facilities which include the Oak Ridge Leadership Comput-
ing Facility (OLCF) at Oak Ridge National Laboratory (ORNL), the Argonne
Leadership Computing Facility (ALCF) at Argonne National Laboratory (ANL),
and Lawrence Livermore National Laboratory (LLNL). This joint effort between
three DOE national laboratories aims to build high performance computing
(HPC) technologies to support DOE’s mission and procure next generation large-
scale systems for each participating laboratory. Two distinct architectures were
selected for CORAL, one based on Intel’s manycore processors, and another
based on IBM Power processors with NVIDIA Volta accelerators. As a result of

Notice of Copyright. This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the article for pub-
lication, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 254–274, 2017.
https://doi.org/10.1007/978-3-319-67630-2_20

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

Experiences Evaluating Functionality and Performance 255

CORAL three new systems will be deployed in the 2018 timeframe: Aurora
at ANL, Summit at ORNL, and Sierra at LLNL. Aurora will be based on
Intel’s third generation Xeon Phi manycore architecture and is expected to have
over 50,000 compute nodes and provide 180 PFLOPS [1]. Summit is ORNL’s
next generation supercomputer and will be based on IBM’s POWER9 architec-
ture with multiple NVIDIA Volta GPUs per node interconnected via NVLink.
Summit is expected to have approximately 3,400 compute nodes and to deliver
more than 5 times the performance of Titan, ORNL’s flagship supercomputer
today [11]. Sierra will also be based on IBM’s POWER9 processors and NVIDIA
Volta GPUs and is expected to have 4–6 times the performance of Sequoia,
LLNL’s production supercomputer [9].

In preparation for the arrival of Summit, the OLCF procured two early access
(EA) systems, Summitdev and Tundra, which are one generation removed from
Summit’s architecture. The goal of the EA systems is to give researchers an
opportunity to optimize their applications for the Power architecture and to
use multiple GPUs per node. Summitdev is the main system supporting the
Center for Accelerated Application Readiness (CAAR) efforts [2]. In addition,
Summitdev will be used by several researchers as part of the Exascale Computing
Project [5]. Tundra, on the other hand, will be used as an internal system to test
new software and gain a better understanding of the IBM ecosystem.

The EA systems were installed in November of 2016. In order to ensure that
each system would be able to fulfill its main purpose, the OLCF developed an
acceptance test plan that focused on functionality and reflected the needs of the
CAAR applications. Acceptance of the EA systems was completed in December
2016. Both Summitdev and Tundra were officially released to users in January
2017.

This paper describes the novel features of the hardware and software stack,
the test plan and procedures used to accept the system, and early results
obtained from running real-world applications and benchmarks on this new
architecture. Section 2 describes the system configuration, followed by a high-
level description of the acceptance test plan in Sect. 3. Sections 4–8 describe the
benchmarks and applications used, why they were chosen, and present individual
results. Section 9 discusses several challenges and lessons learned from accept-
ing the EA systems. Finally, Sect. 10 presents initial conclusions based on the
experience the ORNL team gained from using the IBM Power architecture.

2 System Configuration

Summitdev and Tundra are the two POWER8+ early access (EA) systems
deployed at the OLCF in late 2016. The main building block for the EA systems
is the IBM Power System S822LC server, which is the first IBM Power-based
system to provide NVIDIA NVLink Technology. Summitdev is comprised of 54
IBM POWER8 S822LC compute nodes. It has access to an NFS file system that
provides home directories, as well as two high performance parallel file systems:
the OLCF’s center-wide Lustre parallel file system, Spider 2 [24], and a dedicated

256 V.G. Vergara Larrea et al.

GPFS file system, Leto. The Tundra system is based on the same server offering
as Summitdev but contains 18 compute nodes. Tundra has access to a separate
NFS file system that provides home directories as well as project workspaces.

Hardware. Each compute node has two IBM POWER8 processors running at
2.860 GHz in normal operation and at 3.492 GHz in turbo mode. Each processor
has 10 cores, each capable of up to 8-way simultaneous multithreading (SMT),
i.e., each core supports up to 8 hardware threads. Each CPU is connected to
two NVIDIA Tesla P100 Pascal GPUs via NVIDIA NVLink Technology which
provides a bandwidth of 80 GB/s from the CPU to the GPUs and between
GPUs. Each NVIDIA Tesla P100 GPU is capable of delivering 5.3 TFLOPS of
double precision, 10.6 TFLOPS of single precision, and 21.2 TFLOPS of half
precision floating point performance. Furthermore, the P100 GPU is the first
accelerator to use High Bandwidth Memory 2 (HBM2) and includes four vertical
stacks of four memory dies totaling 16 GB of HBM2 memory and providing 732
GB/s peak memory bandwidth [7]. The compute node also has 256 GB of DDR4
memory capable of 340 GB/s peak memory bandwidth as well as one 1.6 TB Non-
Volatile Memory (NVMe) device [12,20]. All compute nodes are interconnected
via Mellanox EDR InfiniBand in a full fat-tree network that provides two links
each with 100 Gbps bandwidth between compute nodes. Figure 1 shows the
high-level structure of the compute node architecture used in Summitdev and
Tundra.

Fig. 1. IBM POWER8 S822LC compute node obtained from [20].

Software Stack. IBM provides a specialized software stack that targets their
HPC offerings. The products included in IBM’s HPC software stack as well as
IBM’s partners, NVIDIA and PGI, are described in Table 1. After Summitdev
and Tundra were accepted and IBM’s HPC software stack was officially released,
both systems were upgraded to use the generally available (GA) software. The
versions used in production are listed under the “GA” column in Table 1. Since
then, the software stack has continued to mature, and the systems now have
newer pre-release versions of certain components. The current versions available
on the EA systems are listed under the “Production” column.

Experiences Evaluating Functionality and Performance 257

Table 1. EA systems software stack

Feature Product Acceptance GA Production Vendor

Batch scheduler Spectrum LSF 10.1.0a 10.1.0.1 10.1.0.1 IBM

MPI library Spectrum MPI 10.1.0.2b 10.1.0.2 10.1.0.2 IBM

Math libraries ESSL 5.5b 5.5 5.5 IBM

Compilers XL C/C++ 13.1.5b 13.1.5 14.1.0b IBM

XL Fortran 15.1.5b 15.1.5 16.1.0b IBM

PGI 16.10a 17.1 17.3 PGI

clang 3.8.0b 3.8.0b 3.8.0b IBM

(LLVM C/C++)

xlflang 4.0.0b 4.0.0b 4.0.0b IBM

(LLVM Fortran)

GCC 4.8.5 4.8.5 4.8.5 RedHat

CUDA support CUDA Toolkit 8.0.44− 1b 8.0.54 8.0.54 NVIDIA

CUDA Driver 361.103 361.107 375.51 NVIDIA

Parallel file system Spectrum Scale (GPFS) 4.2.1.2 4.2.1.2 4.2.3 IBM
a Patched version.
b Beta version.

3 Acceptance Test

The OLCF developed a comprehensive acceptance test (AT) plan to verify the
functionality of the EA systems. The AT plan contains three test phases: a
hardware test (HWT), an I/O test (IOT), and a functionality test (FT). The
AT on the EA systems took approximately three days to complete.

Hardware Test (HWT). The HWT is designed to ensure that all the hardware
components are functioning correctly. This is accomplished by running vendor-
provided hardware diagnostics as well as the HPL High Performance Linpack
benchmark both to identify slow nodes and to ensure that each node meets or
exceeds expected performance levels. The HWT also includes system adminis-
tration tasks that are commonly needed in production. First, the full system is
rebooted twice to ensure that it can be put back into production in a reasonable
amount of time. Then, an MPI application is used to start multi-node jobs across
the system and a node failure is simulated. The test is considered successful if
the node failure only impacts the job that was allocated on that node. If all tests
in the HWT phase succeed, the IOT is started.

I/O Test (IOT). As previously mentioned, Summitdev has access to a small
GPFS file system called Leto and to the Spider 2 Lustre file system. For the
IOT, only Leto was tested given that the OLCF will have a center-wide GPFS
file system in the Summit timeframe. The IOT basic functionality tests include
measuring metadata performance with the mdtest benchmark, measuring I/O

258 V.G. Vergara Larrea et al.

bandwidth of POSIX, HDF5, and MPI-IO using the IOR benchmark, and cre-
ating a 10 TB file in the file system. If no issues are observed during the IOT,
the FT starts.

Functionality Test (FT). The FT phase includes tests to evaluate the func-
tionality of compilers, math and I/O libraries, MPI implementation, and tools.
To accomplish this a set of miniapps, benchmarks, and real-world applications
is used. These were selected to ensure high coverage of features commonly used
by scientific application developers. Table 2 summarizes the codes used during
the FT phase and each code’s test objectives.

Table 2. FT benchmarks, miniapps, and applications

Test Purpose

Intel MPI Benchmarks MPI bandwidth and latency

OpenMP 3.1 verification and
validation suite

OpenMP 3.1 specification

CUDA & GPU Direct tests CUDA, CUDA Fortran
CUDA MPS, and GPU Direct

NVLink Tests CPU↔GPU, GPU↔GPU bandwidth

SPEC OMP2012 OpenMP 3.1 functionality and performance

SPEC ACCEL ACC suite OpenACC 1.0 functionality and performance

SPEC ACCEL OMP suite
(pre-release)

OpenMP 4.5 functionality and performance

ScaLAPACK tests Parallel dense linear algebra (DLA) operations

Minisweep Radiation transport miniapp with OpenMP 3.1
and CUDA support

NUCCOR kernels Nuclear physics miniapp; DLA operations using:
LAPACK, OpenBLAS, ESSL; programming
models: OpenMP 3.1, OpenMP 4.5, OpenACC

XRayTrace Ray propagation miniapp; uses: C++11 threads,
OpenMP, OpenACC, CUDA

Nekbone CORAL benchmark; simulates Nek5000

HACCmk CORAL benchmark; simulates HACC

QBOX CORAL benchmark; first-principles molecular
dynamics application

GTC Gyrokinetic 3D particle-in-cell application

During the FT phase, each code is compiled with each target compiler. Then,
a single job for each test is submitted. Once each test has completed successfully
at least once, the entire set of tests is launched continuously for a period of
at least 8 h. During that period, any job failure is investigated and classified.

Experiences Evaluating Functionality and Performance 259

The test phase is considered complete if there are no job failures, or in the event
that there are failures, if the root cause for each failure has been identified and
a remediation or a fix exists.

4 Benchmarks

Several benchmarks and standard tests were used to evaluate the functionality
of the EA systems. A set of performance tests was also used to verify that
the hardware met vendor specifications; this set included bandwidth intra-node
tests (i.e., between node components) and inter-node tests (i.e., between compute
nodes).

GPU Specific Tests. A set of tests (i.e., CUDA tests) was created to ensure
correct functionality of the NVIDIA CUDA driver, the NVIDIA CUDA Toolkit,
and the P100 GPUs. The set includes modified versions of the NVIDIA CUDA
Toolkit code samples [4], in particular the “Simple References” examples.

Specific tests were also developed to evaluate GPUDirect capabilities (i.e.,
GPU Direct tests), NVLink Technology (i.e., NVLink tests), and Unified Virtual
Addressing (NVLink UVA tests). Three simple GPUDirect codes were created:
PingPong, Stencil, and Collective. Variations of each code were also created to
test CUDA MPS, CUDA Fortran, and managed memory. Tests with 1, 4, and
25 compute nodes were created for each code, and each was built with XL,
PGI, GCC, and LLVM. Three additional tests were created to measure the
host-device and device-device bandwidths as well as ensure proper functionality
of each device. These tests are based on the bandwidthTest, deviceQuery, and
topologyQuery code samples provided in the “Utilities” section of the CUDA
SDK examples. The bandwidthTest example was also extended to include support
for unified memory. The bandwidth values measured using the NVLink tests are
shown in Fig. 2.

Fig. 2. NVLink host-device and device-host bandwidth using memcpy and unified
memory.

260 V.G. Vergara Larrea et al.

During Summitdev’s acceptance, the CUDA, GPU Direct, and NVLink tests
were able to identify several issues on the system. The Collective CUDA Fortran
tests triggered a bug in the CUDA driver that caused the GPU to hang instead
of returning an appropriate error. The Collective OpenACC test was able to
identify an issue in how a pre-release version of Spectrum MPI was launching
OpenACC code. The NVLink tests identified a performance regression between
CUDA drivers as well as find two Summitdev compute nodes in which peer-to-
peer access between GPUs 2 and 3 was not functioning correctly.

MPI Tests. The Intel MPI Benchmarks suite (IMB) [6] provides a set of tests
of MPI capabilities and performance on parallel platforms. The test suite was
run on Summitdev to thoroughly check functionality and evaluate target perfor-
mance measurements of MPI over the EDR InfiniBand network.

Fig. 3. MPI point-to-point bandwidth

Figure 3 shows point-to-point communication results. Maximum bandwidths
attained were 21.793 unidirectional (resp. 39.062 bidirectional) GB/sec, com-
paring favorably to theoretical peak values of 25 (resp. 50) GB/sec; measured
latencies were 1.29 (resp. 1.43) µs. This test was performed using 2 MPI ranks
on 2 nodes without any special action to specify node placement.

5 Compiler Tests

The following test suites were selected to evaluate the different compiler imple-
mentations available on Summitdev. The test suites were chosen both to evaluate
the implementation against the corresponding programming model specification
and also to evaluate the functionality and performance of each compiler.

Experiences Evaluating Functionality and Performance 261

OpenMP Verification and Validation Suite. The OpenMP 3.1 Validation
Testsuite [29] is a portable and robust validation test suite execution environ-
ment to validate the OpenMP implementation in several compilers. This test
suite targets version 3.1 of the OpenMP specification, which does not support
offloading to accelerators. OpenMP offloading was tested using the pre-release
SPEC ACCEL suite for OpenMP. We used the version of the test suite that is
included in the ongoing work to incorporate OpenMP offloading support into
Clang and LLVM [18].

Table 3. OpenMP validation suite results

NTHREADS C Fortran

GNU PGI XL CLANG GNU PGI XL

2 94.3% 94.3% 94.3% 93.5% 88.5% 85.4% 88.5%

8 95.9% 95.9% 95.9% 95.1% 88.5% 85.4% 88.5%

16 95.9% 94.3% 95.9% 93.5% 88.5% 85.4% 87.5%

64 95.9% 94.3% 95.1% 93.5% 88.5% 85.4% 86.5%

The test suite included a total of 219 tests (123 tests for C and 96 for Fortran)
that cover 115 OpenMP constructs (62 C constructs and 53 using Fortran). The
test suite framework includes four varieties of tests for a target OpenMP direc-
tive; normal tests check that the directive (or clause) is implemented correctly,
cross tests checks the impact of removing the target construct from the code.
More details can be found in [29].

The test suite was exercised using different numbers of OpenMP threads for
each of the available compilers. No special binding and mapping controls were
used. Table 3 shows the percentage of successful tests for the combination of
compilers, languages, and number of threads. Only GA versions of the compilers
as listed in Table 1 were used. For GCC, the gomp-4 0-branch branch of the
GCC 6.3 compiler suite was used.

The test suite results show better support for OpenMP C bindings among all
tested compilers than for Fortran binding. The testing matrix for all OpenMP
constructs across all compilers and using different number of threads helps iden-
tify issues with the compiler implementation (or in some cases, with the testing
suite itself). For this evaluation, a total of 15 tests (2 C tests and 13 Fortran
tests) failed for all combinations of compilers and number of threads, possibly
indicating a problem in the tests themselves. Some tests show a different failure
behavior as the number of threads change. In such cases, comparing the failure
pattern with results for the same tests from other compilers may help identify if
the failure is due to compiler implementation bug or an issue with the test itself
that makes it invalid for certain thread counts.

262 V.G. Vergara Larrea et al.

SPEC ACCEL and SPEC OMP2012. The Standard Performance Evalua-
tion Corporation (SPEC) releases a variety of realistic and standardized bench-
marks to evaluate the performance of computer systems. For acceptance, two
SPEC benchmark suites were used to evaluate the different compilers avail-
able for the EA systems. The benchmarks used were SPEC OMP2012 and
SPEC ACCEL. The SPEC OMP2012 benchmark measures the performance
of OpenMP-based applications. It includes 14 applications and is focused on
OpenMP 3.1. SPEC ACCEL is a benchmark suite of computationally inten-
sive applications and measures the performance of accelerator based systems.
SPEC ACCEL supports OpenCL and OpenACC. Support for OpenMP 4.5 is
currently in development and is expected to be released this year. In this work,
a pre-release version of SPEC ACCEL with OpenMP 4.5 support was used to
evaluate offloading capabilities of the available compilers.

For the evaluation, “base” runs were produced following SPEC rules. All
benchmarks were built using common optimization flags, and were run with
the test and train problem sizes, and 3 iterations of the benchmarks with the
reference problem sizes. All of the metrics presented in this section are measured
estimates. To build the benchmarks the “Production” compilers listed in Table 1
were used with the exception of the GCC compilers. For GCC, the development
version of GCC 6.3.1 built from the gomp-4 0-branch branch was used because
it provides partial support for OpenACC.

All SPEC OMP2012 runs are executed on a dedicated node for each bench-
mark run. For these tests 160 OpenMP threads were used to fully utilize the
hardware threads available on the Power architecture. SPEC ACCEL bench-
marks are also executed on a dedicated node for each benchmark run. While 4
P100 GPUs are available on the compute node, only one is used for the execution
of the benchmarks.

PGI is the only production compiler that delivers successful results for SPEC
OMP2012 and SPEC ACCEL for OpenACC. The measured estimates for the
SPEC OMP2012 and SPEC ACCEL compute performance metrics can be seen

Table 4. Overview of execution of the SPEC OMP2012 suite.

Benchmark

3
5
0
.m

d

3
5
1
.b

w
av

es

3
5
2
.n

a
b

3
5
7
.b

t3
3
1

3
5
8
.b

o
ts

a
lg

n

3
5
9
.b

o
ts

sp
a
r

3
6
0
.i
lb

d
c

3
6
2
.f
m

a
3
d

3
6
3
.s

w
im

3
6
7
.i
m

a
g
ic

k

3
7
0
.m

g
ri

d
3
3
1

3
7
1
.a

p
p
lu

3
3
1

3
7
2
.s

m
it
h
w

a

3
7
6
.k

d
tr

ee

XL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PGI ✓ ✓ ✓ ✓ ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GNU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LLVM ✗a ✓ ✓ ✗a ✓* ✓ ✓ ✗a ✗a ✓ ✗a ✗a ✓ ✓
a Compile Error.

Experiences Evaluating Functionality and Performance 263

Table 5. Overview of execution of the SPEC ACCEL OpenACC suite.

Benchmark

3
0
3
.o

st
en

ci
l

3
0
4
.o

lb
m

3
1
4
.o

m
ri

q

3
5
0
.m

d

3
5
1
.p

a
lm

3
5
2
.e

p

3
5
3
.c

lv
rl

ea
f

3
5
4
.c

g

3
5
5
.s

ei
sm

ic

3
5
6
.s

p

3
5
7
.c

sp

3
5
9
.m

in
iG

h
o
st

3
6
0
.i
lb

d
c

3
6
3
.s

w
im

3
7
0
.b

t

PGI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GNU ✓ ✓ ✓

Table 6. Overview of execution the SPEC ACCEL OpenMP suite.

Benchmark

5
0
3
.p

o
st

en
ci

l

5
0
4
.p

o
lb

m

5
1
4
.p

o
m

ri
q

5
5
0
.p

m
d

5
5
1
.p

p
a
lm

5
5
2
.p

ep

5
5
3
.p

cl
v
rl

ea
f

5
5
4
.p

cg

5
5
5
.p

se
is

m
ic

5
5
6
.p

sp

5
5
7
.p

cs
p

5
5
9
.p

m
in

iG
h
o
st

5
6
0
.p

il
b
d
c

5
6
3
.p

sw
im

5
7
0
.p

b
t

XL ✓ ✓ ✗b ✗b ✗a ✗b ✗b ✗b ✗b ✗b ✗a ✗b ✓ ✗c ✗a

LLVM ✓ ✓ ✗b ✗a ✗a ✓ ✗a ✗b ✓ –d ✗a ✗a ✗c ✗a ✓
a Compile Error.
b Runtime Error.
c Verification Error.
d 556.psp is a mixed C and Fortran code, and cannot be compiled.
clang and xlflang cannot be used together.

in Tables 7 and 8. The compute performance metric (labeled as “Overall”) is the
geometric mean of the normalized ratios of all the benchmarks in a particular
SPEC benchmark suite.

The measured estimates for OMP2012 with the IBM XL compiler can be
found in Table 7. ACCEL estimates for OpenMP with the XL compiler are not
presented here because the compiler does not provide full support for OpenMP
4.5 yet. The current status of ACCEL for OpenMP with the XL compiler is
summarized in Table 6. While most of the benchmarks successfully compile, only
3 pass the verification. All other benchmarks currently either do not compile or
link correctly, experience runtime errors, or do not pass the verification.

Measured estimates for OMP2012 using the GCC compilers can be found
in Table 7. The GCC compiler provides partial support for OpenACC offload-
ing, and because it does not yet support acc kernels only three benchmarks in
ACCEL OpenACC, as shown in Table 5, are parallelized. GCC does not currently
provide OpenMP 4.0 offloading for GPU targets, therefore ACCEL OpenMP was
not included. For GCC, measured estimates obtained with the reference problem
size are reported.

264 V.G. Vergara Larrea et al.

Table 7. Measured estimates of the SPEC OMP2012 suite (higher is better).

XL PGI GNU

350.md 6.38 6.88 1.41

351.bwaves 0.898 10.90 2.14

352.nab 3.98 4.49 5.93

357.bt331 10.20 7.50 9.95

358.botsalgn 3.78 3.30 3.74

359.botsspar 2.97 3.39 3.42

360.ilbdc 8.93 8.84 0.132

362.fma3d 4.30 4.19 6.17

363.swim 10.8 9.85 11.20

367.imagick 8.63 9.15 7.71

370.mgrid331 8.52 7.67 8.75

371.applu331 11.10 8.99 12.20

372.smithwa 7.40 8.26 12.60

376.kdtree 3.78 4.46 13.50

Overall 5.53 6.50 4.74

Table 8. Measured estimates of the SPEC ACCEL for OpeACC (higher is better).

PGI GNU

303.ostencil 7.66 3.26

304.olbm 11.10 8.86

314.omriq 8.86

350.md 13.70

351.palm 2.98

352.ep 8.47

353.clvrleaf 8.43

354.cg 7.18

355.seismic 8.16

356.sp 8.21

357.csp 8.94

359.miniGhost 6.67

360.ilbdc 9.33 4.39

363.swim 5.61

370.bt 18.70

Overall 8.31

Experiences Evaluating Functionality and Performance 265

The 358.botsalgn benchmark in the OMP2012 suite does not successfully
run for the test and train problem sizes when compiled with the PGI and the
GCC compilers. Running the benchmarks with the “ref” problem size, however,
produces valid runs. The benchmarks are marked with a * in Table 4 since they
will currently not produce a reportable run according to the SPEC reporting
rules [10].

6 CORAL Benchmarks

The CORAL Benchmark codes are a suite of benchmarks and mini-applications
designed to represent the workloads of the laboratories involved in the CORAL
collaboration and will be used to evaluate the systems when deployed. More
information about the CORAL Benchmark codes and unmodified versions of
the applications can be found in [3].

Nekbone. Nekbone is a CORAL benchmark used to capture the basic structure
and user interface of the Nek5000 software. Nek5000 is a high order, incompress-
ible Navier-Stokes solver based on the spectral element method. Nekbone solves
a standard Poisson equation using a conjugate gradient iteration with a simple
preconditioner on a block or linear geometry. The benchmark is highly scal-
able and can accommodate a wide range of problem sizes. The benchmark is
intrinsically well load balanced, with each process having the same number of
spectral elements and point-to-point communication with up to 26 surrounding
neighbors.

For the purposes of acceptance, a modified version of Nekbone to utilize the
GPUs based on CUDA using the XL compiler was used. A single node was
used to run a small problem and verify the correct output using the accelerated
version of the application.

HACCmk. The Hardware Accelerated Cosmology Code (HACC) framework
uses N-body techniques to simulate the formation of structure in collisionless
fluids under the influence of gravity in an expanding universe. The HACC frame-
work was designed with great flexibility making it easily portable between differ-
ent platforms. HACC uses MPI and OpenMP and depends on an external FFT
library.

For acceptance, a modified version of the HACC microkernel to utilize the
GPUs based on CUDA using the XL compiler. A small problem utilizing 2 nodes
and 8 processes (1 process/GPU) was used to verify the correct output using
the accelerated version of the application. Detailed performance data was not
collected, and a comparison of runtime across different node counts, problem
sizes, and CPU vs. GPU was not performed.

QBOX. QBOX is a scalable first-principles molecular dynamics (FPMD) appli-
cation used to compute properties of materials. QBOX is written in C++ and
uses MPI [8,26].

266 V.G. Vergara Larrea et al.

Fig. 4. QBOX results for a 640-atom bcc magnesium oxide system.

For the Summitdev acceptance, a single test case was run using 4 MPI ranks
with 4 OpenMP threads per rank on a single node. To better understand the
scalability of the code, four additional cases were created with 8, 16, 32, and
64 MPI ranks. Figure 4 shows the results obtained when running the standard
GPU-enabled QBOX benchmark which simulates a large bcc magnesium oxide
system with 640 atoms. The results show that the case does not scale well
beyond 2 nodes. Further investigation is needed to better understand the scala-
bility of QBOX.

7 Mini-applications

ScaLAPACK Tests. ScaLAPACK [21] is a Fortran library for performing
dense linear algebra operations on distributed CPU-based systems using MPI.
It is required by some OLCF applications including one of the thirteen Summit
early readiness applications targeted by the ORNL CAAR program. For this test
case, the xsgsep code is executed, a symmetric eigensolver test from the ScaLA-
PACK test suite. The test executes with four MPI ranks on one Summitdev
node.

ScaLAPACK must be built against a version of the LAPACK [17] library.
For this we tested two options: use of the standard LAPACK distribution, or
use of the optimized LAPACK functionality found in ESSL [15]. For the latter,
since ESSL is missing some required routines of the standard LAPACK version
needed by ScaLAPACK, the code build’s linker step was set up to use standard
LAPACK as a backing library to satisfy any unsatisfied references, and repeated
references to LAPACK routines were ignored. Also, the ScaLAPACK version
included in the standard release of the PGI compiler was tested.

Cases run are shown in Table 9. All cases were successful except for those
involving LLVM. The LLVM xlflang compiler used is an early beta version still
in development. It is expected that robustness will improve as the compiler
becomes more mature.

Experiences Evaluating Functionality and Performance 267

Table 9. ScaLAPACK cases tested

Compiler LAPACK version ScaLAPACK version Status

GCC Standard Standard Passed

GCC ESSL Standard Passed

PGI Standard Standard Passed

PGI ESSL Standard Passed

PGI Standard PGI Passed

LLVM Standard Standard Failed

LLVM ESSL Standard Failed

XL Standard Standard Passed

XL ESSL Standard Passed

Though not attempted here, ScaLAPACK use cases employing ESSL can in
principle be modified to use the CPU-threaded or the CUDA-enabled version of
ESSL to accelerate the performance of ScaLAPACK on Summitdev.

Minisweep. Minisweep is a miniapp designed to mimic the behavior of the
sweep operation of the Denovo Sn radiation transport code [16]. It can be built
with OpenMP 3.1 or CUDA support under multiple compilers in single processor
or MPI mode.

Figure 5 shows the results obtained from running Minisweep using 8 MPI
ranks on 2 compute nodes under the three different configurations: MPI-only,
MPI with 2 OpenMP threads per rank, and MPI with CUDA. Minisweep built
with the XL compiler shows a smaller performance improvement when OpenMP
threads are enabled. This will require further investigation to understand how
thread pinning and placement will impact performance.

(a) CPU only. (b) CPU and GPU.

Fig. 5. Minisweep results using the XL and GCC production compilers.

268 V.G. Vergara Larrea et al.

Fig. 6. NUCCOR kernels: configuration combinations tested

Fig. 7. NUCCOR kernels: timings for matrix products including transfers

During acceptance, the distributed version of Minisweep that uses CUDA and
is compiled with GCC resulted in the highest performance. Building Minisweep
with CUDA enabled with the PGI compiler resulted in build errors, and so did
the OpenMP and CUDA versions of the miniapp when built with the LLVM
compiler. The Minisweep test ran during acceptance was a small case to test
functionality only.

NUCCOR Kernels. The NUCCOR kernels code is designed to model the per-
formance of a significant computation of the NUCCOR nuclear physics applica-
tion [23]. NUCCOR kernels computes the matrix product C = AT

1 A2A3 for a
series of dense matrix triples (A1, A2, A3) of sizes representative of cases from
NUCCOR workloads.

NUCCOR kernels tests multiple combinations of compiler family, source lan-
guage, library and threading model. In practice, not all combinations of options
are allowed, and not all allowed combinations are tested. The purpose of the test
is to verify correctness for many supported combinations expected to be required
by users of Summitdev rather than test all combinations.

Experiences Evaluating Functionality and Performance 269

Figure 6 shows the combinations tested. The designator “OMP3” denotes
that the host code included OpenMP 3.1 constructs as a test for compatibil-
ity. In each LAPACK case, the library was entirely built by the respective
host compiler. PGI LAPACK is a custom CPU-only build of LAPACK pro-
vided by PGI. OpenMP 4 cases use offload constructs and hand-coded DGEMM
loops. The OpenACC/cuBLAS case uses OpenACC directives for offloading and
cuBLAS for the DGEMM. The designated LLVM tests used an early OpenMP 4
implementation [13] Every case tested ran successfully and gave correct results,
even though many of these combinations are very new, including XL/OpenMP 4,
PGI/POWER, LLVM/Fortran and LLVM/OpenMP 4. The capability of these
components to perform efficiently and interoperate correctly will be important
to our users going forward.

Figure 7 shows timings for selected cases using square matrices for a range
of sizes on a single GPU. The PGI Fortran compiler is used in both cases. Tim-
ings include data transfers to and from the GPU. The OpenACC+cuBLAS case
benefits from less transfer due to the ability to keep an intermediate matrix on
the GPU. The reasons for performance irregularities for the ESSL/SMPCUDA
case, particularly for the n = 4, 081 case, are unknown. For both cases, DGEMM
performance is a significant fraction of peak attainable. We expect performance
to improve as the software stack matures.

XRayTrace. The XRayTrace miniapp represents the primary computational
component for a 3D coupled atomic-physics/ray-propagation code used to sim-
ulate ASE (Amplified Spontaneous Emission) and seeded X-ray lasers [16,19].
XRayTrace consists in solving many independent rays in parallel, aggregating
the results to form an image that is used to couple the atomic physics in the full
application.

Most C++ standard compilers are supported, and multiple programming
models are tested including C++11 threads, OpenMP, OpenACC, and CUDA.
No external libraries are required and all programming models are optional.

For acceptance, XRayTrace was used to test the C++ compiler support for
the different programming models and to compare the relative performance of the
available compilers. All GPU tests used a single GPU only, while CPU tests used
all CPU cores. The timings listed in seconds only include the cost of the kernel
or work performed for one iteration within the main application. Table 10 shows
the results of the ASE/seeded problems for two common problem sizes. For all
cases, all compilers/parallel models produced the correct output. In general, all
compilers had similar timing results, CUDA showing the largest speedup. Ope-
nACC with PGI had similar performance to CUDA. An unknown issue occurs
when running OpenMP with PGI that causes a significant slowdown that was
not seen with other compilers, which will require more investigation. In all cases,
optimized flags for each compiler were chosen.

270 V.G. Vergara Larrea et al.

Table 10. XRayTrace timing results shown in seconds.

Problem Compiler Serial Threads OpenMP OpenAcc CUDA

ASE (small) GCC 3.902 0.178 0.278 — 0.035

PGI 3.296 0.197 12.082 0.038 —

XL 2.766 0.150 0.314 — 0.056

LLVM 3.898 0.197 0.409 — 0.059

ASE (medium) GCC 9.377 0.376 0.611 — 0.073

PGI 7.923 0.396 12.711 0.085 —

XL 7.177 0.308 0.637 — 0.071

LLVM 9.501 0.351 0.790 — 0.073

Seeded (small) GCC 49.759 1.734 1.950 — 0.472

PGI 49.996 1.969 619.476 0.453 —

XL 32.519 1.481 4.609 — 0.463

LLVM 51.546 1.776 3.991 — 0.456

Seeded (medium) GCC 103.923 3.281 6.266 — 0.678

PGI 117.806 4.326 371.055 0.734 —

XL 78.791 3.017 7.189 — 0.670

LLVM 111.715 3.558 6.529 — 0.666

8 OLCF Applications

To ensure that the system can support realistic workloads, a set of applications
commonly used at OLCF were selected for acceptance of the EA systems includ-
ing GTC [27], NAMD [25], and LSMS [22]. For this work, the GTC test cases
were extended and its results are presented in this section.

GTC. GTC [27] is a 3D particle-in-cell code developed by the Princeton Plasma
Physics Laboratory and the University of California at Irvine to study microtur-
bulence in magnetically confined fusion plasmas. [27]. It is scalable to hundreds
of thousands of processor cores and has been used previously for acceptance
testing of OLCF systems [28]. The version of GTC used here is an older mature
version based on MPI and OpenMP 3.1. Two cases are run, at 2 and 26 nodes
with 10 MPI ranks per node and 2 OpenMP threads per rank. The cases rep-
resent 10 simulation steps with 769 radial and 3,072 poloidal gridcells with two
electrons and two ions per gridcell.

After acceptance, additional cases using 4, 8, 16, and 32 nodes were added
in order to better understand GTC’s scaling on the Power architecture. Results
obtained from running GTC with OpenMP enabled are shown in Fig. 8(a). In
addition, Fig. 8(b) shows a strong scaling plot of GTC when running on Sum-
mitdev. GTC was compiled using GCC.

Experiences Evaluating Functionality and Performance 271

(a) Constant work per process. (b) Strong scaling.

Fig. 8. GTC timing results. (a) Problem size is doubled with the number of processes
to keep the amount of work per process approximately constant. (b) Problem size is
kept constant and the number of MPI ranks is doubled with each experiment.

9 Lessons Learned

Several considerations are necessary when porting codes to the IBM Power archi-
tecture. First, on Power, chars are by default unsigned whereas on x86 the
default is signed. This is an important consideration as it can result in incor-
rect results. This was observed when running the SPEC OMP2012 benchmarks,
which required the addition of -qchars=signed, and -fsigned-char for the XL
and GCC compilers, respectively. Another difference to be aware of is that long
doubles on Power are by default 128-bits. It is also important to understand
the different optimization levels provided by each compiler. The XL compilers,
unlike GCC and PGI, provide up to optimization level -O5 so careful consider-
ation must be given to selection of optimization flags that match the compiler.
For example, the Minisweep OpenMP tests built the XL compiler required -O4
-qsmp=omp in order to achieve performance improvements when compared to
the MPI-only version of the code.

Looking at support for the different programming models, results showed
varied levels of support. OpenMP 3.1 is well supported by the four compilers
tested, however, some of the tests executed showed little or no performance
improvements as with Minisweep, while others showed lower performance as was
the case with Nekbone when built with PGI. This can be partially attributed
to the fact that by default in the Power environment, threads are not pinned.
This will require further investigation. As far as OpenMP 4.5 is concerned, two
compilers are scheduled to provide support: XL and LLVM. While XL provides
partial support OpenMP 4.5 offloading to the GPU, the implementation is still
maturing as shown by the SPEC ACCEL OMP results. Similarly, OpenMP
4.5 support in LLVM is currently in active development. OpenACC support on
Power is currently provided by the PGI compiler, which, as results of SPEC
ACCEL ACC show, is a mature implementation. Partial support for OpenACC
in GCC is currently provided in GCC 6.3 and is expected to be fully supported
in the GCC 7 release.

272 V.G. Vergara Larrea et al.

10 Conclusions

At roughly 1 PF of peak performance and only 54 nodes, Summitdev is a very
powerful system. The step-up in performance of the Summitdev nodes compared
to Titan nodes is immediately felt by applications.

As expected with a new system, some replacements of problematic hardware
were required shortly after delivery. Careful testing with multiple diagnostic
benchmark codes was valuable for uncovering these problems.

Programming the node is a more complex process, ostensibly due to the
presence of multiple GPUs per node, but also from other factors such as simul-
taneous multithreading (SMT) modes and the need to coordinate use of GPUs
and CPU threads across multiple NUMA domains. The interplay of LSF and
mpirun with respect to node execution configuration and the interaction of these
with OpenMP and CUDA environment variables, MPS, host code threading
and device selection must also be managed. This will most likely become more
tractable through time and experience.

Relationships between different compiler versions, supported features and
libraries have become complex and will require careful build configuration man-
agement by users. Newly developed compiler features, in some cases still in beta,
are expected to mature and harden over time. Vendors are aggressively working
to improve these products and respond to reported bugs.

We anticipate Summitdev to be an effective resource for preparing applica-
tions for Summit, and it has already begun to bear fruit in this regard.

Acknowledgements. The authors would like to thank the entire Summitdev Accep-
tance Test team for the development of tests for each phase. In addition to the authors,
the team also includes: Adam Simpson, Mike Brim, Dustin Leverman, Oscar Hernan-
dez, Chris Zimmer, Sarp Oral, Scott Atchley, and Matt Ezell.

This research used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

References

1. Aurora. http://aurora.alcf.anl.gov/
2. Center for Accelerated Application Readiness (CAAR). https://www.olcf.ornl.

gov/caar
3. CORAL Benchmark Codes. https://asc.llnl.gov/CORAL-benchmarks
4. CUDA Samples. http://docs.nvidia.com/cuda/cuda-samples/index.html#samples

-reference
5. Exascale Computing Project. https://exascaleproject.org/
6. Intel MPI Benchmarks User Guide. https://software.intel.com/en-us/imb-user-

guide
7. NVIDIA TESLA P100 GPU Accelerator. https://images.nvidia.com/content/

tesla/pdf/nvidia-tesla-p100-datasheet.pdf
8. Qbox: First-Principles Molecular Dynamics. http://qboxcode.org/
9. Sierra. https://asc.llnl.gov/coral-info

http://aurora.alcf.anl.gov/
https://www.olcf.ornl.gov/caar
https://www.olcf.ornl.gov/caar
https://asc.llnl.gov/CORAL-benchmarks
http://docs.nvidia.com/cuda/cuda-samples/index.html#samples-reference
http://docs.nvidia.com/cuda/cuda-samples/index.html#samples-reference
https://exascaleproject.org/
https://software.intel.com/en-us/imb-user-guide
https://software.intel.com/en-us/imb-user-guide
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-datasheet.pdf
http://qboxcode.org/
https://asc.llnl.gov/coral-info

Experiences Evaluating Functionality and Performance 273

10. SPEC ACCEL Run and Reporting Rules. https://www.spec.org/accel/docs/
runrules.html

11. Summit: Scale New Heights Discover New Solutions. https://www.olcf.ornl.gov/
summit/

12. Summitdev Quickstart. https://www.olcf.ornl.gov/kb articles/summitdev-quick
start

13. Using OpenMP 4.5 in the CLANG/LLVM compiler toolchain. https://www.olcf.
ornl.gov/wp-content/uploads/2017/01/SummitDev Using-OpenMP-4.5-in-the-
CLANGLLVM-compiler-toolchain.pdf. Accessed 12 Apr 2017

14. Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL). Tech-
nical report, Department of Energy (2014). https://energy.gov/sites/prod/files/
2014/12/f19/CORAL%20Fact%20Sheet FINAL%20AS%20ISSUED UPDATED.
pdf

15. ESSL Guide and Reference (2016). https://publib.boulder.ibm.com/epubs/pdf/
a2322688.pdf

16. Miniapps derived from production HPC applications using multiple programing
models. Int. J. High Perform. Comput. Appl. 1094342016668241 (2016). doi:10.
1177/1094342016668241

17. Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz,
J., Hammerling, S., Demmel, J., Bischof, C., Sorensen, D.: LAPACK: a portable
linear algebra library for high-performance computers. In: Proceedings of the 1990
ACM/IEEE Conference on Supercomputing, Supercomputing 1990, CA, USA, pp.
2–11 (1990). http://dl.acm.org/citation.cfm?id=110382.110385

18. Antao, S.F., Bataev, A., Jacob, A.C., Bercea, G.T., Eichenberger, A.E., Rokos,
G., Martineau, M., Jin, T., Ozen, G., Sura, Z., Chen, T., Sung, H., Bertolli, C.,
O’Brien, K.: Offloading Support for OpenMP in Clang and LLVM. In: Proceedings
of the Third Workshop on LLVM Compiler Infrastructure in HPC, LLVM-HPC
2016, pp. 1–11. IEEE Press, Piscataway (2016). doi:10.1109/LLVM-HPC.2016.6

19. Berrill, M.: Modeling of laser-created plasmas and soft x-ray lasers. Ph.D. thesis,
Colorado State University (2010)

20. Caldeira, A., Haug, V., Vetter, S.: IBM Power Systems S822LC for High Perfor-
mance Computing: Technical Overview and Introduction. Technical report, IBM,
September 2016

21. Choi, J., Dongarra, J.J., Pozo, R., Walker, D.W.: ScaLAPACK: a scalable linear
algebra library for distributed memory concurrent computers. In: 1992, Fourth
Symposium on the Frontiers of Massively Parallel Computation, pp. 120–127. IEEE
(1992). http://ieeexplore.ieee.org/document/234898/. Accessed 11 Oct 2016

22. Eisenbach, M., Zhou, C., Nicholson, D.M., Brown, G., Larkin, J., Schulthess, T.C.:
Thermodynamics of magnetic systems from first principles: WL-LSMS

23. Hagen, G., Jansen, G.R., Papenbrock, T.: Structure of 78Ni from first-principles
computations. Phys. Rev. Lett. 117, 172501 (2016). https://link.aps.org/doi/
10.1103/PhysRevLett.117.172501

24. Oral, S., Dillow, D.A., Fuller, D., Hill, J., Leverman, D., Vazhkudai, S.S., Wang, F.,
Kim, Y., Rogers, J., Simmons, J., et al.: OLCFs 1 TB/s. Next-Generation Lustre
File System

25. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,
Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with
NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005). doi:10.1002/jcc.20289

26. Schlipf, M., Gygi, F.: Optimization algorithm for the generation of ONCV
pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015). http://www.
sciencedirect.com/science/article/pii/S0010465515001897

https://www.spec.org/accel/docs/runrules.html
https://www.spec.org/accel/docs/runrules.html
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart
https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart
https://www.olcf.ornl.gov/wp-content/uploads/2017/01/SummitDev_Using-OpenMP-4.5-in-the-CLANGLLVM-compiler-toolchain.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2017/01/SummitDev_Using-OpenMP-4.5-in-the-CLANGLLVM-compiler-toolchain.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2017/01/SummitDev_Using-OpenMP-4.5-in-the-CLANGLLVM-compiler-toolchain.pdf
https://energy.gov/sites/prod/files/2014/12/f19/CORAL%20Fact%20Sheet__FINAL%20AS%20ISSUED_UPDATED.pdf
https://energy.gov/sites/prod/files/2014/12/f19/CORAL%20Fact%20Sheet__FINAL%20AS%20ISSUED_UPDATED.pdf
https://energy.gov/sites/prod/files/2014/12/f19/CORAL%20Fact%20Sheet__FINAL%20AS%20ISSUED_UPDATED.pdf
https://publib.boulder.ibm.com/epubs/pdf/a2322688.pdf
https://publib.boulder.ibm.com/epubs/pdf/a2322688.pdf
http://dx.doi.org/10.1177/1094342016668241
http://dx.doi.org/10.1177/1094342016668241
http://dl.acm.org/citation.cfm?id=110382.110385
http://dx.doi.org/10.1109/LLVM-HPC.2016.6
http://ieeexplore.ieee.org/document/234898/
https://link.aps.org/doi/10.1103/PhysRevLett.117.172501
https://link.aps.org/doi/10.1103/PhysRevLett.117.172501
http://dx.doi.org/10.1002/jcc.20289
http://www.sciencedirect.com/science/article/pii/S0010465515001897
http://www.sciencedirect.com/science/article/pii/S0010465515001897

274 V.G. Vergara Larrea et al.

27. Tang, W., Wang, B., Ethier, S., Lin, Z.: Performance portability of HPC discovery
science software: fusion energy turbulence simulations at extreme scale. Supercom-
puting Front. Innovations 4(1), 83–97 (2017)

28. Tharrington, A., Hai Ah Nam, W.J., Brown, W.M., Anantharaj, V.G.: Early appli-
cations experience on the cray XK6 at the Oak Ridge leadership computing facility.
In: Cray User Group Meeting CUG (2012)

29. Wang, C., Chandrasekaran, S., Chapman, B.: An OpenMP 3.1 validation test-
suite. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 237–249. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30961-8 18

http://dx.doi.org/10.1007/978-3-642-30961-8_18
http://dx.doi.org/10.1007/978-3-642-30961-8_18

Power/Performance Controlling Techniques
in OpenPOWER

Todd Rosedahl1, Martha Broyles1, Charles Lefurgy1,
Bjorn Christensen1(&), and Wu Feng2

1 IBM Corporation, Rochester, USA
{rosedahl,mbroyles,lefurgy,bjornc}@us.ibm.com

2 Virginia Tech University, Blacksburg, USA
wfeng@vt.edu

Abstract. This paper presents the design and implementation of new power
measurement and management features found in OpenPOWER systems, along
with new techniques for increasing system performance in power constrained
environments. The firmware and its ecosystem are open source to allow the
community to extend the current capabilities.

Keywords: Energy � Measurement � Management � Performance -
OpenPOWER � Firmware � POWER8 - POWER9

1 Overview

The balance between power consumption and performance in a modern computer
system requires detailed measurements and sophisticated control techniques. This
paper describes the hardware and software infrastructure on OpenPOWER systems,
which in turn, provides the basis for the measurement and management of power,
energy, and performance. Existing techniques, which are available now on P8 servers,
are described and new techniques, which will be delivered soon for P9 are discussed.
Additionally, measurement abilities are presented and discussed and, with the emer-
gence of the GPU as major computing platform to artificial intelligence (AI) and
machine learning, we explore methods to maximize system performance with GPUs in
power-constrained environments.

To enable research to advance the state of the art in power and performance
management, most of the firmware that enables such management has been released to
the open-source community as a part of the OpenPOWER initiative. As such, this paper
seeks to address the challenges and to present the techniques used to control power and
performance in OpenPOWER systems.

2 Power/Thermal Management/Measurement Infrastructure
Overview

The heart of the power/performance measurement and management is the On Chip
Controller (OCC) [1]. The OCC is designed to measure and manage performance and
energy consumption and to provide access to detailed chip temperature, power, and

© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 275–289, 2017.
https://doi.org/10.1007/978-3-319-67630-2_21

utilization data. It has complete control of processor frequency and memory bandwidth
which enables customization for performance and energy management, or for main-
taining system reliability and availability.

The OCC is a PowerPC 405 processor that is embedded directly on the POWER
processor chip along with the main POWER processor cores. It has its own dedicated
512 K SRAM, access to main memory, and 2 dedicated General Purpose off-load
Engines (GPEs). Figure 1 shows how the OCC interacts with other hardware and
firmware in Power8. The main OCC firmware runs a 250 µs loop that utilizes the GPEs
to continuously collect system power data by domain, processor temperatures, memory
temperatures, and processor utilization data. The firmware communicates with the open
source OpenPOWER Abstraction Layer (OPAL) stack via main memory. In con-
junction with the operating system, it uses the data collected to determine the proper
processor frequency and memory bandwidth to enable the following functions
described in Sect. 2.1,

2.1 Functional Overview

This section provides a brief overview of the measurement and management capabil-
ities of the POWER processor [5].

Fig. 1. On-chip controller overview

276 T. Rosedahl et al.

Performance Boost. The POWER processors can be set to frequencies above the
nominal frequency. The OCC monitors the system and controls the processor fre-
quency and memory bandwidth to keep the system thermally safe and within accept-
able power limits.

Power Capping. A system power limit can be set. The OCC continually monitors the
power consumption and will reduce the allowed processor frequency to maintain that
power limit.

Energy Saving. When the system utilization is low, the OCC infrastructure can be
used to put the system into a low power state to save energy. This function can be used
to comply with various government idle power regulations and standards.

System Availability. OCC supports a “Quick Power Drop” signal that can be used to
respond to power supply failures or other system events that require a rapid power
reduction. This function enables systems to run through component or data center
power and thermal failures without crashing.

System Reliability. The OCC can be used to keep component temperatures within
reliability limits, extending device lifetime and limiting service costs.

Performance per Watt tuning. As the system utilization varies, the OCC can provide
monitoring information and frequency control that maximizes system performance per
watt metrics.

Data Collection. At a high level, Fig. 2 shows several approaches to collect sensor
data from the system. These approaches can be categorized as (1) in-band measurement
and (2) out-of-band measurement. In-band measurement reads sensor data via the OS,
and thus, can affect performance; while out-of-band measurement reads sensor data via
dedicated hardware so as to not affect system performance. Such sensor data may
include power readings from various power rails within the system as well as processor
and memory temperatures.

The IPMI Tool: The intelligent platform management interface (IPMI) [6–10] provides
a message-based interface for out-of-band management of computing resources. IPMI
also provides a serial-over-LAN communication, where console output can be viewed
remotely. However, the IPMI interface suffers from limited scalability due to fixed
commands and well-known security vulnerabilities, where an attacker can use IPMI to
gain physical access to the system and bypass the operating system to reboot the
system, install a new operating system, or compromise data. As a consequence, a new
standard called Redfish has been proposed.

The Redfish Specification: Similar to the IPMI interface, the Redfish API [11] is used
for scalable platforms management performs out-of-band system management, but it
does so via a RESTful interface [12]. It is suitable for single-node systems or
multi-node systems and scales up to large-scale systems, e.g., cloud or supercomputing
environments. The Redfish API provides a way to standardize across vendors and can
facilitate a simpler and modern system-management software stack. In our case, we
realized the Redfish API specification as part of OpenBMC, short for Open Baseboard
Management Controller. As a RESTful-based API, all resources are accessed via a

Power/Performance Controlling Techniques in OpenPOWER 277

uniform resource identifier (URI) using the hypertext transfer protocol (http) and are
dynamically discoverable. In addition, the Redfish schema specifies the component
URI, allowable actions, and detailed messages in case an error happens. The above
features facilitate easier and more scalable platforms management and enable auto-
mated management in a large-scale setting, e.g., datacenter.

AMESTER Tool: AMESTER [2, 3], now available both in and out of band, is a tool for
detailed monitoring power consumption, temperatures and performance counters as
discussed further in Sect. 5.

OCC-to-OPAL Interface: A new OCC-to-OPAL interface provides data in-band via
standard Linux utilities as discussed in Sect. 4.

2.2 OCC Details

The OCC works in conjunction with the operating system to provide customized
energy management solutions. The standard Linux governors allow users to select
power management modes that made specific performance and power consumption
trade-offs. For example, the “on demand” governor adjusts core clock frequency to
maintain a high level of core utilization for the running workload. The role of OCC is
to keep the system within specified power and thermal limits. It does this by running
power and thermal control loops that monitor the following: node power, socket
powers, DIMM temperature, processor core temperatures. When the operating system
requests a frequency, this gets translated to a PSTATE by OPAL using data presented
by the OCC via a shared main memory. If the PSTATE selected by the OS will cause

Fig. 2. Telemetry data

278 T. Rosedahl et al.

the system to exceed a power or thermal limit, the OCC complex will clip the fre-
quency and only allow the PSTATE in the “maximum PSTATE” register to be realized
in the hardware. See Sects. 6 and 7 below for more information on new techniques to
select the maximum PSTATE and boost performance.

3 Hardware Infrastructure Overview

In order to understand the power and performance trade-offs internal to a computer
system, one must understand the underlying hardware structure. For POWER9, the
processor will be split into “Quads” with each Quad consisting of four (4) cores and
two (2) L2 Caches. Each Quad has its own voltage and frequency for power man-
agement purposes along with the ability to turn off various pieces of the chip for idle
power management and performance boost. There are two temperatures sensors per
core, one for each cache, and three for the nest. Averaging is done on each of these
sensors in order to provide an overall chip temperature. Another interesting note is that
much of the hardware that provides functions such as frequency and voltage scaling as
well as core on/off has been replaced by Power Processing Engines (PPEs) that have
firmware associated with them in order to provide flexibility for future enhancements.
These are represented by the dark orange boxes in Fig. 3.

Fig. 3. Hardware infrastructure

Power/Performance Controlling Techniques in OpenPOWER 279

4 Data Measurement – OPAL Interface for Power, Thermal,
Performance Measurements

The OCC, in conjunction with open-source OpenPOWER Abstraction Layer (OPAL)
stack provides a new interface that delivers telemetry data in-band to the Linux
operating system (OS). The OCC will push data up to main memory continually such
that all sensor data will be updated within 100 ms. In all, data from over 400 sensors
can be obtained for power, thermal, and performance metrics on processors and
memory. Each sensor reading will be timestamped with the same system timestamp
used by the operating system to provide time correlation. OPAL will grab this data and
present it to the user via standard Linux interfaces (lm_sensor). Each sensor will have
associated static metadata that describes the sensor and shows information such as

Fig. 4. Sensor metadata

280 T. Rosedahl et al.

update frequency and units. Note that sensor min/max values can be cleared to provide
job-level min/max measurement granularity. Also, the accumulator and update tag
provide the ability to read accumulated values (such as power over time) without
requiring a clear of any value. See the red path in Fig. 2 for the system path used to
collect this data. See Fig. 4 for a description of the sensor metadata. See Fig. 5 for the
sensor structure.

5 Measurement AMESTER – Detailed Profiling Tool

This section gives a brief overview of AMESTER (Automated Measurement of Sys-
tems for Temperature and Energy Reporting). AMESTER is a tool for monitoring
power consumption and performance metrics in IBM systems. It has proven to be
valuable for visualizing power measurements and prototyping new power management
policies. AMESTER is now an open-source project to make it broadly available to the
OpenPOWER community.

AMESTER provides both a GUI for interactive use and a non-interactive mode for
unattended data collection. AMESTER is written completely in Tcl/Tk. Users can write
scripts for AMESTER in Tcl to direct its operation. Additionally, scripts may load
dynamically linked libraries that are written in other languages, such as C. Every aspect
of AMESTER may be modified and controlled from a script. This is useful for building
rapid prototypes of power management policies and custom visual demonstrations
based on AMESTER’s graphing capability.

Fig. 5. Sensor structure

Power/Performance Controlling Techniques in OpenPOWER 281

5.1 Operation

AMESTER has traditionally been run on a laptop and connected remotely over the
Internet to the server that is to be measured. AMESTER connects to OpenPOWER
servers through the BMC using the IPMI protocol or now on some POWER9 systems
via a new RESTful interface. The BMC routes AMESTER commands to OCCs without
having to understand the command details. Each OCC processes the command and
responds with a buffer of data that represents system telemetry as requested by the user.

5.2 Sensors

The principal function of AMESTER is to collect power and performance metrics from
the firmware. The user specifies a list of sensors for AMESTER to gather in the
background as quickly as possible. As sensors arrive, the GUI is updated and user
provided callbacks are processed. Figure 6 shows a screenshot of data collection.

Fig. 6. Screenshot of sensor data collection

282 T. Rosedahl et al.

5.3 Trace Buffers

The AMESTER trace buffer interface makes it possible to study system behavior at
small timescales. Since the sensor interface can take 100 s of milliseconds to poll
sensor values, it is not sufficient for studying and debugging OCC control loops which
often operate at a sub-millisecond granularity. The trace buffers are implemented by
reserving some of the OCC SRAM memory to capture runs of sensor values. Every
sensor value change can be captured until the buffer fills.

5.4 In Band AMESTER

In POWER9, a new interface will be enabled that will allow direct access from Linux
to the OCC SRAM. In this way, AMESTER can be run in the o/s and this will provide
rapid data analysis that can be tightly coupled with jobs or portions of jobs. Addi-
tionally, this will eliminate the lengthy delays in data collection caused by the network
and BMC processing time.

6 Workload Optimized Frequency (WOF)

Prior to POWER8, systems were shipped with a maximum processor frequency called
“Turbo” that was achievable at lower ambient temperatures and all reasonable work-
loads. The result was a higher maximum frequency, but still there was a significant
frequency boost potential left untapped when the system was running workloads that
used less than the maximum amount of power. Starting in POWER8 Minsky servers, a
new function called Workload Optimized Frequency (WOF) was introduced.
With WOF, the OCC is continually measuring the power consumption of the socket
and, if there is power and frequency headroom, the OCC will raise the frequency
ceiling to allow the Linux governor to select a higher frequency – up to what is called
“Ultra Turbo”. Note that in order to avoid part to part variation and non-deterministic
performance, the OCC must use only the active switching (herein referred to as AC)
portion of the power for this calculation, which is abstracted as an effective switching
capacitance, or Ceff. The leakage (herein referred to as DC) power, containing both
voltage and temperature driven leakage, must be subtracted off so that only the power
consumed by the active workload is factored in. In addition to taking advantage of
lower power workloads, the OCC also factors in cores that are turned off to allow an
even greater performance boost on the remaining active cores. The actual frequency
increase gained is dependent on system type, thermal environment, and workload, but
gains of over 10% can be realized and will be consistently produced system to system
and run to run given the same system configuration and workload for any thermal
environment within the system’s Thermal Design Point (TDP) operating range.

Figure 7 is a graphical sketch intended to show design methodology, not actual
results. It graphically shows the intended results similar to what is shown in the 10-core
WOF boost table (Fig. 8). Processor sorts vary in core count, frequency, and power
(TDP), thus each sort has different base and boost frequency points. The WOF benefit
range depicts where lighter workloads may boost beyond the target base frequency.

Power/Performance Controlling Techniques in OpenPOWER 283

Figure 8 shows an example WOF frequency uplift table. Note that the Ceff Ratio
column should be thought of as the AC component of the workload. So a 0% Ceff
would be an idle workload and a 100% Ceff would be a TDP workload. The columns
are the numbers of cores that are active. Note that if all cores are active and the
workload is maximum, the frequency result is the same as the “Turbo” point. As the
workload or active core count decreases, the frequency potential increases.

Fig. 7. WOF frequency boost for an example processor sort

Fig. 8. WOF uplift table

284 T. Rosedahl et al.

Figure 9 below shows how the WOF algorithm plays in with the existing OCC
power and thermal control loops as well as with the Linux governor. Note that since the
OCC continues to run all power and thermal control loops, all power and thermal limits
will be maintained separately from any performance boost that could be realized from
WOF.

6.1 WOF Experimental Results

Figure 10 shows the frequency boosts obtained using WOF [4] with a variety of
workloads in a POWER8 Minsky server. A brief description of the workloads in this
example is shown in Fig. 11. In Fig. 10, the frequency boost is denoted as a percentage
of the “Turbo” frequency and it shows that when the CPU is idle, the WOF boost
potential is high. However, the Linux “On Demand” governor sees the low utilization
and lowers the actual frequency accordingly to save energy. If the “Maximum Per-
formance” governor would be used for idle, the potential WOF benefit shown would be
realized. Also, as expected, with the maximum workload no WOF benefit is seen. The
CPU_GPU and MEMBW workloads show the WOF benefit since they utilize the CPU
enough for the “On Demand” governor to select the maximum frequency, but are not
so power intensive that the WOF benefit is negated.

Fig. 9. OCC control algorithms

Power/Performance Controlling Techniques in OpenPOWER 285

7 Core/Quad Power on/off

In POWER7 and POWER8 processors, processor cores can be turned off when idle in
order to reduce socket power consumption. In POWER8 Minsky servers, as described
above in the WOF section, cores that are turned off can have the added benefit of
allowing active cores to run at higher frequencies. New to this space for POWER9 is
the concept of turning off entire quads. In Fig. 12 below, all cores in a quad are shown
to be powered off. At this point, the entire quad, with both L2 and L3 cache, can be
powered off to reduce the power consumption of the socket. The OCC then can take

Fig. 10. WOF frequency boost and Ceff Ratio

Workload CPU Utilization GPU Utilization

Idle Low Low

GPU Low High

Max High Low

CPU_GPU Med-high Med

MemBW Med Low

Fig. 11. WOF sample workload descriptions

286 T. Rosedahl et al.

advantage of this reduced power consumption and allow the Linux governor to increase
the frequency of the cores in the other quads.

A power/performance decision has to be made when allocating work to a new core.
Take the case where 3 cores are actively running a workload and are all allocated on 1
quad. All other quads are powered off and the WOF algorithm running on the OCC has
set the maximum frequency high due to the available power. When a new workload
needs to run, there is a core placement decision that has to be made. If the fourth
remaining core on the active quad is activated, the additional power consumption will
be low which will result in a minimal impact to the maximum frequency. However, the
overall performance may be lower because the new core will now have to share the L2
cache. Activating the core on a new quad will result in higher power consumption and
possibly lower maximum frequency, but also higher performance since it owns the
entire cache. This is an area that requires further study in order to determine the best
active core placement.

8 Power Capping and Shifting for GPUs

GPUs now represent a large portion of system power – far more than the processors
that drive them. In order to provide GPU power management for P9, a new OCC to
GPU interface has been enabled in OpenPOWER systems for NVlink attached GPUs.
On this interface, GPU data will be collected, power capping will be done and a new
power shifting algorithm will be implemented. A block diagram of a typical Open-
POWER system is shown in Fig. 13 with the new GPU interface circled.

A new power shifting algorithm is shown in Fig. 14. Consider the case where a
system power limit has been reached. The CPU, memory, and GPU all have levers that
the OCC can pull in order to reduce the overall system power to an acceptable limit.
The GPU is the slowest to respond, taking on the order of 100 ms to react to a new
cap. The OCC will first take the power away from the processors, adjust the GPU
power cap accordingly, and then restore the CPU power to a higher level based on a
pre-determined “Power Shifting Ratio” (PSR). Note that setting this PSR correctly is an
area of future study and deeper discussions on this topic are left to another paper.

Fig. 12. Core stop states

Power/Performance Controlling Techniques in OpenPOWER 287

9 Conclusion

OpenPOWER systems have rich data collection mechanisms and power/performance
balancing features that improve system energy efficiency, performance, and reliability.
New Linux facilities for data measurement, in-band AMESTER, GPU data collection,
and Workload Optimized Frequency provide the OpenPOWER community with a
strong foundation for maximizing system performance and for prototyping new power
management capabilities.

Fig. 13. OCC to GPU interface

Fig. 14. CPU and GPU power shifting

288 T. Rosedahl et al.

References

1. OpenPOWER OCC. https://github.com/open-power/occ
2. AMESTER. https://github.com/open-power/amester
3. El-Essawy, W.: IPMItoolRaw Command Interface to OpenPOWER POWER8 On Chip

Controller: Sensor reading commands, Version 0.4 (2016). https://github.com/open-power/
docs/blob/master/occ/OCC_ipmitool_sensors.pdf

4. Zyuban, V., et al.: IBM POWER8 circuit design and energy optimization. IBM JR&D 59(1),
1–16 (2015)

5. Broyles, M., et al.: IBM EnergyScale for POWER8 processor-based systems, white paper,
November 2015. http://public.dhe.ibm.com/common/ssi/ecm/po/en/pow03125usen/
POW03125USEN.PDF

6. Intel, Hewlett-Packard, NEC, and Dell, IPMI - Intelligent Platform Management Interface
Specification Second Generation v2.0, Rev. 1.1, E7 Markup, 21 April 2015

7. NXP, I2C-bus specification and user manual, Rev. 6, 4 April 2014
8. Intel, Intel Intelligent Power Node Manager 3.0 External Interface Specification Using IPMI,

Document Number 332200-001US, March 2015
9. System Management Interface Forum, PMBus Power System Management Protocol

Specification Part II – Command Language, Rev. 1.2, 6 September 2010
10. Intel, DCMI – Data Center Manageability Interface Specification, Ver. 1.5, Rev. 1.0, 23

August 2011
11. Distributed Management Task Force, Redfish Scalable Platforms Management API

Specification, Ver. 1.1.0, January 2017
12. Fielding, R.: Architectural styles and the design of network-based software architectures,

University of California – Irvine, Ph.D. thesis (2000)

Power/Performance Controlling Techniques in OpenPOWER 289

https://github.com/open-power/occ
https://github.com/open-power/amester
https://github.com/open-power/docs/blob/master/occ/OCC_ipmitool_sensors.pdf
https://github.com/open-power/docs/blob/master/occ/OCC_ipmitool_sensors.pdf
http://public.dhe.ibm.com/common/ssi/ecm/po/en/pow03125usen/POW03125USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/po/en/pow03125usen/POW03125USEN.PDF

Performance Evaluation of Container-Based
High Performance Computing Ecosystem

Using OpenPOWER

Animesh Kuity(B) and Sateesh Kumar Peddoju

High Performance Computing Lab, Department of Computer Science
and Engineering, Indian Institute of Technology, Roorkee 247667, India

anics.dcs2015@iitr.ac.in

Abstract. Container-based High Performance Computing (HPC) has
started gaining popularity due to its almost negligible performance
penalty compared to the BareMetal hardware. Although HPC hard-
ware architectures and programming models are continuously evolving,
the platform models are suffering from the HPC community’s aware-
ness. Power-awareness, hardware and application-aware co-design along
with security related concerns have attracted the most in recent time
to empower the platform models. Otherside, the OpenPOWER ecosys-
tems have stepped into our life to fulfill the thirst of exploiting the last
drop of a performance benefit from our invested system. It has Power8
compliant processor with a larger cache, big fat instructions and data
path accompanied by the popular coherent accelerator. In this paper,
we have proposed a container-based HPC ecosystem established using
OpenPOWER machine. The performance of the designed and developed
ecosystem is evaluated stressing on different subcomponents of the sys-
tem such as processor, memory, IO, and interconnect. Finally, the results
are compared with the performance of the equivalent environments made
of virtual machines and BareMetal hardware.

Keywords: High Performance Computing · OpenPOWER · Con-
tainer · Benchmark ·HPCC · Performance evaluation ·Virtual Machine ·
BareMetal · Ecosystem · Cloud

1 Introduction

High Performance Computing (HPC) [2] remains a challenge to the majority of
researchers in scientific computing community due to its significantly high cost
in the system and environment setup, extremely complex software stack and its
dependencies, and limited access to a group of community members.

The cloud computing service providers are trying to provide HPC as a ser-
vice on a Virtual Machine (VM) based cluster. But the hypervisor-based VMs
incur high start-up times, performance overheads, inter-communication laten-
cies, network overheads, IO overheads along with complex patching and life
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 290–308, 2017.
https://doi.org/10.1007/978-3-319-67630-2_22

Performance Evaluation of Container-Based HPC Ecosystem 291

cycle management compared to the BareMetal hardware. Hence, it leads to the
poor performance. So the VMs assisted HPC solution in the cloud remains a big
research challenge to the scientific computing community.

The main challenge here is to provide an abstract dynamic environment for
small and medium scale scientific computing users so that they can concentrate
on their computations without compromising on the performance and worrying
about the underlying nasty environmental details. The problem is interesting
because it can offer several benefits including:

– it will increase the resource utilization of the underlying environment.
– it can fulfill the variable user platform requirements in term of physical

resources, software stack, and their dependencies.
– it will decrease the environment management effort, and
– reproducibility of the previously created environment.

Linux container Technology [3] is a light-weight operating system virtualiza-
tion mechanism that has attracted the attention of HPC community in recent
time due to its numerous advantages over hypervisor assisted VM technology.
The Linux container provides an isolated and portable environment for a group
of processes using namespaces1 and cgroups2. The immensely popular Docker3

uses Linux namespace features that are brought into mainstream kernel after
Docker employed it as its core. The container following the trend “doing more
with less” introduced much less overhead compared to hypervisor based virtual-
ization technology as depicted in Fig. 1 [8,27]. The scientific community is forced
to use gigantic software stacks for their application needs. These stacks are dif-
ficult to install, port, and managed by system administrators. To address these
problems, users can bring their own runtime images produced at home environ-
ment to set up the chain-rooted container environment of choice to carry out
their experiments efficiently.

In this paper, we have established a container-based HPC ecosystem using
OpenPOWER to address these challenges and an analysis is performed using
HPC Challenge and IO related benchmarks. To the best of our knowledge, this
is the first work which presents

– a Container-based HPC ecosystem using OpenPOWER.
– a performance evaluation of Container-based HPC ecosystem using Open-

POWER.
– comparison of the proposed ecosystem performance with the HPC clusters

developed on VMs and BareMetal servers.

The rest of this paper is organized as follows: Sect. 2 reviews existing research
work related to HPC deployments on the virtualized environments using VM-
based and Container-based approach. Section 3 describes our proposed model on

1 https://lwn.net/Articles/531114/.
2 https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt.
3 https://docs.docker.com/.

https://lwn.net/Articles/531114/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://docs.docker.com/

292 A. Kuity and S.K. Peddoju

Fig. 1. (a) Hypervisor based VM. (b) Container.

Container-based HPC ecosystem that uses OpenPOWER machine during experi-
ments and Sect. 4 presents the methodology of implementing it on OpenPOWER
systems. In Sect. 5, we present a detailed experimental setup; and the perfor-
mance analysis results of different benchmark applications on developed ecosys-
tems with containers, BareMetal, and VMs are presented in Sect. 6. Section 7
draws conclusions and outline for future work.

2 Related Work

HPC is a highly matured technology which is treated to be a domain of experts
using the overpriced proprietary system. HPC environment’s requirement for
computational scientists is detailed in [5,21]. They focus only on timely exe-
cuting and maximizing scientific output of the computational workload with
allocated resources by optimizing the performance benefit. This approach lever-
ages numerous advantages including portability, manageability, reproducibility,
accessibility, reliability, high security, productability, integration, and availability
apart from maximizing utilization.

Several existing solutions such as [24,34] are proposed for HPC environ-
ment in the cloud using VM-based approach. The performance of migrated HPC
application to the cloud is evaluated and analysed in [15–17] using benchmark
applications [7,11,30]. But it was never considered as a feasible solution due to
virtualization overhead, memory wall, IO overhead, poor network interconnect
and heterogeneous nature of systems. Gupta et al. [14] with exhaustive bench-
marking analysis confirmed that only small and medium scale HPC users want

Performance Evaluation of Container-Based HPC Ecosystem 293

to take advantage of massive parallelism and cloud-bursting in addition to the
cost-effective economic model that can leverage the cloud for their HPC environ-
ment. The hurdles of existing public cloud environments are that they are not
optimized enough to overcome the challenges arisen due to poor inter-process
communication over a slow network connection and the advanced multi-core
processing technology.

To examine the untapped potential of HPC in the cloud, David et al. [4] con-
ducted the benchmarking experiments to study the feasibility of container-based
HPC environment that shows its near native performance against its competi-
tor hypervisor-based solution on KVM. By considering CPU performance metric
and holding the same standpoint, Felter et al. [12] also confirmed that both tech-
niques need better tuning to support IO intensive workload in HPC. Migual et
al. [32] also agreed on using container-based virtualization for HPC. They inves-
tigated an in-depth performance comparison among different Container-based
virtualization technologies such as Linux Container, OpenVZ and Linux Vserver
along with hypervisor representative Xen. They have considered several perfor-
mance overheads including Compute, Memory, Disk, Network, and Isolation [23].
They have claimed that LXC gives the superior performance in most of the cases
except isolation where hypervisor based solution dominates. Scheepers et al. [26]
also supported the statements based on macro benchmark performance com-
parison using application and inter-VM communication benchmark. Single Root
IO Virtualization (SR-IOV)4 alleviates the significantly high IO overhead prob-
lem of hypervisor-based virtualization that usually occurs in IO intensive HPC
workloads. But container-based solutions outperforms VM-based solutions [35]
in terms of start-up latency, inter-process communication, low network latency,
and higher bandwidth. However, hypervisor-based VM’s are stronger in isolation
features.

Undoubtedly popular container manager, called Docker, has received a lot of
attention to be used in HPC. This is due to their attractive features like light-
weight deployment, fast and transparent nature, application encapsulation and
cloud mobility, application lifecycle management, consistency, repeatability, and
compliance with its strong potential for resource guaranteedness, and perfor-
mance isolation using Linux kernel features. Most importantly, it uses Advance
Multi-Layered Unification File system for image handling [1,20,22]. But Docker
runtime was not designed keeping HPC in mind. It does not address security
concerns related to the multi-user shared HPC environment. It does not support
resource manager plug-in integration, one of the essential components of HPC
environment to run a task in an optimized way when multiple nodes are used.
Although Docker Swarn can be used to run on multiple nodes, it is not suit-
able for HPC environment as the infiniband, GPU, and MPI support can not be
provided natively without some modification of Docker. Yu et al. [33] presented
virtual HPC cluster using Docker container technology to resolve software depen-
dency issues by reducing the burden on system administrators. Charles et al. [36]

4 https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.vsphere.
networking.doc%2FGUID-CC021803-30EA-444D-BCBE-618E0D836B9F.html.

https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-CC021803-30EA-444D-BCBE-618E0D836B9F.html
https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-CC021803-30EA-444D-BCBE-618E0D836B9F.html

294 A. Kuity and S.K. Peddoju

have also given a light on the similar issue of providing workflow-aware environ-
ment by managing container in a shared manner. This solution provides only
manual auto scaling feature. Skyport [13] provides a container-based scientific
workflow execution environment using Docker and Shock [29]. But it only uses
Docker inherent resource utilization policy and does not consider any suitable
container placement strategy. Zheng et al. [28] addressed the problem with an
outline on a scientific execution environment by detecting failure, performance
bottleneck, optimized placement and runtime migration of a container. But it
lacks precise design considerations. Weidner et al. [31] presented a symmetric and
application-centric HPC platform considering the physical state of application
processes and environmental awareness. This approach uses subscription-based
demands and associated notification control. But it lacks dynamic requirement
and power-awareness features.

Ali et al. [19] presented a Kubernetes managed highly available container
cluster that can be used for HPC. The drawback of the system is that Kuber-
netes master takes a longer time to realize container engine failure. Whereas,
Ubercloud5, also based on enhanced Docker container, provides a computational
environment for engineering and scientific applications by removing the road-
block of application runtime environment but it suffers from unpredictable per-
formance benefits of the provided ecosystem. It didn’t consider the hardware
features and performance metrics of the underlying environment which was later
attempted by Shifter [6,18]. In this system, containers for HPC rely on popu-
lar Docker ecosystem with the extended run-time engine. They have enhanced
security policies with setuid-incapable and bind-mounted image path wherever
required, improved user defined image creation and distribution along with work-
load manager integration for dealing with heterogeneous technical and scientific
application domains.

Although few authors such as [4,12,25,32] evaluated and analyzed the per-
formance impact of container-based HPC solutions, however, there are few gaps.

(i) They compared the container-based solutions with either virtual machines
or BareMetal machines alone, but not both.

(ii) They did not use HPC sub-components (including CPU, Memory, IO, and
Interconnect) all together in their evaluations. Particularly, it is not the
case with considering all container, VM, and BareMetal.

(iii) All reported works on the container used either LXC on a virtual machine
or Docker or Linux Vserver or OpenVZ. The workload manager plug-in
integration is not readily available in these environments for HPC.

(iv) Most importantly, so far no work is reported on container-based HPC
ecosystems that are developed on OpenPOWER machines.

In this paper, we have attempted to design and develop a Container-based
ecosystem for HPC using OpenPOWER and a performance analysis is done
on sub-components like computing, memory, interconnect, and IO to assess the
system with popular benchmark applications. The container based solutions are
compared with, both, VM and BareMetal machine solutions.
5 https://www.theubercloud.com/.

https://www.theubercloud.com/

Performance Evaluation of Container-Based HPC Ecosystem 295

3 Container-Based HPC Ecosystem on OpenPOWER

Traditional HPC environments are highly optimized for specific scientific and
technical computing workloads using specially designed OS, parallel file systems,
super-fast interconnects and enhanced MPI library. They fail to deal with a
daunting set of requirements due to the dynamic nature of almost insatiable
appetite for high application performance. HPC users want their ecosystem to be
comprehensive, coherent and highly performed on their application meeting the
requirements of elastic growth of their environmental resources, heterogeneous
workloads with sophisticated software stack, heterogeneous processing elements,
power-awareness, and reliability of the scale [9]. Keeping several weaknesses of
traditional systems in mind and research potential in adapting containers in
HPC, this paper aims to design and develop a Container-based ecosystem for
HPC as shown in Fig. 2 using OpenPOWER machines.

Fig. 2. High-level prototype for Container-based HPC ecosystem on OpenPOWER

In the proposed model, initially, a user prepares an image to setup the
container runtime on OpenPOWER according to the execution environment
requirement of a particular application workflow. Any Image builder agent can
be employed to build the image in their home environment. It primarily uses
layered image approach to maintain information about each layer to facilitate
easy, light-weight, and flexible container deployment. The user can publish the
image to the private or public repository, preferably Docker registry, that can
be accessed later to pull the required image and store it to a shared location
of the ecosystem with mandate authentication credentials. The user can login
through the LoginNode with appropriate authentication credentials and submit

296 A. Kuity and S.K. Peddoju

the scientific application workflow to cluster manager by providing the required
execution environmental parameters along with the image(s) to be used. Cluster
Manager/Orchestrator queues the submitted application workflow maintaining
priorities according to the Quality of Service (QoS) requirements. It analyses
and splits the application workflow into subtasks that can be executed on indi-
vidual containers. The queue of application workflows is handed over to cluster
manager core. Subsequently, the cluster manager core invokes the other agents
such as databases, Resource Discovery & Monitoring (RDM) agent, Container
scheduler and network. It dispatches the subtasks to selected containers deployed
on OpenPOWER machine. Database agent stores and processes the information
collected by RDM agent using key-value store mechanism. RDM agent commu-
nicates with the client discovery agent to collect the information about currently
alive OpenPOWER compute nodes. It monitors the application performance at
run-time and invokes the scheduler agent if necessary and gathers the infor-
mation regarding hardware performance and power status of compute node(s)
running on OpenPOWER, and triggers the scheduler to take appropriate action.

Container scheduler agent is the primary component to facilitate HPC run-
time environment for application workflows. It selects the appropriate Open-
POWER compute node(s) to deploy the subtasks of application workflow using
several metrics received including computing node list, collected hardware perfor-
mance parameters and power status information along with QoS parameters. It
also runs the load-balancing and fault tolerance mini-agent to dynamically react
and change environment whenever required. Image Gateway pulls the requested
image and makes it available to the Shared Storage to be utilized by container
run-time. It also publishes the image endpoint and preserves the integrity. The
container runtime on OpenPOWER Compute node(s) creates the containers on
which subtasks of a specific task are executed. The OpenPOWER node runs
the slave agents to discover, application performance monitoring, hardware, and
power status monitoring to push the related information to the RDM agent.
Network agent creates the dynamic network among the containers deployed on
OpenPOWER machines for different application workflows.

The proposed ecosystem, finally, will have several containers running on
OpenPOWER nodes that are communicating as per the need of the applica-
tion within the system (intra-hosts) or across the systems (inter-hosts).

4 Implementation

The proposed ecosystem aims to provide a user perspective application environ-
ment over the container to deal with sophisticated software dependencies and
related system-wide configurations. The proposed model is inspired by Shifter [6],
an open-source HPC environment provisioning project, developed by NERSC6.

The ecosystem is built with Image Gateway running on OpenPOWER node
developed in Python and an executable binary, Container-based HPC runtime
(CHPCE) along with site specific optimization modules. The workflow of the
6 http://www.nersc.gov/.

http://www.nersc.gov/

Performance Evaluation of Container-Based HPC Ecosystem 297

Fig. 3. Workflow of Image Gateway and Chpce core

image gateway and Container-based HPC core is presented in Fig. 3. The chp-
ceimg (command line tool implemented in C to interact with image gateway)
starts parsing the configuration file and command line options related to image
gateway. It gets the requests to pull the required image to run the user specified
tasks. The image gateway query URL constructed consists of selected gateway
URL, query mode, image type, and tag along with requesting system information
using libcurl easy handle object.

HTTP post request is sent using libcurl easy handle object with munge
encrypted authentication credential to the target Image Gateway which receives
the request using Flask implementation of REST API. The Image Gateway cre-
ates a new session with requested authentication credentials using munge and
system information for subsequent operations. It then constructs the image query
object using session info, system info, image type, tag, and status depending on
the user requested mode for the image. If the requested mode is either list or
lookup and the request is authorized then the Image Gateway responds with the
corresponding record from the Mongo database. If it is an image pull request and
the record corresponding to the pull request is not present in the database or has
expired, then inserts the new pull record to the database along with its current
state. The Image Manager queues the image pull request in the RabbitMQ mes-
sage queue and starts the celery workers to pull the layers of the images parallel
using public or private image registry API such as Docker registry V2 protocol.
The pulled layers are saved and integrity is checked before extraction into a spe-
cific location. Later, the pulled image is converted to the user requested format

298 A. Kuity and S.K. Peddoju

and transfers it to the shared location along with the meta data if not present
already.

User requests the Container-based HPC ecosystem runtime (implemented
in C) to set up the user defined image environment on OpenPOWER compute
node(s) to execute the jobs. The chpce runtime parses its configuration files and
command line options to find information about the requested image from the
predefined shared location. It sets working directory, mount point, and entry
point appropriately after ensuring user’s authorization. Then it checks whether
the user is authorized to get root access to set up user defined image, and the
requested image is not already loaded on the target system. It unshares the
filesystem namespace after obtaining the root privileges to create an empty root
under the specified mount point. The suitable mount device is selected depending
on the requested image format. If loop device is needed for the requested image
format, the image is mounted on the requested mount point using loop device
driver with suid incapable and read-only mode. The loopback-mounted image is
bind-mounted to the target for constructing user defined runtime environment.
The chroot jail is applied on the apparent root directory of the newly created
user defined image environment and the current working directory is changed.
Finally, the job is executed on that user define chrooted environment running
on OpenPOWER machine and results are returned to the user.

5 Experimental Testbed

In this section, we outline our experimental testbed in terms of the ecosys-
tems made of containers, virtual machines, and BareMetal Servers running on
OpenPOWER machine. KVM hypervisor is chosen as VMM solution due to its
widespread popularity and superior performance benefit.

Our experimental setup consists of OpenPOWER Server with one socket
IBM Turismo SCM 3.857 GHz POWER8 processor having 8 cores/socket (capa-
ble of running 8 hardware threads/core), 64k L1 data cache & 32k L1 instruction
cache, 512k L2 cache, 8 MB L3 shared cache, 128 GB of RAM and 10GbE LAN
Mezz Card. All nodes are interconnected by smart managed 10-Gigabit switch.
The CentOS Linux release 7.3.1611 (AltArch) having kernel 3.10.0-514.10.2.el7
was installed on the OpenPOWER Server and the default configurations were
maintained except the packages that were built from source to make it work
on OpenPOWER server. We haven’t imposed any kind of optimizations dur-
ing our experiments. Hence, experimental environments made of BareMetal(s),
Container(s) and VM(s) were tried to keep unchanged during the runtime for
all experiments to achieve performance that can be utilized for fair comparison
purpose. HPC Challenge benchmark (HPCC) [10] which stresses all the subcom-
ponents of the system such as processor, memory, and interconnect are used to
evaluate the performance of the ecosystems made of containers, virtual machines,
and BareMetals. It consists of seven benchmarks: HPL, STREAM, RandomAc-
cess, PTRANS, FFTE, DGEMM, and b eff Latency/Bandwidth. HPCC-1.5.0
package is used with mpich-2.15 and OpenBLAS to compile and run bench-
mark programs. To cope with standard benchmark evaluations, our constructed

Performance Evaluation of Container-Based HPC Ecosystem 299

ecosystems maintains the largest problem size fitting into 70% (i.e. approxi-
mately 90 GB) of the total memory for all experiments. The problem size is of
100000 and block size is of 100 are tested. Flat process grid ratios 2:16, 3:16,
and 4:14 are used as input because of our employed simple Ethernet network.
All experiments are repeated 20 times, and median values are taken to plot the
graphs. We observe a clear peak at median values in all cases.

6 Performance of OpenPOWER on HPC Ecosystems

This section critically analyses the results achieved due to experiments conducted
on proposed container-based HPC ecosystem that is deployed on OpenPOWER
system. It is important to understand the performance of subsystems of Open-
POWER machine like Compute, Memory, Interconnect, and Disk on running the
benchmark HPC applications. We did a comparative analysis of the proposed
ecosystem functionality on OpenPOWER using different deployment methods
like containers, VMs, and BareMetal hardware. The following subsections detail
the impact of OpenPOWER system parameters on HPC ecosystem.

Fig. 4. Performance of HPL on BareMetal, Container, and VM based Ecosystem

6.1 Compute Performance

We used High Performance LINPACK (HPL) TPP benchmark of HPCC to
evaluate the compute performance of our constructed ecosystems. It solves a
dense linear system of equations using LU factorization with partial row piv-
oting method. This reports the estimated performance of the system with the
help of local matrix multiplication operations. To achieve optimal performance
of our ecosystems made of BareMetal, Container, and VM, we executed the LIN-
PACK benchmark for matrices of order 100000 and block size of 100 with process
grid ratios as 2:16, 3:16, and 4:14. In Fig. 4, we have shown the performance of
the G-HPL benchmark for each of the three ecosystems. The Container-based
ecosystem obtained the performance result slightly greater than BareMetal based
ecosystem whereas VM based ecosystem shows degraded performance with an
overhead of 3% compared to BareMetal. Overall, all the three ecosystems have

300 A. Kuity and S.K. Peddoju

shown almost similar performance on compute intensive G-HPL benchmark.
This is due to the fact that G-HPL spends most of its time running highly
optimized kernels that near optimally handle cache hierarchies, TLB misses,
inter-process communications. And it introduces very little overhead due to the
abstraction provided by the container at OS level and virtualization overhead
by KVM.

The DGEMM, a simple multi-threaded dense matrix multiply benchmark,
is used to investigate the sustained floating-point computational rate of double
precision real matrix-matrix multiplication of a single node. It measures the
achievable double-precision FLOPS of a single node. The computation kernel
used in the DGEMM benchmark is

C = αAB + βC; (1)

where A,B, and C are with the dimensions M × K,K × N , and M × N
respectively. In our experiments, we evaluated the performance for the matri-
ces with the size of 10205 × 10205, 8332 × 8332, and 7714 × 7714 to fit them
into the available caches to reduce the bandwidth requirement. In Fig. 5, the
performance of the DGEMM benchmark is shown for each of the three ecosys-
tems. In SingleDGEMM case, initially container based ecosystem shows slightly
better performance, but as the number of threads is increased, the perfor-
mance of Container-based ecosystem begins to drop proportionally compared
to BareMetal. But, we observed that the performance of the VM based ecosys-
tem drops rapidly. In the case of StarDGEMM, container shows better perfor-
mance initially, but as the number of threads is increased, VM shows better
performance. The reason behind this is not evident to us. In all the cases the
performance degrades gradually, due to the fact that as we increase the total
number of threads, the effective memory bandwidth available for each thread
reduces. We need to choose tile dimensions used in DGEMM benchmark care-
fully, keeping the architecture in mind because it may degrade the performance
due to cache associative conflict and TLB pressure.

Fig. 5. Performance of (a) SingleDGEMM. (b) StarDGEMM.

Performance Evaluation of Container-Based HPC Ecosystem 301

Fig. 6. Performance of (a) StarFFT. (b) MPIFFT.

The FFT benchmark is used to measure floating point rate of execution of
double precision complex one-dimensional discrete Fourier transform (DFT) of
size m. It stresses on the inter-process communication using large messages. In
Fig. 6, we plotted the performance of the FFT benchmark for each of the three
ecosystems. The StarFFT shows superior performance than G-FFT due to the
low latency and higher bandwidth availability of intra-node communication. The
Performance of the FFT benchmark degrades as we increase the number of the
threads.

6.2 Memory Performance

We used a simple synthetic benchmark program, STREAM, to evaluate the
sustainable memory bandwidth of the constructed ecosystems. It measures com-
putation rate using four simple vector kernels.

COPY : c = a

SCALE : b = αc

ADD : c = a + b

TRIAD : a = b + αc (2)

where a,b, c are vectors and α is a scalar.
The used array size for STREAM benchmark experiment as 104166666 which

require a total memory of size 2.3283 GiB, that is greater than 2x the size of 8 MB
L3 cache of our OpenPOWER system. In Fig. 7, we have shown memory band-
width using an EP-STREAM benchmark for each of the three ecosystems. The
average measured memory bandwidth is 1.00 GB/s, 1.01 GB/s, and 0.998 GB/s
for BareMetal, container, and VM based ecosystem respectively. In the case of
SingleSTREAM, only a single thread performs the computations and uses the
available memory bandwidth, so it shows nearly same behavior in all threads
case, because at any time the total available bandwidth will be shared among
active threads. VM based ecosystem shows a slightly degraded performance; this

302 A. Kuity and S.K. Peddoju

Fig. 7. Performance of (a) SingleSTREAM Triad. (b) StarSTREAM Triad.

is due to the address translation overhead and also double caching problem in
virtualization layer. The measured bandwidth is close to the theoretical value for
the systems. In the case of StartSTREAM, all the threads perform computation
and share L3 cache along with the available memory bandwidth among them, so
it shows degraded performance as we increase threads due to memory contention.
We can conclude that a high number of threads execution and poor choice of a
memory location can present negative impact on memory performance.

The RandomAccess benchmark is used to evaluate peak capacity of the mem-
ory subsystem while updating the random locations of the system memory. The
benchmark works on a large distributed table of size 2p, occupying approximately
half of system memory and profiles the memory architecture of the system. In
the case of MPIRandomAccess, total main table of size 8589934592(233) words
is used in all tests. The PE main table of size 228, (233)/48, and (233)/56 words
are used respectively for 32, 48, and 56 threads in case of both MPIRandomAc-
cess and StarRandomAccess. The number of performed updates is four times the
table size. Figure 8 shows the performance of RandomAccess benchmark for each
of the three ecosystems. It can be observed that benchmark scales well. Similar
performance is observed from the StarRandomAccess benchmark in all the three
cases. In the case of MPIRandomAccess, initially, BareMetal gives slightly better
performance than the container. But, it gradually converges as the number of
threads is increased. VM based ecosystem presents 52.6% and 37.5% overhead
compared to BareMetal in 32 and 48 threads cases, due to its high pressure on
TLB and handling of a very large number of short messages between the proces-
sor in virtualized environment. Performance degrades gradually as the number
of threads is increased. This is due to the fact that the threads of non-power 2
introduce overhead by integer division operation to figure out the location of the
memory operation. The multi-thread mapping mode and error tolerance incur
negative impact.

Performance Evaluation of Container-Based HPC Ecosystem 303

Fig. 8. Performance of (a) StarRandomAccess. (b) MPIRandomAccess.

6.3 Interconnect Performance

PTRANS (Parallel Matrix transpose) is used to investigate communication,
where pairs of processors communicate with each other using large messages
simultaneously. It is used to test total communication capacity of the system
interconnect. We input a matrix of size 50000× 50000 processes and process
grid of size 2× 16, 3× 16, and 4× 13. Figure 9 depicts the performance of the
PTRANS benchmark for each of the three ecosystems. The result shown is
for the configuration that produces the optimal result. The VM based ecosys-
tem presents the lowest performance among the three ecosystems. The bench-
mark stresses the global network and shows the degraded performance when we
increase the number of threads, this is due to the involvement of communication
interconnects.

The b eff benchmark is utilized to measure effective bandwidth and latency
on interconnect of the constructed ecosystems. It exchanges 8 bytes and 2,000,000
bytes of messages respectively using simple MPI point-point routines for measur-
ing latency and bandwidth of communication interconnects. In ring communica-
tion, all the communicating processes are arranged in a ring, and each process
sends and receives messages to its neighbor in parallel. The ring communication

Fig. 9. Performance of PTRANS on BareMetal, Container, and VM based ecosystem

304 A. Kuity and S.K. Peddoju

Fig. 10. Performance of (a) AvgPingPongLatency. (b) RandomlyOrderedRingLatency.

Fig. 11. Performance of (a) AvgPingPongBandwidth. (b) RandomlyOrderedRing-
Bandwidth.

was conducted on 32, 48, and 56 processes. The Ping Pong communication
was operated on 992(32*(32-1)), 2256, and 3080 pairs of processes for latency
and bandwidth benchmarking. In Fig. 10, avgPingPong and random-order ring
latency are presented for each of the three ecosystems. The BareMetal and
Container-based ecosystem report the same latency behavior. But VM-based
ecosystem presents a higher latency. This is due to the network virtualization
overhead. In all cases, latency increases gradually as we increase the number of
threads. As we increase the number of threads, the processes need to traverse
a number of stages. Figure 11 shows the avgPingPong and random-order ring
bandwidth for each of the three ecosystems. The BareMetal and container based
ecosystems depict the nearly same bandwidth. Again, all cases show a rapid drop
in performance once we increase the number of communicating processes due to
traversal of multiple stages.

Performance Evaluation of Container-Based HPC Ecosystem 305

6.4 Disk Performance

The well-known IOzone7 benchmark is used to evaluate the disk performance of
our build ecosystems. This benchmark generates and measures a variety of file
operations such as read, writes, re-read, re-write, read backwards, read strided,
fread, fwrite, random read/write, pread/pwrite variants, aio read, aio write,
mmap to examine file IO operation of the ecosystems. The benchmark is run
with maximum file size of 15 GB and record size of 16 MB. Figure 12 evaluates
the performance of the IOzone benchmark related to different read and write
operations for each of the three ecosystems. We observe very little performance
penalty related to different IO operation in Container-based ecosystem compared
to native performance. But, a significant performance penalty is encountered in
VM based ecosystem due to its high overhead related to IO operations, mainly
write inside the virtualized environment. A noticeable difference is seen in VM
case as we increase file size due to the inefficiency of virtualization driver to
handle large file size. The Container-based ecosystem shows proportional degra-
dation in IO performance as we increase the file size. This is due to the fact that,
container scheduler tries to reorder IO aggressively to avoid starvation as much
as possible.

Fig. 12. Performance of IOzone (a) Strided Read. (b) Random write.

7 Conclusion and Future Work

In this study, the performance analysis of the Container-based HPC ecosys-
tem using OpenPOWER is presented. The suitability of the container based
HPC ecosystem running on OpenPOWER is evaluated stressing on the differ-
ent subcomponents of the HPC environment using different benchmarks, HPCC
and IOzone. With the help of these benchmarks, it can be observed that the
Container-based HPC ecosystem with OpenPOWER combination shows very
7 http://www.iozone.org/.

http://www.iozone.org/

306 A. Kuity and S.K. Peddoju

little performance penalty in all aspects compared to native performance. Our
experiments show that the VM based HPC solution is not optimized enough to
be used with workloads on supercomputing facilities. One primary observation is
that there is no work reported implementing Containers on OpenPOWER sys-
tems. But the experimental results indicate that the Container-based HPC solu-
tion implemented on OpenPOWER can be treated as the most viable solution
to fulfill the user’s customized environment requirements in shared HPC cluster
without compromising the raw performance of the systems. In some cases, it is
noticed that the Container-based solution outperforms the native environment;
it might be due to less interference by other running processes and optimized
library used in a container environment.

In future, an attempt will be made to compare the Container-based HPC
ecosystem run on OpenPOWER with that of x86 systems. Also, the system
aware and the environment specific tuning can be accomplished in our current
benchmark experiment.

References

1. Adufu, T., Choi, J., Kim, Y.: Is container-based technology a winner for high
performance scientific applications? In: 17th Asia-Pacific Network Operations and
Management Symposium: Managing a Very Connected World, APNOMS 2015, pp.
507–510 (2015)

2. Basili, V.R., Carver, J., Cruzes, D.S., Hochstein, L., Hollingsworth, J.K., Shull,
F., Zelkowitz, M.V.: Understanding the high performance computing community:
a software engineer’s perspective. IEEE Softw. 25(4), 29–36 (2008)

3. Bernstein, D.: Containers and cloud: from LXC to Docker to kubernetes. IEEE
Cloud Comput. 1, 81–84 (2014)

4. Beserra, D., Moreno, E.D., Endo, P.T., Barreto, J., Sadok, D., Fernandes, S.:
Performance analysis of LXC for HPC environments. In: Proceedings - 2015 9th
International Conference on Complex, Intelligent, and Software Intensive Systems,
CISIS 2015, pp. 358–363 (2015)

5. Brief, S.: Dell solutions for high performance computing. Technical report, June
2015

6. Canon, R.S., Jacobsen, D.: Shifter: containers for HPC. In: Cray Users Group
Conference (CUG 2016) (2016)

7. Carter, J., Oliker, L., Shalf, J.: Performance evaluation of scientific applications
on modern parallel vector systems. In: Daydé, M., Palma, J.M.L.M., Coutinho,
Á.L.G.A., Pacitti, E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp.
490–503. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71351-7 38

8. Cisco; Red Hat: Linux Containers: Why They’re in Your Future and What Has to
Happen First Application Delivery: Today’s Challenges. Technical report (2014)

9. Conway, S., Joseph, E.C., Sorensen, B.: An Approach for Designing HPC Systems
with Better Balance and Performance, vol. (1), pp. 1–7 (2016)

10. Dongarra, J.J., Luszczek, P.: Overview of the HPC challenge benchmark suite. In:
Proceeding of SPEC Benchmark Workshop. Citeseer (2006)

11. Dunigan, T.H., Vetter, J.S., White, J.B., Worley, P.H.: Performance evaluation of
the cray X1 distributed shared-memory architecture. IEEE Micro 25, 30–40 (2005)

http://dx.doi.org/10.1007/978-3-540-71351-7_38

Performance Evaluation of Container-Based HPC Ecosystem 307

12. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and Linux containers. In: 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 171–
172 (2015)

13. Gerlach, W., Tang, W., Keegan, K., Harrison, T., Wilke, A., Bischof, J., Dsouza,
M., Devoid, S., Murphy-Olson, D., Desai, N., Meyer, F.: Skyport - container-based
execution environment management for multi-cloud scientific workflows. In: Pro-
ceedings of DataCloud 2014: 5th International Workshop on Data Intensive Com-
puting in the Clouds - Held in Conjunction with SC 2014: The International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pp.
25–32 (2015)

14. Gupta, A., Kale, L.V., Gioachin, F., March, V., Suen, C.H., Lee, B.S., Faraboschi,
P., Kaufmann, R., Milojicic, D.: The Who, What, Why, and How of high perfor-
mance computing in the cloud. In: 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science, pp. 306–314 (2013)

15. Gupta, A., Kalé, L.V., Milojicic, D.S., Faraboschi, P., Kaufmann, R., March, V.,
Gioachin, F., Suen, C.H., Lee, B.S.: Exploring the performance and mapping of
HPC applications to platforms in the cloud. In: Proceedings of the 21st Inter-
national Symposium on High-Performance Parallel and Distributed Computing -
HPDC 2012, pp. 121–122 (2012)

16. He, Q., Zhou, S., Kobler, B., Duffy, D., Mcglynn, T.: Case study for running
HPC applications in public clouds. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing - HPDC 2010, pp. 395–
401 (2010)

17. Jackson, K., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasser-
man, H., Wright, N.: Performance analysis of high performance computing appli-
cations on the amazon web services cloud. In: 2010 IEEE Second International
Conference on Cloud Computing Technology and Science (CloudCom) (2010)

18. Jacobsen, D.M., Canon, R.S.: Contain this, unleashing Docker for HPC. In: Cray
User Group 2015 (2015)

19. Kanso, A., Huang, H., Gherbi, A.: Can Linux containers clustering solutions offer
high availability? In: Second Workshop on Containers (WoC) - Colocated with
IC2E 2016 (2016)

20. Liu, D., Zhao, L.: The research and implementation of cloud computing platform
based on Docker. In: 2014 11th International Computer Conference on Wavelet
Active Media Technology and Information Processing (ICCWAMTIP), pp. 475–
478 (2014)

21. Lu, K., Chi, W., Liu, Y., Tang, H.: HPVZ: a high performance virtual computing
environment for super computers. Technical report 111072 (2009)

22. Mancini, M., Aloisio, G.: How advanced cloud technologies can impact and change
HPC environments for simulation. In: Proceedings of the 2015 International Con-
ference on High Performance Computing and Simulation, HPCS 2015, No. Cmcc,
pp. 667–668 (2015)

23. Matthews, J.N., Hu, W., Hapuarachchi, M., Deshane, T., Dimatos, D., Hamilton,
G., McCabe, M., Owens, J.: Quantifying the performance isolation properties of
virtualization systems. In: Proceedings of the 2007 Workshop on Experimental
Computer Science (ExpCS 2007), p. 6 (2007)

308 A. Kuity and S.K. Peddoju

24. Ruiu, P., Terzo, O., Carlino, G., Prandi, R., Falzone, A., Maggi, P., Torterolo, L.,
Usai, E., Perego, G.: HPC CloudPills: on-demand deployment and execution of
HPC application in cloud environments. In: Proceedings - 2014 9th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2014,
pp. 82–88 (2015)

25. Ruiz, C., Jeanvoine, E., Nussbaum, L.: Performance evaluation of containers for
HPC. In: Hunold, S., Costan, A., Giménez, D., Iosup, A., Ricci, L., Gómez
Requena, M.E., Scarano, V., Varbanescu, A.L., Scott, S.L., Lankes, S., Weiden-
dorfer, J., Alexander, M. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 813–824.
Springer, Cham (2015). doi:10.1007/978-3-319-27308-2 65

26. Scheepers, M.J.: Virtualization and containerization of application infrastructure:
a comparison. In: 21st Twente Student Conference on IT, pp. 1–7 (2014)

27. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based
operating system virtualization: a scalable, high-performance alternative to hyper-
visors. ACM SIGOPS Operating Syst. Rev. 41(3), 275–287 (2007)

28. Stankovski, V., Taherizadeh, S., Taylor, I., Jones, A., Mastroianni, C., Becker, B.,
Suhartanto, H.: Towards an environment supporting resilience, high-availability,
reproducibility and reliability for cloud applications. In: 2015 IEEE/ACM 8th
International Conference on Utility and Cloud Computing (UCC), pp. 383–386
(2015)

29. Tang, W., Wilkening, J., Desai, N., Gerlach, W., Wilke, A., Meyer, F., Bischof, J.,
Gerlach, W., Wilke, A., Desai, N., Meyer, F.: A scalable data analysis platform
for metagenomics. In: 2013 IEEE International Conference on Big Data, pp. 21–26
(2013)

30. Varghese, B., Subba, L.T., Thai, L., Barker, A.: Container-based cloud virtual
machine benchmarking. In: 2016 IEEE International Conference on Cloud Engi-
neering (IC2E), pp. 192–201 (2016)

31. Weidner, O., Atkinson, M., Barker, A., Vicente, R.F.: Rethinking high performance
computing platforms: challenges, opportunities and recommendations, pp. 19–26
(2016)

32. Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T., De Rose, C.: Performance
evaluation of container-based virtualization for high performance computing envi-
ronments, pp. 233–240 (2013)

33. Yu, H.e., Huang, W.: Building a virtual HPC cluster with auto scaling by the
Docker. In: Computing Research Repository, vol. abs/1509.0, p. 4 (2015)

34. Zhang, J., Lu, X., Arnold, M., Panda, D.K.: MVAPICH2 over OpenStack with SR-
IOV: an efficient approach to build HPC clouds. In: Proceedings - 2015 IEEE/ACM
15th International Symposium on Cluster, Cloud, and Grid Computing, CCGrid
2015, pp. 71–80 (2015)

35. Zhang, J., Lu, X., Panda, D.K.: Performance characterization of hypervisor-and
container-based virtualization for HPC on SR-IOV enabled InfiniBand clusters. In:
2016 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pp. 1777–1784 (2016)

36. Zheng, C., Thain, D.: Integrating containers into workflows. In: Proceedings of the
8th International Workshop on Virtualization Technologies in Distributed Com-
puting - VTDC 2015, vol. 2, pp. 31–38 (2015)

http://dx.doi.org/10.1007/978-3-319-27308-2_65

Pre-exascale Architectures: OpenPOWER
Performance and Usability Assessment for

French Scientific Community

Gabriel Hautreux1(B), Alfredo Buttari7, Arnaud Beck11, Victor Cameo9,
Dimitri Lecas9, Dominique Aubert9, Emeric Brun10, Eric Boyer1,

Fausto Malvagi10, Gabriel Staffelbach4, Isabelle d’Ast4, Joeffrey Legaux4,
Ghislain Lartigue5, Gilles Grasseau11, Guillaume Latu2, Juan Escobar2,
Julien Bigot2, Julien Derouillat2, Matthieu Haefele2, Nicolas Renon8,
Philippe Parnaudeau1, Philippe Wautelet1, Pierre-Francois Lavallee1,

Pierre Kestener1, Remi Lacroix1, Stephane Requena1, Anthony Scemama3,
Vincent Moureau5, Jean-Matthieu Etancelin6, and Yann Meurdesoif6

1 GENCI, Paris, France
gabriel.hautreux@genci.fr

2 Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ,
Université Paris-Saclay, 91191 Gif-sur-Yvette, France

3 Laboratoire de Chimie et Physique Quantiques, Université de Toulouse,
CNRS, UPS, Toulouse, France
4 CERFACS, Toulouse, France

5 CORIA, CNRS UMR6614, Normandie Université,
Saint-Etienne-du-Rouvray, France

6 CReSTIC EA3804, ROMEO HPC Center, University of Reims
Champagne-Ardenne, Reims, France

7 IRIT, CNRS UMR5505, Université de Toulouse, Toulouse, France
8 CALMIP, Université de Toulouse, Université Paul Sabatier, CNRS, UMS3667,

Toulouse, France
9 Observatoire Astronomique de Strasbourg,

UMR 7550 Universite de Strasbourg - CNRS, Strasbourg, France
10 Den-Service d’Études des Réacteurs et de Mathématiques Appliquées (SERMA),

CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
11 Leprince-Ringuet Laboratory (LLR), CNRS/IN2P3, Ecole Polytechnique,

Palaiseau, France

Abstract. Exascale implies a major pre-requisite in terms of energy
efficiency, as an improvement of an order of magnitude must be reached
in order to stay within an acceptable envelope of 20 MW. To address
this objective and to continue to sustain performance, HPC architectures
have to become denser, embedding many-core processors (to several hun-
dreds of computing cores) and/or become heterogeneous, that is, using
graphic processors or FPGAs. These energy-saving constraints will also
affect the underlying hardware architectures (e.g., memory and storage
hierarchies, networks) as well as system software (runtime, resource man-
agers, file systems, etc.) and programming models. While some of these
architectures, such as hybrid machines, have existed for a number of years

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 309–324, 2017.
https://doi.org/10.1007/978-3-319-67630-2_23

310 G. Hautreux et al.

and occupy noticeable ranks in the TOP 500 list, they are still limited to
a small number of scientific domains and, moreover, require significant
porting effort. However, recent developments of new paradigms (espe-
cially around OpenMP and OpenACC) make these architectures much
more accessible to programmers. In order to make the most of these
breakthrough upcoming technologies, GENCI and its partners have set
up a technology watch group and lead collaborations with vendors, rely-
ing on HPC experts and early adopted HPC solutions. The two main
objectives are providing guidance and prepare the scientific communities
to challenges of exascale architectures.

The work performed on the OpenPOWER platform, one of the tar-
geted platform for exascale, is described in this paper.

Keywords: OpenPOWER assessment · Technological watch ·
OpenMP · OpenACC · Benchmarks · Usability · Programmability

1 Introduction: Technological Watch Group Environment

1.1 Partners and Goals

The technological watch group, lead by GENCI, is gathering 20 experts from the
French HPC community including: CEA, CNRS, Inria, Maison de la Simulation,
Groupe Calcul and the national computing centers (CINES, IDRIS, TGCC) The
main goal of this activity is to assess the usability of standard programming
paradigms in order to port/optimize scientific applications and tools on multiple
heterogeneous novel HPC platforms. As many efforts have been done during the
past to port applications using standards like OpenMP, it has been defined as
the main pre-requisite for our assessment.

On top of that, the collaboration initiated with IBM and NVidia within
this project helped us to enable the application thanks to multiple workshops
performed since the beginning of 2016.

1.2 Platform and Environment Available

One of the key platform assessed by GENCI and its partners is the Ouessant
OpenPOWER system, hosted at IDRIS, Orsay, integrated by IBM with the
following characteristics:

– 12 IBM System S822LC “Minsky” nodes with for each:
• 2 IBM POWER8 10-core processors clocked at 4.2 GHZ and 128 GB of

main memory;
• 2 NVidia P100 GPUs per socket;
• each socket is connected to the 2 GPUs via NVLink 1.0;

– all the nodes are federated through a Mellanox EDR Infiniband interconnect
– and access to a high bandwidth filesystem (IBM Spectrum Scale, formerly

known as GPFS)

GENCI OpenPOWER Assessment 311

This platform is installed using a Linux distribution (RedHat7) and has a
variety in its compilation/execution environment. PGI, IBM and LLVM com-
pilers were used on the platform to assess the applications. The main difficulty
is that, at the moment, those compilers all have pros and cons. As LLVM had
(beginning of 2016) difficulties to compile Fortran applications for the POWER8
architecture, most of the users compiled using either PGI or IBM compilers.

The compilers are evolving very frequently (almost every other week). Hence,
the results presented in this paper are a snapshot of the work performed at the
end of March 2017.

1.3 Applications

To assess the platform, we first used the following portfolio of 15 representative
“real” applications, running daily in production, with the involvement of their
respective developers:

– AVBP [1]: a parallel CFD code that solves the three-dimensional compress-
ible Navier-Stokes equations on unstructured and hybrid grids.

– CMS-MEM [2]: a Matrix Element Method for High Energy Physics (HEP)
– Dynamico: a new dynamical core for LMD-Z, the atmospheric general cir-

culation model (GCM) part of IPSL-CM Earth System Model
– EMMA [3]: an adaptive mesh refinement cosmological simulation code with

radiative transfer.
– GPS [4]: Gross Pitaevskii Simulator: modeling of Bose-Einstein Condensates,

quantum turbulence, or ultracold quantum gases in optical lattices
– Gysela: models the electrostatic branch of the Ion Temperature Gradient

turbulence in tokamak plasmas
– Hydro [5]: a mini-application which implements a simplified version of RAM-

SES, a code developed to study large scale structure and galaxy formation
– Meso-NH [6]: the non-hydrostatic mesoscale atmospheric model of the

French research community
– Metalwalls: a French molecular dynamic application
– PATMOS [7]: a Monte Carlo transport application
– QMC=Chem: a Quantum Monte Carlo code applied to chemistry
– qr mumps: a direct solver for sparse linear systems
– RAMSES: CFD applications for astrophysics
– SPECFEM3D GLOBE: simulates global and regional (continental-scale)

seismic wave propagation
– YALES2 [8]: parallel CFD for two-phase combustion in complex geometries,

solving 3D low-Mach number Navier-Stokes equations on unstructured grids.

This portfolio of applications has been chosen as it represents a wide range
of domains and the close collaboration we have with the developers helped us to
define significant (scientifically speaking) test cases.

312 G. Hautreux et al.

1.4 Performance Indicators

The aime of this project is to provide guidance for the future HPC users of such
architecture. First workshops have demonstrated that porting an application to
the POWER8 architecture is completely straightforward (compile and run), at
least since the end of 2016.

However, the OpenPOWER platform involving its 4 NVidia GPUs enables
the nodes to provide such a huge computational capacity that the POWER8
processor alone can not be the target for an application.

Hence, the relevant results obtained on Ouessant aim to define:

– Baselines in terms of performance (time to solution) for a given field of appli-
cation ported on a full Minsky node

– the GPU porting effort for different paradigms (CUDA, OpenMP,
OpenACC, . . .)

– the maturity of the software stack for code offloading to GPUs

The results obtained will help the scientific communities and GENCI to define
if OpenPOWER is a suitable architecture for their simulations on top of provid-
ing guidance for the upcoming HPC procurements for French national computing
centers.

2 Work Performed on Each Application

The contributions in this section are mainly provided by the users. Hence, some
of the applications listed earlier are not described as the worked performed on
the platform is not sufficient in order to get relevant results.

2.1 AVBP

AVBP is an explicit compressible code for fluid mechanics and reactive applica-
tions used by both research and industry groups1. It has a hybrid, parallel MPI
+ OpenMP implementation. The domain is partitioned over the MPI tasks. For
each MPI task, the local domain is partitioned into groups of cells.

The main computational section of the code is constituted by an external
loop over the groups of cells. The internal routine scheme includes 50% of the
code with internal vectorized loops over the cells. The data implementation is
structured in FORTRAN modules and globally shared over the routines. AVBP
is based on a coarse grain OpenMP approach with the parallel static loop over
the groups of cells. In order to remove memory bottlenecks, variables and arrays
are declared with OpenMP Private clause and Threadprivate directive in the
modules. The contributions of every thread are store independently in the arrays
passed in parameter and indexed in the latest dimension over the groups, as
illustrated below with the arrays avis.

1 http://cerfacs.fr/logiciels-de-simulation-pour-la-mecanique-des-fluides/.

http://cerfacs.fr/logiciels-de-simulation-pour-la-mecanique-des-fluides/

GENCI OpenPOWER Assessment 313

!$OMP PARALLEL DO SHARED(nvert,avis,...) &
PRIVATE(kgroup,itype,ng1,...)
DO kgroup=1,ngroup

call scheme(nglen, nvert(kgroup),kgroup,ng1,itype,...,&
volc(ng1), factor(ng5), avis(kgroup), .. avis2(kgroup),&
avis4_tpf(kgroup),dw_spec_c_nv_buf(:,:,:,kgroup),&
dw_fic_c_nv_buf(:,:,:,kgroup),...)

The first GPU implementation has been performed using OpenACC pro-
graming model; a switch to OpenMP 4.5 will be eventually studied in a second
step. The choice of OpenACC over OpenMP 4.5 has been motivated by the
existence of the Unified Memory feature, even though in the very first imple-
mentation of the code, the data transfers have been manually managed using
explicit directives. The GPU implementation uses the same scheme as the cur-
rent OpenMP implementation, with an offload of the entire scheme function
to the GPU. The OpenMP directive controlling the main loop over the groups
has been substituted by an OpenACC directive to generate OpenACC gang or
CUDA block. The internal, vectorized loops are parallelized over OpenACC vec-
tors and threads, to ensure a good GPU occupancy. Compared to the current,
pure-CPU implementation, the following evolutions are required to manage the
GPU offload:

– Data from modules used within the scheme routine has to be allocated on
the GPU using the OpenACC declare create directive in the correspond-
ing module, bound with enter and exit data directives, and copied or updated
to/from the GPU using OpenACC copy/update device/update host direc-
tives before and after the main loop.

– Private variables and arrays in the threads with OpenMP Threadprivate
directive was declared in the private clause of the OpenACC loop over the
gang.

– All the routines and function potentially offloaded to the GPU have been
declared with OpenACC seq/vector directives. These directives direct the
compiler to generate both CPU and GPU paths.

2.2 EMMA

EMMA is an MPI + CUDA code which was already running on GPUs before the
beginning of the project. The porting effort was very small, a simple compilation
and then a run enabled to get first results on the platform. At the moment,
around 50% of the code is running on GPUs. The goal is to reach 80% of the
code by the end of 2017. However, first results on the platform are available for
this application.

The CUDA kernel results are summarized in Table 1 while the full application
is presented in Table 2.

We see a huge decrease in terms of performance for running the entire appli-
cation, this is clearly explained as the full application has not been ported to
CUDA.

314 G. Hautreux et al.

Table 1. EMMA single Kernel on OpenPOWER

Node SMT Mode Processes/Node Tasks/GPU Time Speed-up

P8 1 4 0 5.75 1.0

P8+4P100 1 4 1 0.21 27.4

Table 2. EMMA full application on OpenPOWER

Node SMT Mode Processes/Node Tasks/GPU Time Speed-up

P8 1 4 0 14.6 1.0

P8+4P100 1 4 1 5.8 2.5

2.3 GPS

GPS is an application developed in MPI and relying heavily on Fast Fourier
Transforms.

Approximately 100% of the code used by the test case is offloaded using
OpenACC.

The performance of this OpenACC implementation suffers from the absence
of the GPU-Direct feature, which is set to be made available in 2018 with the next
generation of systems based on POWER9. This leads to a significant performance
penalty when using the Managed Memory feature in OpenACC.

In order to evaluate the expected performance gain from GPU acceleration
once the GPU-Direct feature will be released, the code has been tested without
MPI; numerical results will not be valid, but the same amount of computation
is performed. In this configuration (with no specific optimization), the execution
is approximately twice faster when using 4 GPU versus 16 POWER8 cores.

2.4 GYSELA

The first target was to evaluate the potential of the performance boost which
could be provided through GPU acceleration, and thus confirm that the Open-
POWER platform was a valid architecture for the GYSELA exploitation.

In the context of this preliminary validation phase, the work was conducted:

– On a subset of the full application: the 2D-Advection Kernel.
– Through a CUDA implementation, in order to bypass the potential current

limitations of the compilation environment with respect to directive-based
programming models (OpenACC or OpenMP).

The performance results achieved at the end of this first step are available in
Table 3.

These performance levels fully validate the capacity to benefit from a signifi-
cant performance boost thanks to GPU acceleration. Based on this first outcome,
the second phase started in Q2 2017, which will shift:

GENCI OpenPOWER Assessment 315

Table 3. GYSELA 2D-Advection Kernel performance on OpenPOWER

Node Processes/Node MCells/s Speed-up

P8 1 9.0 1.0

P8+1P100 1 56.9 6.3

– From the single 2D-Advection Kernel to the whole application.
– From a CUDA-based implementation to an OpenACC-based implementation.

2.5 Hydro

Hydro is a MPI + OpenMP code widely used by IDRIS in their workshops as
a tutorial to learn MPI and OpenMP. This application is not involving deep
optimization and tries to mimic what a common developer could implement in
its application. The idea with Hydro is therefore to develop an OpenACC and an
OpenMP implementation that could make the most of the P100 with a limited
effort of development. This code could also become a good porting example for
the community.

However, a CUDA implementation has been developed as a first step, in
order to evaluate the performance gain the GPU acceleration can offer. The
performance level achieved through the CUDA implementation will constitute a
reference target for the directive-based implementations.

The following performance results have been obtained on a 8192× 8192 grid
(0.5 GB memory usage) using the CUDA implementation (Table 4):

Table 4. HYDRO performance on OpenPOWER

Node Time (s) Speed-up

OpenPOWER, POWER8, SMT4 29 1.0

OpenPOWER, POWER8 + 1P100 1.9 15.5

The development of an OpenACC implementation has already started. The
performance of this implementation currently suffers from the absence of the
GPU-Direct feature, which is set to be made available in 2018 with the next
generation of systems based on POWER9.

2.6 Meso-NH

Meso-NH is a code developed in MPI and OpenACC.
A part of the code was already ported in OpenACC before the beginning of

the project. There is an ongoing development and the team aims to port a huge
part of the application before the end of 2017.

316 G. Hautreux et al.

Table 5. Meso-NH single Kernel performance on OpenPOWER

Node Processes/Node Tasks/GPU Speedup

P8 16 0 1.0

P8+2K80 16 8 2.6

P8+4P100 16 4 5.6

First results on one node are already available for a given kernel in Table 5.
For this particular kernel, we see a speedup of 5.6 for using 4 GPUs on top of

the POWER8 processor. We also can see a speedup of 2.2 using 4 P100 compared
to 2 K80.

Those results are pretty good, however if we run the full application, the
speedups, in Table 6 are not as good.

Table 6. Meso-NH whole application performance on OpenPOWER

Node Processes/Node Tasks/GPU Speedup

P8 16 0 1.0

P8+2K80 16 8 1.3

P8+4P100 16 4 1.5

At the moment, the developer have troubles to port a significant part of
the application on GPU. The solver involved is not as easy to port as the one
previously ported. A porting effort of 2 years is envisioned in order to obtain a
speed-up of 5 on the full application.

2.7 Metalwalls

Metalwalls is a full MPI application for molecular dynamics. The code is written
in Fortran 90 and has 20.000 lines of codes. The time loop (computational part) is
3.500 lines long and represents almost 100% of the time spent in the application.
The strategy chosen by the development team was to port this application using
OpenACC as it seemed, in their opinion, to be the most reliable technology
available. 75% (of loop time) of the application is now ported to OpenACC, it
took them 1 month to carry out this work. The estimated time for porting the
full application is one other month.

The first results are in Table 7.
Those results, after only one month of work are pretty good. However the

work now has to be focused on running multiple GPUs and porting the remaining
part of the code(the speed-up for 1 GPU is 3.8, while 4GPUs is 4.9, which means
that the scalability on multiple GPUs is not good at the moment).

GENCI OpenPOWER Assessment 317

Table 7. Metalwalls performance on OpenPOWER

Test case Nodes SMT Mode Tasks/Node Tasks/GPU Time Speed-up

Small 1 4 80 0 5.9 1.0

Small 1 1 4 1 2.0 3.0

Large 1 4 80 0 364.7 1.00

Large 1 1 1 1 96.7 3.8

Large 1 1 4 1 74.6 4.9

However, as only a bit more than 75% of the code has been ported, that
means the theoretical speed-up they can achieve is around 4.0 (Amdahl’s law).
That’s the reason why we can consider that porting this application on the
OpenPOWER architecture is a success for them at the moment.

2.8 PATMOS

PATMOS is developed in C++11/14 with an hybrid parallelism based on MPI
+ OpenMP. A CUDA version of the application was also available in a prior
release and the main work performed by the development team was to include
those CUDA kernels into the main branch of the application. This work has been
done during the project and now 5% of the code (in lines, but representing 75%
of the CPU time) is available in CUDA. The target is to port another 5% in
order to almost cover the whole application.

The results in Tables 8 and 9 are obtained using 1 MPI process per node,
OpenMP threads are then used for the in-node parallelism. The results obtained
on multiple nodes are almost as good as the ones obtained on the single node,
which shows that the scalability of the application on this platform is very good.

Unfortunately, no test has been done using OpenMP for offloading to GPUs,
but still we hope that we could run an OpenMP version on the platform in
order to compare the performances we reach in CUDA and the performances

Table 8. PATMOS single node result

Test case Nodes SMT Mode Threads/Node GPU used Time Speed-up

Small 1 4 80 0 24.0 1.0

Small 1 4 80 4 6.0 4.0

Table 9. PATMOS multiple node result

Test case Nodes SMT Mode Threads/Node GPU used Time Speed-up

Large 8 4 80 0 582.1 1.0

Large 8 4 80 4 152.2 3.8

318 G. Hautreux et al.

we can reach using OpenMP. This part is ongoing and we expect to have good
performances using OpenMP as well.

2.9 QMC=Chem

QMC=Chem is a quantum chemistry code which applies the quantum Monte
Carlo (QMC) method to molecules to solve the Schrödinger equation. [9] Due
to the embarrassingly parallel nature of the algorithm, its parallel scaling is
almost ideal, and single-core optimization is crucial to improve the performance.
Hence, QMC=Chem was specifically optimized for Intel Xeon processors, used
in combination with the Intel Fortran compiler.

In this study, we have used QMC=Chem as a benchmark to test the perfor-
mance obtained with the Power8 CPU combined with the XL compiler toolchain.
We compare the results obtained on one node of the Ouessant cluster with those
obtained on one node of the Occigen cluster, namely a dual-socket Intel Xeon
CPU E5-2690v3 @ 2.6 GHz (Haswell). We used two test cases, one small and one
large, for which the hot spots are different kernels, both very representative of
the usual production runs. For the two test cases, we have counted, with the Intel
Software Development Emulator, [10] the total number of single precision (SP)
and double precision (DP) floating point instructions using an SSE2 executable.
This information combined with the elapsed time of the benchmarks allows us
to give an estimate of the performance in GFlops/s. Using the ratios of single
and double precision instructions (86% SP, 14% DP for the small case, and 4%
SP, 96% DP for the large case), we can also give an estimate of the percent of
the peak performance that was reached. The results are given in Table 10.

To reduce the bias due to the compiler we have first used the GNU Fortran
compiler on both architectures. On the small benchmark, the performance is
higher on the Power8 than on the Haswell, probably due to its larger L3 cache.
On the large benchmark, the performance is higher on the Haswell node, and the
multi-threading on the Power8 is really crucial to approach the performance of
the Xeon. Then, we have run the benchmarks compiled with vendor compilers.
Using the Intel compiler gives a ×2.1 acceleration on the Haswell node for the
small test case, and a ×1.5 acceleration of the large test case. Such a large
difference is due to the heavy use of Intel compiler directives in the hottest
loops. Going from the GNU to the IBM XL compiler, only a ×1.05 acceleration
is gained on the small test case, and the large test case becomes less efficient by
a factor of ×0.86.

These results show that, without any particular tuning, QMC=Chem is able
to reach 22.8% of the peak performance of the Power8 node on small cases, and
17.9% on large cases. This is a good start, and as there is no performance gain
using the XL compiler, we expect that a substantial performance increase could
be obtained with the XL compiler if some parts of the code are rewritten in a
more Power8-friendly fashion.

GENCI OpenPOWER Assessment 319

Table 10. Single node performance in GFlops/s. Percent of the peak (mixed single
and double precision) is given in parenthesis.

Compiler CPU Number of threads Small Large

GFlops/s % Peak GFlops/s % Peak

GNU Haswell 1 6.8 7.1

24 134.5 (7.2%) 145.0 (13.9%)

48 158.5 (8.5%) 136.9 (13.2%)

GNU Power8 1 10.2 2.1

20 182.5 (15.5%) 39.3 (5.9%)

40 230.1 (19.2%) 68.4 (10.2%)

160 258.2 (21.6%) 119.7 (17.9%)

Intel Haswell 1 18.3 10.9

24 332.9 (17.9%) 219.1 (21.1%)

48 346.6 (18.7%) 183.4 (17.8%)

IBM XL Power8 1 12.1 3.5

20 218.3 (18.3%) 64.4 (9.6%)

40 272.2 (22.8%) 96.4 (14.4%)

160 244.2 (20.4%) 103.0 (15.4%)

2.10 qr mumps

qr mumps is a direct solver for sparse linear systems based on the multifrontal
QR factorization. It currently supports single nodes with multiple cores and one
GPU. The parallelization is achieved through the StarPU runtime system. The
problem data is decomposed into blocks and the computations are arranged into
tasks whose dependencies are expressed by a Directed Acyclic Graph. StarPU
takes care of launching the execution of tasks when the related dependencies
are satisfied and when computational units are available [11]. In qr mumps a
dynamic and hierarchical data partitioning is used in order to have a good mix
of large grain tasks, which are executed on the GPU, and fine grain tasks which
are executed on the CPU cores. Moreover, when a GPU is available, a dedicated
scheduling policy is used which aims at maximizing the efficiency of tasks by
assigning each to the unit which is best suited for its execution. These techniques
allow for an effective use of all the computational resources available on the
node [12].

The porting on the OpenPOWER platform was relatively easy and needed
only minor code fixes due the strict compliance to the Fortran standards
enforced by IBM compilers. The graph below reports the strong scalability of
the qr mumps solver on a number of problems from the University of Florida
Sparse Matrix Collection.

320 G. Hautreux et al.

On the largest problem (matrix TF18) a performance of 407 Gflop/s was
achieved using 20 cores, which corresponds to a remarkable 73% of the peak,
with a very good scalability.

Using one GPU with the 20 cores, the performance of 1.2 Tflop/s was reached
(see Table 11, meaning of speed-up of 3 between one P8 node and one P8 node +
one P100.

Table 11. qr mumps: Performance in Tflop/s

Nodes Processes/Node GPUs Performance Speed-up

1 80 0 0.4 1.0

1 80 1 1.2 3.0

The main problem at the moment is that the code does not use multiple GPUs
on a single node as this functionality has not been implemented. qr mumps will
soon be integrated in a larger code which will enable this feature. The multi-GPU
results are expected to be very good as well.

2.11 RAMSES

RAMSES-GPU is developed since 2009 in CUDA/C++ for astrophysics appli-
cations on regular grid. The code is 70 k lines long (out of which about 16 k are
written in CUDA).

The main goal of the project was to make the code more portable. In order
to achieve this goal, the developer decided to use Kokkos [13]. The first result
using this paradigm is very interesting.

On average Pascal P100 is 2.8 to 4.0 faster than Kepler K80 (single GPU)
with no special optimization, only using rebuild architecture flags in the CUDA
implementation.

On top of that, Pascal P100 is about 10 times faster than Power8 (with 8
threads per core), still with CUDA. This result is illustrated in Table 12.

Table 12. RAMSES cell-update per second on POWER8, K80 and P100

Test Case POWER8 K80 P100 Speed-up P100 vs POWER8

“P1” 6.7 32.8 83.5 12.5

“P2” 2.1 4.7 19.5 9.3

“P3” 0.7 X 7.5 10.7

“P4” 0.27 0.83 2.7 10.0

On the Kokkos part, the 2nd-order MUSCL (2D/3D) performance are 2%
to 5% slower compared to hand-written CUDA kernels in RamsesGPU, which is
an impressive result for a less intrusive implementation.

GENCI OpenPOWER Assessment 321

2.12 SPECFEM3D GLOBE

Specfem3D is widely known code developed in MPI, OpenMP and CUDA. The
two test cases tested here are those available in the git repository (test small
bench very simple earth and test small bench more complex earth).

The code is running well on one node, with a speed-up up to 27 using a
GPU versus a single P8 core. The constraint with Specfem3D is that the test
case defines a number of MPI processes (which corresponds to the mesh parti-
tioning). Moreover, we tried using the NVIDIA MPS (Multi-Process Service) for
the P100 which would enable to run multiple CUDA kernels sent by different
MPI processes on the same GPU. This lead to huge slow-down caused by mem-
ory copy to the GPU. This constraint has to be addressed in order to improve
performance.

The code is generated with the PGI compiler, CUDA gencode60 and IBM
Spectrum MPI. Results for a single node workload are available in Table 13.

Table 13. Specfem3D: test small bench more complex earth

Nodes Processes/Node GPUs Time Speed-up

1 24 0 707.27 1.00

1 24 2 52.66 13.43

1 24 4 37.83 18.69

Results are good as we have a 18.69× speed-up between P8 node and P8
node + 4 GPUs. However, as we had a 13.43× using only 2 GPUs, we could have
expected at least a speed-up of 20 for using the 4 of them. A deeper analysis on
this point has to be done. On top of that, a scalability test on multiple nodes
using a bigger test case has to be considered.

2.13 YALES2

The main flow solver of YALES2 relies on hybrid MPI+OpenMP parallelism and
on object-oriented Fortran. The project of the development team was to assess
the usability of the GPUs by porting one of the most time consuming kernel (the
conjugate gradient algorithm for the solving of the Poisson equation) to CUDA
and by running a realistic test case. This work consisted in (i) changing the
conjugate gradient iteration to exhibit data parallelism, (ii) writing a generic C
to Fortran interface so that CUDA can access to the data structures of the code,
(iii) integrating the kernel in the full application. A work is ongoing for porting
all the kernels to GPUs, this task is starting and may take a few months/years
before it is completed.

The performances for the simulation of the flow around a 3D cylinder with
3.9 million cells are given in Table 14. The speed-up is measured only for the
conjugate gradient (CG) step. Interestingly, running with a single process and

322 G. Hautreux et al.

Table 14. Yales2 simulation of the flow around a 3D cylinder performances on Open-
POWER

Node Code SMT Mode Processes/Node Tasks/GPU Speed-up

P8 Standard 1 4 0 1.00

P8+1P100 CUDA 1 1 1 1.16

P8+4P100 CUDA 1 4 1 3.63

a single GPU is faster than using 4 processes. The changes in the CG step, to
exhibit data parallelism, slow down the code by approximately 20% but this is
largely compensated by the speed-up of the GPU. Running with 1 GPU per
process lead to a speed-up close to 4.

Fig. 1. First results obtained on Ouessant

3 Conclusion and Future Work

First of all, the POWER8 processor has to be defined as a very easy to use
processor. We clearly have seen over the last year an improvement in the compi-
lation environment which helped all of our users to port their application on the
machine very easily. Unfortunately, for now, the goal that we want to achieve
(i.e. porting all our applications to GPUs using OpenMP) is still a bit far from
us. Indeed, the main difficulty for the users on this platform is to understand the
GPU and how to adapt their application to it. While all of the users managed to
port their application on the POWER8, only a few applications were run on the
GPUs with a relevant level of performance. The platform can achieve very high
performances while using CUDA kernels, the IBM XL compiler is mainly used
for the code using CUDA kernels and provides a good level of performances.
First results on OpenACC show that we can also get good performances using
this paradigm but the time to achieve the performance is not in days, but in

GENCI OpenPOWER Assessment 323

weeks (and even sometimes months or years). However, we have seen over the
past year that the PGI compiler really adapted to the POWER8 architecture and
can achieve very high performance. The first results obtained on the platform
are available in Fig. 1.

OpenMP remains our main goal for legacy and portability of our applications,
but we do have troubles at the moment using this paradigm on the platform.
Indeed, the few tests we performed on the platform didn’t give us good per-
formances for GPU offloading, that’s one of the reason why none of our users
ported their application using OpenMP. On top of that, as the project started
at the beginning of 2016, the OpenMP functionality were not available and that
did not help the community to choose this paradigm. However, we still expect
that this platform will manage to run OpenMP for GPUs and get the same level
of performances than OpenACC. Those features should be implemented in the
IBM compiler by the end of the year. We also expect that modifying the code
from OpenACC to write OpenMP kernel will not be too much time consuming.

The opening of the platform, since April 2017, to the full French scientific
community will be a new opportunity for us to push for OpenMP and to continue
working using this paradigm at the national level. On top of that, we will assess
the scalability of the platform, using even larger test cases. The results obtained
with PATMOS (having an almost perfect scalability up to 8 nodes) make us
believe that this particular point should not be an issue.

Despite some porting troubles, the first results on the platform are very
promising and we are looking forward to the next generation of OpenPOWER
nodes.

Besides, we now have a focus on deep learning applications and the number
of project that applies for the Ouessant platform using PowerAI is increasing.
The first results are impressive and we are sure that this platform will help the
artificial intelligence community to address new challenges.

Acknowledgments. GENCI thanks all its partners within the project for their sup-
port as well as IBM and nVIDIA experts and all the developers that contributed to
the work performed on this platform.

References

1. Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., Staffelbach,
G., Garcia, M., Boussuge, J.F., Poinsot, T.: High performance parallel computing
of flows in complex geometries - part 1: methods. Comput. Sci. Disc. 2, 015003
(2009)

2. Grasseau, G., Chamont, D., Beaudette, F., Bianchini, L., Davignon, O.,
Mastrolorenzo, L., Ochando, C., Paganini, P., Strebler, T.: Matrix element method
for high performance computing platforms. In: Journal of Physics: Conference
Series, vol. 664, Bristol, Institute of Physics Publishing (2015). 092009

3. Aubert, D., Deparis, N., Ocvirk, P.: EMMA: an adaptive mesh refinement cosmo-
logical simulation code with radiative transfer. MNRAS 454, 1012–1037 (2015)

324 G. Hautreux et al.

4. Parnaudeau, P., Suzuki, A., Sac-Epee, J.M.: GPS: an efficient & spectrally accurate
code for computing gross-pitaevskii equation. In: Research Posters Session, ISC-
2015, Germany, 12–16 July 2015

5. Lavallée, P.-F., de Verdière, G.C., Wautelet, P., Lecas, D., Dupays, J.-M.: Porting
and optimizing hydro to new platforms and programming paradigms - lessons
learnt

6. http://mesonh.aero.obs-mip.fr/mesonh53/MesoNHReferences
7. Brun, E., Chauveau, S., Malvagi, F.: Patmos: a prototype Monte Carlo transport

code to test high performance architectures. In: M&C 2017 - International Con-
ference on Mathematics & Computational Methods Applied to Nuclear Science &
Engineering, Jeju, Korea, 16–20 April 2017

8. Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel CFD code
for complex geometries. Comptes Rendus Mcanique 339(2), 141–148 (2011)

9. Scemama, A., Caffarel, M., Oseret, E., Jalby, W.: Quantum Monte Carlo for large
chemical systems: Implementing efficient strategies for petascale platforms and
beyond. J. Comput. Chem. 34(11), 938–951 (2013)

10. Intel software development emulator. https://software.intel.com/en-us/articles/
intel-software-development-emulator. Accessed 26 Apr 2017

11. Agullo, E., Buttari, A., Guermouche, A., Lopez, F.: Implementing multifrontal
sparse solvers for multicore architectures with sequential task flow runtime systems.
ACM Trans. Math. Softw. 43(2), 13:1–13:22 (2016)

12. Agullo, E., Buttari, A., Guermouche, A., Lopez, F.: Task-based multifrontal QR
solver for GPU-accelerated multicore architectures. In: HiPC, pp. 54–63. IEEE
Computer Society (2015)

13. https://github.com/kokkos

http://mesonh.aero.obs-mip.fr/mesonh53/MesoNHReferences
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://github.com/kokkos

Experiences on Intel Knights Landing at
the One-Year Mark (IXPUG)

IXPUG: Experiences on Intel Knights Landing
at the One Year Mark

Estela Suarez1(B), Michael Lysaght2, Simon J. Pennycook3,
and Richard A. Gerber4

1 Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH,
Leo Brandt Strasse, 52428 Jülich, Germany

e.suarez@fz-juelich.de
2 Irish Centre for High End Computing (ICHEC), Trinity Technology

and Enterprise Campus, Grand Canal Quay, Dublin 2 D02 HP83, Ireland
3 Intel Corporation, Santa Clara, USA

4 National Energy Research Scientific Computing Center (NERSC),
Lawrence Berkeley National Laboratory (LBL), Berkeley, USA

Abstract. One year on since the launch of the 2nd generation Knights
Landing (KNL) Intel Xeon Phi platform, a significant amount of applica-
tion experience has been gathered by the user community. This provided
IXPUG (the Intel Xeon Phi User Group) a timely opportunity to share
insights on how to best exploit this new many-core processor, and in par-
ticular, on how to achieve high performance on current and upcoming
large-scale KNL-based systems.

Keywords: Intel Xeon Phi · KNL · Many-core · Performance · Bench-
mark · Optimisation · IXPUG

1 IXPUG: The Intel Xeon Phi User Group

The Intel Xeon Phi User’s Group (IXPUG) is an indepen-
dent users group whose mission is to provide a forum for
the free exchange of information that enhances the usabil-
ity and efficiency of scientific and technical applications

running on large High Performance Computing (HPC) systems using the Intel R©

Xeon PhiTMprocessor1. IXPUG is administered by representatives of member
sites that operate large Intel Xeon Phi-based HPC systems.

IXPUG holds meetings and other activities as determined by its members
to further its mission. Participation in IXPUG meetings and other activities is
open to anyone interested in using the Intel Xeon Phi for large-scale scientific
or technical computing. Current participants include staff from member sites,
users of member sites’ facilities, Intel staff, and others with an interest in using
the Intel Xeon Phi for scientific computing on large HPC systems.
1 Referred to as Intel Xeon Phi, without explicit registration and trademark super-
scripts, throughout the rest of this document.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 327–333, 2017.
https://doi.org/10.1007/978-3-319-67630-2_24

328 E. Suarez et al.

A Steering Committee (see Sect. 1.2) manages the overall direction of IXPUG,
planning meetings and activities and working with members and sponsors to
determine the most effective way to serve the HPC community.

IXPUG provides an effective conduit for application developers to interact
directly with Intel engineers and other experts. As part of its community activi-
ties, IXPUG regularly organizes workshops and BoFs at the main supercomput-
ing conferences, plus longer self-hosted user meetings distributed over the year
and world-wide geography. The IXPUG workshop at ISC 2017 is already the
third of a workshop series initiated at ISC 2015, which have been very positively
taken up by the community. Slides and training materials presented at IXPUG
events are accessible through the group website [1].

IXPUG workshops cover topics in application performance and scalability
challenges at all levels - from single processors to moderately-scaled clusters,
up to large HPC configurations with many Xeon Phi devices. The next IXPUG
event is the 2017 IXPUG US Annual Meeting, which will take place at the Texas
Advanced Computing Center (TACC) in Austin, USA, in September 26–28,
2017. Further information can be found under: http://www.ixpug.org/events.

1.1 Discussion Forum and Working Groups

Additional to the workshops and face-to-face meetings, the IXPUG has set-up a
number of online/remote platforms to facilitate the interaction between members
of the user community and with experts in the use of Intel Xeon Phi. The two
most important ones are the IXPUG forum and the IXPUG working groups.

The IXPUG online forum (https://www.ixpug.org/discussion) enables all
users to ask questions, share experience, and get support from the rest of the
community and also from Intel experts.

The working groups have been created to foster greater collaboration and
knowledge-sharing related to specific topics of particular interest. The working
groups provide virtual means to meet more regularly with other IXPUG members
between yearly face-to-face meetings, and are a great way to get involved in the
IXPUG community.

Working groups are open to anybody that wishes to join. Inclusion in the
mailing list of a working group is achieved by contacting the group organizer.
Contact data of the organizers and instructions to dial into individual meetings
are given under https://www.ixpug.org/working-groups.

Currently, IXPUG holds following working groups:

– General Optimization and Tuning: focused on sharing general results and
techniques, troubleshooting optimization issues, and facilitating collaboration
between community members and Intel engineers.

– Vectorization: focused on identifying frequent patterns and challenges
encountered in using compiler-assisted (auto-) vectorization, to generate feed-
back for compilers and language standards (e.g. OpenMP).

http://www.ixpug.org/events
https://www.ixpug.org/discussion
https://www.ixpug.org/working-groups

IXPUG: Experiences on Intel Knights Landing at the One Year Mark 329

– MPI: focused on sharing knowledge of methods for using MPI generally
and of Intel-oriented exploitation of MPI (e.g. Intel fabric, MPI library and
profilers).

New working groups are created when a significant amount of interest in a
specific topic is given, which gives sufficient momentum to sustain it.

1.2 Steering Committee

The IXPUG Steering Committee is currently composed of the following mem-
bers, which cover a wide range of supercomputing institutions and regions:

– Taisuke Boku, University of Tsukuba (Japan)
– Doug Doerfler, NERSC - National Energy Research Scientific Computing

Center/Berkeley Lab Supercomputing Center (USA)
– Richard Gerber, NERSC - National Energy Research Scientific Computing

Center/LBL - Lawrence Berkeley National Laboratory (USA)
– Clay Hughes, Sandia National Laboratory (USA)
– Juha Jaykka, The University of Cambridge (UK)
– David Keyes, KAUST - King Abdullah University of Science & Technology

(Saudi Arabia)
– Kent Milfeld, Texas Advanced Computing Center (USA)
– Hai Ah Nam, Los Alamos National Laboratory (USA)
– John Pennycook, Intel Corporation (USA)
– Thomas Steinke, Zuse Institute Berlin (Germany)
– Vit Vondrak, VSB - Technical University of Ostrava (Czech Republic)

The steering board is chaired by a leadership board. Its current members are:

– President: David Martin, Argonne National Laboratory (USA)
– Vice-President: Estela Suarez, Jülich Supercomputing Center,

Forschungszentrum Jülich GmbH (Germany)
– Secretary: Melyssa Fratkin, Texas Advanced Computing Center, The Uni-

versity of Texas at Austin (USA)

2 Workshop Overview

The one full-day IXPUG workshop Experiences on Intel Knights Landing at the
one year mark at ISC 2017 brought together about 50 members of a world-wide
community of application developers and technology experts working on Intel
Xeon Phi platforms.

The workshop was organized as an open forum with application program-
mers, software developers, system administrators, Intel Xeon Phi architecture
designers, and compiler and tool experts. Application performance and scalabil-
ity challenges at all levels were covered, focusing on application tuning on large

330 E. Suarez et al.

HPC systems with many KNL devices. Participants shared ideas, implementa-
tions, and experiences that help other users taking advantage of new Intel Xeon
Phi features, such as AVX512 and high-bandwidth MCDRAM memory, as well
as relevant high-performance system fabrics on large-scale KNL-based systems
(e.g. OmniPath).

By sharing knowledge on how to best exploit the major advances in vector-
ization, memory, and communication featured on the 2nd generation Intel Xeon
Phi platform, the workshop also had the wider aim of boosting the adoption of
many-core architectures in HPC and beyond.

The workshop consisted of three parts: a keynote presentation, talks on the
accepted papers, and a final panel session.

– The keynote, held by Richard Gerber, described success stories with high-
impact on science, coming out of the applications running on NERSC’s Cori.

– The submitted talks covered optimization in real-world HPC applications,
e.g. data layouts and code restructuring for efficient SIMD operation, thread
management, use of different memory modes, etc.

– The panel session was a lively discussion in which participants took the oppor-
tunity to discuss optimization strategies for Intel Xeon Phi, provide feedback
to the toolchain developers, and get insight from Intel experts on what is
expected from its future evolution.

3 Call for Papers

The call for papers to the IXPUG workshop at ISC 2017 was made public on
February 1, 2017. IXPUG welcomed paper submissions on innovative work from
KNL users in academia, industry and government labs, describing original dis-
coveries and experiences that will promote and prescribe efficient use of many-
core and multicore systems. Authors were requested to submit papers not pub-
lished in or being in preparation for other conferences, workshops or journals.

Topics of interest include (but are not limited to):

– Vectorization: Data layout in cache for efficient SIMD operations, SIMD
directives and operations, and 2-core tiling with 2D interconnected mesh.

– Memory: Data layout in memory for efficient access (data preconditioning),
access latency concerns (prefetch, streams, costs for HBM), partitioning of
DDR and HBM for applications (memory policies).

– Communication: Inter-node network communication, including early expe-
riences with OmniPath.

– Thread and Process Management: Process and thread affinity issues,
SMT (simultaneous multi-threading, in core), balancing processes and
threads.

IXPUG: Experiences on Intel Knights Landing at the One Year Mark 331

– Multi-node Application Experience: Results obtained running codes
across several KNL nodes, specially on large-scale KNL systems.

– Programming Models: OpenMP 4.x, hStreams, using MPI 3 on Xeon Phi,
hybrid programming (MPI/OpenMP, others)

– Algorithms and Methods: Numerical solutions, including scalable and
vectorizable algorithms

– Software Environments and Tools
– Benchmarking and Profiling Tools
– Visualization

Following this call, the organising committee received a total of nineteen
submissions, all of which were peer-reviewed by the Programm Committee (see
Sect. 6) applying a standard single-blind review process. The evaluation of the
submissions was based on the quality of the results, originality and new insights,
technical strength, and correctness. The overall quality was high and the nine
best submissions were selected (acceptance rate 47%) for a presentation at the
workshop, and to publish their papers in the ISC 2017 Workshop proceedings
volume within the Springer LNCS series.

4 Best Paper Award

For the first time in an IXPUG event, the Organisation Committee decided to
acknowledge the authors of the best submission with a Best Paper Award.

The two papers that received the best evaluation after the peer-review process
were identified as possible candidates for the award. All members of the Pro-
gramme Committee were requested to read the two submissions and vote for the
best one. The outcome of this vote was a tie, with exactly the same amount of
votes for the two candidates. Both were qualified as excellent contributions, and
no arguments were found to favour one against the other. Therefore the Program
Committee finally decided to award both submissions.

The two recipients of the Best Paper Award at the IXPUG workshop at
ISC 2017 are:

– Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD)
Simulations on the Intel Xeon Phi Processor
Eric Bylaska (PNNL), Mathias Jacquelin (LBL), Bert de Jong (LBL), Jeff
Hammond (Intel), and Michael Klemm (Intel Deutschland GmbH).

– KART - A Runtime Compilation Library for Improving HPC Application
Performance
Matthias Noack (ZIB), Florian Wende (ZIB), Georg Zitzlsberger (Intel
Deutschland GmbH), Michael Klemm (Intel Deutschland GmbH), and
Thomas Steinke (ZIB)

332 E. Suarez et al.

5 Workshop Agenda

Time Title Authors (Speaker*)

09:00 Opening David Martin

09:15 Keynote: High-Impact Science on
NERSC’s Cori: A KNL success story

Richard Gerber*

10:00 Best Paper Award: KART - A
Runtime Compilation Library for
Improving HPC Application
Performance

Matthias Noack*, Florian Wende, Georg
Zitzlsberger, Michael Klemm and Thomas
Steinke

10:30 Best Paper Award: Performance
Evaluation of NWChem Ab-Initio
Molecular Dynamics (AIMD)
Simulations on the Intel Xeon Phi
Processor

Eric Bylaska, Mathias Jacquelin, Bert de
Jong, Jeff Hammond and Michael Klemm*

11:00 Coffee Break

11:30 Porting Tissue-scale Cardiac
Simulations to the Knights Landing
Plattform

Johannes Langguth*, Chad Jarvis and Xing
Cai

12:00 Analyzing Performance of Selected
NESAP Applications on the Cori
HPC System

Thorsten Kurth*, William Arndt, Taylor
Barnes, Brandon Cook, Jack Deslippe, Doug
Doerfler, Brian Friesen, Helen He, Tuomas
Koskela, Mathieu Lobet, Tareq Malas,
Leonid Oliker, Andrey Ovsyannikov, Samuel
Williams, Woo-Sun Yang and Zhengji Zhao

12:30 amask: A tool for Evaluating
Affinity Masks in Large Systems

Kent Milfeld*

13:00 Coffee Break

14:00 On the mitigation of cache hostile
memory access patterns on
many-core CPU architectures

Tom Deakin*, Wayne Gaudin and Simon
Mcintosh-Smith

14:30 Optimizing fusion PIC code
performance at scale on Cori Phase
2

Tuomas Koskela* and Jack Deslippe

15:00 Performance variability on Xeon Phi Brandon Cook*, Thorsten Kurth, Samuel
Williams, Jack Deslippe and Brian Austin

15:30 From Knights Corner to Landing: a
Case Study Based on a
Hodgkin-Huxley Neuron Simulator

George Chatzikonstantis, Diego Jimenez,
Esteban Meneses, Christos Strydis, Harry
Sidiropoulos* and Dimitrios Soudris

16:00 Coffee Break

16:30 Panel Discussion Richard Gerber, Matthias Noack, Michael
Klemm, Joe Curley, Thomas Steinke

17:50 Closing David Martin

IXPUG: Experiences on Intel Knights Landing at the One Year Mark 333

6 Program Committee

Damian Alvarez
Carlo Cavazzoni
Gilles Civario
Doug Doerfler
Richard Gerber
Clayton Hughes
Balint Joo
Rakesh Krishnaiyer
Michael Lysaght
Simon McIntosh-Smith
Andrew Mallinson
David E. Martin
Hideki Saito
Thomas Steinke
Estela Suarez
Zhengji Zhao

Jülich Supercomputing Centre (JSC)
INECA
DELL
Lawrence Berkeley National Lab (LBL)
LBL/NERSC
Sandia National Laboratories
Thomas Jefferson National Accelerator Facility (Jefferson-Lab)
Intel Corporation
Ireland’s High-Performance Computing Centre (ICHEC)
University of Bristol
Intel Corporation
Argonne National Laboratory
Intel Corporation
Zuse Institute Berlin (ZIB)
Jülich Supercomputing Centre (JSC)
Lawrence Berkeley National Lab (LBL)

7 Workshop Organisers

Estela Suarez
Michael Lysaght
Simon J. Pennycook
Richard Gerber

Jülich Supercomputing Centre (JSC)
Ireland’s High-Performance Computing Centre (ICHEC)
Intel Corporation
LBL/NERSC

References

1. IXPUG: Intel Xeon Phi User Group, http://www.ixpug.org

http://www.ixpug.org

Analyzing Performance of Selected NESAP
Applications on the Cori HPC System

Thorsten Kurth1(B), William Arndt1, Taylor Barnes1, Brandon Cook1,
Jack Deslippe1, Doug Doerfler1, Brian Friesen1, Yun (Helen) He1,
Tuomas Koskela1, Mathieu Lobet1, Tareq Malas1, Leonid Oliker2,

Andrey Ovsyannikov1, Samuel Williams2, Woo-Sun Yang1, and Zhengji Zhao1

1 National Energy Research Scientific Computing Center, Berkeley, CA, USA
tkurth@lbl.gov

2 Computational Research Division, Lawrence Berkeley National Lab,
Berkeley, CA, USA

Abstract. NERSC has partnered with over 20 representative applica-
tion developer teams to evaluate and optimize their workloads on the
IntelR© Xeon PhiTMKnights Landing processor. In this paper, we present
a summary of this two year effort and will present the lessons we learned
in that process. We analyze the overall performance improvements of
these codes quantifying impacts of both Xeon PhiTMarchitectural fea-
tures as well as code optimization on application performance. We show
that the architectural advantage, i.e. the average speedup of optimized
code on KNL vs. optimized code on Haswell is about 1.1×. The aver-
age speedup obtained through application optimization, i.e. comparing
optimized vs. original codes on KNL, is about 5×.

1 Introduction

The National Energy Research Scientific Computing Center (NERSC) [10] is
the production HPC facility of the U.S. DOE Office of Science. It’s mission is to
enable and accelerate scientific discoveries through high performance computing
and data analysis. The center supports over 6,000 users with more than 700
applications which cover a wide variety of science domains [7]. Therefore, HPC
systems deployed at NERSC should not only support a diverse workload from
a broad user base but also satisfy the increasing demand of computing cycles
required to fulfill scientific goals. At the same time, power constraints for exascale
computing are forcing major HPC and data centers to transition to more energy
efficient-architectures.

At NERSC the transition to an energy-efficient pathway to exascale was
realized via the procurement of the Cori system: a Cray XC40 powered by more
than 9600 Intel R© Xeon PhiTM7250 (Knights Landing, KNL) based nodes which
were added to an existing Cori phase I system powered by 1900+ XeonTME5-
2698 (Haswell) CPUs. The Xeon PhiTM7250 is a self-hosted x86-64 compati-
ble CPU. As such, in principal, all current NERSC users can immediately run
their application without modification. In order to leverage the full capability of
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 334–347, 2017.
https://doi.org/10.1007/978-3-319-67630-2_25

NESAP Application Performance 335

Fig. 1. Breakdown of NERSC workload in fractions of overall compute hour budget
for 2015. NESAP applications are colored blue (note that the Other chunk includes
four other NESAP apps). (Color figure online)

the Knights Landing architecture however, scientific applications often require
some non-trivial optimization. In order to facilitate this transition, NERSC has
established the NERSC Exascale Science Application Program (NESAP) — a
collaboration of NERSC staff along with experts at Cray and Intel, as well as the
scientific application developers — with the goal of optimizing selected applica-
tions for the Xeon PhiTMarchitecture [8]. As shown by the blue regions of Fig. 1,
the NESAP codes constitute about 60% of the overall NERSC workload.

In this paper, we present the results of the NESAP effort by discussing
achieved speedups, lessons learned, and multi-node specific challenges develop-
ers might face when they aim at running their applications on KNL-based Cray
XC40 systems at scale.

2 HPC Systems at NERSC

We will briefly describe the three major HPC systems at NERSC as well as
compare the performance of (un-)optimized NESAP codes on all three systems
later on. We consider the following systems:

– Edison is a Cray XC30 supercomputer with peak performance of about
2.57 PFLOP/s. It is comprised of 5,586 compute nodes with two 12-core
Intel R© XeonTME5-4603 CPUs per node. Each of the 12 superscalar out-of-
order cores runs at 2.4 GHz and is capable of hosting 2 threads per core. Each
cores supports the AVX instruction set and includes a 32 KB L1 and 256 KB

336 T. Kurth et al.

L2 cache, and each socket includes a shared 30 MiB L3 cache and 32 GiB of
DDR3 memory (64 GiB/node).

– Cori-Haswell represents the 1.92 PFLOP/s Haswell partition of the Cori
Cray XC40 supercomputer. It is comprised of 2,004 compute nodes with two
16-core Intel R© XeonTME5-2698 CPUs per node. Each superscalar out-of-order
core runs at 2.3 GHz, has a similar cache architecture to those in Edison, but
supports the AVX2 instruction set. Unlike Edison, each socket has a 40 MiB
L3 cache and has 64 GiB of DDR4 main memory (128 GiB/node).

– Cori-KNL is the KNL partition of the Cori Cray XC40 supercomputer. It has
a peak performance of about 29.1 PFLOPS/s and is comprised of 9,688 self-
hosted KNL compute nodes. Each KNL processor includes 68 cores running
at 1.3 GHz and capable of hosting 4 HyperThreads (272 HyperThreads per
node). Each out-of-order superscalar core has a private 32 KiB L1 cache and
two 512-bit wide vector processing units (supporting the AVX-512 instruc-
tion set1). Each pair of cores (called “tile”) shares a 1 MiB L2 cache and
each node has 96 GiB of DDR4 memory and 16 GiB of on-package high band-
width (MCDRAM) memory. The MCDRAM memory can be configured into
different modes, where the most interesting being cache mode in which the
MCDRAM acts as a 16 GiB L3 cache for DRAM. Additionally, MCDRAM can
be configured in flat mode in which the user can address the MCDRAM as a
second NUMA node. The on-chip directory can be configured into a number of
modes, but in this publication we only consider quad mode, i.e. in quad-cache
mode where all cores are in a single NUMA domain with MCDRAM acting as
a cache for DDR, and in quad-flat mode where MCDRAM acts as a separate,
flat memory domain.

All three systems feature the Cray Aries low-latency, high-bandwidth intercon-
nect utilizing the dragonfly topology.

There are a number of challenges associated with optimizing codes for Xeon
PhiTM. Perhaps the most obvious is that new sources of parallelism must be
identified. This is not limited to only thread parallelism, but also includes vec-
torization opportunities. The latter imposes restrictions on data layouts (i.e.
data should be preferably contiguous and 64-bit aligned) and data dependencies
between loop iterations should be avoided. Furthermore, maximizing cache local-
ity is more important as there is no on-chip L3 cache to capture misses. Finally,
and this is important for multi-node scalability, a single Xeon PhiTMcore can not
saturate the injection rate of the Aries interconnect. Therefore, multiple cores
(multiple threads or multiple MPI ranks per node) should be employed in order
to achieve good performance. The detailed analysis of this is beyond the scope
of this paper and can be found in another reference [20].

3 NESAP Results Overview

In this paper, we present the results from a variety of NESAP codes or their
proxies. Table 1 displays an overview of these codes along with categorizations
1 This includes the subsets F, CD, ER, PF but not VL, BW, DQ, IFMA, VBMI.

NESAP Application Performance 337

of their scientific field and, if applicable, the application they act as proxy for.
The table further shows the most performance-critical kernels. Many of these
kernels are representative for kernels in modern scientific codes used on a variety
of HPC systems worldwide. The selection of codes further encompasses a broad
variety of communication patterns (nearest neighbor exchanges or other point-
to-point patterns, global reductions, all-to-all exchange, etc...) representative of
those found in a wide range of applications.

Table 1. Overview of NESAP applications discussed in this paper including important
references. The specified kernels represent the hot spots at the beginning of the NESAP
effort. Due to optimization efforts, their importance relative to the rest of the code has
decreased in general, but they still consume a significant fraction of the overall wall
time.

Name Scientific field Description Kernels Proxy

BerkeleyGW

[1,19]

Materials Science MBPT FFT, Linear Algebra

CESM

[2,28]

Climate Modeling Grid Stencil(Multiple), Linear

Algebra

WRF

Chombo-

Crunch

[42–44]

Multiple AMR EB EB Stencil(3D),

Solver(AMG)

Chroma

[23,29,30]

Nuclear Physics Lattice QCD Stencil(4D),

Solver(BiCGStab)

qlua

DWF HEP Lattice QCD FFT, Stencil(5D),

Solver(BiCGStab)

qlua

EMGeo

[38,39]

Geophysics Grid SpMM, Solver(IDR)

GROMACS

[4,40]

Materials Science Molecular Dynamics Force Calculation LAMMPS,

NAMD

HISQ HEP Lattice QCD Stencil(4D),

Solver(BiCGStab)

HMMER

[5,22]

Bioinformatics Gene Annotation Dynamic

Programming(2D),

Byteword Arithmetics

MFDN

[18,34–36]

Nuclear Physics Many Body SpMM,

Eigensolver(lanczos)

MILC

[6,17]

HEP Lattice QCD Stencil(4D),

Solver(BiCGStab)

qlua

MPAS-O

[37,41]

Climate Modeling Unstructured Grid Gather, Solver(RK4) WRF

Nyx/BoxLib

[14,24,33]

Multiple AMR Stencil(3D),

Solver(GMG)

Qbox

[11,26]

Materials Science PW DFT FFT, Linear Algebra,

Eigensolver(lanczos)

cp2k

Quantum

ESPRESSO

[16,25]

Materials Science PW DFT FFT, Linear Algebra,

Eigensolver(lanczos)

VASP

[31]

Materials Science PW DFT FFT,

Eigensolver(multiple)

WARP

[12,45]

Accelerator Physics PIC Gather, Sort, FFT, Solver osiris

XGC1

[13,27,32]

Fusion Research PIC Gather, Sort gtc, gts,

GYRO

338 T. Kurth et al.

3.1 Optimizations Summary

Historically, when a user is presented with a new architecture, they must often
weigh the relative costs of porting and optimization effort against potential per-
formance benefits. This is especially the case for Intel Xeon PhiTMas most x86-64
applications can run natively without modification. In the following sections we
summarize the optimizations undertaken by the NESAP teams and quantify the
performance benefits not only to KNL but also on traditional Xeons (Haswell,
Ivy Bridge). We found the following techniques had the largest impact on a wide
range of NESAP applications:

– identifying and exploiting parallelism/creating more work for individual
threads: This maybe the most important thing to consider when switching
from multi-core to many-core architectures. Small OpenMP sections that do
not contain enough work for multiple threads will hurt performance signifi-
cantly due to implicit barriers at the end of these sessions. Profiling usually
highlights this as large omp or kmp sync/barrier overheads. Where possible,
loop nests should be collapsed to maximize parallelism. Whereas perfect rec-
tangular loop nests can be collapsed using the OpenMP 4 collapse clause,
more complicated loop structures often require more manual transformations
including data structure rearrangements such as extending array dimensions
to allow for batched processing. We found the latter to be especially beneficial
for batched node-local Fast Fourier Transforms (FFT).

– loop tiling : Cache blocking to achieve cache locality of heavily used arrays
can be realized by reordering and tiling inner loops. This advice is not new
as it is in general a good practice to optimize code for L1/L2 accesses. On
Xeon PhiTMthis is even more important as there is no L3 cache to mitigate
the impact of L2 misses on application performance. Unfortunately, as this is
a manual code transformation rather than a directive, code can become less
readable and more brittle. Nevertheless, this technique benefits application
performance on most architectures. In terms of loop tile sizes, we found that
blocking to shared L2, i.e. 512 KiB/core, performs best for most applications.

– short loop unrolling : Short loops do not provide sufficient work for either
threads or the wide vector registers. Instead it is beneficial to unroll them
using compiler directives or manual unrolling.

– ensuring efficient vectorization: This may sound obvious but can often result in
a major challenge as it may entail loop reordering, loop restructuring, and/or
data layout transformations. It is nevertheless desirable not only because there
is a potential 16× loss in performance from not vectorizing (vs. 4× on Ivy
Bridge), but it also affects memory and cache bandwidth as single element
loads and stores are inefficient. Further compounding this challenge on scien-
tific codes, efficient mathematical function implementations for square roots,
exponentials, etc. are only available as vectorized variants. Where the compiler
is deficient in auto-vectorizing parallel loops, compiler hints and the OpenMP 4
simd pragmas were found to be particularly useful.

– using optimized mathematical functions: This is related to the previous point
that vectorization enables the compiler to utilize efficient implementations of

NESAP Application Performance 339

expensive functions. Unfortunately, their generation may only be enabled by
instructing the compiler to use a relaxed floating-point model. Under the same
restrictions, compilers may not be able to factor a divide by a loop constant
out of an inner loop. We found that manually factoring out the divide (by
multiplying by the inverse of the loop-carried constant) could significantly
improve performance.

This list is not meant to be a complete guide, and we recommend reviewing some
of our NESAP case studies which discuss some of these topics [9] and a previous
overview of the NESAP program results [15]. Nevertheless, this list can serve as
a guideline for developers who aim at getting their current codes ready for Xeon
PhiTM.

3.2 Optimized vs. Original

We will first compare the speedup achieved by optimizing the code for Xeon
PhiTMon the three different systems. The current state of this effort is dis-
played in Fig. 2. It shows the speedup of optimized vs. original codes on all
HPC systems at NERSC for a typical production partition size. Single node
results represent capacity workloads with ideal weak scaling. The plot shows
several important results: speedups of up to 17× (on KNL) to about 6× (on
Haswell) could be achieved. The diagram shows that optimizations targeting
Xeon PhiTMcan significantly benefit multi-core architectures as well. The main
reason for that is that the optimized applications feature improved cache locality,
contiguous aligned data access which facilitates vectorization and offers better
thread-level parallelism. The improvements for some applications have an even
bigger effect on Cori-Haswell. For example, this can happen if chunks of data are
accessed in a random fashion but those chunks fit into the big L3 cache of the
two multi-core architectures but not into L2 on Xeon PhiTM. These problems
are usually memory latency bound and MCDRAM does not offer a significant
advantage over conventional DRAM. An example for this is Chombo, which uti-
lizes comparably large lookup tables in order to retrieve memory locations of the
next relevant chunk of data. Another more obvious reason is that serial sections
or sections with insufficient vectorization are hurting Xeon PhiTMperformance
more than conventional multi-core architectures. The median speedup achieved
on Xeon PhiTMis 2.8×, which generated a median speedup of about 1.7× and
1.4× on Edison and Cori-Haswell respectively.

3.3 Manycore vs. Multicore

Perhaps one of the most fundamental questions is to quantify the performance
advantage provided by manycore architectures like KNL compared to traditional
multicore architectures like Ivy Bridge and Haswell. Figure 3 shows the speedup
of the optimized codes on Cori-KNL with respect to Cori-Haswell and Edison. It
shows that almost all applications on Xeon PhiTMexceed Edison’s performance
(node for node) by at least 30% with similar power-requirements per node.

340 T. Kurth et al.

Fig. 2. Performance of optimized vs. original codes on the three major HPC sys-
tems/partitions at NERSC. The number of nodes mentioned below the application
name are representative for a typical production run on the Cori-KNL system. The
single node numbers represent embarrassingly parallel capacity workloads.

We should mention that almost all original versions of NESAP applications,
except for some heavily memory bound applications such as EMGeo, were ini-
tially significantly slower on Xeon PhiTMthan on Haswell and some even com-
pared to Edison.

Compared to Cori-Haswell (a contemporaneous architecture), in many cases,
the performance difference is not that significant. MFDn for example shows
a huge speedup on Cori-KNL compared to Edison, but not to Cori-Haswell.
This might look surprising as the architectural differences between Edison and
Cori-Haswell are not very big, but there are three significant differences which
can cause this behavior. MFDn constructs a huge sparse matrix at first. In
this construction, vector instruction gather and broadcast routines are available
on Haswell (AVX2) and, in an improved version on Xeon PhiTM(AVX-512),
that offer a significant advantage over individual loads and stores that might be
used on Edison. Furthermore, the construction step used bitwise comparisons
(XOR) that can be accelerated with AVX2(Haswell) and AVX-512(KNL), and
the linear algebra part benefits from the fused multiply-add instructions also
only available in AVX2 and AVX-512. The combination of all three effects can
cause a significant architectural benefit for Haswell and Xeon PhiTMover Ivy
Bridge (Edison).

For the other applications the picture looks more consistent, where some
applications favor Haswell over Xeon PhiTM. Quantum ESPRESSO for exam-
ple is very similar to BerkeleyGW and VASP but performs worse on Xeon
PhiTMthan on Haswell. This is mainly due to inefficiencies in the eigenvalue
solver: Quantum ESPRESSO can utilize SCALAPACK and ELPA but both
libraries seem to have insufficient support for threading and/or vectorization.
Other parts of the code, for example sections which heavily employ FFT and
dense linear algebra, perform much better on Xeon PhiTMthan on Haswell.

NESAP Application Performance 341

The median overall speedups over Edison and Cori-Haswell are 1.8× and
1.1× respectively when running code optimized for the target machine.

Fig. 3. Speedups of optimized NESAP codes on Cori-KNL vs. Cori-Haswell and Edison.

3.4 Value of Wider Vectors (AVX-512)

Another question we asked is whether AVX-512 offers a significant advantage
over AVX2. Theoretically, the former offers a potential 2× speedup (ignoring
bandwidth) because the vector units are twice as wide. However, it forces the
developer to restructure for longer unit-stride access with no data dependen-
cies and thus might restrict the application design in undesirable ways. Figure 4
shows the speedups achieved by running the application on Xeon PhiTMwith
either AVX-512 or AVX2 enabled. That is, for the same code, architecture, and
compiler, what is the value of doubling the vector length. For applications that
depend on libraries, we ensure the appropriate libraries were linked or environ-
ment variables were set (e.g. for selecting the instruction set in Intel MKL).
In case of Chroma and MILC, which utilize QPhiX [29] which in turn uses a
domain specific language to generate architecture dependent code [30], we made
sure that the instruction level support was consistent. Figure 4 shows that the
value of doubling the vector length varies significantly (naively, a 100% speed is
expected because the vector lanes are twice as wide). Benefits lower than 100%
can be attributed to multiple factors. The simplest reason for this speedup is
that the code suffers from a low degree of vectorization. Another explanation
is that code is memory bandwidth bound and thus cannot benefit fully from
vectorization. However, it turns out that even bandwidth-bound codes such as
MFDn or EMGeo or MILC can be significantly accelerated by using AVX-512.
Although applying the Roofline Model [21,46,47] to such codes suggests there
should be little gain, the reality is that AVX-512 instructions reduce contention
in the pipeline and inject more parallelism into the memory subsystem thereby
allowing for higher bandwidth. Codes such as DWF and EMGeo that observe
more than 2× might benefit from advanced AVX-512 features such as masking.
This allows AVX-512 compilers to vectorize loops with certain types of condi-
tionals which otherwise would not vectorize under AVX2. EMGeo vectorizes the

342 T. Kurth et al.

solver over multiple right hand sides and relies on this masking for removing
converged right hand sides from the solve. Additionally, AVX-512 provides 32
registers and thus twice as many as AVX2. For some codes, these extra regis-
ters likely mitigate register spill performance penalties. Finally, there are other
advanced features such as optimized mathematical functions and broadcast oper-
ations which can give a gain exceeding the expected gain. Chroma is a special
case as the performance for AVX-512 or AVX2 seems to be the same. At the
time of writing, we could not find a satisfying explanation for that behavior but
we have to note that about 90% of the time is spent in QPhiX and the rest in
plain Chroma. The Chroma part utilizes LLVM with JIT and we had to disable
AVX-512 JIT-support in because of an LLVM compiler bug. This means that
this part of the code actually uses AVX2 in both cases. However, the time dom-
inating part of the code should be sensitive to the instruction set and we cannot
explain the differences here.

Ultimately, the median speedup achieved by using AVX-512 in lieu of AVX2
is approximately 1.2×.

Fig. 4. Speedup from AVX-512 over AVX2 for optimized NESAP codes on Cori-KNL.

3.5 Flat and Cache Memory Mode Comparison

No memory technology simultaneously provides high capacity, high bandwidth,
and energy efficiency. Thus, KNL instantiates two distinct memories — an
energy-efficient, high-capacity DDR, and a high-bandwidth MCDRAM. The
KNL architecture can be configured to present these memories to the user
as either two distinct memories (flat mode) or can be configured to treat the
MCDRAM as a cache for DDR (cache mode). In this section we quantify the
performance differences of using either cache or flat mode or not using MCDRAM
at all; we do not consider hybrid modes as we have not identified any suitable
use cases thus far.

Figure 5 shows the speedup attained with flat mode over the simpler cache
mode as well as the benefit of MCDRAM over pure DDR. The figure clearly
exhibits that MCDRAM should be used in any case as the performance was never
worse than running from DDR for our selected applications. Furthermore, the

NESAP Application Performance 343

use of MCDRAM can significantly speed up heavily memory bandwidth limited
codes. For cache vs. flat the story is more complicated: we observe that the best
performance gains for our codes are 15–20%. The codes that perform equally well
in either mode have local problem sizes which fit into MCDRAM and thus suffer
no MCDRAM cache capacity misses. Codes that show a significant performance
penalty in flat mode (ChomboCrunch, DWF, and Qbox) feature local problem
sizes that cannot entirely fit into MCDRAM. Instead of utilizing AutoHBW or
compiler directives for selectively placing hot arrays into MCDRAM, they use
numactl -p 1 to prefer memory allocation in MCDRAM2. Unfortunately, this
only places the first O(16GiB) of allocated data in MCDRAM and the rest will
be allocated in DDR. With that approach, a speedup can only be achieved if
all hot arrays are allocated at the beginning and if they fit into MCDRAM.
Nevertheless, codes that use pool allocators such as e.g. HISQ and Chroma can
safely use this procedure. For all other codes we conclude that cache mode should
be favored if one wishes minimal code modification.

Fig. 5. Speedups of optimized NESAP codes achieved by running from MCDRAM vs.
DDR and in flat vs. cache mode on Cori-KNL.

3.6 Total Savings in CPU Hours

We can now estimate the overall savings in units of CPU hours for the NERSC
workload due to optimized applications and KNL architectural features. We
assume that the CPU time fractions for the individual codes will be the same on
Cori-KNL as those on Edison in 2015, and that the speedups are representative
for the overall workload, the problem sizes are representative for the typical use
of the specific application at NERSC, and users actually use the KNL-optimized
versions. Based on these assumptions we can combine the data from Fig. 1 with
the speedups achieved in Fig. 2. This yields an expected saving of ∼1.8 B CPU
hours by using the optimized code instead of the original code on Cori-KNL.
This is about 23% of total available CPU hours. Since NERSC charges by the
node-hour, the savings are real and can be used by the application teams to
tackle more complicated science problems.
2 numactl -p 1 mimics the behavior of numactl -m 1 but it is safer as it will not

abort execution if there is no remaining free space in MCDRAM.

344 T. Kurth et al.

4 Conclusions

We have presented overall and relative performance improvements of selected
NESAP applications and discussed specifics of Xeon PhiTMthat have to be con-
sidered when applications are optimized for this architecture. We further showed
that improvements targeting Xeon PhiTMwill usually benefit conventional multi-
core architectures. Thus, it can be beneficial for developers to start adapting their
codes to many-core systems even if they are still primarily targeting multi-core
architectures. Those improvements mainly target memory locality by applying
cache blocking to L2, and loop and data layout restructuring to exploit paral-
lelism and facilitate vectorization. Using a combination of these techniques is
essential if one is to outperform traditional multi-core architectures.

Acknowledgement. Research used resources of NERSC, a DOE Office of Science
User Facility supported by the Office of Science of the U.S. DOE under Contract No.
DE-AC02-05CH11231. This article has been authored at Lawrence Berkeley National
Lab under Contract No. DE-AC02-05CH11231 and UT-Battelle, LLC under Contract
No. DE-AC05-00OR22725 with the United States Department of Energy. The United
States Government retains and the publisher, by accepting the article for publica-
tion, acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan [3].

References

1. BerkeleyGW Website. http://www.berkeleygw.org
2. CESM Web Site. http://www.cesm.ucar.edu
3. DOE Public Access Plan. https://energy.gov/downloads/doe-public-access-plan
4. GROMACS Web Site. http://www.gromacs.org
5. HMMER Web Site. http://hmmer.org/
6. MILC Website. http://physics.indiana.edu/∼sg/milc.html
7. NERSC and DOE Requirements Reviews Series. http://www.nersc.gov/science/

hpc-requirements-reviews/
8. NERSC NESAP applications. http://www.nersc.gov/users/computational-

systems/cori/nesap/nesap-projects/
9. NERSC NESAP case studies. http://www.nersc.gov/users/computational-

systems/cori/application-porting-and-performance/application-case-studies/
10. NERSC Web Site. http://www.nersc.gov
11. QBox Web Site. http://qboxcode.org
12. Warp Web Site. http://warp.lbl.gov
13. XGC1 Web Site. http://epsi.pppl.gov/computing/xgc-1
14. Almgren, A.S., Bell, J.B., Lijewski, M.J., Lukić, Z., Van Andel, E.: Nyx: a massively

parallel AMR code for computational cosmology. Astrophys. J. 765, 39 (2013)

http://www.berkeleygw.org
http://www.cesm.ucar.edu
https://energy.gov/downloads/doe-public-access-plan
http://www.gromacs.org
http://hmmer.org/
http://physics.indiana.edu/~sg/milc.html
http://www.nersc.gov/science/hpc-requirements-reviews/
http://www.nersc.gov/science/hpc-requirements-reviews/
http://www.nersc.gov/users/computational-systems/cori/nesap/nesap-projects/
http://www.nersc.gov/users/computational-systems/cori/nesap/nesap-projects/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/application-case-studies/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/application-case-studies/
http://www.nersc.gov
http://qboxcode.org
http://warp.lbl.gov
http://epsi.pppl.gov/computing/xgc-1

NESAP Application Performance 345

15. Barnes, T., Cook, B., Deslippe, J., Doerfler, D., Friesen, B., He, Y.H., Kurth, T.,
Koskela, T., Lobet, M., Malas, T., Oliker, L., Ovsyannikov, A., Sarje, A., Vay, J.L.,
Vincenti, H., Williams, S., Carrier, P., Wichmann, N., Wagner, M., Kent, P., Kerr,
C., Dennis, J.: Evaluating and optimizing the NERSC workload on knights land-
ing. In: Proceedings of the 7th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computing Systems, PMBS
2016, pp. 43–53. IEEE Press (2016)

16. Barnes, T.A., Kurth, T., Carrier, P., Wichmann, N., Prendergast, D., Kent, P.R.,
Deslippe, J.: Improved treatment of exact exchange in quantum espresso. Comput.
Phys. Commun. 214, 52–58 (2017)

17. Bauer, B., Gottlieb, S., Hoefler, T.: Performance modeling and comparative analy-
sis of the MILC Lattice QCD application su3 rmd. In: Proceedings of CCGRID
2012: IEEE/ACM International Symposium on Cluster, Cloud, and Grid Comput-
ing (2012)

18. Binder, S., Calci, A., Epelbaum, E., Furnstahl, R.J., Golak, J., Hebeler, K.,
Kamada, H., Krebs, H., Langhammer, J., Liebig, S., Maris, P., Meißner, U.G.,
Minossi, D., Nogga, A., Potter, H., Roth, R., Skinińki, R., Topolnicki, K., Vary,
J.P., Wita�la, H.: Few-nucleon systems with state-of-the-art chiral nucleon-nucleon
forces. Phys. Rev. C 93(4), 044002 (2016)

19. Deslippe, J., Samsonidze, G., Strubbe, D.A., Jain, M., Cohen, M.L., Louie,
S.G.: Berkeleygw: a massively parallel computer package for the calculation of
the quasiparticle and optical properties of materials and nanostructures. Com-
put. Phys. Commun. 183(6), 1269–1289 (2012). http://www.sciencedirect.com/
science/article/pii/S0010465511003912

20. Doerfler, D., Austin, B., Cook, B., Deslippe, J., Kandalla, K., Mendygral, P.: Eval-
uating the networking characteristics of the cray XC-40 intel knights landing based
cori supercomputer at NERSC. In: Cray User Group Meeting (CUG), May 2017

21. Doerfler, D., Deslippe, J., Williams, S., Oliker, L., Cook, B., Kurth, T., Lobet, M.,
Malas, T., Vay, J.-L., Vincenti, H.: Applying the Roofline Performance Model to
the Intel Xeon Phi Knights Landing Processor. In: Taufer, M., Mohr, B., Kunkel,
J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 339–353. Springer,
Cham (2016). doi:10.1007/978-3-319-46079-6 24

22. Eddy, S.R.: Accelerated profile hmm searches. PLOS Comput. Biol. 7(10), 1–16
(2011). https://doi.org/10.1371/journal.pcbi.1002195

23. Edwards, R.G., Joo, B.: The Chroma software system for lattice QCD. Nucl. Phys.
Proc. Suppl. 140, 832 (2005)

24. Friesen, B., Almgren, A., Lukić, Z., Weber, G., Morozov, D., Beckner, V., Day,
M.: In situ and in-transit analysis of cosmological simulations. Comput. Astrophys.
Cosmol. 3, 4 (2016)

25. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C.,
Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli,
S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A.,
Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S.,
Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen,
A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: Quantum espresso: a modular
and open-source software project for quantum simulations of materials. J. Phys.
Condens. Matter 21(39), 395502 (2009). http://stacks.iop.org/0953-8984/21/
i=39/a=395502

26. Gygi, F.: Architecture of Qbox: a scalable first-principles molecular dynamics
code. IBM J. Res. Dev. 52(1/2), 137–144 (2008). http://dl.acm.org/citation.cfm?
id=1375990.1376003

http://www.sciencedirect.com/science/article/pii/S0010465511003912
http://www.sciencedirect.com/science/article/pii/S0010465511003912
http://dx.doi.org/10.1007/978-3-319-46079-6_24
https://doi.org/10.1371/journal.pcbi.1002195
http://stacks.iop.org/0953-8984/21/i=39/a=395502
http://stacks.iop.org/0953-8984/21/i=39/a=395502
http://dl.acm.org/citation.cfm?id=1375990.1376003
http://dl.acm.org/citation.cfm?id=1375990.1376003

346 T. Kurth et al.

27. Hager, R., Yoon, E., Ku, S., D’Azevedo, E., Worley, P., Chang, C.: A fully non-
linear multi-species fokkerplancklandau collision operator for simulation of fusion
plasma. J. Comput. Phys. 315, 644–660 (2016). http://www.sciencedirect.com/
science/article/pii/S0021999116300298

28. Hurrell, J., Holland, M., Gent, P., Ghan, S., Kay, J., Kushner, P., Lamarque, J.F.,
Large, W., Lawrence, D., Lindsay, K., Lipscomb, W., Long, M., Mahowald, N.,
Marsh, D., Neale, R., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W.,
Hack, J., Kiehl, J., Marshall, S.: The community earth system model: a framework
for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013)

29. Joó, B.: qphix package web page. http://jeffersonlab.github.io/qphix
30. Joó, B.: qphix-codegen package web page. http://jeffersonlab.github.io/

qphix-codegen
31. Kresse, G., Furthmueller, J.: Efficiency of ab-initio total energy calcula-

tions for metals and semiconductors using a plane-wave basis set. Com-
put. Mater. Sci. 6(1), 15–50 (1996). http://www.sciencedirect.com/science/
article/pii/0927025696000080

32. Ku, S., Chang, C., Diamond, P.: Full-f gyrokinetic particle simulation of centrally
heated global itg turbulence from magnetic axis to edge pedestal top in a realistic
tokamak geometry. Nucl. Fusion 49(11), 115021 (2009)

33. Lukić, Z., Stark, C.W., Nugent, P., White, M., Meiksin, A.A., Almgren, A.: The
Lyman α forest in optically thin hydrodynamical simulations. Mon. Not. R. Astron.
Soc. 446, 3697–3724 (2015)

34. Maris, P., Caprio, M.A., Vary, J.P.: Emergence of rotational bands in ab initio no-
core configuration interaction calculations of the Be isotopes. Phys. Rev. C 91(1),
014310 (2015)

35. Maris, P., Vary, J.P., Navratil, P., Ormand, W.E., Nam, H., Dean, D.J.: Origin of
the anomalous long lifetime of 14C. Phys. Rev. Lett. 106(20), 202502 (2011)

36. Maris, P., Vary, J.P., Gandolfi, S., Carlson, J., Pieper, S.C.: Properties of trapped
neutrons interacting with realistic nuclear Hamiltonians. Phys. Rev. C 87(5),
054318 (2013)

37. Petersen, M.R., Jacobsen, D.W., Ringler, T.D., Hecht, M.W., Maltrud, M.E.:
Evaluation of the arbitrary lagrangian-eulerian vertical coordinate method in the
MPAS-ocean model. Ocean Modell. 86, 93–113 (2015). http://www.sciencedirect.
com/science/article/pii/S1463500314001796

38. Petrov, P.V., Newman, G.A.: Three-dimensional inverse modelling of damped elas-
tic wave propagation in the fourier domain. Geophys. J. Int. 198(3), 1599–1617
(2014)

39. Petrov, P.V., Newman, G.A.: 3D finite-difference modeling of elastic wave prop-
agation in the laplace-fourier domain. GEOPHYSICS 77(4), T137–T155 (2012).
http://dx.doi.org/10.1190/geo2011-0238.1

40. Pronk, S., Pll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R.,
Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.: Gromacs 4.5:
a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics 29(7), 845 (2013). http://dx.doi.org/10.1093/bioinformatics/
btt055

41. Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W., Maltrud, M.:
A multi-resolution approach to global ocean modeling. Ocean Model. 69, 211–232
(2013). http://www.sciencedirect.com/science/article/pii/S1463500313000760

http://www.sciencedirect.com/science/article/pii/S0021999116300298
http://www.sciencedirect.com/science/article/pii/S0021999116300298
http://jeffersonlab.github.io/qphix
http://jeffersonlab.github.io/qphix-codegen
http://jeffersonlab.github.io/qphix-codegen
http://www.sciencedirect.com/science/article/pii/0927025696000080
http://www.sciencedirect.com/science/article/pii/0927025696000080
http://www.sciencedirect.com/science/article/pii/S1463500314001796
http://www.sciencedirect.com/science/article/pii/S1463500314001796
http://dx.doi.org/10.1190/geo2011-0238.1
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1093/bioinformatics/btt055
http://www.sciencedirect.com/science/article/pii/S1463500313000760

NESAP Application Performance 347

42. Straalen, B.V., Trebotich, D., Ovsyannikov, A., Graves, D.T.: Scalable structured
adaptive mesh refinement with complex geometry. In: Exascale Scientific Applica-
tions: Programming Approaches for Scalability Performance and Portability. CRC
Press (in press)

43. Trebotich, D., Adams, M.F., Molins, S., Steefel, C.I., Chaopeng, S.: High-resolution
simulation of pore-scale reactive transport processes associated with carbon seques-
tration. Comput. Sci. Eng. 16(6), 22–31 (2014)

44. Trebotich, D., Graves, D.: An adaptive finite volume method for the incompressible
Navier-Stokes equations in complex geometries. Commun. Appl. Math. Comput.
Sci. 10(1), 43–82 (2015)

45. Vincenti, H., Lobet, M., Lehe, R., Sasanka, R., Vay, J.L.: An efficient and portable
SIMD algorithm for charge/current deposition in particle-in-cell codes. Com-
put. Phys. Commun. 210, 145–154 (2017). http://www.sciencedirect.com/science/
article/pii/S0010465516302764

46. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
http://doi.acm.org/10.1145/1498765.1498785

47. Williams, S.W.: Auto-tuning Performance on Multicore Computers. Ph.D. the-
sis, EECS Department, University of California, Berkeley, December 2008. http://
www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.html

http://www.sciencedirect.com/science/article/pii/S0010465516302764
http://www.sciencedirect.com/science/article/pii/S0010465516302764
http://doi.acm.org/10.1145/1498765.1498785
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.html

On the Mitigation of Cache Hostile Memory
Access Patterns on Many-Core CPU

Architectures

Tom Deakin1(B), Wayne Gaudin2, and Simon McIntosh-Smith1

1 Department of Computer Science, University of Bristol, Bristol, UK
tom.deakin@bristol.ac.uk

2 UK Atomic Weapons Establishment, Aldermaston, UK

Abstract. Kernels with low arithmetic intensity with memory foot-
print exceeding cache sizes are typically categorised as memory band-
width bound. Kernels of this class are typically limited by hardware
memory bandwidth. In this work we contribute a simple memory access
pattern, derived from a widely-used upwinded stencil-style benchmark,
which presents significant challenges for cache-based architectures. The
problem appears to grow worse as CPU core counts increase, and the
pattern in its initial form shows no benefit from the new high-bandwidth
memory now appearing on the Intel Xeon Phi (Knights Landing) family
of processors. We describe the memory access scenarios which appear
to be causing lower than expected cache performance, before present-
ing optimisations to mitigate the problem. These optimisations result in
useful effective memory bandwidth and runtime improvements by up to
4X on cache based architectures. Results are presented on the Intel Xeon
(Broadwell) and Xeon Phi (Knights Landing) processors.

1 Introduction

For kernels (computational routines) with low arithmetic intensity, the Roofline
model typically shows that memory bandwidth becomes the performance lim-
iter [9]. Examples of such kernels can be seen in the STREAM [8] and GPU-
STREAM [3] benchmarks, where in the later we have explored the achievable
memory bandwidth of a highly diverse range of computer architectures. However
for some memory bandwidth bound codes, an increase in the available memory
bandwidth does not necessarily yield a proportionate improvement in perfor-
mance, as the performance of such an application may depend on the degree to
which it has been optimised—specifically, the degree to which its implementa-
tion is actually bandwidth bound (as opposed to theoretically bandwidth bound).
Once such application is the SNAP performance proxy for modern deterministic
transport codes from Los Alamos National Laboratory [5,10].

We have previously optimised SNAP to perform well on GPUs [2] and
explored its scaling characteristics on large supercomputers [1]. GPU archi-
tectures are typically optimised for greater memory bandwidth relative to

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 348–362, 2017.
https://doi.org/10.1007/978-3-319-67630-2_26

On the Mitigation of Cache Hostile Memory Access Patterns 349

traditional CPU architectures. For SNAP we are able to demonstrate signifi-
cant performance improvements, with the time to solution halved using NVIDIA
K20X GPUs compared to Intel Xeon (Haswell) CPUs at scale. The Intel Xeon
Phi (Knights Landing) processor also offers a memory bandwidth increase rela-
tive to traditional multi-core CPUs, due to its on-package MCDRAM. For a
bandwidth bound code therefore, assuming efficient vectorisation and mem-
ory access pattern optimisations have already been applied (as is the case
with SNAP), running on the Knights Landing architecture utilising MCDRAM
should provide a performance improvement utilising the extra memory band-
width available. However, initial results for SNAP show that one Knights Land-
ing achieves comparable performance to dual-socket Intel Xeon processors, which
have around a quarter of the memory bandwidth relative to Knights Landing’s
MCDRAM [5]. We had also previously observed that the performance on Intel
Xeon Phi (Knights Corner) co-processors was low, attaining only a small frac-
tion of achievable memory bandwidth [2]. It is therefore the case that the SNAP
application is not actually memory bandwidth bound on the Xeon Phi architec-
ture; instead, some other bound is in place. There is however little tangible or
actionable evidence as to what the limiting factor is (for the SNAP mini-app);
the profiling tools suggest a good ratio of cycles per instruction, good vectorisa-
tion efficiency and stride-one data access patterns. As such, a ‘glass ceiling’ exists
beneath the memory bandwidth limit in the Roofline model for this kernel. In
this paper we present some intuition around the reasons for this limit to exist in
this style of application; namely an upwind stencil. We then provide some solu-
tions allowing a benchmark application to break through the ceiling and reach
the memory bandwidth bounds as predicted under the Roofline model; this also
comes with a significant improvement in the runtime of the benchmark.

2 Stencil Patterns

A stencil access pattern describes the neighbouring data requirements for the
solution of each cell in the mesh. For a typical 5-point stencil, each cell (i, j)
requires values from cells (i ± 1, j ± 1), and for a structured mesh this can
be visualised as in Fig. 1a. The values in the centre of each cell are used in the
solution of the cell centred value of the cell in question, a pattern typical of many
computational fluid dynamic codes, such as in the Lattice-Boltzmann method.

The 5-point stencil however is applied differently in other fields, and we con-
sider a particularly interesting and important variant in this paper. At first
glance this application looks very similar to a standard 5-point stencil, with
the cell centred solution of a particular cell using values from neighbouring cells.
However the values from neighbouring cells are edge centred rather than cell cen-
tred as shown in Fig. 1b. The edge centred solutions are calculated using a simple
finite difference relation given the cell centred value. Also, only data from half
the edges are used for the solution, with the other edge solutions shared to down-
wind neighbouring cells; note the change in direction of the arrows in the figure.
Specifically, for the sweep direction shown and an origin at the bottom left of

350 T. Deakin et al.

Fig. 1. Applications of a typical 5-point stencil

the diagram, cell (i, j) requires values originally calculated in cells (i− 1, j) and
(i, j−1), and the edge centred solutions in cell (i, j) are required by cells (i+1, j)
and (i, j + 1).

The data dependency is formed by upwinding whilst discretizing a partial
differential equation in the spatial domain. It results in a wavefront sweep, an
important programming pattern which appears in a variety of applications such
as dynamic programming, LU factorisation and deterministic transport [7,10].

The available parallelism is also different compared to a standard application
of the stencil. The cells must now be computed in the order defined by the
sweep; this is in contrast to the mesh in Fig. 1a where the cells can be computed
concurrently as long as a copy of cell centred values is stored. Solution on a large
distributed system also uses a standard halo exchange communication pattern
for the standard approach, whereas outgoing edge data is sent to downwind
neighbours as it becomes available here. The focus of this paper is the on node
performance and so communication differences will not be discussed further.

Because the edge centred values are temporary, and only half are required to
share between neighbouring cells, it is typical to optimise the memory footprint
and store the incoming and outgoing edge values in the same memory location.
This reduces the memory footprint and also encourages reuse of array elements.

The descriptions in the 2D case are analogous in three dimensions using a
seven-point stencil, and it is the 3D case that we investigate in this paper.

3 Memory Access Patterns

The generalised memory access pattern of the upwinded stencil may be described
as follows. Multiple values are calculated per cell, which are operated on in parallel
through vectorisation, and are hence stored contiguously as the inner most dimen-
sion within the mesh array to allow for simple stride 1 memory access patterns.

The cell centred solution computation is somewhat similar to a STREAM
Triad operation [8] and is calculated based on its previous value along with
weighted contributions from the upwind neighbour cells’ edge centred solutions.

On the Mitigation of Cache Hostile Memory Access Patterns 351

Simple floating point arithmetic (typically fused multiply add) is used to com-
bine the terms. This computation is clearly memory bandwidth bound as the
computational intensity is very low, with a ratio of arithmetic to memory loca-
tions accessed of close to 1.0. Specifically the computational intensity in double
precision, with eight bytes per element, is 1/8. Subsequent calculation of the
edge centred values is also similar to STREAM Triad, and is just a simple finite
difference operation requiring a single fused multiply add. Finally, a within cell
SIMD reduction of the cell centred values is calculated and stored for each cell.

Unlike STREAM operations, the arrays containing the data are of different
sizes. The cell centred values are stored in a mesh sized array and are therefore
large in size. The weights used are in very small arrays, and there is one weight for
each cell centred value which are the same in every cell and are therefore shared
and independent of the mesh size. The arrays containing the edge centred values
are allocated on Cartesian planes in the mesh, and are therefore smaller than the
total mesh size, existing in one less dimension than the mesh; this is a memory
footprint optimisation as incoming values are overwritten in this array by the
outgoing equivalent. The threads operate on disparate slices of the arrays via a
final outer dimension so as to avoid false sharing. All data access is stride 1.

In summary, there are three operations we consider within the kernel:

1. Calculate cell centred values with low computational intensity, streaming
through the large array.

2. Calculate outgoing edge centred solutions.
3. Reduce cell centred values within each cell.

4 Cache Based Architectures

The memory hierarchy of CPU style architectures typically consists of a set of
data caches between the execution units and the main memory. Using the Intel
Xeon (Broadwell) CPU as an exemplar, its hierarchy consists of three levels
of cache and main DDR memory. Level 1 (L1) and Level 2 (L2) caches are
available to each core independently and are 32 KB (for data) and 256 KB in
size respectively. Level 3 (L3) cache is 55 MB for the high end E5-2699 v4 model,
and is shared between all cores on the socket.

The Intel Xeon Phi (Knights Landing) Processor has a different memory
hierarchy, although there are many similarities. Level 1 caches are available per
core with a capacity of 32 KB. A 1 MB L2 cache is shared between pairs of cores,
which are organised on tiles, with the entire device consisting of some number
of tiles. High bandwidth MCDRAM and standard DDR are also available, and
their position in the hierarchy depends on the mode the processor is booted into.
The MCDRAM is available either as a directly mapped cache for DDR, or else
as a separate memory space; it is this latter mode that we consider here where
all data is resident in the high bandwidth memory.

For both processors, when a load instruction is encountered the cache hier-
archy is always checked. Data not present in the caches is moved down through
the hierarchy, with data being evicted according to the cache policy. For a store

352 T. Deakin et al.

instruction, both processors operate a “read for ownership” policy, whereby the
data is first loaded into cache before being written. Both processors also support
non-temporal store instructions which bypasses this mechanism, writing directly
to the highest level in the memory hierarchy (MCDRAM or DDR).

Hardware (and software) prefetchers also operate in the background to assist
the movement of memory through the cache hierarchy. If a data access pattern
is detected, the prefetcher will move data down the hierarchy in advance of when
the memory is predicted to be used. Therefore the required data will hopefully
be in a fast, low level cache in time and hence increase the throughput of the
processor as it need not stall waiting for the data to arrive.

5 Investigation into Memory Bandwidth Issues

In order to practically investigate the performance issues of this style of stencil
operation a small benchmark code was written. This code, named mega-stream,
was distilled from the SNAP mini-app which encounters the previously described
performance issues on cache based architectures. The simple computational ker-
nel is shown in Listing 1.1. We display the Fortran version in print as it allows
for compact representation of the multi-dimensional array accesses; the C ver-
sion is similar and we ensure that the memory layout matches that of the loop
nest in both cases to ensure stride 1 access for the innermost loop. The kernel
consists of five nested loops with the three operations from Sect. 3; the cell cen-
tred computation on line 6, the outgoing edge centred solutions on lines 7–9, and
the reduction over the innermost dimension on line 10. OpenMP work-sharing
threads are employed on the outermost loop (Nm) and compiler auto-vectorisation
via the OpenMP simd clause is employed on the innermost loop (Ni).

On the Mitigation of Cache Hostile Memory Access Patterns 353

The data reuse of the x, y and z arrays are of some interest. Note that each of
these arrays is missing one of the three middle indices; x is missing the l index,
y is missing the k index, and z is missing the j index. All three arrays have the
innermost index i. Using the z array as an example, the subsection of the array
used is the same for all j, and as such one would hope that for a given k and l
the associated Ni values remain in cache for the duration of the Nj loop. Note
that none of the writes can be hoisted above loops as the updated values of one
iteration are used in line 6. This pattern can be visualised with Fig. 1b whereby
this array carries data in the j-axis (in jkl-space) between adjacent cells. There
is no reuse of the r array.

A model for the memory bandwidth of the routine in Listing 1.1 can be
constructed by simply counting the number of bytes moved under some basic
assumptions. We assume that a write counts as a single memory movement; in
particular, read for ownership is not required. Indeed, this is an architecture
specific design decision and in theory the computation does not require this.
We also assume that once we have read a memory location, further reads and
writes are free. Specifically, once we read a location in the x, y or z arrays, these
are cached and the update is free. It is typical that such assumptions are made
on memory bandwidth models since they represent the best-case behaviour and
form an upper-bound for performance. The model is therefore the total of all
reads and writes under these assumptions: r is written to once per element, q is
read once per element, x, y and z are read and written once per element (assum-
ing future updates are free), a, b and c are read once per element, and total is
read and written once per element. The data are double precision floating point
elements which are of size 8 bytes. Therefore the estimated (modelled) amount
of data moved is:

(Ni ∗ Nj ∗ Nk ∗ Nl ∗ Nm + Ni ∗ Nj ∗ Nk ∗ Nl ∗ Nm+
2 ∗ Ni ∗ Nj ∗ Nk ∗ Nm + 2 ∗ Ni ∗ Nj ∗ Nl ∗ Nm + 2 ∗ Ni ∗ Nk ∗ Nl ∗ Nm+

Ni + Ni + Ni + 2 ∗ Nj ∗ Nk ∗ Nl ∗ Nm) ∗ 8 bytes
(1)

The estimated memory bandwidth is therefore the data moved divided by the
runtime of the kernel. The benchmark runs the kernel 100 times and takes the
minimum kernel time to calculate the bandwidth.

5.1 List of Experimental Platforms

The Intel Xeon Phi (Knights Landing) used for our experiments is a 7210 64-
core at 1.30 GHz. The processor was configured in Flat/Quadrant mode, and
has 16 GB MCDRAM with 96 GB DDR (unused). The mesh is clocked at
1.6 GHz resulting in a rate of 6.4 GT/s for MCDRAM. Transparent huge pages
were enabled on the system. The code was compiled with the Intel Compiler
17 update 2 specifying the -O3 -xMIC-AVX512 flags. We ran from MCDRAM
using the numactl tool with one OpenMP thread per physical core, pinned
using the OMP PROC BIND environmental variable. The STREAM Triad bench-
mark achieves 448 GB/s on this system.

354 T. Deakin et al.

We also use an Intel Xeon E5-2699 v4 (Broadwell) 22-core dual-socket node
from a Cray XC40 supercomputer. This processor is clocked at 2.2 GHz and
has 128 GB DDR. The code was compiled with the Intel Compiler 17 update
1 specifying the -O3 -xCORE-AVX2 flags. We ran with one OpenMP thread per
physical core, pinned using the OMP PROC BIND environmental variable and the
aprun command. The STREAM Triad benchmark achieves 128 GB/s on this
system.

The default problem size sets Ni= 128, Nj= Nk= Nl= 16, and Nm= 64. The
q and r arrays are therefore sized 256 MiB, x, y and z are 16 MiB, and a, b and
c are 1 KiB each. The model predicts moving 612 MiB to/from main memory
for each kernel execution for the default problem size.

5.2 Baseline Performance

Throughout this investigation we will quote results for the default inputs unless
specified otherwise. The initial estimated memory bandwidth as a percentage
of STREAM Triad is shown in Fig. 2 labelled “Baseline”. The performance on
Knights Landing, or lack thereof, is rather striking and certainly highlights the
need for an investigation; note that this kernel, which has stride 1 access pat-
terns very reminiscent of STREAM, only achieves 16.4% of STREAM bandwidth
(74 GB/s) when running solely out of the MCDRAM. On Xeon the achieved
memory bandwidth is, at 65.1% of STREAM, perhaps on the low side for a
stride 1 access code. While this is not necessarily low enough to cause concern,
it is clear there is scope for improvement on CPUs too. The important corollary
is that these observations are similar to the measurements we make with the
SNAP application itself. Note too that the runtime of the kernel is similar on
both architectures, whereas if it was memory bandwidth bound the advantages
of MCDRAM on the Knights Landing should result in a speedup of around 3.5X
(the ratio of their achieved bandwidth on STREAM).

We aligned all the arrays to 2 MB page boundaries (matching the page size
of Knights Landing) to minimise any latency of unaligned loads and stores.
This is a common optimisation step for memory bandwidth bound codes when
examining vectorisation, and was performed as part of due diligence in the early
stages of development. The alignment is performed at allocation via the C11
aligned alloc library call. Alignment in this fashion also means that peel loops
are not required (even though they would have been generated by the compiler).

Whilst the bandwidth reported by the application is estimated, it is possible
to compare to a measured memory bandwidth obtained through hardware coun-
ters via a tool such as Intel vTune Amplifier XE. For the Knights Landing run,
the tool was reporting near peak memory bandwidth use to MCDRAM, indi-
cating that more memory must be moving than our model predicts, and as such
this movement is considered wasteful by the model. This observation also hints
at the underlying problem that is resulting in lower effective bandwidth. The
Roofline analysis in the Intel Advisor tool initially shows that the innermost Ni
loop lies on the MCDRAM bandwidth line, and this could be interpreted that
the application is indeed memory bandwidth bound as expected, however in

On the Mitigation of Cache Hostile Memory Access Patterns 355

Fig. 2. Estimated memory bandwidth of the default problem size shown as a percentage
of STREAM (Triad) memory bandwidth on Xeon and Xeon Phi as optimisations are
applied (inclusively). Achieved memory bandwidth numbers are shown above each bar.

this paper we should optimisations which improve the runtime by 4X. However,
analysis of the entire kernel as a whole is not shown in current versions of this
tool and so inference from the analysis should be used with care.

Figure 3 shows the estimated memory bandwidth of the baseline code with
dashed lines for a variety of problem sizes, and explores the ranges of the different
loops, leaving the others fixed at the default size. The “inner” line varies the Ni
range, the “middle” varies the Nj, Nk and Nl ranges identically, and the “outer”
line varies the Nm range. As such the three dashed lines represent an exploration
of the problem space spanned by the set of nested loops. For example, setting the
middle loops to 8 yields the following configuration: Ni= 128, Nj= Nk= Nl= 8,
Nm= 64. Varying the number of iterations each thread performs by increasing
Nm alone shows little change in the achieved bandwidth from the default case,
as shown by the outer dashed red line. The other dashed lines show the loop
extents of the four innermost loops have a more dramatic effect. It is clear in the
figure that there is a large variation in bandwidth, up to 145% (excluding the
first data point of the “middle” dashed green line), with bandwidths of 49.9–
122.3 GB/s depending on the input size. Where the iteration space of the middle
jkl loops are set to 4 (leftmost point of the “middle” dashed green line) the
baseline performance for this input exceeds the memory bandwidth available
from MCDRAM, and as such must already be taking advantage of the cache
hierarchy; indeed, the total problem is only 179 KiB per core, so can be fully
resident in L2 cache.

It is usual to run the STREAM benchmark with one thread per physical core,
and the results presented throughout the paper for the mega-stream benchmark
also assume one thread per physical core. However, higher memory bandwidth is
achieved for the baseline code by using the hyperthreads on Knights Landing and
increasing Nm to match the number of hyperthreads, so that each thread performs
the same amount of work. Using 2 and 4 hyperthreads per physical core increases

356 T. Deakin et al.

Fig. 3. Estimated bandwidth for a range of inputs by varying one dimension. The
dashed lines show the baseline performance with the solid lines showing the perfor-
mance the optimisations applied. (Color figure online)

the bandwidth to 138 and 114 GB/s respectively, an increase from the initial
73 GB/s attained from 1 thread per physical core. These results are still much
lower than the expected memory bandwidth limits of this processor, however
using the hyperthreads for the baseline may allow for some memory latency
hiding thus increasing the estimated memory bandwidth. However, we have had
to increase the problem size in order to take advantage of the hyperthreads which
may not be applicable to all applications.

5.3 Improving the Performance

In order to improve the performance, we seek to minimise the wasteful data
movement observed above and ensure that data is only moved the minimum
number of times, something which is captured by our model. We take an incre-
mental approach of three steps:

1. Ensure data which is not re-used is not in cache.
2. Ensure data which is re-used is in cache.
3. Ensure data is in the cache in time for use.

Whilst these optimisations sound obvious it is critical to observe that the
code itself already has “good” memory access patterns; it is stride 1 access,
should be very predictable for a cache lookahead engine, and we have confirmed
that the code is vectorised well by the compiler. Indeed, the STREAM kernels
are typically optimised though the first and last of these steps, however there
is no data reuse. Note too that the STREAM benchmark kernels require little
user intervention as the compiler performs this optimisations on our behalf; for
mega-stream the programmer had to intervene. There are few mechanisms for
explicitly controlling what is present in a CPU’s cache hierarchy, as the memory

On the Mitigation of Cache Hostile Memory Access Patterns 357

subsystem is managed automatically by the processor itself, primarily based on
data locality. As such, controlling what data is in the cache is more a result of
side effects of the instruction stream rather than from any explicit description
of the memory location. This is somewhat similar to programs being NUMA-
aware in the sense that they, for example, ensure data is allocated and used on
a core within a NUMA region, however this is achieved without any form of
annotation or mechanism to explicitly state that this was the intended effect.
GPU architectures tend to be very different in this regard, as they provide a
scratchpad memory whose contents are explicitly controlled by the programmer.

Non-temporal Stores. The r array is large in size, there is no data-reuse
within the kernel and it is only written to, so the previous value is not required.
Therefore there is little use in the r array consuming cache space, or worse,
evicting data that would benefit from caching.

The Streaming SIMD Extensions (SSE) instruction set introduced the notion
of non-temporal stores with the MOVNTQ instruction. This instruction hinted that
the cache hierarchy should be avoided and the data should be stored directly in
main memory [4]. Additionally this avoids the “read for ownership” policy and it
is no longer necessary to read r before writing to it, thus saving the unnecessary
read of this entire array; previously every element was read before being written
and therefore writing to this array caused 512 MiB of data movement (for the
default problem size) instead of 256 MiB (its total size).

We can encourage the Intel compiler to generate such instructions for the
target architecture via compiler directives, specifically by decorating the inner
loop with the directive #pragma vector nontemporal(r). Note however that
this is not a portable solution as this is a directive specific to the Intel compiler;
at the time of writing the authors have been unable to find similar directives for
other compiler vendors. Intel architectures require non-temporal instructions to
occur on aligned memory locations. The improvement is shown in Fig. 2, where
the achieved memory bandwidth is much better, with 3X faster runtime than the
baseline on Knights Landing, a significant improvement. However, the percentage
of STREAM bandwidth that mega-stream achieves on Knights Landing is still
relatively low, and therefore further improvements are required.

On Broadwell we see a comparatively small 1.3X improvement in runtime
from non-temporal stores. We interpret this as the larger caches per core miti-
gating the effects on Broadwell relative to Knights Landing. Broadwell’s 55 MB
L3 cache is shared between all 22 cores on a socket, which results in around
2.5 MB of L3 cache per core; significantly more in this last level of cache than
the 512 KB per core in last level (L2) cache on Knights Landing. As such, the
effects of reducing the cache pollution from the r array are less pronounced.
Indeed, the CrayPat profiler reports that, on Broadwell, the baseline is achiev-
ing 76.1% L1 cache hits, with non-temporal stores increasing this to 85.6%.
However, the L2 cache hit rate has reduced; on Broadwell the baseline achieved
7.3% misses, whereas adding the non-temporal directive increased this to 40.1%.
This increase is likely down to highlighting cache miss behaviour of other data

358 T. Deakin et al.

arrays rather than obtaining a high hit rate for the r array as a side effect of
cache pollution.

Cache Blocking. There is reuse of the x, y and z arrays, although the reuse
pattern is somewhat complex for the middle three jkl loops. We want to ensure
that data remains in cache whilst there is some temporal locality of the elements
of these arrays. For the default problem size on Knights Landing, each core is
accessing a 256 KiB contiguous portion of each of these three arrays. Each pair of
cores share a 1 MB L2 cache, and assuming there is no sharing of data each core
has approximately 512 KB of L2 cache available. The combined total of the local
portion of these arrays (768 KiB) therefore exceeds the capacity of its available
L2 cache, and therefore the data will at some point be evicted from this level
of cache; as there is no L3 cache on Knights Landing the data will fall back to
MCDRAM. Therefore the data will need to be read from main memory multiple
times, whereas our bandwidth estimate assumes that the data remains resident
in cache, as it should, and as the programmer might expect, due to the temporal
locality and predictable access patterns.

As discussed above, there are no explicit mechanisms for controlling what is
in a CPU cache, and therefore we must use other techniques to ensure that only
the appropriate data remains resident in the cache. We therefore implement a
cache blocking scheme, alternatively known as tiling, with the aim of decreasing
the amount of data required in cache at any given time. By controlling which
tiles are in use at any one time, we can also prevent cacheable data evicting
other data that we want to retain in the caches. In many applications this is
done by tiling the spatial dimension in one or more dimensions, however in this
benchmark we have multiple values per spatial cell and so in contrast we tile
in this extra dimension. We shall use one core’s portion of the x array as an
example; by default this is 256 KiB in size. Each x(:,j,k) element is accessed
Nl times, once for each iteration of the l loop. By breaking the first index
of the array into blocks, where each block is the size of a cache line, we can
reduce the amount of memory kept in cache for the duration of the l loop;
we can then ensure that all of these accesses are made from cache. An extra
loop over the blocks is inserted between lines 1 and 2 in Listing 1.1; we also
modify the inner loop in line 5 to index within a block. The arrays are allocated
and initialised with an extra dimension, again keeping the order of the extents
matching the loop nesting. By splitting the Ni dimension into blocks of eight,
which corresponds to eight double precision elements forming a 64 byte cache
line, the portion of the x array to be kept in cache for reuse drops from 256 KiB
to just 16 KiB. The reduction in size is the same for the y and z arrays, and
therefore the portion of all three arrays which is reused totals 48 KiB, which can
certainly remain inside the 512 KB cache. The performance improvements from
blocking are shown in Fig. 2, where the optimisations are applied inclusively.
On Knights Landing this is a good improvement in memory bandwidth and a
1.3X runtime improvement over applying non-temporal stores alone; achieving
71.0% of STREAM bandwidth (318 GB/s) once we apply both cache blocking

On the Mitigation of Cache Hostile Memory Access Patterns 359

and non-temporal stores, compared to 53.6% for the non-temporal stores alone.
The variation in performance between different problem sizes has also vanished,
and all inputs now achieve similar results (not shown for brevity).

The Broadwell architecture again improves a little with this optimisation, but
not significantly; the fraction of STREAM bandwidth we have achieved increases
from 83.7% to 91.8%. We believe this is down to the large caches holding the x,
y, z arrays entirely in L3 cache and avoiding going to main memory entirely, but
improvements can be seen at lower levels of the cache hierarchy. Profiler output
from the CrayPat tool shows that L1 cache misses have fallen from 14.4% to
7.1%, a significant saving. Additionally L2 cache misses have reduced from 40.1%
to 15.5%. What is clear though, is that the cache hit rates are generally high
on Broadwell throughout these optimisation stages, and as such the impact on
runtime is minimal. The Intel vTune profiler was not available on the platform
so we are unable to provide L3 cache statistics.

This cache blocking technique applied in isolation does improve the perfor-
mance of the baseline by around 1.7X on Knights Landing, however 4X over
the baseline is demonstrated with both non-temporal stores and cache blocking
combined.

Software Prefetching. Finally a small improvement is available by ensuring
that the prefetching of data is suitably early to hide the associated latency of
memory movement. On profiling the cache blocked version, it can be seen that
there are L2 cache misses for the read of the q array, indicating that the data is
not there in time to be read when it is required. Therefore we can use Intel soft-
ware prefetch intrinsics to generate prefetch instructions earlier in the instruction
stream. We found that prefetching with a depth of 32 vector instructions was
sufficient, and the intrinsic was inserted inside the j loop; software prefetch-
ing typically requires some experimentation in determining a suitable prefetch
distance. This experimentation was done by firstly enabling automatic software
prefetching in the compiler via the -qopt-prefetch=3 flag, with the distance
reported by the compiler used as the starting value for the prefetch distance.
This results in a 10% boost in performance on Knights Landing, taking us up to
77.9% of STREAM bandwidth (349 GB/s).

Interestingly on the Broadwell architecture the use of the same software
prefetch actually reduces the performance, from 91.8% to 85.6%. We could not
find a suitable value for the prefetch distance which did not reduce performance
from that achieved via cache blocking and non-temporal stores alone. Using
software prefetchers may cause conflicts with the compiler automatically insert-
ing these instructions, however no improvements could be found by turning off
compiler prefetching. Note too that hardware prefetching will not function on
the data stream if manual prefetching instructions are issued; therefore on the
Broadwell architecture the hardware prefetchers alone seem sufficient for this
benchmark; after all the benchmark was achieving over 90% of STREAM Triad
bandwidth after the cache blocking optimisation.

360 T. Deakin et al.

Summary. Listing 1.2 shows the code changes described above applied to the
kernel originally shown in Listing 1.1. Again we show the Fortran kernel for
brevity; note the inclusion of the compiler directive for non-temporal stores, the
software prefetch intrinsic, and the additional loop and corresponding index.

With these optimisations in place, the mega-stream benchmark is obtaining
close to 80% of STREAM bandwidth on Knights Landing MCDRAM, a signif-
icant increase over the initial 16.4% we observed. The mega-stream benchmark
has one large read data stream and one large write data stream, and therefore we
would not expect to reach close to Triad bandwidth which has two read and one
write stream. The Knights Landing MCDRAM has separate channels for read
and write and therefore we will not maximise the memory bandwidth available
with a single read stream [6]. The Scale kernel in the STREAM benchmark is
more similar to the read and write balance here, which achieves 400 GB/s on
Knights Landing and 100 GB/s on Broadwell. Based on Scale as an achievable
peak instead of Triad, mega-stream is now achieving 87.3% of the available mem-
ory bandwidth on Knights Landing, a significant improvement over the baseline.
On Broadwell it achieves well over 100% of the memory bandwidth according to
our model, indicating good cache usage—the model over-estimates the number
of bytes loaded into cache from memory through the assumption that all future
reads after the first are not counted. The STREAM kernels are simple and so
we not expect to achieve parity with this more complex benchmark.

On the Mitigation of Cache Hostile Memory Access Patterns 361

The solid lines in Fig. 3 show the final estimated memory bandwidth after
the optimisations. Remember that this figure explores the variation in achieved
memory bandwidth over different problem sizes with the baseline performance
for the various input sizes shown with dashed lines. Firstly note that the results
are more consistent with each other, generally within 6% (excluding the first
points), compared to 145% initially. As such, the effective utilisation of the avail-
able memory bandwidth is no longer as dependent on the problem size. With
the “middle” iterations set to four (leftmost point of the “middle” dashed green
line), the optimised code actually realises an increased runtime for this input;
this problem size is fully cache resident and hence non-temporal stores moving
the memory out of cache to MCDRAM are a hindrance.

Running the optimised mega-stream utilising the hyperthreads on the
Knights Landing results in reduced bandwidth. Using 2 and 4 hyperthreads
per physical core with Nm set to 128 and 256 as before, the bandwidth is esti-
mated as 300 and 245 GB/s respectively; recall running 1 thread per physical core
achieves 349 GB/s. This behaviour is in-line with running memory bandwidth
bound kernels such as those in the STREAM benchmark.

The Roofline analysis in the Intel Advisor tool shows that for the optimised
code the Nj loop is limited by L2 cache bandwidth, however again does not show
results for the kernel as a whole.

6 Conclusions

A simple benchmark code with sensible, stride 1 memory access patterns and
vectorisation is shown which initially does not take full advantage of available
memory bandwidth; yet the code should be memory bandwidth bound due to its
low computational intensity. The code follows a pattern which may be present
in a wide range of important codes: a stencil style access where cell edge values
contribute to neighbouring cells. The results we present in this paper could
therefore help identify many more cases where performance on Knights Landing
could be significantly improved. We have presented a series of three optimisations
which improve the runtime of our simple benchmark code by 4X on the Intel
Xeon Phi (Knights Landing) processor, and thus allow it to take advantage of
the improved memory bandwidth on this architecture. The optimisations also
helped on Intel Xeon processors with close to a 1.5X speedup, however due to
the large cache sizes on these processors the improvement is much smaller than
on Knights Landing.

We are planning on examining the performance of mega-stream on other
cache based CPU architectures as well as a GPU port; focusing on uncovering
the fundamental reasons why the GPU port of SNAP achieves good performance.
We will also apply the techniques and optimisations discussed to SNAP itself.

Acknowledgement. We would like to thank John Pennycook and Andrew Mallinson
of Intel Corporation for their assistance with this work. The mega-stream code is
made available from the UK Mini-App Consortium on GitHub at https://github.
com/UK-MAC/mega-stream. The University of Bristol is an Intel Parallel Computing

https://github.com/UK-MAC/mega-stream
https://github.com/UK-MAC/mega-stream

362 T. Deakin et al.

Center, and the authors would like to thank Intel Corporation for the provision of the
Intel Xeon Phi (Knights Landing) Processor. The authors would like to thank Cray
Inc. for providing access to the Cray XC40 supercomputer, “Swan”.

References

1. Deakin, T., McIntosh-Smith, S., Gaudin, W.: Many-core acceleration of a dis-
crete ordinates transport mini-app at extreme scale. In: Kunkel, J.M., Balaji, P.,
Dongarra, J. (eds.) ISC High Performance 2016. LNCS, vol. 9697, pp. 429–448.
Springer, Cham (2016). doi:10.1007/978-3-319-41321-1 22

2. Deakin, T., McIntosh-Smith, S., Martineau, M., Gaudin, W.: An improved paral-
lelism scheme for deterministic discrete ordinates transport. Int. J. High Perform.
Comput. Appl. http://hpc.sagepub.com/cgi/doi/10.1177/1094342016668978

3. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: GPU-STREAM v2.0:
benchmarking the achievable memory bandwidth of many-core processors across
diverse parallel programming models. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.)
ISC High Performance 2016. LNCS, vol. 9945, pp. 489–507. Springer, Cham (2016).
doi:10.1007/978-3-319-46079-6 34

4. Intel: Programming with Intel Streaming SIMD Extensions, Intel 64 and IA-32
Architectures Software Developer’s Manual, chap. 10, vol. 1. Intel Corporation,
December 2016

5. Jeffers, J., Reinders, J., Sodani, A.: Trinity workloads. In: Intel Xeon Phi Proces-
sor High Performance Programming, chap. 25, pp. 549–579. Morgan Kaufmann,
Boston (2016). http://www.sciencedirect.com/science/article/pii/B97801280919
44000259

6. Jeffers, J., Reinders, J., Sodani, A.: Quantum chromodynamics. In: Intel Xeon Phi
Processor High Performance Programming, pp. 581–598. Elsevier (2016). http://
linkinghub.elsevier.com/retrieve/pii/B9780128091944000260

7. Lamport, L.: The parallel execution of DO loops. CACM - Commun. ACM 17(2),
83–93 (1974)

8. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19–25, December 1995

9. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52, 65–76 (2009)

10. Zerr, R.J., Baker, R.S.: SNAP: SN (discrete ordinates) application proxy - proxy
description. Tech. report, LA-UR-13-21070, Los Alamos National Laboratory
(2013)

http://dx.doi.org/10.1007/978-3-319-41321-1_22
http://hpc.sagepub.com/cgi/doi/10.1177/1094342016668978
http://dx.doi.org/10.1007/978-3-319-46079-6_34
http://www.sciencedirect.com/science/article/pii/B9780128091944000259
http://www.sciencedirect.com/science/article/pii/B9780128091944000259
http://linkinghub.elsevier.com/retrieve/pii/B9780128091944000260
http://linkinghub.elsevier.com/retrieve/pii/B9780128091944000260

From Knights Corner to Landing: A Case Study
Based on a Hodgkin-Huxley Neuron Simulator

George Chatzikonstantis1(B), Diego Jiménez2, Esteban Meneses2,3,
Christos Strydis4, Harry Sidiropoulos1, and Dimitrios Soudris1

1 Microprocessors and Digital Systems Lab,
National Technical University of Athens, Athens, Greece

{georgec,harry,dsoudris}@microlab.ntua.gr
2 Advanced Computing Laboratory, Costa Rica National High Technology Center,

San José, Costa Rica
{djimenez,emeneses}@cenat.ac.cr

3 School of Computing, Costa Rica Institute of Technology, Cartago, Costa Rica
4 Neuroscience Department, Erasmus Medical Center Rotterdam,

Rotterdam, Netherlands
c.strydis@erasmusmc.nl

Abstract. Brain modeling has been presenting significant challenges to
the world of high-performance computing (HPC) over the years. The
field of computational neuroscience has been developing a demand for
physiologically plausible neuron models, that feature increased complex-
ity and thus, require greater computational power. We explore Intel’s
newest generation of Xeon Phi computing platforms, named Knights
Landing (KNL), as a way to match the need for processing power
and as an upgrade over the previous generation of Xeon Phi models,
the Knights Corner (KNC). Our neuron simulator of choice features
a Hodgkin-Huxley-based (HH) model which has been ported on both
generations of Xeon Phi platforms and aggressively draws on both plat-
forms’ computational assets. The application uses the OpenMP interface
for efficient parallelization and the Xeon Phi’s vectorization buffers for
Single-Instruction Multiple Data (SIMD) processing. In this study we
offer insight into the efficiency with which the application utilizes the
assets of the two Xeon Phi generations and we evaluate the merits of
utilizing the KNL over its predecessor. In our case, an out-of-the-box
transition on Knights Landing, offers on average 2.4× speed up while
consuming 48% less energy than KNC.

Keywords: Intel Xeon Phi · Knights landing · Computational neuro-
science

1 Introduction

In recent years neuroscientists have been gradually revealing details of neuron
operation. Using this knowledge, there is a wide research interest in studying the

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 363–375, 2017.
https://doi.org/10.1007/978-3-319-67630-2_27

364 G. Chatzikonstantis et al.

behaviour of single-neuron, a network of neurons and eventually study brain-wide
populations of neurons. Simulating these neuronal networks on various platforms
is an active field of research [3,19].

A major challenge is the sheer computational complexity that many of these
neuron models entail. Even the less complex types have significant demands as
the studied neuronal network increases in size both in terms of computation and
data transfer or storage. Traditionally in the domain of neuroscience, the most
common methods for simulating neuron models and studying their behaviour
were either through widely-known mathematical software suites such as MAT-
LAB [24] or through specific neuromodeling tools like NEURON [13] and Brian
[12]. It has become clear that these methods are not suitable for simulating neu-
ronal networks of realistic sizes and high detail within a reasonable timeframe
for brain research. High-Performance Computing (HPC) has been recently recog-
nized as a viable domain for providing a variety of solutions to cope with this
limitation [2,5,11,18,22,25].

In our current case study we feature a simulator for biophysically plausible
neuron models, targeting a part of the human brain named the Inferior Olivary
Nucleus, which specializes in the coordination and learning of motor function
[9]. The modeling accuracy is at the cell conductance level (Hodgkin and Huxley
models [14]), belonging at an analytical and complicated class of models which
allow us to expose fine details of the neuron’s mechanisms. This workload is
an excellent candidate for parallelization on HPC architectures, such as the
Intel Xeon Phi system [10], due to the large inherent parallelism of the mod-
els. Additionally, it constitutes a realistic worst-case scenario in terms of model
complexity, hence a benchmark for neuron modeling workloads.

In order to explore whether Intel’s newest generation of the Xeon Phi com-
puting platform, named Knights Landing (KNL), is a suitable platform for neu-
roscientific workloads, in the current paper we evaluate its performance and
energy consumption compared to the previous version, Knights Corner (KNC).
We utilize the aforementioned Inferior Olivary Nucleus simulator, named InfOli,
which was developed for the KNC generation of Xeon Phi [6]. This comparison
will highlight how the evolution of Intel’s Xeon Phi architecture can improve
the performance of a challenging application in the field of computational neu-
roscience. Since the application is fine-tuned to the previous version of Xeon Phi
processors, we will, accordingly, explore the behaviour of an “out-of-the-box”
application on the KNL.

In this paper, we shall first discuss the nature and parallelization method of
our simulator. We will then briefly present the architecture of the two genera-
tions of Xeon Phi HPC architectures and highlight their significant differences in
hardware. Furthermore, we will present the methodology of our experimentation
and evaluate their results. Finally, we will conclude with remarks on the merits
and shortcomings of each platform.

From Knights Corner to Landing: A Case Study 365

2 System Design

2.1 Software

The InfOli simulator, depicted in Fig. 1, is a transient simulator; brain activity
is calculated in simulation steps, with each step set to represent 50us of activity
in a fixed manner. The steps are calculated sequentially, until the entirety of the
requested brain activity is computed.

Fig. 1. The InfOli simulator [6]

In each simulation step, the simulator has the task of updating the status of
each neuron in a pre-defined network. The neurons are based on an elaborate,
realistic model of the human neuron, derived from the work of Hodgkin and
Huxley [14]. As such, they are comprised of 3 compartments, each modelling a
different part of the neuron. The dendritic compartment holds the important
task of communicating with the rest of the network; it forms connections with
other neurons in the network, modelled as electrical synapses named Gap Junc-
tions (GJ) [8]. The somatic compartment is the main body of the neuron, where
most calculations for the neuron’s inner state take place. Finally, the axonal
compartment acts as the output port of the neuron (specifically, in our appli-
cation, of the Inferior Olivary neuron) to other parts of the brain (such as, the
cerebellum). In each step, the simulator processes the current flow in the GJs of
the network and then, re-calculates the states of the three compartments of each
neuron. This is achieved by solving the Ordinary Differential Equations (ODE)
governing the model via the Euler forward method [20]. Each neuron may also
receive an external stimulus by its environment, in each step of the simulation.

In order to boost simulation speed, OpenMP [7] has been employed to paral-
lelize the application. Figure 2 relays how the simulator utilizes OpenMP threads.

366 G. Chatzikonstantis et al.

The network is divided in equal parts and assigned to different OpenMP threads,
ensuring a balanced distribution of workload.

Fig. 2. OpenMP implementation of the InfOli simulator

In each step, the threads read from the Xeon Phi’s shared memory in order
to calculate the state of their assigned neurons’ GJs. This task requires that
each thread accesses other threads’ data concerning the dendritic compartments
of their assigned neurons; these shared memory accesses enforce the flushing
of cache lines that hold invalid data from previous simulation steps. After all
relevant dendritic data is refreshed, the state of each neuron can be calculated
independently from the rest of the network. When the simulation step is com-
pleted, biological data that needs to be tracked, such as the voltage levels of the
somatic membrane, is collected from each thread and recorded in the simulation’s
output file.

The simulator has been ported and tested primarily on the Intel KNC. An
analytic methodology has been followed to boost vectorization processing unit
(VPU) usage, in order to optimally utilize the platform’s asset [6]. Data transfor-
mations (struct to arrays), aligning data to cache lines and loop transformations
have been tested on the KNC, with the help of Intel’s profiling tools (Intel VTune
Amplifier). As such, the simulator is not expected to be optimal for the second
generation of Xeon Phi, the KNL. However, due to their similar architectural
design, the application is a good candidate for porting on both platforms.

2.2 Hardware

The first commercial generation of Xeon Phi products is named Knights Corner.
This version of Xeon Phi is an Intel accelerator platform arranged in a host-
and-coprocessor fashion and features up to 61 cores, each with four instruction
streams [15]. It supports traditional parallel-programming paradigms, such as
MPI [23] and OpenMP [7], in contrast to Graphics Processing Units (GPU)
requiring platform-specific programming paradigms [1]. After the Xeon host

From Knights Corner to Landing: A Case Study 367

boots a KNC-specific software stack on the Phi, named Intel Manycore Plat-
form Software Stack (MPSS), the latter may be used independently, for native
workload execution. The KNC accelerator features vectorization processing units
(VPU) [15], which can parallelize multiple floating-point (FP) operations.

Intel’s second generation of Xeon Phi processors introduced several archi-
tectural differences with respect to its predecessor. KNL is a standard Intel
Many-Integrated Core (MIC) Architecture standalone processor that can boot
stock operating systems and connect to a network directly via common intercon-
nects such as Infiniband, Ethernet, etc. This is a significant differentiation over
Knights Corner, which is a PCIe-connected device and, therefore, could only be
used when connected to a separate host processor. In KNL, cores are integrated
in couples into structures named tiles in which they share a 1 MB L2 cache.
Each core is connected to two vector processing units as opposed to the single
VPU unit per core present in KNC models, making vectorization a key aspect
in this platform’s computational power. KNL processors can have up to 36 tiles
for a total of 72 cores, each capable of hyperthreading with up to 4 threads per
core, and 144 VPUs. Communication between those 36 tiles is achieved through
a cache-coherent 2D mesh interconnect which replaces the bidirectional ring
bus used on the KNC coprocessor. This on-die interconnect allows for different
clustering modes of operation which offer various degrees of address affinity to
improve performance in HPC applications.

In addition to these features, KNL introduced a new memory architecture to
provide both large memory capacity as well as high memory bandwidth. To do so,
traditional DDR memory is complemented with what Intel named MultiChannel
Dynamic Random Access Memory (MCDRAM). This on-package memory does
not achieve higher single data access performance than main memory but sup-
ports a higher bandwidth [16]. As with the mesh clustering modes, MCDRAM
can be configured in different memory modes: (i) to serve as cache for the DDR
memory (cache mode), (ii) to be mapped as regular memory into the system’s
address space (flat mode) or, (iii) to work as hybrid memory where part of the
MCDRAM acts as cache and the rest is allocated to the address space (hybrid
mode). KNL’s characteristics and its high degree of customization make it a
suitable platform for high performance computing applications like the Inferior
Olive simulator.

3 Evaluation

3.1 Experimental Setup

The measurements presented in this section have been carried out using two
different generations of Intel Xeon Phi. The Knights Corner co-processor’s model
is 3120P, featuring 57 cores at 1.1 GHz, each supporting up to 4 threads running
concurrently via multithreading technology. Cores run at 300 W thermal design
power (TDP). The application is designed to run natively on the co-processor,
thus excluding any impact from its Intel Xeon host on its measured performance.

368 G. Chatzikonstantis et al.

Specifically, after compiling and transferring via Secure Copy Protocol (scp) all
necessary binaries to the co-processor, the host remains idle throughout the
experiment.

The Knights Landing processor’s model is 7210, with 64 cores at 1.3 GHz
and similar multithreading capacities. Its TDP is noticeably lower at 215W.
MCDRAM for the KNL was set to cache mode as this setting is completely
transparent to software and allows for “out-of-the-box” codes like the neuron
simulator being tested, to take advantage of the high-bandwidth-memory tech-
nology. As for the clustering mode, quadrant configuration was chosen based
on recognition that the cache-quadrant combination offers performance gain to
HPC applications [16,21].

Finally, in order to get a better grasp on the performance offered by the
two generations of accelerator platforms, we include performance curves from
an Intel Xeon E5-2609-v2, a 4-core server-grade processor utilizing 4 threads
concurrently. The processor’s simulation speed acts as a baseline, with the added
benefit that codebases developed for Xeon Phi accelerators are compatible with
Xeon (or any generic x86) processors.

For the power measurements in this section, different methodologies have
been followed for the two platforms. For the Knights Landing processor, the
processor’s power consumption was sampled via Intelligent Platform Manage-
ment Interface (IPMI) [17] via a script running concurrently with each experi-
ment’s execution. Polling frequency was set to approximately 1 Hz. Energy con-
sumption for each experiment was then calculated by integrating the power
samples over the simulation’s duration. On the other hand, power measurements
on the Knights Corner co-processor is achieved by accessing the host’s logs of
information and errors regarding the co-processor. These logs are attained via
a built-in tool named micrasd which can track the KNC’s power in intervals of
5 milliseconds. The reports are generated from the beginning of the simulation
and by summation of each report until the end of the experiment, an accurate
estimation of total energy consumption can be attained.

In each experiment, a network of neurons connecting to each other via the
Gap Junction mechanism, explained in Subsect. 2, is generated. The neuron con-
nections are generated randomly, with each pair of neurons given a chance to
form a bond regardless of their position on the neuronal grid. This chance is
calculated based on the amount of connections each neuron is designed to have
for each experiment, as well as the total neuronal network size; a division of
the two variables calculates the network’s average connection density, which, in
turn, directly leads to the chance of a pair of neurons forming a bond.

Compilation for the KNC has been carried out using Intel’s compiler icc
version 16.0.1, whereas on the KNL, icc Version 17.0.0.098 has been used. On
both platforms, the options used for vectorized code are -O3 for the best available
compiler optimizations, -vec-report6 for a detailed analysis of vectorized code
generated, -opt-subscript-in-range to inform the compiler that no integer
in the main loop is calculated exceeding the value of 231, allowing more loop
transformations and -lm to access math libraries needed throughout the model’s

From Knights Corner to Landing: A Case Study 369

calculations. For measurements that use unvectorized code, the options -no-vec
-no-simd -no-qopenmp-simd have been utilized to ensure the compiler avoids
all SIMD commands.

3.2 Experimental Results

In Fig. 3, we can observe obtained simulation speed of each platform for networks
of varying connectivity density. The measurements explore varying network sizes,
where each neuron has a fixed average amount of connections to the rest of the
network.

Fig. 3. Execution Time per second of simulated brain activity, comparison between
Knights Corner (KNC) and Knights Landing (KNL) on different Simulator configura-
tions. Performance on Xeon processor (4 threads) added as a baseline.

All experiments in Fig. 3 have been carried out using approximately the max-
imum amount of threads available to each platform. For the KNC, we used 220
threads, whereas the KNL offered 256 threads. On average the KNL platform
outperforms the KNC platform by 2.4× in terms of execution time. The max-
imum speed-up is 6×, while in some cases the KNC comes in front with up to

370 G. Chatzikonstantis et al.

1.6× speed up over the KNL. More specifically, we can observe that, in the cases
of low connectivity density, which translates to a low amounts of workload per
thread, the KNL shows a superior performance to the KNC.

In cases of small workloads, the efficiency in usage of parallelization assets is
diminished, thus single-threaded performance becomes much more important for
overall simulation speed. The KNL demonstrates a considerably stronger single-
threaded processing power and overtakes the KNC by a fair margin. For both the
KNL and the KNC, we can observe that the difference between vectorized and
unvectorized code is minimal when connectivity density is low; Gap Junctions
represent a significant portion of the total workload and thus, when they are few
or completely absent, vectorization fails to boost application performance. We
can also observe that the Xeon processor, which excels at handling mostly serial
code, may even surpass the KNC accelerator for small-scale simulations.

On the other hand, as the computational workload assigned to each thread
increases for denser networks, the KNC performs significantly better. The per-
formance gap between the two platforms lessens as the KNC can use its assets
with increasing efficiency, since the application has been optimized with the KNC
architecture in mind. The gap between vectorized and unvectorized code widens
significantly for the KNC, whereas there is a more stable difference in the case
of the KNL. Better usage of VPUs leads to the KNC outperforming the KNL;
indeed, for workloads of more than 4,000 neurons, each forming approximately
1,000 synapses, the KNL is surpassed by the KNC. As expected, both platforms
perform significantly better than the baseline Xeon processor; the KNL and the
KNC simulate networks of 10,000 neurons, each with 1,000 synapses, approxi-
mately 4.6× and 8.1× faster than the server-grade processor, respectively.

It should be noted that, in terms of performance predictability, the KNL is
heavily favoured. Its performance is linear and very predictable. On the con-
trary, the KNC’s performance is harder to anticipate, when operating with vec-
torization options enabled. The platform’s capability to take advantage of its
computational resources (threads, VPUs) increases with the supplied workload.
Because of this behaviour, it forms a “plateau”, during which simulation time
for larger networks remains stable, or even lessens, due to better usage of the
SIMD commands generated by compiler directives.

Beyond a certain point in network sizes, which differs based on how dense
the network is, the aforementioned “plateau” ceases to exist and KNC’s perfor-
mance curve resumes its linear nature. The existence of such “plateaus” impacts
the performance predictability of the KNC, whereas the KNL does not exhibit
similar behaviour. This can be attributed to the less efficient usage of vectorized
code in the KNL’s case. For both platforms, unvectorized code, which omits the
usage of VPUs, displays a very predictable behaviour.

In Fig. 4, we present information regarding the energy required by each com-
puting fabric in order to simulate a second of brain activity, measured in mWh.
The Figure is directly linked to Fig. 3, since energy consumption is dependent on
execution time needed for simulation of each second of brain activity. As such,
we can observe similar patterns between the two Figures. On average we have

From Knights Corner to Landing: A Case Study 371

Fig. 4. Energy Consumption per second of simulated brain activity, comparison
between Knights Corner (KNC) and Knights Landing (KNL) on different Simulator
configurations

to note that the KNL consumes 48% less energy than the KNC. Because of the
KNL’s lower TDP and better performance for light workloads, there is a signif-
icant reduction in energy consumption when computing for small networks. To
put this claim into perspective, whereas the simulation of one second of brain
activity in a network of 4000 neurons, with a density of 250 synapses per neuron,
requires over 1200 mWh for the KNC, the KNL consumes under 300 mWh for
the same workload, improving on energy efficiency by a factor of 4×.

On the contrary, due to the KNC’s smaller execution times for larger, denser
networks, it is preferable from a power consumption standpoint to the KNL for
such workloads. A network of 10,000 neurons, each forming 1,000 synapses with
the rest of the network, requires 27% less energy on the KNC (1600 mWh per
second of simulated time) than on the KNL (2200 mWh for the same amount of
activity).

372 G. Chatzikonstantis et al.

Fig. 5. Threading Efficiency on the Knights Corner (KNC) and Knights Landing
(KNL), for different Simulator configurations

In Fig. 5, information regarding the efficiency with which each platform man-
ages its OpenMP threads is displayed. In HPC, the efficiency with which an
application utilizes the underlying platform’s resources can be calculated as the
speedup yielded by employing said resources, compared to a single-threaded
performance, divided by the amount of resources used, such as the number of
processors used to run the application, or the number of threads spawned by
the application. In our case, we calculated the efficiency metric by dividing exe-
cution speedup with the number of OpenMP threads spawned, with a range
of OpenMP threads utilized from 1 to 200, on both platforms. In each subfig-
ure, network density has been set to 1,000 synapses per neuron and we explore
networks of different size.

For the KNL, we can observe that the efficiency of utilizing up to approxi-
mately 50 threads remains at satisfactory levels. In these cases, each core spawns

From Knights Corner to Landing: A Case Study 373

either one or two threads (due to the selected balanced thread affinity) and, in
contrast to the KNC, the KNL’s cores operate significantly better when oper-
ating with only one thread [16]. The KNL maintains a reliable efficiency for
low degrees of threading regardless of the simulated network’s size, whereas the
KNC’s efficiency suffers for small workloads, such as for networks of 4000 neu-
rons.

Larger networks, however, offer better opportunities for the KNC to uti-
lize its computational assets efficiently, maintaining a speedup-to-threads ratio
above 70% even for 200 threads. The KNL’s threading efficiency sharply declines
when employing massive degrees of parallelism, dropping below 40% when using
more than 140 threads. The application’s inability to utilize the entirety of
KNL’s assets efficiently to tackle demanding simulations explains the perfor-
mance gap between the two platforms for larger workloads. This inability is
mostly attributed to the fact that the simulator has been fine-tuned to the KNC
environment and has been tested “out-of-the-box” on the KNL.

4 Conclusion and Outlook

In this paper, a computationally demanding application from the field of compu-
tational neuroscience that had previously been extensively developed and opti-
mized for the Intel KNC, has been tested “out-of-the-box” for the second gen-
eration of Xeon Phi, the KNL. The InfOli biophysically-accurate simulator’s
performance was tested using a range of workloads, from small, unconnected
neuronal populations to larger, dense networks. The results were evaluated from
both a simulation-speed and a power-efficiency standpoint. On average KNL
offers a speed up of 2.4× while consuming 48% less energy. Smaller workloads,
by taking advantage of the KNL’s superior single-threaded performance, exhibit
very significant gains in both speed and, even more so, energy consumption, with
specific experiments demanding 75% less Wh of energy per second of simulated
brain activity on the KNL. On the other hand, without further fine-tuning of
the application to the architectural details of the KNL, OpenMP-thread effi-
ciency suffers when running on the KNL, causing the simulator to handle more
demanding networks poorly, relatively to the optimized KNC version. Further-
more, throughout the whole range of experiments, it has been shown that the
KNL offers a more robust, dependable performance curve with little variability.

These findings are promising enough to warrant further optimization of the
simulator for the new generation of the Xeon Phi. As future work, we would sug-
gest using an optimized version of the simulator on a cluster of KNL processors,
in order to simulate neuronal networks of much larger sizes and take advantage
of Intel’s OmniPath technology for inter-node communication [4].

Acknowledgments. This work is partially supported by European Commission
project H2020–687628–VINEYARD.

374 G. Chatzikonstantis et al.

References

1. CUDA C Programming Guide. Technical report, NVIDIA Corporation
2. Bhuiyan, M., Nallamuthu, A., Smith, M., Pallipuram, V.: Optimization and per-

formance study of large-scale biological networks for reconfigurable computing. In:
Fourth International Workshop on High-Performance Reconfigurable Computing
Technology and Applications (HPRCTA), pp. 1–9, November 2010

3. Bhuiyan, M., et al.: Acceleration of spiking neural networks in emerging multi-core
and GPU architectures. In: IPDPSW (2010)

4. Birrittella, M.S., Debbage, M., Huggahalli, R., Kunz, J., Lovett, T., Rimmer,
T., Underwood, K.D., Zak, R.C.: Intel R© omni-path architecture: enabling scal-
able, high performance fabrics. In: 2015 IEEE 23rd Annual Symposium on High-
Performance Interconnects (HOTI), pp. 1–9. IEEE (2015)

5. Chatzikonstantis, G., Rodopoulos, D., Nomikou, S., Strydis, C., De Zeeuw,
C.I., Soudris, D.: First impressions from detailed brain model simulations on
a Xeon/Xeon-Phi Node. In: Proceedings of the ACM International Conference
on Computing Frontiers, CF 2016, NY, USA, pp. 361–364 (2016). doi:10.1145/
2903150.2903477

6. Chatzikonstantis, G., Rodopoulos, D., Strydis, C., De Zeeuw, C.I., Soudris, D.:
Optimizing extended Hodgkin-Huxley neuron model simulations for a Xeon/Xeon
Phi node. IEEE Trans. Parallel Distrib. Syst. (2017)

7. Dagum, L., Enon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE CSE 5(1), 46–55 (1998)

8. De Zeeuw, C.I., Hoebeek, F.E., Bosman, L.W., Schonewille, M., Witter, L.,
Koekkoek, S.K.: Spatiotemporal firing patterns in the cerebellum. Nat. Rev.
Neurosci. 12(6), 327–344 (2011)

9. De Zeeuw, C.I., et al.: Microcircuitry and function of the inferior olive. Trends
Neurosci. 21(9), 391–400 (1998)

10. Fang, J., et al.: Test-driving Intel Xeon Phi. In: ICPE (2014)
11. Glackin, B., Wall, J.A., McGinnity, T.M., Maguire, L.P., McDaid, L.: A spiking

neural network model of the medial superior olive using spike timing dependent
plasticity for sound localization. Front. Comput. Neurosci. 4(18) (2010)

12. Goodman, D.F., Brette, R.: The brian simulator. Front. Neurosci. 3, 26 (2009)
13. Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Com-

put. 9(6), 1245–1249 (1997)
14. Hodgkin, A.L., Huxley, A.F.: Propagation of electrical signals along giant nerve

fibres. Proc. R. Soc. Lond. Ser. B Biol. Sci. 140(899), 177–183 (1952)
15. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High-Performance Program-

ming. Elsevier, Waltham (2013)
16. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance

Programming: Knights Landing Edition. Morgan Kaufmann, Boston (2016)
17. Kaufman, G.J., et al.: System and method for application programming interface

for extended intelligent platform management. US Patent 7,966,389, 21 Jun 2011
18. Nguyen, H.D., Al-Ars, Z., Smaragdos, G., Strydis, C.: Accelerating complex brain-

model simulations on GPU platforms. In: Design, Automation, and Test in Europe,
DATE 2015, March 2015

19. Du Nguyen, H.A., et al.: Accelerating complex brain-model simulations on GPU
platforms. In: DATE, pp. 974–979 (2015)

20. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C, vol. 2. Cambridge University Press, Cambridge (1996)

http://dx.doi.org/10.1145/2903150.2903477
http://dx.doi.org/10.1145/2903150.2903477

From Knights Corner to Landing: A Case Study 375

21. Rosales, C., James, D., Gómez-Iglesias, A., Cazes, J., Huang, L., Liu, H., Liu,
S., Barth, W.: TACC Technical Report TR-16-03 KNL Utilization Guidelines.
Technical report, University of Texas at Austin, Texas Advanced Computing Cen-
ter, November 2016. https://portal.tacc.utexas.edu/documents/10157/1334612/
KNL+Utilization+Guidelines/95cc0f23-1755-424d-8d29-64a91a09cf33

22. Smaragdos, G., Isaza, S., Eijk, M.V., Sourdis, I., Strydis, C.: FPGA-based
biophysically-meaningful modeling of olivocerebellar neurons. In: 22nd
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA), February 2014

23. Snir, M.: MPI-the Complete Reference: The MPI Core. MIT, Cambridge (1998)
24. Wallisch, P., Lusignan, M.E., Benayoun, M.D., Baker, T.I., Dickey, A.S.,

Hatsopoulos, N.G.: MATLAB for Neuroscientists: An Introduction to Scientific
Computing in MATLAB. Academic Press, San Diego (2014)

25. Yamazaki, T., Igarashi, J.: Realtime cerebellum: a large-scale spiking network
model of the cerebellum that runs in realtime using a graphics processing
unit. Neural Netw. 47, 103–111 (2013). http://www.sciencedirect.com/science/
article/pii/S0893608013000348. Computation in the Cerebellum

https://portal.tacc.utexas.edu/documents/10157/1334612/KNL+Utilization+Guidelines/95cc0f23-1755-424d-8d29-64a91a09cf33
https://portal.tacc.utexas.edu/documents/10157/1334612/KNL+Utilization+Guidelines/95cc0f23-1755-424d-8d29-64a91a09cf33
http://www.sciencedirect.com/science/article/pii/S0893608013000348
http://www.sciencedirect.com/science/article/pii/S0893608013000348

Porting Tissue-Scale Cardiac Simulations
to the Knights Landing Platform

Johannes Langguth1(B), Chad Jarvis1, and Xing Cai1,2

1 Simula Research Laboratory, 1364 Fornebu, Norway
{langguth,chad,xingca}@simula.no

2 Department of Informatics, University of Oslo, 0316 Oslo, Norway

Abstract. To study the performance difference between the two gener-
ations of Xeon Phi, as well as the respective programming techniques, we
port and optimize a simulation code for 3D tissues of the human cardiac
ventricle to the new Knights Landing (KNL) platform. The amount of
computation arises from a large number of cardiac cells and a physiolog-
ically realistic model adopted for each cell, which is resolved as having
104 calcium release units and controlled by 106 stochastically changing
ryanodine receptors and 1.5 × 105 L-type calcium channels. The pro-
gramming challenge arises from the fact that the involved computational
tasks have various levels of arithmetic intensity and control complexity,
requiring in some cases hardware-specific manual optimizations. We also
study how the new memory system of KNL can be properly used to allow
larger simulations beyond the capacity of the 16 GB MCDRAM. The
combined advancements in hardware and software result in an almost
ninefold increase in performance on the KNL over the previous genera-
tion.

1 Introduction

The second generation of the Intel Xeon Phi manycore processor, which is gener-
ally referred to as Knights Landing (KNL), constitutes a significant change from
the previous Knights Corner (KNC) model. Thus, a natural subject to study is
the performance improvement that can be derived from migrating KNC codes
to the new KNL devices. This paper investigates this subject in the context of
a real-world simulation code of computational cardiology.

Realistic simulations of calcium handling and action potential formation are
essential for understanding the causative and preventive mechanisms of arrhyth-
mogenesis, which originates from the local nanoscopic level of channel and dyadic
dysfunction and develops into the subcellular and cellular levels of membrane
potential abnormalities. For physiological fidelity, it is important to adopt sophis-
ticated cell models of electrophysiology and calcium handling, because these
models incorporate the discrete nature of subcellular stochastic calcium release
processes [5,12,14,16]. The study of arrhythmias, which occur at the tissue and
organ scales, therefore requires detailed simulations at such scales. Due to the

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 376–388, 2017.
https://doi.org/10.1007/978-3-319-67630-2_28

Porting Tissue-Scale Cardiac Simulations to the Knights Landing Platform 377

massive computations on independent cells, such simulations are well suited for
manycore systems.

In our previous work, we presented an MPI+OpenMP implementation of a
tissue-scale cardiac simulator for the study of cardiac arrhythmias, using clusters
of Xeon CPUs [9] and KNC coprocessors [11]. The code was later used to run
large-scale experiments on the Tianhe-2 [15] supercomputer [10]. Our ultimate
goal is to enable massive simulations on the next generation of KNL based
supercomputers. We will thus discuss the code transitions that are necessary
to obtain high performance on the new device, report our experiences and the
performance achieved, and give recommendations for future implementations.

2 Target Hardware

Although the number of cores increases only slightly from KNC to KNL, a
higher clock frequency and a doubling of the vector processing units (VPU) lead
to about a threefold increase in peak floating point performance1. In addition,
a new core architecture capable of out-of-order execution makes it easier for
applications to reach a higher fraction of that peak on KNL. The 8 GB device
memory of the KNC has been replaced by 16 GB of on-chip memory called
MCDRAM, with roughly three times the memory bandwidth [3]. In addition, the
KNL can be equipped with up to 384 GB of DDR4 memory with a bandwidth
of up to 90 GB/s. Unlike the KNC coprocessor, which is usually installed in
compute nodes together with multicore CPUs and other KNCs, the KNL can
have the same role as a CPU. Thus, in modern KNL-based supercomputers, a
compute node consists of a single KNL device.

Both KNL and KNC use a 512-bit wide SIMD instruction set. KNL’s imple-
mentation is called AVX-512 and KNC’s implementation is called Initial Many
Core Instructions (IMCI). IMCI is the predecessor to AVX-512 and it is not
binary compatible with AVX-512. It offers many of the same features of AVX-
512 but there are important differences, some of which will be discussed in later
sections.

3 Tissue-Scale Simulation

3.1 Multiscale Tissue and Cell Modeling

In pursuit of physiological fidelity, a multiscale modeling strategy is adopted.
First, a slab of cardiac tissue is mathematically represented by a 3D uniform
grid of cells, where the inter-cell coupling is described by the well-known mon-
odomain model in form of a reaction-diffusion equation. Here, each cell possesses
a membrane potential and a cell-wide ionic current. The latter is the sum of var-
ious ionic currents determined by an underlying multiscale cell model of detailed
calcium handling.

1 The exact values vary for the different models. See [8] for the technical specifications.

378 J. Langguth et al.

Second, the per-cell model incorporates detailed stochastic calcium handling
as described in [5], in combination with the O’Hara-Rudy model [13] of electro-
physiological current formulation for a healthy human cardiac ventricular action
potential. More specifically, each cardiac cell is assumed to have 10,000 cal-
cium release units, also termed as dyads, which form an internal 100 × 10 × 10
grid. Each dyad then consists of five calcium compartments: myoplasm Camyo,
submembrane space Cass, network sarcoplasmic reticulum CaNSR, junctional
sarcoplasmic reticulum CaJSR, and dyadic space Cads. The five local calcium
concentrations are modeled by an intricate system of ordinary and partial differ-
ential equations, where intra-cell diffusion (between the dyads) applies to Camyo,
Cass and CaNSR. An overview of this composition is shown in Fig. 1.

Third, the dyadic space is modeled with additional details, where each dyad
contains 100 ryanodine receptors (RyRs) and 15 L-type calcium channels. At
any given time, each RyR is in one of four possible states each having two
possible transition paths (see Fig. 1), whereas each L-type channel is either open
or closed. The stochastic transitions between the states follow a Markov model
with probabilities that are related to the local calcium concentrations.

We refer readers to [5] and its supplementary information for details about the
multiscale stochastic calcium handling model of the cardiac ventricular myocyte.

Fig. 1. Left: An overview of the computational composition of the cardiac tissue. Right:
The four possible states of a dyad and the eight possible transition paths, with the
corresponding transition probabilities.

3.2 Numerical Strategy

The overall numerical strategy is formulated as a time-stepping procedure, for
which a rather small time step size has to be used due to the intricate dynam-
ics of intra-cell calcium handling. The advantage of using a small time step is
that straightforward explicit numerical schemes can be used to solve the various
differential equations, at both cell and dyad levels.

During each time step, for every dyad, we sample eight times from a bino-
mial distribution corresponding to the eight possible transition paths between
the four different RyR states (see Fig. 1). This suffices for updating the numbers
of RyRs in the four states (always totalling 100 per dyad), instead of individu-
ally simulating the stochastic transition of each of the 100 RyRs. Similarly, two

Porting Tissue-Scale Cardiac Simulations to the Knights Landing Platform 379

samples from a binomial distribution per time step are sufficient for updating
the numbers of open and closed L-type calcium channels per dyad. Additionally,
the five local calcium concentrations per dyad are updated per time step, using a
forward Euler scheme to solve the involved ordinary differential equations. When
all the 10,000 dyads per cell have updated their local calcium concentrations,
intra-cell diffusion of Camyo, Cass and CaNSR, between the dyads, are computed
by explicit finite differencing. At the end of each time step, when all the cells
have finished their intra-cell computation, the monodomain equation is solved
by explicit finite differencing between the cells.

4 Implementation

4.1 Parallelization Strategy

The tissue-scale simulator works on a cuboid domain consisting of an arbitrary
integral number of cuboid subdomains in each dimension, which are again com-
posed of an arbitrary integral number of cells in each dimension. Each subdomain
is assigned to a single KNL device, and the KNLs communicate via MPI. As the
inter-subdomain communication is only needed for the monodomain equation
between the cells, which incurs negligible overhead relative to the entire compu-
tation, for this paper we focus only on the computation on a single device where
we use an OpenMP parallel for loop with static scheduling to divide the cells
among the threads. For load balance reasons, the number of cells will always be a
multiple of the number of available hardware threads (272 for the 7250 model) in
our experiments. Since every cell takes approximately the same time to compute,
there is no need to use dynamic scheduling (which induces extra overhead). It is
possible to use nested OpenMP regions to reduce this granularity. For example,
it would be possible to assign one cell per core, and divide the cell computation
among 4 threads. However, since our ultimate goal is to perform organ scale
simulations involving more than a billion cells, the benefit of this technique is
marginal and does not justify the increased complexity.

As a consequence, all computations performed for one cell remain on a sin-
gle core. Alternatively, it would be possible to split the computations for each
cell’s 10, 000 dyads over multiple cores, because the dyad computations can also
be performed independently. This would allow for better load balancing when
the number of cells is small. However, previous experiments revealed that this
decreased performance significantly, which implies that for large enough subdo-
mains, our cell-level work division approach is preferable.

We use the SIMD vector units to process eight dyads in parallel on each core.
This vectorization is crucial for performance. Due to the complexity of the code,
we employ both automatic vectorization via the Intel C++ compiler and manual
vectorization using intrinsics. To do so, we split the computations performed for
each of the 10, 000 dyads into arithmetic and conditional sections.

In our simulations, arithmetic sections involve determining the probabili-
ties for the opening of L-type channels or RyR state transitions, computing
the calcium concentrations, and performing the diffusion among the dyads.

380 J. Langguth et al.

They contain expensive computations, but have a trivial control flow and can
be vectorized automatically to yield the full eightfold speedup, although some
sections are memory bandwidth bound, which limits their scalability.

The conditional sections concern sampling from binomial distributions in
order to determine the number of state transitions, since this requires while loops
or equivalent structures to be efficient. The compiler does not vectorize these on
its own, but can be instructed to do so using the simd pragma. However, manual
vectorization using intrinsics yielded significantly better results.

Mixing automatic and manual vectorization sections makes it necessary to
split a large computational loop into several smaller loops, one for each section.
As each of these iterates over 10, 000 dyads, intermediate results (such as prob-
abilities for state transitions) must be written to memory and retrieved later,
which generates additional memory traffic. Some of this traffic can be avoided
by manually vectorizing small arithmetic sections and merging them with condi-
tional sections in order to reduce the temporary variables that need to be stored
and read from memory. Doing so for the L-type channel computation provided
a small but noticeable performance gain.

4.2 Vectorized Binomial Sampling

We vectorize the conditional sections manually using the AVX-512 intrinsics
provided by Intel. The vectorization of sampling from a binomial distribution
on the KNC was described in [11]. While some intrinsics had to be adapted to
render the code compatible with KNL, the basic algorithm is unchanged. The
key to vectorizing code containing conditional statements lies in the powerful
mask instructions. They allow the SIMD units to apply vector instructions only
on some elements of the vector, which are determined by a bit mask. The AVX-
512F instruction set of the KNL also allows us to use 32-bit integers rather
than doubles to store the number of RyR channels in different states. Once
architectures with the upcoming AVX-512VL instructions become available, this
could be improved further by using 8-bit integers.

The sampling algorithm iteratively builds the cumulative distribution func-
tion of the binomial distribution. This requires computing a power function,
and up to 100 iterations (the number of RyRs per dyad) of a short loop that
includes a division. For the KNC code, this constituted the main computational
cost, as KNC does not have a floating point division instruction. However, it
does have a fast reciprocal instruction. A single iteration of Newton’s method,
which can be implemented with two FMA operations, can greatly improve the
precision of the fast reciprocal operation. With the default floating point model
(fp-model fast= 1) the Intel C++ compiler generates about 40 instructions with
the mm512 div pd intrinsic. With the looser floating point model (fp-model
fast= 2) it generates about half the instructions. In both cases it implements
division using the reciprocal instructions.

KNL does have floating point division instructions, which provided a major
increase in performance without any code changes. It also has fast reciprocal
instructions which are about 4–5 times faster than the division, but getting the

Porting Tissue-Scale Cardiac Simulations to the Knights Landing Platform 381

same precision requires the addition of at least two FMA operations and a mul-
tiplication, which mostly counteracts the gain. We did not observe a noticeable
speedup from using this technique and removed it from the final code.

Due to the improvements in the division, the power function became the
main bottleneck of the sampling code. One possibility of accelerating it is to
use special instructions, since the pow(x, y) = xy function can be implemented
using pow(x, y) = exp(log(x) ∗ y). KNC has fast single precision exponential
and logarithm instructions but no double precision versions. KNL has single and
double exponential instructions but strangely no logarithm instructions. The
double precision exponential instructions suffer from a large loss in precision
and unlike the fast reciprocal instructions there is no simple method to improve
the precision. Because of this the Intel C++ compiler will not generate these
instructions automatically unless special options (e.g. -fimf-domain-exclusion=1
-fimf-accuracy-bits = 22) are used. Thus, instead of relying on special instruc-
tions, we exploit the fact that all exponents will be small integers. A generic
pow(double, integer) = xn function can be implemented using repeated squaring.
For example y = x9 can be implemented as t1 = x∗x, t2 = t1∗ t1, y = x∗ t2∗ t2.
This algorithm has O(log(n)) time complexity. Since n ≤ 100 in our code this
means at most seven iterations are needed to implement xn.

4.3 Random Number Generation

In order to generate the random numbers required by the binomial samplings,
we use the vdRngUniform function provided by the Intel MKL library [7] at
the beginning of every time step. Since vdRngUniform is a predefined library
function, we can perform no further optimizations on it. Due to the 8 possible
state transitions for the RyRs and 2 transitions for the L-type channels, up to 10
random numbers per dyad are used in every time step. To ensure reproducibility
of the computed results, random numbers are generated at the beginning of
every time step and stored until they are used. Generating the random numbers
takes about 32% of the total compute time and is by far the most expensive part
of the code. Thus, its relative share has increased compared to KNC [11], which
means that potentially a faster random number generation on the KNL should
be used.

In addition, reading the random numbers from memory slows down the bino-
mial sampling. A more efficient way is to generate smaller batches of random
numbers within the conditional sections and then use them immediately. In this
manner, we can keep them in cache and avoid storing them in memory altogether.
We found that batches of 640 random numbers yielded the best performance for
this. Generating smaller batches with vdRngUniform tends to be less efficient.
However, except for specifically testing this method, we do not use it in our other
experiments since it spoils reproducibility and can introduce additional variance
in the computation time. It should be used for actual simulations though.

382 J. Langguth et al.

5 Experimental Setup

We run all our experiments on an Intel Xeon Phi 7250 system with 68 cores
and 4 hardware threads per core with a base frequency of 1.4 GHz2. Codes are
compiled with the Intel C++ compiler version 17.0.0. We use OpenMP for shared
memory parallelism over all cores, placing 272 threads on the device. For load
balancing reasons, the number of cells in all experiments is a multiple of 272.
Threads are allocated using the balanced affinity. As the cores share essentially
no data, different affinities do not change our results when using 272 threads.
For scalability experiments, we also test the compact affinity.

By default, we configure the Xeon Phi in quadrant clustering mode and in
flat memory mode. We use numactl –preferred 1 to automatically place as much
data as possible in MCDRAM. We also test the cache mode. In cache mode,
the MCDRAM works as a hardware controlled L3 cache that is shared by all
cores. Note that the KNL also possesses a hybrid mode which combines features
from cache and flat modes. While this is useful to run multiple codes that are
optimized for different modes, for a single code it is unlikely to be faster than the
two alternatives, so we omit it in our experiments. Furthermore, since the code
is not designed NUMA environments, using the SNC4 sub-NUMA clustering
mode resulted in severe performance degradation. Also, it is not possible to use
numactl –preferred 1 in the sub-NUMA clustering modes. However, it would be
possible to use this mode efficiently with multiple MPI processes per KNL.

For most experiments, we run 10, 000 time steps which amount to simulating
one cardiac beat of 500 ms. The cells are stimulated at t = 50 ms. However,
there is very little difference in performance between stimulated and resting cells.
Due to the large number of dyads, each cell requires approximately 2.78 MB of
memory, which limits the number of cells that fit into MCDRAM to about 5000.
However, using the DDR4 memory allows for much larger subdomains, at the
cost of performance. Thus, for the large instance experiments, we only run 100
time steps. Over 100 executions, the running time of the simulation varied by a
maximum of 3%.

To make running times comparable between different simulation durations,
we report performance in cell computations per second (CC/s). The total num-
ber of cell computations performed in a simulation is simply the number of cells
in the experiment times the number of time steps. A single cell computation
includes about 6.4 million floating point operations. As observed in [10], the
performance of this code is almost completely independent of inter-node com-
munication performance. Thus, it is expected that the speedups measured on a
single device in our experiments will also apply to larger clusters.

We compare the KNL with two KNC models, the 57-core Xeon Phi 31S1P
running at nonstandard 0.8 GHz, and the 60-core 5110P model running at
1.05 GHz [11]. In addition, we use dual Intel Xeon E5-2692v2 Ivy Bridge CPUs,

2 Our code generally runs at 1.5 GHz due to the built-in turbo functionality.

Porting Tissue-Scale Cardiac Simulations to the Knights Landing Platform 383

each of which has 12 cores (with deactivated Hyperthreading) running at 2.2 GHz
for comparison. Both the 31S1P and the Ivy Bridge CPUs are part of the Tianhe-
2 supercomputer [10].

6 Performance Experiments

6.1 Code Optimization

In our first set of experiments, we establish the performance baseline and measure
the incremental effect of our code optimizations. Since the KNC code is not
compatible with the KNL, we use the unmodified CPU code as a baseline. We
run a small experiment (272 cells, i.e. one per thread), using high-bandwidth
memory only and compare the results with KNC and CPU performance. Results
in Fig. 2 show that the KNL doubles the performance w.r.t. the dual CPUs and
triples it w.r.t. the KNC.

Fig. 2. The blue bars show previously reported performance on the KNC and CPU, and
KNL baseline performance using the same CPU code. The red bars show improvements
due to the different code optimizations on the Xeon Phi 7250. Performance is given in
cell computations per second. The code optimizations are incremental. (Color figure
online)

Our next step is to adapt the manually vectorized sampling from the bino-
mial distributions that were originally written for KNC to the KNL. This requires
changing a small number of intrinsics. We then apply this code to the opening
of RyRs and then L-type channels. The latter provides a greater increase in

384 J. Langguth et al.

performance, even though the number of L-type channels is smaller. The rea-
son for this was the inefficient implementation of the power function for the
RyR channels. After improving the function as discussed in Sect. 4.2, we observe
another significant gain in performance. In addition, the new AVX-512 intrinsics
using 32-bit integers rather than doubles to store the number of RyR channels in
different states improves performance again slightly. In total, using the correct
vectorization tripled the performance over the KNL baseline value.

Small additional improvements are obtained by merging the L-type channel
opening probability computation with their binomial distribution sampling, and
by merging the intracellular diffusion and reduction operations. Finally, by gen-
erating the random numbers used for cell computations in small batches that are
stored in cache, we save some additional memory bandwidth, thereby increasing
the performance further.

6.2 Strong Scalability

We test the strong scaling properties of the code on the KNL platform, showing
performance per core as a function of the number of threads and cores used in
Fig. 3. When using a single thread per core, performance increases by a factor of
60 when going from 1 to 68 cores, indicating very good strong scaling behaviour.

Fig. 3. Strong scaling of the code using a variable number of threads per core. Perfor-
mance is shown per core. KNC performance is given for comparison. Note that due to
numbers of available cores, the KNC value for 68 cores is based on measurements for
118 and 236 threads (marked by a dashed line).

Porting Tissue-Scale Cardiac Simulations to the Knights Landing Platform 385

As the KNL supports simultaneous multithreading, the number of hardware
threads can exceed the number of available cores. When using 2 threads per core,
performance increases by about 40%. For 4 cores, this number is 66%, making
it worthwhile to use this feature as long as there are enough cells to balance the
load. However, at 68 cores, this is reduced to 44%. When using all cores, the code
becomes increasingly memory bound, which implies that the improvement due
to multithreading is limited, as it can only hide latency. Still, the overall gain in
performance is substantial. For the 5110P KNC, the behavior was similar, but
at a much lower level of performance. While in practice there is no reason to use
fewer than all available threads, these results imply that on future architectures,
this code will mostly benefit from increased memory bandwidth.

6.3 Memory Optimization for Large Instances

So far, we have only considered small instances where the entire problem fits
inside the 16 GB MCDRAM. However, when increasing the number of cells fur-
ther, we can easily exceed this limit. For the KNC, the 8 GB device memory
constituted a hard limit. Since our code has little reuse of data within a time
step, swapping data from CPU memory into KNC device memory and back via
the PCIe bus is generally too slow. The same is true for accelerators such as
GPUs using that connection. The KNL on the other hand can access a large
amount of DDR4 memory at high speeds (about 90 GB/s of sustained band-
width). However, the overall performance is substantially lower when using the
DDR4 memory alone, as shown in Fig. 4. The difference is about a factor of 4,
which is close to the difference in bandwidth between the two memory types.
Thus, it is imperative to use the MCDRAM as much as possible.

There are three ways of doing this. The easiest is to configure the KNL to
cache mode. In flat mode, data can be placed in MCDRAM automatically by
using numactl –preferred 1. This provides slightly better performance than cache
mode. It also offers 16 GB of additional RAM, since data from DDR4 memory
is not duplicated in MCDRAM. For the largest instance in Fig. 4, the lack of
memory caused disk swapping in cache mode, severely limiting performance.

The third way is to use the hbw malloc command from the memkind library
in flat mode, which allows the programmer to decide the objects that should
be placed in MCDRAM. We performed the manual placement for an instance
consisting of 17, 408 cells, i.e. 64 cells per thread, which occupy approximately
50 GB of memory. Since each cell has 10, 000 dyads, storing one double value for
each dyad takes about 1.4 GB which means that 11 (out of a total of 35) such
arrays can be placed in MCDRAM using the memkind library. In Fig. 4, we see
that for the intended size and beyond, the manual placement delivers the same
performance as the automatic placement. For smaller instances however, parts
of the MCDRAM are not used, resulting in suboptimal performance.

Selectively placing objects in MCDRAM using the memkind library did not
increase performance in our experiments, although other codes might benefit
from this technique. However, in many typical scientific applications, almost all
memory is reserved at the beginning of the program. Thus, a similar placement

386 J. Langguth et al.

Fig. 4. Performance for different instance sizes under the different MCDRAM usage
strategies. hbw malloc placement is optimized for the 49.9 GB instance only. Cache
mode starts swapping on the 98.3 GB instance.

can also be obtained by selecting the order in which objects are allocated, since
numactl –preferred 1 places objects in MCDRAM consecutively as long as it is
available. The advantage of the latter technique beyond its simplicity is that it
automatically adapts to the instance size. In Fig. 4, for the smaller instances, this
technique placed a larger fraction of the data in MCDRAM, thereby increasing
performance beyond that of the manual placement.

For optimal performance on large instances, one would have to select the
optimal combination of memory objects to be placed in MCDRAM. However,
even with autotuning, this might be infeasible for codes with a large number of
arrays since one would have to test a large number of placement combinations. A
more practical approach might be to count accesses to different memory objects
and then decide on the placement based on that information. A tool for counting
accesses already exists [2], but designing a system for fully automatic placement
is beyond the scope of this paper. Thus, for our experiments, we simply selected
the variables that are accessed in the most compute expensive kernels for place-
ment in MCDRAM.

7 Conclusion

The KNL generation constitutes a major redesign of the original Xeon Phi, intro-
ducing several new features. Our experiments show that for complex scientific
codes such as our tissue-scale simulator, these changes pay off. Even without any

Porting Tissue-Scale Cardiac Simulations to the Knights Landing Platform 387

changes to the code, the KNL outperformed both the KNC Xeon Phi and dual
Ivy Bridge Xeon processors by a significant margin. Preliminary experiments
showed that this is still true for a dual-socket Xeon E5-2697A v4 Broadwell sys-
tem. With code optimizations, it ran seven times faster than on the dual Xeon
CPUs, at approximately the same efficiency (i.e. ratio of attained vs. peak the-
oretical FLOPS). Compared with the KNC, we saw roughly a ninefold increase
in actual performance. As the theoretical peak performance of the KNL is about
three times that of the KNC, the combined changes in hardware and software
yielded a threefold increase in efficiency. Our observations are in line with other
studies, such as [4,6], which also report good results on the KNL.

While programming the KNL has become significantly easier than the KNC,
performance still depends on good parallel programming practices. A proper
domain decomposition, vectorization, and memory access optimization are cer-
tainly necessary. As of now, the compiler cannot take over this job entirely, even
though auto vectorization was very helpful for some of the pure arithmetic sec-
tions of the code. Correct use of nontrivial OpenMP parallelization also plays a
major role in obtaining high performance.

Furthermore, since the available memory per device constitutes a principal
limitation on the size of the simulation, the increased memory per KNL is another
welcome addition, as it will eventually make organ-level simulations at very high
detail possible. Such simulations would require about 6 PB of memory. Currently
the NERSC Cori supercomputer is equipped with 96 + 16 GB of memory per
KNL. With 9, 688 such devices, this is not enough to simulate a whole heart.
The upcoming Aurora supercomputer from the CORAL initiative [1] with more
than 50, 000 such nodes would be sufficient. Thus, running calcium handling
simulations at organ scale will be within reach in the near future.

In parallel to this work, we performed experiments using NVIDIA Kepler
K20X GPUs, which yielded more than 20, 000 cell computations per second.
Since the device has about half the peak memory bandwidth of the KNL, it
attains a similarly high level of bandwidth utilization as the KNL. It remains to
be seen whether the Pascal and Volta generations of GPUs can match this level
of performance. However, even if that is the case, we believe that for memory
intensive simulations, the KNL still has the advantage of having fast access to a
relatively large amount of DDR4 memory.

References

1. Brueckner, R.: A closer look at Intel’s Coral supercomputers coming to Argonne
(2015). http://insidehpc.com/2015/04/intel-build-coral-supercomputers-argonne-
200-procurement/

2. Cicotti, P., Carrington, L.: ADAMANT: tools to capture, analyze, and manage
data movement. Procedia Comput. Sci. 80, 450–460 (2016)

3. Doerfler, D., Deslippe, J., Williams, S., Oliker, L., Cook, B., Kurth, T., Lobet, M.,
Malas, T., Vay, J.-L., Vincenti, H.: Applying the roofline performance model to
the Intel Xeon Phi Knights landing processor. In: Taufer, M., Mohr, B., Kunkel,
J.M. (eds.) ISC High Performance Workshops 2016. LNCS, vol. 9945, pp. 339–353.
Springer, Cham (2016). doi:10.1007/978-3-319-46079-6 24

http://insidehpc.com/2015/04/intel-build-coral-supercomputers-argonne-200-procurement/
http://insidehpc.com/2015/04/intel-build-coral-supercomputers-argonne-200-procurement/
http://dx.doi.org/10.1007/978-3-319-46079-6_24

388 J. Langguth et al.

4. Farrell, S., Calafiura, P., Leggett, C., Tsulaia, V., Dotti, A.: Multi-threaded
ATLAS simulation on Intel Knights landing processors. Technical report ATL-
SOFT-PROC-2017-017, CERN, Geneva, January 2017. http://cds.cern.ch/record/
2242857

5. Gaur, N., Rudy, Y.: Multiscale modeling of calcium cycling in cardiac ventricular
myocyte: macroscopic consequences of microscopic dyadic function. Biophys. J.
100(12), 2904–2912 (2011)

6. Heinecke, A., Breuer, A., Bader, M., Dubey, P.: High order seismic simulations
on the Intel Xeon Phi processor (Knights landing). In: Kunkel, J.M., Balaji, P.,
Dongarra, J. (eds.) ISC High Performance 2016. LNCS, vol. 9697, pp. 343–362.
Springer, Cham (2016). doi:10.1007/978-3-319-41321-1 18

7. Intel Math Kernel Library – Documentation (2015). https://software.intel.com/
en-us/articles/intel-math-kernel-library-documentation

8. Intel Corporation (2017). http://www.intel.com/content/www/us/en/products/
compare-products.html?productIds=94033,94034,94035,95830

9. Lan, Q., Gaur, N., Langguth, J., Cai, X.: Towards detailed tissue-scale 3D simula-
tions of electrical activity and calcium handling in the human cardiac ventricle. In:
Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015, Part III. LNCS,
vol. 9530, pp. 79–92. Springer, Cham (2015). doi:10.1007/978-3-319-27137-8 7

10. Langguth, J., Lan, Q., Gaur, N., Cai, X., Wen, M., Zhang, C.Y.: Enabling
tissue-scale cardiac simulations using heterogeneous computing on Tianhe-2. In:
2016 IEEE 22nd International Conference on Parallel and Distributed Systems
(ICPADS), pp. 843–852, December 2016

11. Langguth, J., Lan, Q., Gaur, N., Cai, X.: Accelerating detailed tissue-scale 3D
cardiac simulations using heterogeneous CPU-Xeon Phi computing. Int. J. Parallel
Program. 45(5), 1236–1258 (2016)

12. Nivala, M., de Lange, E., Rovetti, R., Qu, Z.: Computational modeling and numer-
ical methods for spatiotemporal calcium cycling in ventricular myocytes. Front.
Physiol. 3, 114 (2012)

13. O’Hara, T., Virág, L., Varró, A., Rudy, Y.: Simulation of the undiseased human
cardiac ventricular action potential: model formulation and experimental valida-
tion. PLoS Comput. Biol. 7(5), e1002061 (2011)

14. Restrepo, J.G., Weiss, J.N., Karma, A.: Calsequestrin-mediated mechanism for
cellular calcium transient alternans. Biophys. J. 95(8), 3767–3789 (2008)

15. Tianhe-2 (Milky Way-2) Supercomputer. http://www.tianhe2.org
16. Williams, G.S., Chikando, A.C., Tuan, H.T.M., Sobie, E.A., Lederer, W., Jafri,

M.S.: Dynamics of calcium sparks and calcium leak in the heart. Biophys. J.
101(6), 1287–1296 (2011)

http://cds.cern.ch/record/2242857
http://cds.cern.ch/record/2242857
http://dx.doi.org/10.1007/978-3-319-41321-1_18
https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
http://www.intel.com/content/www/us/en/products/compare-products.html?productIds=94033,94034,94035,95830
http://www.intel.com/content/www/us/en/products/compare-products.html?productIds=94033,94034,94035,95830
http://dx.doi.org/10.1007/978-3-319-27137-8_7
http://www.tianhe2.org

KART – A Runtime Compilation Library
for Improving HPC Application Performance

Matthias Noack1(B), Florian Wende1, Georg Zitzlsberger2, Michael Klemm2,
and Thomas Steinke1

1 Zuse Institute Berlin, Berlin, Germany
{noack,wende,steinke}@zib.de

2 Intel Deutschland GmbH, Feldkirchen, Germany
georg@zitzlsberger.com, michael.klemm@intel.com

Abstract. The effectiveness of ahead-of-time compiler optimization
heavily depends on the amount of available information at compile time.
Input-specific information that is only available at runtime cannot be
used, although it often determines loop counts, branching predicates and
paths, as well as memory-access patterns. It can also be crucial for gen-
erating efficient SIMD-vectorized code. This is especially relevant for the
many-core architectures paving the way to exascale computing, which
are more sensitive to code-optimization. We explore the design-space for
using input-specific information at compile-time and present KART, a
C++ library solution that allows developers to compile, link, and exe-
cute code (e.g., C, C++, Fortran) at application runtime. Besides mere
runtime compilation of performance-critical code, KART can be used to
instantiate the same code multiple times using different inputs, compil-
ers, and options. Other techniques like auto-tuning and code-generation
can be integrated into a KART-enabled application instead of being
scripted around it. We evaluate runtimes and compilation costs for dif-
ferent synthetic kernels, and show the effectiveness for two real-world
applications, HEOM and a WSM6 proxy.

1 Introduction

Many C, C++, and Fortran HPC applications are generalized solutions for their
respective domains. They typically implement a wide range of algorithms that
are meant to be applicable for many different workloads or combinations of input
sets. Whilst the applications grow with adding more methods and features there
is also a growing demand for applying a subset of methods to restricted work-
loads. Such use cases do not require the full complexity and flexibility of the
original implementations. Hence users strive for optimizing their (limited) work-
loads by tuning the implementations. This starts with algorithmic optimizations,
delivering different implementations of the original algorithm, such as reducing
dimensions or replacing algorithms that work better for smaller problem sizes.
To give a few examples, for the WSM6 proxy code [7], the authors provided con-
stants at compile time and achieved a more than 40% performance gain on the
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 389–403, 2017.
https://doi.org/10.1007/978-3-319-67630-2_29

390 M. Noack et al.

Intel R© Xeon Phi
TM

coprocessor (former codename “Knights Corner”, KNC). For
the DL MESO code it was recently demonstrated [19] that if increasingly more
source code constants are known at compile time a performance improvement
of more than five times can be achieved by enabling better SIMD optimizations
for the compiler’s auto-vectorizer.

At some point in this process, implementations in source code are specific
enough to be further optimized by compilers. Compilers typically do not apply
algorithmic optimizations that change the semantics, but they have a rich set
of optimizations to enhance code generation. However, compiler optimizations
for C, C++, and Fortran can only be applied for the provided algorithms in the
application code. They need to be general and adhere to the specification of the
programming language. Knowledge about the runtime context of a unit of code
would allow to optimize for specific memory access strides, eliminate conditional
code, or apply workload-dependent loop transformations.

A typical approach to remedy this is to apply multi-versioning, that is, gen-
erating multiple specialized instantiations of the same function, loop, or code
fragment. This can be achieved by a programmer using dedicated implementa-
tions, like C++ template specializations, or preprocessor macros, for example.
Compilers can also emit versioned code to handle aligned versus unaligned data,
to create different code paths for different instructions sets (e.g., Streaming SIMD
Extensions and Advanced Vector Extensions), or to avoid SIMD vectorization
for too small loop trip counts, to just name a few. Because multi-versioning can
dramatically increase the code size, compilers usually only generate a few code
versions and provide a general code path as fallback. For the large combinatorial
space spanned by the potential inputs of an HPC application, multi-versioning
becomes ineffective.

Programmers can try to help the compiler by adding compilation hints (e.g.,
pragmas/directives or attributes) to limit the amount of code versions. But even
if a programmer provides different implementations there are limits. Optimiza-
tions can only be applied for a small set of categories of workloads, and also
lead to code size increase which can make an implementation harder to main-
tain. While it is quite simple to provide different optimizations for different
dimensionality of input data sets, it is much harder to do so for different mem-
ory access patterns, access strides, or loop trip counts. There are far too many
different goals to optimize for, and grouping them into categories for directed
optimization is hard.

The main contributions of this work are the exploration of the design space
for exploiting runtime data for compiler optimization, a light-weight, flexible
runtime-compilation framework (KART), and its evaluation. Our solution is to
recompile algorithms (kernels) during the runtime of an application, thereby
optimizing within the current context of kernel execution. This especially allows
to optimize for values that manifest as constants during runtime but were not
known at compile time. KART is general enough to benefit a wide range of
applications without being limited to a certain back-end. The approach is partic-

KART – A Runtime Compilation Library 391

ularly relevant for many-core architectures like the Intel Xeon Phi (co)processor,
whose microarchitecture is more sensitive to code-optimizations.

For frequently used kernels, we show that the improved optimization out-
weighs the runtime compilation overhead. We also regard this approach as a
solution for OpenMP* [16] applications to benefit from the same dynamic recom-
pilation advantages that OpenCL* [9] and CUDA* [12] provide.

2 Related Work

Here, we exclude work which is focused on just-in-time compilation for inter-
preter or scripting languages (e.g., Python, Perl, Lua). We are aware that Java
and Microsoft’s .NET Framework rely on JIT compilation for high-speed code
execution, but both have still a small representation in the HPC domain.

The LLVM compiler infrastructure [11] includes a JIT code generation sys-
tem which supports various CPU architectures, and provides a foundation for
just-in-time compilation projects. For the QCD application domain, the QDP-
JIT/LLVM approach [8], which extends the ideas of QDP-JIT/PTX [20], uses
C++ expression templates to implement LLVM IR code generators that emit
executable code via the LLVM JIT component. In Julia, the language design
is combined with the high-performance LLVM-based JIT compiler [3,4]. This
enables code generation that comes close to the performance of a C implemen-
tation.

The LIBXSMM library [5] for small dense matrix-matrix multiplications
enables static and JIT code generation for Intel R© Xeon R© processors and Intel
Xeon Phi (co)processors. While the basic ideas of LIBXSMM are similar to our
proposal in that it specifically compiles kernels for a particular target architec-
ture, it only supports sgemm and dgemm with restricted alpha and beta inputs.

In the context of MPI communication, Schneider et al. [18] demonstrate that
through runtime compilation of (un)pack functions for non-contiguous data in
MPI an order of magnitude better performance can be achieved over the inter-
pretation scheme found in today’s MPI implementations. In contrast to the spe-
cialized solutions above, our approach is more general, as it applies to arbitrary
code, whole source files or just subsets, and supports different C, C++, and For-
tran compilers that are common in the HPC domain. Additional changes to code
and external dependencies are kept flat thanks to KART being lightweight and
easy to use.

3 Design Space

Recompile Everything. The most straight-forward approach to using input-
specific data as compile-time constants would be to simply recompile the whole
application for each set of input data. It completely avoids the complexity of
additional compilation at runtime and enables the compiler to apply cross-
module optimization techniques like whole-program optimization. However, large
parts of the code are typically not performance critical and recompiling them

392 M. Noack et al.

would introduce a prohibitive compilation overhead that grows with the size of
the code base and optimization levels. For large codes with compile times in the
range of hours, this is a significant impact on time-to-solution and renders quality
assurance procedures less feasible. An important question for this approach is:
How to acquire the needed data from the input at build time? Typically, reading
and parsing of input data is done at runtime during the initialization phase. So
some application code has to be executed to get the data required for building
the application. To break this circular dependency, an input parser would be
required to analyse the input data and to provide the necessary constant values
before the build process can be started. A concern for some developers, e.g., of
commercial codes, might also be that binary releases of applications (or libraries)
would still require to contain the runtime-compiled code sections as source.

Pre-instantiate Code for All Cases. A different approach would be to
prepare for a potential and classified set of inputs. Performance critical func-
tions would be instantiated or specialized multiple times with different classes
of compile-time constants when compiling the application. This is similar to
what some compilers already do when generating multiple versions of functions
or loops, e.g. to provide both a scalar and a vectorized version. Such multi-
versioning is bound by combinatorial effects of the parameter space and for
all input variables their numerical domain needs to be known at compile time.
One manual implementation approach is to use C++ templates with desired con-
stants as template parameters, i.e. classification of values. Those can be explicitly
instantiated to collect the resulting function pointers in a map with their classifi-
cation as the key. Additionally, a fall-back implementation without compile-time
constants but a set of additional parameters could be provided. At runtime, the
calling code uses actual values from the input to select the appropriate function
template specialization, or a fall-back if no suitable instantiation was found. For
dimensions of domains this might be applicable as those are typically limited.
However, optimizing for different sizes becomes infeasible if their values cannot
be restricted to a small amount of classes to define the different specializations.

Call a Compiler Library at Runtime. Another solution that is already
commonly used and inspired this work is OpenCL that aims for portability
across heterogeneous compute devices, such as CPUs, GPGPUs, Intel Xeon Phi
(co)processors, or FPGAs. It divides the application into host code for a host
processor and device code that runs on a compute device and is compiled at
runtime. This enables portability, but can also be used for passing runtime-data
from the host program into the compilation of the device code. Previous work
has shown that there can be a performance benefit when compile-time constants
are known to the OpenCL compiler [6]. Since recently, Nvidia’s CUDA GPGPU
framework provides similar means [15]. Porting an existing (HPC) application
to OpenCL is a major effort and requires rewriting code using OpenCL’s kernel
language, explicitly managing kernel invocations and memory transfers between
host and compute device.

KART – A Runtime Compilation Library 393

OpenMP supports heterogeneity but is limited to one code version and does
not provide runtime compilation. C, C++, or Fortran compilers do not expose
a library API that could be used in an OpenCL-like fashion. LLVM with its
modular architecture would be a viable basis to implement such a mechanism.
The major drawback of an LLVM-based solution is the limitation to mere LLVM
optimization abilities. OpenMP support of LLVM is still not complete, although
catching up fast [1,2].

Call Arbitrary Compilers at Runtime. A more abstract and flexible solu-
tion is to provide an API to use any installed command-line compiler from within
the application and then incorporate the resulting object code into the running
program. Being close to the OpenCL model, it yields the highest flexibility, as
any compiler, even for different languages, can be used. It can defer the compi-
lation of performance critical-code sections until execution time and apply the
best-optimizing compiler for a specific code fragment and target architecture,
or to multi-version a kernel using different compilers and apply auto-tuning.
Also different (hand-written) implementations of the same kernel can be used.
As such, optimization is not only defined by compiler capabilities and varying
compile-time constants, but also by the user at algorithmic level. Kernels can
be supplied in languages different from the one chosen for the host application,
which increases the flexibility, e.g., by using C SIMD intrinsics within a Fortran
application. This is the approach we have chosen for the solution presented in
this paper.

4 The KART Library

4.1 Design and Implementation

KART provides application developers with the means to compile and use pieces
of code at runtime with minimal overhead and maximal flexibility. KART resem-
bles a simple build system with a library interface. It offers a slim API to com-
pile a code fragment given either as a text string or a source file, and to call
the result after compiling the code. KART is implemented in C++ using several
Boost libraries [17] and provides APIs for C, C++, and Fortran, so far. The
intended flexibility to use any compiler requires the invocation of command-
line compilers and linkers in a separate process at runtime to create a shared
library from a given source. Subsequently, the resulting library is linked to the
running program via dlopen(), and the contained functions can be accessed
and executed using their (symbolic) name. Constants can be integrated into the
runtime-compiled code by either generating the corresponding lines before pass-
ing the code to KART, or can be specified using compiler command line options
(e.g., -DNAME=VALUE). Figure 1 illustrates the working principle of KART.

A toolset abstraction encapsulates the specification of a compiler and linker
command, as well as different sets of options. Toolsets are defined in small con-
figuration files. A default toolset file can be set via an environment variable.
Once a toolset object is created, additional options can be specified.

394 M. Noack et al.

Fig. 1. Schematic of KART: (1) Compile-time constants derived from the input, and
kernel source code are passed to KART. (2) KART starts a system compiler and linker
to create a dynamically linked library. (3) The library is dynamically linked into the
application. (4) The application queries KART using the kernel’s function name to get
a callable function pointer. (5) The kernel is invoked.

The second main abstraction is the program, which is constructed from either
a string or a file containing the source code. The program is then built using a
toolset. Once built, callable function pointers can be acquired by specifying a
name, and optionally a signature to ensure type-safety in C++. Already built
programs can be rebuild with a different toolset. This is more efficient than
creating new program objects from the same source. This allows applying many
configurations to the same code, e.g. for benchmarking or auto-tuning codes, or
in cases when compiled-in data changes, like loop trip counts or sizes of data
structures after a load-balancing step.

In order to cover the most relevant languages for HPC applications, there
is also an API for C and Fortran. The C API is a wrapper around the C++

implementation that uses opaque handles and functions, instead of objects and
methods. The Fortran interface is a set of bindings for the C API using the
Fortran 2003 BIND attribute and iso c binding intrinsic module.

Internally, KART uses the POSIX calls dlopen(), dlsym(), and dlclose()
for interfacing with the generated shared libraries. This allows the use of differ-
ent compilers and even languages within the same application—as long as the
resulting libraries are binary compatible. The application, as well as the runtime-
compile code can be still statically linked. There are some ABI-based constraints,
especially when combining compilers of different major versions, but we have not
found any issues when combining the typical GNU, Intel, and LLVM/clang com-
pilers for C, C++, and Fortran. Whereas C and C++ have a fixed ABI on Linux,
it can be problematic to mix different Fortran compilers. It is recommended to
use the Fortran ISO-C bindings to have a common ABI.

GNU-compiled C/C++ applications can use the most recent Intel R© C++

Compiler to generate performance-critical code using its vectorization capabili-

KART – A Runtime Compilation Library 395

Fig. 2. This example shows how to embed a kernel as source code, and compile it at
runtime using KART. The highlighted lines show what is needed to introduce KART.
Raw string literals, as provided by C++11 can be used to embed source code without
having to escape some characters.

ties in addition to the input-specific compile-time constants. Fortran codes could
use a C/C++ compiler to facilitate manual vectorization for kernels via C SIMD
intrinsics. A benchmark or auto-tuning code could use KART to automatically
evaluate different compilers and sets of options, e.g., for different optimization
levels, pre-fetching settings, or numerical precision levels.

4.2 Usage

KART was designed with ease of use in mind. Figure 2 shows a simple example,
where the function my kernel is compiled at runtime. For a single function,
wrapping the original code into a raw string literal, as shown in the example
above, is sufficient. Using an extern "C" block makes sure the kernel’s name
does not get mangled by the compiler and can be used directly. However, if the
needed source code already is a separate compilation unit or gets larger, it is
more convenient to use source files instead of embedded strings.

396 M. Noack et al.

There are two ways to specify dependencies and other compile/link options:
toolset configuration-files, intended for the compiler and the host-specific part
(often non-portable), and methods called at runtime for the application-specific
part. This way, the source code remains portable.

For existing code, the most convenient way of integrating runtime compilation
would be a directive-based approach, where code is simply annotated as runtime
compilation target. A mechanism like the one provided by KART could become
part of a widely accepted and standardized programming model like OpenMP
in a future version. However, this would mean giving up the flexibility to use
any compiler and the library-only implementation.

Adapting Existing Code. When adapting a code, the best method is identi-
fying hotspots whose index computations, memory access patterns, loop counts,
and branching predicates depend on input data. Once identified, it can be recom-
piled using compile-time constants for a few inputs to estimate the potential gain
before restructuring the code. The runtime gain determines an upper bound for
the acceptable compilation overhead. The process is very similar to adapting an
application for offloading to an accelerator—without the need to rewrite kernels
in another language and optimize them for the accelerator’s architecture. The
intrusiveness of incorporating runtime kernel compilation into an existing code
base depends on the current code structure, as the build-time and run-time com-
piled source needs to be separated. For a well-structured code base, this means
identifying the compilation units and adding the KART API calls into the appli-
cation’s initialization phase. For the Hexciton benchmark, 23 new lines of code
were added and the interface of the benchmarking function was modified.

Most build systems provide a verbose mode that prints out the compile and
link commands used. That is the natural starting point to generate a toolset spec-
ification for KART that includes necessary flags and dependencies. In a second
step, the dependencies can be minimized, and compile flags further optimized to
improve compilation and runtime of the kernel, respectively.

We successfully tested KART within the restricted compute-node software-
environment of a Cray XC40 supercomputer. The following sections describe
how KART can be used in different HPC application patterns.

Coprocessors. Applications for the Intel Xeon Phi coprocessor often use an
offload programming model like OpenMP or Intel’s LEO (Language Extensions
for Offload). In such a setting, KART can be called prior to the offload to
cross-compile the coprocessor code leveraging the better single-thread perfor-
mance of the host CPU. Within a more flexible offloading framework, like HAM
Offload [14], a reverse offload from a native coprocessor application to the host
can be used to offload the compilation, even remotely over a fabric.

OpenMP. OpenMP can be used within KART-compiled kernels or higher up in
the calling tree. We have successfully tested both. Code that is built at runtime

KART – A Runtime Compilation Library 397

using KART is and behaves like a shared library. So as with other libraries that
make use of OpenMP, the developer has to make sure that there is no conflict
between the OpenMP implementation used in the application code and the one
used inside the library. Other than that, there are no known limitations.

MPI. For large distributed jobs, solely using KART on the node level is the
easiest way, but not always the best. It is beneficial in cases where every node
uses different constants, for example if loop counts for local partitions of an
irregular grid are used. In cases where every node does the same work, there is
potential for optimization. The situation can be used for an auto-tuning step,
where different compilation options or kernel variants are built and timed, fol-
lowed by an exchange of the timings and the best-performing kernels. Ranks can
exchange their compilation results via a distributed file system or by transfer-
ring the generated binaries as messages. KART can also use wrapper compilers
if the runtime-compiled code uses MPI directly. A problem with commercial
compilers is the limited number of licenses and their management. It is either
impossible, or at least not desirable, to check out thousands of licenses. For these
cases, compilation needs to be limited to a few ranks, or be performed using a
prologuẽjob.

Auto-tuning. KART can be used to easily implement auto-tuning and also
to complement it orthogonally. Within an application, the use-cases are slightly
different: KART can address given runtime-values, not subject to tuning, by
making them a compile-time known value enabling better optimization. Where
auto-tuning typically generates multiple versions for a wide variety of option-
s/inputs with later run-time selection, KART can also generate the code for just
the current scenario at runtime. Beside the described HPC-relevant patterns and
use cases, the availability of a general runtime compilation mechanism can be
exploited in more sophisticated ways. There is no fixed pattern. For instance,
instead of just using compile-time constants or different compilers, languages,
and options for existing code, KART can be used as a back-end for code gener-
ators and domain-specific languages.

5 Evaluation

We exemplify the potential of runtime kernel compilation with two simple and
synthetic benchmarks, and demonstrate the achieved speed-ups for two real
world applications. The benchmark systems are an Intel Xeon Phi 7210 (Knights
Landing/KNL), and a dual socket Intel Xeon E5-2630 v3 (Haswell/HSW) node.
The used software versions are: Intel OpenCL Runtime 16.1.1, Intel C++ Com-
piler 17.0.2, GCC 6.3.0, and Clang 4.0.0.

Runtime Compilation. Runtime compilation introduces overhead and it is
important to understand the trade-off between this overhead and kernel speed-
up first. The overhead introduced by KART is largely determined by the runtime

398 M. Noack et al.

of the invoked compiler and linker. The speed-up of the runtime-compiled kernel
(without the compile time) over the reference kernel is sb = tref/tkart, with sb > 1
for tref > tkart. It is an upper bound for the actual speed-up that includes the
compile time, which is s = n·tref

n·tkart + tcompile
with n being the number of kernel

calls. Numerator and denominator are two linear functions for the respective
overall runtime cost of the reference and KART-compiled kernel. For given run
and compile times, there is an nc where both functions cross and s = 1. For every
n > nc, there is an actual application speed-up, asymptotically approaching sb.
Runtime compilation techniques pay off when the accumulated runtime savings
of all kernel calls exceed the runtime compilation cost.

Figure 3 shows the compilation cost using Intel OpenCL as a reference and
KART with different compilers. These are roughly the same timings as measured
when executing the command lines for compiling and linking generated by KART
by manually typing them into a console terminal—the cost of the KART API itself
is negligible. The linking step took roughly two thirds of the time. The timings
for the empty kernels show that there is a large constant cost coming with the
command line compilers. This includes starting processes and lots of file opera-
tions when handling dependencies like a large set of header and library files, all
not present in OpenCL. A library interface to existing compilers together with a
set of small headers and libraries specifically optimized for compilation time could
improve the situation. For commercial compilers, additional time is lost for fetch-
ing licenses from a file system or network. Caching the compilation results between
application runs could mitigate these costs if the actual reuse is high.

Fig. 3. Runtime compilation overhead for the HEOM Hexciton and an empty kernel.
There is a high constant cost for any compilation regardless of the code size. Only the
Intel compiler adds significant cost to the empty kernel, but also generates the fastest
auto vectorized code. OpenCL’s compiler is two orders of magnitude faster, due to the
library ABI and less indirectly included headers. The Xeon Phi (KNL) values suffer
from the lower single thread performance.

KART – A Runtime Compilation Library 399

Fig. 4. Speed-ups for two synthetic kernels matvec (single threaded) and convolve
(OpenMP). The speed-ups do not include the compilation overhead, as it this would
require defining a somehow “realistic” number of kernel calls. A compile-time known
alpha=0 entirely removed the computation loops. The average compilation times for
each kernel ranges from 0.87 to 0.93 s on the Xeon (HSW) and 3.43 to 3.54 s on the
Xeon Phi processor (KNL).

For all use-cases that only need a single runtime build per kernel during ini-
tialization, a few seconds are tolerable, given that the kernel runtimes for com-
putational hotspots can easily add up to many minutes or even hours during
large production runs. For more dynamic use cases, where kernels are regularly
rebuilt as values of compile-time constants need to be adapted, we recommend
profiling the performance gain per kernel invocation, the compilation cost, and
the frequency of recompilation. The large constant cost of each compiler invoca-
tion can be distributed among multiple kernels by using a single program object
that aggregates all sources.

Synthetic Kernels. The potential of runtime kernel compilation highly
depends on the kernel itself and the context it is invoked in. It also depends
on the used compiler, compiler options, and processor architecture. We have
selected two simple kernels to highlight the principal usefulness of runtime com-
pilation for HPC kernels: (a) a one-dimensional linear convolution with an offset
into the input vector (for different threads), and (b) a matrix vector multipli-
cation with scaling (alpha). To give the compiler’s optimizer some optimization
headroom, we assume the scaling to be 0.0 or 1.0, and matrix a to have just one
column. This simulates cases where the compiler can remove invariant statements
and/or loops. Both kernels have been compiled via KART and as ordinary C
functions with all parameters as arguments (e.g., alpha, rows, and cols for ker-
nel matvec). Figure 4 shows the results. For the matvec kernel the compiler was
able to entirely eliminate the loops for alpha=0 and even showed a 2.6× kernel
speed-up for alpha=1 where the inner-most loop was removed since there is only
one column of matrix a. For the convolve kernel, having offset, input size, and
kernel size known by the compiler could improve kernel runtimes by 7.9×.

400 M. Noack et al.

Fig. 5. Runtimes and speed-ups achieved by using KART for the OpenMP version of
the HEOM benchmark. Matrix size and number of matrices read from the input are
used as compile-time constants during runtime compilation. AV is automatic and MV
is manual vectorization. Amortization of compile time requires 1321 and 15117 calls
on Xeon (HSW) and Xeon Phi (KNL), respectively. Typical application runs need 103

to 106 calls.

HEOM. HEOM is a short for Hierarchical Equations of Motion, which is a
mathematical approach to solving open quantum system models of, e.g., photoac-
tive molecular complexes. For the GPU HEOM OpenCL implementation [10], a
detailed case study [13] including a benchmark is publicly available. It compares
a variety of implementations of the Hexciton kernel. We integrated KART into
the OpenMP version of the benchmark to build the different kernel variants at
runtime and enable the use of input-specific constants at kernel compile time.
Two constants, the matrix dimension and the number of matrices of the central
HEOM data-structure, are most relevant for the memory access pattern and the
loop counts. Figure 5 shows the results. The plotted values are from the best-
performing kernel variants using the Intel C++ Compiler. The highest speed-up
of 2.6× was observed for Clang on the Xeon CPU with the manually vectorized
kernel, but the absolute runtime was still slower than that of the code emitted by
the Intel C++ Compiler. The Intel Xeon Phi (co)processor benefits much more
from the compiler optimizations. Its light-weight cores and the missing L3 cache
require better optimized code than the Haswell architecture. The compile-time
overhead is not relevant as production runs typically take several hours.

Fig. 6. Runtime comparison and speed-ups for using runtime compilation with the
WSM6 Kernel on the Xeon (HSW) and Xeon Phi (KNL). Average compilation times
are 3.24 s on the Xeon (HSW) and 20.13 s on the Xeon Phi processor (KNL).

KART – A Runtime Compilation Library 401

WSM6 Proxy Code. We integrated KART into the WSM6 proxy code [7]
written in Fortran. WSM6—the WRF Single Moment 6-class Microphysics
schema—is part of the Weather Research and Forecast (WRF) model, widely
used for weather prediction. The original benchmark uses the C preprocessor
and a set of Perl scripts to modify the source code to generate a version with
compile time constants for every run. This is no longer necessary when using
KART. Our modified Kernel uses the preprocessor only to simplify the build
process at runtime. For the WSM6 proxy code, KART achieved a speed-up of
1.16× for the slightly modified kernel (see Fig. 6).

6 Conclusion and Outlook

Studies on the optimization of HPC workloads for many-core CPUs demon-
strate the impact of available constants on the optimization capabilities dur-
ing the compilation step. The more parameters affecting the data layouts and
loop/branching structures can be provided, the better the compiler is able to
optimize. Thus, compiling kernels at run-time for the context of their invocation
can yield shorter time-to-solutions.

We have presented KART, a flexible and easy to use framework that allows
runtime compilation with a variety of C, C++, and Fortran command line compil-
ers. It supports dynamic re-compilation during program execution if kernel para-
meters such as data sizes are changed, e.g., after load-balancing steps between
nodes or to adjust for different input data sets. For applications with irregularly
distributed data across the compute nodes, our approach can support individu-
ally optimized kernels for each node.

We have demonstrated the effectiveness of our solution for synthetic and
real-world kernels. The approach is particularly effective on the Intel Xeon Phi
(co)processor, which represents a many-core architecture whose successors are
a likely technology for exascale systems. The convenience and efficiency of run-
time compilation could be further improved if it were integrated into a program-
ming model like OpenMP or if compiler vendors were providing an—ideally
standardized—API to their tools. KART is under continued development and
available on GitHub (https://github.com/noma/kart). We appreciate feedback.

Acknowledgments. This work is partially supported by Intel Corporation within the
“Research Center for Many-core High-Performance Computing” (Intel PCC) at ZIB.
We thank the “The North-German Supercomputing Alliance - HLRN” for providing
us access to the HLRN-III production system ‘Konrad’ and the Cray TDS system with
Intel KNL nodes.

Intel, Xeon, and Xeon Phi are trademarks or registered trademarks of Intel Corpo-
ration or its subsidiaries in the United States and other countries.

* Other names and brands are the property of their respective owners. Software
and workloads used in performance tests may have been optimized for performance
only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should

https://github.com/noma/kart

402 M. Noack et al.

consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined
with other products. For more information go to http://www.intel.com/performance.

Intel’s compilers may or may not optimize to the same degree for non-Intel micro-
processors for optimizations that are not unique to Intel microprocessors. These opti-
mizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimiza-
tion on microprocessors not manufactured by Intel. Microprocessor-dependent opti-
mizations in this product are intended for use with Intel microprocessors. Certain opti-
mizations not specific to Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

References

1. OpenMP Compilers, September 2016. http://openmp.org/wp/openmp-compilers/
2. OpenMP R©: Support for the OpenMP language, April 2016. http://openmp.llvm.

org/
3. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to

numerical computing, November 2014
4. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic lan-

guage for technical computing. http://julialang.org
5. Heinecke, A., Henry, G., Hutchinson, M., Pabst, H.: LIBXSMM: accelerating small

matrix multiplications by runtime code generation. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 84:1–84:11, SC 2016. IEEE Press, Piscataway (2016). http://dl.acm.
org/citation.cfm?id=3014904.3015017

6. Heinecke, A., Klemm, M., Pflüger, D., Bode, A., Bungartz, H.J.: Extending a highly
parallel data mining algorithm to the Intel R© many integrated core architecture. In:
Alexander, M., et al. (eds.) Parallel Processing Workshops, Euro-Par 2011. LNCS,
vol. 7156. Springer, Heidelberg (2011)

7. Henderson, T., Michalakes, J., Gokhale, I., Jha, A.: Chapter 2 - Numerical weather
prediction optimization. In: Reinders, J., Jeffers, J. (eds.) High Performance Par-
allelism Pearls, pp. 7–23. Morgan Kaufmann, Boston (2015)

8. Joó, B.: LLVM and QDP-JIT. In: iXPUG Workshop, Berkeley (2015). https://
www.ixpug.org/events/ixpug-annual-meeting-2015

9. Khronos OpenCL Working Group: The OpenCL Specification, Version 2.2. https://
www.khronos.org/registry/cl/specs/opencl-2.2.pdf

10. Kreisbeck, C., Kramer, T., Aspuru-Guzik, A.: Scalable high-performance algorithm
for the simulation of exciton dynamics. Application to the light-harvesting Complex
II in the presence of resonant vibrational modes. J. Chem. Theory Comput. 10(9),
4045–4054 (2014). pMID: 26588548. http://dx.doi.org/10.1021/ct500629s

11. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis and transformation. In: CGO, pp. 75–88, San Jose, CA, USA, March 2004.
llvm.org

12. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with
CUDA. Queue 6(2), 40–53 (2008). http://doi.acm.org/10.1145/1365490.1365500

13. Noack, M., Wende, F., Oertel, K.D.: Chapter 19 - OpenCL: there and back again.
In: Reinders, J., Jeffers, J. (eds.) High Performance Parallelism Pearls, pp. 355–378.
Morgan Kaufmann, Boston (2015)

http://www.intel.com/performance
http://openmp.org/wp/openmp-compilers/
http://openmp.llvm.org/
http://openmp.llvm.org/
http://julialang.org
http://dl.acm.org/citation.cfm?id=3014904.3015017
http://dl.acm.org/citation.cfm?id=3014904.3015017
https://www.ixpug.org/events/ixpug-annual-meeting-2015
https://www.ixpug.org/events/ixpug-annual-meeting-2015
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
http://dx.doi.org/10.1021/ct500629s
http://llvm.org
http://doi.acm.org/10.1145/1365490.1365500

KART – A Runtime Compilation Library 403

14. Noack, M., Wende, F., Steinke, T., Cordes, F.: A unified programming model for
intra- and inter-node offloading on xeon phi clusters. In: International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2014,
New Orleans, LA, USA, 16–21 November 2014, pp. 203–214 (2014). http://dx.doi.
org/10.1109/SC.2014.22

15. NVIDIA: NVRTC - CUDA Runtime Compilation User Guide. http://docs.nvidia.
com/cuda/pdf/NVRTC User Guide.pdf

16. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.5 (2015). http://www.openmp.org/

17. Schling, B.: The Boost C++ Libraries. XML Press, Fort Collins (2011)
18. Schneider, T., Kjolstad, F., Hoefler, T.: MPI datatype processing using runtime

compilation. In: Proceedings of the 20th European MPI Users’ Group Meeting, pp.
19–24. ACM, September 2013

19. Siso, S.: DL MESO Code Modernization. Intel Xeon Phi Users Group (IXPUG).
IXPUG Workshop, Ostrava, March 2016

20. Winter, F.T., Clark, M.A., Edwards, R.G., Joó, B.: A framework for lattice QCD
calculations on GPUs. In: Proceedings of the 2014 IEEE 28th International Par-
allel and Distributed Processing Symposium, pp. 1073–1082, IPDPS 2014 (2014).
http://dx.doi.org/10.1109/IPDPS.2014.112

http://dx.doi.org/10.1109/SC.2014.22
http://dx.doi.org/10.1109/SC.2014.22
http://docs.nvidia.com/cuda/pdf/NVRTC_User_Guide.pdf
http://docs.nvidia.com/cuda/pdf/NVRTC_User_Guide.pdf
http://www.openmp.org/
http://dx.doi.org/10.1109/IPDPS.2014.112

Performance Evaluation of NWChem Ab-Initio
Molecular Dynamics (AIMD) Simulations

on the Intel R© Xeon PhiTM Processor

Eric J. Bylaska1(B), Mathias Jacquelin2, Wibe A. de Jong2,
Jeff R. Hammond3, and Michael Klemm4

1 Environmental Molecular Sciences Laboratory, Pacific Northwest National
Laboratory, Richland, WA, USA

eric.bylaska@pnnl.gov
2 Computational Research Division, Lawrence Berkeley National Laboratory,

Berkeley, CA, USA
{mjacquelin,wadejong}@lbl.gov

3 Data Center Group, Intel Corporation, Portland, OR, USA
jeff.r.hammond@intel.com

4 Software and Services Group, Intel Deutschland GmbH, Feldkirchen, Germany
michael.klemm@intel.com

Abstract. Ab-initio Molecular Dynamics (AIMD) methods are an
important class of algorithms, as they enable scientists to understand
the chemistry and dynamics of molecular and condensed phase systems
while retaining a first-principles-based description of their interactions.
Many-core architectures such as the IntelR© Xeon PhiTM processor are an
interesting and promising target for these algorithms, as they can provide
the computational power that is needed to solve interesting problems in
chemistry. In this paper, we describe the efforts of refactoring the exist-
ing AIMD plane-wave method of NWChem from an MPI-only imple-
mentation to a scalable, hybrid code that employs MPI and OpenMP to
exploit the capabilities of current and future many-core architectures. We
describe the optimizations required to get close to optimal performance
for the multiplication of the tall-and-skinny matrices that form the core
of the computational algorithm. We present strong scaling results on the
complete AIMD simulation for a test case that simulates 256 water mole-
cules and that strong-scales well on a cluster of 1024 nodes of Intel Xeon
Phi processors. We compare the performance obtained with a cluster of
dual-socket IntelR© XeonR© E5–2698v3 processors.

Keywords: Xeon Phi · Many-core · Chemistry · AIMD · Ab-initio ·
Molecular dynamics

1 Introduction

One of the more computationally demanding scientific simulations used exten-
sively on today’s large-scale parallel computers is Ab-initio Molecular Dynamics
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 404–418, 2017.
https://doi.org/10.1007/978-3-319-67630-2_30

Performance of NWChem AIMD on Intel Xeon Phi Processors 405

(AIMD) [4,5,7,9,10,13,14,20,25,28]. In this type of simulation the motions of
the atoms are simulated using Newton’s laws in which the forces on the atoms
are calculated directly from the electronic Schrödinger equation, or more specif-
ically in this work, the Kohn-Sham Density Functional Theory (DFT) equations
[18,24]. These simulations are computationally expensive because the DFT equa-
tions, which are already expensive in their own right for systems beyond a few
atoms, are solved at every time integration step in the simulation.

For an AIMD simulation to be viable for the scientist, each step in the full
DFT calculation must take the order of a second or less [5] to complete. The need
for such fast DFT calculations is driven primarily by the fact that the time step
of a conventional AIMD simulation can be quite small (∼ 0.2 femtoseconds = 2×
10−16 s) along with the fact that the length of the simulation will need be at least
10 picoseconds. For many chemical processes of interest, the simulations will need
to run on the order of nanoseconds (10−9 s and larger). A scientific simulation
of about 10 picoseconds requires solving 500,000 DFT calculations in sequence,
which takes about 5.8 days assuming that a single DFT calculation (time-step)
completes within one second, about 50.8 days with a 10-second time step, and
about 1/2 year with a 30 second time step. Compared to merely optimizing a
molecule or crystal, which require at most a few 100 evaluations, this is extremely
expensive.

It should be noted that, for carrying out geometry optimizations only, the
need for extremely fast DFT calculations is not as important as calculating
larger numbers of atoms. As a consequence the focus of HPC DFT algorithm
development has almost exclusively been on weak parallel scaling algorithms that
maintain parallel efficiency as the system size grows. In contrast, the focus of
HPC AIMD algorithm development has focused on truly strong parallel scaling
algorithms, rather than weak parallel scaling, since the time per step needs to
be as small as possible.

With the advent of new HPC systems with multiple levels of parallelism
composed of many-core CPUs, e. g., the second generation Intel R© Xeon PhiTM

processor (code-named “Knights Landing”, KNL) [29], and connected by high-
speed networking, such as the Cray* Aries* network, algorithms can now be
developed that take advantage of fast data movement and fast synchroniza-
tion between threads on the CPUs. These new systems have the potential for
improved strong parallel scaling, however, new algorithms need to be developed
that can make use of these massively parallel processor architectures [15].

Although the MPI (or MPI-only) model can be used on many of today’s archi-
tectures with large numbers of cores [16], and in principle can take advantage
of the fact that memory is shared, this programming model has several draw-
backs. Performance hits can happen using this programming model because of
its lack of ability to control memory at the node resulting in a lack of memory
coherency, higher latencies, and slower synchronizations. A more suitable app-
roach for developing strong scaling algorithms on large core architectures is to
use a hybrid execution model [27], where data movement between nodes is han-
dled by MPI and the data movement and execution within a node is handled by

406 E.J. Bylaska et al.

a multi-threading model such as OpenMP* [11,12,23]. The advantages of this
model are that synchronizing between threads is faster, extra data movements
can be avoided, and the memory footprint is potentially smaller since particular
data structures may not need to be duplicated among threads.

In this paper, recent developments of adding thread-level parallelism to the
plane-wave density functional theory (DFT) methodology in NWChem are pre-
sented [2,4,6,10]. In our current development, thread-level parallelism is inte-
grated into a MPI-only code using OpenMP constructs and threaded mathe-
matical libraries, such as the Intel R© Math Kernel Library. Similar efforts are
underway with other codes [1], however, to our knowledge our development is at
present unique in that the focus is on having ab-initio molecular dynamics sim-
ulations AIMD with very fast iteration times (i. e., very small times per AIMD
step). The target platform for our work is the NERSC-8 supercomputer “Cori”,
which employs a mix of Intel R© Xeon R© and Intel Xeon Phi processors that are
connected through the Cray Aries fabric.

2 Prior Work

There are three key kernels in AIMD that need be efficiently parallelized: 3D
FFTs, non-local pseudopotential, and Lagrange multiplier kernels that are used
for maintaining orthogonality of Kohn-Sham orbitals [4,7,14,22,32].

In the MPI-only parallel AIMD code in NWChem, the parallel efficiency of
the 3D FFT is by far the worst performing kernel, and the best algorithms are
only able to use N MPI tasks for a 3D FFT of an N × N × N grid. The lack of
parallel performance of 3D FFTs is well-known [3,8] and is related to the presence
of global all-to-all operations. To overcome this bottleneck, algorithms have been
developed that distribute the Kohn-Sham orbitals in addition to partitioning the
simulated space [5,7,14,32]. This results in a 2D processor geometry of Np =
Npi · Npj processors or MPI ranks (see Fig. 1).

The drawback of this strategy is that the Lagrange multiplier kernel becomes
less efficient as Npj becomes larger. In general, increasing Npj significantly
improves the efficiency of the 3D FFT and the non-local pseudopotential kernels,
while increasing Npi favors the Lagrange multiplier kernel. Hence, the best par-
allel performance is found by balancing the individual performance of the three
kernels with respect to Npi and Npj . It should be noted that clusters of Xeon Phi
processors have the potential to improve strong parallel scaling of the 3D FFT,
and as a consequence the overall scaling of AIMD, due to improved memory per-
formance of the high-bandwidth and on-package memory. Using multi-threading
instead of MPI primitives, synchronization times of the large numbers of threads
within the node can be reduced to increase execution efficiency of the kernels.

Recently, we have reported results from adding thread-level parallelism to
the AIMD code in NWChem [15]. The work focused on single-node performance
and showed promising results for the multi-threaded implementation of the key
kernels in the AIMD calculation. It was shown that through careful optimiza-
tions of tall-and-skinny matrix products, which are at the heart of the Lagrange

Performance of NWChem AIMD on Intel Xeon Phi Processors 407

Fig. 1. Possible types of parallel distributions of the Kohn-Sham orbitals in plane-wave
DFT software. (a) Each of the Kohn-Sham orbitals is identically spatially decomposed.
(b) Each Kohn-Sham orbital is located on different MPI tasks. (c) The 2D-parallel
distribution suggested by Gygi et al. [14], where the total Kohn-Sham orbital set are
block decomposed.

multiplier and non-local pseudopotential kernels, as well as other optimizations
for 3D FFTs, our OpenMP implementation delivered excellent strong scaling
for the 68 cores of the Xeon Phi Knights Landing processor. Moreover, it was
shown that the straightforward and naive approach of calling a multi-threaded
BLAS library from a serial (MPI) rank does not yield a satisfactory level of
performance for the Lagrange multiplier and non-local pseudopotential kernels.
A roofline model analysis [33] of the Lagrange multiplier verified that our imple-
mentation was close to the roofline model of the execution platform for various
problem sizes.

3 AIMD Implementation for the Intel Xeon Phi
Processor

The bulk of the computational work in AIMD revolves around the solution of
Ne eigenvalue equations, Hψi = εiψi, for the electron orbitals ψi, appearing as
a result of the DFT approximation to the Schrödinger equation.

These eigenvalue equations are subject to orthogonality constraints
∫

Ω

ψi(r)ψj(r)dr = δi,j (1)

Most standard AIMD algorithms use non-local pseudopotentials and plane-wave
basis sets to perform the DFT calculations and are typically solved using a
conjugate gradient algorithm or a Car-Parrinello algorithm [4,20]. For DFT, the
Hamiltonian operator H may be written as

Hψi =
(− 1

2∇2 + Vl + VNL + VH [ρ]
+Vxc[ρ]

)
ψi (2)

408 E.J. Bylaska et al.

Fig. 2. Operation count of Hψi in a plane-wave DFT simulation.

where the one-electron density is given by

ρ(r) =
∑

|ψi(r)|2 (3)

The local and non-local pseudpotentials, Vl and VNL, represent the electron-ion
interaction. The Hartree potential VH is given by

∇2VH = −4πρ (4)

and the exchange and correlation potential is Vxc. The algorithmic cost to eval-
uate Hψ and maintain orthogonality are shown in Fig. 2.

Due to their computational complexity, the electron gradient Hψi and
orthogonalization need to be calculated as efficiently as possible. The main para-
meters that determine the cost of a calculation are Ng, Ne, Na, and Nproj , where
Ng is the size of the three-dimensional FFT grid, Ne is the number of occupied
orbitals, Na is the number of atoms, Nproj is the number of projectors per atom,
and Npack is the size of the reciprocal space. Detailed estimates for the scalabil-
ity of these calculations in terms of the AIMD parameters can be derived and
fit in terms of a finite set of rates and bandwidths that are machine dependent
(e.g., see Bylaska et al. [5]). Fitting the machine dependent parameters was not
performed in this initial parallel benchmark study, because a large number of
calculations is needed for accurate fitting.

As shown in Fig. 2, the evaluation of the electron gradient (and orthogonality)
contains three major computational pieces:

– applying VH and Vxc, involving the calculation of 2Ne 3D FFTs;
– the non-local pseudopotential, VNL, dominated by the cost of the matrix mul-

tiplications W = PT Y , and Y2 = PW , where P is an Npack × (Nproj · Na)
matrix, Y and Y2 are Npack×Ne matrices, and W is an (NprojNa)×Ne matrix;

– enforcing orthogonality, where the most expensive matrix multiplications are
S = Y T Y and Y2 = Y S, where Y and Y2 are Npack × Ne matrices, and S is
an Ne × Ne matrix.

Performance of NWChem AIMD on Intel Xeon Phi Processors 409

In the next subsections, we focus on the main components of an AIMD step
that need to be parallelized both at the shared-memory and the distributed-
memory levels to achieve good parallel performance. All invocations of MPI
primitives in NWChem are done from within an OpenMP master region, requir-
ing the MPI THREAD FUNNELLED threading level to be used [21]. This keeps mes-
sages size larger and all threads then work on the same data block that was send
once, instead of having each thread communicate a smaller block.

3.1 3D FFTs

For each iteration of an AIMD simulation, Ne Kohn-Sham orbitals, ψ(G, 1 : Ne),
are converted from reciprocal space to real space and Ne orbital gradients are
transformed from real space to reciprocal space. This corresponds to computing
Ne reverse 3D FFTs and Ne forward 3D FFTs. In reciprocal space, only a sphere
of radius Ecut (or hemisphere for a Γ-point code), and contained within the 3D
FFT block, is needed and saved in the program.

Each 3D FFT consists of six distinct steps, each of which is executed for each
of the Ne Kohn-Sham orbitals in a pipelined fashion as illustrated in Fig. 3. For
the forward 3D FFT, the steps are (in reverse order for backward FFTs):

1. Unpack the reciprocal space sphere into a 3D cube, where the leading dimen-
sion of the cube is in the z-direction, second dimension is the x-direction, and
the third dimension is the y-direction.

2. Perform nx × ny FFTs along the z-direction. Note that only the arrays that
intersect the sphere need to be computed.

3. Rotate the cube so that the first dimension is the y-direction, z, x, y → y, z, x.
4. Perform nz × nx 1D FFTs along the y-direction.
5. Rotate the cube so that the first dimension is the x-direction, y, z, x → x, y, z.
6. Perform ny × nz 1D FFTs along the x-direction.

Fig. 3. Illustration of the pipelined 3D FFT
algorithm used in the NWChem AIMD code.

Fig. 4. Multithreading scheme
of the FFM operation.

410 E.J. Bylaska et al.

The 3D FFTs used in this paper were implemented by modifying the exist-
ing parallel 3D FFTs contained in the NWChem plane-wave module (called
NWPW). More details on the implementation of these FFTs can be found in
prior work by Bylaska et al. [5,6,16].

In the initial parallel FFT code, the 3D cube is distributed along the 2nd

and 3rd dimension. This distribution is block-mapped using a two-dimensional
Hilbert curve spanning the grid of the second and third dimensions (see [6]). This
two-dimensional Hilbert parallel FFT was built using a 1D FFT and a parallel
block rotation. The FFTPACK library [30] is used to perform the 1D FFTs, and
the parallel block rotation was implemented using non-blocking MPI primitives.

We generalized the FFTs to a hybrid MPI-OpenMP model by making the
following changes. The planes of 1D FFTs in steps 2, 4, and 6 execute on multiple
threads through an OpenMP DO directive so that a single 1D FFT is carried out
on one thread. The data rearrangement in steps 1, 3, and 5 is threaded using a
DO directive on the loops that perform the data-copying on the node.

3.2 Lagrange Multipliers and Non-local Pseudopotentials on 1D
and 2D Processor Grids

At each step of an AIMD simulation, wave functions need to be orthogonalized.
This is the purpose of the Lagrange multiplier method. Details on the algorithm
itself can be found in [4,20,26]. The Lagrange multiplier method solves sev-
eral matrix Riccatti equations [19] at every step. We have introduced a highly
scalable multi-threaded implementation of the Lagrange multiplier for the Xeon
Phi processor in [15]. In the following, we go through the different steps that
were required to derived a scalable hybrid MPI-OpenMP implementation for a
distributed memory many-core cluster.

The Lagrange multiplier algorithm can be described as a sequence of matrix-
matrix products of different sizes. In [15], we have introduced the following for-
malism. The letter F refers to an Npack × Ne or an Ne × Npack matrix, and M

Fig. 5. Dependencies between operations of the Lagrange multiplier algorithm.

Performance of NWChem AIMD on Intel Xeon Phi Processors 411

refers to an Ne×Ne matrix. A matrix product C = AB can then be described by
a sequence of three letters, the first referring to matrix A, the second to matrix
B, and the last one to matrix C. In general, Npack >> Ne, thus, F matrices or
their transpose are tall-and-skinny matrices.

The Lagrange multipliers method requires three types of matrix product
to be computed: MMM, FMF, and FFM. The dependencies between these
operations is depicted in Fig. 5.

The FFM type of matrix product is the most expensive part of the Lagrange
multiplier method. For this particular matrix shape, multi-threaded implemen-
tations available in vendor libraries do not scale well. In [15], we have introduced
an OpenMP algorithm that scales better than vendor solutions and that blends
well with the outer-level parallelism of an active OpenMP parallel region. The
parallelization scheme used in this approach is depicted in Fig. 4.

In order to exploit distributed memory processor grids (cf. Sect. 2), we have
implemented a version of the Scalable Universal Matrix Multiplication Algorithm
(SUMMA) [31]. The rationale behind SUMMA is to leverage the efficiency of
MPI collective communications. When computing C = AB on a Npi × Npj 2D
process grid, SUMMA broadcasts the current block of matrix A within row of
processes and the current block of B across a column a processes. The product
between these two blocks is then added to the local block of C. These local
contributions are computed using the OpenMP multi-threaded algorithm intro-
duced in [15]. In the case of the FFM operation, matrix A is of size Ne ×Npack,
and is distributed over a Npj ×Npi grid of MPI ranks. The C matrix is Ne ×Ne

and is replicated over Np = Npi · Npj copies. SUMMA is applied followed by a
global reduction of C to produce replicated matrices.

As part of the non-local pseudopotentials computation, a sequence of FFM,
MMM, and FMF matrix products also need to be computed. This is similar
to the Lagrange multipliers method except that M refers to a (NaNproj) × Ne

matrix and F refers to either a Npack × Ne or Npack × (NaNproj) matrix, where
Na is the number of atoms and Nproj is the average number of projectors per
atoms. For most systems, Ne is approximately NaNproj . Note that the matrix
operations for non-local pseudopotentials (and Projector Augmented Wave pro-
jectors) are separable across atoms (and, for some pseudopotentials, separable
across projectors), that is, C is block diagonal between atoms, and can be evalu-
ated atom by atom, although blocking is usually done to improve the efficiency.

4 Performance Evaluation

Our evaluation of the plane-wave DFT AIMD method has been performed on
the “Cori” system at NERSC. We use both partitions of the system to com-
pare the performance of the new code on both Intel Xeon processors (codename
“Haswell”) and Intel Xeon Phi processors (codename “Knights Landing” or KNL
for short).

The “Haswell” partition is a Cray XC40 system and consists of 2388 dual-
socket nodes with Intel Xeon E5-2698v3 processors running 16 cores per socket.

412 E.J. Bylaska et al.

Fig. 6. Scalability of the multi-threaded
NWPW code within a single Xeon and Xeon
Phi node for 64 water molecules.

Fig. 7. Speedups of the Xeon Phi
processors over the Xeon proces-
sors the “water256” benchmark at
different numbers of nodes.

The nodes are configured without Hyper-Threading, run at frequency of 2.3 GHz,
and are equipped with 128 GB of DDR4 memory with 2133 MHz. The nodes are
connected through the Cray Aries interconnect with Dragonfly topology [17].

The “Knights Landing” partition is also a Cray XC40 system with 9688
single-socket nodes with Intel Xeon Phi 7250 processors. Each processor fea-
tures 68 cores with four hardware threads per core. The cores are running at a
frequency of 1.4 GHz. Each node contains 96 GB of DDR4 memory running at
2400 MHz. For our evaluation, the 16 GB on-package high-bandwidth memory
has been configured to run in quadrant mode and is used in cache mode [29].
Similarly to the Xeon partition, the Xeon Phi partition uses the Cray Aries
interconnect with the Dragonfly topology.

In order to compare the performance of a node of the Xeon partition of Cori
to that of a node of the Xeon Phi partition, we conducted an intra-node strong
scaling study with a benchmark that simulates 64 water molecules (“water64”).
The pertinent dimensions for this system are Ne = 512, Ng = 1, 259, 712 (1083)
and Npack = 106, 456. To assess cluster performance, we use a larger input deck
that simulates 256 water molecules (“water256”). The matrix dimensions for this
system are Ne = 2056, Ng = 5, 832, 000 (1803) and Npack = 437, 600. We run
the “water256” benchmark on up to 256 nodes of the Xeon partition to establish
the baseline performance and to compare it with the Xeon Phi nodes. We then
scale the benchmark to up to 1024 nodes of the Xeon Phi partition to show the
feasibility of the AIMD plane-wave algorithm at a large-scale many-core system.

The first set of experiments aims at comparing the single-node performance
of the processors. This gives insight into the relative speed-up of the Xeon Phi
processor over the Xeon processor without the effects of the interconnect fabric.
Increasing number of threads from one to the maximum available physical cores,
we observe that a Xeon Phi node achieves a 1.8x speedup over a Xeon node when
used at full capacity (see Fig. 6). The Haswell processor shows a flat performance
profile at about 16 threads, as it reaches its memory-bandwidth limits, whereas

Performance of NWChem AIMD on Intel Xeon Phi Processors 413

Fig. 8. Scalability of major components of an AIMD step on the Xeon partition for
“water256”.

Fig. 9. Scalability of major components of an AIMD step on the Xeon Phi partition
for “water256”.

the Knights Landing processor still provides a speed-up with all physical cores
utilized due to the high-bandwidth on-package memory.

Next, we compare results obtained of the “water256” benchmark on 16, 32,
64, 128, and 256 nodes of each partition. We use 32 threads per Xeon node and
66 threads per Xeon Phi node. Leaving two cores of the Xeon Phi processor for
the operating system is best for performance. The Xeon Phi partition achieves a
speedup of 1.86x, 1.68x, 1.5x, and 1.3x over the Xeon partition on 16, 32, 64, and
128 nodes (see Fig. 7), showing that NWChem is able to exploit the additional

414 E.J. Bylaska et al.

Fig. 10. Scalability of AIMD on 256 water molecules (Npj = 1 and Npj = 16).

computing power of Xeon Phi nodes. It is important to note that as the number
of nodes grows, the local amount of work per node is reduced while the impact of
the interconnect and communication increases. This explains why the speedup of
KNL nodes over Xeon nodes decreases when the number of nodes increases. Ulti-
mately, the local work per node becomes too small to occupy the network fully
and thus the performance advantage of the Xeon Phi processor vanishes. When
using 256 nodes, Xeon nodes become faster than Xeon Phi nodes in this latency-
limited regime due to the 2x higher clock frequency, 0.5x flops/cycle, and 0.25x
bytes/sec of the Xeon nodes. Figure 8 and Fig. 9 illustrate the scalability of the
most expensive components of the AIMD simulation, which are the calculation
of the FFTs, the Lagrange multipliers method, and the non-local pseudopoten-
tials computation. The results show that all components scale well on both Xeon
and Xeon Phi nodes. However, it is interesting to note that due to the differences
in the underlying processor architectures, the relative cost of each component is
different on Xeon and Xeon Phi. The computation of non-local pseudopotentials
and Lagrange both dominate the cost on Xeon, while the Lagrange multiplier is
the dominating kernel on Xeon Phi. Computing the non-local pseudopotentials
is a similar process as the Lagrange multiplier, with fewer intermediate steps
between the FFM operations. As the Xeon Phi nodes use more threads than
the Xeon nodes, the Npack dimension is split in smaller blocks. Therefore, each
thread receives a smaller amount of work. For the Lagrange multipliers method,
the dependencies between the FFM operations and the MMM operations are
such that the effect of this trend is less visible (see Fig. 5).

Figure 10 shows the effect of changing the processor grid by increasing the
Npj dimension, as briefly described in Sect. 2. As can be seen from Fig. 10,
the scalability of the computation can be improved from 128 to 1024 nodes
by balancing Npi and Npj to favor the calculation of 3D FFTs and non-local

Performance of NWChem AIMD on Intel Xeon Phi Processors 415

pseudopotentials. For the sake of brevity, we did not fully explore the full para-
meter space of node counts and the shape of the (Npi × Npj)-grid distribution.
We plan to conduct such an analysis as a future work.

5 Conclusion and Future Work

The parallelism available on machines with many-core processors requires to
revisit the implementation of their programs to efficiently use the available
resources. In this paper, we have demonstrated that rewriting key kernels in
NWChem’s plane-wave AIMD module to use a hybrid MPI-OpenMP that pro-
vides good scalability on a many-core cluster based on the Intel Xeon Phi Proces-
sor. However, to achieve this level of performance for large AIMD simulations
the parallelism within a node must be implemented at a very fine grain level and
needs careful orchestration of MPI-level parallelism and OpenMP threading.

The unique implementations of key kernels used in AIMD such as sphere to
cube 3D FFTs and the matrix multiplication of tall-skinny matrices require spe-
cial attention and are not well for suited standard computational math libraries.
For example, due to the shape the matrices, standard BLAS libraries such as
Intel Math Kernel Library have a hard time to provide close-to-optimal perfor-
mance on a many-core system. However, by rewriting these kernels from scratch
using the hybrid MPI-OpenMP model at a required very fine grain level we were
able to obtain good performance.

For this paper, we simulated up to 256 water molecules, a standard bench-
mark for AIMD, to test our implementation. The experiments showed strong
scaling up to 1024 KNL nodes (69632 cores) for 256 water molecules. The tim-
ings of the major kernels, the pipelined 3D FFTs, non-local pseudopotential, and
Lagrange multiplier kernels all displayed significant speedups. Further, compar-
isons between the KNL and Haswell nodes showed that that Xeon Phi partition
was able to attain more than 1.5x speedup over the Xeon partition.

As future work, we plan to implement hybrid MPI-OpenMP algorithms for
exact exchange kernels needed for hybrid DFT calculations, as well as propagate
our current developments into the band structure code in NWChem. We also plan
to explore the parameter space in more detail and determine the best setting
of Npi and Npj for various node counts. Lastly, we are planning to carry out
runs at scale of a multiple of thousands of many-core cluster nodes to simulate
a problem that is of interest to the chemistry and geochemistry communities.

Acknowledgment. This work was supported by the NWChem project in the William
R. Wiley Environmental Molecular Sciences Laboratory (EMSL), the U.S. Department
of Energy, Office of Science, Advanced Scientific Computing Research ECP program
(NWChemEx project), and E.J.B was also supported by the the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geo-
sciences, and Biosciences Division at PNNL, DE-AC06-76RLO 1830. EMSL operations
are supported by the DOE’s Office of Biological and Environmental Research. M.J. and
W.A.D. were partially supported by the Scientific Discovery through Advanced Com-
puting (SciDAC) program funded by U.S. Department of Energy, Office of Science,

416 E.J. Bylaska et al.

Advanced Scientific Computing Research and Basic Energy Sciences. In particular,
M.J. was supported by the FASTMath SciDAC institute. We wish to thank the Scien-
tific Computing Staff, Office of Energy Research, and the U. S. Department of Energy
for support through the NERSC NESAP program the National Energy Research Sci-
entific Computing Center (Berkeley, CA). This work was also supported by Intel as
part of its Intel Parallel Computing Centers effort. This research used resources of the
National Energy Research Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Intel, Xeon, and Xeon Phi are trademarks or registered trademarks of Intel Corpo-
ration or its subsidiaries in the United States and other countries.

* Other names and brands are the property of their respective owners.
Software and workloads used in performance tests may have been optimized for

performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more information go to http://www.intel.
com/performance.

Intel’s compilers may or may not optimize to the same degree for non-Intel micro-
processors for optimizations that are not unique to Intel microprocessors. These opti-
mizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimiza-
tion on microprocessors not manufactured by Intel. Microprocessor-dependent opti-
mizations in this product are intended for use with Intel microprocessors. Certain opti-
mizations not specific to Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

References

1. Measuring arithmetic intensity, http://www.nersc.gov/users/
application-performance/measuring-arithmetic-intensity/. Accessed 22 Oct
2016

2. Aprà, E., Bylaska, E.J., Dean, D.J., Fortunelli, A., Gao, F., Krstić, P.S., Wells,
J.C., Windus, T.L.: NWChem for materials science. Comput. Mater. Sci. 28(2),
209–221 (2003)

3. Ayala, O., Wang, L.P.: Parallel implementation and scalability analysis of 3D fast
fourier transform using 2D domain decomposition. Parallel Comput. 39(1), 58–77
(2013). http://www.sciencedirect.com/science/article/pii/S0167819112000932

4. Bylaska, E., Tsemekhman, K., Govind, N., Valiev, M.: Large-scale plane-wave-
based density functional theory: formalism, parallelization, and applications. In:
Computational Methods for Large Systems: Electronic Structure Approaches for
Biotechnology and Nanotechnology, pp. 77–116 (2011)

5. Bylaska, E.J., Glass, K., Baxter, D., Baden, S.B., Weare, J.H.: Hard scaling chal-
lenges for ab initio molecular dynamics capabilities in nwchem: using 100,000 CPUs
per second. In: Journal of Physics: Conference Series, vol. 180, p. 012028. IOP Pub-
lishing (2009)

http://www.intel.com/performance
http://www.intel.com/performance
http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
http://www.sciencedirect.com/science/article/pii/S0167819112000932

Performance of NWChem AIMD on Intel Xeon Phi Processors 417

6. Bylaska, E.J., Valiev, M., Kawai, R., Weare, J.H.: Parallel implementation of the
projector augmented plane wave method for charged systems. Comput. Phys. Com-
mun. 143(1), 11–28 (2002)

7. Canning, A., Raczkowski, D.: Scaling first-principles plane-wave codes to thousands
of processors. Comput. Phys. Commun. 169(1), 449–453 (2005)

8. Canning, A., Shalf, J., Wang, L.W., Wasserman, H., Gajbe, M.: A comparison of
different communication structures for scalable parallel three dimensional FFTs in
first principle codes. In: Chapman, B., Desprez, F., Joubert, G.R., et al. (eds.), pp.
107–116 (2010)

9. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-
functional theory. Phys. Rev. Lett. 55(22), 2471 (1985)

10. Chen, Y., Bylaska, E., Weare, J.: First principles estimation of geochemically
important transition metal oxide properties. In: Molecular Modeling of Geochem-
ical Reactions: An Introduction, p. 107 (2016)

11. Cramer, T., Schmidl, D., Klemm, M., an Mey, D.: OpenMP programming on Intel
Xeon Phi Coprocessors: an early performance comparison. In: Proceedings of Many
Core Applications Research Community (MARC) Symposium, pp. 38–44 (2012)

12. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Computat. Sci. Eng. 5(1), 46–55 (1998)

13. Fattebert, J.L., Osei-Kuffuor, D., Draeger, E.W., Ogitsu, T., Krauss, W.D.: Mod-
eling dilute solutions using first-principles molecular dynamics: computing more
than a million atoms with over a million cores. In: International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2016, pp.
12–22. IEEE (2016)

14. Gygi, F.: Architecture of Qbox: A scalable first-principles molecular dynamics code.
IBM J. Res. Develop. 52(1.2), 137–144 (2008)

15. Jacquelin, M., De Jong, W., Bylaska, E.: Towards highly scalable Ab initio molecu-
lar dynamics (AIMD) simulations on the Intel knights landing manycore processor.
In: 31st IEEE International Parallel & Distributed Processing Symposium. IEEE
Computer Society (2017, Accepted)

16. de Jong, W.A., Bylaska, E., Govind, N., Janssen, C.L., Kowalski, K., Müller, T.,
Nielsen, I.M., van Dam, H.J., Veryazov, V., Lindh, R.: Utilizing high performance
computing for chemistry: parallel computational chemistry. Phys. Chem. Chem.
Phys. 12(26), 6896–6920 (2010)

17. Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-scalable drag-
onfly topology. SIGARCH Comput. Archit. News 36(3), 77–88 (2008). http://doi.
acm.org/10.1145/1394608.1382129

18. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation
effects. Phys. Rev. 140(4A), A1133 (1965)

19. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Clarendon Press, Oxford
(1995)

20. Marx, D., Hutter, J.: Modern methods and algorithms of quantum chemistry. Gro-
tendorst, J. (ed.), pp. 301–449 (2000)

21. MPI Forum: MPI: A Message-passing Interface Standard. Tech. rep., June 2015
22. Nelson, J., Plimpton, S., Sears, M.: Plane-wave electronic-structure calculations on

a parallel supercomputer. Phys. Rev. B 47(4), 1765 (1993)
23. OpenMP Architecture Review Board: OpenMP Application Program Interface,

Version 4.5, November 2015. http://www.openmp.org/

http://doi.acm.org/10.1145/1394608.1382129
http://doi.acm.org/10.1145/1394608.1382129
http://www.openmp.org/

418 E.J. Bylaska et al.

24. Parr, R.G.: Density functional theory of atoms and molecules. In: Fukui, K., Pull-
man, B. (eds.) Horizons of Quantum Chemistry. Académie Internationale Des Sci-
ences Moléculaires Quantiques/International Academy of Quantum Molecular Sci-
ence, vol. 3, pp. 5–15. Springer, Dordrecht (1980). doi:10.1007/978-94-009-9027-2 2

25. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T., Joannopoulos, J.: Iterative min-
imization techniques for ab initio total-energy calculations: molecular dynamics
and conjugate gradients. Rev. Mod. Phys. 64(4), 1045 (1992)

26. Polian, A., Loubeyre, P., Boccara, N.: Simple molecular systems at very high den-
sity. In: NATO Advanced Science Institutes (ASI) Series B, vol. 186 (1989)

27. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes. In: 2009 17th Euromicro International Con-
ference on Parallel, Distributed and Network-based Processing, pp. 427–436. IEEE
(2009)

28. Remler, D.K., Madden, P.A.: Molecular dynamics without effective potentials via
the car-parrinello approach. Mol. Phys. 70(6), 921–966 (1990)

29. Sodani, A.: Knights landing (KNL): 2nd Generation Intel R© Xeon Phi Processor.
In: Presentation at Hot Chips: A Symposium on High Performance Chips, August
2015

30. Swarztrauber, P.: Fftpack: a package of fortran subprograms for the fast fourier
transform of periodic and other symmetric sequences. Obtainable by e-mail or by
ftp from nctlib@ornl.gov (1985)

31. Van De Geijn, R.A., Watts, J.: Summa: scalable universal matrix multiplication
algorithm. Concurrency-Pract. Exp. 9(4), 255–274 (1997)

32. Wiggs, J., Jonsson, H.: A hybrid decomposition parallel implementation of the
car-parrinello method. Comput. Phys. Commun. 87(3), 319–340 (1995)

33. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
http://doi.acm.org/10.1145/1498765.1498785

http://dx.doi.org/10.1007/978-94-009-9027-2_2
http://doi.acm.org/10.1145/1498765.1498785

Performance Variability on Xeon Phi

Brandon Cook(B), Thorsten Kurth, Brian Austin, Samuel Williams,
and Jack Deslippe

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
{bgcook,tkurth}@lbl.gov

Abstract. An understanding of sources of performance variability is
important for high performance application developers and users. In this
paper we discuss non-I/O sources of application performance variability
on Cori, a Cray XC40 at NERSC with 9600+ Xeon Phi nodes con-
necting to an Aries high speed network with a Dragonfly topology. Our
survey covers variability due to on-node effects from MCDRAM config-
ured as cache and clock frequency scaling as well as off-node effects due
to the network. For each source of variability we quantify the variabil-
ity through micro-benchmarks and mini-applications, discuss potential
mitigation strategies and analyze the impact on applications.

Keywords: Cori · NERSC · Aries · Dragonfly · Performance variability

1 Introduction

High performance computing platforms harbor many potential sources of perfor-
mance variability, including features of the on-node architecture, network, and
I/O subsystem. Quantifying and understanding the various sources of variabil-
ity is essential to application developers and performance engineers who want to
analyze and measure application performance and for scientists to make efficient
and informed use of resource allocations. In this paper we focus on non-I/O
sources of variability on the Intel Xeon Phi many integrated core architecture.

In Sect. 2, we describe the target architecture. In Sect. 3, we describe appli-
cations that will be used to demonstrate the effects on variability on real-
applications. Sections 4, 5 and 6 discuss different on-node and off-node sources
of variability: MCDRAM configured as direct map cache, dynamic voltage-
frequency scaling, and job placement. For each section, the mechanism of vari-
ability is introduced, mitigation and identification methodologies are discussed
and illustrated with microbenchmarks. Finally, the impact on of variability on
the performance of real applications is presented.

2 System Architecture

The Cori supercomputer at the National Energy Research Scientific Computing
Center (NERSC) is a Cray XC40 based supercomputer currently ranked 5th on
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 419–429, 2017.
https://doi.org/10.1007/978-3-319-67630-2_31

420 B. Cook et al.

the Top 500 list. Cori is unique in that it contains both Xeon and Xeon Phi
nodes with a common scheduler, I/O subsystem and high speed network (HSN).
Cori is configured with the following components; our analysis focuses on Cori’s
Xeon Phi partition.

– 2000+ compute nodes with 128 GB DDR4@2133 MHz per node and two 16-
core 2.3 GHz Intel Haswell processors

– 9600+ compute nodes with 96 GB DDR4@2400 MHz per node, 16 GB on-
package MCDRAM and one 68-core 1.4 GHz Intel Xeon Phi processor

– 1 PB aggregate memory
– 30 PB scratch filesystem with over 700 GB/s peak bandwidth
– Cray Aries network with Dragonfly topology and 45 TB/s bi-directional global

bandwidth.

3 Applications

We use the following applications to illustrate several sources of variability and
to discuss their impact on realistic workloads.

The HPGMG-FV benchmark [4,5] is highly instrumented, thus providing
an immediate and detailed timing breakdown, and it is heavily optimized for
threaded environments. Moreover, as it implements a variable-coefficient, fourth-
order Laplacian on a structured grid, it is moderately compute intensive and thus
sensitive to frequency variations.

The deep learning framework IntelCaffe [1] features highly optimized com-
pute kernels for Intel R© Xeon Phi as well as Intel Machine Learning Scalability
Library (MLSL) [2] which provides communication primitives optimized for deep
learning applications. The computational kernels are mostly SGEMM-like and
are thus very compute intensive. The communication pattern is very well-defined
as IntelCaffe uses only non-blocking allreduce operations. This communication
pattern is very demanding because allreduces of large messages can put pressure
on the network.

The lattice QCD application Chroma [3], together with the QPhiX Wilson
operator and solver package [6,7], uses a hybrid OpenMP and MPI approach to
parallel programming. It makes heavy use of JIT compilation, AVX512 intrinsics
and employs pool allocators in order to improve memory allocation performance
on Xeon Phi. Chroma’s performance is limited by memory bandwidth and is
sensitive to communication latency at large scale. The primary communication
pattern nearest neighbor boundary exchange in the Wilson operator (4D stencil)
and the BiCGStab solver additionally issues small allreduce operations.

MiniFE mimics the key operations of many finite-element applications that
rely on implicit solvers. MiniFE uses a simple, non-preconditioned conjugate-
gradient solver that consists mainly of sparse matrix-vector products and vector-
vector operations that are memory bandwidth sensitive.

Performance Variability on Xeon Phi 421

4 MCDRAM Cache

4.1 Introduction

Cache conflict misses are a well-known phenomenon arising from memory refer-
ences aliasing to the same cache line in a limited associativity cache and resulting
in superfluous data movement. Users often mitigate this by padding array sizes
so that the (virtual) addresses of concurrently accessed array elements no longer
alias. Such techniques work well on virtually-addressed caches or in cases where
the padding is smaller than a page. Unfortunately, for cache architectures with
very large numbers of sets (e.g. the MCDRAM cache on KNL), it is possible for
multiple pages within or across processes to map to the same cache set despite
having distinct (virtual) address bits (the TLB hides the true aliasing from
users). This is an artifact of, upon a malloc/sbrk, the system (perhaps agnostic
of the cache architecture) allocating two physical (and aliased pages) from the
free page list to disjoint virtual addresses. On a system like KNL where the cache
is direct mapped (no associativity), such accesses can result in MCDRAM cache
thrashing and degraded performance.

4.2 Mitigations/Solutions

For a freshly booted node, the page list is initially “well ordered” in the sense
that the first pages allocated from the heap do not conflict with each other. Over
time, as various processes allocate and free memory, the entropy of the free page
list increases, the probability of being allocated conflicting pages increases, and
performance decreases.

One might consider rebooting nodes before each job to eliminate this source of
performance variation, but lengthy reboot times make this suggestion untenable.
To help avoid cache conflict misses without rebooting, Intel developed the so-
called “Zone-Sort” kernel module, which performs on-demand sorting of Linux’s
free page list. The overhead for running Zone-Sort is small enough (<1 s) that
it can be run before each job. On Cori, we have modified the Slurm prologue to
call Zone-Sort immediately before each application launch. (This can be option-
ally disabled by adding --zonesort=off option to either of the sbatch or srun
commands.)

4.3 Microbenchmarks

KNL’s vulnerability to cache thrashing is illustrated in Fig. 1(left), which shows
the average performance of 128 single-node runs of the MiniFE application in
KNL’s quad,cache mode. The first iteration scans a series of problem sizes, rang-
ing from 4 to 50 GB, and achieves good performance up to the MCDRAM
cache size of 16 GB, but decreases rapidly for larger problems as the number
of capacity cache misses increases. The second iteration scans the same series,
but has significantly worse performance for problems that fit into MCDRAM
cache. Figure 1(right) repeats the scan of MiniFE problems, but calls Zone-Sort

422 B. Cook et al.

before each run. The two scans now generate the same performance for all prob-
lem sizes, which confirms that the poor performance observed in Fig. 1(left)-2nd
run was due to cache thrashing, and demonstrates the effectiveness of Zone-Sort
for MiniFE. However, the extent of the performance degradation depends on the
state of the free page list, which varies across nodes, but also on the susceptibility
of an application’s memory access pattern to cache conflicts; other applications
might not show the same sensitivity or improvement.

Fig. 1. MiniFE performance without (left) and with (right) the Zone-Sort kernel mod-
ule. Each curve shows the average, standard deviation and minimum performance for
128 single-node runs.

4.4 Impact on Applications

Figure 2 presents the run time for HPGMG’s smooth operator on the finest
multigrid level for a problem size of 2563 per process under either cache mode
(quad,cache) or flat mode (quad,flat with numactl -m 1). Without Zone-Sort
or rebooting for several weeks, the time per process for this ideally load bal-
anced computation is far from uniform in cache mode (the Linux kernel on each
node behaves independently based on its unique history). Conversely, in flat
mode, there is only a 5% variation in performance. For bulk synchronous or fre-
quently synchronizing applications like HPGMG, this node-to-node variability
induced load imbalance manifests as increased MPI Wait times, reduced perfor-
mance (limited by slowest node), and reduced scalability (as one scales to higher
concurrencies, the probability of being allocated a ‘slow’ node increases). With
#SBATCH --zonesort=on and a more frequent reboot schedule, the discrepancy
between flat and cache mode is diminished. As a result, overall performance and
scalability are improved.

5 Dynamic Voltage and Frequency Scaling (DVFS)

5.1 Introduction

In response to thermal limits, power limitations and instruction modern archi-
tectures can dynamically adjust processor clock frequency. On Cori the default

Performance Variability on Xeon Phi 423

Fig. 2. MCDRAM Cache aliasing induced load imbalance on HPGMG. There are 512
processes spread over 64 nodes. Each count represents the nominally load-balanced
smooth time for that process averaged over 60 s.

cpufreq driver is “acpi-cpufreq” and the minimum and maximum scaling frequen-
cies are 1000000 kHz and 1401000 kHz. The default governor is “performance”
which will attempt to run the CPU at the maximum possible frequency. However,
this is an upper bound and the processor can always run at a lower frequency
than that requested by the operating system. For example, when executing AVX-
intensive blocks of code, the cores on a node will downclock to 1.2 GHz.

Cori users can select non-default frequency scaling through SLURM’s
--cpu-freq=P1 option, which will set the target(upper) frequency (in KHz) a
job can nominally run at. These can be used either on a job-wide (#SBATCH)
or run step (srun) basis.

5.2 Microbenchmarks

One of the most widely used BLAS operations is DGEMM. Figure 3 shows his-
tograms of DGEMM performance collected with n = m = k = 2048, α = 1 and
β = 1 with Intel MKL distributed with Intel compilers 2017.1.132. The proces-
sor was in quad,flat mode and the benchmark was run using pure OpenMP with
numactl -m 1 to bind memory to the MCDRAM. For each frequency, 500 calls
to DGEMM were made and the first call was excluded.

Increasing the number of threads greatly increases the variability, as shown
by the wide spread with 64 threads in Fig. 3. However, reducing the clock fre-
quency increases the sharpness of the variability at the cost of reducing the peak

424 B. Cook et al.

Fig. 3. Normalized histograms of 1000 DGEMM’s with n = m = k = 2048 with 8 and
64 threads for different frequencies (kHz). All measurements were done on the same
node using a single process at a time.

performance. In some cases this may be an energy efficiency optimization or just
a tool for reducing the impact of variability when analyzing other potential code
modifications.

5.3 Impact on Applications

Figure 4 presents on-node variability for HPGMG as a function of frequency (e.g.
--cpu-freq=1200000). In affect, reducing the frequency makes the application
more compute-limited and sensitive to slightly different code execution paths.
In all cases, we used 64 nodes running in quad,flat with either 8 threads per
process (512 processes) or 64 threads per process (64 processes). Figure 4(left)
shows substantial variation in smoother (on-node computation) performance at
low frequencies with 8 processes per node. This is quite surprising as all processes
perform exactly the same computation (perfect load balance). As one increases
frequency, one approaches the lower bound imposed by the memory limit and
thus reduces variability. Close examination shows the 8 processes on each node
deliver similar performance while processes on different nodes can deliver sub-
stantially different performance. Conversely, Fig. 4(right), which is configured to
use one 64-thread process per node, shows neither variability between processes
nor variability between nodes. At high frequencies, 64 threads deliver nearly the
same on-node performance as 8 processes of 8 threads (memory bandwidth wall).
Unfortunately, at low frequency run time is now consistently at the upper bound
of variability.

Although this routine is perfectly load balanced on-node computation, the
prior routines (filling ghost zones with MPI data or with a boundary condition)
will vary from process to process. This suggests that these routines can artificially
warm up the caches or pollute the TLBs such that the effects are seen in the
subsequent (plotted) smooth routine. At high thread concurrencies, threads walk
all over memory to affect the boundary condition or to fill in ghost zones, and
are thus unlikely to have warmed up the caches for the smoother stencil.

Performance Variability on Xeon Phi 425

Fig. 4. Effects of frequency scaling on HPGMG’s on-node smoother (averaged over
60s) at 64 nodes in quad,flat mode. Observe, there is far more variability in the 512
process ×8 thread configuration (left) while the 64 × 64 configuration (right) generally
runs slower at low frequencies.

6 Job Placement

6.1 Introduction

A “Dragonfly” topology consists of groups of locally connected routers with
groups connected to each other by high-speed global links. Within the Cray’s
Aries implementation of the dragonfly topology, local groups consists of a two-
cabinet pair and contains a total of six chassis. A chassis houses sixteen blades,
and each blade has four slots (or nodes) and a (shared) Aries router. This leads
to a total of 384 slots in each Aries two-cabinet group. However, burst buffer
nodes and other system service nodes may displace compute nodes, reducing the
number of compute nodes per group to as few as ∼355. All blades in a chassis
are wired in an all-to-all fashion called rank-1 network or green links. The rank-2
network (black links) connect each blade in a chassis with each of its peers in
other chassis of the same group. The latency and all-to-all bandwidths for rank-
1 and rank-2 connections are similar. Finally, the rank-3 network (optical blue
links) connects each Aries group with every other group. Adaptive routing is
enabled on Cori, which allows packages to take routes which are not considered
as shortest routes in terms of number of hops. This feature mitigates network
congestion problems by rerouting packages through different chassis and cabi-
nets. However, this can also lead to interference with applications running in
other cabinets. Applications that span multiple nodes are expected to be more
vulnerable than applications which only run on few nodes. Applications that
span multiple chassis and cabinets are likely be more affected than jobs that are
placed in a compact manner. In this section, we will investigate the performance
variability dependent on job placement.

426 B. Cook et al.

6.2 Mitigations/Solutions

SLURM provides control over job placement topology through the switches
option to sbatch. The syntax is --switches=N@HH:MM:SS, where N is number
of Dragonfly groups and HH:MM:SS is the maximum time to delay the start of
the job until an allocation satisfying the requested number of switches is found.
If the time elapses then the job will take the next available allocation which
may not satisfy the requested number of switches. From the application side,
hugepages can be used to mitigate Aries TLB thrashes. For that purpose, the
code has to be recompiled with cray-hugepages module enabled and at runtime
a page size has to be set.

6.3 Impact on Applications

We first tested if adaptive routing has the potential to interfere with applica-
tions running at very small scale and compact job placement. For that purpose,
we ran IntelCaffe on 4 and 8 nodes on Cori ensuring that the 4 node jobs are
contained within a single blade and the 8 node jobs span two adjacent blades. In
both cases, we employed 66 OpenMP threads where each thread is bound to one
physical core and dedicated additional 2 cores to the operating system by using
the core specialization feature of SLURM (i.e. by specifying -S 2 in the submit
script). We are used 2MiB hugepages and RDMA accelerated collectives through
DMAPP by enabling MPICH NETWORK BUFFER COLL OPT, MPICH RMA OVER DMAPP
and MPICH USE DMAPP COLL. Our experiments were carried out on quad,cache
configured nodes. Since all node-local data fits fully into MCDRAM, we did not
see any difference from quad,flat mode. For comparison, we also ran the eight
node job on our TDS system Gerty, using the same binary, same setup and
system configuration. Gerty is a small-scale, lightly used test and development
system with a comparably quiet network and thus much less prone to network
noise. The neural network used was a 5 layer convolutional neural network (CNN)
with small fully connected layer and 224× 224× 3-sized input images that could
be fully cached in memory. We measured the execution speed of forward, back-
ward and update steps averaged over 10 iterations. The backward pass issues
non-blocking allreduce operations that are concluded by a wait command in the
subsequent update step of the corresponding layer. Therefore, only the latter
should be affected by communication variability. The results from this test are
displayed in Fig. 5, which shows that the computationally heavy forward and
backward passes do not show any variability for any system and node count.
The update step however shows severe performance variations. We further notice
that variability on Cori depends on job compactness, i.e. jobs contained within
a blade show much less variability than jobs spanning multiple blades. The same
code executed on eight Gerty nodes shows very little performance variation with
a somewhat periodic pattern1. The performance variation on Cori is less regular

1 We observed spikes in the execution time about once every 20 iterations; averaging
over 10 iterations gave rise to the figure’s zig-zag pattern.

Performance Variability on Xeon Phi 427

Fig. 5. Timings for forward, backward and update steps of a 5 layer CNN in IntelCaffe
on different systems and for different node counts. The timings are averaged over 10
subsequent iterations. Solid lines represent mean timings for the respective steps.

and suggests that those runs were potentially impacted by other applications
running on the same machine.

To further investigate the job placement dependence of performance vari-
ability, we performed medium scale runs with Chroma. Since this code is mostly
doing nearest neighbor message exchanges, it is not as sensitive to network con-
gestion from concurrently running applications as IntelCaffe. For this experi-
ment, we employ 4 MPI ranks per node and 256 nodes in total. We further
utilize 32 threads per rank and allocate 3.5 GiB of memory pool data and use
2 MiB hugepages. We run the Chroma Hybrid Molecular Dynamics (HMC) tra-
jectory benchmark over several trajectories on a global 643 ·128 lattice (local size
162 · 8 · 16) and measure the performance of each call to the BiCGStab solver.
Comparing performance variation with in a job to its distribution of nodes across
the network can provide a qualitative understanding of the impact of node place-
ment on Chroma’s performance. Figure 6(a) shows the performance histories for
three selected jobs as well as their placements Fig. 6(b), (c) and (d). The later
three depict the compactness of the job: they each show 4 cabinets of the Cori
system along with worker nodes (open rectangles), service nodes (solid black
rectangles) and the nodes occupied by the respective job (solid red rectangles).
Rows and columns of the images can be directly mapped to physical rows and
columns of the system. We observed that job 3724518 showed low performance
variability and was also placed inside one cabinet in a contiguous fashion. Job
3731220 is contiguous to a certain extent, but spans two cabinets and has “holes”
in between; the performance of this job is significantly less reliable. Finally, job
3828179 was scattered across four cabinets and shows huge variation over the
duration of the run. Job 3731220 features some severe downward spikes at the

428 B. Cook et al.

(b) job (c) job (d) job

Fig. 6. Performance histories of Chroma HMC runs (a) with three different job place-
ments: compact and contiguous (b), contiguous with holes (c) and scattered (d). The
solid lines in (a) represent the corresponding mean flop rates. Solid red rectangles in
(b, c, d) represent nodes occupied by the given job, black rectangles are service nodes
and open rectangles are other worker nodes which might run other jobs at the same
time (not shown). (Color figure online)

end of its lifetime that have not yet been fully explained. Given the approximate
periodicity of the spikes, they may be related to heavy I/O operations by another
job on the system. The root cause is still under active investigation.

7 Conclusions

In this paper we have highlighted three non-IO sources of performance variabil-
ity on the Cori machine at NERSC. Effects of cache conflicts when MCDRAM
is configured as a cache are one of the most prominent potential sources of per-
formance variability on Xeon Phi, and the use of the Zone-Sort kernel module
was found to be very beneficial in recovering lost performance. Variability stem-
ming from DVFS does not show the same clear, well-defined signal and is highly
application dependent, particularly when MKL is used. However, by running
applications and benchmarks at different nominal clock frequencies this source
of variability can be probed potentially at the cost of absolute performance, but
of benefit to developers benchmarking code changes. Job placement in a large-
scale production environment is a difficult problem, particularly when adaptive

Performance Variability on Xeon Phi 429

routing is in use and applications which are communication intensive should take
job placement and interference effects into consideration when analyzing perfor-
mance. The identification of sources of performance variability will continue to
be important as processor architecture becomes more complex and system size
increases.

Acknowledgments. This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

References

1. Intel R© distribution of Caffe* (2017). https://github.com/intel/caffe
2. Intel R© Machine Learning Scaling Library for Linux* OS (2017). https://github.

com/01org/MLSL
3. Edwards, R.G., Joo, B.: The Chroma software system for lattice QCD. Nucl. Phys.

Proc. Suppl. 140, 832 (2005)
4. http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg
5. https://bitbucket.org/hpgmg/hpgmg
6. Joó, B.: qphix package web page. http://jeffersonlab.github.io/qphix
7. Joó, B.: qphix-codegen package web page. http://jeffersonlab.github.io/qphix-

codegen

https://github.com/intel/caffe
https://github.com/01org/MLSL
https://github.com/01org/MLSL
http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg
https://bitbucket.org/hpgmg/hpgmg
http://jeffersonlab.github.io/qphix
http://jeffersonlab.github.io/qphix-codegen
http://jeffersonlab.github.io/qphix-codegen

Optimizing Fusion PIC Code Performance
at Scale on Cori Phase Two

Tuomas Koskela(B) and Jack Deslippe

National Energy Research Scientific Computing Center, Bekeley, CA, USA
tkoskela@lbl.gov

Abstract. In this paper we present the results of optimizing the per-
formance of the gyrokinetic full-f fusion PIC code XGC1 on the Cori
Phase Two Knights Landing system. The code has undergone substan-
tial development to enable the use of vector instructions in its most
expensive kernels within the NERSC Exascale Science Applications Pro-
gram. We study the single-node performance of the code on an absolute
scale using the roofline methodology to guide optimization efforts. We
have obtained 2× speedups in single node performance due to enabling
vectorization and performing memory layout optimizations. On multiple
nodes, the code is shown to scale well up to 4000 nodes, near half the
size of the machine. We discuss some communication bottlenecks that
were identified and resolved during the work.

Keywords: Fusion · Applications · Performance · Optimization · Par-
ticle in cell

1 Introduction

Magnetic confinement devices are at present the most promising path towards
controlled nuclear fusion for sustainable energy production [1]. The most suc-
cessful design is the tokamak, a toroidal device where a burning hydrogen plasma
is confined by a combination of magnetic field coils and an externally induced
plasma current [2]. The ITER project [3], currently in construction phase in
southern France, aims at demonstrating the feasibility of a tokamak fusion
power plant in the 2030’s. To ensure the success of ITER, and to pave the path
towards commercial fusion power plants, self-consistent simulations of the turbu-
lent fusion plasma at exascale are urgently needed to understand and control the
complex plasma phenomena that are born from the interplay of electromagnetic
fields and charged particles.

Since directly computing the N2 number of infinite-range particle-particle
interactions in a plasma is impractical, the Particle-In-Cell (PIC) method is
a powerful tool for plasma physics simulations in laboratory, space, and fusion
plasmas [4–6]. A PIC code solves the kinetic evolution of the particle distribution
function and the evolution of electromagnetic fields self-consistently. Typically
PIC codes consist of four steps that are iterated in a time-stepping loop: (1)
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 430–440, 2017.
https://doi.org/10.1007/978-3-319-67630-2_32

Optimizing Fusion PIC Code Performance at Scale on Cori Phase Two 431

field solve, (2) field gather, (3) particle push, and (4) charge deposition. In fusion
applications that deal with collisional plasmas, a collision step is normally added
to collectively treat small-angle scattering. A particle shift step is introduced
when the algorithm is parallelized to handle communication between processes
due to the motion of particles between computational domains. Steps (1), (3)
and the collision step are computation intensive, involving linear algebra and
numerical integration. Steps (2) and (4) are mapping steps between the particles
and the mesh that are dominated by memory access.

The vast majority of fusion PIC applications use the gyrokinetic theory [7]
to reduce the dimensionality of the kinetic problem and, therefore, achieve large
savings in computation time. However, the gyrokinetic equation of motion con-
tains higher order derivatives in steps (2) and (3) that set them apart from PIC
codes in other fields. Typically the compute time in gyrokinetic PIC codes is
dominated by the electron push cycle. Electrons move at a much higher speed
than ions and therefore need to be advanced with a much shorter time step.
Many codes employ an electron sub-cycling loop where electron-scale field fluc-
tuations are neglected and the electrons are pushed for O(10) time steps for each
ion time step. The electron sub-cycling loop is a prime candidate for performance
optimization since it’s trivially parallelizable and has a high arithmetic intensity.
The main obstacle for high performance is random memory access due to the
complex motion of the electrons across the grid.

Cori is the first large-scale supercomputer that is leveraging the Intel Knights
Landing (KNL) architecture [8]. It is installed at the National Energy Research
Scientific Computing Center (NERSC) at Lawrence Berkeley Laboratory (LBL)
in Berkeley, CA. At present it has 9688 KNL nodes and 2004 Haswell nodes,
making it the world’s 5th fastest supercomputer on the top 500 list. However,
getting good code performance on KNL is not always trivial due to various
features of the KNL architecture; large number of relatively slow processors,
high-bandwidth memory and wide vector processing units. In order to enable
key scientific applications to run on Cori, NERSC started the NERSC Exascale
Science Applications Program (NESAP) in 2014 [9]. One of the outcomes of
NESAP is the development a new methodology for optimizing application per-
formance on KNL [10]. The XGC1 code [12] is the only fusion PIC application
accepted to NESAP and serves as a test case for other fusion PIC codes that
aspire to run on Cori KNL and future Intel Xeon Phi systems. The unique fea-
ture of XGC1 is that it uses real-space coordinates and an unstructured mesh
for the field solution making it capable of simulating the full tokamak volume
simultaneously.

2 Roofline Baseline Performance Measurement and Main
Bottlenecks

We use the roofline methodology [13,14] in our performance measurements
to discuss performance on an absolute scale. The roofline model is a visual
performance model that can be applied to both applications and computing

432 T. Koskela and J. Deslippe

Fig. 1. Relative contributions to the XGC1 runtime of main kernels. Electron push
contributes roughly 75% of the runtime in typical jobs.

architectures. It describes performance in terms of flops per second (FLOPS)
as a function of Arithmetic Intensity (AI), the ratio of the FLOPS executed vs.
the bytes read from some level of the cache memory hierarchy. A computing
architecture will set roofs of achievable performance that are bound by the com-
pute capability and the memory bandwidth. Placing an application’s hot kernels
on the roofline chart will give information on attainable performance, current
performance bounds, and most promising optimization directions [10].

The main kernels of XGC1 are the particle push, particle shift, the Poisson
solver, charge deposition and the collision operator. The field gather routine is so
closely tied to the particle push kernel that it is impossible to treat it separately.
Furthermore, the particle kernels can be divided into ion and electron kernels
that contain slightly different physics approximations and, in the case of the
push kernel, are called with a different frequency. The contributions of the main
kernels on the runtime of XGC1 are plotted in Fig. 1, showing that most of the
computation time is spent in the electron push kernel, as was suggested in the
previous section. In this paper we mostly focus on optimizations to the electron
push kernel, and only touch on the communication intensive kernels in Sect. 4.
Extensive optimization work has also been performed on the collision kernel [11]
which scales with N2 where N is the number of particle species. Most XGC1
simulations currently use N = 2 but multi-ion species runs are forecast for the
future.

Optimizing Fusion PIC Code Performance at Scale on Cori Phase Two 433

The main kernels of XGC1 lie in very different regions of the roofline chart.
The electron push kernel is compute intensive and has a relatively high AI, since
multiple floating point operations are performed on the field data that is read
from memory to calculate the equation of motion at each time step. The roofline
chart does not immediately give the performance bound of the kernel, i.e. it is
not memory bandwidth bound, yet it does not reach any of the peak compute
performance roofs. In Fig. 2 we show the results of a more detailed analysis of
the electron push kernel on the roofline chart. We can identify three main classes
of loops that spend significant fractions of the computing time.

Fig. 2. A breakdown of the performance of loops in the electron push kernel as a
function of Arithmetic Intensity based on the cache-aware roofline model.

1. Field gather loops. A field gather operation is made before each time step.
The field gather kernel locates the nearest grid nodes, accesses field vector
data stored at them, and performs an interpolation to the particle position.
The algorithm fundamentally requires indirect memory access to field data
due to the “random” motion of the particles across the grid. Furthermore, the
innermost loops of the algorithm have short trip counts, making automatic
compiler optimization ineffective.

2. Force calculation loops. The forces acting on the particle are calculated from
gradients and cross and dot products of the gathered field variables to advance
the equations of motion [12] forward in time. The field data is stored in fortran
derived data types and the equations of motion require several strided memory
accesses to the field vectors and the Jacobian matrix. It is also non-ideal for
cache reuse.

434 T. Koskela and J. Deslippe

3. Search loops. The unstructured mesh that is used in XGC1 to store the electric
field solution introduces an additional search step after each particle push to
locate the mesh element the particle was pushed into. In addition to suffering
from indirect memory access to the coordinates stored at grid nodes, search
algorithms are difficult for the compiler auto-vectorization due to irregular
exit conditions once the search has finished.

3 Optimizations and Performance Improvements

3.1 Vectorization of Electron Push

Since we have established that the electron push kernel is not memory bandwidth
bound due to its high AI, the most reasonable optimization path is enabling
vectorization wherever possible. The XGC1 code has a complex hierarchy of
subroutine calls from the main program down to the computation kernels that
operated on scalar arguments. The main routine loops over particles and passes
them one by one down to the computation routines that contain no loops or loops
with very short trip counts. To enable vectorization, blocking was added to the
main particle loop and the inner loop over blocks of particles was moved down
to the innermost computation subroutines. The interpolation and computation
subroutines were then restructured to vectorize over the particle loop, while
letting the compiler decide the best optimization strategy for the short outer
loops over nearby grid points. With this strategy, good vectorization efficiency
was achieved in the field interpolation loops and the equation of motion compute
loop.

Particle sorting by grid element was added to improve the cache reuse in the
interpolation loop. Due to the field-aligned grid that is elongated in the parallel
direction, particles in XGC1 move across grid cells relatively rarely, less than
1% of time steps end in a different cell than where they started. Therefore, if
the particle array is sorted at the beginning of the electron sub-cycling loop, it
remains in reasonably good order for the duration of the sub-cycling. The aim
is to group particles in the same cell at the beginning of the sub-cycling close
together in memory so that all access to a set of grid points can be performed
consecutively. To reach this goal, the order of the time step loop and the outer
particle loop was changed in the electron push kernel so that a block of particles
is pushed through the sub-cycling continuously before moving on to the next
block.

While it is not possible to completely eliminate gather/scatter instructions
in the vectorized algorithm, we can optimize the memory alignment of the data
to minimize the number of expensive gathers. Generally vector codes favor an
Structure-of-Arrays (SoA) data layout because it allows contiguous access to
individual structures. However, we find that variables stored on the 3D mesh
that are gathered from scattered locations in memory an Array-of-Structures
(AoS) layout yields better performance. The improvement comes from reducing
the number of expensive gather/scatter instructions. A particle is connected to
six grid points on the unstructured mesh (eight on a regular mesh). When data

Optimizing Fusion PIC Code Performance at Scale on Cori Phase Two 435

from all nearby grid points is read for an interpolation, they can be accessed on
a single cache line with a vector gather instruction in an AoS layout. For the
particle data, an SoA layout yields better performance, as expected.

The search algorithm can theoretically benefit from all the optimizations that
have been discussed above and applied to the interpolation and computation
algorithms. However, a search algorithm can not know how many iterations it
has to search through before completing, which is not a feature that is easy to
vectorize. Because the trip count of the search loop is unknown at each time that
it is entered it is impossible for the compiler to vectorize over particles. However,
we can use the fact that a new search is necessary only when a particle enters
a new grid cell to bring down the cost of the search routine. A pre-check was
added to determine if a new search is needed and the serial search is executed
only when necessary, bringing down the search cost.

The optimizations are summarized, on the roofline chart, in Fig. 3. The total
speedup in the kernel is close to 3× from the baseline code. In this figure, the
kernel is measured as a whole, using the bytes moved from DRAM as the arith-
metic intensity. We have assumed the amount of flops computed does not sig-
nificantly change during optimizations. The data and the roofs are measured for
a single KNL thread. We see a significant increase of DRAM AI (equivalent to
improved cache reuse) from the particle loop blocking optimization. However,
we are unable to reach either the compute or memory bandwidth peaks of the
hardware. We conclude the code is now limited by memory latency due to the
irregular memory access patterns in the interpolation and search routines.

3.2 Threading of Charge Deposition

Charge deposition in XGC1 is performed after every ion time step for both ions
and electrons. Each MPI rank deposits charge on the whole grid, dividing the
work among its OpenMP threads. The ion charge is deposited in a 3-D array
with the dimensions [number of grid nodes per toroidal plane, number of velocity
space grid points, number of adjacent toroidal planes]. The number of adjacent
toroidal planes is always 2. The velocity grid is required for the gyro-averaging
routine and usually has 4 or 8 points. The total size of this array is therefore
2 × 8× the size of the unstructured mesh, usually 100k–1M, totaling 1.6M–16M
elements. The electron charge is deposited without using a velocity space grid,
which reduces the size of the array by 8–16×.

In the initial implementation, a separate copy of the charge density array
was allocated for each thread. Each thread would initialize it to 0 and deposit
charge from a subset of particles to its own copy of the array. In the end a
sum over all copies of the array would be stored on the master thread, but the
reduction sum was done manually with a loop written in the code. We found
two problems in large-scale runs on Cori KNL: (1) The initialization of 16M
elements per thread avx512 memset function became extremely slow and (2)
the manual reduction was not well optimized. To solve (1) and (2) we eliminated
the allocation and initialization of separate copies for each thread. However,
when all threads write to the same array, we have to take care of not to create

436 T. Koskela and J. Deslippe

Fig. 3. Optimization steps of electron push on the roofline chart. Both roofs and appli-
cation measurements are for a single thread on KNL. The lower horizontal roof is the
scalar add peak and the upper roof is the vector add peak.

race conditions. We developed two solutions: I: Declare the charge density array
with omp reduction(+:). This imitates what the code was doing before but the
OpenMP runtime provides a much better optimized implementation. II: Declare
the charge density array omp shared and declare all updates to the array omp
atomic.

The performance of optimizations I and II depend on the size of the prob-
lem, especially the size of the unstructured mesh and the number of particles
per thread. The OpenMP reduction operation incurs an overhead from creating
private copies of the array at the beginning of the parallel region and calculating
the sum over all threads at the end of the parallel region. This overhead depends
on the size of the unstructured mesh. The OpenMP atomic update operation
on the other hand incurs an overhead whenever two threads try to update the
same memory location and the other thread has to wait, and potentially retrieve
the value from the cache of another core before updating it. This overhead is
fairly constant per particle (i.e., a certain fraction of particles will cause a wait,
regardless of the total number of particles), therefore increasing the number of
particles increases the total overhead.

Optimizing Fusion PIC Code Performance at Scale on Cori Phase Two 437

Fig. 4. Strong scaling of the main loop of the full XGC1 application and the electron
push kernel. The electron push follows ideal scaling almost exactly, while the main
loop deviates from the ideal scaling at high concurrency, reaching roughly 30% at 4092
nodes.

4 Scaling Results on Cori

XGC1 has been using the Titan and Mira systems at near their maximal capabil-
ities for production runs. However, the Cori system presents different challenges
with its many-core Knights Landing architecture that allows up to 272 threads
per node. Here we will present the first results of strong and weak scaling of the
full XGC1 production code up to half machine size on Cori Phase Two.

Strong scaling is important to make better use of emerging exascale systems
for faster turn-around time of “routine” simulations of present tokamaks. In
this strong scaling study, we have used an unstructured mesh of 56 000 nodes
per toroidal plane and 32 toroidal planes. The particle array has a total of 25
billion ions and 25 billion electrons. We run the code for ten ion time steps and
three collision steps and measure the time spent in the main time step loop.
The results are shown in Fig. 4 for up to 4096 nodes on the Cori KNL partition.
We find near perfect strong scaling in electron push routine, within 2% of ideal
scaling and good strong scaling in whole main loop, within 30% of ideal scaling
at half machine size. The slowdown comes communication in the Poisson solver
and charge deposition.

We consider two variations of weak scaling, a weak scaling in total particle
number for a fixed grid size and a more complete weak scaling in both total

438 T. Koskela and J. Deslippe

Fig. 5. Weak scaling in particle number. The number of particles per thread is fixed
at 12 500 and grid size is kept fixed at 56 000 grid nodes. The scaling behaviour is
qualitatively similar to the strong scaling behaviour.

particle number and the grid size. Both have merit, as increasing the number of
particles on a fixed grid size allows better statistics and noise reduction in the
full-f method where marker particles represent the entire distribution function,
instead of a perturbation around an analytic equilibrium distribution. Increasing
both the grid and particles in proportion allows scaling up to simulations of
large fusion devices on larger machines, which is the main goal in the project
for exascale. The weak scaling of XGC1 on Cori in particle number is shown in
Fig. 5 where flat horizontal lines represent ideal weak scaling. We used the same
unstructured mesh as in the strong scaling study and 3.2 million particles per
node, up to 2048 nodes on the Cori KNL partition. We find the scaling of the
electron push routine to be again very good, which is to be expected based on
the strong scaling results. For this grid size the main loop also shows reasonable
weak scaling, although some degradation begins to occur when scaling up to
1024 nodes and above. This degradation is attributed mostly to the Poisson
solver and work is ongoing to address it. Finally, the weak scaling in both total
particle number and grid size is shown in Fig. 6. We are still using 3.2 million
particles per node but now the grid size is scaled with the problem size, using 235
grid nodes per compute node up to 1 million total grid nodes at 4096 compute
nodes. We find that the performance is degraded more rapidly when simulation
size reaches 1024 nodes and 240 000 grid nodes. We have separated the scaling

Optimizing Fusion PIC Code Performance at Scale on Cori Phase Two 439

Fig. 6. Weak scaling in particle number and grid size

of the main kernels in the main loop in Fig. 6 and it is shown that most of the
performance degradation originates from the Poisson solver. The optimization
of the Poisson solver is outside the scope of this paper, since it mostly relies on
calls to the PETSc library. We have however identified a scalar code bottleneck,
outside of the PETSc calls. We expect to improve the scaling significantly once
it is parallelized.

5 Summary and Discussion

In this paper, we have discussed the performance and the optimizations per-
formed on the XGC1 code within the NESAP project in preparation for running
with good performance on the Cori Phase Two Knights Landing system and
future exascale CPU systems. We have identified the hot kernels of the code,
and using the roofline methodology developed strategies to optimize the perfor-
mance. The key item for XGC1 is enabling vectorization in the electron push
sub-cycling. In order to achieve good vectorization efficiency, a number of loop
nest restructuring and data layout optimizations were performed. The Particle-
in-Cell algorithm fundamentally contains a large number of random indirect
memory accesses, that do not perform well in vectorized code. We have devel-
oped techniques to reduce those accesses as much as possible by data reuse and
sorting. However, the remaining gather/scatters inherent to the algorithm incur

440 T. Koskela and J. Deslippe

memory latency that limits the performance below the theoretical FLOP or
bandwidth limits.

The XGC1 code scales very well up to 4000 nodes, and beyond, for a typical
present-day problem size as has been shown by our scaling tests. Good strong
allows for faster turn-around times of present-day problems on larger computing
systems. Weak scaling is, however, more complicated and great care must be
taken in studying it. A PIC code has kernels, such as the particle push and shift,
that scale with the number of particles per thread. These are relatively easy to
scale and show good scaling in XGC1. Weak scaling the particle kernels has merit
by itself, since it allows going to higher resolution in the full particle distribution
function for a given problem size. There are also kernels that scale with the size
of the grid, such as the field solver, and both the number of particles and the size
of the grid, such as the charge deposition. Great care must be taken in adjusting
the aggregated size of the problem to ensure representative weak scaling. This
is an interesting problem that is still a work in progress. We hope to be able to
provide valuable insights into how different parts of codes like XGC1 weak scale
on Cori in the near future.

Acknowledgements. The authors wish to thank Drs. S. Abbot, E. D’Azavedo, E.
Yoon, S. Ku, R. Hager and C.S. Chang for their help in understanding the XGC1 code
and many helpful ideas during the optimization efforts. This research used resources of
the National Energy Research Scientific Computing Center (NERSC), a DOE Office
of Science User Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

References

1. International Atomic Energy Agency: Fusion Physics, chap. 1. IAEA, Vienna
(2012)

2. Artsimovich, L.A.: Nucl. Fusion 12(2), 215 (1972)
3. http://www.iter.org
4. Ethier, S., Tang, W.M., Lin, Z.: J. Phys. Conf. Ser. 16(1). IOP Publishing (2005)
5. http://warp.lbl.gov
6. Markidis, S., Rizwan-uddin, Lapenta, G.: Math. Comput. Simul. 80(7), 1509–1519

(2010)
7. Brizard, A.J., Hahm, T.S.: Rev. Mod. Phys. 79(2), 412–468 (2007)
8. http://www.nersc.gov/users/computational-systems/cori/
9. Barnes, T., et al.: Supercomputing Conference, 7th International Workshop on Per-

formance Modeling, Benchmarking and Simulation of High Performance Computer
Systems, pp. 43–53 (2016)

10. Doerfler, D., et al.: International Conference on High Performance Computing, pp.
339–353 (2016)

11. Hager, R., et al.: J. Comput. Phys. 315, 644–660 (2016)
12. Ku, S., et al.: Nucl. Fusion 49(11) (2009). Article 115021
13. Williams, S., et al.: CACM 52(4), 65–76 (2009)
14. Ilic, A., et al.: IEEE Comput. Archit. Lett. 12(1), 21–24 (2013)
15. Kurth, T., et al.: Submitted to the International Supercomputing Conference

IXPUG Workshop (2017)

http://www.iter.org
http://warp.lbl.gov
http://www.nersc.gov/users/computational-systems/cori/

amask: A Tool for Evaluating Affinity Masks
in Many-Core Processors

Kent Milfeld(B)

Texas Advanced Computing Center, Austin, TX, USA
milfeld@tacc.utexas.edu

Abstract. Today’s multi- and many-core systems have NUMA nodes,
sockets, tiles, cores, and Symmetric Multi-Threading (SMT) which may
require complicated affinity settings to optimally map processes to
processors. In many-core systems with hundreds of processors, evalu-
ating the affinity of a single process by surveying a list of processor num-
bers is time consuming and error prone. Comparing two or more process
affinities is even more troublesome. The amask tool displays all process
affinities as an easy-to-read matrix of processor-ids versus ranks and/or
thread-ids, allowing researchers to quickly confirm default settings and
the effect of manipulating affinity, either before or during a parallel exe-
cution (through a stand-alone executable or API, respectively).

Keywords: Affinity mask · Tool · KNL

1 Introduction

In the early days of HPC clusters there were only nodes with single cores, and
only time-slicing, rather than process locality, was an important concern. Now,
with multiple and many-core processors in a single node, placement of processes
through affinity has become more important. Process is used in a general sense
throughout, and includes threads.

There are a number of ways to set the affinity for a process: inside an exe-
cutable (with an API), at execution launch time through MPI [9] or OpenMP
environment variables [3] or direct affinity control (with numactl), and even as
a Unix command targeting a process id (with taskset or numactl).

The diversity of processor layouts, BIOS configurations, Simultaneous Mul-
tiThreading (SMT) and Non-Uniform Memory Access (NUMA) nodes makes it
difficult to obtain an optimal process placement even for the seemingly inconse-
quential situation of having a process on every processor.

While the runtimes for multi-processing (MPI, OpenMP, etc.) may set rea-
sonable affinity defaults, users now want to understand and control the affinity
for their application to achieve higher performance and make them portable.

This paper does not focus on the achievement of higher performance through
affinity, per se; rather, it presents a tool, amask, for determining the affinity
mask for the user’s application in a parallel environment– for a pure MPI, pure
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 441–451, 2017.
https://doi.org/10.1007/978-3-319-67630-2_33

442 K. Milfeld

OpenMP, or Hybrid [6] execution. Acquiring the actual masks of a run in a
multi-processing environment is the first step, and often the stumbling block, in
the quest to strategically bind or affinitize processes for higher performance.

Version 1.0 of the amask tool suite provides executables and an API for
quickly reporting affinity masks of each process in a parallel run. The matrix
format for the masks, as opposed to a list of process-ids for each process mask,
provides a clear visual for comparing of all masks, and an easy determination of
the processor-ids (the core-id or the hardware thread-id for SMT). When dealing
with hundreds of processors and processes the organization and the clarity makes
an affinity analysis much easier.

In Sect. 2 the basics of an affinity bit map are reviewed, and a discussion of
MPI and OpenMP affinities follows. The basics of affinity bit maps are related
to a need for a comprehensive, high-level approach for visualizing affinity. Next,
amask features and tool operations are presented in Sect. 3. Section 4 illustrates
use cases for amask. Finally, a summary is presented, and is followed by a Future
Work Section.

2 Affinity Masks

An affinity mask is a list of processor-ids (proc-ids) that a process can run on. As
already introduced, we use process in the general sense as an MPI process or an
OpenMP thread; and a processor, identified by a proc-id, is a logical computing
unit (generally a hardware thread for SMT, and a core otherwise).

To be efficient, the kernel uses a bit mask to hold this list. If there are N
processors on the system, the mask will have N bits, the bit number correspond-
ing to a proc-id. When a bit is set (to 1), then the process owning the map is
allowed to execute on the processor corresponding to the set bit. In essence, the
process becomes bound to the processor. When multiple bits are set, the process
is allowed to execute on any one of the processors, and the process may migrate
to any other processor with a set bit. That is, for the latter case the process can
float (is affinitized) among a set of processors. Specifically, bits 0 through N-1
represent proc-ids 0 to N-1; where the proc-id is the “processor” number assigned
in the /proc/cpuinfo file (on Linux clusters).

For Intel MPI (IMPI), the mask for each process is printed for the application
when the I_MPI_DEBUG environment variable is set to 4 or above. When the
number of processors and/or processes is small it is easy to extract mask infor-
mation from the listing; however, for a many-core system like an Intel Knights
Landing (KNL) [7], just determining the number of set bits might be difficult,
let alone determining the union or intersection of two masks. Masks for IMPI-
compiled executables can be set through environment variables. Intel affinity
features hierarchy semantics for mapping processes onto a hardware hierarchy
(without using explicit proc-ids). Explicitly setting affinity can be complicated,
and often a report of the masks from I_MPI_DEBUG is employed to confirm
expectations of an affinity setting. The report is just a list of numbers for each
process, and a list for one process is difficult to relate to another process’s list
when there are hundreds of proc-ids to deal with.

amask: A Tool for Evaluating Affinity Masks in Many-Core Processors 443

Unlike IMPI, MVAPICH2 (MV2) MPI does not have an interface for extract-
ing affinity masks for MPI processes. MV2 binds an MPI process to a sin-
gle processor, with exclusive ownership. This may be turned off through the
MV2_ENABLE_AFFINITY variable to allow the MPI launcher to use numactl
to control the process placement. The MPI launcher (ibrun) at the Texas
Advanced Computing Center (TACC) allows users to turn off MV2 affinity and
subscribe to the tacc_affinity wrapper script to determine and set an opti-
mal machine-specific affinity for a specified number of tasks per node (with the
syntax: ibrun tacc_affinity ./a.out).

There are other affinity tools that show masks, such as the Cray xthi pro-
gram. These are quite useful for observing affinities within a parallel environ-
ment, too; nevertheless, amask was designed for easy comparisons of the masks,
and has a rich feature set (not discussed here).

Only since OpenMP 4.0 has the standard addressed setting thread affinity;
and only lately has it been working on an API to display thread masks. For
now there is no direct way to extract affinities for each thread. However, by
setting the OMP_DISPLAY_ENV variable, the OpenMP runtime will display
the affinity requested in the OMP_PLACES and OMP_PROC_BIND environ-
ment variables, or defaults if the content of either variable is not understood or
the variable is not defined.

OpenMP Affinity is described here because the semantics for contiguous
sequences, repetitions and striding provides a concise expression for complicated
masks, and yet it is simple for setting a single bit or contiguous bit fields in
a mask. The variable OMP_PROC_BIND specifies a distribution policy, such
as SPREAD and CLOSE. For the list of places in OMP_PLACES, thread id
j is assigned to the proc-id in the j+1 place. Each place may contain multiple
entries (proc-ids) for a thread to float. Before OpenMP 4.0 non-standard envi-
ronment variables, such as the GNU GOMP_CPU_AFFINITY and the Intel
KMP_AFFINITY variables, were used to explicitly modify the default affinity.

No matter if the application runs in hybrid, pure MPI, or pure OpenMP
mode, acquiring a map listing is important for validating what the user would
expect from the default parallel environment or a tailored affinity setting.

3 Acquiring Process Maps in a Parallel Environment

The amask tool suite contains three executables for displaying the process maps
for parallel environments: amask_omp, amask_mpi, and amask_hybrid. These can
be executed alone or immediately before a parallel application is run to display
the process maps the user’s application will run with (provided the application
does not change the affinity internally). Typical example scenarios are given in
Listing 1.1.

444 K. Milfeld

Listing 1.1. amask executables for displaying process maps
$ # Pure OpenMP Execution
$ export OMP_NUM_THREADS =68
$ amask_omp # amask executable
$ my_ompapp
$
$ # Pure MPI Execution
$ mpirun -np 4 amask_mpi
$ mpirun -np 4 my_mpiapp # amask executable
$
$ # Hybrid Execution
$ export OMP_NUM_THREADS =17
$ mpirun -np 4 amask_hybrid # amask executable
$ mpirun -np 4 my_mpiompapp

The amask tool suite also contains a single library of three no-argument
routines. These C/C++/F90 callable routines allow users to display the process
masks inside an MPI and/or OpenMP parallel region. The typical uses are shown
in Listing 1.2.

Listing 1.2. amaks API calls for displaying process maps
// Pure OpenMP Code

#pragma omp parallel
amask_omp (); // amask API
...

// Pure MPI Code
MPI_Init(NULL ,NULL);

amask_mpi (); // amask API
...

MPI_Finalize ();

// Hybrid Code
MPI_Init(NULL ,NULL);
...

#pragma omp parallel
{

amask_hybrid (); // amask API
...

}
...
MPI_Finalize ();

amask was created with large processor-count and SMT nodes in mind–
specifically, for the TACC’s Lonestar5 [1,5] 24-core Hyper-Threaded nodes and
the Stampede2 KNL [8] nodes, as shown in Listings 1.6–1.9 below. A matrix
map listing can be quite useful when exploring affinity settings when a subset of
the SMTs in a core are to be used. Often 24 or fewer processes are launched on
the 48 hardware-thread Lonestar5 nodes. Likewise, amask is quite useful when
exploring MPI process placement on the 68-core Stampede2 KNL system. For
instance, with a matrix list format it is easy to discover if core-sharing by two
MPI processes occurs for MPI-process counts that do not divide 68 evenly.

amask is available on github [4]. The present version of the amask tool
was written for the TACC systems (Centos/SuSE). However, it is written in a
portable context (no vendor-specific features in the MPI, OpenMP and Unix
utils coding). We are open-sourcing the code for community support to make it
portable to other platforms.

amask: A Tool for Evaluating Affinity Masks in Many-Core Processors 445

4 Use Cases

The next three Listings illustrate how to use the amask amask_mpi executable
to discover the affinity masks that would be applied to any MPI application for
three different parallel environments. The system is a 2-socket, 8-core/socket non
Hyper-Threaded node (Stampede1 system at TACC). Proc-ids 0–7 are assigned
to cores on socket0 by the BIOS, and 8–15 are assigned to socket1. For simplicity
only 2 MPI tasks are launched.

In Listing 1.3 the parallel environment is for an executable compiled with the
MVAPICH2 MPI library and no explicit affinity settings. The amask_mpi binary
is executed, as an application would be executed, to obtain the affinity (masks)
for the environment (see mpirun statement). The final two lines in the output are
the masks for the two MPI processes. They consist of labels for their ranks, 0000
and 0001, followed by 16 characters representing the 16 proc-ids of the mask. A
dash (-) means that the corresponding bit is not set, and a single digit means
that the bit is set. The proc-id for a set bit is determined by adding the single
digit in the mask (row) with the group number in the header. For instance, the
rank 0000 process is bound to proc-id 0, as determined by adding the “0” to the
group number “0” in the header line. Likewise, the rank 0001 process is bound
to proc-id 1, as determined by adding 1 to the group number 0 in the header.
This is explained in the first two lines of the output. A set bit is represented as
a single digit (character) to provide room for a terminal to display masks with
hundreds of proc-ids.

In Listing 1.4 the tacc_affinity wrapper is used to modify the affinity of
each MPI process. Here too, the amask_mpi executable is launched (in lieu of
the application executable) to determine the affinities the application processes
would have. In this case the rank 0000 process has bits 0–7 set, correspond-
ing to proc-ids 0–7. The rank 0001 process has bits 8–15 set, as determined
by adding group number 0 to the digit 8 and 9, and adding the group num-
ber 10 to the digits 0, 1, 2, 3, 4, and 5. This is an appropriate MPI mask for
running a hybrid application: since an OpenMP thread team inherits the mask
of its MPI process, rank 0000 will allow threads to execute on proc-ids 0–7,
while rank 0001 will allow its threads to execute on proc-ids 8–15. For a hybrid
execution in the environment of Listing 1.3 the threads would be confined to
only two proc-ids (cores)! To see the masks for a hybrid execution, simply set
the OMP_NUM_THREADS environment variable, and use the amask_hybrid
executable instead of amask_mpi.

Listing 1.5 shows the process maps for an Intel environment (application and
amask suite built with an Intel compiler and the Intel IMPI libraries). In the
IMPI environment, the default affinity setting is the same as the tacc_affinity
environment of Listing 1.4 except that the sockets have been switched. The
IMPI mapping algorithm was designed to automatically put rank0 on the closest
socket to the InfiniBand adapter (socket1) for efficient collective communication
through rank0 as root. The tacc_affinity environment has rank0 closest to
the local disk interfaces on socket0.

446 K. Milfeld

From these three examples it becomes evident that the affinity should
be checked in any new parallel environment. The amask executables allow
researchers to easily determine affinities without resorting to vendor or site doc-
umentation.

Listing 1.3. amask Listings: MV2 Environment, 2 MPI tasks on 2× 8 cores
$# compiled and run in MVAPICH2 environment

$ mpirun -np 2 amask_mpi

Each row of matrix is an Affinity mask.
A set mask bit = matrix digit + column group # in |...|

rank | 0 | 10 |
0000 0---------------
0001 -1--------------

Listing 1.4. amask Listings: tacc_affinity Environment, 2 MPI tasks on 2× 8 cores
$# compiled and run in MVAPICH2 environment
$ mpirun -np 2 tacc_affinity amask_mpi

Each row of matrix is an Affinity mask.
A set mask bit = matrix digit + column group # in |...|

rank | 0 | 10 |
0000 01234567--------
0001 --------89012345

Listing 1.5. amask Listings: IMPI Environment, 2 MPI tasks on 2× 8 cores
$# compiled and run in IMPI environment
$ mpirun -np 2 amask_mpi

Each row of matrix is an Affinity mask.
A set mask bit = matrix digit + column group # in |...|

rank | 0 | 10 |
0000 --------89012345
0001 01234567--------

Affinity masks are not too helpful without an understanding of the proc-id
assignments to the cores, tiles, sockets and NUMA nodes. These details can be
extracted from /proc/cpuinfo, lscpu, and lstopo (hwloc[2]), and are invalu-
able for customizing affinity for an application. If amask discovers that a plat-
form has SMT turned on, it displays a core-centric list rather than a pure proc-id
mask list. amask uses lscpu to determine if the system has SMT turned on.
Listing 1.6 shows the pure mask and core-centric forms. Either form can be spec-
ified by an option on the command line: -lc for core format and -ls for the pure
mask (SMT) format. The core-centric form presents a new line for each hard-
ware thread. Core ids are determined by adding the single digits in the row to
the group number. The proc-ids can be obtained by adding a factor of the total
number of cores for each additional row of hardware threads. Unfortunately,
obtaining proc-ids in the core format is not simple.

amask: A Tool for Evaluating Affinity Masks in Many-Core Processors 447

The (Lonestar5) node used for Listing 1.6 has 2 sockets, each with 12 Hyper-
Threaded cores (48 proc-ids). Proc-ids 0–11 are on socket0 and the following
proc-ids 12–23 are on socket1; all have hardware-thread ids of 0. Proc-ids 24–35
are on socket0, subsequently 36–47 are on socket1 (in a round-robin manner);
all have hardware-thread ids of 1. The pure mask display shows that rank0 and
rank1 can float on 12 hardware threads of socket0. Likewise for rank2 and rank3
on socket1. The core-centric (default for a SMT system) listing readily shows
that the processes are not allowed to float on the second hardware thread of
each core.

In Listing 1.6 the proc-ids of the second-line entries are obtained by adding
24 (number of cores) to the number derived by adding the single-digit row value
to the header group value.

Listing 1.6. amask Listing for Hyper-Threaded system: pure vs core-centric mask
$ mpirun -np 4 amask_mpi -ls

Each row of matrix is an Affinity mask.
A set mask bit = matrix digit + column group # in |...|

rank | 0 | 10 | 20 | 30 | 40 |
0000 012345678901------------------------------------
0001 012345678901------------------------------------
0002 ------------234567890123------------------------
0003 ------------234567890123------------------------

##

$ mpirun -np 4 amask_mpi

Each row of matrix is a CORE mask for a HW-thread.
core id = matrix digit + column group # in |...|
mask bit = core id + add 24 to each additional row

rank | 0 | 10 | 20 |
0000 012345678901============ HW-thread 0

------------------------ HW-thread 1
0001 012345678901============

0002 ============234567890123

0003 ============234567890123

Listing 1.7 shows the process mask for execution with 24 OpenMP threads on
the same Hyper-Threaded (Lonestar5) system above, under 3 different OpenMP
affinity settings. The first two listings for OpenMP executions readily illustrate
that the OMP_PROC_BIND SPREAD and CLOSE distributions are working
across cores. A thread is not assigned to a single proc-id (hardware-thread) but
can float on the core. These affinity characteristics might be difficult to discover
from the documentation. The listing for the third run, without any OpenMP
affinity, shows the implementation default: any thread can run on any hardware-
thread.

448 K. Milfeld

Listing 1.7. amask Listing for Hyper-Threads system: OpenMP Affinity Policies
$ export OMP_NUM_THREADS =12
$ export OMP_PROC_BIND=spread
$ amask_omp

Cores
thrd | 0 | 10 | 20 |
0000 0=======================

0-----------------------
0001 ==2=====================

--2---------------------
0002 ====4===================

----4-------------------
...

0009 ==================8=====
------------------8-----

0010 ====================0===
--------------------0---

0011 ======================2=
----------------------2-

$ export OMP_NUM_THREADS =12
$ export OMP_PROC_BIND=close
$ amask_omp

Cores
thrd | 0 | 10 | 20 |
0000 0=======================

0-----------------------
0001 =1======================

-1----------------------
0002 ==2=====================

--2---------------------
...

0009 =========9==============
---------9--------------

0010 ==========0=============
----------0-------------

0011 ===========1============
-----------1------------

$ export OMP_NUM_THREADS =12
$ unset OMP_PROC_BIND
$ amask_omp

Cores
thrd | 0 | 10 | 20 |
0000 012345678901234567890123

012345678901234567890123
0001 012345678901234567890123

012345678901234567890123
...

0010 012345678901234567890123
012345678901234567890123

0011 012345678901234567890123
012345678901234567890123

amask: A Tool for Evaluating Affinity Masks in Many-Core Processors 449

Much of the discussion up to this point developed a representation and consis-
tent perspective for quickly assessing all affinity masks through a matrix format,
for systems with a large processor count. amask was designed to give users a
view of affinities that will help in efforts to optimize process affinities for differ-
ent NUMA node settings in KNL systems, and for all the different combinations
of MPI task counts, OpenMP thread counts and process layouts. The following
listing demonstrates the power of amask. Listing 1.8 readily shows a situation
where two MPI processes share a core, when one might expect them not to. On
a Stampede2 68-core KNL node a 16-process MPI execution shows rank0 and
rank1 masks overlapping core-wise on core4. Similar pairs of overlaps are seen to
occur throughout the listing. In a hybrid calculation with 16 MPI tasks and 17
threads per task (all hardware threads active), it may not be desirable to have
two different MPI tasks sharing a core. Likewise, in other situations avoiding tile
or NUMA node sharing might enhance performance. For comparison, a second
run with 17 MPI processes in Listing 1.9 shows no core sharing.

Listing 1.8. Core sharing in a KNL system
$ #IMPI on 68-core KNL , default environment
$ mpirun -np 16 amask_mpi

Cores
rank | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
0000 01234===

0123--
0123--
0123--

0001 =====5678===
----45678---
----4567--
----4567--

0002 =========9012===
---------9012---
--------89012---
--------8901--

0003 =============3456===
-------------3456---
-------------3456---
------------23456---

0013 ==6789========
---56789--------
---5678---------
---5678---------

0014 ==0123====
--0123----
---90123----
---9012-----

0015 ==4567
--4567
--4567
---34567

450 K. Milfeld

Listing 1.9. Non-shared cores in a KNL system

$ #IMPI on 68-core KNL , default environment
$ mpirun -np 17 amask_mpi

Cores
rank | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
0000 0123==

0123--
0123--
0123--

0001 ====4567==
----4567--
----4567--
----4567--

0002 ========8901==
--------8901--
--------8901--
--------8901--

...
0016 ==4567

--4567
--4567
--4567

5 Summary

The amask tool suite provides a convenient way to display process masks in a
matrix format for the environment in which an application runs. Also, through
the amask API a developer can readily instrument an application to display all
of its process masks. This tool can be a valuable resource for confirming affinity
configurations whenever developers and users explore the optimal proc-id space
for process execution on diverse platforms in the HPC world.

6 Future Work

The following list contains a short description of the features users might want
to see in amask: (1) Adapt code for a more diverse set of operating systems
and hardware platforms. (2) Extract more hardware configuration details and
encode this information into the proc-ids (e.g. by color coding proc-ids according
to NUMA nodes and/or sockets) (3) Report anomalous affinity conditions that
inherently create an imbalance in memory access or processor overloading. (4)
Employ an XML protocol to export affinity data– to encourage the development
of a GUI.

Acknowledgments. The author would like to acknowledge the support and cooper-
ation of the HPC Group at TACC (Texas Advanced Computing Center) in the per-
paration of this paper. Thanks to Antonio Gomez and Roberto Garza for reviewing
this document. Financial support for this work was provided by the National Science
Foundation.

amask: A Tool for Evaluating Affinity Masks in Many-Core Processors 451

References

1. Lonestar5 Second Petascale System Deployed at TACC (2017). https://www.tacc.
utexas.edu/systems/lonestar

2. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: hwloc: A generic framework for managing hardware
affinities in HPC applications. In: 2010 18th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), pp. 180–186. IEEE
(2010)

3. Eichenberger, A.E., Terboven, C., Wong, M., an Mey, D.: The design of OpenMP
thread affinity. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.)
IWOMP 2012. LNCS, vol. 7312, pp. 15–28. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-30961-8_2

4. Milfeld, K.: amask, reports affinity masks of parallel processes (2017). https://
github.com/tacc/amask

5. Proctor, C., Gignac, D., McLay, R., Liu, S., James, D., Minyard, T., Stanzione, D.:
Lonestar 5: Customizing the cray xc40 software environment

6. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes. In: 2009 17th Euromicro International Con-
ference on Parallel, Distributed and Network-based Processing, pp. 427–436. IEEE
(2009)

7. Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S.,
Hutsell, S., Agarwal, R., Liu, Y.C.: Knights landing: second-generation Intel Xeon
Phi product. IEEE Micro 36(2), 34–46 (2016)

8. Stanzione, D., Barth, B., Gaffney, N., Gaither, K., Hempel, C., Minyard, T.,
Mehringer, S., Werner, E., Tuffo, H., Panda, D.K., Teller, P.: Stampede2: the
Evolution of an XSEDE Supercomputer. In: PEARC, Practice and Experience in
Advanced Research Computing, New Orleans (2017, to appear)

9. Zhang, C., Yuan, X., Srinivasan, A.: Processor affinity and MPI performance on
SMP-CMP clusters. In: 2010 IEEE International Symposium on Parallel and Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–8. IEEE (2010)

https://www.tacc.utexas.edu/systems/lonestar
https://www.tacc.utexas.edu/systems/lonestar
http://dx.doi.org/10.1007/978-3-642-30961-8_2
http://dx.doi.org/10.1007/978-3-642-30961-8_2
https://github.com/tacc/amask
https://github.com/tacc/amask

Second International Workshop
on Performance Portable Programming

Models for Accelerators (P^3MA)

Second International Workshop
on Performance Portable Programming

Models for Accelerators (P^3MA)

http://www.csm.ornl.gov/workshops/p3ma2017/
June 22, 2017 co-located with ISC 2017

Workshop Organizers

Sunita Chandrasekaran University of Delaware, USA
Graham Lopez ORNL, USA

Summary of the Workshop’s CFP Process

The Second International Workshop on Performance Portable Programming Models
for Accelerators (P^3MA) co-located with ISC 2017 was held at Frankfurt, Germany
on June 22. The workshop solicited papers on topics covering feature sets of pro-
gramming models (including but not limited to directives-based programming models),
their implementations, and experiences with their deployment in HPC applications on
multiple architectures, performance modeling and evaluation tools, asynchronous task
and event-driven execution/scheduling. We received 7 submissions in total. All sub-
mitted manuscripts were peer reviewed. The review process was not double blind, i.e.,
authors were known to reviewers. Submissions were judged on correctness, originality,
technical strength, and significance, quality of presentation, and interest and relevance
to the conference scope. We chose 6 papers to be published in the workshop pro-
ceedings, Springer-Verlag Lecture Notes in Computer Science (LNCS) volumes.

Workshop Summary

The workshop was held on June 22 at ISC and brought together researchers, vendors,
users and developers to brainstorm aspects of heterogeneous computing and its various
tools and techniques. Around 50 attendees were present to see Prof. David Keyes from
KAUST, Saudi Arabia, give a keynote on Algorithmic and Programming Model Pillars
for Emerging Architectures.

All of the 6 accepted papers were presented at the workshop with topics ranging
from using low-level to high-level programming models for heterogeneous systems,
experiences porting legacy code to accelerators, addressing memory requirements, and
creating translations from one standard to the other.

http://www.csm.ornl.gov/workshops/p3ma2017/
http://www.csm.ornl.gov/workshops/p3ma2017/program.html
http://www.csm.ornl.gov/workshops/p3ma2017/program.html

Prof. Eric Stahlberg, Frederick National Laboratory for Cancer Research, gave an
invited talk on Abstraction and Portability – Accelerating Predictive Oncology
discussing HPC workflows required for exploring cancer dataset.

NVIDIA generously offered to sponsor the ‘Best Paper Award’ with NVIDIA’s
TITANX. This award was presented to Anne Kusters, Sandra Wienke and Lukas
Arnold for their work on “Performance Portability Analysis for Real-Time Simulations
of Smoke Propagation using OpenACC”. The award was determined by the Technical
Program Committee and the Program Chairs from viewpoints of the technical and
scientific merits, impact on the science and engineering of the research work and the
clarity of presentation of the research contents in the paper.

Organizing Committee

Steering Committee

Matthias Muller RWTH Aachen University, Germany
Barbara Chapman Stony Brook University, USA
Oscar Hernandez ORNL, USA
Duncan Poole OpenACC, USA
Torsten Hoefler ETH, Zurich
Michael Wong OpenMP, Canada
Mitsuhisa Sato University of Tsukuba, Japan
Michael Klemm OpenMP
Kuan-Ching Li Providence University, Taiwan

Program Committee

Samuel Thibault Inria, University of Bordeaux, France
James Beyer NVIDIA, USA
Wei Ding AMD, USA
Saber Feki King Abdullah University, Saudi Arabia
Robert Henschel Indiana University, USA
Michael Klemm Intel, USA
Eric Stotzer Texas Instruments, USA
Amit Amritkar University of Houston, USA
Guido Juckeland HZDR, Germany
Will Sawyer ETH, Zurich
Sameer Shende University of Oregon, USA
Costas Bekas IBM, Zurich
Toni Collis University of Edinburgh, Scotland
Adrian Jackson University of Edinburgh, Scotland
Henri Jin NASA, USA
Andreas Knuepfer TU Dresden, Germany
Steven Olivier Sandia National Laboratory, USA

Second International Workshop on Performance Portable Programming 455

http://www.csm.ornl.gov/workshops/p3ma2017/documents/Kuesters_PerfPortabilitySmokePropagationOpenACC.pdf
http://www.csm.ornl.gov/workshops/p3ma2017/documents/Kuesters_PerfPortabilitySmokePropagationOpenACC.pdf

Suraj Prabhakaran TU Darmstadt, Germany
Bora Ucar ENS De Lyon, France
Manisha Gajbe Intel, USA
Daniel Tian PGI, USA

456 Second International Workshop on Performance Portable Programming

Analyzing Offloading Inefficiencies in Scalable
Heterogeneous Applications

Robert Dietrich1(B), Ronny Tschüter1, Guido Juckeland2,
and Andreas Knüpfer1

1 Center for Information Services and High Performance Computing,
Technische Universität Dresden, 01062 Dresden, Germany

{robert.dietrich,ronny.tschueter,andreas.knuepfer}@tu-dresden.de
2 Department of Information Service and Computing,

Helmholz-Zentrum Dresden-Rossendorf,
Bautzner Landstr. 400, 01328 Dresden, Germany

g.juckeland@hzdr.de

Abstract. With the rise of accelerators in high performance computing,
programming models for the development of heterogeneous applications
have evolved and are continuously being improved to increase program
performance and programmer productivity. The concept of computation
offloading to massively parallel compute devices has established itself as a
new layer of parallelism in scientific applications, next to message passing
and multi-threading. To optimize the execution of a respective parallel
heterogeneous program for a specific platform, performance analysis is
crucial. This work abstracts from specific offloading APIs such as avail-
able with CUDA, OpenCL, OpenACC, and OpenMP and summarizes
common inefficiencies for offloading. Based on the definition of ineffi-
ciency patterns, the offloading concept can be included in generic analysis
techniques such as critical-path and root-cause analysis. We implemented
the detection and evaluation of inefficiency patterns as a post-mortem
trace analysis, which finally highlights program activities with a high
potential to reduce the total program runtime.

1 Introduction

Programming models for the fast evolving parallel heterogeneous systems are
subject to a similar rapid evolution and development. A major challenge for
open programming standards with offloading support, such as OpenCL, Ope-
nACC, and OpenMP, is performance portability between different devices. The
abstraction from hardware-specific APIs enables access to numerous compute
devices, ranging from CPUs over GPUs to FPGAs and DSPs. An important
aspect that influences the program performance is that there is a certain free-
dom in implementing the specification of the standard, which may result in unex-
pected behavior. Although offloading APIs share common functionality, they also
provide individual means to express computation offloading.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 457–476, 2017.
https://doi.org/10.1007/978-3-319-67630-2_34

458 R. Dietrich et al.

Programming approaches for computation offloading as provided with
CUDA, OpenCL, OpenACC, and the OpenMP target construct are host-
directed. This means that the host manages the device, triggers device initializa-
tion, synchronization, and finalization as well as device tasks, e.g. data movement
and kernel execution. Initiating a device task is called launch (CUDA), queue
(OpenCL), or enqueue (OpenACC) depending on the wording of the respective
offloading API specification. Different terms for device execution queues on the
offloading device are CUDA stream, OpenCL command queue, OpenACC asyn-
chronous queue. A device for computation offloading is called device (CUDA
and OpenCL), target device (OpenMP), or accelerator (OpenACC) depending
on the offloading API.

Fig. 1. Performance analysis workflow: Score-P collects performance data using pro-
filing interfaces and library wrapping. CASITA analyzes program traces for execution
inefficiencies.

With computation offloading as additional parallel execution layer, next to
message passing and multi-threading, performance analysis is getting increas-
ingly important to optimize the execution of a parallel heterogeneous program.
This paper abstracts from specific offloading APIs and defines common ineffi-
ciencies which can be used for performance analysis. We describe their detection
and evaluation as basis for an automatic analysis which identifies wait states,
their causal activities, and the critical path. Furthermore, we extended the trace
analyzer CASITA [17] to generate a summary on the occurrence of inefficiency
patterns in MPI, OpenMP, and offloading models, which enables developers to
easily spot the most runtime-relevant inefficiencies.

Analyzing Offloading Inefficiencies in Scalable Heterogeneous Applications 459

Figure 1 provides an overview on the interaction of application, runtime
libraries, measurement, and analysis tools, which are used in this work. Section 2
depicts related work. Performance measurement and respective requirements for
our analysis are presented in Sect. 3. In Sect. 4 we define execution patterns
for offloading inefficiencies as well as their detection and evaluation. Section 5
describes the integration of the pattern-based offloading analysis into OpenMP
and MPI analysis. We demonstrate our analysis on two benchmarks codes and
a real-world application in Sect. 6 and finally conclude our work in Sect. 7.

2 Related Work

Inefficiency patterns for MPI, OpenMP, and SHMEM have already been defined
by Wolf et al. [18]. The Scalasca trace analyzer [12] automatically detects such
patterns and generates a call-path profile. It scales similar to the original applica-
tion by replaying the MPI communication that has been recorded in a program
trace. Böhme et al. developed a scalable approach to detect the critical-path,
wait states, and their root-cause in MPI programs [5,6], which has also been
implemented in Scalasca.

HPCToolkit [2] uses a technique called blame shifting. It blames busy threads
for causing idleness on other threads in multi-threaded applications. Besides
support for lock contention and barriers, Chabbi et al. [7] introduced CPU-GPU
blame shifting which follows the same principle by blaming the non-idle resource.
Blame shifting in multi-threaded and GPU programs is performed during the
application execution.

The CASITA trace analyzer [17] automatically detects inefficiencies in scal-
able heterogeneous applications. Based on critical-path analysis and blame shift-
ing it determines the optimization relevance of program activities. Schmitt
et al. [16] defined respective inefficiency patterns for the CUDA programming
model and developed a scalable critical-path analysis for hybrid MPI-CUDA
applications. Automatic detection of inefficiencies in OpenMP 4.0 offloading
programs has been investigated in [9]. Similar to Scalasca, CASITA performs
a post-mortem analysis on traces that are generated by Score-P [4] and applies
the MPI communication replay technique to scale with the number of MPI ranks.

This work extends the CASITA trace analyzer to detect the offloading ineffi-
ciency patterns that are defined in Sect. 4. A pattern summary is printed as tex-
tual output. Device idle time events are added to the output trace. To enable the
CASITA analysis for offloading with OpenCL, respective attributes for depen-
dency tracking have been implemented in Score-P. We use the Vampir [15] trace
visualization to investigate arbitrary intervals in a program trace and validate
the CASITA analysis results.

3 Performance Measurement

To detect and analyze offloading inefficiencies, a minimum set of events and
correlation information is required. We use event traces to preserve the required

460 R. Dietrich et al.

information for a post-mortem analysis. This allows to apply time-consuming
analyses such as critical-path and cause-effect analysis, which cannot be applied
at runtime.

As shown in Fig. 1, different data acquisition sources are used for distinct
offloading APIs. Score-P implements so called adapters to acquire runtime infor-
mation from CUDA, OpenCL, OpenACC, and OpenMP. It provides a tracing
back-end that writes OTF2 traces. In the context of this work, we extended
Score-P to record additional attributes, which are needed to detect offloading
inefficiencies in OpenCL and OpenMP. For the offloading analysis, the following
information is required:

– begin of task launch operations, including the device queue where the task
will be executed

– begin and end of blocking device synchronization
– begin and end of operations that test for the completion status of operations

on the device and their results
– begin and end of device tasks
– dependencies between device tasks

3.1 CUPTI for CUDA Targets

The CUDA Profiling Tools Interface (CUPTI) provides—among others—the
activity and the callbacks API, which are used in Score-P to collect the required
information. The CUPTI activity API enables tools to collect traces of device
tasks, while the CUPTI callbacks API allows tools to register callbacks for CUDA
API routines. The callbacks cover begin and end of launch, synchronization, and
test routines as well as the function arguments.

A correlation ID is used to associate a device task with its launch operation.
It is passed to each CUDA API callback and available in each device record.
This correlation information is not a requirement for the offloading analysis. As
device tasks are executed in its launch order on CUDA streams, it is sufficient
to store the CUDA stream ID with each launch operation.

3.2 OpenCL Library Wrapping

As OpenCL does not provide a tools interface, we intercept calls to the OpenCL
library to inject time measurement for both, the OpenCL API routines and
device tasks. This method and its integration into Score-P has been presented
in [10]. Library wrapping enables the wrapper library to access and modify the
values of function arguments. This is used to collect the device queue in OpenCL
enqueue* -routines and clFinish(). The latter is a blocking wait operation for a
given OpenCL command queue. Data movement is blocking, if the respective
argument in the buffer read or write enqueue call is set to true. This information
has to be recorded to detect offloading inefficiencies. OpenCL events are retained
or added in enqueue operations to enable the collection of OpenCL device tasks.
Currently, the approach does not support out-of-order command queues. Hence,
it is sufficient to store the device queue with enqueue* -routines and clFinish().

Analyzing Offloading Inefficiencies in Scalable Heterogeneous Applications 461

3.3 OpenACC Profiling Interface

The profiling interface that has been introduced in OpenACC 2.5 specifies an
API for event-based performance measurement. A tool can register callbacks for
event types, which are defined in the interface. There are three groups of events:
kernel launch, data, and other events. According to the group different informa-
tion is available in the event-specific callback argument. The implementation of
the OpenACC profiling interface into Score-P has been presented in [8].

The OpenACC runtime events cover begin and end of enqueue and wait oper-
ations. There are no events specified for the begin and end of OpenACC runtime
library routines such as acc async test* and acc memcpy *. Hence, device test
operations and blocking data movement cannot be recorded based on the inter-
face. Events that occur on the accelerator are also not covered. If no information
from low-level APIs such as CUDA or OpenCL is available, the runtime of device
activities can only be estimated using the enqueue and wait events. Section 4
describes the impact on the inefficiency detection and evaluation.

3.4 OpenMP Tools Interface

The OpenMP Tools (OMPT) interface has been developed for instrumentation-
based and sampling-based performance tools. It is part of the first preview on
OpenMP 5.0 which has been published as technical report 4 [3]. A tool can
register callbacks for events that are specified in OMPT. In this work, only the
events for offloading to target devices are considered. This includes the begin
and end of target, target data, target enter data, target exit data, target update,
and taskwait regions. Begin and end of omp target * -routines are not covered in
OMPT. However, these events are relevant for the detection of offloading ineffi-
ciencies, because omp target memcpy*, omp target alloc, and omp target free are
blocking the host execution and synchronize with the device.

OpenMP extended the concept of tasks for computation offloading. A target
region is executed as a target task on the encountering host thread. Events
on task scheduling are covered in OMPT. Instead of device execution queues,
OpenMP supports the more expressive task dependencies for target tasks (since
OpenMP 4.5), which can also be recorded with OMPT callback events.

OMPT also specifies a monitoring interface for device activities, which allows
to determine when an offloading device is executing communication and com-
putation tasks. To correlate host and device operations an OpenMP runtime
dispatches the callback ompt callback target submit t for target regions and the
callback ompt callback target data op for target data operations. Both callbacks
and respective target records contain the target id, which identifies the target
region on the host, and the host op id, which identifies the host operation.

4 Inefficiency Patterns in Offloading Models

Typical symptoms of inefficient parallelization are idle resources or wait states.
In the case of computation offloading, inefficiency occurs when the host is waiting
for the device or the offloading device is idle waiting for work.

462 R. Dietrich et al.

Device tasks can run concurrently to operations on the host. To ensure data
consistency, it is necessary to synchronize with the offloading device, which
potentially results in a wait state on the host. Host-device synchronization can
be either blocking or non-blocking. A comprehensive list of inefficiency patterns
that might occur in offloading scenarios is given in Table 1. The severity specifies
the start and end of the inefficiency, which is used to generate the optimization
rating.

Table 1. Offloading inefficiencies and their severity

Pattern Accounting

Early wait for device Time between synchronization start and
offloading task end

Early test for completion Execution time of unsuccessful tests

Idle offloading device Time when no offloading kernel is active (sum)

Synchronous kernel
offloading

Kernel execution time

Synchronous data transfer Transfer time

Late data transfer Transfer time

Multiple consecutive data
transfers

Product of the overhead of one transfer and the
number of excessive transfers

Furthermore, there are inefficiencies that cannot be avoided. For example,
data has to be copied to the offloading device before it can start computation
and a final synchronization between host and device is also necessary. Neverthe-
less, the goal of performance tuning is to minimize the severity of all inefficiency
patterns. An improved load balancing, double buffering to enable overlapping of
computation and communication, or combined data transfers are typical opti-
mization approaches. This work supports program developers by detecting per-
formance inefficiencies and evaluating their severity.

4.1 Early Wait for Device

Early blocking synchronization is reasonable, if data from the offloading device
are required before the host thread can continue execution. Programs that do
not balance the computational load between host and offloading device, often
start to wait early for a device to complete its tasks, because there is nothing
else to process. Table 2 gives an overview on device synchronization possibilities
that block the host execution for different offloading APIs.
Pattern Description: A host thread starts waiting for a device before it com-
pletes execution. It can wait for all activities or events, a queue, an event, or a
task on the device. A device task is associated to a host wait operation, if it is a

Analyzing Offloading Inefficiencies in Scalable Heterogeneous Applications 463

Table 2. Host-blocking synchronization: The host waits until the completion of all
device tasks, all tasks in a device queue, or a single device task. Depending on the
offloading API there are routines and directives dedicated to wait for device tasks,
which induces an explicit host-device synchronization. In addition, there are operations
such as synchronous data transfers or OpenMP target directives without the nowait
clause. Although, synchronization is not the primary task of these operations, they are
implicitly synchronizing.

Device Stream/Queue Event/Task

CUDA explicit & implicit explicit & implicit explicit

OpenCL explicit & implicit explicit

OpenACC explicit & implicit explicit explicit

OpenMP implicit explicit & implicit

device global synchronization, if the task is executed on the synchronized queue,
or if the task is directly executed before the synchronized event.

Figure 2 illustrates early blocking synchronization with task t2, which is trig-
gered asynchronously. The host synchronizes with a device queue before t2 is
completed, which results in a wait state on the host and therewith wasted com-
puting resources.

Fig. 2. Synchronous offloading (task t1), early wait for device (wait for task t2), and
idle offloading device. Hatched areas denote waiting or idle time. The dashed arrows
represent dependencies between events.

Synchronous kernel offloading and synchronous data transfer are the worst
cases of early blocking synchronization. The inefficiency occurs because the host
is waiting during the execution of the device task. In Fig. 2 task t1 is launched
with a blocking enqueue operation (kernel or data transfer). There is some
offloading overhead before the task starts and after its execution, which is not
accounted to the inefficiency.
Detection and Evaluation: The end event of the wait operation on the host
triggers the detection. A synchronization interval forms between two wait oper-
ations for the same set of associated device queues. Device tasks that are asso-
ciated to the wait operation and complete during the wait as well as their direct

464 R. Dietrich et al.

predecessors in the synchronization interval are blamed for causing the wait state
on the host. Blame is assigned proportional to the runtime of the device tasks
that keep the host waiting. Direct predecessors tasks execute instantaneously
before another task and delay their execution. The time between the start of the
wait and the end of the last overlapping device task is marked as wait state in
the host wait operation.

The critical path detection starts at the last event on the host, moving back-
wards in time. It changes the execution stream at the end event of the wait
operation, if it is marked as a wait state. The critical path continues on the
last ending task that is associated to the wait operation and follows its direct
predecessors and indirect predecessors. An indirect predecessor task executes on
a different device queue and delays the associated task due to a dependency.
Finally, the critical path changes to the enqueue begin event of the temporally
first predecessor.

Table 3. Query routines for the device execution status

Device Stream/Queue Event/Task

CUDA cuStreamQuery cuEvenQuery

OpenCL clGetEventInfo

OpenACC acc async test all acc async test acc async test

4.2 Early Test for Completion

Host-device synchronization can also be performed without blocking the host
execution by querying the execution status of a device operation. Table 3 sum-
marizes the possibility of device polling for CUDA, OpenCL, and OpenACC.
Although a single call to the query routine should return fast, many calls might
introduce a significant overhead that should be avoided. This pattern is an opti-
mization of early blocking synchronization, if the host is not continuously polling.
Pattern Description: A host thread queries a device, a device stream, an
event, or a task on the device until completed status is returned. The query that
returns completed status finishes the synchronization. All queries for the same
device object but the last one that returns completed status are redundant or
unnecessary.

Figure 3 depicts the respective inefficiency pattern. The first two queries for
the task execution status introduce waiting time as the task is still running. The
third query completes the synchronization by returning the completed status.
Detection and Evaluation: The analysis is triggered by the end event of a
successful test for completion. Prior unsuccessful tests for the same synchro-
nization object are identified and assigned with waiting time. The accumulated
waiting time is assigned as blame to all affected device tasks proportional to
their runtime. Affected devices tasks are determined as described in the early

Analyzing Offloading Inefficiencies in Scalable Heterogeneous Applications 465

Fig. 3. Early test for completion: The execution status of the task is queried periodi-
cally without blocking the host execution. The dashed arrows show event dependencies

blocking synchronization pattern. As no wait states occur in this pattern, the
critical path does not change the execution stream and stays on the host thread.

The detection of this pattern requires at least two successive queries for the
same device object without other synchronization in between, where the last
query returns the completed status. Furthermore, it is assumed that the the
purpose of the status query is synchronization.

As OpenMP does not provide a mechanism to query the execution status of
an offloading device, the early test for completion pattern cannot be detected
for OpenMP offloading.

4.3 Idle Offloading Device

As the concept of offloading is often used to accelerate only portions of the code,
it might be tolerable that the offloading device is idle some of the time. The
application developer has to decide whether a device idle phase is tolerable or
not. An example is the startup and shutdown phase of a parallel program, when
no device task can be executed. Device initialization and shutdown as well as
memory allocation and deallocation on the device are typically not considered
as device tasks. Such device idle states cannot be avoided.
Pattern Description: The offloading device is idle when it does not execute
any task on any device queue. In Fig. 2 the device is idle before task t1, between
task t1 and t2, and after task t2. The device is considered compute idle, when
it does not execute any compute kernel. This metric is useful as data movement
is parallelization overhead and does not process data.
Detection and Evaluation: The detection of the device idle state from a
program trace has one major limitation. The system might allow to access a sin-
gle device from multiple concurrently executed programs, e.g. with time slicing.
In this case, device idle can only be detected from the perspective of the pro-
gram’s event trace. To detect the global device idle state, it is possible to request
the device state with periodical sampling, e.g. with the NVIDIA management
library, which provides an interface to request the device utilization. However,
this requires to gather additional information at program runtime and it does
not consider data movements between host and device as device tasks.

On HPC systems, compute resources, such as offloading devices, are usually
exclusively allocated for a single program. In case of one offloading device per

466 R. Dietrich et al.

process, the device idle state can be easily detected. It is only necessary to exam-
ine all device queues that are local to the process. Hence, the device task events
are stored in local memory and can directly be accessed. An implementation
might use reference counting to keep track of the device idle state when multiple
device queues are used.

The software stack and the capabilities of the offloading device may allow
multiple processes to utilize the same device, e.g. with NVIDIA’s Multi Process
Service (MPS)1 and the Hyper-Q2 technology. If the detection runs on a single
process, all required events can be accessed from local memory, which enables effi-
cient implementations, e.g. via reference counting. Scalable analysis approaches,
such as Böhme’s MPI communication replay [5], have to exchange information on
the device idle state. As this is only possible at global collectives, the additionally
required memory for buffering the device idle intervals and the communication
overhead might be infeasible.

The compute idle time of an offloading device represents the time a device
does not perform any productive work, hence it does not execute a compute
kernel. Although this metric does not show how efficient an offloading device is
utilized, it is of relevance for a typical top-down performance analysis.

4.4 Inefficient Data Movement

Optimizing the communication is a common goal in most programming mod-
els that involve data movement. It is often the key to major performance
improvements. In case of offloading the importance of optimizing data move-
ment increases when host and device do not share the same physical memory.
One of the following three criteria has identifies an inefficient data movement.
Pattern Description: (1) Data movement is considered inefficient in offloading
scenarios, if it blocks the host execution. Hence, synchronous data transfers are
inefficient as they delay the execution on both, host and device. They are already
handled in the early blocking synchronization pattern.
(2) A data movement task is considered inefficient, if it delays the execution of
a device kernel and does not fully overlap with a device kernel.
(3) Two consecutive data movements are inefficient, if the following conditions
are true:

– they are tasks on the same device
– they are not overlapping
– neither is overlapping with a compute task on the same device
– no compute task on the same device is executed between them
– no communication of any other paradigm is initiated or ends between the

trigger of the offloading data movements
1 https://docs.nvidia.com/deploy/pdf/CUDA Multi Process Service Overview.pdf,

vR352, May 2015.
2 https://docs.nvidia.com/cuda/kepler-tuning-guide/index.html#hyper-q, DA-06288

-001 v8.0, January 2017.

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/cuda/kepler-tuning-guide/index.html#hyper-q

Analyzing Offloading Inefficiencies in Scalable Heterogeneous Applications 467

Detection and Evaluation: (1) Synchronous data transfers can be easily
detected by function names in CUDA. In OpenCL, the function arguments of
clEnqueueReadBuffer* and clEnqueueWriteBuffer* have to be evaluated and
the respective information stored in the trace. The OpenACC profiling interface
provides the async field for data events, which allows to identify blocking data
movement. OpenMP uses the map clause on target, target data, target enter data,
and target exit data constructs to trigger data movement. The nowait clause can
be applied on target, target update, target enter data, and target exit data, which
allows an OpenMP implementation to use asynchronous data movement. In this
case, a target directive is executed as deferred task, which can return the execu-
tion control before the result of the task is available. The OpenMP API routines
omp target memcpy and omp target memcpy rect perform a blocking data move-
ment between host and target device. A synchronous data movement can always
be replaced with an asynchronous equivalent and a respective synchronization
mechanism if needed.
(2) Immediately successive and overlapping tasks can be detected by searching
for respective tasks events on local device streams. The costs of the detection
depend on the data structures which are used to store the task events from device
streams. Using lists, successive tasks should be detected with constant complex-
ity O(1), whereas overlapping tasks might be detected based on a binary search
with logarithmic complexity O(log n). The part of a delaying data movement
task that is not overlapping with device computation can be exposed as ineffi-
ciency.
(3) It is reasonable to combine multiple consecutive data transfers as each trans-
fer induces a certain overhead [11]. All but the first data movement operation
in a series of consecutive data movements can be marked as inefficient, although
the advantage of a large data transfers over multiple small ones in terms of
latency and bandwidth cannot be reliably determined from an execution trace.
The respective transfer enqueue operations on the host are marked as inefficient
according to their execution time. Multiple consecutive data movements is a
common inefficiency in directive-based approaches, because variables or arrays
that are referenced in an offloading region and do not appear in a copy or map
clause are implicitly copied or mapped. This can result in many consecutive data
movement operations, as the programmer does not need to explicitly specify each
data movement and may not be aware of the resulting deficiency.

4.5 Analysis Limitations for OpenACC

To detect inefficient host-device synchronization and an idle offloading device, a
minimum set of runtime events are required. This includes the begin and end of
wait and test operations as well as begin and end of device tasks. The enqueue
operations for device tasks are required for the critical path analysis.

The OpenACC 2.5 profiling interface specifies events which reflect the behav-
ior of an OpenACC runtime. It does not cover events on device tasks, which
however can be collected with APIs such as CUPTI for CUDA targets. Without

468 R. Dietrich et al.

device events, it is only possible to determine the maximum runtime of device
tasks based on the begin and end events for wait and enqueue operations. A
device task cannot start before its enqueue begin event and has to be com-
pleted before the end event of the wait operation. When multiple device tasks
are enqueued and synchronized, these tasks can only be handled as a group,
which means that the group is blamed for causing waiting time and the group is
on the critical path. Due to the missing device events, it is also not possible to
reliably detect device idle. Blame and critical path time for device tasks can be
assigned to names and source code locations. Enqueue kernel events carry the
kernel name. Enqueue upload and download events provide information on the
transferred data, such as the variable name and its size.

The OpenACC profiling events do not cover test operations, which are trig-
gered by acc async test or acc async test all. Hence, an early test for completion
cannot be detected. Library wrapping could be used to gather begin and end
events of all OpenACC runtime library routines.

5 Integrating Offloading Patterns into MPI
and OpenMP Analysis

Sophisticated performance tools enable the analysis of execution inefficiencies in
parallel programs. Parallelization inefficiencies, e.g. suboptimal load balancing,
provide a high optimization potential without the need for fine-tuning of code
regions. On the other hand, program regions that are not on the critical path do
not contribute to the total program runtime and are no valuable optimization
targets. To guide the application developer in the program tuning process, it
is reasonable to detect the critical path and the cause of waiting time. Both
require the prior identification of wait states. In computation offloading models,
wait states can be detected based on the inefficiency patterns that have been
described in Sect. 4.

Available tools that are based on inefficiency pattern detection support only
an offloading paradigm (e.g. NVIDIA Visual Profiler) or only MPI and OpenMP
(e.g. Scalasca). We contribute by integrating the analysis of offloading inefficien-
cies into available pattern analysis for MPI and OpenMP.

5.1 MPI with OpenMP or Offloading

For parallel programs that scale across multiple processes, a respective analysis
has to scale as well. In HPC, MPI is typically used for inter-process communica-
tion and OpenMP for multithreading. Offloading is another parallel layer which
can be orthogonally applied. The offloading analysis cannot be applied orthog-
onally to MPI and OpenMP analyses. Figure 4 shows two scenarios of MPI and
offloading cooperation. MPI over offloading is the common case. MPI provides
the skeleton, offloading is used between MPI communication or synchronization
operations. The offloading device is idle during MPI operations. Offloading over

Analyzing Offloading Inefficiencies in Scalable Heterogeneous Applications 469

Fig. 4. Offloading is most often used between MPI communication. The vice versa
usage could increase the utilization of the offloading device.

MPI is a rarity in applications. MPI operations are concurrently executed to
offloaded tasks, which can strongly reduce the idle time of an offloading device.

Another aspect is the critical path, which cannot be detected separately for
MPI and offloading. Schmitt et al. [16] perform the MPI analysis at first to
split the execution into segments, which are analyzed in parallel. Although this
approach works well for applications that use MPI over Offloading, it fails in
the Offloading over MPI cases, which is illustrated in Fig. 4. When an offloaded
task is on the critical path, the concurrently executed MPI operation does not
affect the critical path. Nevertheless, the replay of MPI communication [5] is a
reasonable approach for a parallel performance analysis. In case of a hybrid MPI
program the node-local parallelization with multithreading and offloading has
to be considered in the critical path analysis.

Multithreading with OpenMP is similar to offloading most often used
between MPI communication or MPI synchronization. If an algorithm allows
it, it might be also reasonable to hide MPI communication by concurrently exe-
cuting threads. Hence, OpenMP analysis can neither be applied orthogonally to
MPI analysis.

5.2 Multithreading and Offloading

To balance the workload between CPU cores and offloading devices, multithread-
ing and offloading can act concurrently. The usual approach portions the work
into an offloading and a CPU part and triggers the offloaded execution before
starting to spread the CPU workload across threads. When the CPU finishes
parallel execution, it synchronizes with the device. This fits well to current node
architectures, where one CPU is often assembled with one offloading device. How-
ever, multiple threads can also offload work to one or multiple devices within a
multithreaded region. This allows to hide the offloading overhead and the device
synchronization behind other threads’ computations.

The critical path changes the execution stream whenever it encounters a wait
state independent of the originating paradigm. It does not need to distinguish
between a wait state in the offloading or threading model. A respective analysis
has to consider both paradigms in a combined analysis run, as it is not known

470 R. Dietrich et al.

whether a wait state is reached or not. A path to another process-local execution
stream has to exist at the end event of each wait state.

The blame distribution for offloading can be performed orthogonally to other
other parallelization paradigms, because blame for causing a wait state can only
be assigned to device tasks. Blame distribution for wait states that arise from
locks or barriers in multithreading has to consider events from other paradigms.

As multithreading and offloading are used in the context of a process, e.g. an
MPI process, performance data are gathered locally and can also be analyzed
on local shared memory without the need for inter-process communication.

6 Application Studies

To evaluate the usefulness of the pattern analysis for computation offloading we
investigated the two known benchmarks Lulesh [14] and CloverLeaf [13] as well
as the molecular dynamic package Gromacs without any knowledge about the
codes. As a manual analysis of these patterns is infeasible, even with power-
ful visualization tools such as Vampir, we implemented it in the trace analyzer
CASITA, which has been extended with a pattern summary output for ineffi-
ciency patterns in MPI, OpenMP, and computation offloading models.

MPI patterns include late sender, late receiver, early MPI Waitall as well as
wait in MPI Sendrecv, and MPI collectives. Currently, there is only one OpenMP
pattern implemented which quantifies wait states in OpenMP barriers. Offload-
ing patterns expose the overall device idle time, the compute idle time of the
device, early wait-for-device operations, early test for completion of device tasks,
blocking host-device data movement, and consecutive data movement.

Our test system was the GPU partition of TU Dresden’s Taurus. We ran the
benchmark codes Lulesh and CloverLeaf on nodes equipped with two Intel Xeon
E5-2450 CPUs at 2.10 GHz and two NVIDIA Kepler K20X (6 GB RAM) GPUs.
The Gromacs experiments were executed on nodes equipped with two Intel Xeon
E5-2680v3 CPUs at 2.50 GHz and four NVIDIA Tesla K80 (12 GB RAM) GPUs.
We use the Intel compiler 16.0.2 with CUDA 8.0 for the CUDA benchmarks and
the Gromacs experiments, and the PGI compiler 17.1 with CUDA 8.0 for the
OpenACC benchmarks.

6.1 Mini-Apps with CUDA and OpenACC

We ran a couple of experiments with the CUDA and the OpenACC version of
CloverLeaf and Lulesh. Neither of the benchmarks balances workload between
GPU and CPU, which is still often the case for simulation codes that have
been ported to GPUs. Hence, we expect and also confirm in our experiments
a decreasing device idle time and an increasing host waiting time when the
workload is increasing.

Lulesh represents some aspects of hydrodynamics codes. It solves a simple
Sedov blast problem. In our benchmarks we ran a fixed number of 20 iterations
with variable problem sizes from 30 to 135 in steps of 15. The cubic of the problem

Analyzing Offloading Inefficiencies in Scalable Heterogeneous Applications 471

size determines the number of volumetric elements. For the OpenACC version
135 was the maximum problem size that could be executed per GPU. Increasing
the iteration number increases the runtime, but it does not change the offloading
behavior, which is why there is no need to run longer experiments.

Fig. 5. Lulesh with different problem sizes (left) and CloverLeaf strong scaling (right)

The left chart in Fig. 5 shows the device idle and the host waiting time
for an increasing problem size of Lulesh CUDA and OpenACC. The CUDA
version shows the expected results. With increasing workload the GPU idle time
approximates 1% of the program runtime, while the host waiting time reaches
about 96% of the program runtime. The OpenACC version is less efficient. At
the largest executable problem size (135) the GPU is still about 40% idle. As
the waiting time for the GPU is below 40% of the program runtime, there has to
be a serial part within the benchmark phase. The critical path analysis reveals
several functions on the host (Calc*ConstraintsForElems) which take about 15%
of the program runtime (problem size 135) and do not overlap with GPU tasks.

The total duration of data movements can be determined from the device
idle and the device compute idle time. In the OpenACC version, device compute
idle is about 1% more than device idle at the problem size 30. The gap increases
up to 5% data movement until the problem size 90 and stays constant at larger
problem sizes. The benchmark phase in the CUDA version does not contain
host-device data movement, but 29 consecutive data movements are performed
beforehand. In the OpenACC version, the consecutive data movements are below
0.5% of the program runtime and therefore negligible. Nevertheless, with larger
problem sizes their number is increasing (from 83 to 181).

For all tested problem sizes, the most runtime dominating device kernel
also dominates the critical path. It is CalcFBHourglassForceForElems in the
OpenACC runs and CalcKinematicsAndMonotonicQGradient kernel in the
CUDA version.

CloverLeaf solves the compressible Euler equations on a Cartesian grid with
an explicit, second-order accurate method. In our experiments we doubled the
grid size, starting with 9602 for the smallest workload up to a grid size of 38402

for the largest workload. As expected we get similar results as in our Lulesh
experiments considering the device idle and host wait time. The latter doubles

472 R. Dietrich et al.

by doubling the problem size in both, the CUDA and the OpenACC version.
With an increasing problem size the device idle time approximates 1% of the
program runtime for the CUDA version and 5% for the OpenACC version. For
similar problem sizes the OpenACC experiments take more time, which also
results in longer waiting times for the device.

The data movement is between 2.5% and 3% of the program execution time
in the OpenACC version, whereas it is negligible in the CUDA experiments. The
number of consecutive data movements (241 to 766) and their total execution
time (1.1% to 2.6% of the program runtime) is increasing with the problem size
in the OpenACC version. In the CUDA version the number of consecutive data
movements is constantly 270 and their total execution time negligible.

We also ran a small strong scaling experiment with up to eight GPUs. The
right chart in Fig. 5 shows device idle, host waiting, and MPI waiting time nor-
malized by the experiment execution time over all processes. With a fixed grid
size of 38402 the code scales well with two and four GPUs. By scaling up to eight
GPUs, the runtime got much slower with a dramatic increase in MPI waiting
time. Scaling up to more GPUs continues to increase the runtime. We also deter-
mined the time between the kernel launch enter event and the kernel start event
(kernel startup delay), which increased dramatically to about 0.6ms/kernel from
only a few microseconds. The runtime share of data movements is between 2.5%
and 5% in the OpenACC version and about 1% in the CUDA version.

6.2 Gromacs with OpenCL

Gromacs [1] is a versatile molecular dynamics (MD) software package. It is widely
used to simulate interactions of biochemical molecules like proteins, lipids and
nucleic acids. Our Gromacs experiment setup was inspired by the tutorial of
Justin A. Lemkul3. We used Gromacs in version 2016.2 and generated input
data based on the hen egg white lysozyme protein structure file, the all-atom
OPLS force field, and a cubic box filled with water and ions. This input data
was used to investigate the run of a 1-ns MD simulation.

We executed the experiment with one, two, and eight processes (weak scal-
ing), each process using two OpenMP threads and one OpenCL device (NVIDIA
K80 GPU). Table 4 shows the results of the pattern summary for our experi-
ments. Even in the experiment with the most workload per GPU (one process,
two threads), its idle time is about 49%. The host is waiting only a very short
amount of time for roughly a fifth of the executed OpenCL kernels, which means
that probably more load could be put on the GPU, without introducing host-
device imbalances. There is a major increase of MPI and OpenMP waiting time
when moving from two to eight processes (4 to 16 threads). As the workload per
GPU is getting smaller in this case, its idle time increases. The total waiting
time is four times larger than the actual program runtime, which is obviously
not efficient.

3 http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/
lysozyme/index.html.

http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/lysozyme/index.html
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/lysozyme/index.html

Analyzing Offloading Inefficiencies in Scalable Heterogeneous Applications 473

Table 4. Inefficiency pattern summary for Gromacs (MPI, OpenMP, OpenCL), same
workload in each experiment

1 Pr., 2 Thrds, 2 Pr., 4 Thrds, 8 Pr., 16 Thrds,

1 GPU 2 GPUs 8 GPUs

Total program
runtime

33.289 s 28.86 s 20.25 s

Total waiting time 1.387 s 7.047 s 79.954 s

MPI wait patterns 63 618 (1.681 s) 670 985 (55.837 s)

- Late Sender 2 (0.000 s) 8 813 (0.208 s)

- MPI Sendrecv 50 760 (1.034 s) 480 367 (14.1208 s)

- (Early)
MPI Waitall

57 878 (4.247 s)

- MPI collective 12 852 (0.645 s) 123 465 (37.260 s)

OpenMP barrier
wait

168 296 (0.729 s) 400 620 (2.405 s) 1 649 924 (12.652 s)

Offloading

- Idle device 13.590 (48.80%) 25.916 s (56.40%) 105.042 s (83.94%)

- Compute idle
device

14.151 (50.81%) 26.674 s (58.05%) 106.563 s (85.15%)

- Early blocking
wait

574 (0.492 s) 8 509 (2.519 s) 8 225 (3.288 s)

- Consecutive
transfers

6 108 (0.327 s) 22 426 (0.581 s) 57 317 (0.537 s)

- Avg. kernel
startup

0.072 ms 0.473 ms 0.297 ms

For the experiments with one and two MPI processes CASITA’s
activity rating reveals the OpenCL kernel nbnxn kernel ElecEwTwinCut
VdwLJCombGeom F opencl as the most important candidate for optimization.
While the application runs 33.29 s (one process) resp. 28.86 s (two processes) this
function has an overall exclusive runtime of 12.48 s resp. 6.10 s. For the experi-
ment with two processes a hot spot analysis based on the exclusive runtime pin
points on the OpenCL kernel nbnxn kernel ElecEw VdwLJCombGeom F opencl
with a total exclusive runtime of 21.87 s. The host spends more time in waiting
for the first mentioned kernel, which is also more time on the critical path.

Figure 6 shows the Vampir timeline visualization of the enriched trace file.
Gromacs is one of the rare codes that uses MPI collectives within OpenMP
parallel regions. Furthermore, OpenCL kernels are concurrently executed to
MPI operations, which hides communication between processes behind device
computation.

474 R. Dietrich et al.

Fig. 6. Gromacs with MPI, OpenMP, and OpenCL on two MPI processes, each using
two OpenMP threads and one OpenCL device (Nvidia Tesla K80 GPU). A large share
of workload is assigned to the CPU leading to GPU device idle times (gray deviceIdle
bars in the top display). Thus, the critical path is detected on CPU processes and
threads except for the beginning of the depicted time interval (center timeline display).
Blame is attributed to both, CPU and GPU activities (bottom timeline display).

6.3 Pattern Evaluation

In our application studies the most relevant offloading inefficiencies are the early
wait-for-device operations and the device idle time, which can be used to adjust
the workloads on host and device. The critical path supplements these metrics by
exposing critical regions on the host during device idle. It also pinpoints on device
regions with impact on the program runtime. Consecutive data transfers have
a negligible or very small runtime impact in our experiments. The MPI scaling
runs showed that it is important to cover all parallel layers for a reasonable
evaluation of the program execution. For example, the wait for device time is
decreasing even for eight GPUs in our CloverLeaf strong scaling, but the MPI
waiting time exposes the bottleneck.

The analysis of the benchmarks showed that the pattern analysis is not
needed in all cases. However, it is more accurate than estimations from a function
profile and provides more information such as the device idle, device compute
idle, and consecutive data movements. The pattern analysis of our OpenACC
experiments exposed heavier inefficiencies than for the CUDA experiments.
This probably results from the fact that the compiler implicitly generates device
operations, which are required and have not been explicitly specified by the
programmer, e.g. implicit data copies of small data portions.

Analyzing Offloading Inefficiencies in Scalable Heterogeneous Applications 475

7 Conclusion

This paper defines common inefficiency patterns for computation offloading mod-
els such as CUDA, OpenCL, OpenACC, and OpenMP target. We describe the
detection and evaluation of such patterns and their usage for performance analy-
sis. The patterns are the basis to identify wait states, to quantify the cause of wait
states, and to detect program regions on the critical path. Together with already
defined inefficiencies for MPI, OpenMP, and SHMEM, most HPC applications
can be extensively analyzed. We also described possibilities and challenges in
the efficient and cooperative use of MPI, OpenMP, and computation offloading.

A summary about the occurrences and wasted execution time in individ-
ual inefficiency patterns provides the analyst with additional means to evaluate
a program run. It allows developers to focus optimizations on patterns which
caused the most significant waiting times. Together with program regions that
have a large share of the critical path and cause wait states, our top-down per-
formance analysis can identify the most relevant optimization targets.

The application studies demonstrated our pattern-based analysis. The wait-
for-device time, the device idle time, and the critical path time are the most
important metrics for program performance evaluation. As future work we will
further extend CASITA’s features for performance evaluation of heterogeneous
programs.

References

1. Abraham, M.J., Murtola, T., Schulz, R., Pll, S., Smith, J.C., Hess, B., Lindahl, E.:
Gromacs: high performance molecular simulations through multi-level parallelism
from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015). doi:10.1016/j.softx.
2015.06.001

2. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J.,
Tallent, N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel
programs. Concurrency Comput. Pract. Exp. 22(6), 685–701 (2010)

3. All members of the OpenMP Language Working Group: OpenMP Technical report
4: Version 5.0 Preview 1. OpenMP Architecture Review Board (2016)

4. An Mey, D., et al.: Score-P: a unified performance measurement system for petas-
cale applications. In: Bischof, C., Hegering, H.G., Nagel, W.E., Wittum, G. (eds.)
Competence in High Performance Computing 2010, pp. 85–97. Springer, Heidel-
berg (2012). doi:10.1007/978-3-642-24025-6 8

5. Böhme, D., Geimer, M., Wolf, F., Arnold, L.: Identifying the root causes of wait
states in large-scale parallel applications. In: 39th International Conference on
Parallel Processing, ICPP, pp. 90–100. IEEE (2010)

6. Böhme, D., Wolf, F., de Supinski, B.R., Schulz, M., Geimer, M.: Scalable critical-
path based performance analysis. In: 26th International Parallel Distributed
Processing Symposium, IPDPS, pp. 1330–1340. IEEE (2012)

7. Chabbi, M., Murthy, K., Fagan, M., Mellor-Crummey, J.: Effective sampling-driven
performance tools for GPU-accelerated supercomputers. In: International Confer-
ence on High Performance Computing, Networking, Storage and Analysis, SC 2013,
pp. 43:1–43:12. ACM (2013)

http://dx.doi.org/10.1016/j.softx.2015.06.001
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://dx.doi.org/10.1007/978-3-642-24025-6_8

476 R. Dietrich et al.

8. Dietrich, R., Juckeland, G., Wolfe, M.: OpenACC programs examined: a perfor-
mance analysis approach. In: 44th International Conference on Parallel Processing,
ICPP. IEEE (2015)

9. Dietrich, R., Schmitt, F., Grund, A., Stolle, J.: Critical-blame analysis for OpenMP
4.0 offloading on Intel Xeon Phi. J. Syst. Softw. 125, 381–388 (2016). doi:10.1016/
j.jss.2015.12.050

10. Dietrich, R., Tschüter, R.: A generic infrastructure for opencl performance analysis.
In: 8th International Conference on Intelligent Data Acquisition and Advanced
Computing Systems, Technology and Applications. IEEE (2015)

11. Eschweiler, D., Becker, D., Wolf, F.: Patterns of inefficient performance behavior in
GPU applications. In: 19th International Euromicro Conference on Parallel, Dis-
tributed and Network-Based Processing, PDP 2011, pp. 262–266. IEEE Computer
Society (2011)

12. Geimer, M., Wolf, F., Wylie, B.J.N., Erika Abraham, D.B., Mohr, B.: The scalasca
performance toolset architecture. Concurrency Comput. Pract. Exp. 22(6), 702–
719 (2010)

13. Herdman, J.A., et al.: Accelerating hydrocodes with OpenACC, OpenCL and
CUDA. In: SC Companion: High Performance Computing, Networking Storage
and Analysis, pp. 465–471 (2012)

14. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Technical report
LLNL-TR-641973 (2013)

15. Knüpfer, A., et al.: The Vampir performance analysis tool-set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting, pp. 139–155. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68564-7 9

16. Schmitt, F., Dietrich, R., Juckeland, G.: Scalable critical-path analysis and opti-
mization guidance for hybrid MPI-CUDA applications. Int. J. High Perform. Com-
put. Appl. (2016)

17. Schmitt, F., Stolle, J., Dietrich, R.: CASITA: a tool for identifying critical opti-
mization targets in distributed heterogeneous applications. In: 43rd International
Conference on Parallel Processing Workshops, ICPPW. IEEE (2014)

18. Wolf, F., Mohr, B., Dongarra, J., Moore, S.: Automatic analysis of inefficiency
patterns in parallel applications. Concurrency Comput. Pract. Exp. 19(11), 1481–
1496 (2007)

http://dx.doi.org/10.1016/j.jss.2015.12.050
http://dx.doi.org/10.1016/j.jss.2015.12.050
http://dx.doi.org/10.1007/978-3-540-68564-7_9

Performance Portability Analysis for Real-Time
Simulations of Smoke Propagation Using

OpenACC

Anne Küsters1(B) , Sandra Wienke2,3 , and Lukas Arnold1

1 JSC, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße,
52428 Jülich, Germany

a.kuesters@fz-juelich.de
2 IT Center, RWTH Aachen University, Seffenter Weg 23,

52074 Aachen, Germany
3 JARA-HPC, 52074 Aachen, Germany

Abstract. Real-time simulations of smoke propagation during fires in
complex geometries challenge engineers, physicists, mathematicians and
computer scientists due to the complexity of fluid dynamics and the large
number of involved physical and chemical processes. Recently, several
application scenarios emerged that require real-time predictions during
an incident to support the rescue teams. Therefore, we develop the CFD-
based simulation software JuROr aiming to run in real-time by leverag-
ing parallel computer architectures like CPUs and GPUs. For that, we
parallelize the code with OpenACC directives that promise maintenance
of a single source base by delegating some architecture-agnostic opti-
mizations to the compiler. We investigate the performance portability of
JuROr using PGI’s OpenACC implementation across four Intel CPUs
and three NVIDIA GPUs. We present the achieved performance shares
as part of a roofline model where we focus on traditionally-computed
arithmetic code intensities, as well as on a measurement approach based
on performance counters.

Keywords: Parallel CFD applications · Fire safety engineering · GPU
computing · OpenACC · Performance portability · Roofline model

1 Introduction

In almost all underground stations in Germany, the equipment for smoke extrac-
tion remains rare to find. To support effective firefighting measures and tactics,
the long-term goal is to develop a decision making tool for firefighters in cases
of complex geometries where air and smoke flows are both complex and hard

The original version of this chapter was revised: The ORCIDs of second and third
authors have been corrected. The erratum to this chapter is available at https://doi.
org/10.1007/978-3-319-67630-2 54

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 477–495, 2017.
https://doi.org/10.1007/978-3-319-67630-2_35

http://orcid.org/0000-0002-8172-7791
http://orcid.org/0000-0002-5794-3662
http://orcid.org/0000-0002-5939-8995
https://doi.org/10.1007/978-3-319-67630-2_54
https://doi.org/10.1007/978-3-319-67630-2_54

478 A. Küsters et al.

to predict. Therefore, concepts must adapt to the current situation dynamically
and scenario-based.

During the last decade, computational fluid dynamics (CFD) has gained
much attention in fire safety engineering by simulating smoke propagation. How-
ever, currently, users of commercial or open source smoke simulation tools widely
apply these methods to simplified geometries that do not fit the regulatory pre-
scription of the Pattern Building Code (e.g. enabling escape, rescue and effective
fire fighting measures). Thus, these complex geometries need individual evalua-
tion. Furthermore, it remains a challenge for them to meet the crucial constraint
of simulating the smoke propagation in real time or less.

To simulate smoke propagation in complex 3D geometries, we develop a
C++-based CFD solver, called ‘JuROr’ (Jülich’s Real-Time Simulation within
Orpheus). The goal of the Orpheus project funded by the ‘Federal Ministry
of Education and Research’ (BMBF) is the improvement of personal safety in
underground stations in case of fire. Further information can be found in [1].

We parallelize the CPU-based solver JuROr using the directive-based pro-
gramming model OpenACC and leverage the compute power of CPUs and
GPUs to enable real-time simulations. One advantage of using OpenACC over
a low-level accelerator model is the delegation of the responsibility of producing
performance-portable code to the compiler. Here, we investigate the performance
portability of PGI’s OpenACC implementation across various hardware archi-
tectures: NVIDIA Kepler and Pascal GPUs, and Intel Xeon Sandy Bridge, Ivy
Bridge, Haswell and Broadwell CPUs (using PGI’s multicore target). For that,
we build roofline models [2] for the different architectures, i.e., we model per-
formance limiters such as Flop/s and memory bandwidth on base of the appli-
cation’s arithmetic intensity. Then, we present performance portability of the
real-world code JuROr as percentage of sustainable peak performance.

Thus, our main contributions are:

– A CFD solver and its parallelization with OpenACC to enable the prediction
of smoke propagation in complex rooms

– Analysis of its performance portability using the roofline model based on
manually-computed arithmetic intensity vs. measured intensity, and hardware
performance counters

– Investigation of various hardware architectures: three NVIDIA GPUs, four
Intel CPUs

The paper is structured as follows: Sect. 2 presents related work regard-
ing CFD solvers utilizing GPUs as well as performance portability analysis of
OpenACC codes. We introduce JuROr’s CFD methods solving weakly compress-
ible Navier-Stokes equations for a turbulent flow in Sect. 3 and its parallelization
using OpenACC in Sect. 4. In Sect. 5, we describe our approach for modeling
and measuring performance. We present our results on performance portability
in Sect. 6. Finally, we conclude and give a short outlook in Sect. 7.

Performance Portability of Real-Time Simulations of Smoke Propagation 479

2 Related Work

So far, no possible solutions exist in the field of flow simulations for smoke prop-
agation in real-time using CFD and covering complex rooms while taking sensor
data into account. Yet, interest in producing real-time predictions, like those
investigated in the FireGrid project [3], already exists. However, the utilized fire
simulation model in FireGrid is a zone model, which splits the domain of interest
into very few zones (cf. [4]). Properties like temperature or smoke density are
computed via a set of coupled ordinary differential equations (ODEs) and thus
only allow for very crude approximations and applications on simple geometries.

Instead of using a zone model, Glimberg et al. studied the governing math-
ematical models of CFD which describe the smoke propagation sufficiently
(cf. [5]). In their work, GPUs were employed to solve the governing equations
in highly simplified geometries using a fractional step method. This approach
resulted in a solution within less than a minute of runtime for ten seconds simu-
lation time. For comparison, the simulation took more than one hour on a CPU.
However, this approach did not include the coupling of sensor data.

On the basis of sensor data, Daniel and Rein implemented The Fire Navi-
gator forecasting the spread of building fires (cf. [6]). Using the techniques of a
cellular automata building fire model (instead of CFD), they employed sensor
data assimilation, inverse modeling and genetic algorithm techniques. With this
approach the governing parameters of a fire, such as the flame spread rate, the
smoke ceiling jet velocity and the outbreak location and time, can be indirectly
uncovered and then used to produce real-time as well as forecast maps of the
flame spread and smoke propagation. Therewith, the Fire Navigator achieves
positive lead times of several minutes meaning the predictions are actually fore-
casts (without the usage of GPUs). Nonetheless, cellular automata simulations
simplify the problem and do not produce results as accurate as computational
fluid dynamics.

Instead, in JuROr we aim to predict smoke propagation in complex geome-
tries deploying computational fluid dynamics and taking sensor data into account
in future works.

By leveraging parallel processing power of GPUs and CPUs, JuROr tackles
the real-time constraints for complex geometries. Its OpenACC parallelization
shall enable good performance across various kinds of clients’ hardware architec-
tures. Although the architecture-specific assembler optimization by OpenACC
compilers ease the maintenance of a single code base (e.g. over using OpenCL [7]),
the performance portability of OpenACC implementations have been scarcely
studied so far. While OpenACC performance comparisons across different archi-
tectures have been targeted in research, they have mostly been conducted by
taking absolute numbers such as the application’s runtime, floating point oper-
ations per second or speedup over CPU runs.

For example, Lopez et al. [8] show memory bandwidth or speedup numbers
for a Jacobi and n-body kernel for different OpenACC implementations (PGI,
Cray) on NVIDIA Kepler GPUs. They failed on using OpenACC on multicore
CPUs. Sabne et al. [9] evaluated the performance by showing speedup num-

480 A. Küsters et al.

bers based on OpenARC’s OpenACC implementation on NVIDIA GPUs, AMD
GPUs and Intel Xeon Phi coprocessors using 12 kernels. The hydrodynamic mini-
app CloverLeaf [10] has been tested on NVIDIA GPUs, Intel Xeon Phi Coproces-
sors, one AMD APP and different CPUs using the vendor OpenACC implemen-
tations from CAPS, PGI and Cray. For real-world codes, Nicolini et al. [11]
present runtimes of an aeroacoustic simulation software package using PGI’s
OpenACC implementation for NVIDIA Kepler GPUs and Intel CPUs. Calore et
al. [12] investigate a lattice Boltzmann application also using PGI’s OpenACC
implementation on NVIDIA GPUs, AMD GPU and Intel CPU.

However, performance portability investigations should not only consider
absolute numbers, but need to account for the hardware’s and application’s char-
acteristics. For that, some studies [9,10,12] compare their gained OpenACC per-
formance to hand-tuned low-level implementations written in CUDA or OpenCL,
or to libraries like MKL or CUBLAS. As a percentage of peak performance,
Lopez et al. [8] present their DAXPY and DGEMV kernels. For two non-trivial
kernels, Calore et al. [12] show an OpenACC efficiency of 54% to 70% of peak
across different architectures for memory-bound code, while compute-bound
code achieves 14% to 24% efficiency.

Modeling OpenACC performance using a roofline model has only been con-
ducted by Wang et al. [13] who base their model on STREAM and Flop/s
measurements and apply CAPS’ OpenACC implementation to NVIDIA GPUs
and Intel Xeon Phi coprocessors. However, they only examine basic kernels from
the EPCC OpenACC Benchmark Suite. There, they get up to 82% of sustained
performance while most kernels achieve about 10%. In contrast, we do not only
focus on absolute performance, but especially apply the roofline model to the
real-world code JuROr.

Nomenclature

CS Smagorinsky constant β thermal extension coefficient
f force (kg·m

s2) κ thermal conductivity (W
m·K)

g gravitational force (kg·m
s2) μ dynamic viscosity (kg

m·s)
Nx

Ny

number of cells in x-direction
number of cells in y-direction ν kinematic viscosity (m2

s)

p pressure (kg
m·s2) ρ density(kg

m3)
S stress tensor (̄·) filtered quantity
ST source term (kg·m

s2) (·)eff effective quantity
T temperature (K) Δf filter width
T0 ambient temperature (K) (·)mol molecular quantity
t time (s) (·)t turbulent quantity
u velocity (m

s) Δt size of time step (s)
u0 velocity at time t = 0 (m

s) Δx grid size in x-direction (m)
x point in space (x, y)�(m) Δy grid size in y-direction (m)

Performance Portability of Real-Time Simulations of Smoke Propagation 481

3 Numerical Methods of JuROr

To simulate the transport of hot smoke, we first introduce the governing equa-
tions which mathematically describe the physics of smoke propagating. Then, we
describe the numerical methods approximating the solution of those equations.

3.1 Governing Equations

Smoke propagation can be described with the weakly compressible Navier-Stokes
equations (1) and (2) for a turbulent gas with velocity u, pressure p and tem-
perature T as well as no-slip boundary conditions (u = 0,∇p = 0) at the walls

∂tu + (u · ∇)u − ν∇2u +
1
ρ
∇p = f(T) (1)

∇ · u = 0 (2)

∂tT + (u · ∇) T − κ∇2T = ST . (3)

Here, weakly compressible means that the density is dependent on the temper-
ature ρ = ρ(T) wherefore the energy equation (3) has to be solved. The force
density is described by f(T) = −β(T − T0)g, where β represents the thermal
extension coefficient, T0 is the ambient temperature and g is the gravitational
force.

For the sake of computing time, we neglect pyrolysis, combustion, and heat-
ing/ cooling of surrounding walls and therefore, we focus only on the transport
of hot smoke. For this case, we only take the fire far field into account and there-
fore, we simply consider pyrolysis and combustion by prescribing a mass and
heat source.

3.2 Numerical Approach

To solve the governing equations, we take a finite difference (FD) approach on a
regular grid. In space, we use central finite differences of 2nd order and in time
backwards differencing of 1st order.

Therewith, we implement a fractional step method which follows the scheme
outlined in Glimberg’s work [5]:

∂tu1 = − (u1 · ∇)u1 (4)

∂tu2 = ν∇2u2 (5)

∂tu3 = f(T) (6)

∂tu4 = − 1
ρ∇p. (7)

Advection via a Semi-Lagrangian Approach. The idea is to trace back velocities
in time to find the current velocities since they do not change along streamlines
according to the method of characteristics. Thus, we calculate the starting point

482 A. Küsters et al.

from the current position (back tracing) xd = x− Δtu0 to calculate the current
velocity in (4) with bilinear interpolation u1 = u0 (xd(−Δt,x)). This method is
stable in time since it is true that max(|u1|) ≤ max(|u0|) holds for all times.

Diffusion with an Implicit Jacobi Method. After applying backwards differencing
in time to (5)

u2 − u1

Δt
= ν∇2u2,

we get a linear system of equations
(
I − Δtν∇2

)
u2 = u1 which is solved with

Jacobi’s method

x
(k+1)
i =

1
aii

⎛

⎝bi −
∑

j �=i

aijx
(k)
j

⎞

⎠

for A =
(
I − Δtν∇2

)
, x = u2 and b = u1.

External Forces via Euler Scheme. With an explicit Euler scheme in time, we get
a discretized version of Eq. (6) u3 = u2+Δtf . In order to update the temperature
T , we need to additionally solve the energy equation

∂tT + (u · ∇) T − κ∇2T = ST ,

where κ characterizes the thermal diffusion coefficient and ST a temperature
source term. Since the energy equation again describes advection and diffusion
with a source term, all of the above methods can be applied here.

Pressure Equation with a Geometric Multigrid Method. After backwards differ-
encing the Laplace equation (7) in time to get u4 = u3 − Δt

ρ ∇p, we deploy the
incompressibility of u4 yielding

0 = ∇ · u4 = ∇ · u3 − Δt

ρ
∇2p.

Now, we solve the pressure-poisson equation ∇2p = ∇ · u3 with the multigrid
method reusing the Jacobian method in the relaxation phases.

Incompressibility Through Projection. We establish incompressibility through
orthogonal projection using the Helmholtz-Hodge decomposition by Chorin [14].
Therefore, we define a linear orthogonal projection of u onto P via P (u3) = u4

such that u3 = P (u3) + ∇p with P (∇p) = 0 to get u4 = u3 − ∇p.

Turbulence with an Implicit, Constant Smagorinsky-Lilly Large Eddy Simulation
(LES). We are solving the LES equations for the spatially filtered velocity ū and
temperature T̄ with filter width Δf = (ΔxΔy)

1
2 and an effective viscosity of

νeff =
μeff

ρ̄
=

μmol + μt

ρ̄
,

Performance Portability of Real-Time Simulations of Smoke Propagation 483

where μt = ρ̄C2
SΔ2

f |S̄| with Smagorinsky constant CS [15] (commonly set to
CS = 0.2) and the norm of the filtered stress tensor |S̄| =

√
2S̄ijS̄ij , where

S̄ij = 1
2

(
∂xj

ūi + ∂xi
ūj

)
.

4 Parallelization with OpenACC

The OpenACC parallelization of the JuROr software is based on a serial runtime
profile that can be seen in Fig. 1. The diffusion and pressure methods (depicted
in blue) take 50% to 65% (in sum) of the runtime on an Intel Sandy Bridge
CPU. The shares for diffusion and pressure highly depend on the problem size,
i.e. we get 65% for Nx = Ny = 512 and 50% for Nx = Ny = 2048. Within the
two methods of diffusion and pressure, the 5-point Jacobian stencil operation
takes 20% to 80% of the serial runtime when measured by Intel VTune’s hotspot
analysis. Thus, the Jacobian stencil describes the hotspot of the CPU code and
has been parallelized first using OpenACC’s kernels and data regions.

0 10 20 30 40 50 60 70

Advection

Diffusion

Pressure

Other

0

15

62

50

0

3

38

35

%

maximum
minimum

Fig. 1. Share of runtime for different JuROr kernels on one Intel Sandy Bridge core
with Nx = Ny ∈ {512, . . . , 4096} (Color figure online)

After parallelizing the hotspot, all outstanding parallelizable methods (e.g.,
advection, pressure, boundary conditions) were also ported to the GPU. While
we marked all applicable loop nests as parallelizable independent loops, we did
not specify a certain loop schedule in order to leave it up to the compiler to
choose an appropriate loop schedule for the corresponding target architecture.
This is an important step in reaching performance portability. Furthermore, we
maximized the parallelism across loops by merging smaller loops into one kernel.
To reduce the kernel launch latency, we enabled pipelining by asynchronous ker-
nel launching from the CPU. Data management optimizations include the min-
imization of data transfers. For example, the access to C++ member attributes
in parallelized subroutines caused unnecessary CPU-to-GPU and GPU-to-CPU
transfers which were avoided by introducing local variables. In the OpenACC
CPU versions, all data transfers are automatically ignored by the compiler so
that we can use the same code base for GPU and CPU execution.

484 A. Küsters et al.

For all performance measurements, we run a benchmark test case of JuROr
in double precision. This test case describes a 2D Navier-Stokes equation com-
prising advection, diffusion and pressure (without turbulence or external forces)
in a [0, 2π]2 cube, which are solved using the methods in Sect. 3. The underly-
ing uniform grid varies from being coarse (with 8 × 8 cells) to very fine (with
4096×4096 cells), where each single cell stores the local values of the variables u
and p. Additionally, we introduced ghost cells (two in each direction) to handle
the boundary conditions properly. Thus, the memory size of one matrix of our
biggest data set comprises roughly 4098 × 4098 × 8 ≈ 135 MB. While this data
set fits into our CPU main memory and GPU global memory, it exceeds the
CPU and GPU cache sizes.

5 Roofline Model

To investigate the performance portability of our JuROr parallelization using the
PGI compiler, we setup a roofline performance model that allows comparison of
achieved performance as percentage share of (sustainable) peak performance.

The roofline model [2] builds upon peak floating point performance and sus-
tainable memory bandwidth. It assumes that computation and communication
can be completely overlapped and takes only the slowest data path into account.
Based on this assumptions, we build our roofline model for seven different hard-
ware architectures that are listed in Table 1: four Intel CPUs and three NVIDIA
GPUs. It is noteworthy that we use either one CPU socket or one GPU chip
of the given hardware, and do not consider GPU-CPU hybrid computations for
now. Correspondingly, we only model performance bounds for either the CPU
or GPU chip, even though the host of a GPU-based system actually adds the-
oretical peak performance to the GPU performance limiters. The latter would
also require a corresponding two-device roofline model with inclusion of data
transfers which is out of the scope of this paper. Further, we compute the the-
oretical arithmetic intensity (A.I.) of JuROr and compare it to the measured
value by using performance counters. We present the corresponding approaches
in the following subsections.

For clarification, we will use the following terminology for our performance
numbers:

– theoretical : values defined in or computed from technical hardware specifica-
tions or from manual code investigations

– sustainable: upper performance values that might be obtained in real world
usually using benchmarks

– measured/ achieved : actual measured performance values with real codes on
real hardware.

Performance Portability of Real-Time Simulations of Smoke Propagation 485

5.1 Peak Floating-Point Performance and Sustainable Memory
Bandwidth

To get the architectural performance limiters, we compute the peak double-
precision floating-point performance and measure the bandwidth using (micro)
benchmarks.

Calculating Flop/s numbers, we need to consider that most architectures
nowadays provide boosting capabilities of the clock frequency that are applied if
thermal processor conditions allow it. Since this is difficult to track, we disable
auto boosting where possible and base our Flop/s computations on the base
operational frequency of the CPU or GPU given in Table 1. This approach is in
line with the reporting rules of the Rpeak value of the Top 500 list [17].

Regarding the memory bandwidth measurement, it holds that achievable
memory bandwidth can be significantly lower than the theoretical peak band-
width. This is especially true for systems that employ error correcting code
(ECC) such as our given architectures do. Therefore, we use benchmarks to
obtain the sustainable memory bandwidth. For the GPU systems, we take the
CUDA version of the GPU-STREAM benchmark [19,20] and evaluate the band-
width of the triad kernel. We verify our measurements using the SHOC bench-
mark [21] as well as comparing them with the published results on the GPU-
STREAM website (where possible). For the CPU systems, we take the triad
results of McCalpin’s OpenMP STREAM benchmark [18] using the Intel Com-
piler with the flag -qopt-streaming-stores=always. We verify these results
using Intel VTune’s memory access analysis that automatically evaluates the
local DRAM single-package bandwidth using a (not further specified) micro
benchmark. This micro benchmark delivers slightly higher bandwidth numbers

Table 1. Used hardware architectures and compilers

Name Hardware Used Compiler and
Flags

BDW 2-socket Intel Xeon Broadwell E5-2650 v4
@2.20 GHz, 2 × 12 cores

1 socket PGI 16.10
-ta=multicore

HSW 2-socket Intel Xeon Haswell E5-2680 v3
@2.50 GHz, 2 × 12 cores

1 socket PGI 16.1
-ta=multicore

SNB 2-socket Intel Xeon Sandy Bridge E5-2650 0
@2.00 GHz, 2 × 8 cores

1 socket PGI 16.1
-ta=multicore

IVB 2-socket Intel Xeon Ivy Bridge E5-2640 v2
@2.00 GHz, 2 × 8 cores

1 socket PGI 16.1
-ta=multicore

P100 NVIDIA Pascal P100 SMX2 GPU, 1328 MHz,
16GB, autoboost off, ECC on, BDW host

1 GPU PGI 16.10
-ta=tesla:cc60

K80 NVIDIA Kepler K80 with 2 GPUs, 562 MHz,
2 × 12GB, autoboost off, ECC on, HSW host

1 GPU PGI 16.1
-ta=tesla:cc35

K40 NVIDIA Kepler K40 GPU, 745 MHz,
12GB, autoboost N/A, ECC on, SNB host

1 GPU PGI 16.1
-ta=tesla:cc35

486 A. Küsters et al.

Table 2. Floating-point performance and memory bandwidth (BW) of the hardware
architectures under investigation

Machine Peak GFlop/s Peak BW [GB/s] STREAM BW [GB/s] VTune BW [GB/s]

BDW 422.40 76.80 60.71 68.00

HSW 240.00 68.00 55.76 61.00

SNB 128.00 51.20 35.88 43.00

IVB 128.00 51.20 40.43 43.00

P100 4759.55 720.00 550.35 N/A

K80 935.17 240.00 149.70 N/A

K40 1430.40 288.00 191.20 N/A

why we base our CPU performance portability investigations on these values.
All results can be found in Table 2.

5.2 Arithmetic Intensity

To evaluate which performance boundary is hit by our JuROr code, we take
a look at its arithmetic intensity in Flop per Byte [Flop/B]. Since the concept
of arithmetic intensity does only make sense for individual kernels, we focus on
JuROr’s hotspot – the Jacobian stencil. While it takes up to 80% of the runtime
in serial execution, its parallelized version still takes up to 50% of the runtime
on a K40 for a 2D test case with Nx = Ny = 4096 grid cells in each direction.
Thus, again it describes the hotspot and we can apply (8) to compute its sus-
tainable performance with respect to its performance limiters:

sustainable performance [GFlop/s]
= min(sustainable BW [GB/s] · A.I. [Flop/B],

peak Flop/s performance [GFlop/s]) . (8)

In a second step, we will use performance counters to measure the achievable
performance and compute its percentage share from sustainable peak:

performance share [%] =
measured performance of hotspot [GFlop/s]

sustainable performance of hotspot [GFlop/s]
. (9)

For determining the arithmetic intensity of the Jacobian stencil kernel, we differ-
entiate between theoretical arithmetic intensity and measured arithmetic inten-
sity. Here, theoretical arithmetic intensity refers to the traditional approach of
investigating the kernel’s source code and manually counting (double) floating-
point operations and transferred words. While this approach works well for small
regular kernels, it is very challenging for real-world codes that also employ special
built-in function calls or complex data access patterns. For example, a call of the
pow or sin function does not deliver an intuitive Flop per Byte ratio and, thus,

Performance Portability of Real-Time Simulations of Smoke Propagation 487

is little predictable. Therefore, we also examine a measured arithmetic intensity
of the JuROr’s hotspot which is based on performance counters.

Theoretical Arithmetic Intensity. Besides counting floating-point operations, we
only take the slowest data path into account, i.e., access to main memory (CPU)
or global memory (GPU). For that, we evaluate the cache reuse with layer con-
ditions to exclude corresponding data accesses. Furthermore, we verify that non-
temporal stores are used on the CPU systems. Overall, for JuROr’s hotspot we
have:

A.I. =
floating-point operations

data movement
=

12 Flops
(2 reads + 1 write) · 8 Bytes

= 0.500
Flop

B
.

Measured Arithmetic Intensity. The approach of measured arithmetic intensity
has the advantage of being applicable for any kind of code. However, it might not
reflect the best possible arithmetic intensity, since it also tracks unnecessary data
transfers or occurring macho-Flop/s. To get the measured arithmetic intensity,
we run the code with performance counters for double-precision floating-point
operations and the transferred bytes. Since no common performance counter
interface is available across the selected machines, we manually track the counters
using different tools: NVIDIA’s nvprof 7.5 on the NVIDIA GPU systems and
Intel’s VTune Amplifier 2016/2017 on the Intel CPU systems. It must be noted
that a direct mapping from memory access counter values to our hotspot function
is not possible since they are based on uncore events. Therefore, we use VTune’s
filter capabilities to track our hotspot function within the timeline view and
read values from that timeline. To ease our calculations, we directly use VTune’s
calculated bandwidth numbers. A summary of the applied setups can be found
in Tables 3 and 4.

Due to known hardware restrictions on the Intel Haswell machine [16], we are
not able to use Flop performance counters on this architecture. Nevertheless, we
are able to run parts of the code with the Intel Advisor tool that shall be able
to measure arithmetic intensities for roofline models automatically. From the
intermediate result (before crashing), we take the achieved GFlop/s number on
the Haswell system. Unfortunately, the Intel Advisor is not capable of running
our real-world code successfully on all architectures due to crashes. Thus, we
rely on our own performance counter measurements as described above for the
other architectures.

Given the counters in Tables 3 and 4, we can compute the measured arith-
metic intensity as follows:

A.I.CPU =
X87 + SCALAR + SSE PACKED · 2 + 256 PACKED · 4

(RD + WR) · 64 Bytes

=
X87 + SCALAR + SSE PACKED · 2 + 256 PACKED · 4

BW · runtimehotspot
as well as

A.I.GPU =
flop count dp

(read + write) · 32 [threads per warp]
,

488 A. Küsters et al.

Table 3. Performance counters: Flops counters

Machine Flops counter Tool

BDW FP ARITH INST RETIRED.SCALAR DOUBLE,
FP ARITH INST RETIRED.128B PACKED DOUBLE,
FP ARITH INST RETIRED.256B PACKED DOUBLE,
INST RETIRED.X87

VTune

HSW N/A N/A

SNB FP COMP OPS EXE.SSE SCALAR DOUBLE,
FP COMP OPS EXE.SSE PACKED DOUBLE,
SIMD FP 256.PACKED DOUBLE,
FP COMP OPS EXE.X87

VTune

IVB FP COMP OPS EXE.SSE SCALAR DOUBLE,
FP COMP OPS EXE.SSE PACKED DOUBLE,
SIMD FP 256.PACKED DOUBLE,
FP COMP OPS EXE.X87

VTune

P100 flop count dp nvprof

K80 flop count dp nvprof

K40 flop count dp nvprof

Table 4. Performance counters: Bytes counters

Machine Bytes counter Tool

BDW UNC M CAS COUNT:RD, UNC M CAS COUNT:WR VTune

HSW UNC M CAS COUNT:RD, UNC M CAS COUNT:WR VTune

SNB UNC M CAS COUNT:RD, UNC M CAS COUNT:WR VTune

IVB UNC M CAS COUNT:RD, UNC M CAS COUNT:WR VTune

P100 dram read transactions, dram write transactions nvprof

K80 dram read transactions, dram write transactions nvprof

K40 dram read transactions, dram write transactions nvprof

where

read + write = dram read transactions + dram write transactions.

Following those two approaches – of theoretical vs. measured arithmetic
intensity – we present our results in the following section.

6 Results

Following the methodology introduced in Sect. 5, we present performance porta-
bility results with respect to the theoretical and measured arithmetic intensity.

Performance Portability of Real-Time Simulations of Smoke Propagation 489

6.1 Measurement Setup

In addition to the hardware setups given in Table 1, we compile all code versions
with -fast -O3. We run all performance and counter measurements three times
and take the corresponding average value while runtime deviations are below
0.6%. Furthermore, all measurements are executed on machines with exclusive
access. For OpenACC runs on our CPU systems, we also enable thread binding to
ensure good data affinity: ACC NUM CORES=<#cores> ACC BIND=yes MP BIND=yes
MP BLIST=0,1,<...#cores-1>.

Since selecting OpenACC loop schedules is left to the compiler, Table 5 gives
an overview on the PGI compiler’s choice for the Jacobian stencil on different
hardware setups. For our CPUs, the outer loop of the Jacobian loop nest gets
distributed across gangs (i.e. CPU cores), while the compiler attempts to vec-
torize the inner loop. Contrarily, the compiler choses a two-dimensional work
distribution on the GPUs: Each dimension gets distributed across the GPU’s
multiprocessors (gangs) and the double-precision logic units (vector). While
the overall thread tile size is the same across all GPUs, i.e., 128 threads per
block, the compiler selects different distributions within the tiles for Kepler and
Pascal GPUs.

Table 5. Loop schedules for loop nests of Jacobian stencil kernel chosen and reported
by the PGI compiler

Machine Outer loop Inner loop

BDW gang vector sse + prefetching

HSW gang vector sse + prefetching

SNB gang vector sse + prefetching

IVB gang vector sse + prefetching

P100 gang vector(32) gang vector(4)

K80 gang vector(4) gang vector(32)

K40 gang vector(4) gang vector(32)

6.2 Theoretical and Measured Arithmetic Intensity

Results for the theoretical and measured arithmetic intensity of the Jacobian
stencil are presented in Table 6. Values of the measured arithmetic intensity
show only little deviation with values in the range of 0.332 to 0.498 Flop/B
across all architectures. In addition, they are roughly in line with the theoretical
arithmetic intensities of 0.500 since the Jacobian stencil does not exhibit any
special built-in functions or macho-Flop/s.

490 A. Küsters et al.

Table 6. Theoretical and measured A.I. of the Jacobian stencil kernel

Machine Theoretical A.I. [Flop
B

] Measured A.I. [Flop
B

] Performance limiter

BDW 0.500 0.340 Memory bandwidth

HSW 0.500 0.332 Memory bandwidth

SNB 0.500 0.386 Memory bandwidth

IVB 0.500 0.354 Memory bandwidth

P100 0.500 0.498 Memory bandwidth

K80 0.500 0.416 Memory bandwidth

K40 0.500 0.418 Memory bandwidth

6.3 Performance Portability

As an overview, two exemplary roofline models for JuROr running on the Broad-
well CPU in Fig. 2 and the Pascal GPU in Fig. 3 illustrate the theoretical inten-
sity (vertically dashed line) and measured arithmetic intensity (circle marker)
while also visualizing the performance limiters as rooflines. This representation
also shows the achieved performance (circle marker) in comparison to the sus-
tainable memory bandwidth.

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

1
32

1
16

1
8

1
4

1
2 1 2 4 8 16 32 64

Measured A.I. = 0.340 Flop/B

Memory bound Compute bound

Arithmetic Intensity [Flop/B]

G
F
lo

p/
s

Theoretical A.I. = 0.500 Flop/B

Fig. 2. Roofline of BDW based on data set size of Nx = Ny = 4096

For our detailed analysis, we list the absolute performance numbers in Table 7
that are derived by our performance counter measurements running the JuROr
code. All these numbers, i.e., GFlop/s, GB/s and runtime in seconds, highly
differ across the architectures giving the impression of having non-portable code
with respect to performance.

Performance Portability of Real-Time Simulations of Smoke Propagation 491

Memory Compute bound

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

1
32

1
16

1
8

1
4

1
2 1 2 4 8 16 32 64

Measured A.I. = 0.498 Flop/B

bound

Arithmetic Intensity [Flop/B]

G
F
lo

p/
s

Theoretical A.I. = 0.500 Flop/B

Fig. 3. Roofline of P100 based on data set size of Nx = Ny = 4096

Table 7. Flop/s, memory bandwidth and runtime measurement for Jacobian stencil
kernel. Bandwidths given in brackets are based on ECC overhead.

Machine Measured GFlop/s Measured BW [GB/s] Kernel runtime [s]

BDW 21.66 63.71 4.97

HSW 19.81 59.59 5.29

SNB 14.93 38.65 8.54

IVB 14.90 42.04 7.70

P100 251.77 505.14 0.47

K80 71.17 170.91 (−29.08) 1.65

K40 91.47 218.79 (−36.30) 1.29

However, in the following, we express performance portability as performance
share to sustainable peak by applying our definition in (9). These results are
illustrated in Fig. 4.

Looking at the theoretical arithmetic intensities, the Jacobian stencil achieves
64% to 69% of sustainable memory bandwidth (given by Intel VTune’s micro
benchmarks) across the CPUs. For the GPU systems, it achieves higher perfor-
mance shares that range from 91% to 96% with respect to the GPU-STREAM
results. Since the measured arithmetic intensities are slightly below the theoret-
ical values, they also assume a lower sustainable peak performance in GFlop/s
(exemplary illustrated in Fig. 2). Therefore, we see higher performance shares
for the measured arithmetic intensities ranging from 90% to 98% on the CPUs
with respect to Intel VTune’s bandwidth micro benchmark and from 104% to
108% with respect to the OpenMP STREAM benchmark results. Thus, our

492 A. Küsters et al.

BDW HSW SNB IVB P100 K80 K40

0%

20%

40%

60%

80%

100%

120%

Architecture

P
er

fo
rm

an
ce

sh
ar

e

% of peak w/ measured A.I.

% of peak w/ theoretical A.I.

34.00 30.50 21.50 21.50 275.17 74.85 95.60

23.12 20.27 16.60 15.24 274.30 62.34 79.93

21.66 19.81 14.93 14.90 251.77 71.17 91.47

GFlop/s w/ theor. A.I.

GFlop/s w/ meas. A.I.

Measured GFlop/s

Fig. 4. Performance share of all considered architectures for Nx = Ny = 4096

hotspot delivers higher bandwidth measurements than the STREAM bench-
mark which may be due to additional transferred bytes for prefetching. For
the GPU performance shares, initially, we see a similar behavior with values
from 92% to 114%. When investigating the appearance of the GPU performance
shares above 100% further, i.e., for the two Kepler architectures K80 and K40,
we find that NVIDIA’s device memory performance counters also track trans-
actions caused by ECC overhead (cf. Table 7). Since these extra ECC bytes
do not contribute to the bandwidth achieved by the application, we subtract
corresponding values (counters ecc transactions/ ecc throughput) from the
measured bandwidth of the Jacobian stencil. In contrast, the Pascal architecture
supports ECC natively and, hence, does not show ECC effects on bandwidth.
With that, we get more realistic performance shares for JuROr of 92% to 95%
across the GPUs.

Overall, although absolute performance numbers suggest otherwise, the
results that are based on the specific hardware and software characteristics show
that for our real-world OpenACC code the PGI compiler is capable in produc-
ing performance portable code across different target architectures with a single
source code base.

7 Conclusion and Outlook

In the context of the OpenACC-parallel real-world C++-code JuROr that simu-
lates smoke propagation based on computational fluid dynamics, we investigated

Performance Portability of Real-Time Simulations of Smoke Propagation 493

the performance portability of its memory-bound hotspot using PGI’s OpenACC
across four Intel CPUs and three NVIDIA GPUs.

For our analysis of performance portability, we setup roofline models for all
architectures and computed the arithmetic intensity of the code’s hotspot – the
Jacobian stencil. We examined this theoretical arithmetic intensity, as well as
measured arithmetic intensities that were obtained using performance counters
for floating-point operations and memory transfers. Our measured arithmetic
intensities are in the range of 0.332 to 0.498 Flop/B for all architectures and,
thereby, roughly in line with the theoretical arithmetic intensity of 0.500 Flop/B.

Using the theoretical arithmetic intensity, we obtained 64% to 69% of sus-
tainable bandwidth on the CPUs and 91% to 96% on the GPUs. Regarding
the measured arithmetic intensities, the performance shares increased to 90% to
98% on the CPUs and remained roughly constant with 92% to 95% on the GPUs
referring to the according STREAM bandwidths, respectively. Our investigations
show that it is important to account for ECC overhead in memory bandwidth
on Kepler GPUs when using NVIDIA’s device memory performance counters.
Pascal GPUs lift this problem by natively supporting ECC in hardware.

Due to the similar performance shares across architectures, our OpenACC
parallelization of JuROr shows good performance portability relying on the PGI
compiler. While hand-tuned or low-level code might generally achieve higher per-
formance, our OpenACC approach gives us the possibility to maintain one source
code base for different architectures while still delivering good performance.

In future, to achieve further parallelization and acceleration, we will con-
stantly optimize the code for both, CPU and GPU usage and model the data
transfer for the roofline. Moreover, we will investigate OpenACC performance on
AMD GPUs. While we could already show that our OpenACC code is runnable
on AMD Tahiti GPUs, problems with the measurement infrastructure hindered
us in presenting portability results in this paper. Currently, we are working on a
3D code to handle 3D geometries, where we will further include handling of inner
boundaries to expand the code to complex 3D geometries. Complex 3D geome-
tries (e.g., several rooms) will then be used for the validation of the OpenACC
code.

Acknowledgements. This study was performed within the project ORPHEUS
funded by the Federal Ministry of Education and Research (BMBF) Program on
‘Research for Civil Security - Protection and Rescue in complex Disaster Situations’
(funding code 13N13266). Some simulations were performed with computing resources
granted by RWTH Aachen University under project rwth0207.

References

1. BMBF funded research project, Optimierung der Rauchableitung und Perso-
nenführung in U-Bahnhöfen: Experimente und Simulationen (ORPHEUS) -
Teilvorhaben: Brand- und Personenstromsimulationen in unterirdischen
Verkehrsstationen (2015–2018). http://www.orpheus-projekt.de

http://www.orpheus-projekt.de

494 A. Küsters et al.

2. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

3. Han, L., et al.: FireGrid: an e-infrastructure for next-generation emergency
response support. J. Parallel Distrib. Comput. 70(11), 1128–1141 (2010)

4. Koo, S.-H.: Forecasting fire development with sensor-linked simulation, Disserta-
tion, University of Edinburgh (2010)

5. Glimberg, S.L., Erleben, K., Bennetsen, J.: Smoke simulation for fire engineer-
ing using a multigrid method on graphics hardware. In: VRIPHYS, pp. 11–20.
Eurographics Association (2009)

6. Daniel, N., Rein, G.: The Fire Navigator: forecasting the spread of building fires
on the basis of sensor data, FPE Extra Issue 3, March 2016. http://www.sfpe.org/
general/custom.asp?page=FPEExtraIssue3

7. Pennycook, S.J., Hammond, S.D., Wright, S.A., Herdman, J.A., Miller, I., Jarvis,
S.A.: An investigation of the performance portability of OpenCL. J. Parallel Dis-
trib. Comput. 73(11), 1439–1450 (2013)

8. Lopez, M.G., Larrea, V.V., Joubert, W., Hernandez, O., Haidar, A., Tomov,
S., Dongarra, J.: Towards achieving performance portability using directives for
accelerators. In: Third Workshop on Accelerator Programming Using Directives
(WACCPD), pp. 13–24 (2016)

9. Sabne, A., Sakdhnagool, P., Lee, S., Vetter, J.S.: Evaluating performance porta-
bility of OpenACC. In: Brodman, J., Tu, P. (eds.) LCPC 2014. LNCS, vol. 8967,
pp. 51–66. Springer, Cham (2015). doi:10.1007/978-3-319-17473-0 4

10. Herdman, J.A., Gaudin, W.P., Perks, O., Beckingsale, D.A., Mallinson, A.C.,
Jarvis, S.A.: Achieving portability and performance through OpenACC. In: First
Workshop on Accelerator Programming using Directives, pp. 19–26. IEEE Press
(2014)

11. Nicolini, M., Miller, J., Wienke, S., Schlottke-Lakemper, M., Meinke, M., Müller,
M.S.: Software cost analysis of GPU-accelerated aeroacoustics simulations in C++

with OpenACC. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Perfor-
mance 2016. LNCS, vol. 9945, pp. 524–543. Springer, Cham (2016). doi:10.1007/
978-3-319-46079-6 36

12. Calore, E., Gabbana, A., Kraus, J., Schifano, S.F., Tripiccione, R.: Performance
and portability of accelerated lattice Boltzmann applications with OpenACC. Con-
curr. Comput. Pract. Exper. 28(12), 3485–3502 (2016)

13. Wang, Y., Qin, Q., See, S.C.W., Lin, J.: Performance portability evaluation for
OpenACC on Intel Knights Corner and Nvidia Kepler. In: HPC China (2013)

14. Chorin, A.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22,
745–762 (1968)

15. Smagorinsky, J.: General circulation experiments with the primitive equations.
Mon. Weather Rev. 91(3), 99–164 (1963)

16. JURECA, Jülich Research on Exascale Cluster Architectures. http://www.
fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA node.
html

17. Top500.org, Top500 List, November 2016. https://www.top500.org/list/2016/11/
18. McCalpin, J.D.: Memory bandwidth and machine balance in current high per-

formance computers. IEEE Comput. Soc. Techn. Committee Comput. Archit.
(TCCA) Newsl. 19–25 (1995). https://www.cs.virginia.edu/stream/

19. Deakin, T., McIntosh-Smith, S.: GPU-STREAM v1.0/ v3.1. https://github.com/
UoB-HPC/GPU-STREAM

http://www.sfpe.org/general/custom.asp?page=FPEExtraIssue3
http://www.sfpe.org/general/custom.asp?page=FPEExtraIssue3
http://dx.doi.org/10.1007/978-3-319-17473-0_4
http://dx.doi.org/10.1007/978-3-319-46079-6_36
http://dx.doi.org/10.1007/978-3-319-46079-6_36
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
https://www.top500.org/list/2016/11/
https://www.cs.virginia.edu/stream/
https://github.com/UoB-HPC/GPU-STREAM
https://github.com/UoB-HPC/GPU-STREAM

Performance Portability of Real-Time Simulations of Smoke Propagation 495

20. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: GPU-STREAM v2.0:
benchmarking the achievable memory bandwidth of many-core processors across
diverse parallel programming models. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.)
ISC High Performance 2016. LNCS, vol. 9945, pp. 489–507. Springer, Cham (2016).
doi:10.1007/978-3-319-46079-6 34

21. Danalis, A., Marin, G., McCurdy, C., Meredith, J., Roth, P., Spafford, K.,
Tipparaju, V., Vetter, J.: The scalable heterogeneous computing (SHOC) bench-
mark suite. In: Proceedings of the Third Workshop on General-Purpose Compu-
tation on Graphics Processors (GPGPU 2010), pp. 63–74 (2010)

http://dx.doi.org/10.1007/978-3-319-46079-6_34

Tuning and Optimization for a Variety
of Many-Core Architectures Without Changing
a Single Line of Implementation Code Using

the Alpaka Library

Alexander Matthes1,2(B), René Widera1, Erik Zenker3, Benjamin Worpitz3,
Axel Huebl1,2, and Michael Bussmann1

1 Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
{a.matthes,m.bussmann}@hzdr.de

2 Technische Universität Dresden, Dresden, Germany
3 LogMeIn, Inc., Boston, USA

Abstract. We present an analysis on optimizing performance of a single
C++11 source code using the Alpaka hardware abstraction library. For
this we use the general matrix multiplication (GEMM) algorithm in order
to show that compilers can optimize Alpaka code effectively when tuning
key parameters of the algorithm. We do not intend to rival existing,
highly optimized DGEMM versions, but merely choose this example to
prove that Alpaka allows for platform-specific tuning with a single source
code. In addition we analyze the optimization potential available with
vendor-specific compilers when confronted with the heavily templated
abstractions of Alpaka. We specifically test the code for bleeding edge
architectures such as Nvidia’s Tesla P100, Intel’s Knights Landing (KNL)
and Haswell architecture as well as IBM’s Power8 system. On some of
these we are able to reach almost 50% of the peak floating point operation
performance using the aforementioned means. When adding compiler-
specific #pragmas we are able to reach 5TFLOPs/s on a P100 and over
1TFLOPs/s on a KNL system.

This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 654220. This project received
funding within the MEPHISTO project (BMBF-Förderkennzeichen 01IH16006C).
Research leading to these results has in parts been carried out on the Human Brain
Project PCP Pilot System JURON at the Juelich Supercomputing Centre, which
received co-funding from the European Union (Grant Agreement no. 604102). We
thank for the access to and support for the HPC cluster Taurus at the Centre for
Information Services and High Performance Computing (ZIH), Technical Univer-
sity Dresden, as well as the cluster Hypnos at the Helmholtz-Zentrum Dresden –
Rossendorf.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 496–514, 2017.
https://doi.org/10.1007/978-3-319-67630-2_36

Tuning and Optimization for a Variety of Many-Core Architectures 497

1 Introduction

1.1 Motivation

We have developed Alpaka [28] due to our own need in programming highly effi-
cient algorithms for simulations [27] and data analysis on modern hardware in a
portable manner. The aim of our approach is to have a single C++ source code
in which we can express all levels of parallelism available on modern compute
hardware, using a parallel redundant hierarchy model similar to that found in
CUDA or OpenCL. Taking a look at the recent top ten high performance com-
puting (HPC) systems [16], it becomes clear that many-core architectures and
heterogeneous systems are dominating the landscape and will continue to do so.

The main design goal of Alpaka is to describe all levels of parallelization
available on modern heterogeneous hardware. It neither makes assumptions on
the memory layout or access patterns, nor does it handle the underlaying resource
and event management of the whole application, nor does it abstract the inter-
node communication.

Our open-source projects PIConGPU [2,3] and HaseOnGPU [5] both use
Alpaka for the kernel abstraction for various many-core hardware [27,28], but
different libraries for the mentioned topics not handled by Alpaka, like Gray-
bat [26] for the network communication, mallocMC for the memory manage-
ment or libPMacc for containers and asynchronous event handling. Alpaka is not
meant as a full grown solution for developing or porting whole HPC applications,
but as a single-purpose library that can easily be included into the individual
software of an exiting HPC project. We have chosen to provide a lightweight, yet
powerful C++ meta programming library for coherently expressing parallelism
for a large variety of many-core platforms.

Modern C++11 template programming enables us to implement an abstrac-
tion layer between the application and the various, often vendor-specific pro-
gramming models available for programming many-core hardware. With mod-
ern compilers the abstraction layer is completely resolved during compilation,
leaving only efficient code in the binary.

While performance portability and close-to-zero overhead of Alpaka code
could be shown in previous work [28] we will here concentrate on a subject
important for high performance computing, namely optimization of code for
various hardware platforms by means of tuning and vendor-specific compiler
optimizations while maintaining a single-source, portable code. The presence of
architecture independent parameters outside the algorithm implementation itself
may also enable auto-tuning in a later step.

We will show that indeed parameter tuning and compiler optimization gen-
erate highly efficient code on various platforms. However, we will discuss some
pitfalls of this approach that arise due to limiting tuning parameters to a small
number and due to the lack of full support for C++11 in some vendor compilers.

498 A. Matthes et al.

1.2 Alpaka

Alpaka allows for a multidimensional, hierarchical abstraction of computation
hardware as seen in Fig. 1. Kernels are written and run as threads executed in
a task parallel manner. Threads are organized in blocks, which themselves are
organized in grids. Every thread inside a block is assumed to run in parallel to
the other threads in the same block, enabling intra-block synchronization. Blocks
on the other hand may run concurrently or sequentially inside a grid. Every
execution layer has a corresponding memory hierarchy level. In addition to task-
parallel execution Alpaka introduces an element layer inside the thread level for
data-parallel execution, where the same instruction or program is executed for
multiple data. This latter level is usually used for expressing vectorization.

For any given hardware, these layers are mapped onto the hardware using a
suitable back end. As such, Alpaka does not implement any functionality beyond
this mapping and the underlying optimizations come from the back end and
mapping chosen for a specific hardware.

Alpaka currently supports Nvidia’s CUDA [23], OpenMP [4] 2 and 4, Boost
Fibers and C++Threads as back ends. Furthermore, we have started to add
OpenACC [24] and Thread Building Blocks [11] (TBB) support, while support
for AMD HIP [1] is foreseen for the near future. Alpaka has two accelerators
using OpenMP 2: One is running blocks in a grid concurrently, the other one
threads inside a block. For the first one only one thread per block is allowed.
With the same constraint it is possible to run the code sequentially with Alpaka.

In the scope of this paper we will restrict ourselves to the OpenMP 2 Blocks
and Nvidia CUDA back ends so that we are able to compare our new results to
our previous work. Although OpenCL [7] is widely supported, it is not suitable
as an Alpaka back end, as it is not single source C++. SYCL [13,25] has the goal
to close this gap and will probably be considered in the future. C++ AMP [17]
looks similarly promising, but fails in support of current HPC architectures.

Alpaka leaves performance enhancements due to data layout to the user or
another, independent library. Memory in Alpaka thus is always represented by a
plain pointer. This strategy leaves room for optimization, but currently requires
more development effort by the user.

Optimized memory access patterns are as important for achieving perfor-
mance as expression of algorithmic parallelism and we have carefully chosen the
example GEMM algorithm as it seems simple enough to go without memory
abstraction. However, optimizing memory access and memory copies is outside
the scope of Alpaka, which distinguishes our approach from the design goals of
libraries such as Kokkos [6] or RAJA [10] that aim for providing a full soft-
ware environment for portable programming of many-core architectures. A sep-
arate memory access abstraction library is planned, but will be an independent,
orthogonal part of the already mentioned software stack.

Tuning and Optimization for a Variety of Many-Core Architectures 499

P
ar

al
le

l
Synchronize

Sequential

Global
Memory

Shared
Memory

Register Memory

Register Memory

Host
Memory

Grid Block Thread Element

Fig. 1. Systematic view of the abstract redundant parallel hierarchy model of Alpaka
taken from [28]. A compute device works on a grid, inside this grid are blocks. Every
block has the same amount of threads, which are defined by the user as kernels. Explicit
looping over elements inside the kernel enables autovectorization but also gives a bet-
ter utilization for simple kernels. For each computation layer Alpaka introduces an
appropriate memory layer. The copies between those are explicit (depicted as arrows).

2 The Alpaka General Matrix Multiplication
Implementation

Similar to [28] we use a general matrix multiplication (GEMM) example

C = α · A · B + β · C (1)

for performance tuning, as it allows for tiling without the need for changing the
memory representation of the matrices.

For the sake of simplicity we choose A, B and C to be quadratic matrices
with N rows and columns each. The total number of floating point operations
then follows as

O(N) = 3N2 + 2N3 ≈ 2N3 . (2)

The number of elements per thread e and threads per block t result in the
number of blocks in the grid

B(e, t) =
N

t · e
, (3)

where t = 1 for the OpenMP 2 Blocks and the sequential accelerator.
We measure the time t in seconds for executing the algorithm without copy

operations to device memory, keeping the maximum over ten runs, which proved
sufficient to suppress any statistical fluctuations. With this we calculate the
performance P in GFLOPs/s as

P(N, t) =
O(N)

t
· 10−9 =

2N3

t
· 10−9 . (4)

500 A. Matthes et al.

Matrix A Matrix B Matrix C

Outer loop over tiles

tile size T

Current tile in outer loop

Inner loop over elements

Current element in inner loop

matrix size N

Temporary result tile

Fig. 2. Performance critical A ·B part of the GEMM using a tiling strategy. A thread
iterates over smaller sub matrices (tiles) in A and B (purple), performs the matrix
multiplication per tile using the element layer (green) for vectorization, and adds it to
a temporary thread local C tile (orange). The remaining part of the GEMM algorithm
using the temporary C tile needs to load and write the C matrix only once (streaming),
thus it doesn’t need to be cached.

2.1 Tiled GEMM Algorithm

There exist many highly optimized GEMM implementations, reaching up to
90% [14] of the theoretical peak performance. The solution depicted here is not
intended to compete with these algorithms. Instead, it serves as a code example
reasonably designed to exploit parallelism on many-core hardware. As such, it
already achieves 20% of the peak performance without tuning, which is a value
regularly found in applications. In the following, we aim to show that Alpaka
allows for platform specific tuning by parameter tuning without specializing the
implementation. As long as the tiles of the two matrices A, B fit completely in the
cache memory, increasing the tile size will usually result in better performance.
Based on the size S in bytes of the data type used (single or double precision)
the required cache size K is

K(S, T) = 2T 2S . (5)

The tiling matrix multiplication has Nblocks = N/T tiles in each matrix dimen-
sion. For every tile of C Nblocks tiles of A and B need to be loaded (see Fig. 2).
Furthermore the C tile itself needs to be loaded, leading to a total number of

M(N,T) = N2
blocks(2T

2Nblocks + T 2) = 2
N3

T
+ N2 = N2

(
2
N

T
+ 1

)
(6)

memory operations, which gives us the ratio of compute to memory operations
as

R(N,T) =
O(N)

M(N,T)
=

2N3

N2(2N
T + 1)

=
2N

(2N
T + 1)

=
2N

2N+T
T

=
2NT

2N + T
(7)

with lim
N→∞

R(N,T) = T , showing again that larger tile sizes are preferable.

Tuning and Optimization for a Variety of Many-Core Architectures 501

With cache hierarchies present in most modern architectures, it is not triv-
ially predictable for which cache T should be optimized. We thus chose to cal-
culate one tile of the matrix C per Alpaka block. Every element in the block
calculates one entry in the C tile. We use a two dimensional indexing for the par-
allelization levels. Every element stores the partial result of α · A · B in element
local memory. Depending on the architecture, we can increase the number of
elements per block by increasing the number of threads per block, which makes
sense for GPUs, or the number of elements per thread, which should enable
autovectorization for CPUs.
1 // Class for optimal tile size depending on the Accelerator type

2 template < typename T_Acc >

3 struct OptimalVectorSize {

4 using type = alpaka ::dim::DimInt <1u>;

5 };

6 // Number of elements per tiles predefined , but changeable as compiler option

7 #ifndef GPU_ELEM_NUM

8 #define GPU_ELEM_NUM 2u

9 #endif

10 #ifndef OMP_ELEM_NUM

11 #define OMP_ELEM_NUM 256u

12 #endif

13 // Specialization of the tile size type for CUDA , steered by GPU_ELEM_NUM

14 #ifdef ALPAKA_ACC_GPU_CUDA_ENABLED

15 template < typename ... T_Args >

16 struct OptimalVectorSize < alpaka ::acc:: AccGpuCudaRt < T_Args ... > > {

17 using type = alpaka ::dim::DimInt <GPU_ELEM_NUM >;

18 };

19 #endif

20 // Specialization for OpenMP Blocks , steered by OMP_ELEM_NUM

21 #ifdef ALPAKA_ACC_CPU_B_OMP2_T_SEQ_ENABLED

22 template < typename ... T_Args >

23 struct OptimalVectorSize < alpaka ::acc:: AccCpuOmp2Blocks < T_Args ... > > {

24 using type = alpaka ::dim::DimInt <OMP_ELEM_NUM >;

25 };

26 #endif

27 // Easily extensible macro for every independent loop

28 #define VECTOR_PRAGMA \

29 _Pragma ("ivdep") \

30 _Pragma ("GCC�ivdep")

Listing 1.1. Settings for the tiled matrix multiplication. OptimalVectorSize::type::
value represents the tile size T . The parameters and the loop #pragmas can directly
be used inside the kernel.

We implement the tile size T as an accelerator dependent class as seen in
Listing 1.1, thus avoiding mixing tuning and kernel parameters. It is set via
#define, thus making tuning easier. The matrix sizes N are passed as kernel
parameters (not shown).

2.2 Architectures

We test Nvidia K80 and P100 GPUs. The K80 and the PCIe version of the P100
are hosted in the cluster Hypnos at the Helmholtz-Zentrum Dresden – Rossendorf
whereas an nvlink using version of the P100 is part of the OpenPower pilot
system JURON at the Jülich Supercomputing Center. All GPU architectures
considered in this paper are listed in Table 1.

502 A. Matthes et al.

Table 1. Single (SP) and double (DP) precision peak performances and other char-
acteristic variables of GPUs considered in this paper. Notice that the P100 connected
via nvlink has a higher frequency and thus a higher theoretical peak performance. The
K80 has two GPU chips on one board of which we use only one. The cores of GPUs
are grouped in Streaming Multiprocessors (SMs) similar to CPU sockets.

Vendor Nvidia

Architecture K80 P100

Interconnect to host PCIe nvlink PCIe

Number of SMs 13 [21] 56 [22]

Cores per SM SP 192 [21] 64 [22]

DP 64 [21] 32 [22]

Shared memory per SM 112 KB [21] 48 KB [22]

Registers per SM (32 Bit) 131,072 [21] [22]

Clock frequency 0.88 Ghz (Boost clock) 1.48 Ghz 1.39 Ghz

Theoretical peak SP 4.37 TFLOPs/s [19] 10.6 TFLOPs/s [20] 9.3 TFLOPs/s [20]

performance DP 1.46 TFLOPs/s [19] 5.3 TFLOPs/s [20] 4.7 TFLOPs/s [20]

Release date Q4/2014 Q4/2016

As modern GPUs can directly access host CPU memory, we test both manual
offloading and Nvidia unified memory. For the first case we do not measure the
time for explicit memory transfer between CPU and GPU. Be aware that memory
handling is not part of Alpaka and native vendor code is used when necessary.
We thus focus on measuring algorithmic performance while disregarding analysis
of e.g. efficient latency hiding when offloading code to an accelerator.

Intel Xeon E5-2680 v3 (Haswell) and Xeon Phi Knights Landing (KNL) archi-
tectures are hosted on the HPC cluster Taurus located at Technical University
Dresden whereas the Power8 processor is also part of the HPC pilot system
JURON. The CPU architectures considered in this paper are listed in Table 2.

Clock frequency f , FLOP per cycle and core o, and number of cores n give
the theoretical peak performance

P(f, o, n) = f · o · n . (8)

The Haswell CPU does not have hyperthreading activated and has two AVX
units per core, which allows for instruction level parallelism and thus up to
64 single precision floating point operations (FLOPs) per cycle and clock. For
measurements we use 2 sockets resulting in a total amount of 24 cores. The
KNL architecture allows for up to 128 single precision floating point operations
per cycle and core. With hyperthreading activated this architecture can be used
similar to a multi-core CPU with 256 independent threads. The IBM Power8
processor has a uniquely high CPU frequency of 4 Ghz, but the lowest peak
performance of all tested systems. However, with 8 hardware threads per core,

Tuning and Optimization for a Variety of Many-Core Architectures 503

Table 2. Single (SP) and double (DP) precision theoretical peak performances (see
Eq. 8) and other characteristic variables of CPUs considered in this paper. Performance
gains come mostly from vector operations and fused multiply adds, especially for Intel
CPUs, and higher clock frequencies when running on Power8.

Vendor and architecture Intel Xeon E5-2680
v3 (Haswell)

Intel Xeon PhiTM

CPU 7210 (KNL)
IBM Power8

Used sockets 2 1 2

Total number of cores n 24 64 20

Hardware threads per core 1 4 8

Clock frequency f 2.1 Ghz (AVX base
frequency [18])

1.3 Ghz 4.02 Ghz

FLOP per cycle
and core o

SP 64 (2·AVX,FMA) 128

(2·AVX-512,FMA)

16 [9]

DP 32 (2·AVX,FMA) 64 (2·AVX-512,FMA) 8 [9]

Theoretical peak SP 1.61 TFLOPs/s 5.33 TFLOPs/s 1.29 TFLOPs/s

performance (8) DP 0.81 TFLOPs/s 2.66 TFLOPs/s 0.64 TFLOPs/s

Cache sizes reducing L1 64 KB (core)

the memory latency L2 256 KB (core) 1 MB (2 cores) 512 KB (core)

L3 30 MB (socket) – 80 MB (socket)

Release date Q3/2014 Q2/2016 Q2/2014

160 independent tasks can be executed without a context switch, allowing for
high levels of parallelism.

We test a variety of compilers for most architectures, see Table 3. The GNU
compiler is used as a reference available for all architectures and for GPUs to
compile the steering host code.

2.3 Single Source Code File vs. Optimization

As pointer alignment and dependencies cannot be known at compile time,
autovectorization needs some hints from developer side. As pointed out, appli-
cations or additional libraries can provide additional information on data types
that fosters autovectorization when using Alpaka. We thus are forced to add com-
piler dependent #pragmas, namely #pragma ivdep and #pragma GCC ivdep for
the Intel and GNU C++ compilers, respectively, in order to declare pointers
inside loops as independent and executable in parallel. Furthermore, all mem-
ory is aligned to a multiplier of 64 with __declspec(align(64)) (Intel) and
__attribute__ ((aligned (64))) (GNU compiler), which makes it faster to
load whole chunks of memory to vector registers on some architectures. As one
cannot pass this information via function parameters, we also explicitly tell the
compilers about this in the most time critical loop over the A and B tiles with
__assume_aligned (Intel) and __builtin_assume_aligned (GNU).

504 A. Matthes et al.

Table 3. Compilers, compiler options, and compiler versions considered for every archi-
tecture in this paper. Every binary is compiled on the same system it is executed on
later, allowing for architecture- and system-aware compiler optimization.

Intel Compiler CUDA XL Compiler GNU Compiler

Haswell
-Ofast -xHost

(Version: 17.0.0)
– –

-Ofast -mtune=native

-march=native

(Version: 6.2)

KNL
-Ofast -xHost

(Version: 17.0.0)
– –

-Ofast

-mtune=native

-march=native

(Version: 6.2)

Tesla P100 –
--use_fast_math

(Version: 8.0.44)
–

-mtune=native -march=native

(Version: 5.3, only host)

Tesla K80 –
--use_fast_math

(Version: 8.0.44)
–

-mtune=native -march=native

(Version: 5.3, only host)

Power8 – –

-O5

(Version: 14.01)

(Only for C!)

-Ofast -mtune=native

-mcpu=native -mveclibabi=mass

(Version: 6.3)

XL C++ Work Around. Alpaka is a very demanding C++ code and most
compilers fully support C++11, with the exception of the IBM XL compiler. For
this reason we move the most performance critical code, the matrix multiplica-
tion of tiles in A and B, to an extra C file for every XL test and compile all C
code with the XL compiler, while the C++ code including all Alpaka abstrac-
tions is compiled with the GNU C++ compiler. This means that we are not
testing XL’s OpenMP implementation. With full C++11 support by the IBM
compiler we expect similar to better performance than we see with this approach.
This workaround currently breaks our single source goal and prevents code opti-
mizations like code inlining, but still helps to improve performance compared to
using just the GNU compiler.

KNL Specific Parameter Settings. The Intel KNL is programmable simi-
larly to a CPU, but like an offloading acceleration device it brings its own ded-
icated memory called MCDRAM. Compared to the global RAM the latency is
almost the same, but the bandwidth around five times higher with over 450 GB/s
([12], p. 20). The Intel KNL supports three modes of accessing the MCDRAM:
As a cache for RAM, directly accessed (flat memory) or a hybrid mode, where a
part is used as cache and another part as flat memory. The first two modes are
compared in performance, as they form opposite cases. The Intel KNL can fur-
thermore be operated in different cluster modes, which may improve the cache
latency. In this paper we restrict ourselves to using quadrant mode only.

Multidimensional Parameter Tuning. We choose T and the number of
hardware threads as tuning parameters before running scaling tests for different
matrix sizes N . Tuning is performed for a fixed N = 10240 as a good compromise
between runtime and problem size and further for an arbitrary N = 7168, thus

Tuning and Optimization for a Variety of Many-Core Architectures 505

avoiding effects only occurring at some certain combinations of parameters. After
finding optimal parameter sets scaling tests with matrix sizes from N = 1024
up to N = 20480 with an increment of ΔN = 1024 are performed. We repeat
every measurement first 5 than 10 times, which in all cases yields the same
maximum result. This shows that any effects visible are not due to statistics,
and we thus refrain from averaging over more measurements.

3 Parameter Tuning

As hyperthreading is deactivated for the Haswell CPU and as we have found an
efficient number of threads e = 162 for Nvidia GPUs in previous work, only the
tile size T is used for tuning for these architectures, see Fig. 3. An obvious obser-
vation for Haswell is that doubling the tile size often also doubles the achieved
performance, while T = 4 seems to be optimal for current GPU generations.

Tuning for KNL and Power8 adds the number of hardware threads as a second
parameter, see Fig. 4 for KNL. We see that optimal parameter combinations
highly depend on the chosen precision and compiler. The double precision binary
created by the Intel compiler using a single hardware thread results in best
performance of 510 GFLOPs/s. We also perform a measurement for the KNL in flat
memory mode directly using the MCDRAM instead of the caching mechanism.
Except for a slightly better performance (∼ 2%), the results are the same.

For Power8 we test from T = 16 up to T = 512 and from one to eight
hardware threads always using only powers of two as parameters similar to KNL
(not shown). Contrary to KNL, optimization for the Power8 architecture delivers
similar performance results for a variety of parameters even when using the IBM

1 2 4 8

50

100

200

500

1000

2000

5000

tile size T

a
ch

ie
v
e
d

G
F
L
O

P
s /

s

Tuning for P100 and K80

P100 (float,nvlink)

P100 (double,nvlink)

P100 (float,pcie)

P100 (double,pcie)

K80 (float)

K80 (double)

16 32 64 128 256

50

100

200

500

tile size T

a
ch

ie
v
e
d

G
F
L
O

P
s /

s

Tuning for Haswell

Haswell (float,icc)

Haswell (float,gcc)

Haswell (double,icc)

Haswell (double,gcc)

Fig. 3. Achievable GFLOPs/s for Nvidia K80 and P100, and for Intel Haswell depending
on the compiler, the floating point precision and the chosen tile size of the GEMM
algorithm. As there are not lesser cores than hardware threads, all of them are used.

506 A. Matthes et al.

G
N
U

C
o
m
p
il
e
r

In
te

l
C
o
m
p
il
e
r

Single precision

16 32 64 128 256

1

2

4

197

288

338

352

593

636

866

1 156

818

929

963

816

737

406

161

Tile size T

H
a
rd

w
a
re

th
re
a
d
s

p
e
r
c
o
re

200

400

600

800

1,000

A
ch

ie
v
e
d

G
F
L
O

P
s /

s

16 32 64 128 256

1

2

4

60

95

126

123

190

243

284

401

413

451

576

572

593

426

164

Tile size T

H
a
rd

w
a
re

th
re
a
d
s

p
e
r
c
o
re

Double precision

16 32 64 128 256

1

2

4

141

201

282

314

416

197

510

439

371

377

363

163

199

86

79

Tile size T

H
a
rd

w
a
re

th
re
a
d
s

p
e
r
c
o
re

100

200

300

400

500

A
ch

ie
v
e
d

G
F
L
O

P
s /

s

16 32 64 128 256

1

2

4

46

78

108

117

177

200

221

277

271

301

334

193

116

88

79

Tile size T

H
a
rd

w
a
re

th
re
a
d
s

p
e
r
c
o
re

Fig. 4. Achievable GFLOPs/s for Intel Xeon Phi Knights Landing (KNL) depend-
ing on the compiler, the floating point precision, the chosen tile size of the tiled
matrix multiplication algorithm and the used hardware threads per core. The big-
ger the mark size the higher the achieved GFLOPs/s. The mark radius is calculated with

(achieved GFLOPs/s)
5/7 as this has been shown a good value for human perception [8].

GNU compiler 6.2 and Intel compiler 17 are used. For compiler options see Table 3.

Table 4. Estimated optimal tile size T and number of hardware (HW) threads. Memory
for A and B tiles K(S, T) (Eq. 5) and the available cache per HW thread and cache
level are listed in addition. The first cache level that can hold a complete tile is marked.

Architecture Compiler
Preci- HW Optimized K(S, T) Cache per HW thread

sion Threads tile size T (see (5)) L1 L2 L3

P100 (nvlink)

CUDA

single

–

4 128 B

– – –

double 4 256 B

P100 (pci)
single 4 128 B

double 4 256 B

K80
single 4 128 B

double 2 64 B

Haswell

Intel
single

1

64 32 KB 64 KB 256 KB 2.5 MB

double 128 256 KB 64 KB 256 KB 2.5 MB

GNU
single 128 128 KB 64 KB 256 KB 2.5 MB

double 128 256 KB 64 KB 256 KB 2.5 MB

KNL

Intel
single 2 64 32 KB 32 KB 256 KB

–
double 1 64 64 KB 64 KB 512 KB

GNU
single 1 256 512 KB 64 KB 512 KB

double 2 128 256 KB 32 KB 256 KB

Power8

XL
single 2 512 2 MB 32 KB 256 KB 4 MB

double 2 512 4 MB 32 KB 256 KB 4 MB

GNU
single 8 256 512 KB 8 KB 64 KB 1 MB

double 4 256 1 MB 16 KB 128 KB 1 MB

Tuning and Optimization for a Variety of Many-Core Architectures 507

IBM Power8 Intel KNL

Nvidia Tesla P100

Fig. 5. Alpaka mappings for IBM’s Power8, Intel’s KNL, and Nvidia’s Tesla P100.
Every mapping uses the optimal parameters of the parameter tuning for double pre-
cision and the vendor compiler from Table 4. The CPU mappings use the OpenMP2
Block back end. The GPU mapping uses the CUDA back end and unified memory.

508 A. Matthes et al.

XL compiler. We don’t see large deviations from our tuning results for the control
case N = 7168 (not shown) on all architectures. Although bigger matrix sizes
improve the GFLOPs/s slightly, optimum parameters remain the same.

Tuning results are found in Table 4, while the corresponding mapping of
Alpaka parallel hierarchies to hardware in the case of double precision and vendor
compilers selected is presented in Fig. 5.

4 Results of the Scaling

Figures 6 and 7 show the achieved GEMM GFLOPs/s for all architectures consid-
ered, for both double and single precision and optimum parameter sets [15]. The
Nvidia P100 as expected shows the best absolute performance in all cases, while
the Power8 runtime is surprisingly faster than the K80 although the Nvidia GPU
has a higher theoretical peak performance than the IBM CPU. The KNL shows a
drastic drop in peak performance every second or fourth measurement beginning
with N = 8192 for both precisions, regardless of using cached or flat memory
when using the Intel compiler. To investigate this issue a test with N = 8192 is
run in double precision but 91 hardware threads. With this we get 490 GFLOPs/s
instead of 303 GFLOPs/s (64 threads), which is only 7% less than for N = 7168
and N = 9216 (both 527 GFLOPs/s).

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24
0

11
26
4

12
28
8

13
31
2

14
33
6

15
36
0

16
38
4

17
40
8

18
43
2

19
45
6

20
48
0

20

50

100

200

500

1000

2000

P100 (nvlink,unified memory) P100 (nvlink,explicit copy)

P100 (pcie,unified memory) P100 (pcie,explicit copy)

KNL (icc) KNL (gcc)

KNL (flat memory,icc) KNL (flat memory,gcc)

K80 (unified memory) K80 (explicit copy)

Power8 (xl) Power8 (gcc)

Haswell (icc) Haswell (gcc)

matrix size N

A
ch

ie
v
ed

G
F
L
O
P
s /

s

Fig. 6. Achievable GFLOPs/s for all considered architectures for double precision depend-
ing on the matrix size and the compiler.

Most architectures show an increase in the performance for higher N , with the
exception of Intel Haswell which for single precision shows best peak performance
(665 GFLOPs/s) for N = 2048 and afterwards decreases reaching a plateau at 400
GFLOPs/s. In contrast to our expectations, all GPUs show a better performance
when using unified memory instead of device memory, especially for small N .

Tuning and Optimization for a Variety of Many-Core Architectures 509

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24
0

11
26
4

12
28
8

13
31
2

14
33
6

15
36
0

16
38
4

17
40
8

18
43
2

19
45
6

20
48
0

20

50

100

200

500

1000

2000

P100 (nvlink,unified memory) P100 (nvlink,explicit copy)

P100 (pcie,unified memory) P100 (pcie,explicit copy)

KNL (icc) KNL (gcc)

KNL (flat memory,icc) KNL (flat memory,gcc)

K80 (unified memory) K80 (explicit copy)

Power8 (xl) Power8 (gcc)

Haswell (icc) Haswell (gcc)

matrix size N

A
ch

ie
v
ed

G
F
L
O
P
s /

s

Fig. 7. Achievable GFLOPs/s for all considered architectures for single precision depend-
ing on the matrix size and the compiler.

In order to compare results Fig. 8 shows the relative peak performance for
the best parameter combinations for every architecture and single and double
precision. For architectures investigated in 2016 [28], we find similar or only
slightly better performance. But whereas the last paper has stated a general
performance around 20% the most recent systems are now capable to reach
almost 50% of the peak performance using Alpaka.

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24
0

11
26
4

12
28
8

13
31
2

14
33
6

15
36
0

16
38
4

17
40
8

18
43
2

19
45
6

20
48
0

1.5

2

3

4

5

7

10

15

20

30

40

50

matrix size N

A
ch

ie
v
ed

p
er

fo
rm

a
n
ce

in
%

re
la

ti
v
e

to
th

e
p
ea

k
p
er

fo
rm

a
n
ce

P100 (double,nvlink,u. memory) P100

P100 (double,pcie,u. memory) P100

KNL (double,flat memory,icc) KNL (float,flat memory,icc)

KNL (double,flat memory,gcc) KNL (float,flat memory,gcc)

K80 (double,u. memory) K80 (float,u. memory)

Power8 (double,xl) Power8 (float,xl)

Haswell (double,icc) Haswell (float,icc)

(float,nvlink,u. memory)

(float,pcie,u. memory)

Fig. 8. Achieved performances relative to the peak performance for the fastest para-
meter combinations of every architecture for single and double precision. Some scalings
of particular interest are highlighted.

510 A. Matthes et al.

5 Analysis

Autovectorization. Listing 1.2 shows the dissembled KNL binary built by
the Intel compiler for the most inner and performance critical loop of the tiling
matrix multiplication kernel. C++ code is marked blue, assembler code red.
With vfmadd231pd being the fused multiply add vector function working on
AVX-512 vectors 0 and loop unrolling we find that the Intel compiler is capable
of optimizing the inner loop despite the heavy templated Alpaka code.

Parameter Tuning. We assume that tuning for KNL resulted in best FP
performance using one hardware thread (see Fig. 4) because larger tiles then fit
best into the L2 cache of 512 KB, which otherwise would have to be shared
between threads. This is supported by the fact that using double precision often
requires smaller tile sizes than single precision. Figure 3 shows the element layer
with T = 4 causing performance gain, especially for the P100, as it has more
shared memory and registers available per thread than the K80.

Scaling. Most architectures show poor performance for small matrix sizes N ≤
2048 which at first glance could be blamed on under-utilization, although at
closer look is questionable e.g. in case of the KNL which performs 2×109 floating
point operations that clearly dominate over memory operations following Eq. 7.

We found the KNL in flat memory mode to be only about ∼ 2% faster than
in cached memory mode, except for very small N , which can be explained by
the fact that the same memory is needed very often, but needs to be copied from
RAM to MCDRAM only once. In all cases, using RAM only is much slower than
using MCDRAM. We see performance degradation on KNL for (almost) every
second N (DP) and for every fourth N (SP) starting with N = 8192, except for
N = 14336 (flat memory, DP). When choosing an uneven number of 91 hardware

Tuning and Optimization for a Variety of Many-Core Architectures 511

threads, performance improves for N = 8192 (DP). As the issue always appears
on very even numbers we assume that the KNL has performance issues if many
hardware threads access the very same memory location at the same time. As
this issue does not occur for the GNU compiler, we suspect Intel’s optimized
OpenMP implementation to cause this.

The K80’s relative peak performance is only around 15% for single precision
(SP) and around 18% for double precision (DP) whereas the P100 reaches 46%
(SP) and 28% (DP). As loading to shared memory is not optimally realized, we
attribute this difference to the P100 having more registers per thread and more
shared memory than the K80, thus more blocks can run concurrently which bet-
ter hides memory latencies. Although SP values need half the space of DP the
K80 has three times more SP units than DP, thus the SP version needs to load
more memory for all scheduled blocks, which leads to performance degradation,
which is not the case for the P100 with only two times more SP than DP units.
Another problem of the algorithmic implementation (but not of Alpaka) is that
the index arithmetics lead to a unfavorable ratio of integer to floating point oper-
ations, thus degrading FPU utilization. We emphasize that platform-dependent
memory access optimizations are within the responsibility of the user code when
using Alpaka.

The Haswell architecture shows a different behavior than all other systems
for SP where the peak performance has its peak at N = 2048 and then slowly
decreases. For N = 2048 matrices A and B use only 32 MB which fits into the
L3 cache of one Haswell CPU (see Table 3 2), thus accelerating memory access.

6 Conclusion

Within the scope of this work we have shown that portable single-source C++11
code using Alpaka can run on current many-core architectures without chang-
ing any line inside the algorithmic relevant part of the source code, seeing good
floating point performance for the most recent systems when reasonably design-
ing the code for exploiting many-core parallelism. We find that optimizing the
number of hardware threads and the tile size for a simple GEMM algorithm
leads to considerable increase in performance that can be well explained by the
architectural characteristics and is independent of the Alpaka abstractions.

This becomes evident when analyzing the effects of vendor-specific com-
piler optimization. These do not only show that expected optimizations such
as autovectorization, loop unrolling and the use of fused multiply adds are per-
formed using Alpaka but that for bleeding edge hardware like Intel KNL, Nvidia
P100 and IBM Power8 using vendor compilers gives a significant boost in per-
formance.

When using vendor-specific compilers with appropriate optimization flags
and #pragma statements we are able to come close to 50% of the expected peak
floating point performance on the Nvidia P100 and IBM Power8 architectures,
and in addition could increase the performance on well known architectures like
Haswell by about five percentage points. We can thus conclude that the abstract

512 A. Matthes et al.

parallel redundant hierarchy interface introduced by Alpaka does not prevent
compiler optimization and tuning. However, we also find that the performance
gains observed heavily depend on the target architecture and software environ-
ment available. We express our hope that the implementation of modern C++
support in compilers relevant for high performance computing will foster the
approach we take to performance portability with Alpaka.

Our analysis shows that for some architectures such as Intel’s KNL more
tuning parameters have to be included in order to achieve optimum results for
certain problem sizes when optimizing with vendor-specific compilers. For future
applications this potentially increases the time it takes for tuning a code, making
tuning itself a compute- and memory-intensive task.

We clearly find that most modern vendor-specific compilers, with the promi-
nent exception of IBM’s XL compiler, are able to create highly optimized code
for their target architecture from the Alpaka GEMM implementation. This
shows that with Alpaka writing abstract, single-source C++ code with close-to-
zero overhead is possible on todays high performance many-core architectures,
demonstrating that code abstraction for sake of portability and architecture-
specific tuning do not contradict each other.

References

1. AMD: HIP DATA SHEET - It’s HIP to be Open, November 2015, https://gpuopen.
com/wp-content/uploads/2016/01/7637 HIP Datasheet V1 7 PrintReady US
WE.pdf. Accessed 11 April 2017

2. Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm,
U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: Picongpu: a fully relativistic
particle-in-cell code for a gpu cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839
(2010)

3. Bussmann, M., Burau, H., Cowan, T.E., Debus, A., Huebl, A., Juckeland, G.,
Kluge, T., Nagel, W.E., Pausch, R., Schmitt, F., Schramm, U., Schuchart, J.,
Widera, R.: Radiative signatures of the relativistic kelvin-helmholtz instability.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC 2013, NY, USA, pp. 5:1–5:12 (2013), http://
doi.acm.org/10.1145/2503210.2504564

4. Dagum, L., Menon, R.: Openmp: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

5. Eckert, C., Zenker, E., Bussmann, M., Albach, D.: Haseongpu - an adaptive, load-
balanced mpi/gpu-code for calculating the amplified spontaneous emission in high
power laser media. Comput. Phys. Commun. 207, 362–374 (2016)

6. Edwards, H.C., Trott, C.R.: Kokkos: enabling performance portability across
manycore architectures. In: 2013 Extreme Scaling Workshop (XSW 2013), pp. 18–
24. IEEE (2013)

7. Khronos Group: The opencl specification - Version 2.1, 11 November 2015, https://
www.khronos.org/registry/cl/specs/opencl-2.1.pdf. Accessed 23 March 2017

8. Gumhold, S.: Lecture “Scientific Visualization” (2011)
9. Hernandez, O.: Overview of the Power8 Architecture (2016), https://indico-jsc.

fz-juelich.de/event/24/session/24/contribution/0/material/slides/. Accessed 24
March 2017

https://gpuopen.com/wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.pdf
https://gpuopen.com/wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.pdf
https://gpuopen.com/wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.pdf
http://doi.acm.org/10.1145/2503210.2504564
http://doi.acm.org/10.1145/2503210.2504564
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
https://indico-jsc.fz-juelich.de/event/24/session/24/contribution/0/material/slides/
https://indico-jsc.fz-juelich.de/event/24/session/24/contribution/0/material/slides/

Tuning and Optimization for a Variety of Many-Core Architectures 513

10. Hornung, R., Keasler, J., et al.: The Raja Portability Layer: Overview and Status.
Lawrence Livermore National Laboratory, Livermore (2014)

11. Intel Corporation: Intel Threading Building Blocks, https://www.
threadingbuildingblocks.org/. Accessed 12 April 2017

12. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance
Programming Knights Landing Edition. Morgan Kaufmann, 1 July 2016

13. Khronos OpenCL Working Group SYCL subgroup: Sycl specification - Version 1.2.,
8 May 2015, https://www.khronos.org/registry/sycl/specs/sycl-1.2.pdf. Accessed
23 March 2017

14. Li, J., Li, X., Tan, G., Chen, M., Sun, N.: An optimized large-scale hybrid DGEMM
design for CPUs and ATI GPUs. In: Proceedings of the 26th ACM International
Conference on Supercomputing, pp. 377–386. ACM (2012)

15. Matthes, A., Widera, R., Zenker, E., Worpitz, B., Hübl, A., Bussmann, M.: Matrix
multiplication software and results bundle for paper Tuning and optimization for a
variety of many-core architectures without changing a single line of implementation
code using the Alpaka library for P∧3MA submission, April 2017, https://doi.org/
10.5281/zenodo.439528

16. Meuer, H.W., Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: November 2016
— TOP500 Supercomputer Sites, November 2016

17. Microsoft Corporation: C++ amp : language and programming model - Ver-
sion 1.2, December 2013, http://download.microsoft.com/download/2/2/9/
22972859-15c2-4d96-97ae-93344241d56c/cppampopenspecificationv12.pdf.
Accessed 23 March 2017

18. Newman, B.: Intel Xeon E5–2600 v3 “Haswell” Processor Review — Microway,
8 September 2014, https://www.microway.com/hpc-tech-tips/intel-xeon-e5-2600-
v3-haswell-processor-review/. Accessed 24 March 2017

19. Nvidia: Tesla K80 HPC and Machine Learning Accelerator (2014), https://www.
nvidia.com/object/tesla-k80.html. Accessed 23 March 2017

20. Nvidia: Tesla P100 Most Advanced Data Center Accelerator (2016), https://www.
nvidia.com/object/tesla-p100.html. Accessed 23 March 2017

21. Nvidia Corporation: NVIDIAs Next Generation - CUDA Compute Architecture:
Kepler GK110/210. Whitepaper (2014)

22. Nvidia Corporation: NVIDIA Tesla P100 - The Most Advanced Datacenter Accel-
erator Ever Built. WP-08019-001 v01.1., May 2016

23. Nvidia Corporation: NVIDIA CUDA C Programming Guide Version 8.0., Jan-
uary 2017, http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf.
Accessed 23 March 2017

24. OpenACC-Standard.org: The OpenACC Application Programming Interface -
Version 2.5, October 2015, http://www.openacc.org/sites/default/files/OpenACC
2pt5.pdf, Accessed 23 March 2017

25. Wong, M., Andrew, R., Rovatsou, M., Reyes, R.: Khronos’s OpenCL SYCL to
support Heterogeneous Devices for C++, 12 February 2016, http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf. Accessed 23 March 2017

26. Zenker, E.: Graybat - Graph Approach for Highly Generic Communication
Schemes Based on Adaptive Topologies, 5 March 2016, https://github.com/
ComputationalRadiationPhysics/graybat

27. Zenker, E., Widera, R., Huebl, A., Juckeland, G., Knüpfer, A., Nagel, W.E.,
Bussmann, M.: Performance-portable many-core plasma simulations: porting
PIConGPU to OpenPower and beyond. In: Taufer, M., Mohr, B., Kunkel, J.M.
(eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 293–301. Springer, Cham
(2016). doi:10.1007/978-3-319-46079-6 21

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://www.khronos.org/registry/sycl/specs/sycl-1.2.pdf
https://doi.org/10.5281/zenodo.439528
https://doi.org/10.5281/zenodo.439528
http://download.microsoft.com/download/2/2/9/22972859-15c2-4d96-97ae-93344241d56c/cppampopenspecificationv12.pdf
http://download.microsoft.com/download/2/2/9/22972859-15c2-4d96-97ae-93344241d56c/cppampopenspecificationv12.pdf
https://www.microway.com/hpc-tech-tips/intel-xeon-e5-2600-v3-haswell-processor-review/
https://www.microway.com/hpc-tech-tips/intel-xeon-e5-2600-v3-haswell-processor-review/
https://www.nvidia.com/object/tesla-k80.html
https://www.nvidia.com/object/tesla-k80.html
https://www.nvidia.com/object/tesla-p100.html
https://www.nvidia.com/object/tesla-p100.html
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf
https://github.com/ComputationalRadiationPhysics/graybat
https://github.com/ComputationalRadiationPhysics/graybat
http://dx.doi.org/10.1007/978-3-319-46079-6_21

514 A. Matthes et al.

28. Zenker, E., Worpitz, B., Widera, R., Huebl, A., Juckeland, G., Knüpfer, A., Nagel,
W.E., Bussmann, M.: Alpaka-an abstraction library for parallel kernel accelera-
tion. In: 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops, pp. 631–640. IEEE (2016)

An Embedded Domain Specific Language
for General Purpose Vectorization

Przemys�law Karpiński1,2(B) and John McDonald2

1 CERN, The European Organization for Nuclear Research,
1211 Geneva 23, Switzerland

przemyslaw.karpinski@cern.ch
2 Maynooth University, Maynooth, Co Kildare, Ireland

Abstract. Portable SIMD code generation is an open problem in mod-
ern High Performance Computing systems. Performance portability can
already be achieved, however it might fail when user-framework interac-
tion is required.

Of all portable vectorization techniques, explicit vectorization, using
wrapper-class libraries, is proven to achieve the fastest performance, how-
ever it does not exploit optimization opportunities outside the simplest
algebraic primitives. A more advanced language is therefore required,
but the design of a new independent language is not feasible due to its
high costs.

This work describes an Embedded Domain Specific Language for solv-
ing generalized 1-D vectorization problems. The language is implemented
using C++ as a host language and published as a lightweight library. By
decoupling expression creation from evaluation a wider range of prob-
lems can be solved, without sacrificing runtime efficiency.

In this paper we discuss design patterns necessary, but not limited, to
efficient EDSL implementation. We also study specific scenarios in which
a language-based interface can surpass procedural interfaces in both effi-
ciency, portability and ease of use. In particular we demonstrate higher
performance when compared with equivalent BLAS Level 1 routines.

Keywords: Vectorization · SIMD · EDSL · Performance · Portability ·
Programmability

1 Introduction

In this paper we present an Embedded Domain Specific Language (EDSL) for
explicit vectorization. This work extends Unified Multi/Many-Core Environment
(UME) [13] framework with the expression template based mechanism to provide
an additional level of abstraction over different SIMD and SIMT architectures.

We start our discussion with an overview of current state-of-art, focusing
on selected techniques and their usage. We also discuss problems arising from
routine-based vectorization interfaces.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 515–537, 2017.
https://doi.org/10.1007/978-3-319-67630-2_37

516 P. Karpiński and J. McDonald

Next we present our abstract vector language and show how this type of
abstraction can reduce overall code complexity, as well as improve code read-
ability and make it easier to comprehend.

Then we discuss how such a language can be implemented for CPU-based
computations, without the need for a costly, custom compilation toolchain. We
also discuss specific problems of portable SIMD code generation.

The discussion is continued with a presentation of selected C++ techniques
useful for solving issues of performance bottlenecks arising between frameworks
and application codes. Specifically we present a technique for compile-time coa-
lescence between user, and framework defined kernels.

We then present a concept of custom evaluation schemes, capable of handling
more complex statement classes. This concept is necessary for providing high
language expressibility without losses in performance.

The discussions described above are followed by a performance compari-
son of vector code kernels and their equivalent implementation using an EDSL
approach.

Finally we discuss scenarios in which this approach might fail, as well as
some of practical limitations flowing from the current C++ specification and
compliant compilers.

The main contribution of this paper is a concept of decoupling expression
graph creation and machine code generation scheme. We show that more than
one evaluator class is required in order to handle arbitrary vector statements.
We also present selected evaluation schemes for handling non-trivial expres-
sions. A secondary contribution is a discussion of design patterns useful for
both evaluator creation and for interaction between framework and end-user
code. In particular we show that user defined expressions can be coalesced with
external solvers thus improving machine code quality. We also investigate sce-
narios in which expression-based vector processing can be more efficient than
routine based approaches, with simultaneous improvement in code readability
and portability. All our considerations are demonstrated by UME::VECTOR,
an open source library that provides an existing implementation of the vector
language [11].

1.1 Prior Work

Evaluation of SIMD programming models performed by [17] showed that explicit
vectorization gives the best performance when compared to compiler auto-
vectorization. We presented a design for this approach [13] that makes the con-
cept of an abstract SIMD vector more portable, and using masking as a primary
mechanism for control flow. As we discuss further this approach for SIMD code
generation has multiple drawbacks. In this paper, we explain how to overcome
these difficulties, with minimal losses in expressibility.

The approach presented here is strongly based on the expression templates
(ET) technique [18,20]. Work presented by Härdtlein et. al. [7] demonstrated an
approach in which the expression templates can be either made easier to imple-
ment or faster in terms of runtime performance. In this work we simplify this idea

An Embedded Domain Specific Language for General Purpose Vectorization 517

by implementing an ET generator which allows us to propagate design changes
in ET without the need for manual code changes. This approach allows simpli-
fications in ET design, without relying on complex template-metaprogramming
techniques needed otherwise, and exploited by libraries such as boost::proto [15]
and NT2 [2].

Creating Embedded Domain Specific Languages has been explained already
in [8] but without considerations for performance. In [2] the authors deal with
parallelization schemes for ET graphs, but the topic of efficient SIMD code gen-
eration is not explained there in detail. We discuss this topic and show what
trade-offs are required between expressibility and ease of use when fine granu-
larity of code generation is required.

Using expression templates for EDSL design for linear algebra package design,
has been already demonstrated multiple times for instance in [6,21]. They both
explore in detail the topic of user-interface for matrix-based computations but
focus only on matrix computations, with more object-oriented approach for data
storage and compute flow. We present a generic set of vector primitives suited to
a wider class of array processing problems and discuss further situations where
this programming model can improve portability and performance, and reduce
software efforts.

1.2 Selected Problems

A basic motivation for this work comes from a practical situation that we
observed in GeantV, a particle detector simulator developed at CERN [1]. The
main goals of the project are to improve performance of simulations by exploit-
ing multi-threading and vectorization capabilities of modern HPC systems. Since
the High Energy Physics(HEP) community is largely fragmented in terms of the
type of computational resources available, the framework has to retain very high
portability. As a framework it is also expected to provide components that can
be re-used for wide variety of fields including HEP, medical imaging, aeronautics
and others, meaning that the interface flexibility is an important design issue.

For the GeantV project, a decision was made to use an explicit SIMD library
for efficient machine code generation. The feasibility of this approach was already
discussed in [13,17]. A problem arising from this solution is, that the framework
code has to implement the iterative structure around the data sets, as presented
in Listing 1.1. In the simplest case, the framework developers need to write both
SIMD and scalar versions of the same kernel. An alternative for loop peeling
is to only use data buffers of lengths that are multiples of hardware supported
SIMD strides. Both approaches require additional effort from developers to either
duplicate the functionality by providing both scalar and SIMD versions of the
same kernel, or to make sure that data sets are padded properly, so that only
the SIMD version of the kernel is required. As we explained before in [13] the
problem of code duplication can be solved by extending the scalar typeset with
support for a vector interface, where certain vector operations become identities
for 1-element vectors. Code Listing 1.2 shows both a peel loop and a remainder
loop implemented using a templated version of such a kernel. Thanks to compiler

518 P. Karpiński and J. McDonald

optimizations, the codes generated by compilers are the same in both situations,
with the latter one requiring only a single framework kernel implementation.

Listing 1.1. Loop peeling for correct explicit SIMD-ization. Peel loop and remainder
loop require different kernels.

template<int SIMD LENGTH>
void framework func (f loat ∗ input0 ,∗ input1 , f loat ∗output , int LENGTH){
int REMAINDER OFF = (LENGTH/SIMD LENGTH)∗SIMD LENGTH;

for (int i =0; i<LENGTH; i+=SIMD LENGTH) {
SIMD kernel<SIMD LENGTH>(&input0 [i] ,& input1 [i] ,& output [i]) ; // E x e c u t e p e e l l o o p

}
for (int i=REMAINDER OFF; i<LENGTH; i++) {

s c a l a r k e r n e l (input0 [i] , input1 [i] ,& output [i]) ; // E x e c u t e r em a i n d e r l o o p
}

}

Listing 1.2. Loop peeling with SIMD-1. Both peel and remainder loops use the same
kernel definition.

template<int SIMD LENGTH>
void framework func (f loat ∗ input0 ,∗ input1 , f loat ∗output , int LENGTH)
{
int REMAINDER OFF=(LENGTH/SIMD LENGTH)∗SIMD LENGTH;

for (int i =0; i<LENGTH; i+=SIMD LENGTH) {
// E x e c u t e p e e l l o o p
SIMD kernel<SIMD LENGTH>(&input0 [i] ,& input1 [i] ,& output [i]) ;

}
for (int i=REMAINDER OFF; i<LENGTH; i++) {

// E x e c u t e r em a i n d e r l o o p
SIMD kernel<1>(input0 [i] , input1 [i] ,& output [i]) ;

}
}

Even with the scheme described above, the framework has to provide a set of
SIMD kernel implementations, as well as as set of wrapper functions frame-
work func to expose a SIMD-agnostic interface to the end user. The user code
would then make a series of invocations similar to one presented at Listing 1.3. In
this kind of a situation, the user requests execution of specific fast kernels, devel-
oped as part of a domain specific framework. A potential performance problems
arise in this situation. If the data buffers are big enough to exceed the cache size,
the temporary data resulting from call to framework func 1 might be pushed
out from cache towards slower memory, before a call to framework func 2 hap-
pens. In that case, data locality is not preserved, and therefore computational
resources might not be utilised efficiently.

Listing 1.3. User and framework code interaction.

void use r func (f loat ∗ input0 , ∗ input1 , ∗ input2 , f loat ∗output , int LENGTH){
f loat ∗ tmp = new f loat [LENGTH] ; // a l l o c a t e a t em p o r a r y b u f f e r f o r i n t e r m e d i a t e

f ramework func 1 (input0 , intput1 , tmp ,LENGTH) ;
framework func 2 (tmp , input2 , output ,LENGTH) ;

delete [] tmp ;
}

Similar scenarios can lead either to significant performance losses or to users
developing custom kernels of code and effectively replicating work already per-
formed by framework developers. In very optimistic scenarios, framework devel-
opers can design custom functions for instance to merge the functionality of
functions framework func 1 and framework func 2. Unfortunately this will

An Embedded Domain Specific Language for General Purpose Vectorization 519

only happen when there is enough direct feedback from users to framework devel-
opers, when there is an existing business need to do so, and if it doesn’t explode
the size of framework code. In most situations such an approach cannot be used.

Listing 1.4. Scalar solver for 4-th order Runge-Kutta method.

// User−d e f i n e d f u n c t i o n t o b e p a s s e d
// t o RK−4 me t hod a s t h e ‘ f u n c ’ p a r am e t e r
f loat u s e r f u n c s c a l a r (f loat x , f loat y){

return 5 .0 f ∗x∗x/exp (x+y) ;
}
// . . .
f loat f ramework RK4 so lver sca lar (f loat x , f loat y , f loat dx , USER FUNC &func){

f loat hal fdx=dx ∗0.5 f ;
f loat k1=dx∗ func (x , y) ;
f loat k2=dx∗ func (x+halfdx , y+k1∗hal fdx) ;
f loat k3=dx∗ func (x+halfdx , y+k2∗hal fdx) ;
f loat k4=dx∗ func (x+dx , y+k3∗dx) ;
return y+(1.0 f /6 .0 f)∗(k1+2.0 f ∗k2+2.0 f ∗k3+k4) ;

}

Another kind of problem can be visualised by an example shown in List-
ing 1.4. In this example, the framework implements a domain specific algorithm
for calculating Runge-Kutta method. The problem that we can identify quickly,
is that the user defined function func is not known at the time of framework
development. For this reason the framework cannot assure the users that this
function will be properly inlined to avoid excessive function calls, nor that it will
be properly SIMD-ized, as the function defined by the user might not be sub-
ject to vectorization. An alternative would be to force the users to write their
functions using an explicit SIMD library already exploited by the framework.
An example of such interaction is presented in Listing 1.5. In this example the
users need to be fully aware of the concept of SIMD computations. The direct
benefit of this approach is that there is no performance penalty from SIMD
under-utilisation, however the function might still not be inlined properly. In
addition to that, the users still might need to implement a scalar duplicate of
their function, to be used with the rest of their code. Also there is no guarantee
that current explicit SIMD approaches will retain their portability over future
SIMD hardware, forcing the users to write possibly less-portable code.

Listing 1.5. Explicit SIMD solver for 4-th order Runge-Kutta method.

// User−d e f i n e d f u n c t i o n t o b e p a s s e d t o RK−4 me thod a s t h e ‘ f u n c ’ p a r am e t e r
SIMD<f loat ,8> user func SIMD (SIMD<f loat ,8> &x , SIMD<f loat ,8> &y){

return 5 .0 f ∗x∗x / (x+y) . exp () ;
}
. . .
SIMD<f loat ,8> f ramework RK4 so lver sca lar (SIMD<f loat ,8> &x , SIMD<f loat ,8> &y ,

f loat dx , USER FUNC &func){
SIMD<f loat ,8> dx vec (dx) ;
SIMD<f loat ,8> ha l fdx vec (dx ∗0.5 f) ;
SIMD<f loat ,8> k1=dx∗ func (x , y) ;
SIMD<f loat ,8> k2=dx∗ func (x+halfdx , y+k1∗hal fdx) ;
SIMD<f loat ,8> k3=dx∗ func (x+halfdx , y+k2∗hal fdx) ;
SIMD<f loat ,8> k4=dx∗ func (x+dx , y+k3∗dx) ;
return y+(1.0 f /6 .0 f)∗(k1+2.0 f ∗k2+2.0 f ∗k3+k4) ;

}

2 Vector EDSL Overview

Given the issues detailed in the previous section we would argue that there
is a clear need for a more expressive way to communicate between user and

520 P. Karpiński and J. McDonald

framework codes. We could imagine such communication happening by a user
expressing an intent for a more complex aggregation of framework primitives
(routines), and by frameworks making decisions as late as possible about the
final machine code to be executed. This concept of Lazy evaluation is already
being explored for higher level parallelism, for example in [10], however it cannot
be applied for efficient code generation at instruction level. The main problem
is the requirement for the higher-level code to be presented in a form that is
statically deductible. That is, the decision about the specific instruction to be
generated, must be made at the compile time. Hence, this lazy code generation
applies currently at the level of low-level programming languages and is handled
by compilers.

Development of a new language, and a corresponding compiler, is not a fea-
sible solution for a lazy SIMD code generation, as it would require replication
of work already done at the level of compiler toolchains and core libraries. An
equivalent effort put into extension of C++ language and compliant compilers
could bring more benefits, than re-designing a new language just to exploit this
specific hardware feature. Recent developments in C++ language standard made
it more feasible to use Expression Templates as a way to provide a library with
compiler-like capabilities [19]. Specific meta-programming features, such as auto-
matic type deduction, variadic templates, move semantics and constant expres-
sions allow providing more static (compile-time) information to the compiler,
enabling it to generate more efficient machine code. By operator overloading
expression templates also allow creation of more intuitive interfaces.

In this paper we present UME::VECTOR which provides a C++ based imple-
mentation of EDSL dedicated for handling 1-dimensional vectors, focusing on
efficient SIMD code generation. The language provides a set of types represent-
ing scalars and vectors of scalar elements, and a set of basic operations applicable
to these types.

2.1 Typeset

Listing 1.6 shows basic declarations for terminal types. The basic requirement
is made that the size of a vector needs to be passed at the latest moment of
vector declaration. The rationale behind this requirement is, that the operations
between vectors are possible only if specific requirements on vector lengths are
correct in terms of the arithmetic operations to be executed. The fundamental
type of packed elements is passed as a template parameter. This requirement is
in line with standard C++ conventions, and it is driven by static deductibility
requirement.

In the given example, vectors a and b are initialized using external memory
locations owned and managed by user code. By binding the memory region
to vector primitives it is possible to decrease both the memory footprint and
execution time. Since the vector primitive does not own any memory location,
no additional allocations have to be performed. If such an allocation would have
to be handled, the data from the original location would still have to be copied

An Embedded Domain Specific Language for General Purpose Vectorization 521

to new location, requiring significant amount of time if a specific computational
kernel has to be executed repetitively.

In some cases the user might want to have a dedicated memory region, used
for the storage of vectors, e.g. for temporaries. It is possible for the user to pass
a specific allocator type to be used to handle specific memory region allocations.
Since the language cannot make extensive assumptions about specific execution
environment and target platform, the possibility to allocate memory in the spe-
cific memory regions, such as high bandwidth memory, is required. Since the
method of allocation, or specific external tools required might differ depending
on the user platform, it is up to the user to choose a proper allocator. The
information about specific vector storage locations can be used by an expres-
sion evaluator to perform additional memory-based optimizations. At the same
time a default allocation mechanism is provided to facilitate ease of use in the
simplest scenarios.

Listing 1.6. Declaration of terminals.

f loat raw a [1 0 0 0] ;
int raw b [1 2 3] ;
bool raw mask [1 0 0 0] ;

UME: :VECTOR: : Vector<f loat> a (1000 , raw a) ;
UME: :VECTOR: : Vector<int> b(123 , raw b) ;
UME: :VECTOR: : Vector<f loat , u s e rA l l ocator> c (1000) ;

// V e c t o r i s r e s p o n s i b l e f o r memory management .
UME: :VECTOR: : Scalar<f loat> pi (3 . 1 4) ;
UME: :VECTOR: : Mask mask (1000 , raw mask) ;

Listing 1.6 presents also a declaration of a Scalar<float> type. Since C++
already provides a mechanism, for scalar declarations, the standard scalar types
can be used in user defined formulas instead. Any C++ scalar variable and con-
stant will be automatically converted to a corresponding Scalar<> type when
used in such a formula. The main reason behind this wrapping of scalar types is
that different semantic rules apply for C++ fundamental and non-fundamental
types. Creating a scalar wrapper allows more uniform handling of 1-D vectors
and scalars within a language implementation. The second reason is, that a
wrapped scalar type is derived from the same interface as the Vector types and
composite expressions. As a result the same invocation conventions and inter-
faces can be used to handle both scalar variables and vector variables within the
library implementation. Awareness of the Scalar type might be important for
handling some minor corner-cases in user code, and is critical for the situations
when a custom, user-defined evaluator is developed. We will discuss the topic of
evaluators in Sect. 3.

The last type in Listing 1.6 is a Mask type. A mask, or a predicate vector, is
a vector of elements responsible for conditional evaluation of an expression. The
concept has been already discussed in [13,14] with the rationale of masks already
being an integral part of existing instruction sets [9,16]. The vector EDSL does
not provide any block level control flow, such as if-else or for statements. The
only way of providing an efficient handling of conditional executions is by the
means of mask types. For the purpose of C++ compatibility, a mask vector
should be considered as a vector of packed boolean variables used for selective
execution of specified operations.

522 P. Karpiński and J. McDonald

2.2 Syntax

The most natural way of providing language extensions in C++ can be done
using the operator overloading mechanism. Overloaded operators offer the capa-
bility of changing the default meaning of supported unary and binary operators,
and provide a custom evaluation scheme for a new operation. There are couple
of issues that have to be overcome when dealing with operator overloading in
terms of performance and expressibility.

First of all, an operator is essentially a function. For efficiency reasons, exces-
sive function calls have to be avoided. In the case of the vector language each
overloaded function relates roughly to a single CPU instruction, therefore func-
tion calls have to be completely avoided. C++ offers the inline keyword to
inform the compiler that a given function (or an operator) should not gener-
ate a corresponding stack frame, however due to the fact that inline is only a
hint, there is no guarantee on compiler behaviour. Luckily most of the compilers,
including open-sourced GNU GCC and Clang++, support additional function
attribute to force inlining. We use this non-standard keyword wrapped as a
portable macro to pass our stronger intent to compilers.

The second problem is, that at the moment C++ only permits a limited
number of operators to be overloaded. As we already pointed out in [13] the
number of available operators is not sufficient for expressive SIMD vectorization.
There is also no possibility to overload the ternary operator (<mask >? <true-
exp >: <false-exp >), required for binary operations using the optional mask
operand. This made it necessary to develop an alternative interface. We therefore
use a Member Function Interface (MFI) to provide the user with a mechanism
to express all operations with a uniform interface. At the same time, we also
allow users to use the classical operator form to facilitate easier expressibility
for operations for which it is possible. Listing 1.7 shows few examples of how the
user can write down specific expressions. In case of MFI operations, the operand
on the left of . operator is treated as an implicit operand.

As can be observed, some of the operations do not have a corresponding C++
operator. MFI offers a wider and more uniform interface. As we pointed out
already in [13], the MFI function calls can be easily mapped to C-like functions
without further losses in portability and performance. We reserve this type of
language syntax for future library releases.

Listing 1.7. Syntactic conventions of vector language.

\\ Operator syntax
a=b+c ;
\\ Masked syntax with MFI
a=b . add (mask , c) ;
\\ Ternary operat ion with MFI
a=b . fmuladd (c , d) ;
\\ Binary de s t ru c t i v e add i t i on (+=)
a . adda (b) ;
\\ Operations can be nested i f neces sary
c=b . add (a > 0 , d ∗ e) ;

Element-Wise Operations. The set of arithmetic operations consists of the
ones already defined by the C++ standard but generalized for vectors of packed

An Embedded Domain Specific Language for General Purpose Vectorization 523

scalars. As already mentioned most of the arithmetic operations accept required
Vector and arithmetic expression operands, and return an arithmetic expression
or, in case of comparison operations, a logical expression. Similarly all logical
operations accept Mask and logical expressions and return a logical expression.
Except for comparison instructions, all arithmetic operations accept an optional
mask operand.

A subset of arithmetic operations called destructive operations allow the
operation to modify one of the operands. A C++ equivalent of such operations
would be to use assignment operators, such as ‘+=’ or ‘\=’. Since use of an
assignment operator with a left hand vector is considered to be an evaluation
trigger, that is an operation forcing expression evaluation, its use would prohibit
nesting of destructive operations within expressions. From the performance per-
spective however, nesting these operation within composite expressions allow us
to improve data locality. Therefore destructive operations need to be accessed
using MFI interface, if they are meant to be used as parts of an expression. An
example can be reviewed in Listing 1.8. In the second case of that listing, the
destructive operation is performed on operand ‘c’ before its value is passed for
evaluation of the rest of the expression. Since a destructive operation can only be
applied to a proper l-value, a compile-time error will occur when the operation
is applied on a r-value type.

Listing 1.8. Using destructive operations.

\\ bas i c d e s t r u c t i v e operat ion (/=)
a/=b ;
\\ Nested de s t ru c t i v e operat ion (+=)
\\ Both ’ a ’ and ’ c ’ are modi f ied .
a = b + c . adda (d) ;

Control Flow. As mentioned before, masking is the only way to perform control
flow in this language. An example of a masking operation has already been
presented in Listing 1.7. For MFI functions, the optional mask operator is always
the first parameter.

A mask can be either loaded by the user in the process of binding with a bool
array, or obtained as a result of one of the arithmetic comparison instructions.
The comparison operations can be expressed using either one of the relational
operators, or an equivalent MFI function. The class of logical expressions does
not accept an optional mask parameter, as it accepts and returns a mask para-
meter only. Masking of a logical operation can therefore be performed using an
additional .land (Logical AND, or &&) operation.

When a masked operation is executed, its effect is applied only for the ele-
ments where the mask value was equivalent to ‘true’. We don’t specify how an
implementation should treat the masks within an expression, as such assump-
tions might impact the performance on specific platforms. We only make a
requirement on the final persistent result of the operation. In that sense, a
masked operation has to operate ‘as if’ it was propagated towards the evaluation
destination (left hand side of the“=”operator) and through specific destructive

524 P. Karpiński and J. McDonald

operations. This soft requirement offers optimization opportunities for platform
specific evaluators’ implementations.

Reduction Operations. A set of operations converting a vector type into
a fundamental-castable type is called a reduction operation. At the same time
applying a reduction operation on a Scalar<T> will be considered an identity
operation. Reductions are an important class of basic problems, as they already
have their reflection in existing instruction sets. On the other hand, reduction
operations are not as trivial to parallelize as element-wise operations. Since a
reduction operation requires traversal of all elements of a vector, or evaluation
of sub-expression forming such vector, it might create a performance bottleneck.
For that reason reductions might require a specialized implementation. A classi-
cal way of providing a serial reduction operation in C/C++ consists of iterating
over an array of elements, and performing a partial reduction in each iteration.
Implemented as such, reductions might require a small number of additional
lines of code to be expressed.

By making basic reduction operations accessible using the MFI interface,
it is possible to make the user code more compact, and easier to read. At the
same time writing more complex reduction operations can be implemented using
existing horizontal operations, and basic reduction operations. Listing 1.9 shows
the example implementation of an infinity norm applied between two vectors.

A complete list of operations available as part of the language is subject to
frequent changes, therefore we refer the reader to the implementation website
[11] for further reading.

Listing 1.9. Using max-reduction to calculate infinity norm between two vectors.

// I n i f i n i t y norm c a l c u l a t i o n u s i n g v e c t o r EDSL :
e r r = ((a−b) . abs ()) . hmax () ;
. . .
// The same i n t e n t e x p r e s s e d u s i n g s c a l a r C++ c o d e :
e r r = 0 .0 f ;
for (int i =0; i<LEN; i++) {

f loat d i f f=abs (a [i]−b [i]) ;
i f (d i f f >e r r) e r r=d i f f ;

}

3 EDSL Implementation

While we don’t limit the possibility of implementing our vectorization EDSL to
any type of interpreted or compiled languages, it was designed primarily to be
implemented using a library approach. As the implementation required has to
be able to reach very high performance without sacrificing usability, we find it
important to discuss specific design patterns and techniques used. Most of these
techniques can be adopted to user codes to reach more flexible and efficient
designs.

We find two existing design patterns to be critical for our design: Expres-
sion Templates (ET) and Curiously Recurring Template Pattern (CRTP). Both
patterns are already well established and can be referred to in [18]. In our case

An Embedded Domain Specific Language for General Purpose Vectorization 525

ET pattern is important, as it gives the ability to construct expression graphs
with minimal overhead, and handle them using a lazy evaluation approach. The
CRTP technique is used as a basis not only for ET creation, but also as a core
technique for advanced patterns and for expression evaluator creation. Its biggest
advantage is that it allows generation of machine codes specialized for specific
expressions.

3.1 Additional Design Patterns

We would like to present few additional design patterns that show flexibility
of the embedded language, and its compiler-like nature. We discuss these pat-
terns on simple examples, however we would like to point out that the their
applicability is not limited to such.

Static Expression Visitor Pattern. A visitor pattern, such as described in
[4] is useful for recursive traversal of a tree-like graph. The visitor pattern has
the advantage of being separate from the graph structure definition and allows
both introspection and modification of graphs. Since the ET pattern creates a
static graph, there is no need for virtual function dispatch. Instead, the visitor
class takes the form of a template class with the type of expression treated as
a specialization parameter. Such a functor might still need to perform certain
operations at runtime as some information, such as exact memory locations, is
not available at compilation time. Because the graph traversal order is known
at compile time visit methods can be inlined, possibly decreasing the runtime
overhead.

Listing 1.10 shows an example of Static Expression Visitor pattern with the
purpose of printing a specific instance of an expression. We found this technique
particularly useful when debugging EDSL code, as mangled names for nested
types are difficult to analyse.

Static Transformation Pattern. The Static Expression Visitor pattern, can
be further used to implement Static Transformations of expressions. We don’t
provide a detailed exploration of the requirements here, or an effective complex
implementation of this pattern, but only show that a basic variation can be
constructed and applied easily.

In the example given in Listing 1.11, an expression A*B is being transformed
into an expression A+B. As the traversal happens using type recursion, it is
possible to apply this pattern for a complex expressions, to replace all occur-
rences of a given expression structure with a different one. The transformation
happens at compilation time so no runtime overhead is introduced.

526 P. Karpiński and J. McDonald

Listing 1.10. Expression printing is a simple way to debug ET code.
template<typename EXP>
c lass Expres s ionPr inte r {
public :

// C o n s t r u c t t h e v i s i t o r f r om
// s p e c i f i c e x p r e s s i o n i n s t a n c e
Expres s ionPr inte r (EXP exp){ v i s i t (exp) ; }
. . .
// V i s i t a t e r m i n a l
template<typename SCALAR T>
FORCE INLINE void v i s i t (FloatVector<SCALAR T> exp){

std : : cout<<”Vector (”<<exp : :LENGTH()<<”) ”<<&exp . e lements [0]<<”\n” ;
}
. . .
// R e c u r s i v e l y p r i n t ADD e x p r e s s i o n
template<typename SCALAR T, typename E1 , typename E2>
FORCE INLINE void v i s i t (ArithmeticADDExpression<SCALAR T,E1 ,E2> exp){

std : : cout <<”ADD:\n” ;
v i s i t (exp . e1) ; // V i s i t c h i l d r e n
v i s i t (exp . e2) ;

}
. . .

} ;
. . .
// P r i n t e x p r e s s i o n
Expres s ionPr inte r p r i n t e r (myExpression) ;
. . .

Listing 1.11. An example on how to transform one expression into another.
// R e p l a c e a MUL(E1 , E2) node
// w i t h an ADD(E1 , E2) node
template< typename SCALAR TYPE, typename E1 , typename E2>
FORCE INLINE ArithmeticADDExpression<SCALAR TYPE,E1 , E2>

transform (ArithmeticMULExpression<SCALAR TYPE,E1 , E2> exp)
{

// C o n s t r u c t a r e p l a c e m e n t e x p r e s s i o n u s i n g sub−e x p r e s s i o n n o d e s o f ‘ e x p ’
return ArithmeticADDExpression<SCALAR TYPE,E1 , E2>(exp . e1 , exp . e2) ;

}
. . .
// C a l l t r a n s f o r m a t i o n on
f loat a [1 0] , b [1 0] ;
Vector<f loat> A(10 , a) , B(10 , b) ;
auto t0=A∗B;
auto t1=transform (t0) ; // t 1 i s now ‘A+B ’
. . .

Static Expression Coalescence Pattern. Certain scenarios of interaction
between user and framework codes such as Runge-Kutta method described in
Sect. 1.2 can now be solved effectively using vector EDSL. By using the Static
Expression Coalescence pattern, a generic solver provided by a framework can
be specialized for a specific user defined function.

In Listing 1.12 we show an implementation together with an invocation of a
RK-4 solver. The auto keyword used on input parameters of the solver makes
it possible to pass either specific scalar or vector expression types. In the case of
the former, the behaviour would be the same as if the solver was defined using
scalar code similar to one from Listing 1.4.

If the parameters passed as x, y are of the EDSL types then instead of
carrying in-place computations, such as calls to the function func, a static graph
is created. This graph treats the user function as a structure to be merged into a
full computational graph, meaning that both the framework code, and user code
become coalesced into a single vector EDSL expression. As the language can
then apply lazy code generation for the fully coalesced expression, the resulting
code can be vectorized and inlined more effectively.

Two minor drawbacks of this design pattern exist at present. First of all, the
constructions used require generalized return type deduction features available

An Embedded Domain Specific Language for General Purpose Vectorization 527

as of C++14. This might delay the introduction of this design pattern into
popular frameworks relying on older language standards. Second, a contractual
agreement needs to exist between framework and user code to use vector EDSL,
or its specific dialect. While this can be easily achieved for framework codes,
additional user education might be required.

Listing 1.12. Static Expression Coalescence pattern merges user function written
using Vector EDSL with framework-defined solver.

template<typename USER FUNC T>
void rk4 f ramework so lve r (auto & re su l t , auto x , auto y , f loat dx ,

USER FUNC T& func) {
f loat hal fdx=dx ∗0.5 f ;
auto k1=dx∗ func (x , y) ;
auto k2=dx∗ func (x+halfdx , y+k1∗hal fdx) ;
auto k3=dx∗ func (x+halfdx , y+k2∗hal fdx) ;
auto k4=dx∗ func (x+dx , y+k3∗dx) ;
r e s u l t=y+(1.0 f /6 .0 f)∗(k1+2.0 f ∗k2+2.0 f ∗k3+k4) ;

// E v a l u a t i o n s t a r t s w i t h t h i s s t a t e m e n t
}
. . .
// Us e r d e f i n e d f u n c t i o n h a s t o b e d e f i n e d u s i n g t h e same V e c t o r EDSL d i a l e c t .
auto userFunct ion =[] (auto X, auto Y){

return X. s in ()∗Y. exp () ;
} ;
. . .
// Us e r p a s s e s h e r f u n c t i o n t o s o l v e r
rk4 f ramework so lve r (r e su l t v e c , x exp , y exp , t imestep , userFunct ion) ;
. . .

An obvious benefit of this approach is that it greatly simplifies complexity
of both user and framework code. A specific solver is described as a hardware-
agnostic kernel which can be treated differently by the language depending on
target architecture. The same observation applies for user codes as the user is
no longer required to write architecture specific SIMD code, using for instance
an explicit vectorization approach. The same user-defined function can be used
for graph coalescing, as well as directly within the user code, meaning that no
unnecessary code replication happens.

3.2 Evaluators

As we have explained, the vector EDSL is used to construct a static graph of
vector operations. This graph stores the relation between nodes representing
specific vector operations, and vector terminals. The construction of a graph is a
process taking place at compile-time. At the same time we want to create a ker-
nel of code, preferably using SIMD instructions, and responsible for evaluation
of a given expression depending on specific run-time terminals. For performance
reasons, construction of such kernel should follow the lazy code generation prin-
ciple, and for that reason has to be also carried at a compile-time.

Default Evaluators. We described previously, that the evaluation of a specific
expression is triggered when an assignment operator = is used with a LHS
expression being either of Vector or Scalar type, and with RHS being a valid
vector EDSL expression. We call this evaluation method a default evaluator. The
default evaluator is an integral part of current implementation and is provided
together with ET classes. The evaluation is triggered by Vector::operator=
implementation, as presented in Listing 1.13. This scheme splits the execution of

528 P. Karpiński and J. McDonald

a vector expression into two loops similar to ones from Listing 1.1. In each loop
a recursive evaluation of the expression, for a given dataset offset is triggered,
and the result is written to the data array representing LHS vector.

Each expression class defines evaluate SIMD method (Listing 1.14),
responsible for generating instructions corresponding to the specific expression
semantics. The evaluation method is forced to be inlined as, in most cases, the
actual code is limited to only a few machine instructions. Depending on the
number of arguments of the expression and its additional semantic meaning, the
method calls evaluation methods of sub-expressions.

Listing 1.13. Default evaluator uses very straightforward evaluation scheme. Instead
of traversing a vector in the data direction (horizontally), depth-first (vertical) traversal
of the full expression is performed. The ‘elements’ pointer refers to the memory location
represented by an instance of ‘FloatVector’ type.

template<typename E>
UME FORCE INLINE FloatVector<SCALAR TYPE>&

operator= (ArithmeticExpress ion<SCALAR TYPE,E>& vec){
E & r e i n t e r p r e t v e c=stat ic cast<E&>(vec) ;

// SIMD STRIDE − a t a r g e t s p e c i f i c l i b r a r y macro
for (int i =0; i<LOOP PEEL OFFSET() ; i+=SIMD STRIDE){

auto t0=r e i n t e r p r e t v e c . evaluate SIMD<SIMD STRIDE>(i) ;
t0 . s t o r e (&this−>elements [i]) ;

// t 0 n e e d s t o b e a t y p e r e s p e c t i n g UME : : SIMD i n t e r f a c e .
}
for (int i=LOOP PEEL OFFSET() ; i<mLength ; i++){

auto t1=r e i n t e r p r e t v e c . evaluate SIMD<1>(i) ;
// E v a l u a t e r em a i n d e r p a r t u s i n g SIMD−1 (s c a l a r) mode .

t1 . s t o r e (&this−>elements [i]) ;
}
return ∗ this ;

}

Listing 1.14. Evaluation method can use a depth-first approach to calculate
dependencies.

template<int SIMD STRIDE>
UME FORCE INLINE SIMDVec<SCALAR T,SIMD STRIDE> evaluate SIMD (int index){

SIMDVec<SCALAR T,SIMD STRIDE> t0= e1 . evaluate SIMD (index) ;
// E v a l u a t e s u b e x p r e s s i o n s

SIMDVec<SCALAR T,SIMD STRIDE> t1= e2 . evaluate SIMD (index) ;
return t0 . add (t1) ; // E v a l u a t e c u r r e n t e x p r e s s i o n node

}

Custom Evaluators. The scheme just described is useful only in basic cases,
when the left-hand destination is an explicit terminal. When the destination is an
implicit operand, for instance when the last operation is a destructive operation,
an alternative trigger mechanism must be provided. The operator= trigger can
be generalized by providing an external class with a specific evaluation scheme,
dedicated to handling a specific statement form. Because of that there is no
explicit LHS operand to be used to trigger the evaluation. A similar situation
will also happen when the last operation is a reduction operation.

An Embedded Domain Specific Language for General Purpose Vectorization 529

Listing 1.15. Monadic evaluator definition. Stores are removed, as they will be carried
as side-effects of evaluate SIMD calls.
c lass MonadicEvaluator {
. . .
// E v a l u a t e e x p r e s s i o n w i t h an i m p l i c i t d e s t i n a t i o n
template<typename SCALAR TYPE, typename EXP T>
FORCE INLINE MonadicEvaluator (ArithmeticExpress ion<SCALAR TYPE,EXP T>& exp){

EXP T& r exp=stat ic cast<EXP T&>(exp) ;

for (int i =0; i<r exp .LOOP PEEL OFFSET() ; i+=SIMD STRIDE){
r exp . evaluate SIMD<SIMD STRIDE>(i) ; // i m p l i c i t o p e r a n d i s u p d a t e d a u t o m a t i c a l l y

}
for (int i=r exp .LOOP PEEL OFFSET() ; i<r exp .LENGTH() ; i++) {

r exp . evaluate SIMD<1>(i) ;
}

}
. . .

} ;
. . .
// u s e r c o d e u s e s d e s t r u c t i v e o p e r a t i o n :
auto t0=a . adda (b) ;
// u s e r t r i g g e r s e v a l u a t i o n m a n u a l l y
MonadicEvaluator eva l (t0) ;

The example of a generalized monadic evaluator is presented in Listing 1.15.
A monadic evaluator is responsible for evaluating an expression with only one,
possibly implicit, destination operand. In the scheme presented, no explicit store
operations occur, as they are carried out as a side-effect of the destructive oper-
ation evaluation.

Listing 1.16. Expression divergence happens when two expressions share a common
sub-expression. This problem can cause memory locality issues, but can be solved with
a very simple evaluation scheme.
auto t0=A+B;
auto t1=C+D;
auto t2=t0∗ t1 ;
E=t2∗F;
G=t2∗H;

Listing 1.17. Dyadic evaluator calculates both expressions before updating destination
values. This way data hazards are avoided.
c lass DyadicEvaluator {
public :

. . .
// E v a l u a t e a p a i r o f e x p r e s s i o n s s i m u l t a n e o u s l y
template<typename SCALAR T 1 , typename DST T 1 , typename EXP T 1 ,

typename SCALAR T 2 , typename DST T 2 , typename EXP T 2>
DyadicEvaluator (

DST T 1& dst1 , ArithmeticExpress ion<SCALAR T 1 , EXP T 1>& exp1 ,
DST T 2& dst2 , ArithmeticExpress ion<SCALAR T 2 , EXP T 2>& exp2)

{
EXP T 1& r exp1=stat ic cast<EXP T 1&>(exp1) ;
EXP T 2& r exp2=stat ic cast<EXP T 2&>(exp2) ;

for (int i =0; i<dst1 .LOOP PEEL OFFSET() ; i+=SIMD STRIDE){
auto t0= r exp1 . evaluate SIMD<SIMD STRIDE>(i) ;

// e v a l u a t e m u l t i p l e r e s u l t s a t a t im e
auto t1= r exp2 . evaluate SIMD<SIMD STRIDE>(i) ;
dst1 . update SIMD(t0 , i) ;
dst2 . update SIMD(t1 , i) ;

}
for (int i=dst1 .LOOP PEEL OFFSET() ; i<dst1 .LENGTH() ; i++){

auto t0= r exp1 . evaluate SIMD<1>(i) ; // e v a l u a t e s i n g l e r e s u l t a t a t im e
auto t1= r exp2 . evaluate SIMD<1>(i) ;
dst1 . update s ca l a r (t0 , i) ;
dst2 . update s ca l a r (t1 , i) ;

}
}

} ;
. . .
auto t0=A+B;
auto t1=C+D;
auto t2=t0∗ t1 ;

DyadicEvaluator eva l (E, t2∗F,G, t2∗H) ; // E v a l u a t i o n t r i g g e r

530 P. Karpiński and J. McDonald

Non-monadic Evaluators. A more complicated scenario, when the default
evaluator cannot be used is when expression divergence occurs. In the exam-
ple in Listing 1.16 the sub-expression t2 is calculated twice: once for statement
E=t2*F and once for statement F=t2*H. In both cases both sub-expressions
t0 and t1 require accessing all data fields of A, B, C and D. This might have
a serious performance impact when operating on long vectors, as data locality
will not be preserved.

Listing 1.18. Main loop of DyadicEvaluator generated by Clang++. The assembly
code is very close to expected.
.LBB019 :

vmovups ymm0,ymmword ptr [rbx+4∗rdx] # A
vaddps ymm0,ymm0,ymmword ptr [r s i +4∗rdx] # t0=A+B
vmovups ymm1,ymmword ptr [r d i+4∗rdx] # C
vaddps ymm1,ymm1,ymmword ptr [rcx+4∗rdx] # t1=C+D
vmulps ymm0,ymm0,ymm1 # t2=t0∗ t1
vmulps ymm1,ymm0,ymmword ptr [r14+4∗rdx] # t3=t2∗E
vmulps ymm0,ymm0,ymmword ptr [r12+4∗rdx] # t4=t2∗F
vmovups ymmword ptr [rbp+4∗rdx] ,ymm1 # G=t3
vmovups ymmword ptr [r15+4∗rdx] ,ymm0 # H=t4
add rdx ,8
cmp rdx , rax
j l .LBB019

By defining a Dyadic Evaluator, such as presented in Listing 1.17, we can
improve the data locality of such divergent expressions by a mechanism that
triggers evaluation of both of them simultaneously. With such an evaluation
scheme, any data reads on input vectors are local, as the expression evaluation
is carrying the same index localization to both expressions. In addition a capable
compiler, such as Clang, is able to remove recursive function calls, and reorder
operations in such a way that common dependencies are executed only once.
Listing 1.18 shows the optimized loop for the dyadic evaluator compiled for an
AVX2 instruction set. Because a specific instance of evaluator is specialized for
a specific expression, generated code can be highly specialized.

3.3 Language Extensibility

As with every language, there are certain limitations for both expressibility and
performance. By its nature, a DSL should offer users the ability to adopt it for
specific scenarios required within the computational domain.

By making the language embedded, it is possible to extend it with user
defined operations, without the need to re-design the language from scratch. The
process of extension can be achieved in two ways. The first approach is to design
a functor composed with basic operations and provide more compact notation for
the user code. An example can be viewed in Listing 1.19. This mode of extension
is the advised mode, as it is similar to already known paradigms of functional
programming and, except for a few syntactic differences, is as easy to work with,
as regular C++ functions. The second method of extending the functionality
of the EDSL is to provide custom expressions and specific evaluation schemes
for these expressions. The drawback of this method is that it might require
modifications to all evaluators used by the user code. A most obvious benefit of
this solution is that the user can express precisely the meaning of such scheme
and reach potentially higher performance for specific usage scenarios.

An Embedded Domain Specific Language for General Purpose Vectorization 531

Listing 1.19. Infinity L∞ norm functor.

auto in f norm (auto a , auto b) {
return ((a−b) . abs ()) . hmax () ;

}
. . .
auto c = inf norm (a , b) ;

The default evaluation scheme works only for platforms that can be supported
under the UME::SIMD typeset. For other targets, a separate implementation
would have to be provided to carry out computations using specific language
extensions or techniques. Providing additional evaluators does not require mod-
ification to either EDSL-based expressions, nor to the expression-based code.
The only modification required might be the evaluation trigger invocation.

At the same time a number of particular cases, which cannot be predicted
at the moment of language design, might appear for specific domains or even
expression groups. The users are given the ability to design additional evaluation
schemes that might accelerate the evaluation of their codes, without the need to
re-write user or framework based algorithms.

4 Performance Evaluation

Performance evaluation of vectorization techniques poses multiple issues. Var-
ious compiler optimizations such as auto-vectorization, inlining and constant
folding/propagation can affect the results obtained. As compilers evolve, we can
also expect performance improvements on the same benchmarking target and
configuration. Selection of compiler flags can also affect the results, as some
unsafe optimizations, such as fast-math [3] offer significant speedups with the
cost of decreased accuracy. As different compilers offer different sets of com-
piler flags, improper selection of flag configuration might result in an unfair
comparison.

At the same time incorrect benchmarking methodology can lead to results
which do not reflect the actual computational problem. A simple, yet not uncom-
mon, example is when the results of computation is not used in any way within
the benchmarking application. In such case compilers can generate code that
carries incorrect or incomplete computations.

Each computational kernel might depend on specific compile-time and run-
time parameters, as well as on data with or without specific distribution. Differ-
ent algorithms/implementations can perform differently based on given parame-
trization. It is therefore required to verify specific implementations for a whole
range of input parameter values.

4.1 Benchmarking Methodology

To follow the spirit of scientific method, we developed a set of benchmarks that
allow easier comparison of different approaches in both the performance, and
expressibility. All benchmarks are available as a part of the UME framework
and can be accessed online [12]. Due to large number of possible combinations,

532 P. Karpiński and J. McDonald

we only present a few selected benchmarks here, and discuss both qualitative and
quantitative aspects of the EDSL approach. As it is difficult to find universal
metrics to assess expressibility of a language, we reserve additional space for
discussion of why an EDSL approach is easier to operate with the context of
such benchmarks.

We limit the discussion to a single platform (Intel Xeon E3-1280v3, Haswell
architecture, 16GB of DDRAM, running SLC6 operating system), as the quali-
tative differences would only be an effect of the different system software stack
and the underlying explicit SIMD implementation. The platform we used is dedi-
cated for benchmarking purposes and was not used for any other purpose during
each benchmarks’ execution. We used linux top command to determine least
used core and pinned each benchmark execution to that core using the taskset
command.

We built each benchmark using selected toolchains and equivalent compile-
time configuration (−O2, AVX2 enabled, no fast-math). In each execution of a
benchmark, we ran each implementation of the benchmark multiple times, cal-
culating average of all runs. We also ran each benchmarking application multiple
times, averaging results from each run. The reason for this approach is that inter-
lacing of different implementation executions distributes noise uniformly over all
configurations. The specific number of repetitions is defined separately for each
benchmark, as the memory and execution time requirements vary.

Each benchmarking code is written carefully, so that compilers couldn’t
remove or reorder measurement-sensitive fragments of the code. A specific tech-
nique we used was to place fragments of benchmarked code within a function
marked with the never-inline attribute (actual mapping varies for different
compilers). Such a function is placed between two calls to a stopwatch using
std::chrono. The time is measured with nanosecond precision.

For all benchmarks, a mandatory verification step is performed which serves
two purposes. Firstly, the numerical correctness of an implementation is verified.
We don’t impose any limit on how accurate a specific implementation should be,
but we rather treat this as a measure of performance orthogonal to execution
time. Secondly, the verification steps disallow compilers to generate code carrying
incorrect computations and possibly generating fake time measurements.

4.2 Runge-Kutta Solver

In each case the user function is available as a lambda function, defined within the
benchmarked routine as: x2 + y. The solver is defined outside the benchmarking
code, as a templated function with the approach defined previously.

Results of the Runge-Kutta benchmark can be reviewed in Table 1. All values
are shown as speedup versus scalar code compiled with GCC. Numbers separated
with ‘/’ are for single and double floating point precision, respectively. There are
two important points to note here. Firstly, out of the three compilers used, only
Clang was able to auto-vectorize the code efficiently. This suggests that this
code could be, but is not, auto-vectorized by other compilers. For Clang the
performance obtained with an explicit SIMD approach is almost the same as for

An Embedded Domain Specific Language for General Purpose Vectorization 533

the scalar code. Secondly, for all configurations the majority of the best results,
are reached using vector EDSL, with the explicit approach being second-best.
Furthermore, the best performance obtained with GCC and ICPC is, in general,
higher than for Clang.

Table 1. Speedup of different implementations of RK4 solver vs. reference. Values
given for single/double precision. Only Clang gives comparable results with auto-
vectorization. Highest performance obtained with explicit SIMD and EDSL in all cases.

Problem size 1 10 102 103 104 105 106 107 Geomean

GCC 5.2

Scalar 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

UME::SIMD 0.97/0.98 2.66/2.43 5.72/3.72 7.33/3.09 6.39/3.26 6.13/3.17 6.12/2.68 5.78/2.99 4.43/2.63

UME::

VECTOR

0.96/0.98 2.75/3.50 6.37/4.47 7.39/3.44 7.38/3.76 7.27/3.61 7.01/2.93 6.43/3.34 4.84/3.02

ICPC 17.0

Scalar 1.29/1.78 1.58/1.98 1.58/1.53 1.58/1.77 1.65/1.76 1.65/1.76 1.66/1.90 1.63/1.60 1.57/1.75

UME::SIMD 1.17/1.60 2.85/3.61 8.27/5.74 10.89/4.67 8.85/5.04 8.73/4.80 8.68/3.84 7.07/3.69 5.88/3.9

UME::

VECTOR

1.56/2.16 2.70/4.17 8.21/6.11 9.56/4.66 8.95/4.94 8.77/4.72 8.66/3.66 6.87/3.60 5.94/4.1

Clang 3.9

Scalar 1.01/1.21 2.66/2.54 6.01/2.66 7.40/1.92 6.83/3.20 6.76/3.25 6.55/3.78 6.18/3.32 4.66/2.6

UME::SIMD 0.97/1.19 2.69/2.63 6.06/4.40 7.18/2.58 6.88/3.15 6.68/3.22 6.53/3.52 5.89/3.06 4.6/2.81

UME::

VECTOR

0.98/1.15 2.76/3.15 6.13/4.41 7.21/2.88 7.15/3.20 6.90/3.29 6.70/3.28 5.86/3.09 4.68/2.89

4.3 BLAS Kernels

We will now present a comparison of three selected BLAS-based kernels, with
a very straightforward implementations obtained using vector EDSL. As the
nature of the EDSL presented is to operate on vector primitives and not matrices,
we only compare vector-vector operations.

Some works such as Eigen [5] show comparison for kernels consisting of a
single invocation of a BLAS primitive. A similar comparison for BLAS AXPY
kernel performance is presented in Fig. 1 (a) & (b). Performance of vector EDSL
is similar to that of the BLAS implementation, and compiler-optimized scalar
code.

Rarely a single kernel is all we need to execute in a complex algorithm. We
therefore defined a second benchmark, which consists of a chained execution of
10 AXPY kernels, with each of them being dependant on results of the previous
one. Results for this variant are presented in Fig. 1 (c) & (d). The second variant
shows an interesting property of kernel-based computations: operation atomicity
breaks potential for data-locality based optimization. For high problem sizes
UME configurations are up to 2x faster than the BLAS implementation. At
the same time this potential does not seem to be exploited by the compilers
when dealing with scalar codes. This performance gap can be only exploited
with an expression-based interface, as it requires information about a broader
computational context.

534 P. Karpiński and J. McDonald

Fig. 1. Blas comparison benchmarks. Clang configuration uses OpenBlas, ICC uses
MKL. (a) and (b) show results of a single AXPY kernel execution for 32b and 64b
precision. Vector EDSL (UME::VECTOR) does not differ significantly from current
technologies. (c) and (d) show that both UME::SIMD and EDSL are faster when solving
complicated vector expressions. In (e) and (f) we show that there is no performance
penalty when evaluating multi-statement expressions.

An Embedded Domain Specific Language for General Purpose Vectorization 535

Given that AXPY is a very straightforward kernel and might put into doubt
the actual expressibility of the language, we also present results for BLAS ROT
kernel (Fig. 1 (e) & (f)). In this kernel a pair of variables is updated simultane-
ously, and depend on previous values of each variable. This makes it impossible
to evaluate such a scheme as a single expression. It is also not possible to serial-
ize both expressions, as the results would be invalid. We therefore construct two
expressions and then use a dyadic evaluator to perform simultaneous evaluation.
Results show that there is no performance degradation and no losses in language
expressibility.

5 Practical Limitations

While we already showed, that with modern C++ techniques EDSLs can be
a very powerful mechanism however, we would like to briefly point at certain
limitations of this technique. Identification of these limitations is necessary for
future developments of both EDSL, and its host language.

One of the most important limitations is the fact, that type-based expressions
cannot be manipulated during program runtime. This limitation comes from the
fact that usual machine code generation cannot happen at runtime.

Another limitation is the possibility of inefficient code generation in cases
when a specific vector is used more than once in expression evaluation. Pointer
aliasing might not be recognized and as a result some amount of repetition of
code might appear, leading to suboptimal performance.

Last but not least, an optimal evaluator for a given class of statements might
be difficult to create. The same expression can have more than one optimal
evaluation scheme, depending on specific runtime-data and target platforms.
This limitation might prohibit creation of very complex expressions and in turn
lead users to revert to non-portable coding techniques.

6 Conclusions and Future Work

We have presented an EDSL for explicit vectorization. The language allows high-
performance operations to be carried on 1-D vectors and scalars. We have shown
that the SIMD programming model can be simplified, compared to an explicit
SIMD approach, without a need for any compiler toolchain extensions. Further-
more we showed that in certain situations an expression-based approach can
make better use of memory locality, leading to performance improvements over
kernel-based interfaces such as BLAS.

The construction of an EDSL can be difficult, especially when performance is
of highest importance. We presented a study of specific design patterns required
for an effective EDSL implementation, as well as discussion of selected problems
related to user-code. We presented a concept of separation between expression
graph creation and evaluation, which allows solving more general classes of com-
putational problems.

536 P. Karpiński and J. McDonald

For future work we predict two directions: investigation of possible perfor-
mance improvements for matrix expressions, and generalization of the concept
of evaluators, so that arbitrary classes of vector statements could be handled.
We hope to also investigate the possibility of JIT compilation given that it
might allow building a dynamic language representation, further improving per-
formance of expression evaluators.

References

1. Apostolakis, J., Bandieremonte, M., Bitzes, G., Brun, R., Canal, P., Carminati, F.,
Cosmo, G., De Fine Licht, J.C., Duchem, L., Elviera, V., Gheatea, A., Jun, S.Y.,
Lima, G., Nikitina, T., Novak, M., Sehgal, R., Shadura, O., Wenzel, S.: Towards a
high performance geometry library for particle-detector simulations. J. Phys. Conf.
Ser. 608(1) (2015). IOP Publishing

2. Falcou, J., Sérot, J., Pech, L., Lapresté, J.-T.: Meta-programming applied to
automatic SMP parallelization of linear algebra code. In: Luque, E., Margalef,
T., Beńıtez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 729–738. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85451-7 78

3. Free Software Foundation: GNU GCC reference: Semantics of Floating Point Math
in GCC. https://gcc.gnu.org/wiki/FloatingPointMath. Accessed 27 Mar 2016

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman, Reading (1995).
ISBN:0-201-63361-2

5. Gunnabaus, G., Jacob, B., et al.: Eigen benchmarks website: http://eigen.
tuxfamily.org/index.php?title=Benchmark. Accessed 27 Mar 2016

6. Gunnabaus, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org. Accessed
27 Mar 2016

7. Härdtlein, J., Pflaum, C., Linke, A., Wolters, C.H.: Advanced expression templates
programming. Comput. Vis. Sci. 13, 59–68 (2010). ISBN:1432-9360

8. Hudak, P.: Building Domain-Specific Embedded Languages. ACM Comput. Surv.
28 (1996)

9. Intel Corporation: Intel R©64 and IA-32 Architectures Software Developer’s Manual.
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-
2abcd-3abcd.pdf. Accessed 27 Mar 2016

10. Kaiser, H., et al.: HPX V0.9.99: A general purpose C++ runtime system for parallel
and distributed applications of any scale, July 2016. https://zenodo.org/record/
58027

11. Karpiński, P.: UME:: VECTOR: Vectorization EDSL library. https://github.com/
edanor/umevector. Accessed 27 Mar 2016

12. Karpiński, P.: UME: Unified Multi/Many-Core Environment. https://github.com/
edanor/ume. Accessed 27 Mar 2016

13. Karpinski, P., McDonald, J.: A high-performance portable abstract interface for
explicit SIMD vectorization. In: PMAM 2017 (2017). ISBN: 978-1-4503-4883-6

14. Kretz, M., Lindenstruth, V.: VC: A C++ library for explicit vectorization. Softw.
Pract. Experience 42(11), 1409–1430 (2012). Wiley

15. Niebler, E.: Proto: A compiler Construction Toolkit for DSELs. In: LCSD 2007.
ACM, October 2007. ISBN 978-1-60558-086-9

16. Petrogalli, F.: A sneak peak into SVE and VLA programming. https://developer.
arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming. Accessed 27 Mar 2016

http://dx.doi.org/10.1007/978-3-540-85451-7_78
https://gcc.gnu.org/wiki/FloatingPointMath
http://eigen.tuxfamily.org/index.php?title=Benchmark
http://eigen.tuxfamily.org/index.php?title=Benchmark
http://eigen.tuxfamily.org
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://zenodo.org/record/58027
https://zenodo.org/record/58027
https://github.com/edanor/umevector
https://github.com/edanor/umevector
https://github.com/edanor/ume
https://github.com/edanor/ume
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming

An Embedded Domain Specific Language for General Purpose Vectorization 537

17. Pohl, A., Cosenza, B., Mesa, M., Chi, C., Juurlink, B.: An evaluation of current
SIMD programming models for C++. In: WPMVP 2016. ACM, March 2016. ISBN
978-1-4503-4060-1

18. Vandevoorde, D., Josuttis, N.: C++ Templates: The Complete Guide. Addison-
Wesley, Boston (2002). ISBN:0-201-73484-2

19. Veldhuizen, T.: Blitz++: The library that thinks it is a compiler. In: Langtangen,
H.P., Bruaset, A.M., Quak, E. (eds.) Advances in Software Tools for Scientific
Computing. Lecture Notes in Computational Science and Engineering, vol. 10, pp.
57–87. Springer, Heidelberg (2000)

20. Veldhuizen, T.: Expression Templates. C++ Mag., June 1995. ISSN:1040–6042
21. Veldhuizen, T., Ponnambalam, K.: Linear algebra with C++ template metapro-

grams. Dr. Dobb’s J. Softw. Tools (1996)

Exploiting Auto-tuning to Analyze and Improve
Performance Portability on Many-Core

Architectures

James Price(B) and Simon McIntosh-Smith

Department of Computer Science, University of Bristol, Bristol, UK
j.price@bristol.ac.uk

Abstract. Performance portability has rapidly become one of the key
concerns for application developers targeting modern computer architec-
tures. Although there are various programming models that can offer
functional portability when moving application code between different
devices, it remains an open research question as to whether it is possi-
ble to guarantee some degree of performance portability in these situ-
ations. Automatic performance tuning approaches have been shown to
be effective tools for removing the burden of code optimization from the
developer, but somewhat sidestep the issue of performance portability
by enabling an environment where code is repeatedly optimized for each
architecture individually.

In this work, we present an in-depth analysis of the performance porta-
bility of code that has been highly optimized for specific devices via
auto-tuning. We perform this analysis across a wide range of modern,
many-core architectures from multiple hardware vendors, examining per-
formance portability both across different vendors and between devices
from the same vendor. We then demonstrate how the auto-tuning process
can be modified to bring performance portability into the equation, in
order to automatically generate a single implementation that achieves
high efficiency across many different devices.

1 Introduction

Modern computer architectures are becoming increasingly complex. Hardware
vendors are continually finding new ways to improve performance whilst meet-
ing strict power and thermal budgets. The resulting processors exhibit complex
performance characteristics that can be difficult to predict or explain for real-
world application codes, which leads to a demand for highly skilled developers to
spend significant effort in optimizing codes for these architectures. The diversity
of devices available to developers further exacerbates this problem. Develop-
ers are increasingly using GPUs and other accelerators in order to deliver even
greater application performance.

One of the key concerns facing the developers tasked with producing codes
that can make use of all of these architectures is that of performance portabil-
ity. Whilst standardized, portable programming models such as OpenMP and
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 538–556, 2017.
https://doi.org/10.1007/978-3-319-67630-2_38

Exploiting Auto-tuning to Analyze and Improve Performance Portability 539

OpenCL make it possible to write code that can function on multiple different
devices with few or no changes, there are no guarantees about the performance
of such codes. In the worst case, developers would need to optimize their codes
separately for each architecture they wish to target, significantly increasing the
development and maintenance efforts required.

Automatic performance tuning (auto-tuning) has been shown to be an effec-
tive tool for optimizing code for modern processors. Some of the earliest examples
involved tuning the performance of linear algebra libraries for CPUs with vary-
ing memory microarchitectures [4,6]. More recently, auto-tuning has also proven
extremely useful for automatically optimizing various codes for GPUs and other
accelerators [10,11,18,19]. Auto-tuning frameworks often employ machine learn-
ing techniques in order to reduce the number of different implementations to
empirically evaluate on the target device [9,24].

Although auto-tuning can ease the burden of manual code optimization from
developers, the issue of performance portability is avoided rather than directly
addressed, by producing individually optimized codes for each target device. In
some situations this may be perfectly acceptable, however it may also be desir-
able to produce a single implementation that achieves reasonable performance
on multiple devices at once. Developers may wish for their applications to run
efficiently on new architectures for which they have not yet been specifically
optimized, or there may simply be too many different platform configurations
to ship a separate implementation for each one. If a single implementation of
the code could achieve reasonable performance on every architecture it might
need to run on, even if some efficiency is lost when compared to device-specific
implementations, then this may represent an attractive trade-off with respect to
development and maintenance effort.

In this work, we analyze the performance portability of a highly tunable
Jacobi solver across a wide range of CPU and GPU devices from multiple hard-
ware vendors. We utilize runtime code generation in order to expose a large
number of different implementation decisions that may affect performance on
modern, many-core architectures. We exploit the black-box nature of stochas-
tic auto-tuning processes in order to examine the implementation decisions that
have the greatest impact on performance and performance portability when mov-
ing between different devices. We then demonstrate a simple yet effective tech-
nique that can be used to greatly improve the performance portability of code
generated during the auto-tuning process when targeting multiple architectures
at once.

2 Tunable Jacobi Solver

The benchmark we use in this paper is an implementation of the Jacobi method
[12]. Although some of the analyses we perform are specific to this algorithm,
many of the approaches we use for analyzing and improving performance porta-
bility are general enough to be applied to other application areas.

540 J. Price and S. McIntosh-Smith

2.1 The Jacobi Method

The Jacobi method is an iterative algorithm for solving systems of linear equa-
tions. Given a known, diagonally dominant matrix A and a known vector b, we
aim to find the vector x that satisfies the following equation:

Ax = b. (1)

We first split the matrix A into the diagonal D and the remainder R:

(D + R)x = b, (2)

and then rearrange to form an iterative solution:

xi+1 = D−1(b − R · xi), (3)

where xi is the ‘guess’ for the value of x produced by iteration i of the solver.
We seed the solver with an arbitrary initial guess for x0, often by setting each
element to 0. We then repeatedly run the equation given in (3) (henceforth
referred to as the kernel) until the solver has converged on a solution within
an acceptable tolerance. A sequential implementation of this kernel is shown in
Fig. 1.

Fig. 1. A sequential implementation of the main Jacobi kernel. A is a square matrix
of order N , and b, xold, and xnew are vectors of length N .

Although the Jacobi kernel is relatively simple, it still exposes many differ-
ent implementation decisions that can drastically affect performance on modern
architectures, such as how to map the available parallelism onto the hardware,
or how to lay the matrix data out in memory. This makes it an ideal candidate
for exploring performance portability across many different architectures.

2.2 Implementation

In order to perform a detailed analysis of performance portability across a wide
range of different architectures, we chose to implement the Jacobi solver using
OpenCL [16], which both enables portability and gives the programmer a great

Exploiting Auto-tuning to Analyze and Improve Performance Portability 541

deal of control over how their algorithm is mapped onto the hardware. This allows
us to explore a broad landscape of different implementations of the Jacobi solver
kernel from within a single programming model, and compare these different
kernels across various architectures from different hardware vendors.

OpenCL applications typically rely on runtime compilation of their OpenCL
kernels in order to achieve portability; the target architecture is only known at
runtime, and so this is the earliest point at which native binaries can be gen-
erated. We further exploit the just-in-time compilation nature of OpenCL by
also generating the kernels at runtime. Given a set of parameters that describe
how the kernel should be implemented, we construct the OpenCL C kernel
strings dynamically, before passing them on to the OpenCL platform driver
to be compiled. This gives us greater flexibility in how the kernels can be tuned,
beyond that which is provided by simple conditional statements and preprocessor
macros.

To simplify the process of generating kernel strings and managing the
OpenCL devices, we implemented our Jacobi solver in Python, using the
PyOpenCL bindings [17]. The runtime of the solver is entirely encapsulated in
the kernel execution; there is no interference to the performance from the Python
code itself. The kernel tuning options are specified via a JSON configuration file,
which is simple to generate and manipulate from an auto-tuning framework. The
source code for our tunable Jacobi solver is available on GitHub1.

2.3 Tuning Options

There are thirteen different implementation options that can be tuned, which
are described below.

Work-group size. A two-element tuple that specifies the OpenCL work-group
size to use when launching the kernel, which also describes how the computation
should be mapped onto the hardware. Given a work-group size of (X, Y), a
square matrix of order N is processed by N

Y work-groups. Each work-group
operates on Y rows of the matrix, with each row being cooperatively processed
by X work-items. Figure 2 demonstrates this mapping of work-groups onto the
matrix. If X is larger than 1, this requires a work-group reduction in order to
produce the final result for each row. For a detailed description of work-items
and work-groups in OpenCL, refer to [16].

Memory layout. A string option that specifies the memory layout of the matrix
data. The valid values are "row-major" and "col-major".

Column access pattern. A boolean option that controls how work-items should
access entries in the matrix row that they are assigned. This specifies whether
a given work-item should process a contiguous set of columns, or whether their

1 https://github.com/jrprice/jacobi-ocl.

https://github.com/jrprice/jacobi-ocl

542 J. Price and S. McIntosh-Smith

Fig. 2. Mapping of OpenCL work-groups onto the matrix in the main Jacobi kernel.
The work-group size is (X, Y), and the matrix is order N .

columns should be strided by the work-group width such that adjacent work-
items access adjacent columns. This parameter only has an effect when more
than one work-item processes each row.

Loop unroll factor. An integer value that specifies how many times to unroll the
loop over columns in the Jacobi kernel (line 3 in Fig. 1). This value must exactly
divide the number of matrix columns processed by each work-item.

Multiply-accumulate. A string option that specifies how the expression (a*b +
c) should be formed (line 5 in Fig. 1). Some devices may have native hardware
support for efficiently approximating a multiply-accumulate, or for performing
an IEEE 754 compliant fused multiply-add operation.

"op" (a*b + c) regular C operators
"mad" mad(a, b, c) approx. multiply-accumulate
"fma" fma(a, b, c) fused multiply-add

Conditional. A string option that specifies how to execute a conditional accu-
mulation (lines 4 and 5 in Fig. 1).

"branch" if (condition) acc += x;

"mask" acc += x * (condition ? 1 : 0);

Exploiting Auto-tuning to Analyze and Improve Performance Portability 543

Division by diagonal. A string option that specifies how to perform a division by
the matrix diagonal (line 8 in Fig. 1). The "normal" option simply loads the diag-
onal and performs a division using the / operator. The "precompute-global"
and "precompute-constant" options run a kernel at the beginning of the solve
to generate the reciprocals of each element in the diagonal, and stores them in
the global or constant address spaces respectively. The main kernel then loads
this reciprocal and multiplies by it, instead of performing a division.

Use mad24. A boolean option that specifies whether to use the mad24() builtin
function for indexing. As the two-dimensional matrix data is necessarily flat-
tened into a one-dimensional array, indexes into this array have the form x +
y*N. Some architectures may have native support for efficiently computing such
expressions using just the lower 24-bits of x and y.

Integer signedness. A boolean option that specifies whether integers used for
indexing should be signed (int) or unsigned (uint).

Address space of b vector. A string option that specifies the address space that
should be used for the b vector. The valid values are "global" and "constant".

Address space of xold vector. A string option that specifies the address space
that should be used for the xold vector. The valid values are "global" and
"constant".

Compile-time constant matrix size. A boolean option that specifies whether the
size of the matrix should be embedded in the kernel as a compile-time constant,
instead of being passed as a kernel argument.

Compile-time constant work-group size. A boolean option that specifies whether
the work-group size should be embedded in the kernel as a compile-time constant,
instead of being queried via the get local size() built-in kernel function.

These implementation options yield a search space of size O(106), assuming
we limit work-group sizes and loop unrolling factors to be powers of two.

3 Performance Portability Analysis

3.1 Approach

To obtain the optimal kernel implementation for each device, we perform an
extensive round of auto-tuning that empirically tests several thousand kernel
variants. The auto-tuning process utilizes OpenTuner [1], an open source Python
framework for writing bespoke application auto-tuners. We use a simple genetic
algorithm [13] with uniform crossover and mutation to stochastically search
through the set of possible kernel implementations. Genetic algorithms have
previously been shown to be effective search tools for automatic performance
tuning [3,5]. The auto-tuning process is run for 24 hours on each device, and

544 J. Price and S. McIntosh-Smith

logs the performance of every set of implementation options that is tested. The
Jacobi solver is set to process a matrix of size 4096 × 4096, using 32-bit floating
point data. We fix the iteration count to 5000 and disable convergence checking
to focus purely on the performance of the main computational kernel, whose per-
formance characteristics are not affected by the number of iterations performed.

Once we have obtained optimal kernel implementations for each device indi-
vidually, we then measure the performance that each of these implementations
achieves when run on every other device in our test set. We define the efficiency
of an arbitrary implementation I running on device d relative to the best per-
forming implementation for that device Bd as:

Efficiency(I, d) =
Runtime(Bd, d)
Runtime(I, d)

. (4)

This provides a normalized metric with respect to a known achievable peak
performance, giving values in the range (0, 1] which can suitably be represented
as percentages. We then define the worst-case efficiency of an implementation I
across all devices in the set D as:

WCE (I) = min
d∈D

(Efficiency(I, d)) . (5)

This allows us to describe an implementation of the kernel with a single numeric
value which captures its performance portability across multiple devices. These
metrics are similarly described by Tzannes in [27]. While it may be possible to
outperform the peak performance achieved by any given Bd (for example, with
handwritten assembly code), we believe that this represents a suitable proxy for
the achievable peak performance that enables a thorough performance portabil-
ity analysis.

3.2 Devices

We select ten devices spanning a range of GPUs from NVIDIA, AMD, and
Intel, as well as two different Intel CPUs. We focus on devices from the consumer
market as this provides us with the broadest range of architectures to experiment
with. The devices, and the driver versions used, are listed in Table 1. Aside from
the drivers, the devices were all housed in workstations with identical software
stacks, running CentOS 7.2 and Linux kernel 3.10.

3.3 Results

Figure 3 shows a heatmap of the efficiencies achieved when running each of the
tuned Jacobi kernels across all of the devices. Each row of the heatmap corre-
sponds to a single implementation of the kernel tuned for a specific device. An
entry marked as X indicates that the kernel was unable to run on the target
device at all. These cases are caused by the work-group size exceeding the max-
imum allowed on certain devices. Table 2 lists the best parameters selected for
each device.

Exploiting Auto-tuning to Analyze and Improve Performance Portability 545

Table 1. Devices used for evaluating performance portability.

Vendor Product Architecture Compute units Driver version

NVIDIA GeForce GTX 580 Fermi (GF110) 16 367.27

GeForce GTX 680 Kepler (GK104) 8

GeForce GTX 780 Ti Kepler (GK110) 15

GeForce GTX 980 Ti Maxwell (GM200) 22

AMD Radeon HD 7970 Tahiti XT 32 fglrx 15.302.2001

Radeon R9 290X Hawaii XT 44

Radeon R9 Fury X Fiji XT 64

Intel HD Graphics 2500 Ivy Bridge GT1 6 Beignet 1.1.2

Core i5-3550 Ivy Bridge 4 Intel OpenCL 16.1

Core i5-4590 Haswell 4

Fig. 3. Efficiencies of a set of tuned Jacobi kernels across a range of devices.

To ensure that these tuned kernels are actually performing well in absolute
terms, we compute the bandwidth that they achieve and compare against the
dot kernel from the BabelStream benchmark [7] (see Fig. 4). In all but one case
the achieved bandwidth comes very close to the bandwidth given by the dot
benchmark, in some cases exceeding them as the BabelStream kernels are not
extensively tuned for individual devices. We attribute the lower fraction on the
Intel iGPU to the open-source Beignet drivers being much less mature.

546 J. Price and S. McIntosh-Smith

Fig. 4. Fraction of BabelStream dot kernel bandwidth achieved by best performing
kernel for each device.

Single vendor performance portability. By looking at specific regions
within the heatmap, we can first examine the performance portability achieved
when moving between devices from a single vendor.

The lower-left section of the heatmap shows us how kernels tuned for NVIDIA
GPUs faired when run on other NVIDIA architectures. For each of the four
implementations, the worst-case efficiency across the other NVIDIA GPUs was
<70%. These performance losses were most often caused by inefficient work-
group sizes: the two older GPUs preferred large work-group sizes whereas the
newer GPUs were capable of achieving high utilization with much smaller work-
groups, needing more of them to saturate the increased number of compute
units. The lowest worst-case efficiency was observed with the kernel tuned for
the Maxwell architecture (GTX 980 Ti), which achieved just 54% efficiency on
the Kepler-based GTX 780 Ti device. In this case, the work-group size of 2× 16
selected for Maxwell was too small for the GTX 780 Ti, which needed at least
64 work-items to keep its processing elements busy. Even when moving between
the two variations of the Kepler architecture (GTX 680 and GTX 780 Ti), one
third of the performance was sacrificed by using a highly-tuned device-specific
kernel. Although work-group size played a part in this, there were also significant
performance differences when simultaneously changing the address space of the

Exploiting Auto-tuning to Analyze and Improve Performance Portability 547

xold vector (the GTX 680 preferred to use the constant address space) and
the mapping of matrix elements to work-items (the GTX 780 Ti preferred to
coalesce columns across work-items). The GTX 680 also required the use of the
mad24 builtin when using signed integers, which indicates that it has a lower
integer instruction throughout.

In contrast, the center of the heatmap shows that the performance porta-
bility when moving between three generations of AMD GPUs is exceptionally
high. Each of the three implementations achieved close to 100% efficiency when
running on each of the other AMD devices. Unlike the NVIDIA GPUs, the AMD
devices all preferred exactly the same work-group size of 256× 1, which played a
big role in achieving high performance portability. The AMD GPUs also unani-
mously chose values for other parameters that had significant impacts on these
devices, such as using masking instead of branches, embedding the work-group
size as a compile-time constant, and using similar loop unrolling factors.

The Intel devices encompass two CPUs and an integrated GPU (iGPU), so
perhaps offer the biggest difference in architectures from a single vendor. The
implementation tuned for the iGPU does very well on both of the CPUs, achiev-
ing close to 100% efficiency. The converse is not true however, with the two
implementations tuned for the CPUs achieving 17% and 37% efficiency when
running on the iGPU. This performance drop is due to several different imple-
mentation decisions, with the iGPU preferring the xold vector to be in the
constant address space, more aggressive loop unrolling, and taking a significant
performance hit from conditional execution when masking techniques are not
used. The work-group sizes offered by the CPU implementations were also far
too small to fully utilize the iGPU’s execution units. The Haswell-tuned kernel
performs extremely poorly on the Ivy Bridge CPU, at just 2% efficiency. This
is due to it making use of the fma() builtin function, which maps onto a native
hardware implementation of FMA available in Haswell’s AVX2 instruction set.
Since the Ivy Bridge architecture doesn’t have a hardware implementation of
FMA, this will likely be emulated in software instead, which causes a signifi-
cant performance drop. The Ivy Bridge kernel loses almost 50% efficiency on the
Haswell CPU since it uses a work-group size of 4 × 1, which will not fully utilize
the AVX2 units that can process eight FP32 values at once. Despite the Ivy
Bridge AVX units also being 8-wide, for this device the Intel OpenCL compiler
chooses a vector width of four for the Jacobi kernel as it is integer-heavy.

Multi-vendor performance portability. The remaining regions of the
heatmap allow us to analyze the performance portability when running code
that was tuned for a device from one vendor on hardware from another vendor.

The performance portability achieved when moving tuned implementations
between NVIDIA and AMD GPUs is generally quite poor. The implementations
tuned for the Tahiti (HD 7970) and Fiji (R9 Fury X) architectures from AMD
achieve around 20% efficiency on each of the NVIDIA devices, although the ker-
nel tuned for Hawaii (R9 290X) does reasonably well. Similarly, the implemen-
tations tuned for the NVIDIA architectures perform fairly poorly on the AMD

548 J. Price and S. McIntosh-Smith

devices, worst of all on the Fiji GPU. These issues are largely due to differences
in thread-data mapping and memory layout. The AMD devices all prefer hav-
ing each work-group cooperatively process a single row, with the matrix stored
row-major in order to facilitate coalesced accesses between adjacent work-items
when vectorizing horizontally across the work-group. Conversely, the NVIDIA
implementations process multiple rows per work-group with the matrix stored
column-major, and only one or two work-items process each row.

The total number of work-groups launched by any kernel is equal to the
matrix order divided by the work-group height. For kernels that process many
rows per work-group, this limits the total number of work-groups in flight at any
time, potentially under-utilizing devices which have many compute units to fill.
The AMD GPUs have many more compute units than the NVIDIA GPUs, hence
they perform poorly with the kernels tuned for NVIDIA which launch much
smaller numbers of work-groups. The NVIDIA GPUs are capable of executing
kernels with row-major layout and horizontal vectorization reasonably efficiently
as demonstrated with the R9 290X implementation, however they perform very
poorly if the xold vector is placed in the constant address space as is done by the
other AMD kernels. This is due to the fact that each compute unit can only fetch
a single 32-bit value from the constant data cache each cycle on NVIDIA GPUs;
non-uniform accesses to constant memory within a half-warp are serialized.

The Intel iGPU suffers a 15–30% performance penalty when executing the
kernels tuned for NVIDIA GPUs as a result of the thread-data mapping, mem-
ory layout, and use of arithmetic operators instead of the mad/fma builtins. It
achieves around 50% efficiency with the AMD kernels, purely as a result of an
excessively large work-group size. Similarly, the implementation tuned specifi-
cally for the Intel iGPU performs poorly on the AMD devices due to the smaller
work-group size as well as producing more integer operations when certain para-
meters are not embedded into the kernel as constants. The NVIDIA GPUs exe-
cuted the Intel iGPU kernel reasonably well, with some performance loss due to
memory layout and thread-data mapping, which was particularly noticeable on
the GTX 580.

The achieved performance portability is even worse when moving between
CPU and GPU architectures. The NVIDIA-tuned implementations all achieve
≤5% efficiency on both CPUs. This is because of the column-major memory
layout, which will result in vector gather operations with the horizontal work-
item vectorization performed by the Intel OpenCL compiler. The AMD-tuned
implementations perform reasonably well on the Haswell CPU as they also prefer
a row-major memory layout, but two of them perform poorly on Ivy Bridge
due to their use of the fma() builtin as discussed in Sect. 3.3. From the other
direction, both implementations tuned for the CPUs perform very poorly on all
GPUs from NVIDIA and AMD. For NVIDIA this can be largely attributed to
the insufficiently large work-group size, with the differences in memory layout
and thread-data mapping contributing too. For the AMD devices, performance
was lost through a combination of small work-group sizes, excessive control flow

Exploiting Auto-tuning to Analyze and Improve Performance Portability 549

due to insufficient loop unrolling, and other parameters that resulted in lower
throughput of integer indexing operations.

When considering all of the devices together, no single implementation
achieved high efficiency for every architecture. In all cases, there was at least one
device which achieved ≤20% efficiency, and in many cases the worst-case efficien-
cies were much lower. This highlights the potential for a black-box auto-tuner
to reduce performance portability by over-optimizing code for one particular
architecture.

4 Multi-objective Auto-tuning

4.1 Approach

In order to improve the performance portability of the code that is generated
by the auto-tuning process, we modify the tuning framework to allow it tune
for more than one device at the same time. Whenever a new kernel implemen-
tation is generated, it is tested on every device in the target set, and these
performance results are reduced into a single number that indicates the overall
‘fitness’ of that implementation. This constitutes a form of multi-objective or
multi-criteria optimization [25]. There are many available choices for the fitness
function, but in this work we simply use the worst-case efficiency as defined by
Eq. 5 in Sect. 3.1, which requires that we have obtained the peak performance
figures for each individual device prior to performing this multi-objective tun-
ing process. This simple fitness function will direct the auto-tuner to improve
the worst-case efficiency at any cost, potentially at the expense of reducing the
performance on devices that are already doing quite well.

From a practical standpoint, this multi-objective tuning approach requires
that all of the target devices are accessible from the machine that is running
the auto-tuning process. In our experimental set-up, all of the target devices are
available across several nodes in a single Linux cluster, sharing a network file-
system. This allows our tuning framework to generate a kernel implementation
and then invoke the benchmark remotely on all devices via SSH. To reduce the
time needed to collect performance results, we configure the framework to launch
the benchmarking code asynchronously across devices that are in distinct nodes,
whilst only serializing benchmarking between devices in the same node in order
to avoid timing interference.

To further improve the efficacy of our multi-objective auto-tuning approach,
we seed the initial population of the genetic algorithm with each of the best
device-specific kernels generated during the first round of auto-tuning which
targeted devices individually. This provides the stochastic search with a set of
implementations that are known to have high performance for certain devices,
and enables it to combine and mutate these implementations to try and find effec-
tive compromises that work well everywhere, rather than starting from scratch.
This is potentially an important short-cut to apply since the complexity of the
search space when optimizing for several different objectives may be greatly
increased over the single-device case.

550 J. Price and S. McIntosh-Smith

4.2 Results

Figure 5 shows the efficiency achieved for every device by a single kernel imple-
mentation generated with our multi-objective tuning approach. This implemen-
tation achieves a worst-case efficiency of almost 80% across all of the devices,
and in many cases exceeds 90% efficiency. This is a significant improvement over
the worst-case efficiencies of ≤20% achieved by any of the device specific kernels
discussed in Sect. 3.3. The final row in Table 2 shows the parameters selected
with this approach.

G
T
X

58
0

G
T
X

68
0

G
T
X

78
0
T
i

G
T
X

98
0
T
i

H
D

79
70

R
9
29

0X
R
9
Fu

ry
X

In
te
l i

G
P
U

Iv
y
B
ri
dg

e
C
P
U

H
as

w
el
l C

P
U

0

20

40

60

80

100 96.2
91.6

88.1
91.8

84.3

91.3

80 82.3
78.4

92.2

e
ffi

ci
e
n
cy

(%
)

Fig. 5. Normalized efficiency achieved by a single implementation tuned for all devices
simultaneously.

The implementation generated with this approach elected to use a row-major
memory layout with a work-group size of 64× 2, which suits devices that prefer
horizontal work-item vectorization with a minimal performance penalty on the
NVIDIA GPUs. The fma() builtin was avoided to satisfy the Ivy Bridge CPU,
with mad() being used instead as needed by the Intel iGPU. The best loop
unroll factor was determined to be 32, which is an effective compromise between
the devices that prefer either smaller or larger values. Several parameter val-
ues were unanimously selected where they helped significantly on one or more
devices whilst making no different to the others, such as replacing conditional

Exploiting Auto-tuning to Analyze and Improve Performance Portability 551

T
a
b
le

2
.
B

es
t

p
a
ra

m
et

er
s

se
le

ct
ed

fo
r

ea
ch

d
ev

ic
e.

D
e
v
ic
e

W
o
rk

-g
ro

u
p

si
z
e

M
e
m
.

la
y
o
u
t

C
o
a
le
sc

e

c
o
lu

m
n
s

U
n
ro

ll

fa
c
to

r

F
M

A
D

C
o
n
d
it
io
n

D
iv
is
io
n

b
y

d
ia
g
o
n
a
l

m
a
d
2
4

In
te

g
e
r

A
d
d
re

ss

sp
a
c
e
o
f
b

A
d
d
re

ss

sp
a
c
e
o
f

x
o
ld

C
o
n
st
.

m
a
tr
ix

si
z
e

C
o
n
st
.

w
o
rk

-g
ro

u
p

si
z
e

G
T
X

5
8
0

(2
,2
5
6
)

C
o
lu

m
n

m
a
jo
r

Y
e
s

5
1
2

fm
a

M
a
sk

P
re

c
o
m

p
.

in
c
o
n
st
a
n
t

Y
e
s

S
ig
n
e
d

G
lo
b
a
l

C
o
n
st
a
n
t

N
o

Y
e
s

G
T
X

6
8
0

(1
,2
5
6
)

C
o
lu

m
n

m
a
jo
r

N
o

6
4

m
a
d

M
a
sk

P
re

c
o
m

p
.

in
g
lo
b
a
l

Y
e
s

S
ig
n
e
d

G
lo
b
a
l

C
o
n
st
a
n
t

Y
e
s

Y
e
s

G
T
X

7
8
0

T
i

(2
,3
2
)

C
o
lu

m
n

m
a
jo
r

Y
e
s

6
4

fm
a

M
a
sk

P
re

c
o
m

p
.

in
c
o
n
st
a
n
t

N
o

S
ig
n
e
d

G
lo
b
a
l

G
lo
b
a
l

Y
e
s

Y
e
s

G
T
X

9
8
0

T
i

(2
,1
6
)

C
o
lu

m
n

m
a
jo
r

Y
e
s

6
4

o
p

M
a
sk

P
re

c
o
m

p
.

in
c
o
n
st
a
n
t

N
o

S
ig
n
e
d

G
lo
b
a
l

C
o
n
st
a
n
t

Y
e
s

Y
e
s

H
D

7
9
7
0

(2
5
6
,1
)

R
o
w

m
a
jo
r

Y
e
s

4
fm

a
M

a
sk

P
re

c
o
m

p
.

in
c
o
n
st
a
n
t

N
o

S
ig
n
e
d

G
lo
b
a
l

C
o
n
st
a
n
t

Y
e
s

Y
e
s

R
9

2
9
0
X

(2
5
6
,1
)

R
o
w

m
a
jo
r

Y
e
s

1
6

fm
a

M
a
sk

N
o
rm

a
l

D
iv
is
io
n

N
o

U
n
si
g
n
e
d

G
lo
b
a
l

G
lo
b
a
l

N
o

Y
e
s

F
u
ry

X
(2

5
6
,1
)

R
o
w

m
a
jo
r

Y
e
s

1
6

m
a
d

M
a
sk

P
re

c
o
m

p
.

in
c
o
n
st
a
n
t

Y
e
s

S
ig
n
e
d

G
lo
b
a
l

C
o
n
st
a
n
t

Y
e
s

Y
e
s

In
te

l
iG

P
U

(1
6
,4
)

R
o
w

m
a
jo
r

Y
e
s

6
4

m
a
d

M
a
sk

P
re

c
o
m

p
.

in
c
o
n
st
a
n
t

N
o

U
n
si
g
n
e
d

C
o
n
st
a
n
t

C
o
n
st
a
n
t

Y
e
s

N
o

Iv
y

B
ri
d
g
e
C
P
U

(4
,1
)

R
o
w

m
a
jo
r

Y
e
s

2
m
a
d

M
a
sk

N
o
rm

a
l

d
iv
is
io
n

N
o

U
n
si
g
n
e
d

G
lo
b
a
l

C
o
n
st
a
n
t

N
o

N
o

H
a
sw

e
ll

C
P
U

(8
,1
)

R
o
w

m
a
jo
r

Y
e
s

1
6

fm
a

M
a
sk

N
o
rm

a
l

d
iv
is
io
n

N
o

U
n
si
g
n
e
d

G
lo
b
a
l

G
lo
b
a
l

Y
e
s

N
o

M
u
lt
i-
o
b
je
c
ti
v
e

(6
4
,2
)

R
o
w

m
a
jo
r

Y
e
s

3
2

m
a
d

M
a
sk

N
o
rm

a
l

d
iv
is
io
n

N
o

S
ig
n
e
d

G
lo
b
a
l

G
lo
b
a
l

N
o

N
o

552 J. Price and S. McIntosh-Smith

branches with masks, keeping the xold vector in the global address space, and
avoiding the use of mad24(). Some of the other parameters that affected perfor-
mance when optimizing for certain individual devices were found to be relatively
insignificant when focusing on worst-case efficiency across many devices, such as
embedding the work-group size or matrix order into the kernel as a compile-time
constant, integer signedness, or precomputing the diagonal reciprocals.

We can also use this multi-objective tuning technique to improve performance
portability when targeting smaller sets of devices, such as a range of architec-
tures from a single vendor. We applied this technique to generate a single kernel
that was performance portable across the four NVIDIA devices in our test set,
and were able to produce an implementation that achieved >93% efficiency on
each device - a significant improvement over the worst-case efficiency of <70%
achieved by the device-specific kernels. Interestingly, each of the implementations
that achieved the highest worst-case efficiencies across all of the NVIDIA GPUs
used a row-major memory layout, with the work-group sizes similarly transposed
to 32× 4. Despite each individual device strongly preferring the column-major
layout, it seems that there is no compromise for the other parameters that leads
to acceptable performance portability with this approach.

5 Related Work

Zhang et al. analyze the performance of a few OpenCL benchmarks for three
devices from NVIDIA, AMD and Intel [28]. They identify several implementa-
tion decisions that can significantly impact performance, some of which we also
examine in this work. They then manually tune the benchmarks for one of the
architectures, and quantify the performance gap between the portable baseline
implementation and their highly tuned version. Our work eliminates the need
for expensive manual tuning, which in turn enables a much broader study of per-
formance portability. We also look specifically at how code aggressively tuned
for one architecture performs on many others in order to draw out the key per-
formance portability issues, whereas the authors above start with an untuned
benchmark.

In [8], Dolbeau et al. investigate the performance portability of OpenCL code
generated by an OpenACC compiler for a non-trivial mini-application executing
on three accelerators from NVIDIA, AMD and Intel. They tune the work-group
sizes used for each kernel and examine the efficiency for each architecture com-
pared to the best achieved performance. The authors observe that by carefully
selecting a single work-group size they can minimize the efficiency loss across all
three architectures, thus improving performance portability. Their work strongly
motivates the need for auto-tuning techniques to analyze performance portabil-
ity when faced with many implementation decisions, which we present in this
work.

Stratton et al. investigate the performance of GPU optimized OpenCL ker-
nels when moving to CPU architectures [26]. They identify programming con-
ventions that can be used to express a kernel’s performance properties which

Exploiting Auto-tuning to Analyze and Improve Performance Portability 553

can efficiently map onto both GPU and CPU devices. The authors assert that
in order for performance portability to be achieved, each implementor of a pro-
gramming model must conform to the same set of programming guidelines. They
demonstrate improved performance portability by changing the implementation
of the programming model itself, rather than that of the application. This is an
attractive solution for applications developers, as it shifts the burden of perfor-
mance portability onto the implementors, however the increasingly diverse and
fast evolving landscape of many-core architectures makes this a unstable target,
and solutions at the application or middleware level are still desirable.

McIntosh-Smith et al. demonstrate codes achieving performance portability
from a single codebase for structured grid [21] and molecular drug docking [22]
applications. In these works, performance portability is judged based on the frac-
tion of peak bandwidth and peak FLOP/s achieved, respectively. These theoret-
ical peak figures provide a simple proxy for an application’s performance upper
bound, but potentially fail to capture any factors inherent to the architecture,
compiler, or runtime implementation that may further limit a code’s perfor-
mance on a particular device. In this work, we instead determine the maximum
achievable performance on a given architecture empirically, using auto-tuning as
a means to arrive at this implementation. While this is still an imperfect upper
bound, we believe that this provides a metric of implementation efficiency that
is much more useful when analyzing the performance portability of a specific
implementation of the code.

Multi-objective optimization techniques have previously been explored for
generating code that demonstrates acceptable compromises between two or more
distinct constraints. Balaprakash et al. present a multi-objective auto-tuning
approach for exploring tradeoffs between performance and other metrics such as
power or energy [2]. In [15], Jordan et al. investigate the use of multi-objective
auto-tuning for simultaneously optimizing for both performance and parallel
efficiency. Hoste et al. apply automated multi-objective techniques to a compiler
framework in order to optimize for both code execution time and compilation
time [14]. Lokuciejewski et al. use evolutionary multi-objective search algorithms
in an adaptive compiler that considers both average-case execution time and
worst-case execution time when generating code for real-time systems [20].

In [23], Muralidharan et al. present a system that automatically generates a
model for selecting code variants for a given architecture based on training data
collected offline. A multi-task learning algorithm is used to combine empirical
results collected for each code variant from two or more source architectures into
a variant selection model. This model allows the runtime to select an appropri-
ate code variant for a previously unseen target architecture, using only a simple
set of device characteristics extracted at a one-off cost. Their work considers a
relatively small number of code variants (<10) at a coarse-grained level: each
variant is an entire implementation. In contrast, we explore a much more vast
search space comprising several independent implementation decisions. In addi-
tion, their techniques are only evaluated for NVIDIA GPUs, whereas this work
covers a much more diverse set of architectures.

554 J. Price and S. McIntosh-Smith

6 Conclusion

In this work, we have a presented an approach for analyzing performance porta-
bility across many-core architectures that exploits the black-box nature of auto-
matic performance tuning techniques. We have performed a detailed analysis of
performance portability both between devices from a single vendor and across
many different architectures from multiple hardware vendors. Our analysis has
highlighted the potential for over-optimization, either manual or automatic, to
produce code that exhibits low performance portability. We then demonstrated
a simple, multi-objective auto-tuning technique that can deliver much greater
performance portability across a diverse range of modern computer architectures.

In the future, we aim to assess the effectiveness of our multi-objective auto-
tuning approach for a variety of other codes from different application areas. We
believe that these techniques could also help improve performance portability
within a single architecture when varying other parameters such as input data
sizes. We plan to compare various reduction functions for quantifying the overall
fitness of an implementation when tuning for performance portability across
multiple objectives. We also intend to explore techniques that will allow us to
remove the requirement to have predetermined the peak performance of each
device before beginning the multi-objective auto-tuning process.

Acknowledgment. We would like to thank Imagination Technologies for providing
funding for this work. We also give thanks to Tom Deakin from the University of Bristol
for providing valuable feedback on this paper.

References

1. Ansel, J., O’Reilly, U.M.: OpenTuner: an extensible framework for program auto-
tuning. MIT CSAIL Technical report MIT-CSAIL-TR-2013-026 (2013)

2. Balaprakash, P., Tiwari, A., Wild, S.M.: Multi objective optimization of HPC ker-
nels for performance, power, and energy. In: Jarvis, S.A., Wright, S.A., Hammond,
S.D. (eds.) PMBS 2013. LNCS, vol. 8551, pp. 239–260. Springer, Cham (2014).
doi:10.1007/978-3-319-10214-6 12

3. Balaprakash, P., Wild, S.M., Hovland, P.D.: Can search algorithms save large-
scale automatic performance tuning? Procedia Comput. Sci. 4, 2136–2145 (2011).
Proceedings of the International Conference on Computational Science ICCS 2011

4. Bilmes, J., Asanovic, K.C.: Optimizing matrix multiply using PHiPAC: a portable,
high-performance, ANSI C coding methodology. In: International Conference on
Supercomputing, pp. 340–347 (1997)

5. Bolme, D.S., Beveridge, J.R., Draper, B.A., Phillips, P.J., Lui, Y.M.: Automatically
searching for optimal parameter settings using a genetic algorithm. In: Crowley,
J.L., Draper, B.A., Thonnat, M. (eds.) ICVS 2011. LNCS, vol. 6962, pp. 213–222.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23968-7 22

6. Clint Whaley, R., Petitet, A., Dongarra, J.J.: Automated empirical optimizations
of software and the ATLAS project. Parallel Comput. 27(1–2), 3–35 (2001)

7. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: Evaluating attainable
memory bandwidth of parallel programming models via BabelStream (2017, in
press)

http://dx.doi.org/10.1007/978-3-319-10214-6_12
http://dx.doi.org/10.1007/978-3-642-23968-7_22

Exploiting Auto-tuning to Analyze and Improve Performance Portability 555

8. Dolbeau, R., Bodin, F., de Verdire, G.C.: One OpenCL to rule them all? In:
2013 IEEE 6th International Workshop on Multi-/Many-core Computing Systems
(MuCoCoS), pp. 1–6, September 2013

9. Falch, T.L., Elster, A.C.: Machine learning based auto-tuning for enhanced
OpenCL performance portability. CoRR abs/1506.00842 (2015). http://arxiv.org/
abs/1506.00842

10. Fang, J., Varbanescu, A.L., Sips, H.: An auto-tuning solution to data streams clus-
tering in OpenCL. In: Proceedings of the 14th IEEE International Conference on
Computational Science and Engineering, CSE 2011 and 11th International Sym-
posium on Pervasive Systems, Algorithms, and Networks, I-SPA 2011 and 10th
IEEE International Conference on IUCC 2011, pp. 587–594 (2011)

11. Garvey, J.D., Abdelrahman, T.S.: Automatic performance tuning of stencil com-
putations on GPUs. In: 2015 44th International Conference on Parallel Processing
(ICPP), pp. 300–309, September 2015

12. Goldstine, H.H., Murray, F.J., von Neumann, J.: The Jacobi method for real sym-
metric matrices. J. ACM 6(1), 59–96 (1959). doi:10.1145/320954.320960

13. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor (1975). http://www.citeulike.org/group/664/article/
400721

14. Hoste, K., Eeckhout, L.: Cole: Compiler optimization level exploration. In: Pro-
ceedings of the 6th Annual IEEE/ACM International Symposium on Code Gener-
ation and Optimization, CGO 2008, NY, USA, pp. 165–174 (2008). doi:10.1145/
1356058.1356080

15. Jordan, H., Thoman, P., Durillo, J.J., Pellegrini, S., Gschwandtner, P., Fahringer,
T., Moritsch, H.: A multi-objective auto-tuning framework for parallel codes. In:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC 2012, CA, USA, pp. 10:1–10:12 (2012). http://
dl.acm.org/citation.cfm?id=2388996.2389010

16. Khronos OpenCL Working Group: The OpenCL Specification, Version 1.2 (2012).
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

17. Klöckner, A.: PyOpenCL. https://mathema.tician.de/software/pyopencl/
18. Li, Y., Zhang, Y.Q., Liu, Y.Q., Long, G.P., Jia, H.P.: MPFFT: an auto-tuning

FFT library for OpenCL GPUs. J. Comput. Sci. Technol. 28, 90–105 (2013)
19. Li, Y., Dongarra, J., Tomov, S.: A note on auto-tuning GEMM for GPUs. In: Allen,

G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2009. LNCS, vol. 5544, pp. 884–892. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-01970-8 89

20. Lokuciejewski, P., Plazar, S., Falk, H., Marwedel, P., Thiele, L.: Multi-objective
exploration of compiler optimizations for real-time systems. In: 2010 13th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, pp. 115–122, May 2010

21. McIntosh-Smith, S., Boulton, M., Curran, D., Price, J.: On the performance porta-
bility of structured grid codes on many-core computer architectures. In: Kunkel,
J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp. 53–75.
Springer, Cham (2014). doi:10.1007/978-3-319-07518-1 4

22. McIntosh-Smith, S., Price, J., Sessions, R.B., Ibarra, A.A.: High performance in sil-
ico virtual drug screening on many-core processors. Int. J. High Perform. Comput.
Appl. 29(2), 119–134 (2015). http://hpc.sagepub.com/content/29/2/119.abstract

http://arxiv.org/abs/1506.00842
http://arxiv.org/abs/1506.00842
http://dx.doi.org/10.1145/320954.320960
http://www.citeulike.org/group/664/article/400721
http://www.citeulike.org/group/664/article/400721
http://dx.doi.org/10.1145/1356058.1356080
http://dx.doi.org/10.1145/1356058.1356080
http://dl.acm.org/citation.cfm?id=2388996.2389010
http://dl.acm.org/citation.cfm?id=2388996.2389010
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://mathema.tician.de/software/pyopencl/
http://dx.doi.org/10.1007/978-3-642-01970-8_89
http://dx.doi.org/10.1007/978-3-642-01970-8_89
http://dx.doi.org/10.1007/978-3-319-07518-1_4
http://hpc.sagepub.com/content/29/2/119.abstract

556 J. Price and S. McIntosh-Smith

23. Muralidharan, S., Roy, A., Hall, M., Garland, M., Rai, P.: Architecture-adaptive
code variant tuning. In: Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2016, NY, USA, pp. 325–338 (2016). doi:10.1145/2872362.2872411

24. Price, J., McIntosh-Smith, S.: Improving auto-tuning convergence times with
dynamically generated predictive performance models. In: 2015 IEEE 9th Interna-
tional Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC),
pp. 211–218, September 2015

25. Steuer, R.: Multiple Criteria Optimization: Theory, Computation, and Application.
Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1986).
https://books.google.co.uk/books?id=0H9jQgAACAAJ

26. Stratton, J.A., Kim, H.S., Jablin, T.B., Hwu, W.M.W.: Performance portability in
accelerated parallel kernels. Technical report IMPACT-13-01, University of Illinois
at Urbana-Champaign, Urbana, May 2013

27. Tzannes, A.: Enhancing Productivity and Performance Portability of General-
purpose Parallel Programming. Ph.D. thesis, College Park, MD, USA (2012).
aAI3543143

28. Zhang, Y., Sinclair, M., Chien, A.A.: Improving performance portability in
OpenCL programs. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC
2013. LNCS, vol. 7905, pp. 136–150. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38750-0 11

http://dx.doi.org/10.1145/2872362.2872411
https://books.google.co.uk/books?id=0H9jQgAACAAJ
http://dx.doi.org/10.1007/978-3-642-38750-0_11
http://dx.doi.org/10.1007/978-3-642-38750-0_11

OpenACC 2.5 Validation Testsuite Targeting
Multiple Architectures

Kyle Friedline1(B), Sunita Chandrasekaran1, M. Graham Lopez2,
and Oscar Hernandez2

1 University of Delaware, Newark, DE, USA
{utimatu,schandra}@udel.edu

2 Oak Ridge National Lab, Oak Ridge, TN, USA
{lopezmg,oscar}@ornl.gov

Abstract. Heterogeneous computing has emerged as a promising fit
for scientific domains such as molecular dynamics simulations, bioinfor-
matics, weather prediction. Such a computing paradigm includes x86
processors coupled with GPUs, FPGAs, DSPs or a coprocessor para-
digm that takes advantage of all the cores and caches on a single die such
as the Knights Landing. OpenACC, a high-level directive-based paral-
lel programming model has emerged as a programming paradigm that
can tackle the intensity of heterogeneity in architectures. Data-driven
large scientific codes are increasingly using OpenACC, which makes it
essential to analyze the accuracy of OpenACC compilers while they port
code to various types of platforms. In response, we have been creating a
validation suite to validate and verify the implementations of OpenACC
features in conformance with the specification. The validation suite also
provides a tool to compiler developers as a standard for the compiler to
be tested against and to users and compiler developers alike in clarifying
the OpenACC specification. This testsuite has been integrated into the
harness infrastructure of the TITAN and Summitdev systems at Oak
Ridge National Lab and is being used for production.

Keywords: Programming models · Testsuite · Hardware · Validation

O. Hernandez—This manuscript has been authored by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for publi-
cation, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan). This paper is authored by an employee(s)
of the United States Government and is in the public domain. Non-exclusive copy-
ing or redistribution is allowed, provided that the article citation is given and the
authors and agency are clearly identified as its source.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 557–575, 2017.
https://doi.org/10.1007/978-3-319-67630-2_39

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

558 K. Friedline et al.

1 Introduction

Hardware continues to evolve very rapidly expecting programmers to quickly
deploy or redeploy scientific codes in order to exploit the rich feature set of
these hardware platforms. These platforms are also becoming increasingly het-
erogeneous thus creating programming challenges and maintenance of single
code bases. At the same time there is a constant demand for improved per-
formance. Currently these heterogeneous platforms can be programmed using a
variety of languages or models such as OpenACC [17], OpenMP [19], CUDA [15],
OpenCL [18], NVIDA Thrust [3], Kokkos [8]. This paper focuses on OpenACC,
which is an emerging directive-based programming model for traditional X86,
accelerators such as GPUs, IBM Power processors, and, with OpenACC research
compilers, FPGAs [4]. Since OpenACC can target more than just one or two plat-
forms, it allows the programmers to maintain a single code base. Commercial
compilers include support from PGI, Sunway Taihulight and Cray. Currently
only PGI and GCC support OpenACC 2.5 (the version of the specification we
are testing), though GCC has only partial support for the 2.5 feature set. Cray
and Sunway provides support for OpenACC only until 2.0 features.

Open Source compilers include GNU Compiler Collection (GCC) with initial
support for OpenACC 2.5. Academic compilers include Omni Compiler from
Riken, OpenARC from ORNL, OpenUH from SBU and UH, RoseACC from
LLNL, UDEL. More information on existing compilers can be found on the
OpenACC webpage1.

The model has been gaining wide adoption among the scientific community
and is being used to accelerate scientific codes such as molecular dynamics,
computational fluid dynamics, weather modeling to an accelerator. Instead of
writing explicit code to offload or parallelize a given region of code, the pro-
grammer simply inserts compiler hints or directives into a C11, C++14 or a
Fortran code, and the compiler offloads compute intensive portions of the code
to an accelerator which could be multiple CPU cores and/or GPUs. As the Ope-
nACC specification evolves and it’s feature set is expanded, it is critical to ensure
that the implementations of the features are conforming to the specifications and
consistent with the definition of the features. It is quite common for different
implementors to interpret the specifications differently. As a result there may
be differing implementations of a particular feature defined in the specifications.
Our previous publication on this effort [24] captured these discrepancies. The
specifications has since evolved and there have been some major updates includ-
ing providing support for both shared and discrete memory machines. So most,
if not all, tests which this paper discusses are new and have been written to
adhere to the current specifications.

This project creates a validation and verification testsuite where we con-
struct a number of functional test cases to test several constructs such as the
parallel or kernel constructs, clauses such as async or reduction, or combi-
nations of occurrences of clauses on constructs. The testsuite is built to check

1 https://www.openacc.org/tools.

https://www.openacc.org/tools

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 559

for correctness and conformance of features to the OpenACC specifications. We
will also demonstrate the results of the testsuite on multiple compilers/versions
to compare implementations’ adherence to the OpenACC specifications. This
testsuite will enable the compiler implementors to improve the quality of their
tools and ensure compliance of their implementations with the specifications of
the language.

OpenACC has been adopted for large-scale scientific applications on
accelerator-based supercomputers such as Titan at the Oak Ridge Leader-
ship Facility (OLCF). These applications include: ACME Land Model and
CAM/SE [21,22], One-Way Based Methods OWBM (Oil and Gas), Dalton [6],
Maestro [14] (Astro-physics), GTC-p [5,9], and many are part of funded user
programs such as INCITE [2] and CAAR [1]. These show that OpenACC has
already afforded applications early successes at scale on heterogeneous machines
such as Titan. Such large scale applications demand updates to OpenACC data
clauses to allow deep copy. This feature is needed to handle complex data struc-
tures and how they are mapped to the limited memory capacity of discrete
accelerators with disjoint memory address spaces. The OpenACC organization
put together a technical report (TR-16-1) discussing challenges to support deep
copy and also propose probable solutions [16]. Secondly, the increasing complex-
ity of upcoming architectures means that OpenACC needs to be improved to
handle and optimize for deeper node-level memory hierarchies; currently, the
acc cache directive provides insufficient optimization and limits performance
where memory capacity and bandwidth trade-offs are critical. Finally, the abil-
ity to better handle multiple accelerators per node will be critical to exploiting
upcoming machines.

A comprehensive and community-driven OpenACC validation suite is an
essential tool for computing facilities that must procure and evaluate both large
production and experimental systems. As multiple compiler implementations
are adapted to new architectures and updated to support evolving specifica-
tions, OpenACC consumers benefit greatly from having a way to evaluate each
implementation’s coverage of a given specification on each architecture where
OpenACC-enabled applications are used. By having a community-driven val-
idation suite that can be used in common by any vendor as well as the end
users, application developers have a way to evaluate and push for consistency in
functionality across implementations.

Since the tests are in a more matured state than it was earlier, we plan to
release the testsuite by July 2017, just in time for the camera ready version of this
paper. This testsuite will be released under a dual license scheme and we welcome
contributions. One license will preserve the license used by the contributor, the
second OpenACC license will ensure consistency in code version, and the running
and reporting of results. Currently all OpenACC members can use and contribute
to the testsuite.

The paper makes the following contributions:

– Develop test cases that can test on both shared and discrete memory models
– Identify and report compiler bugs and runtime errors

560 K. Friedline et al.

– Evaluate different compilers’ implementations for its conformance to the Ope-
nACC specifications

– Delivered initial release of OpenACC 2.5 Testsuite2

2 Overview of the Programming Model

The underlying goal of OpenACC is to deliver an API for parallelizing code tar-
geting a generic heterogeneous architecture. With three layers of parallelism as
well as a compute construct designated for compiler targeting of generic archi-
tectures, the model aims to abstract the architecture with minimal adjustments
to the logic of the code thus allowing maintenance of a single code base. With
often only minor adjustments to memory management near parallelized com-
pute regions, the model accommodates both shared and discrete memory or any
combination of the two across any number of devices.

The basic functionality of the model deals with specifying the compute inten-
sive regions of code that needs to run on an accelerator as well as manage data
on multiple devices. A great deal of this is managed by creating scopes with cer-
tain descriptors. Parallel or kernels directives need to be added to the code
region that needs to be offloaded to the accelerator.

Since the last time this topic has been discussed (see [24]), the OpenACC
specifications have undergone two major changes. OpenACC 2.0 version was
released with features for queuing and resynchronization of asynchronous com-
pute regions via the wait clause (see Code 1); dynamic data lifetimes via the
enter data and exit data directives (see Code 2); asynchronous synchronizing
of queues via the async clause on a wait directive (see Code 3); and function
calls from compute regions via the routine directive (see Code 4).

Code 1. Resynchronization of Queues

#pragma acc p a r a l l e l loop pre sent (a [0 : n] , \
b [0 : n] , c [0 : n]) async (1)

for (int x = 0 ; x < n ; ++x) {
c [x] = a [x] + b [x] ;

}
#pragma acc p a r a l l e l loop pre sent (d [0 : n] , \

e [0 : n] , f [0 : n]) async (2)
for (int x = 0 ; x < n ; ++x) {

f [x] = d [x] + e [x] ;
}
#pragma acc p a r a l l e l loop pre sent (c [0 : n] , \

f [0 : n] , g [0 : n]) async (3) wait (1 , 2)
for (int x = 0 ; x < n ; ++x) {

g [x] = c [x] + f [x] ;
}

2 https://github.com/OpenACCUserGroup/OpenACCV-V.

https://github.com/OpenACCUserGroup/OpenACCV-V

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 561

Code 2. Executable Data Directives

#pragma acc ente r data copyin (data [0 : n])
#pragma acc p a r a l l e l loop pre sent (a [0 : n]) r educt ion (+: t o t a l)

for (int x = 0 ; x < n ; ++x) {
a [x] = a [x] ∗ 2 ;
t o t a l += a [x] ;

}
i f (t o t a l < n) {

\\ Cond i t i ona l l y updates data
#pragma acc e x i t data copyout (data [0 : n])

}
else {

#pragma acc e x i t data d e l e t e (data [0 : n])
}

Code 3. Asynchronous Synchronization of Queues

#pragma acc p a r a l l e l loop pre sent (a [0 : n] , \
b [0 : n] , c [0 : n]) async (1)

for (int x = 0 ; x < n ; ++x) {
c [x] = a [x] + b [x] ;

}
#pragma acc p a r a l l e l loop pre sent (d [0 : n] , \

e [0 : n] , f [0 : n]) async (2)
for (int x = 0 ; x < n ; ++x) {

f [x] = d [x] + e [x] ;
}
#pragma acc wait (1 , 2) async (3)
#pragma acc p a r a l l e l loop pre sent (c [0 : n] , \

f [0 : n] , g [0 : n]) async (3)
for (int x = 0 ; x < n ; ++x) {

g [x] = c [x] + f [x] ;
}

OpenACC 2.5, released in 2015, had a major update on the data manage-
ment. In previous versions, data was managed by copy, copyin, copyout, and
create data clauses as well as their respective counterparts, present or copy,
present or copyin, present or create, present or copyout, that would
check their presence on the device and allocate/copy as necessary. However,
with version 2.5 data control was simplified by merging the data clauses and
only supporting the functionality that tests for data’s presence on device. Along
with this, reference counting and conditional data updates with the if present
clause were added in version 2.5 to further simplify data management.

562 K. Friedline et al.

Code 4. Routine

int pow(int base , int exponent) {
returned = 1 ;
for (int x = 0 ; x < exponent − 1 ; ++x) {

returned = returned ∗ base ;
}
return returned ;

}
#pragma acc rou t in e (pow) seq
#pragma acc p a r a l l e l loop pre sent (a [0 : n])
for (int x = 0 ; x < n ; ++x) {

a [x] = pow(a [x] , 2) ;
}

To briefly discuss reference counting, this is managed by the compiler runtime
libraries. Every time a variable is either used in an enter data directive or at
the entrance to a data region, the variable’s reference count is incremented. At
either an exit data or at the exit of a data region, it is decremented. If before
incrementation, the count is zero, the data clause is executed, either copying
the data in or allocating the data on device. And if after decrementing, the
count is zero, the data clause is again executed, either copying out the data or
deallocating it on device.

One of the issues with this functionality is that it still leaves data validity
very hard to determine due to data clauses potentially only altering reference
counts instead of updating data. Also with the 2.5 version, the clause if present
for the update directive allows the update to be dependent on the presence of
the data on device. This, in conjunction with the updated data management
directives/clauses the user is able to exploit much finer control over the data
environment.

3 Methodology

As mentioned in Sect. 1, we develop tests that target platforms with discrete or
unified memory, or a combination of the two. This means that when a test is
executed, the parallel regions of the code could be operating on a device with
direct access to the host-processes memory. We also develop tests that address
the dynamic execution order. The nature of parallel programming creates race
conditions and difficulty with ordering and flow control. These, among other
complications, pose difficulties to creating platform-agnostic tests. Furthermore,
the desire of these tests is to find flaws in the compilation of the program and
to do so we try to design tests in such a way that they can strain the limits of
what the specifications dictate.

The constraints with the model often limit our ability to make the test as
discerning as we might want. Although there are hundreds of test case scenarios,

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 563

in this section we will illustrate these constraints using the example of testing
the create clause.

According to the language specifications, the create clause only allocates
the memory on the device; it does not copy the host’s values for the data to the
device. When testing this aspect of the language, there are some vague aspects
of the execution of the clause. First, the code could be run on either a shared
memory device, or a discrete memory device. This means that at the create call,
if the application is running on a shared memory device, the data will already
be present and the data clause will be ignored. On a discrete memory device,
at the call to the create clause, the memory will be allocated on the separate
memory device. The data is not copied and will be uninitialized in the device
memory.

With these potentialities for possible execution methods, how does one test
that the creation happened without the copy? To demonstrate the complications
in writing tests that satisfy these requirements, let’s look at an example for
testing this clause on an enter data directive. The specifications state that
when an array is in a create clause, that the data is allocated, but not copied.
If we wanted to test this functionality, we might create something such as what
is in Code 5.

Code 5. Enter Data Create V.1

1 double ∗ a = (double ∗) mal loc (n ∗ s izeof (double)) ;
2 double ∗ a copy = (double ∗) mal loc (n ∗ s izeof (double)) ;
3 for (int x = 0 ; x < n ; ++x) {
4 a [x] = rand () ;
5 a copy [x] = a [x] ;
6 }
7 #pragma acc ente r data c r e a t e (a [0 : n])
8 #pragma acc e x i t data copyout (a [0 : n])
9 int e r r = 1 ; // Fa i l i n g

10 for (int x = 0 ; x < n ; ++x) {
11 i f (f abs (a [x] − a copy [x]) > PRECISION) {
12 e r r = 0 ; //Passing
13 }
14 }

In this test, we initialize the data to be random values and make a copy of
the data for verification. We then create the one set of data on the device. This
would initialize the data over garbage data on the device. On the following line,
we copyout the data, which would copy out the garbage data on the device. After
this, we iterate over the data and make sure that it is different from the copy of
the initial data. If it is different, it demonstrates that the allocation happened
without the copy of data.

Now, while this test is well designed to test that the data was not copied, the
test fails to consider the possibility that the test could be operating on a shared
memory device. If this test was running on a machine with a shared memory

564 K. Friedline et al.

device, at line 7, when the data is copied in, the memory would not be allocated
and any device operations would occur on the data that is also available to the
host. The exit data on the following line would again do nothing. During the
loop on lines 10–14, the loop would operate again on the data as it was initially
and would fail the conditional statement within every iteration, resulting in a
failing test. However, this problem could be worked around as shown in Code 6.

Code 6. Enter Data Create V.2

1 double ∗ a = (double ∗) mal loc (n ∗ s izeof (double)) ;
2 double ∗ a copy = (double ∗) mal loc (n ∗ s izeof (double)) ;
3 int devte s t = 1 ;
4 int e r r = 0 ;
5 #pragma acc ente r data copyin (devte s t)
6 #pragma acc p a r a l l e l p r e s ent (devte s t)
7 {
8 devte s t = 0 ;
9 }

10 for (int x = 0 ; x < n ; ++x) {
11 a [x] = rand () ;
12 a copy [x] = a [x] ;
13 }
14 i f (devte s t == 1) {
15 #pragma acc ente r data c r e a t e (a [0 : n])
16 #pragma acc e x i t data copyout (a [0 : n])
17 e r r = 1 ; // Fa i l i n g
18 for (int x = 0 ; x < n ; ++x) {
19 i f (f abs (a [x] − a copy [x]) > PRECISION) {
20 e r r = 0 ; //Passing
21 }
22 }
23 }

Here, we create a new variable, ‘devtest’, as an int that is meant to test
the presence of a separate memory device before entering into separate memory
dependent code. We initiate the variable to a passing condition and copy it into
the device memory. If the device memory is separate, the data transfer occurs
and its value on device is subsequently updated to a failing condition. However,
at the exit of the parallel region, since the scalar was explicitly copied in,
there is no implicit copy back to the host data. Thus, the host version of the
devtest variable is still in the passing condition. However in the case of a shared
memory system, we have the same issue as the previous version of the test. The
parallel region updates the host version, causing the devtest variable to be in
the failing condition. This allows the test to bypass the test conditionally on the
presence of a device. The new functionality of conditionally skipping separate
memory dependent testing is also dependent on proper data management, which
increases the chances of misdiagnosing issues.

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 565

Code 7. Enter Data Create V.3

1 double ∗ a = (double ∗) mal loc (n ∗ s izeof (double)) ;
2 double ∗ a copy = (double ∗) mal loc (n ∗ s izeof (double)) ;
3 int ∗ devte s t = (int ∗) mal loc (s izeof (int)) ;
4 int e r r = 0 ;
5 devte s t [0] = 1 ;
6 #pragma acc ente r data copyin (devte s t [0 : 1])
7 #pragma acc p a r a l l e l p re sent (devte s t [0 : 1])
8 {
9 devte s t [0] = 0 ;

10 }
11 for (int x = 0 ; x < n ; ++x) {
12 a [x] = rand () ;
13 a copy [x] = a [x] ;
14 }
15 i f (devte s t [0] == 1) {
16 #pragma acc ente r data c r e a t e (a [0 : n])
17 #pragma acc e x i t data copyout (a [0 : n])
18 e r r = 1 ; // Fa i l i n g
19 for (int x = 0 ; x < n ; ++x) {
20 i f (f abs (a [x] − a copy [x]) > PRECISION) {
21 e r r = 0 //Passing
22 }
23 }
24 }

While Code 7 is almost exactly the same, we change the type of the devtest
variable to be a int *. A strict reading of the specifications describes the data
transfer protocols for scalar variables in parallel regions as being treated as if
it appeared in a firstprivate clause for the region if the scalar has not already
appeared in another data clause or in a surrounding data region, in which case,
the operation is that of the explicit data clause. This means that partial imple-
mentations could potentially implement the implicit data transfer without allow-
ing them to be overridden by other data clauses. Instead, by using a pointer
to the data, it gets treated as a non-scalar, avoiding any potential issues with
implicit data transfer and getting incorrect results with regards to the presence
of a separate memory device.

There is yet another issue with this test. The test, which creates the data and
copies it back to host, relies on the assumption that the data on device will be
allocated over garbage data that has different values than that of the host version
of the data. While relatively unlikely, this allows for mixed results that, if users
are testing for only strict adherence of the language, may be unwelcome. Instead
of removing a test over a minor risk or keeping a code that may give unreliable
results, we instead move it to a conditional region dependent on configuration
settings of the test-suite as seen in Code 8 on line 16.

566 K. Friedline et al.

Code 8. Enter Data Create V.4

1 double ∗ a = (double ∗) mal loc (n ∗ s izeof (double)) ;
2 double ∗ b = (double ∗) mal loc (n ∗ s izeof (double)) ;
3 double ∗ a copy = (double ∗) mal loc (n ∗ s izeof (double)) ;
4 int ∗ devte s t = (int ∗) mal loc (s izeof (int)) ;
5 int e r r = 0 ;
6 devte s t [0] = 1 ;
7 #pragma acc ente r data copyin (devte s t [0 : 1])
8 #pragma acc p a r a l l e l p re sent (devte s t [0 : 1])
9 {

10 devte s t [0] = 0 ;
11 }
12 for (int x = 0 ; x < n ; ++x) {
13 a [x] = rand () ;
14 a copy [x] = a [x] ;
15 }
16 i f (devte s t [0] == 1 && run p r o b a b i l i s t i c == 1) {
17 #pragma acc ente r data c r e a t e (a [0 : n])
18 #pragma acc e x i t data copyout (a [0 : n])
19 e r r = 1 ; \\ Fa i l i n g
20 for (int x = 0 ; x < n ; ++x) {
21 i f (f abs (a [x] − a copy [x]) > PRECISION) {
22 e r r = 0 ;
23 }
24 }
25 }
26 for (int x = 0 ; x < n ; ++x) {
27 a [x] = rand () ;
28 b [x] = 0 . 0 ;
29 }
30 #pragma acc ente r data copyin (a [0 : n]) c r e a t e (b [0 : n])
31 #pragma acc p a r a l l e l p re sent (a [0 : n] , b [0 : n])
32 {
33 for (int x = 0 ; x < n ; ++x) {
34 b [x] = a [x] ;
35 }
36 }
37 #pragma acc e x i t data copyout (b [0 : n]) d e l e t e (a [0 : n])
38 for (int x = 0 ; x < n ; ++x) {
39 i f (f abs (a [x] − b [x]) > PRECISION) {
40 e r r += 1 ;
41 break ;
42 }
43 }

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 567

In order to add at least some minimal testing for systems that either have
shared memory or are being run without probabilistic tests, we also include
a test that is written to be completely independent of device type or garbage
data. On lines 30–43 we test the create clause, but instead of testing the lack
of data transfer, we only test that the data was allocated and available for use.
While this severely limits this test, it does provide proof of the dependability of
the clause for any standard code that doesn’t depend on any non-deterministic
structures.

This example demonstrates some of the difficulties that come with varying
memory models. While these are not inherent to a parallel programming model,
many devices that run these codes depend on separate memory while other tech-
nologies, such as Knight’s Landing, focus on reunifying the memory to minimize
the startup cost to parallelization. There are other issues to protect the tests
against in terms of the non-sequential processing model which is inherent to any
parallelization.

In the case of testing the reduction clause on a loop directive with a multiply
operator, one of the problems that can be run into with this sort of reduction is
overflowing the reduction variable. In order to sanitize the data to avoid this, it
might be tempting to keep a rolling multiplied total when initializing the data
and limiting the randomization to a range that will not allow for overflow. When
processing sequentially, there would be no problems with this solution. However,
since the reduction does not execute sequentially, all the largest of the numbers
could, by chance be multiplied together before any of the lower ones, which could
cause undefined values before the completion of the reduction.

4 Setup, Compilation Flags and Infrastructure

For our tests, we ran the suite on three different systems. The first system is
University of Delaware’s (UD) Community Cluster, Farber,3 where our compute
node consists of Intel Xeon CPU E5-2670 v2 processor (20 cores) of Ivy Bridge
architecture and a single NVIDIA Tesla K80 GPU. The second system is Titan4

housed at ORNL where each compute node contains 1 AMD Interlagos 6274
processor (16 cores) of the Bulldozer architecture and a single NVIDIA Tesla
K20 GPU. The third system is Summitdev consisting of IBM Power8+ processor
CPUs (20 cores) with 4 NVIDIA Tesla P100 GPUs. We were also able to test
on a machine running on an Intel Knights Landing chip, the Xeon Phi 7230.

With the first two systems, we were able to use PGI 16.10, which is also the
version for the community edition (at the time of writing this paper). For the first
system - UD’s Farber, we use 17.3 (the latest version of the compiler at the time
of writing this paper). On the third system and the Knights Landing system, we
use PGI 17.1 due to the lack of availability of the 16.10 version on that system.
We also used the GNU 6.3-20170303 compiler version on the second system,
Titan. Between these various environments, we were able to test all supported
3 http://docs.hpc.udel.edu/clusters/farber/start#farber.
4 https://www.olcf.ornl.gov/titan/.

http://docs.hpc.udel.edu/clusters/farber/start#farber
https://www.olcf.ornl.gov/titan/

568 K. Friedline et al.

platforms for both PGI and GNU except for little-endian PowerPC systems for
GNU. In all, we ran the testsuite 13 times as shown in Table 1 with variations of
compiler vendor, compiler version, platform type, and platform version to ensure
we do not spot any flaky tests.

Table 1. Compiler versions and platforms

Run Compiler Platform

1 PGI 16.10 Ivy Bridge Multicore

2 PGI 16.10 K80

3 PGI 17.3 Ivy Bridge Multicore

4 PGI 17.3 K80

5 PGI 16.10 Bulldozer Multicore

6 PGI 16.10 K20

7 PGI 17.1 Power8+ Multicore

8 PGI 17.1 P100

9 PGI 17.1 Knights Landing

10 GNU 6.3-20170303 Bulldozer Multicore

11 GNU 6.3-20170303 K20

12 GNU 6.0.0-20160415 Ivy Bridge Multicore

13 GNU 6.0.0-20160415 K80

The compilation uses various flags. For instance with the PGI compiler, to
target the CPUs either the -ta=multicore or -ta=host flags is used (multicore for
multithreading and host for single threaded execution). For the GPUs, the target
accelerator flag is set to -ta=tesla for the Kepler cards or -ta=tesla:cc60 when
targeting the P100 cards. With the GNU compiler, targeting is not handled at
compile time. Instead, both host and device versions of the code are built. In
order to run the host version (There is no multicore option for GNU as of yet),
the internal control variable has to be set with ACC DEVICE TYPE=host, or,
in order to force device operation, ACC DEVICE TYPE=nvidia.

With the GNU compiler, compilation failure due to linking issues were some-
times resolved by adding the -lm flag. If the issues were still not resolved, adding
the -foffload=-lm would occasionally fix the compilation error as well. With
fortran codes, due the strict adherence of GNU to fortran specifications, the
-ffree-line-length-none could be used when lines were longer than 72 characters.

5 Results

(Note: We have used 16.10 wherever possible as at the time of writing this
paper PGI’s Community Edition supports 16.105). In executing the testsuite on
5 https://www.pgroup.com/products/community.htm.

https://www.pgroup.com/products/community.htm

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 569

the assortment of platforms discussed in Sect. 4, we can statistically verify the
integrity of these tests. We developed 177 tests and out of the 177 tests, 89.3%
passed in all runs with the PGI compiler and 51.7% passed in all runs with PGI
and GNU compilers. In addition, no test failed all runs. The overall success rate
for the tests is 90.6% across 2301 individual test-runs (includes the combination
of compiler versions on the variety of hardware architectures).

5.1 Comparison of PGI Compiler Targeting Various Architectures

Between the systems we had access to, we were able to test seven separate archi-
tectures. As far as accelerators are concerned, we were able to run the testsuite
on NVIDIA’s K20 architecture, K80 architecture, and the P100 architecture. Of
these, on the P100 we were not able to use PGI’s 16.10 compiler version; instead
we used PGI’s 17.1 compiler version available on that system. However, target-
ing these accelerators was very uniform, having a total pass rate of 525/531 or
98.9%. Across all platforms, tests for the tile clause on a parallel loop in
C and the test for the firstprivate clause on a parallel region in Fortran
failed. However, the test for the tile clause is not a surprising failure. The test
takes the lack of a range of valid values for the arguments in the specifications
to test that all values should work. As an optimization clause, even if the tiling
arguments are out of bounds for the loops, it should not change the results of
the test. On other versions of the test that did not do this, the tile clause did
execute properly.

Targeting multicore processors/shared memory devices had much more var-
ied results. We were able to run the testsuite on the Intel Ivy Bridge architecture,
the AMD Bulldozer architecture (TITAN), the IBM Power8+ architecture (Sum-
mitdev), and the Intel Knights Landing (KNL) architecture (though KNL is not
yet officially supported by PGI). We used PGI’s 16.10 version on the Ivy Bridge
and Bulldozer architectures, and PGI’s 17.1 version on Power8+ and Knights
Landing. The average pass rate for these architectures was lower than that of the
discrete graphics cards tested. Instead of 98.9% pass rate, these tests averaged
a 95.3% pass rate or 675/708 passing over total, though this is not surprising,
due to PGI’s relatively recent support of OpenACC targeting multicore on x86
and Power processors.

Across all multicore architectures, the test for the firstprivate clause on
a parallel construct in C and the test of a multiplication reduction in a
parallel region in C were the only consistent failures. Others were also very
close to across the board failure, such as the Fortran versions of each of these
tests, which failed all but the Ivy Bridge architecture, and the test of an AND
reduction on a parallel loop with a scalar that has been privatized in a
surrounding loop in C, which failed on all but Power8+. The test of the tile
clause on a parallel loop in C failed on all architectures but Bulldozer. Both
the test of the AND reduction on a parallel loop in C and the test of the
OR reduction on a parallel loop in C also failed for both Ivy Bridge and
Knights Landing. In particular, though, the Power8+ architecture had a good
amount of additional failures that should be noted. The Power8+ architecture

570 K. Friedline et al.

failed a simple test having multiple loops inside of a parallel construct in both
C and Fortran as well as many of the tests that utilized the create clause. The
tests associated with the create clause that failed were the tests that used the
functionality of removing the lower bound on the data clause to have it default to
zero on a data construct in both C and Fortran and on an enter data directive
in Fortran and the use of a create clause on a parallel construct in both C
and Fortran.

The performance of these various platforms can be seen in Table 2.

Table 2. Performance of PGI architecture targeting

Architecture Pass rate Percent passed

K20 175/177 98.9%

K80 175/177 98.3%

P100 175/177 98.9%

Ivy Bridge 171/177 96.6%

Bulldozer 172/177 97.2%

Power8+ 165/177 93.3%

Knights landing 167/177 94.4%

5.2 Comparison of Various PGI Compiler Versions

We were also able to test a series of PGI’s compilers using a NVIDIA K80 as
shown in Table 3 The first version that we were able to test was 14.10 (at the time
of this version, PGI did not support the 2.5 specifications). Thus, there is quite a

Table 3. Comparison of K80 targeting across PGI versions

Compiler version Fortran pass rate C pass rate Fortran percent
passed

C percent
passed

14.10 60/86 67/91 69.8% 73.6%

15.1 64/86 80/91 74.4% 87.9%

15.5 65/86 80/91 75.6% 87.9%

15.10 68/86 84/91 79.1% 92.3%

16.1 69/86 84/91 80.2% 92.3%

16.4 82/86 84/91 95.3% 92.3%

16.7 85/86 90/91 98.8% 98.9%

16.10 85/86 90/91 98.8% 98.9%

17.1 85/86 90/91 98.8% 98.9%

17.3 85/86 90/91 98.8% 98.9%

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 571

noticeable improvement across 14.10 to 15.1, causing issues with about nineteen
of the tests. In the 15.5 version, the tile clause was added, fixing the errors
associated with the Fortran version of the test of the tile clause, though the C
version continues to have errors even now due to its inability to handle abnormal
arguments for the tile clause. With the 15.10 version, PGI added support for the
num gangs, num workers, and vector length for the kernels construct, resolv-
ing compilation errors caused by the use of these clauses. Also, until the 16.4
version, having variables copied into the device multiple times would cause errors
in Fortran. This situation appears in another fourteen of the tests. With 16.7,
reference counting was added (including the finalize clause), fixing another five
tests. Also with 16.7, the num gangs, num workers, and vector length clauses
were added to the kernels construct in the C language, fixing another three
tests. The remaining issues have been reported to PGI in order to be fixed.

5.3 Comparison of PGI 16.10 and PGI 17.3 Multicore Support

In our runs on the UD Farber machine, we were able to compare results between
the 16.10 (community edition) and the 17.3 (latest edition) of the PGI compiler
on both Ivy Bridge multicore and NVIDIA K80. Overall the success rate of the
16.10 version was 346/354 between both platforms. Of the seven failures on the
16.10 version targeting the Ivy Bridge multicore, four were failures during testing
the reduction clause in the C language. However, in the 17.3 version, all but one
of these is resolved. Also, when targeting K80, there are no such failures. There
also seem to be issues working with the firstprivate clause. With both version,
Ivy Bridge failed the test of the firstprivate clause in the C language while on
K80, both versions failed the Fortran version. Also, both versions exhibited some
shortcomings in dealing with async clauses on parallel regions when targeting
K80. The last issue is with the tile clause. While the operation seems to be
proper in many cases, there seems to be an issue with properly tiling when the
tiling arguments fall beyond the bound of the iterations in the nested loops.
For these specific platforms, we only see an improvement with the multicore
targeting when using the reduction clause, bringing the 17.3 version’s success
rate to 349/354. It is possible, though, that testing in a similar fashion on other
platforms would show a greater/other improvements that are not evident here.

5.4 The GNU Compiler’s Accuracy to the OpenACC Specifications

We also were able to use the GNU compiler on the Farber system and Titan.
While it is far from competitive with the PGI results, GNU also does not, at this
point, support the features that were added in the 2.5 version of the OpenACC
specifications. Notably among these new features are reference counting and
the new ways memory is managed. Instead of using pcopy or copy, now the
functionality of copy has been completely removed in favor of treating all copy
clauses as pcopy. This drastically changes the way the tests are interpreted by
the compiler. Many of the tests use some form of multiple references in order to
test proper data management and thus the GNU compiler is, by supporting the

572 K. Friedline et al.

2.0 version, predestined to fail. On the Farber machine, 38 of the tests failures
were memory related runtime errors. While we cannot guarantee that these errors
would be fixed with support for 2.5, many most likely would pass. Results for
GNU in Table 4 indicate ACC DEVICE TYPE is set to host; single-threaded
host-fallback execution, in a shared-memory mode. An in-depth evaluation of
GCC OpenACC implementation on Cray systems is discussed in6. However these
discussions are based on an older version of the testsuite.

Table 4. GNU vs. PGI pass rates

Architecture PGI pass rate GNU pass rate

K20 175/177 112/177

K80 175/177 113/177

Ivy Bridge 171/177 154/177

Bulldozer 172/177 157/177

6 Discussion

With this testsuite, we have shown both the status of the compilers and their
ability to target various architectures. We also had the opportunity to run the
suite on Cray compiler. However, due to the compiler’s adherence to an out-
dated version of the OpenACC specifications, and lack of demand from users to
use Cray OpenACC compiler we have not summarized our test results on the
compiler. Also, since we plan to release the testsuite, anyone interested to vali-
date Cray OpenACC implementations is welcome to use our testsuite to validate
Cray’s OpenACC implementation.

When using the firstprivate clause in the Fortran language using the
PGI compiler, due to it’s potential for causing errors we recommend starting
debugging there. One potential solution to if it will not work is to replace the
firstprivate clause with a private clause and initialize the data in a gang
redundant loop. Though this will take it’s toll on performance, it could solve
incorrect calculations or runtime errors.

Our testsuite has helped validate OpenACC compilers on the Titan super-
computer and the pre-exascale machine Summitdev at Oak Ridge National Lab-
oratory (ORNL). Our tests have already been integrated to the official harness
testsuite of Titan.

There are multiple types of users with quite different requirements for a
comprehensive validation suite, the accessibility and usability features need to
be flexible. End users need an easy way to run all of the tests in the suite
and see a useful summary of the results to know how much coverage their soft-
ware stack and architecture supports. However, when using for QA purposes,
6 https://cug.org/proceedings/cug2017 proceedings/includes/files/pap174s2-file1.

pdf.

https://cug.org/proceedings/cug2017_proceedings/includes/files/pap174s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap174s2-file1.pdf

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 573

an implementer needs to be able to easily run and debug at the single-test level
of granularity. These different types of requirements require a robust testsuite
infrastructure that is currently not in place but under discussion. This infrastruc-
ture needs to be simple so that anybody can contribute new tests or fix bugs by
only needing to understand the host language and OpenACC, not the details of
the test harness. Only by minimizing the effort for new contributions will the
test be widely adopted and expanded by the community.

7 Related Work

Our first paper on this effort [24] covers the specifications through version 1.0
of the OpenACC specifications. A closely related work to this effort is the
OpenMP Validation Suite [20] that also validates and verifies the features of
OpenMP compiler implementations. In 2003, an OpenMP validation suite was
developed [12] to validate OpenMP implementations for OpenMP 2.0. This work
was extended [13] to build test cases to validate implementations of OpenMP 2.5
features. This work was further extended [23] to develop a more robust OpenMP
validation suite and provided up-to-date test cases covering all the features until
OpenMP 3.1.

Other related efforts to building and using a testsuite include Csmith [25],
a comprehensive, well-cited work where the authors perform a randomized test-
case generator exposing compiler bugs using differential testing. Such an app-
roach is quite effective to detecting compiler bugs but does not quite serve our
purpose since it is hard to automatically map a randomly generated failed test
to a bug that actually caused it. Thus we could say that our approach is com-
plimentary to that of Csmith’s approach.

LLVM has a testing infrastructure [10] that contains regression tests and
whole programs. The regression tests are expected to always pass and should be
run before every commit. These are a large number of small tests that tests var-
ious features of LLVM. The whole programs tests are referred to as the “LLVM
test suite” (or “test-suite”). The tests itself are driven by lit testing tool, which
is part of LLVM.

The parallel testsuite [7] chooses a set of routines to test the strength of
a computer system (compiler, run-time system, and hardware) in a variety of
disciplines with one of the goals being compare the ability of different Fortran
compilers to automatically parallelize various loops. The Parallel Loops test suite
is modeled after the Livermore Fortran kernels [11].

8 Conclusion and Future Work

This project develops test cases to validate and verify compilers’ implementations
of OpenACC features as of Version 2.5. As the features of the programming
model have evolved, so has the testsuite. The tests have enabled identification of
compiler bugs that have been or are being fixed in subsequent compiler versions,
thus improving the quality of the compilers. In addition to testing the platforms

574 K. Friedline et al.

and compilers with the testsuite as shown in the results, the variety of compiler
environments and hardware platforms have evaluated the tests to verify that
they properly conform to OpenACC specification.

We aim to build a comprehensive OpenACC testsuite for conformance of the
language features in the OpenACC specification. To that end, we are adding tests
to cover corner cases that may otherwise be not possible via simple unit tests.
We will also add tests to cover features as they are added to the specification.
We will also build interpreters to generate for each test a variety of variations on
that test to test fringe cases and feature limitations such as testing each numeric
type for each operator in a given parallelized region or testing limitations on
optimization variables. To make the testsuite easily usable, we will create forward
and backward references for the testsuite with the specification such that each
test in the open-source GitHub repository can be related to a definition in the
specification and definitions in the specification can be tagged to a test in the
repository.7

Acknowledgments. We are very grateful to OpenACC and NVIDIA for supporting
this project. Special thanks to Mathew Colgrove, Duncan Poole, Christophe Harle, Jeff
Larkin, Michael Wolfe, James Beyer, Pat Brooks, Doug Holt, Wael Elwasif, Thomas
Swinge, Cesar Philippidis, Randy Allen and Alex Rech.

This material is based upon work supported by the U.S. Department of Energy,
Office of science, and this research used resources of the Oak Ridge Leadership Comput-
ing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

References

1. CAAR center for accelerated application readiness. https://www.olcf.ornl.gov/
caar/

2. INCITE program. http://www.doeleadershipcomputing.org/incite-program/
3. NVIDIA Thrust. https://developer.nvidia.com/thrust. Accessed 03 Feb 2017
4. OpenACC
5. Adams, M.F., Ethier, S., Wichmann, N.: Performance of particle in cell methods on

highly concurrent computational architectures. J. Phys. Conf. Ser. 78(1), 012001
(2007)

6. Aidas, K., Angeli, C., Bak, K.L., et al.: The dalton quantum chemistry program
system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4(3), 269–284 (2014)

7. Dongarra, J., Furtney, M., Reinhardt, S., Russell, J.: Parallel loops–a test suite for
parallelizing compilers: description and example results. Parallel Comput. 17(10–
11), 1247–1255 (1991)

8. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014)

9. Ethier, S., Tang, W.M., Walkup, R., Oliker, L.: Large-scale gyrokinetic particle
simulation of microturbulence in magnetically confined fusion plasmas. IBM J.
Res. Dev. 52(1.2), 105–115 (2008)

7 For more detailed explanation and example, see https://github.com/
OpenACCUserGroup/OpenACCV-V/blob/master/README.md.

https://www.olcf.ornl.gov/caar/
https://www.olcf.ornl.gov/caar/
http://www.doeleadershipcomputing.org/incite-program/
https://developer.nvidia.com/thrust
https://github.com/OpenACCUserGroup/OpenACCV-V/blob/master/README.md
https://github.com/OpenACCUserGroup/OpenACCV-V/blob/master/README.md

OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures 575

10. LLVM. Llvm Testing Infrastructure Guide. http://www.llvm.org/pre-releases/4.0.
0/rc2/docs/TestingGuide.html#test-suite

11. McMahon, F.H.: The livermore fortran kernels: a computer test of the numerical
performance range. Technical report, Lawrence Livermore National Lab, CA, USA
(1986)

12. Müller, M., Neytchev, P.: An openMP validation suite. In: Fifth European Work-
shop on OpenMP, Aachen University, Germany (2003)

13. Müller, M., Niethammer, C., Chapman, B., Wen, Y., Liu, Z.: Validating openMP
2.5 for fortran and C/C. In: Sixth European Workshop on OpenMP, KTH Royal
Institute of Technology. Citeseer (2004)

14. Nonaka, A., Almgren, A.S., Bell, J.B., Lijewski, M.J., Malone, C.M., Zingale, M.:
MAESTRO: an adaptive low mach number hydrodynamics algorithm for stellar
flows. Astrophys. J. Suppl. Ser. 188(2), 358 (2010)

15. NVIDIA. CUDA SDK Code Samples. http://developer.nvidia.com/cuda-cc-sdk-
code-samples. Accessed 03 Feb 2017

16. OpenACC. Deep Copy Attach and Detach. http://www.openacc.org/sites/
default/files/TR-16-1.pdf

17. OpenACC. OpenACC, Directives for Accelerators. http://www.openacc.org/
18. OpenCL. OpenCL. https://www.khronos.org/
19. OpenMP. OpenMP 4.5 specification. http://www.openmp.org/wp-content/

uploads/openmp-4.5.pdf
20. OpenMP Validation and Verification Suite. OpenMP 3.1 Specification. https://

github.com/sunitachandra/omp-validation
21. Taylor, M.A., Edwards, J., Cyr, A.S.: Petascale atmospheric models for the commu-

nity climate system model: new developments and evaluation of scalable dynamical
cores. J. Phys. Conf. Ser. 125(1), 012023 (2008)

22. Taylor, M.A., Edwards, J., Thomas, S., Nair, R.: A mass and energy conserving
spectral element atmospheric dynamical core on the cubed-sphere grid. J. Phys.
Conf. Ser. 78(1), 012074 (2007)

23. Wang, C., Chandrasekaran, S., Chapman, B.: An OpenMP 3.1 validation test-
suite. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 237–249. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30961-8 18

24. Wang, C., Xu, R., Chandrasekaran, S., Chapman, B., Hernandez, O.: A validation
testsuite for OpenACC 1.0. In: 2014 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 1407–1416. IEEE (2014)

25. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: ACM SIGPLAN Notices, vol. 46, pp. 283–294. ACM (2011)

http://www.llvm.org/pre-releases/4.0.0/rc2/docs/TestingGuide.html#test-suite
http://www.llvm.org/pre-releases/4.0.0/rc2/docs/TestingGuide.html#test-suite
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://www.openacc.org/sites/default/files/TR-16-1.pdf
http://www.openacc.org/sites/default/files/TR-16-1.pdf
http://www.openacc.org/
https://www.khronos.org/
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://github.com/sunitachandra/omp-validation
https://github.com/sunitachandra/omp-validation
http://dx.doi.org/10.1007/978-3-642-30961-8_18
http://dx.doi.org/10.1007/978-3-642-30961-8_18

12th Workshop on Virtualization in
High-Performance Cloud Computing

(VHPC'17)

A Survey of Fast Packet I/O Technologies
for Network Function Virtualization

Giuseppe Lettieri(B), Vincenzo Maffione(B), and Luigi Rizzo(B)

Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa, Italy
{giuseppe.lettieri,vincenzo.maffione,luigi.rizzo}@unipi.it

Abstract. Network Function Virtualization (NFV) aims at bringing
the benefits of virtualization to network middleboxes (routers, firewalls,
Intrusion Detection Systems, . . .). In the last few years the NFV use-case,
initially hampered by the poor performance of traditional virtualized-I/O
and network stacks, has prompted the design of several frameworks, all
trying to provide a fast network for VMs and/or containers. These solu-
tions share many common ideas, but also differ in performance, flexibility,
portability, amount of specialized hardware required and/or software to
be rewritten, attention to energy consumption issues, and so on. In this
survey we focus on the NFV data-path, as opposed to the orthogonal
control-path. We define a set of desirable features for NFV data-paths
and use them to compare a selection of the most promising and/or widely
used NFV frameworks. No single solution is optimal for all the features,
so our survey may prompt for further research in this area.

1 Introduction

The advent of NFV [1,2] has led to the introduction of several frameworks and
tools that can deal with the pressing network I/O requirements of NFV deploy-
ments. Some of these frameworks were also introduced independently of NFV, as
a solution to overcome the performance limitations of traditional OS and hyper-
visor networking capabilities. Traditional in-kernel network stacks are known to
be unable to bear the high traffic loads that are expected on large server machines
with high VM density and high-end 10–100Gbit NICs, severely limiting the max-
imum packet rate that can be achieved between the different components in the
system. In any case, different solutions have been proposed, each one coming
with its own degree of flexibility, features, performance limitations, so that there
are several aspects that an user should take into consideration when making
a choice. As an example, some solutions require hardware NIC drivers to be
installed in the VMs, while other do not; some solutions provide a virtual switch
to connect VMs on the same physical machine, while others explicitly provide
a faster “virtual link” abstraction. As a result it is often hard for the users to
choose the right option. A comprehensive comparison and classification w.r.t.
different practical aspects is needed to let the user choose wisely, according to
their needs in terms of performance, flexibility, reusability, NIC support, etc.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 579–590, 2017.
https://doi.org/10.1007/978-3-319-67630-2_40

580 G. Lettieri et al.

In this paper we conduct a comparative survey of fast network I/O solutions
for NFV, describing and comparing the options selected as the most promising
and/or in-use at time of writing. Our study is limited to the data-plane capabil-
ities, and therefore does not consider issues related to control-plane, being these
problems completely orthogonal. Other NFV surveys exist, but they either touch
only lightly on existing data path solutions ([3,4]) or they focus on other aspects
like resource allocation [5] or security [6].

We focus primarily on how VMs running on the same host can be connected
between each other and/or with the external network, and how flexible and
fast these connection are. For space reasons we leave out other, non VM-based
technologies (e.g. containers).

The solutions that we analyze are the hardware-based ones (PCI passthrough
with SR-IOV) and some software-based ones, i.e. Open vSwitch (enhanced with
DPDK), NetVM, netmap and Snabb.

2 Overview of Existing Solutions

Here we provide a short overview of the selected data-path solutions. In the
following, the term host refers to the physical machine hosting the VMs that
make up the NFV chain and it includes the VM hypervisor.

host

guest
kernel

guest
netmap

netmap guest user

guest
kernel

DPDK guest user

switch

VF VF

NIC

(a) SR-IOV

guest
kernel

netmap guest user

guest
kernel

netmap guest user

host kernel

host netmap

NIC

(b) netmap passthrough

guest
kernel

virtio

netmap or DPDK
guest user

guest
kernel

virtio

netmap or DPDK
guest user

host kernel

Snabb or OVS-DPDK

NIC

(c) Snabb and OVS-DPDK

Fig. 1. The data-path solutions surveyed in the paper. Different colors denote different
protection domains. (Color figure online)

SR-IOV. PCI-passthrough is a widely used technique [7,8] to passthrough a
host PCI device inside a VM (a NIC in this case). On its (emulated) PCI bus,
the VM OS sees a PCI device belonging to the same NIC model, and uses its
specific driver. The IOMMU [9] is used to provide those memory protection and
address translation functionalities that are necessary to let the VM access a host
device. The main advantage of SN is that the performance is normally the same
as bare-metal. However, the host PCI bus can become a bottleneck as it is shared
by all the NICs, and the low number of NICs that can be physically attached to
a machine clearly limits the per-host VM density. SR-IOV [10,11] is a standard
for hardware-based network I/O sharing, that tries to overcome this density
limitations. SR-IOV extends NIC capabilities allowing a device to expose to the
OS multiple instances of itself, known as virtual functions (VFs). The OS sees
each VF as a separate PCI NIC (with a separate MAC), which it can passthrough

A Survey of Fast Packet I/O Technologies for NFV 581

to a VM. A VF is a lightweight version of a fully featured NIC, equipped with its
own private TX/RX ring descriptors (data transfer capabilities), while all the
other parts of the hardware (configuration capabilities) are shared with the other
VFs. According to the standard, a SR-IOV-capable NIC can create up to 256
VFs, although the real limit can be lower (e.g. 64), because of the need for private
hardware resources and the negative performance impact of sharing internal
data-path components. SR-IOV largely removes the VM density bottleneck, since
a host can support as many VMs as the total number of VFs available in its NICs,
as shown in Fig. 1a. The inter-VM packet switching between two VFs belonging
to the same physical NIC happens inside the NIC hardware, by means of an
internal Ethernet bridge. The switching flexibility is somewhat limited, as it is
usually based on L2 addresses only. If VFs belong to different physical NICs,
external switching is necessary.
DPDK-accelerated Open vSwitch (OVS-DPDK). Open vSwitch (OVS)
[12] is a distributed multilayer virtual switch with extensive support for pro-
grammability. Due to the wide range of supported features, it is commonly used
as software bridge to connect together VMs and NICs, where the data-path
can be implemented in software (kernel-space or user-space). The most inter-
esting capability of OVS w.r.t. NFV is the possibility to attach VMs to the
switch through DPDK-capable ports, which leverages the vhost-user hypervisor
technology [13,14] to exchange packets with the VM through the VirtIO paravir-
tualized network device. DPDK-capable OVS ports (including NIC ports) are
served by user-space OVS threads and traffic flowing between them is forwarded
through the high performance DPDK framework [15], as shown in Fig. 1c. DPDK
forwards packets using fast user-space networking techniques, i.e. batch packet
processing, preallocated packet buffers, etc.
NetVM. NetVM [16] is a framework specifically designed for NFV, that builds
on DPDK [15] to provide high-level abstractions for developing, deploying and
managing chains of VNFs. NetVM relies on DPDK for high-speed NIC I/O and
augments it with a shared memory mechanism that allows applications running
in trusted VMs (or trusted containers in the more recent OpenNetVM [17]) to
exchange packets among them and with the NICs without any data copy. The
NetVM threads let NICs DMA data into the hugepages-backed shared memory
area and then use lockless queues (rings) to move buffer grants (descriptors)
across the chains of VMs, while the data itself is not moved. In addition to zero-
copy, NetVM focuses on NUMA-awareness (forcing socket locality) and busy-
waiting to completely avoid interrupts and other types of notifications (same
as DPDK does). Applications must be written in terms of callbacks (similar to
Linux netfilter hooks), using a NetVM-specific library. The callbacks instruct
NetVM about the packet’s fate, e.g., drop, forward to other VM, transmit to
NIC.
Netmap. Netmap [18] is a framework for fast user-space I/O that provides
an hardware-independent API for raw I/O on physical NICs and other types
of software interfaces. Similarly to DPDK, Netmap achieves high performance
by means of OS bypass techniques (batch operation, buffer preallocation,

582 G. Lettieri et al.

memory mapping in the application, etc.). Several extensions have been intro-
duced to support network I/O for VMs and containers: the VALE software
switch [19,20] can connect together NICs and VMs (through virtual ports);
Netmap pipes implement fast point-to-point links between two processes;
Netmap passthrough [21,22] allows any host netmap port to be directly seen
by the VM using a standard paravirtualized driver. All the types of netmap
port (NIC, virtual port, pipe, passthrough port, . . .) can be accessed with the
same Netmap API, so that applications can run unmodified everywhere. Some
Netmap features specifically target NFV scenarios: pipes supports VM-to-VM
virtual links in NFV chains; VALE provides a way to attach many VMs to a
physical network; Netmap passthrough is then used to make VALE ports and
pipes available inside the VM without the overhead of a virtual NIC emulation
layer.
Snabb. Snabb [23,24] is a flexible networking toolkit that allows the pro-
grammer to build a custom software packet processing network by connecting
together reusable functional blocks, known as Apps. Apps can be very simple
(mux/demux, repeaters, splitters, etc.) or more complex (learning bridge, IPSec,
etc.). A packet processing system is modeled as directed graph of Apps, known
as the AppEngine, which runs in the context of the single-threaded Snabb engine
process. Multiple independent engines can be used if needed. See Fig. 1c. Snabb
supports NFV in the following way: (i) the VhostUser App allows for fast data
exchange with VMs, using the same vhost-user technology used by OVS-DPDK;
and (ii) some Apps (e.g. Intel10G) are available to access NIC hardware, imple-
menting user-space drivers with OS bypass techniques similar to DPDK and
Netmap.
Other related work. ClickOS [25] uses Netmap VALE as a fast Xen hypervisor
switch, and a specialized passthrough technique to let the VM map VALE ports
in its address space, which is analogous to the current Netmap passthrough; for
the purposes of this paper, ClickOS is just an application of Netmap. Soft-
NIC [26] focuses on an hybrid software/hardware DPDK-based approach to
augment NIC features to provide flexible packet processing pipelines (similar
to Click), where each stage implements a low-level NIC feature (e.g. checksum,
TSO, . . .); the pipeline performs in software those operations that the hardware
can’t do. SoftNIC can be used as a virtual switch for NFV, as it uses OS-bypass
and passthrough techniques to map the pipeline address space into user-space
applications running in the host or in a VM. NetBricks [27] is an NFV architec-
ture that enforces isolation by requiring all functions to be written in a memory
safe language (rust); since we are limiting this survey to VM-based solutions, we
have to leave it out.

3 Comparing Architectures and Features

We compare the solutions described in Sect. 2 against various aspects that we
deem important to meet the NFV I/O requirements. NFV aims at replacing
hardware-based network appliances with software-based Virtual Functions to

A Survey of Fast Packet I/O Technologies for NFV 583

achieve several benefits: reduce cost, remove vendor lock-in, increase flexibility,
while still achieving good performance [2]. Criteria (a), (b) and (c) below evaluate
some barriers to vendor lock-in removal; criteria (d), (e) and (f) explore aspects
related to performance and cost, while criteria (g), (h) and (i) focus on flexibility.
(a) Network backends and portability of VM images. To enhance flex-
ibility, it is desirable that VMs can run unmodified everywhere, independently
on the host hardware. It is then important to minimize the amount of software
required in the VM image to be portable. Both OVS-DPDK, Netmap and Snabb
are very portable, as they require only a standard driver to access the virtual
interface: ptnet [22] for Netmap, virtio-net [28,29] for the other two. The network
backend for OVS-DPDK and Snabb is a vhost-user port of a software switch,
where NICs and other software ports can be attached. The backend of a Netmap
ptnet interface can be any host Netmap port, i.e. NIC, pipe, VALE port, moni-
tor, etc. Also NetVM applications are fully portable to any NetVM deployment,
as they are written in terms of callbacks and don’t see the virtual interface; under
the hood, NetVM uses a custom PCI device to access the backend rings. In con-
trast, SR-IOV is backed by physical NICs (or Virtual Functions) and require the
VM to contain a driver for any NIC model that may be passed-through as the
image is deployed across the ever-moving virtualization infrastructure.
(b) Dependency on specific NIC models. One of the main concerns of NFV
is the possibility to deploy applications anywhere, independently on the specific
network hardware of the host where they run. While traditional virtualization
technologies are usually able to provide this decoupling, the solutions in Sect. 2
may add some constraint, as they may only support a limited range of NICs.
Being a PCI passthrough technique, SR-IOV reuses the standard kernel-space
drivers shipped with the OS, which are available for virtually any NIC model on
the market. On the contrary, the other solutions are required to provide explicit
driver support for each NIC to be used. Performance of traditional kernel drivers,
even for high-end NICs, is limited by the legacy OS interfaces, which hinder
important optimizations like the use pre-allocated packet buffers and batch I/O
(e.g. [18])1. As a consequence, NIC drivers need to be rewritten or modified for
optimized performance. DPDK-based framework (OVS-DPDK and NetVM) and
Snabb rely on user-space drivers rewritten from scratch. DPDK supports 1–40
Gbit NICs from many hardware vendors (Amazon, Broadcom, Cavium, Chelsio,
Cesnet, Cisco, Emulex, Intel, Mellanox, Netronome, QLogic, . . .) and software
devices (virtio-net, Xen, vmxnet3, . . .), while Snabb only supports Intel 10Gbit
NICs and virtio-net. Netmap only supports Intel 1–40Gbit NICs, Chelsio 10Gbit
NICs, and virtio-net, veth and ptnet software devices.
(c) Effort required to support more NICs. While SR-IOV reuses standard
drivers, the other network I/O frameworks need specialized drivers. It is therefore
important to evaluate the development effort needed to add a support for future
(or yet unsupported) NIC models. DPDK-based solutions and Snabb need a

1 Although also traditional OSes are slowly evolving, e.g. Linux recently introduced
support for batch transmission.

584 G. Lettieri et al.

whole driver to be rewritten from scratch. Being written in lua, Snabb drivers
are quite compact (1–2 Klocs), while DPDK drivers typically require 5–40 Klocs.
In contrast, Netmap only needs to apply a relatively small patch (∼600 locs) to
the standard kernel driver; the patch mainly implements the bypass I/O routines.
It is worth nothing that both Netmap, Snabb and DPDK are able to work with
unmodified kernel drivers, at reduced performance. This is very useful in practice,
although not interesting for our study, as we target maximum performance.
(d) Provisioning of VM-to-VM virtual links. NFV setups are often
described in terms of chained VNFs, logically connected by p2p (point-to-point)
links. This contrasts with the use of traditional virtual switches where many
VMs/containers are attached, together with the NIC(s). Clearly, one ore more
p2p links can be implemented with a single virtual switch, but in practice a true
p2p mechanism can reach better performance than any virtual switch, because
there is no central bottleneck and its task is simpler. Snabb is flexible enough that
its Apps (e.g. two VhostUser ones) can be connected in a p2p fashion. NetVM
explicitly creates chains using dedicated threads to move packets between a stage
to the next one. Netmap provides pipes and netmap-accelerated veth devices that
implement fast p2p links between two VNFs. OVS-DPDK is less flexible as it
does not provide p2p links: packets must flow through the OVS instance that
can be configured with static OpenFlow [30] rules to forward packets between
pairs of ports. This comparison item does not apply to SR-IOV, where inter-VM
switching is done by the NIC hardware.
(e) Synchronization and CPU utilization. Many frameworks for high-speed
network I/O (DPDK-based solutions and Snabb among our selection) heavily
rely on busy-wait polling to maximize throughput and minimize latency. The
rationale behind this are (i) the assumption that the system is always under
high load; and (ii) the research for best possible performance irrespectively of the
CPU utilization and protection of NIC hardware. This is achieved by completely
avoiding NIC interrupts and system calls and dedicating CPU cores to NIC
queues (physical or VirtIO). However, if the system is not always under high
load, or there are mismatches in the processing pipeline, most of the CPU time
is wasted on busy waiting. This problem becomes even worse if busy-waiting is
also used inside the VM (e.g. DPDK application on the virtio-net interface), in
addition to being used in the host. In contrast, Netmap uses NIC interrupts and
standard kernel synchronization mechanisms (e.g. poll()) to block on empty or
full NIC queues. This allows the system to be efficient under low load, at the
cost of reduced performance under high load. The performance gap may be small
because (i) the cost of system calls and interrupts is usually amortized over very
large batch of packets (e.g. 512); and (ii) the per-packet cost due to application
processing is often at least an order of magnitude higher than the per-packet
I/O cost, so that differences in the per-packet I/O cost are hidden.
(f) Zerocopy capabilities. If the VMs/containers of an NFV chain mutually
trust each other, avoid copying data among them saves many CPU cycles. On
the other hand, if the VMs are not trusted, the copy is necessary to ensure
memory isolation. OVS-DPDK and Snabb use the VirtIO interface to isolate

A Survey of Fast Packet I/O Technologies for NFV 585

VMs among each other (packet buffers are allocated by the VMs), and need to
copy packet data between VM memory and host memory. Instead, NetVM and
Netmap (using pipes) support zerocopy using a shared memory area to store
packets, while only small packet descriptors are copied across the chain. While
NetVM only provides zerocopy, Netmap also allows multiple shared memory
areas, so that when two VMs use different areas, a copy is necessary and isolation
is guaranteed; this is possible with both VALE ports and pipes.
(g) Threading model. Since the number of host CPUs cores or hyperthreads
is limited and many solutions rely on busy-waiting, it is important to evaluate
how many threads are needed to properly run an NFV chain. SR-IOV is neutral
on this aspect, as it doesn’t impose a threading model; DPDK or Netmap are
often used on the passed-through interfaces for high speed I/O. Snabb runs
as a single-threaded process: the Apps in the AppEngine network are passive
objects, and the thread continuously scans them all to move the data between
input and output ports. The user can run multiple independent AppEngines,
but data exchange between them is not supported. OVS-DPDK requires a pool
of threads that busy-wait on the switch ports (vhost-user or NIC); the number
of threads and their mapping to ports is configurable; moreover, at least one
thread runs in the VM to process packets, typically busy-waiting on the virtio-
net interfaces. Netmap passthrough currently requires a host thread for each RX
or TX queue of the passed-through ports; however, threads can sleep when there
is no work to do. Similarly to OVS-DPDK, Netmap is often used in the VM to
access the passed-through port. In NetVM each NF needs a dedicated host TX
thread to move packet descriptors towards the next element in the chain; an RX
thread is used for each NIC queue to poll for new packets and move them to a
VM; finally, a thread is used to run the NF processing.
(h) Support for virtual switch programmability. In addition to perfor-
mance and portability, NFV also greatly benefits from flexible programmability
of the inter-VMs (or container) switch [31]. This aspect is important because
it allows for easy reconfiguration of the NFV chains and fine-grained and/or
dynamic control of the forwarding rules. With SR-IOV the switching flexibil-
ity is quite limited, as it happens in the NIC hardware only using L2 MAC
addresses. Snabb allows for custom switching logic by means of composition, as
VhostUser Apps can be connected through an arbitrary network of Apps. In the
Netmap VALE switch the user can override the forwarding function (L2 learning
by default), but this requires working at OS-kernel level. NetVM allows for more
sophisticated switching based on SDN controller and load balancing on queues
statistics. OVS-DPDK uses a standard (and more reusable) approach since the
switch can be programmed with OpenFlow rules.
(i) Support for live migration. The ability to migrate applications from one
physical host to another, while minimizing downtime, is very important for load
balancing and hardware maintenance [32]. VMs enable migration by encapsulat-
ing into the guest memory almost all the state that has to be moved. Moreover,
if the guest only uses virtual devices, the migration can also be kept transparent
(i.e., no support is needed on the guest part) and flexible (moving to hosts with

586 G. Lettieri et al.

different hardware). Passthrough solutions are generally at odds with migration,
as they create tight dependencies with the host and keep state out of the VM
memory. Live migration of PCI passthrough solutions like SR-IOV is typically
not transparent (the guest sees the NIC temporarily disappearing), and limited
to hosts with similar hardware. Currently, complete solutions are only avail-
able for some combinations of hypervisor and guest [33]. Netmap passthrough
is potentially more flexible (VM only accesses the hardware through Netmap
API), but it would require migration of state stored in the Netmap module in
the host; this is not currently supported and may be hard to implement. On the
contrary, both Snabb and OVS-DPDK fully support transparent live migration,
thanks to the isolation provided by VirtIO.

Table 1. Summary of the qualitative analysis. Letters refers to the qualitative criteria
of Sect. 3.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

SR-IOV

OVS-DPDK

NetVM

Netmap

Snabb

portability performance flexibility

good

needs improvements

difficult problems

doesn’t apply/unknown

Table 1 summarizes the results of our qualitative analysis, with colors denot-
ing how the solution fares w.r.t. the corresponding criteria. White boxes denote
that the corresponding criteria does not apply or cannot be evaluated, for lack
of data. It is clear from the Table that no perfect solution emerges from the
comparison.

4 Experimental Evaluation

We now complete the qualitative analysis presented in Sect. 3 with a performance
comparison addressing throughput and CPU utilization. Even if an exhaustive
performance analysis could not be included in this paper for space reasons, we
are able to numerically show the impact of the different architectures adopted.
We did not evaluate NetVM as its source code is not publicly available. Figure 2
reports the measured throughput (on the left chart) and CPU utilization (on
the right chart) for our experiments on the various configurations.

vm2vm experiment. Two VMs have a network interface each, with the two inter-
faces directly connected to each other by means of a non-zero-copy p2p link
(VMs don’t trust each other). A VM sends 64-bytes packets at maximum speed,
while the other VM measures the received packet rate. The Netmap pkt-gen
application is used as a sender/receiver, as it can run in all our deployments
and it is not a bottleneck. The purpose of this experiment is to evaluate how

A Survey of Fast Packet I/O Technologies for NFV 587

Snabb OVS-DPDK netmap SR-IOV

vm2vm unifwd
0

10

20

M
p
p
s

vm2vm unifwd
0

100

200

300

C
P

U
u
ti
li
za

ti
o
n

Fig. 2. On the left the measured packet-rate throughput for vm-to-vm and forwarding
experiments with 64 bytes packets, across the various NFV solutions. On the right the
corresponding total CPU utilization on the host machine.

memory-isolated p2p links provided by the various solutions behave under the
most stressful conditions, i.e. high packet-rate with short packets. For SR-IOV
two VFs are passed-through to the guests. For Netmap, two passed-through
VALE ports are used to ensure memory isolation. For OVS-DPDK and Snabb
two vhost-user ports are used, connected to each other by static OpenFlow rules
(OVS-DPDK) or AppEngine configuration (Snabb).

unifwd experiment. A VM with two network interfaces, each one connected to a
different host 10G NIC. The VM runs the Netmap bridge program to zero-copy
forward the packets between two interfaces (packets content is never accessed).
An external machine transmits 64-bytes packets at line rate (14.88 Mpps) to one
of the NICs and measures the packet-rate received from the other NIC. This
experiment assesses how the different solution allow the VMs to access the host
physical network under the most stressful conditions. For Netmap two NICs
are passed-through to the guest, while two VFs from different NICs are passed-
through for SR-IOV. For OVS-DPDK and Snabb two switch instances are used
to connect each VM vhost-user port to a different host NIC, and each switch is
served by a CPU.

Testbed description. Our test machine has an Intel Core i7-4790K CPU at
4.00 GHz (4 cores, 2 hyperthreads per-core), 16 GB DD3 RAM at 1.867 GHz,
and it runs Linux 4.10.8. We use a recent version of all the involved soft-
ware: QEMU (git master, April 2017), Snabb (git master, April 2017), OVS
2.7.0, DPDK 16.11, Netmap (git master, April 2017). The NICs are configured
with an interrupt moderation interval or 40µs, which is reasonable for through-
put experiments, and we let pkt-gen and bridge work with interrupts rather
than busy-wait. The machine is configured to maximize the reproducibility of
results, by disabling frequency scaling, sleeping C-states, Turbo mode, KVM
halt polling [34] and pinning processes to different cores. We did not disable
hyperthreading as we did not observe instabilities related to that.

Throughput analysis. The most evident fact in the throughput chart in Fig. 2
is that Snabb/OVS-DPDK achieve a lower performance than the other three
passthrough solutions. This was expected, as Snabb/OVS-DPDK use VirtIO,

588 G. Lettieri et al.

which introduces an additional level on indirection (very useful to support live
migration) which is not present in the other solutions: each packet sent or
received by the VM needs to go through the VirtIO queues before getting to
the network backend (i.e. the software switch), and these queues are a bottle-
neck. In contrast, Netmap and SR-IOV achieve higher throughput as they allow
for direct (or loosely mediated) access to the network backend. Their bottleneck
for unifwd is the 10G line rate, since the network backend is a host 10G NIC. For
vm2vm, SR-IOV is still limited by the internal switch, while Netmap can reach
a peak of 27 Mpps as it is only limited by the memory bandwidth. Finally, while
Snabb/OVS-DPDK are similar solutions, OVS-DPDK performance is slightly
higher for both experiments; we believe this happens because OVS-DPDK soft-
ware is more mature, and Snabb performance depends on the ability of the Lua
JIT compiler in this specific AppEngines.

CPU utilization analysis. The most evident fact in the CPU utilization chart in
Fig. 2 is that SR-IOV achieves lower CPU utilizations than the other solutions,
as the packet transport is performed by the NIC hardware for both experiments.
Within unifwd only one CPU is necessary (for the VM to run bridge) while
Netmap needs an additional CPU to perform the packet transport in software
and achieve the same throughput; Snabb/OVS-DPDK need two more CPUs
since they busy-wait on two switches, and they offer lower throughput as they
spend more CPU cycles per packet. A similar analysis also holds for vm2vm.
SR-IOV only needs to spend ∼1.5 CPUs to run the pkt-gen transmitter and
receiver; Netmap needs 60% more CPU to move packets across the link but it
is able to achieve higher throughput because CPU can do copies faster than
NIC can transmit/receive packets; Snabb/OVS-DPDK need even more CPU
cycles because of the additional indirection layer. Differences between Snabb
and OVS-DPDK are also due to different interrupts regimes, that disappear if
bridge/pkt-gen work in busy-wait mode (not shown here).

5 Conclusions

In this paper we have carried out a qualitative and quantitative analysis of differ-
ent NFV data-path solutions. There is no clear winner: VirtIO eases portability
and live migration at the cost of performance, while passthrough makes migra-
tion harder but offers higher rates. PCI-passthrough technologies use less CPU
but they are less portable and their throughput is limited by the NIC rate and
PCI bus. Netmap offers good throughput with lower CPU utilization than the
other software-based solutions, but it needs to improve on several qualitative cri-
teria. We plan to extend our analysis to upcoming NFV data-paths and deeper
performance comparisons involving latency, scaling and more.

Acknowledgements. This paper has received funding from the European Union’s
Horizon 2020 research and innovation programme 2014-2018 under grant agreement
No. 644866. This paper reflects only the authors’ views and the European Commission
is not responsible for any use that may be made of the information it contains.

A Survey of Fast Packet I/O Technologies for NFV 589

References

1. Network Functions Virtualisation: Architectural Framework (2012). http://www.
etsi.org/deliver/etsi gs/nfv/001 099/002/01.01.01 60/gs nfv002v010101p.pdf

2. Network function virtualisation introductory white paper (2012). https://portal.
etsi.org/nfv/nfv white paper.pdf

3. Jain, R., Paul, S.: Network virtualization and software defined networking for cloud
computing: a survey. IEEE Commun. Mag. 51(11), 24–31 (2013)

4. Li, Y., Chen, M.: Software-defined network function virtualization: a survey. IEEE
Access 3, 2542–2553 (2015)

5. Herrera, J.G., Botero, J.F.: Resource allocation in NFV: a comprehensive survey.
IEEE Trans. Netw. Serv. Manag. 13(3), 518–532 (2016)

6. Yang, W., Fung, C.: A survey on security in network functions virtualization. In:
2016 IEEE NetSoft Conference and Workshops (NetSoft), pp. 15–19. IEEE (2016)

7. Jones, T.: Linux virtualization and PCI passthrough (2009). http://www.ibm.com/
developerworks/linux/library/l-pci-passthrough/

8. VFIO linux kernel documentation. https://www.kernel.org/doc/Documentation/
vfio.txt

9. Ben-Yehuda, M., et al.: Utilizing IOMMUs for virtualization in Linux and Xen. In:
Proceedings of the Linux Symposium (2006)

10. Dong, Y., Yang, X., Li, X., Li, J., Tian, K., Guan, H.: High performance net-
work virtualization with SR-IOV. In: HPCA - 16 2010 The Sixteenth International
Symposium on High-Performance Computer Architecture, pp. 1–10, January 2010

11. Intel, PCI-SIG SR-IOV primer (2011). http://www.intel.com/content/dam/doc/
application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf

12. Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross,
J., Wang, A., Stringer, J., Shelar, P., Amidon, K., Casado, M.: The design and
implementation of Open vSwitch. In: 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2015), Oakland, CA, pp. 117–130.
USENIX Association (2015)

13. QEMU documentation, vhost-user protocol. http://git.qemu.org/?p=qemu.git;
a=blob plain;f=docs/specs/vhost-user.txt;hb=HEAD

14. OVS documentation, DPDK vhost-user ports. http://docs.openvswitch.org/en/
latest/topics/dpdk/vhost-user/

15. Data plane development kit. http://www.dpdk.org
16. Hwang, J., Ramakrishnan, K.K., Wood, T.: NetVM: high performance and flex-

ible networking using virtualization on commodity platforms. In: 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 2014), pp.
445–458 (2014)

17. Zhang, W., Liu, G., Zhang, W., Shah, N., Lopreiato, P., Todeschi, G.,
Ramakrishnan, K., Wood, T.: OpenNetVM: a platform for high performance net-
work service chains. In: Proceedings of the 2016 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization, HotMIddlebox 2016, pp. 26–31.
ACM, New York (2016)

18. Rizzo, L.: netmap: a novel framework for fast packet I/O. In: USENIX ATC 2012.
USENIX Association, Boston (2012)

19. Rizzo, L., Lettieri, G.: VALE, a switched ethernet for virtual machines. In: ACM
CoNEXT (2012)

20. Honda, M., Huici, F., Lettieri, G., Rizzo, L.: mSwitch: a highly-scalable, modu-
lar software switch. In: Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research. ACM (2015)

http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf
http://www.ibm.com/developerworks/linux/library/l-pci-passthrough/
http://www.ibm.com/developerworks/linux/library/l-pci-passthrough/
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/vfio.txt
http://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
http://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/specs/vhost-user.txt;hb=HEAD
http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/specs/vhost-user.txt;hb=HEAD
http://docs.openvswitch.org/en/latest/topics/dpdk/vhost-user/
http://docs.openvswitch.org/en/latest/topics/dpdk/vhost-user/
http://www.dpdk.org

590 G. Lettieri et al.

21. Garzarella, S., Lettieri, G., Rizzo, L.: Virtual device passthrough for high speed
VM networking. In: Proceedings of ACM/IEEE ANCS 2015, pp. 99–110 (2015)

22. Maffione, V., Rizzo, L., Lettieri, G.: Flexible virtual machine networking using
netmap passthrough. In: IEEE LANMAN 2016 (2016)

23. Paolino, M., Nikolaev, N., Fanguede, J., Raho, D.: Snabbswitch user space vir-
tual switch benchmark and performance optimization for NFV. In: 2015 IEEE
Conference on Network Function Virtualization and Software Defined Network
(NFV-SDN), pp. 86–92, November 2015

24. The Snabb reference manual. http://snabbco.github.io/
25. Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., Huici,

F.: ClickOS and the art of network function virtualization. In: Proceedings of
the 11th USENIX Conference on Networked Systems Design and Implementation,
NSDI 2014, Berkeley, CA, USA, pp. 459–473. USENIX Association (2014)

26. Han, S., Jang, K., Panda, A., Palkar, S., Han, D., Ratnasamy, S.: SoftNIC: a
software NIC to augment hardware, Technical report UCB/EECS-2015-155, EECS
Department, University of California, Berkeley, May 2015

27. Panda, A., Han, S., Jang, K., Walls, M., Ratnasamy, S., Shenker, S.: Netbricks:
taking the V out of NFV. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2016), GA, pp. 203–216. USENIX Association
(2016)

28. Russell, R.: Virtio: towards a de-facto standard for virtual I/O devices. ACM
SIGOPS Operating Syst. Rev. 42(5), 95–103 (2008)

29. Russel, R., Tsirkin, M., Huck, C.: The VirtIO specification. http://docs.oasis-open.
org/virtio/virtio/v1.0/virtio-v1.0.html

30. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38, 69–74 (2008)

31. Kreutz, D., Ramos, F.M.V., Verssimo, P.E., Rothenberg, C.E., Azodolmolky, S.,
Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103,
14–76 (2015)

32. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd Con-
ference on Symposium on Networked Systems Design & Implementation, NSDI
2005, vol. 2, Berkeley, CA, USA, pp. 273–286. USENIX Association (2005)

33. Live migrate guests w/PCI pass-through devices. https://www.fujitsu.com/jp/
documents/products/software/os/linux/catalog/LinuxConJapan2015-Izumi.pdf

34. KVM halt-poll optimization. https://lkml.org/lkml/2015/2/6/319

http://snabbco.github.io/
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html
https://www.fujitsu.com/jp/documents/products/software/os/linux/catalog/LinuxConJapan2015-Izumi.pdf
https://www.fujitsu.com/jp/documents/products/software/os/linux/catalog/LinuxConJapan2015-Izumi.pdf
https://lkml.org/lkml/2015/2/6/319

Machine Learning Using Virtualized GPUs
in Cloud Environments

Uday Kurkure(&) , Hari Sivaraman , and Lan Vu

VMware, Palo Alto, CA 94304, USA
{ukurkure,hsivaraman,lanv}@vmware.com

Abstract. Using graphic processing units (GPU) to accelerate machine learning
applications has become a focus of high performance computing (HPC) in
recent years. In cloud environments, many different cloud-based GPU solutions
have been introduced to seamlessly and securely use GPU resources without
sacrificing their performance benefits. Among them are two main approaches:
using direct pass-through technologies available on hypervisors and using vir-
tual GPU technologies introduced by GPU vendors. In this paper, we present a
performance study of these two GPU virtualization solutions for machine
learning in the cloud. We evaluate the advantages and disadvantages of each
solution and introduce new findings of their performance impact on machine
learning applications in different real-world use-case scenarios. We also
examine the benefits of virtual GPUs for machine learning alone and for
machine learning applications running together with other GPU-based appli-
cations like 3D-graphics on the same server with multiple GPUs to better
leverage computing resources. Based on our experimental results benchmarking
machine learning applications developed with TensorFlow, we discuss the
scaling from one to multiple GPUs and compare the performance between two
virtual GPU solutions. Finally, we show that mixing machine learning and other
GPU-based workloads can help to reduce combined execution time as compared
to running these workloads sequentially.

Keywords: Machine learning � Virtualization � GPU � High performance
computing � Cloud computing � DirectPath I/O � GRID vGPU

1 Introduction

Machine Learning (ML) has recently made significant progress in research and
development and has become a growing workload in the cloud [1, 2]. The emergence
of Deep Learning and the computing power enhancement of accelerators like GPU,
TPU [3], and FPGA have enabled adoption of machine learning applications in a
broader and deeper aspect of our lives in many areas like health science, finance, data
center monitoring and intelligent systems [4]. For virtualized cloud environments,
either direct pass-through (e.g. DirectPath I/O for VMware vSphere [5]) and virtual
GPU technologies (e.g. Nvidia GRID vGPU and AMD MxGPU technologies [6, 7])
can be applied to deploy a machine learning workload that uses these accelerators.
While the pass-through solution is widely adopted in HPC, virtual GPUs have not yet

© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 591–604, 2017.
https://doi.org/10.1007/978-3-319-67630-2_41

http://orcid.org/0000-0002-9000-291X
http://orcid.org/0000-0001-6764-6998
http://orcid.org/0000-0001-7212-0915

been fully investigated and applied because these techniques have only recently been
introduced. In our study, we provide better understanding of performance character-
istics of GPU-based workloads, especially machine learning ones, in the cloud. To the
best of our knowledge, it is the first study that explores the general-purpose computing
capability of the GRID vGPU solution [6] which has potential to give better consoli-
dation for GPU-based workloads compared to the traditional pass-through I/O solution.
In this paper, we present our new findings using these virtual GPU solutions for
machine learning on VMware vSphere; currently the most widely used hypervisor in
private cloud environments [8]. The main contributions of our research include:

• Providing a performance study of different virtual GPU solutions for machine
learning workloads on VMware vSphere. We analyze the performance impact of
virtual GPU from multiple aspects: scalability, overhead, and performance com-
parisons. We show in our study that this overhead, one of the biggest concerns in
virtualization adoption, is very low for GPU-based workloads like machine learning
ones.

• Analyzing the benefits and performance of GRID vGPU, the technology which is
used for GPGPU applications including machine learning. We illustrate that the
performance of machine learning workloads running on vSphere using either
VMware DirectPath I/O or vGPU is comparable to the performance of these
workloads running natively on bare metal servers.

• Presenting the analysis of mixing different types of GPU-based workloads,
including machine learning and 3D-graphics workloads on the same virtualized
server. We show that mixing workloads can improve the resource utilization and
total execution time of all workloads while introducing minimal performance
overhead when choosing the right virtual GPU profile for the workloads.

2 GPU Virtualization for Machine Learning in the Cloud

2.1 Machine Learning

Machine learning is an area of study aimed at building intelligent systems using
knowledge automatically learned from data. Many machine learning methods have
been introduced like Neural Networks (e.g., ANN, FNN, CNN, RNN), Support Vector
Machines, Genetic Algorithms, Hidden Markov Models, etc., and are applied in arti-
ficial intelligence (AI) applications as well as data analysis applications [9]. Deep
Learning is a subcategory of machine learning and has been increasingly used because
it improves prediction accuracy. Some application areas of machine learning include
facial recognition, medical diagnosis in MRIs, robotics, automobile safety, and text and
speech recognition [4]. For cloud systems, it can be used for hardware failure pre-
diction or root cause analysis. In our study, we choose well-known machine learning
applications which are typical workloads on the cloud. These include handwriting
recognition, object recognition and language modeling. These applications are imple-
mented with TensorFlow [13–15, 17, 18], a machine learning framework developed by
Google. The use of machine learning in intelligent applications usually includes two

592 U. Kurkure et al.

main stages: building models using ML algorithms, which is known as training stage,
and then applying the models for intelligent tasks like recognition, prediction or
classification, which is known as the inference stage.

Most machine learning methods are very computationally intensive. The training
time for building prediction models can take hours, days or even weeks for large
datasets and fast inference time is a critical requirement in many real-world applica-
tions. Hence, applying HPC techniques to accelerate the process of machine learning
has become an essential need. Among available HPC solutions, machine learning
acceleration using GPUs is currently the most widely adopted because of the massively
parallel computing capabilities of GPU devices. We can use CUDA and its cuDNN
library for developing ML applications for Nvidia’s GPUs or OpenCL for applications
running on AMD’s GPUs.

2.2 GPU Virtualization for Machine Learning

For cloud environments, server virtualization with hypervisors (e.g., vSphere, KVM,
Hyper-V, Xen) is used as the security and resource management layer and virtual
machines (VM) are used to isolate the workloads among different applications and
users. Currently, 80% of workloads running on x86 architecture have been virtualized
[8]. Even with the use of container technologies, a hypervisor with VMs can be still
needed for security requirements of the cloud and the overhead of Docker containers
running inside VMs is small in many use cases [10]. For hypervisors like VMware
ESXi, we can either use direct pass-through or virtual GPU technologies to assign
GPUs to VMs on which machine learning workloads are run. We chose VMware
DirectPath I/O and Nvidia GRID vGPU for our performance study of machine learning
applications on VMware vSphere.

VMware DirectPath I/O. This technology gives a guest operating system (OS) on a
VM direct access to the physical PCI or PCIe hardware devices of the server on which
the vSphere hypervisor runs. Each VM can be assigned one or more physical PCI
devices, including GPUs [5]. Because the guest OS bypasses the virtualization layer to
access the PCI devices, the overhead of using this pass-through technology is low (i.e.,
less than 5% overhead in most use cases [11]). For GPU-based general purpose
applications like machine learning, also known as GPGPU, we can add GPUs to the
VMs using DirectPath I/O and install the generic GPU driver on the guest OS. In
addition to the benefits of low overhead, DirectPath I/O supports a large set of GPU
devices including those from AMD and Nvidia, and this gives us a wide choice of
devices in a virtualized environment. Figure 1-a depicts the use of GPU with
pass-through (i.e., DirectPath I/O for vSphere).

Nvidia GRID vGPU. This solution works via a virtualization management layer
installed in the hypervisor and a custom GPU driver in the guest OS. Nvidia GRID
creates virtual GPUs, known as vGPUs, and allows multiple vGPUs sharing a single
physical GPU by using time slicing execution model [6, 7]. The memory of physical
GPU is divided into equal chunks whose size is specified by vGPU profiles. The type
of vGPU profile used by a VM will decide the maximum number of vGPUs per single
physical GPU. Figure 1-b illustrates the Nvidia GRID GPU virtualization solution.

Machine Learning Using Virtualized GPUs in Cloud Environments 593

This technology is currently enabled on following the GPU cards: K1, K2, M60, M6,
and M10 [6]. While sharing the GPU is currently enabled for 3D graphics and H.264
encode/decode capabilities of GRID vGPUs, this feature is not yet supported for
GPGPU applications. Hence, using vGPU for ML applications requires using the
highest vGPU profile which maps one vGPU to one physical GPU. This use case
makes the vGPU behave similarly to pass-through mode with DirectPath I/O. However,
there are still benefits to using GRID as compared to pass-through including, (1) the
capability to flexibly mix and switch among machine learning, 3D graphics and video
encoding/decoding workloads to make efficient use of the hardware resources, and
(2) reducing the time and the complexity of administering and maintaining the GPUs.
For AMD GPUs, the MxGPU technology is the virtualization solution for sharing GPU
and GPGPU devices [7] which will be explored in our future work.

Both VMware DirectPath I/O and Nvidia GRID vGPU have their own advantages
and disadvantages, which makes each of them suitable for a subset of use cases for
machine learning jobs. While DirectPath I/O is widely used for GPGPU applications on
vSphere, the use of Nvidia GRID vGPU for machine learning is currently not wide-
spread because of the relatively recent introduction of this technology. In our research,
we explore the benefits of the two GPU virtualization solutions to provide an under-
standing of both approaches and to give recommendations to best leverage both
technologies. We also present performance studies that demonstrate the benefits of
using GPUs in a virtualized environment and analyze the pros and cons of these two
GPU virtualization approaches in Sect. 3.

(a) (b)

Hypervisor

vGPU vGPU

Virtual Machine

Guest OS

GPU driver

Applications

Nvidia GRID
vGPU manager

GRID
GPU

vGPU

GRID
GPU

Hypervisor

GPU GPU GPU GPU

Virtual Machine

Guest OS

GPU driver

Applications

Fig. 1. GPUs in VMs using (a) VMware DirectPath I/O and (b) vGPUs in VMs using Nvidia
vGRID.

594 U. Kurkure et al.

3 Performance and Scalability of Virtualized GPU
for Machine Learning

3.1 Machine Learning with Virtualized GPUs

Performance is one of the biggest concerns that keep HPC users from choosing vir-
tualization as the solution for deploying HPC applications despite its benefits such as
reduced administration costs, resource utilization efficiency, energy saving, security,
etc. However, with the constant evolution of virtualization technologies, the perfor-
mance gaps between bare metal and virtualization have almost disappeared and in some
real use cases, applications running virtualized can give better performance than run-
ning on bare metal because of the intelligent and highly optimized resource utilization
of hypervisors. For example, a prior study [12] shows support vector machine appli-
cations running on a virtualized cluster of 10 servers having a better execution time
than running on bare metal.

Virtual GPU vs. physical GPU. To understand the performance impact of machine
learning with GPUs using virtualization, we used a complex language modeling
application—predicting next words given a history of previous words using a recurrent
neural network (RNN) with 1500 Long Short Term Memory (LSTM) units per layer,
on the Penn Treebank dataset (PTB) [13, 14]. We tested three cases: (1) a native
physical GPU installed on bare metal, (2) a DirectPath I/O GPU inside a VM on
vSphere 6, (3) a GRID vGPU (i.e., an M60-8Q vGPU profile with 8 GB memory)
inside a VM on vSphere 6, and (4) a VM with 12 virtual CPUs (vCPUs), 60 GB RAM,
and 96 GB SSD storage. The benchmark was implemented using Tensorflow [15].
Tensorflow was also used for the implementation of the other ML benchmarks in our
experiments. We used CUDA 7.5, cuDNN 5.1, and CentOS 7.2 for both native and
guest OSs. These test cases were run on a Dell PowerEdge R730 server with dual
12-core Intel Xeon CPU E5-2680 v3, 2.50 GHz sockets (24 physical core, 48 logical
with hyperthreading enabled), 768 GB memory, and an SSD (1.5 TB). This server also
has two Nvidia Tesla M60 cards (each has two GPUs) for a total of 4 GPUs where each
has 2048 CUDA cores, 8 GB memory, 36 x H.264 video 1080p30 streams, and can
support 1-32 GRID vGPUs whose memory profiles range from 512 MB to 8 GB. This
experimental setup was used for all tests presented in this section.

The results in Fig. 2 show the relative execution times of DirectPath I/O and GRID
vGPU compared to native GPU. Virtualization introduces a 4% overhead—the per-
formance of DirectPath I/O and GRID vGPU are similar. These results are consistent
with prior studies of virtual GPU performance with pass-through where overheads in
most cases are less than 5% [11, 16].

GPU vs. CPU in a virtualization environment. One important benefit of using GPU
is the shortening of the long training times of machine learning tasks, which has boosted
the fruitful results of AI research and developments in recent years. In many cases, it
helps to reduce execution times from weeks/days to hours/minutes. We illustrate this
benefit in Fig. 3, which shows the training time with and without vGPU for two
applications: RNN with PTB described earlier and CNN with MNIST, a handwriting
recognizer that uses a convolution neural network (CNN) on the MNIST dataset [17].

Machine Learning Using Virtualized GPUs in Cloud Environments 595

From the results, we see that the training time for RNN on PTB with CPU was 7.9X
times higher than with vGPU training time (Fig. 3-a) The training time for CNN on
MNIST with CPU was 10.X times higher than with the vGPU training time (Fig. 3-b).
The VM used in this test has 1 vGPU, 12 vCPUs, 60 GB memory, 96 GB of SSD
storage and the test setup is similar to that of the above experiment.

3.2 Comparison of DirectPath I/O and GRID VGPU

We evaluate the performance, scalability and other benefits of DirectPath I/O and
GRID vGPU whose features have been presented in Sect. 2. We also provide some
recommendations of the best use cases for each virtual GPU solutions.

Performance. To compare the performance of DirectPath I/O and GRID vGPU, we
benchmarked them with RNN on PTB, and CNN on MNIST and CIFAR-10.
CIFAR-10 is an object classification application that categorizes RGB images of
32 � 32 pixels into 10 categories: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck [18]. MNIST is a handwriting recognition application. Both

Fig. 2. DirectPath I/O and Nvidia GRID vs. native GPU.

Fig. 3. Normalized training time of PTB, MNIST with and without vGPU.

596 U. Kurkure et al.

CIFAR-10 and MNIST use a convolutional neural network. The language model used
to predict words based on history used Recurrent Neural Network. The dataset used is
The Penn Tree Bank (PTB).

The results in Fig. 4 show the comparative performance of the two virtualization
solutions in which DirectPath I/O gives slightly better performance than GRID vGPU.
This improvement is due to the pass-through mechanism of DirectPath I/O adding
minimal overhead to GPU-based workloads running inside a VM. In Fig. 4-a,
DirectPath I/O is about 5% faster than GRID vGPU for MNIST and they have the same
performance with PTB. For CIFAR-10, DirectPath I/O can process about 13% more
images/second than GRID vGPU. We use images per second for CIFAR-10 because it
is a frequently used metric for this dataset. The VM in this experiment has 12 vCPU,
60 GB VRAM and one GPU (either DirectPath I/O or GRID vGPU).

Scalability. We look at two types of scalability: user and workload.

User scalability. In a cloud environment, multiple users can share physical servers,
which helps to better utilize resources and save cost. Our test server with 4 GPUs can
allow up to 4 users needing a gpu. Alternatively, a single user can have four VMs with
a vGPU. The number of virtual machines run per machine in a cloud environment is
typically high to increase utilization and lower costs [19]. Machine learning workloads
are typically much more resource intensive and using our four-GPU test systems for up
to only four users reflects this.

Figure 5 presents the scalability of users on CIFAR-10 from 1 to 4 where each uses
a VM with one GPU, and we normalize images per second to the of DirectPath I/O - 1
VM case (Fig. 5-a). Similar to the previous comparison, DirectPath I/O and GRID
vGPU show comparable performance as the number of VMs with GPUs scale.
Specifically, the performance difference between them is 6%–10% for images/sec and
0%–1.5% for CPU utilization. This difference is not significant when weighed against
the benefits that vGPU brings. Because of its flexibility and elasticity, it is a good
option for ML workloads. The results also show that the two solutions scale linearly

Fig. 4. Performance comparison of DirectPath I/O and GRID vGPU.

Machine Learning Using Virtualized GPUs in Cloud Environments 597

with the number of VMs both in terms of execution time and CPU resource utilization.
The VMs used in this experiment have 12 vCPUs, 16 GB memory, and 1 GPU (either
DirectPath I/O or GRID vGPU).

Workload scalability. For machine learning applications that need to build very large
models or in which the datasets cannot fit into a single GPU, users can use multiple
GPUs to distribute the workloads among them and speed up the training task further.
On vSphere, applications that require multiple GPUs can use DirectPath I/O
pass-through to configure VMs with as many GPUs required. This capability is lim-
ited for CUDA applications using GRID vGPU because only one vGPU per VM is
allowed for CUDA computations. We demonstrate the efficiency of using multiple
GPUs on vSphere by benchmarking the CIFAR-10 workload and using the metric of
images per second (images/sec) to compare the performance of CIFAR-10 on a VM
with different number of GPUs scaling from 1 to 4 GPUs. From the results in Fig. 6,
we found that the images processed per second improves almost linearly with the
number of GPUs on the host (Fig. 6-a). At the same time, their CPU utilization also
increases linearly (Fig. 6-b). This result shows that machine learning workloads scale
well on the vSphere platform. In the case of ML applications that require more GPUs
than the physical server can support, we can use the distributed computing model with
multiple distributed processes using GPUs running on a cluster of physical servers.
This will be explored in our future work. With this approach, both DirectPath I/O and
GRID vGPU can be used to enhance scalability with very large number of GPUs.

How to choose between DirectPath I/O and GRID vGPU.
For DirectPath I/O. From the above results, we can see that DirectPath I/O and GRID
vGPU have comparable performance and low overhead compared to the performance
of native GPU, which makes both good choices for machine learning applications in
virtualized cloud environments. For applications that require low short training times
and use multiple GPUs to speed up ML tasks, DirectPath I/O is a suitable option
because this solution supports multiple GPUs per VM. In addition, DirectPath I/O

Fig. 5. Scaling the number of VMs with vGPU on CIFAR-10.

598 U. Kurkure et al.

which supports a wider range of GPU devices, can provide a more flexible choice of
GPU for users.

For GRID vGPU. When each user needs a single GPU, GRID vGPU can be a good
choice. This configuration provides a higher consolidation of virtual machines and
leverages the benefits of virtualization including: (1) GRID vGPU allows the flexible
use of the device because vGPU supports both shared GPU (multiple users per physical
machine) and dedicated GPU (one user per physical GPU), mixing and switching
among machine learning, 3D graphics and video encoding/decoding workloads using
GPUs is much easier and allows for more efficient use of the hardware resource.
Using GRID solutions for machine learning and 3D graphics allows cloud-based ser-
vices to multiplex the GPUs among more concurrent users than the number of physical
GPUs in the system as illustrated in Sect. 4. This contrasts with DirectPath I/O, which
is the dedicated GPU solution, where the number of concurrent users are limited to the
number of physical GPUs. (2) GRID vGPU reduces administration cost because its
deployment and maintenance does not require server reboot, so no down time is
required for end users. For example, changing the vGPU profile of a virtual machine
does not require a server reboot. Any changes to DirectIO configuration requires a
server reboot. GRID vGPU’s ease of management reduces the time and the complexity
of administering and maintaining the GPUs. This benefit is particularly important in a
cloud environment where the number of managed servers would be very large.

4 Mixing GPU-Based Workloads on Virtualized Server

Many users of GPUs on vSphere run 3D CAD workloads. The traditional approach to
run 3D CAD and machine learning workloads is by scheduling their execution times to
be nonoverlapped, which is inflexible, or to have separate infrastructures for each type
of workload, which increases cost. GRID vGPU helps to solve this problem by
allowing both 3D graphics and machine learning workloads to be co-located on a same
server to maximize consolidation. In this use case, users can choose their guest OS

Fig. 6. Scaling the number of GPUs per VM on CIFAR-10.

Machine Learning Using Virtualized GPUs in Cloud Environments 599

platforms to deploy their applications. For example, in our test, we mixed two types of
workloads: Windows and Linux. This is critical in cloud environments.

In addition, for GPGPU applications, a large portion of their computation is shifted
from CPU to GPU, and this can lead to the underutilization of host CPUs. Running 3D
CAD applications on the same server as ML applications achieves higher resource
utilization than running them separately. Figure 7 shows that off-loading ML work-
loads to GPU can help reduce CPU utilization by 26X for RNN on PTB (from 78% to
3% in Fig. 7-a) and 5.3X for CNN on MNIST (from 43% to 8% in Fig. 7-b).
Reducing CPU load can help more workloads share the same server, increase the
consolidation of VMs and increase efficiency of resource usage. In this section, we
characterize the performance impact of running 3D CAD and machine learning
workloads concurrently.

4.1 Configuration and Methodology

Two benchmarks were used in our experiment. We chose the SPECapc using Autodesk
3ds Max 2015 benchmark [20] as a representative for 3D CAD workloads. We did not
comply with the benchmark reporting rules, nor do we use or make comparisons to the
official SPECapc metrics. We chose MNIST as a representative for machine learning
workloads. The performance metric in this comparison is the run time, as measured by
a wall-clock, for the benchmark. As described earlier, each physical GPU can support
several different types of virtual GPUs. M60-1Q, M60-2Q, M60-4Q and M60-8Q are
vGPU profile names for different type of virtual GPUS supported by the physical GPU
on Tesla M60 card. With M60-1Q, M60-2Q or M60-4Q, more than one vGPUs share a
same physical GPU. M60-8Q vGPU type does not share a physical GPU and has the
entire GPU for itself. The 3D CAD benchmark was installed in a 64-bit Windows 7
(SP1) VM with 4 vCPUs, 16 GB RAM and 1 vGPU whose profile was configured as
M60-1Q, M60-2Q, M60-4Q, or M60-8Q for different runs (Table 1). We used this VM
as the golden master from which we made clones so that we could run the 3D CAD
benchmark at scale with 1, 2, 4, …, 24 VMs running 3D CAD simultaneously. The
software configurations used for the 3D CAD workload are shown in Table 1.

Fig. 7. CPU utilization of PTB, MNIST with and without vGPU.

600 U. Kurkure et al.

Our experiments included three sets of runs. In the first set, we ran only the 3D
CAD benchmark for each of the four configurations listed in Table 1 and measured the
run time, CPU utilization, and GPU utilization. Once this set of runs was completed,
we did a second set in which we ran the 3D CAD benchmark concurrently with the
MNIST benchmark. The VM for MNIST has CUDA 7.5, cuDNN 4.0, and CentOS 7.2
and was configured with 1 vGPU, using a M60-8Q profile. For the runs in this second
set we used the configurations shown in Table 2. The server configuration used in our
experiments is a Dell PowerEdge R730 server with dual 14-core Intel Xeon CPU
E5-2680 v3, 2.40 GHz sockets (28 physical core, 56 logical with hyperthreading
enabled), 768 GB memory, SSD (1.5 TB). This server also has two Nvidia Tesla M60
cards with a total of 4 GPUs as described in Sect. 3. The third set had runs with only
MNIST on the server.

4.2 Performance Results

We measured the run times of three sets of runs and computed the percentage increase
in the run time for 3D CAD when it shared the server with MNIST (second set)
compared to when it ran without MNIST (first set). We also computed the percentage
increase in run time for MNIST when running concurrently with 3D CAD (second set)
compared to MNIST run in isolation (third set). Our results in Fig. 8 show that the
performance impact on the 3D CAD workload due to sharing the server and GPUs with
the machine learning workload is below 5% for the M60-2Q, M60-4Q, and M60-8Q
profiles when compared to running only the 3D CAD workload on the same hardware.
Correspondingly, the performance impact on the machine learning workload when
sharing the hardware resources with the 3D CAD workload compared to running all by
itself is under 15% in the M60-2Q, M60-4Q, and M60-8Q profiles. In other words, the
run time for the 3D CAD benchmark increases by less than 5% when sharing the
hardware with the machine learning workload when compared to when it does not

Table 1. Software configuration used to run the 3D CAD benchmark.

vGPU profile used for 3D CAD VMs Size of vGPU VRAM # of VMs running 3D CAD

M60-8Q 8 GB 3
M60-4Q 4 GB 6
M60-2Q 2 GB 12
M60-1Q 1 GB 24

Table 2. Software configuration used to run the mixed workloads.

vGPU profile used for 3D
CAD VMs

of VMs running
3D CAD

of VMs running
MNIST

Total #
concurrent VMs

M60-8Q 3 1 4
M60-4Q 6 1 7
M60-2Q 12 1 13
M60-1Q 24 1 25

Machine Learning Using Virtualized GPUs in Cloud Environments 601

share the hardware. The increase in run time for machine learning was under 15% when
sharing compared to not sharing the hardware. Only the M60-1Q profile, which can
support up to 24 VMs running 3D CAD and one VM running MNIST, shows any
significant performance penalty due to sharing. Note that if the workloads were run
sequentially, the total time to complete the tasks would be the sum of the run time for
3D CAD and the machine learning workloads.

A comparison of the total run time for ML and 3D CAD workloads is shown in
Fig. 8. From the results, we can see that the total time to completion of the workloads is
always less when run concurrently as opposed to when run sequentially.

Further, running the workloads concurrently results in higher server utilization,
which could result in higher revenues for a cloud service provider. The CPU utilization
on the server for the M60-8Q, M60-4Q, M60-2Q, and M60-1Q profiles with only 3D
CAD (3D) and with 3D CAD plus machine learning (3D + ML) are shown in Fig. 9.
Offloading compute to GPUs results in CPU underutilization. This enabled scaling
from 4 VMs using M60-8Q profiles to 25 VMs comprising of 24 VMs using M60-1Q
profile for graphics workloads and 1 VM using M60-8Q for GPGPU machine learning
workload.

In summary, running 3D CAD and ML workloads simultaneously results in a
reduction in total time to completion with M60-2Q, M60-4Q, and M60-8Q profiles as
compared to running the workloads sequentially. It also significantly increases server
utilization. GRID vGPU, which supports sharing GPUs, can bring better consolidation
of VMs per server which can result in higher revenues for a cloud service provider.

 (a) (b)

Fig. 8. Percentage increase of time (a) and total run time (b) for SPEC and for MNIST running
concurrently compared to running in isolation.

602 U. Kurkure et al.

5 Conclusion

We conducted and presented a comprehensive study of performance of different virtual
GPU solutions in a cloud environment. This study presents new findings that help us
understand the performance impacts and benefits of using virtual GPU resources on
machine learning applications as well as on mixing these applications with other
GPU-based workloads like 3D graphics. This also gives cloud providers and users
useful information in choosing the right virtual GPU solutions that works best for their
cloud. For example, DirectPath I/O and GRID vGPU have comparable performance,
where DirectPath I/O is slightly better. Cloud users who care about high performance
and low latency of applications can choose DirectPath I/O to deploy their workloads on
multiple GPUs. For those who care more about the flexibility of datacenter deployment
and do not require multiple GPUs for each VM, GRID vGPU is a better option. This
solution also allows flexibly mixing machine learning with other types of workloads to
save costs and increasing resource utilization. In the future, we plan to extend our study
to investigate the performance of AMD MxGPUs and ML applications with the cluster
scale of multiple GPU nodes and the performance of 3D CAD and ML workloads with
different remote display protocols and/or with containers.

Acknowledgements. The authors would like to thank Josh Simons, Na Zhang, Julie Brodeur,
Aravind Bappanadu, and Bruce Herndon for their support for this project.

References

1. Díaz, M., Martín, C., Rubio, B.: State-of-the-art, challenges, and open issues in the
integration of internet of things and cloud computing. J. Netw. Comput. Appl. 67, 99–117
(2016). doi:10.1016/j.jnca.2016.01.010

Fig. 9. CPU Utilization on server for mixed workload configuration and for 3D graphics only.

Machine Learning Using Virtualized GPUs in Cloud Environments 603

http://dx.doi.org/10.1016/j.jnca.2016.01.010

2. Canny, J., Zhao, H.: Big Data analytics with small footprint—squaring the cloud. In:
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 95–103 (2013)

3. Jouppi, N., et al.: Datacenter performance analysis of a tensor processing unit. In:
Proceedings of 44th International Symposium on Computer Architecture, Toronto, Canada
(June 26, 2017)

4. Qiu, J., Wu, Q., Ding, G., Xu, Y., Feng,S.: A Survey of Machine Learning for Big Data
Processing. J. Adv. Sig. Process. (2016). doi:10.1186/s13634-016-0355-x

5. VMware Directpath I/O, https://communities.vmware.com/docs/DOC-11089
6. NVIDIA GRID virtual GPU technology, http://www.nvidia.com/object/grid-technology.

html
7. AMD Virtualization Solution, http://www.amd.com/en-us/solutions/professional/

virtualization
8. Bittman, T., Dawson, P., Warrilow, M.: Magic Quadrant for x86 Server Virtualization

Infrastructure. In: Gartner Research Report, 3 August (2016)
9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining,

Inference, and Prediction, 2nd edn. Springer, New York (2009)
10. Docker Containers Performance inVMware vSphere, https://blogs.vmware.com/performance/

2014/10/docker-containers-performance-vmware-vsphere.html
11. Vu, L., Sivaraman, H., Bidarkar, R.: GPU Virtualization for High Performance General

Purpose Computing on the ESX hypervisor. In: Proceedings of the 22nd High Performance
Computing Symposium (2014)

12. Big Data Performance on vSphere 6, http://www.vmware.com/content/dam/digitalmarketing/
vmware/en/pdf/techpaper/bigdata-perf-vsphere6.pdf

13. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent Neural Network Regularization. arXiv:
1409.2329 (2014)

14. Taylor, A., Marcus, M., Santorini, B.: The penn treebank: an overview. In: Abeille, A. (ed.)
Treebanks: the State of the Art in Syntactically Annotated Corpora. Kluwer (2003)

15. Tensorflow Homepage, https://www.tensorflow.org
16. Walters, J.P., Younge, A.J., Kang, D.I., Yao, K.T., Kang, M., Crago, S.P., Fox, G.C.: GPU

passthrough performance: a comparison of KVM, Xen, VMWare ESXi, and LXC for CUDA
and OpenCL Applications. In: Proceedings of 2014 IEEE 7th International Conference on
Cloud Computing (2014)

17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

18. Multiple Layers of Features from Tiny Images, https://www.cs.toronto.edu/*kriz/cifar.html
19. Pandey, A., Vu, L., Puthiyaveettil, V., Sivaraman, H., Kurkure, U., Bappanadu, A.: An

automation framework for benchmarking and optimizing performance of remote desktops in
the cloud. In: To appear in Proceedings of the 2017 International Conference on High
Performance Computing & Simulation (2017)

20. SPECapc for 3ds Max (2015), https://www.spec.org/gwpg/apc.static/max2015info.html

604 U. Kurkure et al.

http://dx.doi.org/10.1186/s13634-016-0355-x
https://communities.vmware.com/docs/DOC-11089
http://www.nvidia.com/object/grid-technology.html
http://www.nvidia.com/object/grid-technology.html
http://www.amd.com/en-us/solutions/professional/virtualization
http://www.amd.com/en-us/solutions/professional/virtualization
https://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
https://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/bigdata-perf-vsphere6.pdf
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/bigdata-perf-vsphere6.pdf
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.2329
https://www.tensorflow.org
https://www.cs.toronto.edu/%7ekriz/cifar.html
https://www.spec.org/gwpg/apc.static/max2015info.html

A Locality-Aware Communication Layer
for Virtualized Clusters

Simon Pickartz(B), Jonas Baude, Stefan Lankes, and Antonello Monti

Institute for Automation of Complex Power Systems,
E.ON Energy Research Center, RWTH Aachen University, Aachen, Germany

{spickartz,jbaude,slankes,amonti}@eonerc.rwth-aachen.de

Abstract. Locality-aware HPC communication stacks have been
around with the emergence of SMP systems since the early 2000s. Com-
mon MPI implementations provide communication paths optimized for
the underlying transport mechanism, i.e., two processes residing on the
same SMP node should leverage local shared-memory communication
while inter-node communication should be realized by means of HPC
interconnects. As virtualization gains more and more importance in
the area of HPC, locality-awareness becomes relevant again. Commonly,
HPC systems lack support for efficient communication among co-located
VMs, i.e., they harness the local InfiniBand adapter as opposed to the
shared physical memory on the host system. This results in important
performance penalties, especially for communication intensive applica-
tions. With IVShmem there exist means for the exploitation of the
local memory as communication medium. In this paper we present a
locality-aware MPI layer leveraging this technology for efficient intra-host
inter-VM communication. We evaluate our implementation by drawing
a comparison to a non-locality-aware communication layer in virtualized
clusters.

Keywords: Locality-awareness · Virtualization · IVShmem · MPI

1 Introduction

Virtualization plays an important role in a variety of application fields of com-
puting. These range from a simplified application deployment enabled by virtual-
ized instruction sets for mobile computing to the flexible assignment of resources
in data centers. Even in the field of High-Performance Computing (HPC), vir-
tualization starts to become more and more important [21]. The strong level
of isolation provides for the flexibility of a user-defined software environment
which is currently not possible in common compute centers. Thereby, the efficient
deployment of complex HPC software stacks including all their dependencies is
facilitated. Furthermore, the migration of applications across the cluster allows
the system administrators for eased maintenances and the implementation of
load balancing strategies.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 605–616, 2017.
https://doi.org/10.1007/978-3-319-67630-2_42

606 S. Pickartz et al.

However, the additional virtualization layer results in a disguise of locality
information that is necessary for efficient communication. Locality-awareness in
HPC systems came up in the early 2000s with the emergence of Symmetric
Multiprocessing (SMP) [16]. Communication layers should be capable of taking
the locality information of the processes into account, i.e., on the intra-node level
best performance can be obtained by leveraging the shared memory between the
co-residing processes while the communication across nodes is usually realized
by means of high performance interconnects. Although this field of research has
been investigated extensively in the past [8,15], it becomes relevant in the context
of virtualization again. Processes residing within Virtual Machine (VMs) should
be capable of determining whether a communication peer is co-located within
another VM on the same physical node. In the former case, the two processes
should leverage the shared physical memory for communication as opposed to a
communication link over a local high-speed network adapter.

As of today, most Message Passing Interface (MPI) implementations lack
according support for virtualized clusters, i.e., usually they leverage the local
InfiniBand (IB) adapter for intra-node communication if available at all. Further-
more, the dynamic behavior of according systems is not taken into account, i.e.,
the communication library should adapt to migrations by an adjustment of the
communication paths between the affected processes. In this paper we present
a locality-aware MPI library that provides support for dynamically changing
topologies arising from migrations. Therefore, it leverages Nahanni, a mecha-
nism for Inter-VM Shared-Memory (IVShmem) communication for co-located
VMs. Our communication layer reduces the point-to-point latency by 67% com-
pared to communication over the local IB adapter while providing throughputs
comparable to those obtained via shared memory natively on the host. In sum-
mary, we make the following key contributions:

– Support for intra-host inter-VM communication within a fully MPI-3 compli-
ant MPI library,

– a comprehensive performance evaluation of the IVShmem support for co-
located VMs, and

– the investigation of the performance benefits in case of dynamically changing
process topologies due to VM migrations.

This paper is structured as follows: the next section provides relevant background
information on virtualization and IVShmem. Sections 3 and 4 present the design
and evaluation of our locality-aware MPI layer. Before concluding the paper in
Sect. 6, we discuss related work in Sect. 5.

2 Background

This section provides basic knowledge on virtualization and the communication
layer we used for our work. In doing so, it starts with a discussion on system-level
virtualization and obstacles that appear in the context of I/O virtualization.

A Locality-Aware Communication Layer for Virtualized Clusters 607

2.1 System-Level Virtualization

We focus on system VMs in our work. These realize a virtualization on the
hardware-level, i.e., a process on the host system is started representing a com-
plete substitute for a computer system. We leverage the hypervisor Kernel-based
Virtual Machine (KVM) for the management of multiple guests which is part of
the Linux vanilla kernel since version 2.6.30 in 2007 [9]. It relies on hardware sup-
port for the full-virtualization of the x86 based on Intel’s VT-x extensions [17].
From the hypervisor’s point of view, a VM acts as and an ordinary process and
can be treated like any other process running on the host system. KVM only
implements the facilities that are necessary for the virtualization of the CPU
and the memory subsystem. The remaining parts of the computer system, e.g.,
network devices or hard drives, have to be emulated in software by the user-space
emulator QEMU [4].

2.2 I/O Virtualization

System-level virtualization based on hypervisors has envolved in the past years
enabling nearly native CPU performance [12,19]. However, the efficient virtu-
alization of I/O devices is still a challenge which is circumvented by device
pass-through techniques such as Intel VT-d [2]. On the one hand, this gives the
VM direct control over the device’s hardware registers while avoiding expen-
sive guest-to-host transitions. On the other hand, the device may directly write
to/read from the guest-physical memory without host involvements.

This solution requires the same amount of physical devices as the number
of guests running on the system. As a result, a single I/O device may only
be used by one guest at a time. Hence, if multiple guests are co-located on the
same physical system, just as many physical devices were necessary. To overcome
this issue, the Peripheral Component Interconnect Special Interest Group (PCI-
SIG) introduced the Single Root I/O Virtualization (SR-IOV) [6] specification
as part of the PCIe standard. This allows for the native sharing of a single
physical I/O device concurrently by multiple VMs while providing nearly native
I/O performance [14].

2.3 Nahanni

Although, SR-IOV-enabled clusters allow for communication at low latencies and
high data rates within VMs, there is still a major performance gap concerning
the intra-node communication. In previous works we could observe performance
penalties of up to 26% for communication-bound applications executed within
multiple co-located VMs [13].

Nahanni [7] is an alternate mechanism for the communication between co-
located VMs over shared memory, i.e., IVShmem. It comprises three parts: (1) a
shared-memory region on the host, (2) an extension of QEMU’s virtual hardware
support by means of a new virtual device called ivshmem, and (3) a guest driver
representing the memory region as PCI device. The shared-memory region is

608 S. Pickartz et al.

Fig. 1. Overview of Nahanni for the sharing of a memory region on the host between
two guests. Once mapped into the virtual adresspace, applications can access the
device’s memory region just as normal regions allocated via malloc().

created by the host or hypervisor using the POSIX API, and therefore no further
modifications to the host Operating System (OS) are required. Furthermore, the
QEMU modifications are included in the upstream sources since version 0.13 in
2010 and allow for the automatic creation of the memory region on the startup
of a VM. The guest driver is build upon the User-Space I/O (UIO) framework
and can be used by the guests for the configuration of the ivshmem device.
This appears as common PCI device and supports synchronization over shared-
memory, e.g., via spinlocks. Since we focused on the shared-memory offered by
Nahanni in the scope of this work, we omit a detailed discussion of the other
mechanisms at this point.

The guests see the ivshmem device as /dev/uioX (cf. Fig. 1). Here, X is an
integer assigned by the guest kernel consecutively to all UIO devices. Using the
open() and mmap() system calls, the device can be mapped into the processes’
virtual address space and subsequently be used for data exchange between co-
located VMs.

2.4 The Pscom Library

The pscom library is a low-level communication library especially designed for
the employment in HPC systems. Although its main objective is to serve as
the low-level communication substrate of ParaStation MPI [5], it can also be
used as a light-weight standalone communication library. ParaStation MPI is a
fully MPI-3 compliant, MPICH-based MPI implementation. The pscom library
already ships with support for a variety of interconnects and interfaces com-
monly used in the HPC domain. In doing so, it provides a flexible software
architecture that can be extended by means of plugins for the accommodation
of new technologies. These are loaded and selected at runtime of the library
based on priorities, i.e., those plugins promising fast communication are favored.
The pscom comes with two special plugins which are tightly integrated into the
library’s sources. First, the TCP-plugin serves as lowest common denominator,
i.e., it is assumed that the cluster nodes are always able to communicate via
socket-based TCP/IP connections. Second, the shared-memory plugin with the
highest priority provides high efficient communication among processes residing
on the same compute node by implementing true zero-copy data transfers.

A Locality-Aware Communication Layer for Virtualized Clusters 609

The session management of the pscom library is based on the Berkeley
Socket API. This allows the processes to perform the initial connection estab-
lishment via the TCP-plugin by means of the common connect/accept scheme.
In a second step, the processes determine the actual plugin that is used for fur-
ther communication via a pre-defined handshake procedure. ParaStation MPI
leverages the pscom for the establishment of a fully connected MPI session in
the default case. This approach may result in a potential waste of resources as
usually only a fraction of the n · n−1

2 possible connections is required. Therefore,
the pscom library provides a so-called ondemand mechanism promising a better
resource utilization by implementing a lazy connect approach. In doing so, the
actual connection setup is postponed to the first write attempt on the respective
connection.

3 Design

For compliance with the architectural design of ParaStation MPI, we integrate
the support for IVShmem communication as plugin into the pscom library. This
bases on the original plugin for shared-memory communication and divides into
two parts (cf. Fig. 2): (1) the upper pscom layer providing the interface to the
hardware-independent part of the pscom library and (2) the lower device layer for
the management of the IVShmem device provided by Nahanni. The pscom layer
implements the handshake mechanism that is required for every pscom plugin.
This mainly comprises the detection of the locality information as discussed
below. The device layer’s main task is the management of the shared memory
region. It implements the synchronization among the processes residing on the
same physical host for the allocation of the send and receive buffers realizing the
communication channels.

Fig. 2. The integration of the IVShmem plugin into the ParaStation MPI communica-
tion stack. The upper pscom layer implements the interface defined for pscom plugins
to the hardware-agnostic part of the library and the lower device layer takes over the
management of the shared-memory region provided by Nahanni.

610 S. Pickartz et al.

3.1 Detection of Locality Information

First, the plugin has to determine whether the VM is equipped with an IVShmem
device. Therefore, the pscom layer instructs the device layer to map the shared-
memory region of the respective PCI device into the process’ virtual address
space.

Afterwards, the communication peers need to assess whether this region is
located on the same physical host. Therefore, we use a UUID of 16 Byte at a pre-
defined offset within this memory region. In accordance with pscom’s handshake
mechanism, the two processes exchange their local UUIDs. If these match, the
processes can assume to be co-located and establish a communication channel via
IVShmem. Otherwise, the handshake aborts and the pscom library proceeds with
the next plugin. For the assessment of the locality information via the UUID,
we assume that the IVShmem device is initially filled with zeros. Otherwise,
the processes were not able to determine whether the device has already been
initialized or not. This should be valid in most cases, as memory gets usually
zeroed on page-faults by the operating system. However, the mechanism still
works on other systems if the hypervisor is involved in this first synchronization
step, e.g., on startup of the VMs.

In the initialization phase of the plugin, the first byte of the shared-memory
segment is polled by an atomic test-and-set operation. This byte indicates the
initialization of the segment and concomitant the initialization of the UUID
which is performed by the first process (of all processes running within poten-
tially different VMs on that host) entering the critical section. Furthermore, this
process creates a POSIX spinlock that is used for the synchronization of future
memory allocations within the memory region. All other processes initializing
their plugin will detect the UUID that can be exchanged via the handshake
procedure subsequently.

3.2 Allocation of the Communication Buffers

The actual connection establishment between two processes is conducted by an
allocation of local receive buffers which serve as send buffers for the communica-
tion peer. In doing so, each process allocates a portion of the IVShmem region
with a fixed size serving for a dedicated amount of buffers. These parameters are
defined at compile time and may be adapted for a tuning of the plugin to the
underlying memory system. The allocation is done in accordance with the first-fit
strategy within the IVShmem region providing a simple and efficient mechanism
for the memory allocation. This should be sufficient for the allocation of the com-
munication buffers in case of static topologies. Here, one can assume that their
lifetime lasts from the beginning of the MPI session—or the first write attempt
on that connection in case of the ondemand mechanism—to its end introduced
by the MPI Finalize() call. However, in case of frequent migrations during the
processes’ lifetime, more sophisticated allocation schemes would be desirable.

A Locality-Aware Communication Layer for Virtualized Clusters 611

3.3 Migration Within Virtualized Clusters

We build upon our previous works realizing migration support for MPI applica-
tions [10,11]. These extend the pscom library by the implementation of our
Shutdown/Reconnect(S/R) protocol that ensures data integrity for so-called
non-migratable connections, e.g., an IB connection relies on location-dependent
resources such as the Queue Pair Number(QPNs) which are determined by the
local IB adapter. At the same time, the protocol allows for a dynamic change of
the underlying transport after the migration since we rely on the pscom onde-
mand mechanism for the connection re-establishment.

The combination of both mechanisms—IVShmem and migration support—
enables an adaption of the communication paths in accordance with the process
topology as we show in the following section. After a consolidation of two VMs,
e.g., the processes may communicate via IVShmem although they used IB before-
hand.

4 Evaluation

All benchmarks were run on a two-node research cluster equipped with Intel
IvyBridge CPUs (E5-2650 v2) being clocked at 2.6 GHz. Each CPU possesses
eight physical cores with support for two Hardware Thread Context (HTC) per
core, resulting in a total of 32 HTCs per node. The nodes are connected by a
Mellanox IB fabric using ConnectX-3 VPI two-port adapters implementing the
PCIe 3.0 standard. These provide a theoretical peak throughput of 56 G bit/s in
accordance with the FDR signaling rate. Furthermore, the adapters offer support
for the SR-IOV standard. The hosts and guest systems employ a 4.9.0 Linux
kernel compiled by using the upstream sources. All systems use the OFED Stack
in version 4.0-1.0.1 provided by Mellanox. Our virtulization stack bases on KVM
in conjuction with QEMU version 2.6.0. As interface to the hypervisor we use
libvirt1 version 3.2.0 which comes with hot-plug support for IVShmem devices.
Furthermore, we have made the source code of our implementation available via
GitHub 2.

Throughput and latency constitute the basic key figures of a communication
library. Therefore, we performed a microbenchmark analysis for the determi-
nation thereof by using a self-written MPI benchmark3 executing a PingPong
pattern [1]. In doing so, we investigated the following communication scenarios:

Native-SHM shared-memory on the host
Native-IB the local IB adapter on the host
VM-IB the local IB adapter shared between co-located VMs using SR-IOV
VM-IVShmem the IVShmem plugin used by MPI processes in co-located VMs

1 https://libvirt.org.
2 https://github.com/rwth-os/pscom.
3 https://github.com/rwth-os/mpi-benchmarks.

https://libvirt.org
https://github.com/rwth-os/pscom
https://github.com/rwth-os/mpi-benchmarks

612 S. Pickartz et al.

Fig. 3. The figures present (a) a throughput and (b) a latency analysis of the pscom
IVShmem plugin showing the average (Ø) and the standard deviation (σ). The results
were obtained by using a benchmark performing a PingPong pattern between two
processes within distinct VMs running on the same host. The latencies are given in µs
and are averaged over 10 million runs.

The throughput results for VM-IVShmem reveal a performance comparable
to that of Native-SHM (cf. Fig. 3a). The curves were captured by averaging over
1000 individual PingPong exchanges. Messages smaller than the L2 cache expe-
rience a little overhead whereas messages that fit into the last-level cache can be
transmitted slightly faster over IVShmem than over the original shared-memory
plugin. We can only assume that cache effects and differences in the respective
implementation of both plugins are the reason for this behavior. However, more
research is necessary for a validation of these assumptions. However, the perfor-
mance deviations are negligible small and essentially, the new IVShmem plugin
boosts the throughput performance by up to 40% compared to the communi-
cation over SR-IOV (VM-IB) which is the common case for most MPI librarys
as of today. The latencies draw a similar picture (cf. Fig. 3b) revealing a reduc-
tion of the latency by almost 70% when using VM-IVShmem instead of VM-IB.
Although the variance slightly increases compared to Native-SHM, it is only at
44% of the variance that can be observed for VM-IB.

To get an impression how real-world applications benefit from the IVShmem
communication channel, we compared the execution of the NAS Parallel Bench-
marks (NPB) [3] using VM-IB and VM-IVShmem (cf. Fig. 4). We started the
kernels by using problem class C on a single cluster node with 16 processes, i.e.
one process per available CPU core, in a row for 30 min respectively. This yield
stable average runtimes. This test was repeated for different VM counts such
that the process-to-core pinning has been preserved. The results are normalized
to the execution within a single VM to avoid a distortion caused by the virtu-
alization itself. However, to get an impression of the performance compared to
Native-SHM, we included this case as well, i.e., 0 VMs. The light bars represent
the measurements obtainted by using standard VM-IB mode while the opaque
bars represent the VM-IVShmem results.

A Locality-Aware Communication Layer for Virtualized Clusters 613

Fig. 4. Overhead when running the NPB across multiple VM compared to the execu-
tion within one VM: for VM-IB (light bars) and VM-IVShmem (opaque bars).

In all cases we can observe an overhead when executing the benchmarks
within multiple VMs if the processes leverage the local IB adapter as communi-
cation link, i.e., VM-IB. Especially, communication intensive applications such
as CG and FT suffer extremely from the execution within multiple VMs, i.e.,
runtime overheads of up to 25% are the result. In contrast, the results for VM-
IVShmem do not reveal a dependency of the applications’ performance to the
amount of VMs. The overhead with respect to the execution within a single VM
ranges from −1% to 2%, and is therefore within the range of measurement noise.

The previous experiments showed that locality-awareness is an important
attribute for communication systems for their deployment in virtualized envi-
ronments. However, for the full exploitation of the benefits that come with vir-
tualization, e.g., the migration of applications across the cluster, the support for
dynamically changing communication relations is indispensible. Figure 5 gives
an impression of the consequences thereof for point-to-point latencies. We ran
an MPI session with two processes distributed across two VMs on distinct com-
pute nodes. They exchanged 1000 messages in accordance with the PingPong
pattern every 500 ms. The curves represent the average latency that could be
achieved for each meter point, i.e., the average latency for every burst of 1000
message exchanges. After around 30 s, we issued a migration request of one VM
to the host of the second VM. This demands for the temporary shutdown of the
connection via IB and the later re-establishment. This, in turn, is now possible
via the pscom IVShmem plugin as the two VMs are now co-located on the same
host. Thereby, the average latency could be improved by about 17% compared
to its original value. In contrast, the same scenario executed with disabled pscom
IVShmem plugin results in an average latency of 1.558µs which is more than
four times as much, i.e., around 72% of its original value.

5 Related Work

Locality-awareness in the context of virtualized HPC clusters has rarely been
studied in the past. Diakhaté et al. present a virtual device designed the shar-
ing of memory between co-located VM. Although they leverage a minimal MPI
implementation for their evaluation only providing basic point-to-point commu-
nication primitives, the focus of their work is put on the device implementation.

614 S. Pickartz et al.

Fig. 5. PingPong latency during a consolidation of two VMs onto the same physical
host: without IVShmem support (red curve) and with IVShmem support (blue curve).
(Color figure online)

In contrast to Nahanni, the solution relies on the fork() system call for the cre-
ation of VMs which only allows for uniformly configured guests. Furthermore,
VM migrations are exacerbated since their solution does not support a varying
number of VMs.

Zhang et al. present a locality-aware MPI implementation [20] leveraging
IVShmem for intra-host inter- VM communication. Based thereon, they pro-
pose Slurm-V [21], a framework for virtualized HPC clouds, which uses the
SLURM [18] resource manager. The framework supports different execution
models such as exclusive allocations and sharing of nodes for concurrent jobs.
However, until now their solution lacks migration support within virtualized
clusters which would enable load balancing or an improvement of the fault tol-
erance.

6 Conclusion

This paper investigates the viability of IVShmem mechanisms for virtualized
HPC clusters. Therefore, we present a locality-aware MPI layer that dynamically
detects co-located processes within distinct VMs on the same node. In contrast
to existing approaches, we make use of the fact that synchronization primitives
such as atomic operations can be used on IVShmem memory regions just as with
normal shared-memory segments. Therefore, a single UUID is sufficient for the
detection of the locality information.

Furthermore, we integrate the implementation into our MPI library pro-
viding support for application migration. In doing so, the MPI processes may
detect dynamically changing communication relations during runtime and react
accordingly. In a migration scenario we could show that this approach results
in a reduction of the point-to-point latency by a factor of four compared to the
communication over the local IB adapter. For future work we plan to extend our
library by support for dynamic topology-awareness optimizing collective opera-
tions with respect to dynamically changing process topologies.

A Locality-Aware Communication Layer for Virtualized Clusters 615

Acknowledgment. This research and development was supported by the Federal
Ministry of Education and Research (BMBF) under Grant 01IH16010C (Project
ENVELOPE).

References

1. Intel MPI benchmarks. Technical report Intel Corporation (2014)
2. Intel virtualization technology for directed I/O. Technical report, Intel Corporation

(2014)
3. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,

R., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V.,
Weeratunga, S.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3),
63–73 (1991)

4. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, FREENIX Track, pp. 41–46 (2005)

5. Clauss, C., Moschny, T., Eicker, N.: Dynamic process management with allocation-
internal co-scheduling towards interactive supercomputing. In: Trinitis, C.,
Weidendorfer, J. (eds.) Proceedings of the 1st COSH Workshop on Co-scheduling
of HPC Applications, p. 13, January 2016

6. Intel LAN Access Division: PCI-SIG SR-IOV primer. Technical report 2.5, Intel
Corporation, January 2011

7. Macdonell, A.C.: Shared-memory optimizations for virtual machines. Ph.D. thesis,
University of Alberta (2011)

8. Mamidala, A.R., Chai, L., Jin, H.W., Panda, D.K.: Efficient SMP-aware MPI-
level broadcast over InfiniBand’s hardware multicast. In: Proceedings of 20th IEEE
International Parallel Distributed Processing Symposium, p. 8, April 2006

9. Nussbaum, L., Anhalt, F., Mornard, O., Gelas, J.P.: Linux-based virtualization for
HPC clusters. In: Montreal Linux Symposium, Montreal, Canada, July 2009

10. Pickartz, S., Clauss, C., Lankes, S., Krempel, S., Moschny, T., Monti, A.: Non-
intrusive migration of MPI processes in OS-bypass networks. In: 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 1728–1735, May 2016

11. Pickartz, S., Lankes, S., Monti, A., Clauss, C., Breitbart, J.: Application migration
in HPC?–A driver of the exascale era? In: 2016 International Conference on High
Performance Computing Simulation (HPCS), pp. 318–325, July 2016

12. Pickartz, S., Breitbart, J., Clauss, C., Lankes, S., Monti, A.: Co-scheduling of HPC
applications. In: Virtualization in HPC - An Enabler for Adaptive Co-scheduling?
IOS Press, January 2017

13. Pickartz, S., Breitbart, J., Lankes, S.: Implications of process-migration in virtual-
ized environments. In: Proceedings of the 1st COSH Workshop on Co-Scheduling
of HPC Applications, p. 6, January 2016

14. Pickartz, S., Gad, R., Lankes, S., Nagel, L., Süß, T., Brinkmann, A., Krempel, S.:
Migration techniques in HPC environments. In: Lopes, L., Žilinskas, J., Costan, A.,
Cascella, R.G., Kecskemeti, G., Jeannot, E., Cannataro, M., Ricci, L., Benkner,
S., Petit, S., Scarano, V., Gracia, J., Hunold, S., Scott, S.L., Lankes, S., Lengauer,
C., Carretero, J., Breitbart, J., Alexander, M. (eds.) Euro-Par 2014. LNCS, vol.
8806, pp. 486–497. Springer, Cham (2014). doi:10.1007/978-3-319-14313-2 41

15. Träff, J.L.: SMP-aware message passing programming. In: Eighth International
Workshop on High-Level Parallel Programming Models and Supportive Environ-
ments, Proceedings, pp. 56–65, April 2003

http://dx.doi.org/10.1007/978-3-319-14313-2_41

616 S. Pickartz et al.

16. Träff, J.L.: Improved MPI all-to-all communication on a Giganet SMP cluster.
In: Kranzlmüller, D., Volkert, J., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI
2002. LNCS, vol. 2474, pp. 392–400. Springer, Heidelberg (2002). doi:10.1007/
3-540-45825-5 57

17. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.L., Martins, F.C.M., Anderson, A.V.,
Bennett, S.M., Kagi, A., Leung, F.H., Smith, L.: Intel virtualization technology.
Computer 38(5), 48–56 (2005)

18. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). doi:10.1007/10968987 3

19. Younge, A.J., Henschel, R., Brown, J.T., von Laszewski, G., Qiu, J., Fox, G.C.:
Analysis of virtualization technologies for high performance computing environ-
ments. In: 2011 IEEE International Conference on Cloud Computing (CLOUD),
pp. 9–16. IEEE (2011)

20. Zhang, J., Lu, X., Jose, J., Li, M., Shi, R., Panda, D.: High performance MPI library
over SR-IOV enabled infiniband clusters. In: 2014 21st International Conference
on High Performance Computing (HiPC), pp. 1–10, December 2014

21. Zhang, J., Lu, X., Chakraborty, S., Panda, D.K.: SLURM-V: extending SLURM
for building efficient HPC cloud with SR-IOV and IVShmem. In: Dutot, P.-F.,
Trystram, D. (eds.) Euro-Par 2016. LNCS, vol. 9833, pp. 349–362. Springer, Cham
(2016). doi:10.1007/978-3-319-43659-3 26

http://dx.doi.org/10.1007/3-540-45825-5_57
http://dx.doi.org/10.1007/3-540-45825-5_57
http://dx.doi.org/10.1007/10968987_3
http://dx.doi.org/10.1007/978-3-319-43659-3_26

YASMIN: Efficient Intra-node Communication
Using Generic Sockets

Michalis Rozis(B), Stefanos Gerangelos, and Nectarios Koziris

Computing Systems Laboratory, National Technical University of Athens,
Athens, Greece

{mrozis,sgerag,nkoziris}@cslab.ece.ntua.gr

Abstract. Nowadays, virtual machines are becoming widely used and
their range of applications include a large number of scientific fields.
From HPC to IaaS, communication between co-located VMs is a critical
factor of efficiency. In our paper, we examine communication methods
between VMs located in the same physical node, optimizing communica-
tion cost without sacrificing upper-layer API compatibility. We present
YASMIN (Yet Another Shared Memory Implementation for Intra-Node),
a generic socket-compliant framework for intra-node communication in
the Xen hypervisor. We build on the concept of Vchan, a Xen library
for intra-node communication between different VMs and we use Xen
granting and signaling mechanisms to provide an efficient communica-
tion framework. The key of our design is the transport layer which runs
underneath the AF VSOCK protocol family, implemented as a dynamically
inserted module. We are able to achieve 4.4x higher bandwidth rate and
65% lower latency without the need of application binary recompilation.

Keywords: Intra-node · Virtualization · Sockets · Xen · Networking ·
Shared-memory

1 Introduction

The advent of High Performance Computing (HPC) systems and the increasing
needs for better control, isolation and resource management have made Vir-
tual Machines (VMs) a significant part of modern data centers, HPC scientific
applications and enterprise service platforms [1–3]. The key reason that make
VMs such a critical factor of modern computing systems is the ability to exe-
cute intense applications and services providing a secure, isolated environment of
execution, improving system utilization and communication cost between appli-
cations [4]. Today, power consumption is becoming an important topic for data
center providers [5]. Virtual machines provide the capability of more efficient
system utilization which results in energy cost reduction [6]. For these reasons,
investing in virtualization technologies is a major trend for different applications
and service providers.

Due to the benefits that virtualization provides to infrastructure providers,
the same concept is also exploited in network facilities. With the exploding data
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 617–628, 2017.
https://doi.org/10.1007/978-3-319-67630-2_43

618 M. Rozis et al.

traffic through vast network infrastructures, middleboxes, i.e. hardware network
devices, are a fundamental part of today’s networks. Although there are many
advantages in using hardware middleboxes, there are also many reasons for shift-
ing to virtualized network functions (VNFs), such as IP Routing, firewall, intru-
sion detection etc. [7,8]. VNFs are part of modern network function virtualization
infrastructures (NFV) where VMs run on top of hardware network infrastruc-
ture and take responsibility for providing network services [9]. In addition to
the above topics, virtual machines are also used in distributed execution envi-
ronments, such as Hadoop MapReduce [10]. This framework is widely used in
applications that require intensive data computations [11]. Virtual machines have
become an attractive entity for hosting MapReduce workloads, which require fast
communication between parallel tasks. For example, cloud-based services, such
as Amazon’s EC2, rely on VMs to process large amounts of data by spawning
tasks on different VMs.

Thus, recent virtualization techniques have given rise to a major set of new
capabilities, but also to a number of limitations that researchers try to over-
come. The field of improving virtualized computing environments is of great
interest and refers to a large number of topics, from hypervisor scheduler opti-
mization [12] to virtual machine reconfiguration [13,14].

In addition to these aspects, one important limitation that arise in both HPC
applications but also in Cloud Computing applications is the communication
cost between VMs. Virtual machines can reside in the same physical node or
in different nodes. Proper placement or migration of VMs is a basic factor for
providing low-latency and high-bandwidth communication for the reason that
VMs hosting HPC or cloud applications can exploit their physical locality to
increase performance. For instance, VNFs running in co-located VMs (such as
routing, load balancing, firewall) may intensively exchange traffic, hence, taking
advantage of proper VM placement and optimizing intra-node communication
can offer significant overall performance gain. We focus on Xen [15] hypervisor
and explore communication mechanisms in VMs located in the same physical
node to achieve improvement in both latency costs and bandwidth rates.

We introduce YASMIN, a generic socket-compliant, efficient intra-node com-
munication framework for co-located VMs in the Xen hypervisor. Although our
implementation is built on Xen mechanisms, the basic concept can be applied
to other hypervisors as well. YASMIN exploits the Xen’s grant table and event
channel mechanisms and provides page sharing between co-located VMs to sim-
plify the data path in the network stack without sacrificing transparency. We
achieve this by creating a communication channel between VMs that are aware of
their location, bypassing the TCP/IP stack. We evaluate YASMIN using generic
micro-benchmarks and compare it to conventional communication paths and
bare-metal memory bandwidth (Sect. 4). We can observe that our framework
outperforms the conventional methods both in terms of throughput as well as
latency.

YASMIN: Efficient Intra-node Communication Using Generic Sockets 619

2 Background

2.1 Overview of Xen Architecture

Xen is a bare-metal hypervisor (Virtual Machine Monitor - VMM) which enables
virtualization in paravirtualized mode. This means that the kernel of the guest
VMs (domains) is modified in order to allow them to communicate with the
privileged guest VM (Dom0). Basic operations for paravirtualized guests (disk,
networking, GPU, etc.) are serviced through requests to the control domain
which is responsible for communication with the hardware. Xen also exposes a
set of hypercalls to guests. Hypercalls are privileged requests to the hypervisor
which include granting page access to foreign domain, transferring and copying
pages between domains and setting up an interrupt mechanism between domains.

2.2 Xen Default Networking

An overview of Xen’s default network data path is shown in Fig. 1. Networking
is based upon the split-driver model; control domain is responsible for the coor-
dination between the two communication ends. One end (domainX) forwards
packets through the network stack (TCP/IP) to a virtual ethernet driver (net-
front). The driver then copies the requests to a memory area mapped to the
control domain. The driver in the control domain (netback) reads the requests
from a ring buffer and copies the data in a proper kernel structure of the other
end’s netfront memory and delivers a signal. The other end (domainY) can now
accept the new packet and forward it to the network stack (TCP/IP). The main
limitation of this method is that all networking has to pass through the con-
trol domain which is a huge bottleneck for scaling to either a large number of
processes between the same pair of VMs or a large number of processes between
different pairs of VMs in the same physical node.

3 Design and Implementation

3.1 Design Overview

We decide to implement YASMIN design on top of the Xen hypervisor 4.4 using
Linux 3.16 as guest OS. We build on Vchan [16], a Xen library which invokes
system calls (open(), ioctl(), mmap()) to Xen’s exported devices (xen gntdev,
xen gntalloc) in order to initialize a channel between co-located domains and
exchange data. We take this idea further and implement a transport layer for
vSockets [17], i.e. a generic sockets API similar to the POSIX interface which sup-
ports fast and efficient communication between guest virtual machines. vSockets
API introduces a new address family (AF VSOCK) and refers to the common
socket-layer calls (socket(), bind(), connect(), etc.). A socket connection
between two guest VMs can be established by using their domain ID numbers
and a remote port. YASMIN consists of a loadable kernel module and a shared
library to intercept system calls. The shared library intercepts IPv4 socket calls

620 M. Rozis et al.

Fig. 1. The default inter-domain communication path in the Xen hypervisor. Numbers
correspond to steps involved in the data path. Page is mapped before any exchange
of data (step 0). Packet traverses the TCP/IP stack (steps 1-2), to the page shared
between domX and dom0 (step 3). The packet is copied to a temporary buffer in
dom0 (step 4) and then it is copied to the receiver’s frontend (step 5) and back to the
receiver’s userspace (steps 6-8).

and translate them to vSockets socket calls, by using a 1-1 mapping between
intra-node IP addresses and local domain IDs. An overview of YASMIN design
is shown in Fig. 2.

3.2 Implementation Details

YASMIN implementation is based on Xen’s primitive hypercalls, i.e. granting
page access to foreign VMs through grant-table mechanism, mapping pages using
grant table’s index number and invoking interrupts through the event channel
mechanism. We exploit the producer-consumer shared ring technique, which does
not require any locking mechanisms between the reader and the writer. Contrary
to common approaches which do not take transparency into account thus result-
ing in efficient but not binary-compatible code, we decide to design not only an
efficient but also a transparent framework. In order to achieve this, we bypass
the TCP/IP protocol stack which introduces an extra overhead to each packet
transmission, and we utilize the vSockets socket protocol layer. It is part of Linux
kernel release and currently designed to support VMCI [18] as well as VIRTIO
[19] transport layers. We extend this work and build a new transport layer for
vSockets by adapting to Xen mechanisms. In this way, not only we avoid build-
ing a new network protocol from scratch but we also provide users with the
capability of choosing the transport layer on the fly. To provide an architectural
overview, we briefly describe how the operations are realized in each layer, from
top to bottom:

YASMIN: Efficient Intra-node Communication Using Generic Sockets 621

Fig. 2. YASMIN design overview

Application layer : One of the most important aspects of our design is the API
compatibility with the generic socket interface. Specifically, we aspire to pro-
vide a low-overhead socket communication framework to applications running
in co-located VMs without the need to refactor, reimplement or even recompile
them. We implement a shared library which intercepts all system calls, filters out
socket-API system calls (bind(), listen(), accept() etc.) and replaces them
as follows: Our library queries a file which consists of entries of domain id-to-IP-
addresses mappings of all running guest domains in the same physical node. If
the socket-call’s target IPv4 address is matched, then the respective structures
are initialized and the system call is forwarded to the kernel as a vSockets socket
call (i.e. AF VSOCK). Otherwise, the remote application is not located in the same
node and the default data path is followed.

Transport layer - Link layer : Each socket call invoked by userspace that corre-
sponds to AF VSOCK is serviced by vSockets protocol. This protocol is responsible
for data fragmentation and packet delivery to the transport layer. The transport
layer is the core of our implementation and is capable of creating a communi-
cation channel between co-located VMs, deliver messages and notify the remote
domain for new packets. It is implemented as a kernel module and dynami-
cally inserted to the kernelspace of each guest VM. Link layer is embedded in
this module as a producer - consumer ring buffer in memory mapped between
communicating VMs.

As mentioned earlier, Xen provides the grant table mechanism which enables
page sharing between VMs; one domain (granter) allocates a new page, grants
access to the foreign domain by invoking a hypercall and refers to that page using
its index in the grant-entry table. The other-end domain (grantee) allocates a
new page and maps this page to the granter’s page (also by invoking a hypercall)
using the same grant-entry table index. The shared producer-consumer ring is
part of the communication channel and is implemented as a set of pages shared by

622 M. Rozis et al.

Fig. 3. YASMIN implementation overview. Each new socket connection is established
through the control channel (control path arrows). For every connected pair of sockets,
a new perport channel with its own shared ring is created, where data are exchanged
(data path arrows)

the two ends using the previous mechanism. Xen also introduces a simple signal
passing mechanism between VMs, the event-channel, so as to inform the other
end for packet delivery. The first domain (allocator) creates a new connection
with the remote domain (binder) by invoking a hypercall which returns a local
channel port number. Allocator then registers a new interrupt handler to this
port. Binder can now “bind” to the port by invoking a hypercall, which in
turn returns a local channel port number. Binder then registers a new interrupt
handler to its local port. Each end can then invoke a hypercall and raise a virtual
interrupt to notify the other end that data are available in the ring buffer and
the respective interrupt handler will be invoked. We can now describe the path
for a successful client-server message transmission between two co-located VMs.
The overview of our design is presented in Fig. 3.

– The inserted module, exports a XenStore path which will be monitored for
incoming connection requests. When the client invokes a connect() socket
call, our transport checks if previous requests to the specified remote domain
have been made. If not, it creates a new intra-node communication channel
between the domains and caches channel’s parameters for future communica-
tion requests. Channel’s parameters1 are transmitted to remote domain via
its XenStore path. This channel (control channel) is used only for transmis-
sion of control messages between domains (e.g. new socket connection request,
socket release). After the establishment of the control channel between a pair

1 grant-entry index and event-channel port number.

YASMIN: Efficient Intra-node Communication Using Generic Sockets 623

of guest VMs, a single-page queue is realized, which is used for sending new
socket connections requests. These packets consist of the packet header, the
grant-table’s indices and event channel ports which will be used by the remote
domain for mapping and registering respectively.

Next, it creates a new persocket channel and sends a new connection request
to the remote application using the control channel. The new connection
request specifies a remote domain ID and a remote port to connect to, sim-
ilarly to IPv4 requests to a remote IP and a remote port. This channel is
used for packet transmission between connected sockets. When the remote
domain successfully registers the persocket channel, a reference to this chan-
nel is stored and vSockets connect() returns successfully. Each connection
request to a new socket between the communicating VMs will create a new
persocket channel but the control channel is unique for each pair of commu-
nicating VMs and will be teared-down only if guests shutdown or migrate.

– Server-side applications can call socket(), bind(), and listen() to wait for
incoming connections similarly to corresponding IPv4 socket calls. When the
new connection request is made by the client-side application through the
control channel, a virtual interrupt is triggered and the server-side’s inter-
rupt handler is invoked causing proper packet processing and enqueuing in
listener’s accept queue. This packet contains the grant references and event-
channel ports of the persocket channel. The server-side will map the shared
pages and bind the event-channel.

– A call to accept() by the server-side will dequeue the new connection request
and send a Connection OK message to the client.

– send() socket call will cause a memory copy from userspace to the shared
ring located in kernelspace and the update of the producer index.

– Similarly, recv() will cause a memory copy from the shared ring to userspace
and the update of the consumer index.

Finally, to retain compatibility and transparency with AF INET applications, we
wrap around socket calls a library that re-issues all IPv4 calls with AF VSOCK
family.

4 Performance Evaluation

We setup a host machine with 2x Xeon E5335, 8GB RAM and single core guest
VMs in order to evaluate the performance of our implementation in comparison
to the default netback/netfront data path. We perform two microbenchmark
experiments to test throughput and latency as well as scaling. We compare our
results with the performance of bare-metal Unix Domain Sockets and also with
the system’s bare-metal memory bandwidth. We use NetPIPE [20] to test latency
and scaling, Iperf [21] to test throughput, netperf [22] to measure Unix Domain
Sockets throughput and STREAM benchmark [23] to compare to bare-metal
memory bandwidth.

624 M. Rozis et al.

4.1 Microbenchmark Evaluation

As shown in Figs. 4 and 5, YASMIN outperforms the netback/netfront model in
comparison to latency as well as throughput.

100

200

300

400

500

600

1 2 4 8 32 128 512 4K 16K 64K 256K
1M 2M

La
te

nc
y

(µ
se

c)

Message size (Bytes)

 nb/nf
 4KB Ring

 16KB Ring
 64KB Ring

 512KB Ring

Fig. 4. Latency–to–message–size perfor-
mance plot. “nb/nf” refers to the default
netback/netfront data path.

0

2000

4000

6000

8000

10000

12000

14000

0 2 4 8 32 128 512 4K 16K 64K 256K
1M 2M 4M

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Message size (Bytes)

 nb/nf
 4KB Ring

 16KB Ring
 64KB Ring

 512KB Ring

Fig. 5. Throughput performance for dif-
ferent ring sizes in comparison to the net-
back/netfront (nb/nf line).

However, ring size is an important variable of performance. In Fig. 4 we can
observe the effect of ring size on latency and in Fig. 5 the effect on throughput.
For low message sizes (up to 1 Kb), latency is not affected by the increase in ring
size. We also observe that bandwidth is increasing for message sizes up to 2 MB.
However, there is a decrease in performance for messages up to 4 MB, as depicted
in Fig. 5. We are certain that this is caused due to increased contention on the
memory bus. We plan to perform a detailed break-down analysis to validate our
assumption.

In addition, throughput increases proportionally to the increase in ring size,
as shown in Fig. 6. Throughput performance for ring size of 2 MB reaches 76%
of throughput performance of Unix Domain Sockets on the bare-metal system,
as shown in Fig. 6.

Nonetheless, we choose to implement a ring size of 512 kB (128 pages)
trading-off throughput and lower kernel memory consumption. For this ring
size, latency is reduced by 65%2 compared to netback/netfront and aver-
age throughput is increased by a factor of 4.4, as measured by Iperf. Com-
pared to the system’s bare-metal memory bandwidth, YASMIN can perform
at 16 Gbps (2048 MBytes/sec) while memory bus performance is measured at
2813 MBytes/sec for 1 executing thread and 3784 MBytes/sec for 8 executing
threads, and Unix Domain Sockets performance is measured at 3250 MB/s.

4.2 Scaling Evaluation

Finally, in order to test YASMIN scaling performance, we setup in parallel up to
8 single core VMs which exchange messages in pairs (VM1 to VM2, VM3 to
2 This value refers to a 1 Byte message.

YASMIN: Efficient Intra-node Communication Using Generic Sockets 625

 nb/nf 3.6

 Unix So 26

4 8 16 32 64 128 256 512 1024 2048

B
an

dw
id

th
 (

G
bi

ts
/s

ec
)

Ring Size (KBytes)

Fig. 6. Ring size effect on throughput. The line labeled “nb/nf” refers to throughput
performance of the netback/netfront model and the line labeled “Unix So” to bare-
metal Unix Domain Sockets throughput.

VM4, and so on. . .). Each VM is pinned to a CPU core and communicating
VMs share a 4 MB L2 cache memory. For example, when VM1 and VM2 are
exchanging data, VM1 is pinned to CPU0 and VM2 to CPU1, where CPU0 is
sharing a L2 cache with CPU1. The results of this experiment are depicted in
Fig. 7. We can observe that the aggregate throughput increases proportionally
to the number of communicating VMs. For instance, two VMs are exchanging a
512 KB message at 13.2 Gbps, while 8 VMs achieve 4x aggregate throughput for
the same message size (53 Gbps or 6625 MBytes/s). In comparison to the above
result, we point out that bare-metal memory bus throughput for 8 threads of
execution is measured at 3784 Mbytes/s.

10

20

30

40

50

60

 0

4 16 64 512 1024 2048 4096

B
an

dw
id

th
 (

G
bi

ts
/s

ec
)

Message size (KBytes)

 2 VMs
 4 VMs
 8 VMs

Fig. 7. Scaling performance

626 M. Rozis et al.

5 Related Work

Due to the significance of optimizing intra-node communication, literature in this
field include a large number of proposals. A common proposed concept involves
shared memory buffers between communicating VMs. Diakhate et al. [24] use
shared memory techniques on the KVM hypervisor [25] by modifying QEMU [26]
instances. IVC [27] proposes creating a one-way channel by using shared-page
techniques and a new userspace API. XenSocket [28] also uses shared pages
through Xen grant table hypercalls in order to create an one-way channel, by
modifying BSD Sockets API and presenting a new address family. In addition
to these, a paravirtualized protocol for POSIX syscalls, best suitable for Linux
containers, is implemented as a split driver in PV Calls [29]. Although these
techniques can achieve better latency and bandwidth performance compared to
the default model, transparency and compatibility are sacrificed. Applications
need to be aware of running in co-located VMs and source code needs to be refac-
tored and recompiled. XenLoop [30] creates a full-duplex channel between co-
located VMs without sacrificing transparency by intercepting outgoing packets
from the network layer and establishing a fast communication channel between
these VMs. A kernel module is responsible for analysing the packet destination
MAC address and forwarding it in the established channel. A software bridge
is responsible for keeping records of co-located MAC addresses. Although this
technique can perform better in terms of throughput, there is not significant
reduction in latency. Another approach in intra-domain communication is pro-
posed by V4VSockets [31], a generic socket-applicant framework which performs
better in terms of bandwidth as well as latency. The key idea of this implemen-
tation is based on copies made by the hypervisor to the receiver via the V4V
mechanism, which resides in the Xen hypervisor. However, in this approach, the
hypervisor is modified and the data path consists of three copies between the
sender and the receiver.

In our implementation we combine the best parts of each of these tech-
niques by bypassing both the control domain and the TCP/IP network stack. We
also provide transparency and avoid binary recompilation as well as hypervisor-
intrusive techniques.

6 Conclusion and Future Work

YASMIN is a complete framework for intra-node communication which optimizes
both throughput and latency compared to the default netback/netfront model.
The data path includes only two copies, the first from sender’s userspace to the
kernelspace shared ring and the second from the shared ring to the receiver’s
userspace. Moreover, our implementation can successfully respond to scaling
challenges, as shown in Fig. 7. In addition to these, YASMIN optimizes commu-
nication between co-located VMs without the need to recompile binaries.

We conclude that in a large field of applications where communication is
a critical factor of performance, placement of VMs in the same physical node

YASMIN: Efficient Intra-node Communication Using Generic Sockets 627

is crucial for performance due to the fact that optimization techniques can be
exploited. For these reasons, YASMIN can provide benefits to applications run-
ning in virtualized context.

We plan to improve YASMIN by upgrading the hosts file query process.
Currently, the hosts file, which is queried by guest VMs to determine if a remote
IP is co-located in the same node, is maintained by the node administrator.
Therefore, in order to resolve VM migration issues, we plan to build a control
domain backend driver or a guest VM daemon which will be responsible for
monitoring any changes due to migration of virtual machines.

Moreover, we plan to test YASMIN in comparison to the related proposals,
in order to validate further the facts that make our framework a better approach
on intra-node communication.

Finally, we plan to test our framework in NFV environments, where differ-
ent VNFs can run on top of YASMIN transport layer. Suitable for testing are
network functions such as routers, firewalls, load balancers, because they require
fast packet processing and low latency response time.

YASMIN is an open-source framework and can be found at https://github.
com/mrozis/YASMIN.git

References

1. Huang, W., Liu, J., Abali, B., Panda, D.K.: A case for high performance computing
with virtual machines. In: ICS 2006, Cairns, Queensland, Australia, 28–30 June
(2006)

2. Reuther, A., Michaleas, P., Prout, A., Kepner, J.: HPC-VMs: virtual machines
in high performance computing systems. In: IEEE High Performance Extreme
Computing (HPEC) Conference, Waltham, MA, 10–12 September (2012)

3. Tikotekar, A., Ong, H., Alam, S., Vallee, G., Naughton, T., Engelmann, C., Scott,
S.L.: Performance comparison of two virtual machine scenarios using an HPC
application. a case study using molecular dynamics simulations. In: HPCVirt 2009
Proceedings of the 3rd ACM Workshop on System-level Virtualization for High
Performance Computing, Nuremburg, Germany, 31 March (2009)

4. Strazdins, P., Alexander, R., Barr, D.: Performance enhancement of SMP clusters
with multiple network interfaces using virtualization. In: Min, G., Di Martino, B.,
Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA 2006. LNCS, vol. 4331, pp. 452–463.
Springer, Heidelberg (2006). doi:10.1007/11942634 47

5. Shehabi, A., Smith, S.J., Horner, N., Azevedo, I., Brown, R., Koomey, J., Masanet,
E., Sartor, D., Herrlin, M., Lintner, W.: United States Data Center Energy Usage
Report. Lawrence Berkeley National Laboratory, Berkeley, California. LBNL-
1005775 (2016)

6. Yang, C.-T., Tseng, C.-H., Chou, K.-Y., Tsaur, S.-C., Hsu, C.-H., Chen, S.-C.: A
xen-based paravirtualization system toward efficient high performance computing
environments. In: Hsu, C.-H., Malyshkin, V. (eds.) MTPP 2010. LNCS, vol. 6083,
pp. 126–135. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14822-4 14

7. Network Functions Virtualisation, An Introduction, Benefits, Enablers, Challenges
& Call for Action, https://portal.etsi.org/nfv/nfv white paper.pdf

https://github.com/mrozis/YASMIN.git
https://github.com/mrozis/YASMIN.git
http://dx.doi.org/10.1007/11942634_47
http://dx.doi.org/10.1007/978-3-642-14822-4_14
https://portal.etsi.org/nfv/nfv_white_paper.pdf

628 M. Rozis et al.

8. DiGiglio, J., Ricci, D.: High Performance, Open Standard Virtualization with NFV
and SDN, A Joint Hardware and Software Platform for Next-Generation NFV and
SDN Deployments

9. Network Function Virtualisation (FV); Use Cases, ETSI GS NFV 001,
http://www.etsi.org/deliver/etsi gs/NFV/001 099/001/01.01.01 60/gs
NFV001v010101p.pdf

10. Apache Hadoop, https://wiki.apache.org/hadoop
11. List of institutions that are using Apache Hadoop for educational or produc-

tion uses, https://wiki.apache.org/hadoop/PoweredBy, https://wiki.apache.org/
hadoop/Distributions

12. Kang, H., Chen, Y., Wong, J., Sion, R., Jason, W.: Enhancement of Xen’s scheduler
for MapReduce workloads. In: HPDC 2011, San Jose, California, USA, 8–11 June
(2011)

13. Park, J., Lee, D., Kim, B., Huh, J., Maeng, S.: Locality-aware dynamic VM recon-
figuration on MapReduce clouds. In: HPDC 2012, Delft, The Netherlands, 18–22
June (2012)

14. Ibrahim, S., Jin, H., Lu, L., He, B., Wu, S.: Adaptive Disk I/O Scheduling for
MapReduce in Virtualized Environment. In: 2011 International Conference on Par-
allel Processing (2011)

15. Xen Project Hypervisor, https://wiki.xen.org/wiki/Xen
16. Vchan Xen Library, https://github.com/mirage/xen/tree/master/tools/libvchan
17. VMware vSockets, https://pubs.vmware.com/vsphere-65/index.jsp#com.vmware.

vmci.pg.doc/vsockAbout.3.2.html#1023121
18. Virtual Machine Communication Interface, https://pubs.vmware.com/vmci-sdk/
19. Virtio - IO Virtualization in KVM, http://www.linux-kvm.org/page/Virtio
20. NetPIPE - Network Protocol Independent Performance Evaluator, https://linux.

die.net/man/1/netpipe
21. iPerf Benchmark, https://iperf.fr/
22. netperf - a network performance benchmark, https://linux.die.net/man/1/netperf
23. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-

mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, December 1995

24. Diakhaté, F., Pérache, M., Namyst, R., Jourdren, H.: Efficient shared memory
message passing for inter-VM communications (2008)

25. Kernel Virtual Machine, https://www.linux-kvm.org/page/Main
26. QEMU, http://www.qemu.org/
27. Huang, W., Koop, M.J., Gao, Q., Panda, D.K.: Virtual machine aware communi-

cation libraries for high performance computing. In: SC 2007: Proceedings of the
2007 ACM/IEEE Conference on Supercomputing, NY, USA (2007)

28. Zhang, X., McIntosh, S., Rohatgi, P., Griffin, J.L.: XenSocket: a high-throughput
interdomain transport for virtual machines. In: Cerqueira, R., Campbell, R.H.
(eds.) Middleware 2007. LNCS, vol. 4834, pp. 184–203. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-76778-7 10

29. PV Calls: A new paravirtualized protocol for POSIX syscalls
30. Wang, J., Wright, K.-L., Gopalan, K.: XenLoop: a transparent high performance

inter-vm network loopback. In: HPDC 2008: Proceedings of the 17th International
Symposium on High Performance Distributed Computing (2008)

31. Nanos, A., Gerangelos, S., Alifieraki, I., Koziris, N.: V4VSockets: low-overhead
intra-node communication in Xen. In: CloudDP 2015, Bordeaux, France, 21–24
April (2015)

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
https://wiki.apache.org/hadoop
https://wiki.apache.org/hadoop/PoweredBy
https://wiki.apache.org/hadoop/Distributions
https://wiki.apache.org/hadoop/Distributions
https://wiki.xen.org/wiki/Xen
https://github.com/mirage/xen/tree/master/tools/libvchan
https://docs.vmware.com/en/VMware-vSphere/index.html#com
https://docs.vmware.com/en/VMware-vSphere/index.html#com
https://pubs.vmware.com/vmci-sdk/
http://www.linux-kvm.org/page/Virtio
https://linux.die.net/man/1/netpipe
https://linux.die.net/man/1/netpipe
https://iperf.fr/
https://linux.die.net/man/1/netperf
https://www.linux-kvm.org/page/Main
http://www.qemu.org/
http://dx.doi.org/10.1007/978-3-540-76778-7_10

Dynamic Paging Method Switching -
An Implementation for KVM

Yu Zhang(B), Peter Tröger, and Matthias Werner

Operating Systems Group, Technische Universität Chemnitz, Chemnitz, Germany
zhayu@hrz.tu-chemnitz.de,

{peter.troeger,matthias.werner}@informatik.tu-chemnitz.de

Abstract. The increasing adoption of virtualization in high-
performance computing domain makes it necessary to reduce the perfor-
mance loss due to virtualization for the workloads. In a single computing
node, the loss is mainly incurred by memory virtualization. To take the
advantages of virtual memory, page tables are commonly adopted for the
mapping from virtual to physical address in operating systems. To take
the advantages of system virtualization, page tables are also adopted
for the mapping from guest virtual to host physical address. The two
standard approaches are shadow and nested page tables. As each of them
has its strengths and weaknesses, neither can simply be replaced by the
other. An optimal practice is to exploit these strengths as the workload
is always changing. However, the current hypervisors cannot do this due
to the static way of configuring the paging method. This paper pro-
poses and realizes DPMS - a variant of the idea “dynamic page method
switching” in the context of KVM. DPMS is able to detect the workload
type and adjust the page method accordingly. Benchmark results show
that DPMS yields the best performance compared with the shadow and
nested paging for almost all the tested workloads.

1 Introduction

Virtualization is an increasingly relevant topic in the area of high-performance
computing (HPC). It adds an indirection layer of abstraction below the operating
system, so that whole machine installations can be dynamically instantiated and
migrated on the available physical resources. The constantly increasing support
for virtualization in modern physical hardware (processor, memory management
unit, I/O controllers) lowers the performance loss down to such a level that these
solutions are starting to be incorporated by default in HPC environments.

The currently standard approaches for memory virtualization in hypervisors
are shadow paging and nested paging. SPT (shadow page tables) are controlled
by the hypervisor and interpreted by the MMU (memory management unit) of
the physical processor. SPT maps the virtual addresses in the guest to physical
addresses in the host with a single step. This makes the approach very efficient,
especially for memory-intensive computational applications. A major downside
is the need to temporarily suspend the guest execution (called a vmexit), when
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 629–641, 2017.
https://doi.org/10.1007/978-3-319-67630-2_44

630 Y. Zhang et al.

SPT must be updated. This occurs each time the guest decides to modify its own
page tables. The frequency of such events depends on the application workload.

The nested paging scheme adopts a two-step translation strategy, under which
the mapping is first performed by using the guest page tables, from guest virtual
to guest physical address, then by using nested page tables (NPT) further to host
physical address1. Under nested paging, the guest operating system is permitted
to handle all the page faults by itself, without forcing a vmexit due to the need
of maintaining any host paging structure. Unlike SPTs, NPTs are maintained
by the physical processor, thus saves the effort to force an expensive vmexit at
this moment and eliminates the performance loss suffered by shadow paging.

The downside of nested paging is incurred by the extension of the page table
walk length (second-dimension). A two-dimensional paging walk with four-level
in both guest and nested page tables has five times more page entry references
than a four-level native page walk [1]. Although this can be mitigated by using
the translation look-aside buffer (TLB), the benefit of TLB depends mainly on
how well the cached results of the recent translations can be reused. Therefore,
workloads with better memory locality make better use of the TLB and suffer less
overhead. This explains why the ability to use TLB is critical for the performance
of a workload under nested paging. The same view is also found in [1,2].

Figure 1(a) and (c) show the normalized performances of PARSEC-3.0 [3]
yielded by the KVM guests with 4-KB and 1-GB page tables, respectively. A
few workloads suffer higher performance losses. In the cases with single thread,
such examples includes: fft (10.03%), lu ncb (9.61%), and radix (10.65%). It
may become more apparent as the number of thread increases. By using the
1-GB large pages, performance for these workloads is generally improved (fft
(102.19%), lu ncb (99.97%), and radix (96.27%)). Nevertheless, this may also
lead to more degradation for some other workloads (dedup (−7.56%), barnes
(−3.87%), volrend (−2.48%)) against with 4-KB pages. As a reference, Fig. 1(b)
and (d) compare the performances of the same benchmark for shadow and nested
paging, with 4-KB, 1-GB page tables, respectively. What they show is that a
single paging method, either shadow or nested paging, does not yield equally
well performance for all workload. While for most of the workloads, nested paging
outperforms shadow paging, the opposite is true for some others. And this is also
the case even when 1-GB large page is used. Large page size may really improve
the performance for many workloads, but exhibits the same nature regarding
the strengths and weaknesses of a paging method.

These reflects the limitation to treat the diverse HPC workloads with a single
way of paging, and justifies a combined use of shadow paging and nested paging
on demand of the workload. The drawback of using a single paging method is
that hypervisor cannot get feedback from the workload thus cannot treat it in its
favorite way for paging. Within the current framework of memory virtualization,
this paper explores the feasibility of applying the two paging methods during a
single-shot run of the guest or even of an application, to avoid higher overhead.

1 More precisely, this approach involves three steps, but the second step (guest physical
to host virtual) and third (host virtual to host physical) are typically combined.

Dynamic Paging Method Switching 631

Fig. 1. Comparison of (a) EPT(4KB)/native(4 KB), (b) SPT(4KB)/EPT(4 KB),
(c) EPT(1GB)/native(4 KB), (d) SPT(1GB)/EPT(1 GB)

632 Y. Zhang et al.

2 Related Work

Dynamic switching of paging methods for running workloads is not a new idea.
The first appearance seems to be in [4]. The authors argued that the nested
paging is better for database-oriented applications since it eliminates a large
number of vmexit events. Shadow paging, instead, is better for computation-
intensive workloads that incur limited activities in the guest kernel space. The
authors pointed out that the type of workload could be automatically detected
by QEMU-KVM at run-time. Two according implementations are worked out in
[5,6], based on Xen and Palacios, respectively. Although different hypervisors,
policies and mechanisms are applied in their implementations, each of them has
showed that the dynamic switching of paging methods is able to yield on-par
or higher performance than the best one yielded by shadow and nested paging.
The early-stage of our work on this idea can be found in [7], which describes
part of the implementation for QEMU-KVM. It mainly relates to performance
data sampling and a coarse-grain paging method switching details.

A recent further development for dynamic switching is contributed by [8],
which views shadow and nested paging as two extreme cases for guest memory
virtualization. Based on the observation that the frequency for updating varies
greatly at different levels of page tables, the authors propose agile paging, which
is capable of switching between the two paging methods dynamically for a single
address translation process. According to the benchmark results, it outperforms
the best of shadow and nested paging. agile paging requires a slight modification
not only to the hypervisor software, but also to the current processor hardware.

A few other attempts for improving the performance of guest memory vir-
tualization are discussed in [9,10]. The former proposes a hashed page table as
the paging scheme for walking the second dimension page tables. The latter,
based on the feasibility of mapping the large memory chunks in a process’s vir-
tual address space by means of segmentation rather than paging, and only the
remained small regions by paging, proposed the shift from paging to segmenta-
tion for the guest memory virtualization, leading to near-zero translation and
better-than-native performance. While both of them sound reasonable, they lack
true hardware support, thus not practicable with the current available hardware.

Contributions of this paper are: (1) study of performance impact delivered
by large page size, (2) design of new strategies for paging method switching, and
(3) the implementation of the DPMS idea in KVM.

3 Design of the Dynamic Paging Method Switching

The DPMS consists of four functional units, namely, (1) Sampling of perfor-
mance data, (2) Processing of performance data, (3) Decision making, and
(4) Switching.

By making decisions based on the real-time performance statistics, dynamic
paging method switching can react to the ever-changing behavior of the running
workload by instructing an immediate change of the current paging method to

Dynamic Paging Method Switching 633

Fig. 2. Design of DPMS

the more suitable one for the running workload, and eventually this leads to a
self-adaptive system inside the hypervisor, as Fig. 2 depicts.

3.1 Performance Data Sampling and Processing

Modern processors have special hardware facility, the Performance Monitor Unit
(PMU), to collect specific events related with the operation of processor [11]. A
PMU typically consists of a Performance Monitor Counter (PMC) and an event
selector. DPMS makes use of them for collecting the necessary data about the
run-time memory-access behavior of the given workload.

Considering that the vmexit incurred by guest page faults are critical for the
performance under shadow paging, and that the TLB miss rate is critical for that
under nested paging, the following indicators become relevant: (1) vmexit events
due to guest page faults, (2) vmexit events due to any reason, (3) TLB miss
events, both for data and instructions, (4) Retired instructions, and (5) Clock
cycles.

The first two are monitored directly in the context of the hypervisor therefore
can be obtained internally. The other three indicators are hardware-related and
must be obtained through PMCs.

For Decision Making, these indicators are only raw data, and used to calculate
the more related performance metrics, which includes the PFR (page fault rate),
TMR (TLB miss rate), and IPC (instruction per cycle). By their definitions,
the calculation of these performance metrics is fairly straightforward. The more
important duty for data-processing is to yield the statistics which can be directly
used by decision-making. As this part tends to be a more concrete aspect closely
related with the decision-making phase, it is better to defer the discussion to
the implementation with more details. At this stage, what can be determined is
the basic process for Decision Making. Several previous values of the concerned
metrics need to be stored to compared with the corresponding current values in
a certain form. A circular array (ring buffer) can be used for this purpose. Data
in an array can be the metric value itself, or a comparison result. Each time the
stalest data will be replaced by the current one. The decision will be influenced
by the comparison between the mean of previous values with the current value.

634 Y. Zhang et al.

3.2 Decision Making

The central task for decision-making is to determine the criterion, or conditions
under which the paging method should be launched. But the performance can be
influenced by many factors. It is non-trivial to identify these influence-factors.
Figure 3 shows the result of such an investigation for shadow paging. Workloads
with the heaviest performance loss are dedup (36.94%) and vips (10.87%). PF
and vmexit exhibited by these two are at least one order of magnitude higher
than other workloads do. No other metric indicate stronger connections with the
high performance loss under shadow paging. For this reason, the PF and vmexit,
rather than PFR are taken as the conditions for the switching from shadow to
nested paging. The figure shows that fft, radix also exhibit similar behaviors
but proved shadow paging-inclined. These are only platform-specific exceptions.

Fig. 3. Comparison of PF (page fault) and vmexit for shadow paging

On the other hand, conditions for switching from the opposite direction is also
investigated. Table 1 displays the majority of possible indicators, which includes
the global mean occurrences of iTLB miss, dTLB miss, PF/s, vmexit/s, PFR,
TMR and IPC for 25 workloads in PARSEC-3.0. Comparison reveals that the
occurrences of iTLB and dTLB really connect with high performance loss under
nested paging, but the rule does not always hold true. For this reason, TMR
is examined, whose result indicates that workloads which exhibit a TMR below
10−5 suffer nearly no visible performance loss for nested paging, otherwise, fur-
ther conditions are needed for the final decision.

Meanwhile, workloads suffer heavily under nested paging exhibit nearly neg-
ligible PF and vmexit than those suffer less. Therefore, TMR, together with PF
and vmexit are taken as the conditions for the switching from nested to shadow
paging. Another observation is that the occurrence of IPC does not necessarily
indicate heavy performance loss for either shadow or nested paging, thus is not
considered for decision-making.

Dynamic Paging Method Switching 635

Table 1. Statistics of PARSEC-3.0 for nested paging.

workload iTLBM dTLBM TMR PF/s vmexit/s IPC PFR
blackscholes 3097.14 3227.50 0.000027365 0.38 911.38 1.9309 0.0004
bodytrack 13516.93 7507.07 0.000338611 14.38 1413.81 0.9063 0.0102
canneal 2043.63 1138.65 0.000080206 11.56 844.48 1.5812 0.0137
dedup 4301.13 7634.83 0.000208871 82.31 1427.80 1.1261 0.0577
facesim 8069.18 3095.81 0.000244451 13.27 964.16 0.2271 0.0138
ferret 26428.27 21702.62 0.000014441 16.20 1177.99 1.3346 0.0137
fluidanimate 2369.36 293.61 0.000106478 76.84 900.10 2.0261 0.0854
freqmine 5673.26 66952.09 0.000011414 12.23 846.67 1.7229 0.0145
raytrace 2516.07 5157.16 0.000141858 11.58 1274.26 0.2749 0.0091
streamcluster 1308.22 1574.71 0.000003803 0.01 1415.04 0.7949 0.0000
swaptions 673.58 456.70 0.000031505 0.12 1418.63 1.9764 0.0001
vips 19986.51 37846.63 0.000402917 52.68 1177.81 0.9843 0.0447
x264 29353.84 7946.45 0.000263719 0.43 1239.54 0.8887 0.0003
barnes 1763.70 788.61 0.000061923 0.32 26.56 0.3828 0.0121
fft 13232.65 6744437.91 0.001055395 0.09 22.42 1.8127 0.0041
fmm 5965.21 2845.51 0.000266594 0.47 51.40 0.3718 0.0091
lu cb 1236.32 500.42 0.000057584 0.04 16.97 0.4338 0.0022
lu ncb 1162.77 499.47 0.000052648 0.01 25.52 0.6798 0.0002
ocean cp 5931.80 2866.20 0.001096807 0.00 36.01 0.6756 0.0000
radiosity 1111.16 484.60 0.000043282 0.03 15.38 0.3818 0.0020
radix 7564.72 3189.60 0.000407778 0.09 75.77 1.3580 0.0012
spl raytrace 1845.39 764.98 0.000070307 0.37 19.95 0.4681 0.0185
volrend 41151.24 14288.29 0.000010477 0.49 64.14 1.4947 0.0077
water nsquared 13815.92 3437.95 0.000002209 0.00 12.77 2.0934 0.0000
water spatial 2385.17 5795.79 0.000007623 0.14 240.51 0.8953 0.0006

3.3 Switching

As the central part of DPMS, the design of the switching mechanism deals with
two basic questions: (1) What needs to be performed for the switching operation
at hardware and hypervisor level; and (2) In which part of hypervisor’s context
should the switching occur.

Regarding to the first question, Fig. 4 depicts the minimal set of operations
for switching in the context of a hypervisor and the hardware. Two key aspects
for switching are: how to handle with the shadow page tables when switching to
nested paging, and how to handle with the nested page tables when switching
to shadow paging. The answers depend on the nature of the two different kinds
of page tables. Researches [5,7,8] pointed out that shadow page tables are by
nature more volatile in their content than nested page tables. While the latter is
also changing during the execution of guest system, the pace is potentially much
slower than that of the former. Furthermore, the former must still be constantly
synchronized even under nested paging for reuse after shadow paging is resumed,
which adds extra burden to the performance. For this reason, the strategy is to
retain the nested page tables before switching and restore them after being back,
but to abandon the shadow page tables before switching, and rebuild them after
being back. A problem arises if the guest is started initially with shadow paging
and is switching to nested paging. In this case, nested page tables must be rebuilt
at first. Figures 4(a) and (b) highlight this difference.

636 Y. Zhang et al.

Fig. 4. Minimal set of operations for switching the paging method

The answer to the second challenge is deeply related with the implementation
of the hypervisor, therefore is left when the concrete implementation is discussed.

4 Implementation in QEMU-KVM for x86-64

The first functional unit of this implementation is the gathering of performance
data. For the x86-64 processor family, PMCs are well documented in the sys-
tem programming manuals [12,13]. Its configuration for DPMS is illustrated in
Table 2.

The software-related events are directly gathered from the internal KVM data
structures. The structure - vcpu->stat contains statistics regarding the status
of the VCPUs, including pf fixed and exits, serving as counters for the events
- fixed guest page faults and vmexits, respectively. pf fixed counts the number
of fixed shadow page table entry (PTE) maps – not exactly the event occurs to
the guest page tables. However, as the shadow page tables update is incurred by

Table 2. Configuration of PMC MSRs on x86-64 platform

Event Selector
address

Counter
address

Event
Code

Mask

i-TLB miss 0x186 0xc1 0x85 (0x01ull << 8) |(0x03ull << 16)

d-TLB miss 0x187 0xc2 0x49 (0x01ull << 8) |(0x03ull << 16)

clock cycle 0x188 0xc3 0x3c (0x00ull << 8) |(0x03ull << 16)

retired instructions 0x189 0xc4 0xc0 (0x01ull << 8) |(0x03ull << 16)

Dynamic Paging Method Switching 637

updating in the guest page tables, pf fixed serves as an approximate indicator
to the number of fixed page faults in the guest page tables.

For managing the DPMS, a newly-defined data structure pmc val t is intro-
duced to keep all performance data, the calculation results, as well as a number
of the heuristic data in the context of the hypervisor for each guest.

In this prototype of the implementation, spikes of PF and vmexit events for
longer time periods are encountered under shadow paging. For this reason, a few
cyclic arrays (ring-buffers) are used – not for saving the values of metrics, but for
saving the comparison results between them and their corresponding thresholds.
Each time, a current value is compared with the corresponding thresholds. It
scores 1 if the result is greater than or equal to, or else 0. The ring-buffers keep
the records of these comparisons, with the aim of detecting whether the PF and
vmexit for current workload are spiking to higher levels.

Upon decision making, the mean of all elements stored in a cyclic array are to
be compared with a proportion of the top values (1× length of the ring buffer).
The percentage is also an empirical value (for example, 60%), to ensure that the
majority of the recent PF and vmexit values are higher than the pre-determined
thresholds, meanwhile leaving a certain degree of freedom for the sequence of
occurrence (the occurrence order is unimportant). Under nested paging, similar
procedure is followed, with the comparison result of TMR as the major condition.
In addition, as TMR also has a bit ambiguity for heavy performance loss, PF
and vmexit are also monitored and compared, but with the bottom thresholds
to guard against some falsified cases (high TMR, but little performance loss).

Figure 5 depicts the major part of the control flow in the QEMU-KVM hyper-
visor. qemu kvm cpu thread fn is the routine of a function in QEMU’s context
that creates the needed number of VCPUs. It initiates and then begins to execute
these VCPUs. Both the “kick-off” and interaction with VCPUs are implemented
by sending commands from the KVM “device” (/dev/kvm) via a sequence of the
device-specific function - ioctl. Guest code enters into execution after a vmentry
instruction by the physical processor, until a certain event is encountered in the
guest, which can not be handled by the guest but needs hypervisor’s cooperation
in the host (kernel or even user) space. Switching occurs in vcpu enter guest
and takes the advantage of each vmexit in the inner loop. Switching is signaled
by setting a request for MMU-reloading in function “kvm x86 ops->run”. The
bitmap “requests” will be checked in vcpu enter guest and actions in Fig. 4
will be taken if necessary.

The major aspects of the implementation are described above; besides, a few
other aspects closely related with the implementation also need to be covered,
which may include: (1) Repetitive mechanism that ensures periodical output of
performance data needed by the paging method switching ; (2) Integration of the
performance monitoring mechanism into the QEMU-KVM context.

In Linux kernel, a bunch of APIs were created for repetitive work deferral
and periodic timer scheduling. Among them, a critical thing is timing. DPMS
uses a standard timer in the Linux kernel defined by timer list structure,
which contains a pointer to a list of timers, the value for expiration, a user-

638 Y. Zhang et al.

Fig. 5. Control flow in QEMU-KVM

definable callback function, a pointer to a region as the callback parameters, and
a few optional variables for other uses. To create, initialize, renew, and delete
the timer, the following APIs are provides by Linux kernel: (1) init timer;
(2) setup timer; (3) mod timer; (4) del timer. To minimize the modification
on the original code, the timer list instance is in kvm arch - the place where
pmc val t’s instance is. pmc start and pmc stop are defined for controlling the
PMCs. The former is used to start the PMCs on a specific core (known as the
“leader”), and do initialization work necessary for performance data sampling as
soon as the guest is booted up, such as creating the timer and initializing the pmc
instance. The latter, conversely, removes the timer and stops the PMCs when the
guest is about to go down. The most interesting part - data sampling function,
is fulfilled by the callback routine of the timer. Furthermore, Data Processing,
Decision Making, and “timer renewal” are all encapsulated in this function.
The APIs defined for PMC controlling also form a call chain, as depicted in
Fig. 6(a, b, c).

For an automatic control of the PMCs by the guest, it is necessary to integrate
the PMC-related functions into the QEMU-KVM context. The purpose is that
the PMCs can start immediately as the guest enters into execution, sample data
afterwards, and stop as the guest is shutdown. After an in-depth examination
of the source code and testing, pmc start and pmc stop find their places in the
execution path of the KVM. Figure 7 depicts this scenario, and the cascading
call chains after the two PMC-related functions are joined to the original paths.
Similar with other parts of Linux kernel, KVM adopts callback feature when
dealing with the file system operations. pmc start and pmc stop can be executed
as soon as the corresponding execution paths are triggered by these callbacks.

Dynamic Paging Method Switching 639

Fig. 6. Call chains formed by the APIs for PMCs control

Fig. 7. The position for the integration of PMC mechanism

5 Benchmark Results

The prototype of DPMS implementation has been tested on three platforms, two
with Intel processors, and one with AMD processor. The results show that all
functional units of DPMS work as expected on the two Intel platforms. On the
AMD platform, however, the switching operation causes immediately a reboot
of the guest, rather than a recovery or rebuilding of the desired page tables. An
assumption is that the AMD NPT is implemented a little different from the Intel
EPT, thus may treat the switching as a kind of failure, and passes the control
flow simply to the exception-handler which in turn triggers a reboot of the guest.

The two Intel platforms are also bothered with some corruption of the MMIO
region in the guest memory due to paging method switching. The problem is
caused more and more likely with the accumulated number of switching oper-
ations. A temporary solution is to slow down the tempo for switching. For the
sake of performance, this may both eliminate many unnecessary switching and
reduce the chance of guest crash. All these problems are flaws in the prototype
and will be further examined and debugged.

Figure 8 illustrates the benchmark results of DPMS on an Intel platform.
All workloads are executed sequentially in a batch to test the performance and
stability. The results show that DPMS can improved the performance of dedup
by 20.95%, vips by 9.09%, barnes by 1.03%, and fft by 0.03%, compared with

640 Y. Zhang et al.

Fig. 8. Performance of DPMS, SPT and EPT on Platform with Xeon e5-1620-v2

the worst performance yielded by either shadow or nested paging, and meanwhile
has little negative impact on the performance of other non-sensitive workloads.

6 Conclusion and Future Work

The dynamic switching of paging methods has the potential to improve the
performance of workloads which are sensitive to the chosen paging method for
guest memory paging. The idea is feasible and implementable. Some hypervisor-
specific problems must be solved for a practicably useful solution. However, to
outperform the best of current solutions, hardware modification is still needed.
The patch for DPMS in KVM is to be found at https://github.com/zhayu.

References

1. Bhargave, R., Serebin, B., Spadini, F., Manne, S.: Accelerating Two-Dimensional
Page Walks for Virtualized Systems. Advanced Micro Devices, March 2008

2. Barr, T.W., Cox, A.L., Rixner, S.: Translation Caching: Skip, Don’t Walk (the
Page Table). Houston, TX, June 2010

3. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: charac-
terization and architectural implications. In: PACT 2008, Ontario, Canada (2008)

4. Arcangeli, A., Kivity, A.: Using Linux as Hypervisor with KVM. Qumranet Inc.,
CERN, Geneve, September 2008

5. Wang, X., Zang, J., Wang, Z., Luo, Y., Li, X.: Selective hardware/software memory
virtualization. In: VEE 2011, California, USA, March 2011

6. Bae, C.S., Lange, J.R., Dinda, P.A.: Enhancing virtualized application performance
through dynamic adaptive paging mode selection. In: ICAC 2011. Northwestern
University and University of Pittsburgh, June 2011

7. Zhang, Y., Oertel, R., Rehm, W.: Paging method switching for QEMU-KVM guest
machine. In: BigDataScience 2014. Proceedings of the 2014 International Confer-
ence on Big Data Science and Computing, Article No. 22, August 2014

https://github.com/zhayu

Dynamic Paging Method Switching 641

8. Gandhi, J., Hill, M.D., Swift, M.M., Paging, A.: Exceeding the best of nested and
shadow paging. In: ISCA 2016. Proceedings of the 43rd International Symposium
on Computer Architecture, pp. 707–718, June 2016

9. Hoang, G., Bae, C., Lange, J., Zhang, L., Dinda, P., Joseph, R.: A case for alterna-
tive nested paging models for virtualized systems. Comput. Archit. Lett. 9, 17–20
(2010). University of Michigan

10. Gandhi, J., Basu, A., Hill, M.D., Swift, M.M.: Efficient Memory Virtualization.
University of Wisconsin-Madison and AMD Research, October 2014

11. Liang, Q.: Performance Monitor Counter data analysis using Counter Analyzer.
IBM developerWorks, February 2009

12. Intel Inc.: Intel 64 and IA-32 Architectures Software Developer’s Manual, vol. 3B
18-3. Intel Corporation, June 2016

13. Advanced Micro Devices Inc.: AMD64 Architecture Programmer’s Manual Volume
2: System Programming, p. 80. Advanced Micro Devices, May 2015

Aggregating and Managing Memory Across
Computing Nodes in Cloud Environments

Luis A. Garrido(B) and Paul Carpenter

Barcelona Supercomputing Center, C/Jordi Girona. 31, 08034 Barcelona, Spain
{luis.garrido,paul.carpenter}@bsc.es

http://www.bsc.es

Abstract. Managing memory capacity in cloud environments is a chal-
lenging problem, mainly due to the variability in virtual machine (VM)
memory demand that sometimes can’t be met by the memory of one
node. New architectures have introduced hardware support for a shared
global address space that, together with fast interconnects, enables
resource sharing among multiple nodes. Thus, more memory is globally
available to a computing node avoiding the costly swaps or migrations.
This paper presents a solution to aggregate the memory capacity of mul-
tiple nodes in a virtualized cloud computing infrastructure. It is based
on the Transcendent Memory (Tmem) abstraction and uses a user-space
process to manage the memory available to a node, and distribute the
aggregated memory across the computing infrastructure. We evaluate
our solution using CloudSuite 3.0 benchmarks on Linux and Xen.

Keywords: Virtualization · Simulation, modeling and visualization

1 Introduction

Current data centres use large numbers of servers provisioned with their own
computing resources. These servers share none of their resources, and they com-
municate over an Ethernet (or similar) network. Newer system architectures try
to improve over this resource isolation approach, allowing servers to share their
resources through the memory hierarchy. These systems provide a shared global
physical address space, accessing memory at low latency using very fast inter-
connects. These systems are composed of coherence islands (nodes), with cache
coherency enforced within an island, with no global hardware coherence.

Each node’s physical memory capacity is distributed by the hypervisor among
one or more Virtual Machines (VMs). The demand for memory resources gener-
ated by the VMs varies due to the different workloads that execute over time. To
improve utilization of the memory capacity of the node, physical memory is often
overcommitted, which causes a VM to have less memory than the amount it was
configured with at boot time. The physical memory given to a VM is usually
adjusted using memory ballooning and/or memory hotplug. Xen’s Transcendent
Memory (Tmem) [1] is another way to make memory capacity available to the
VMs, through a paravirtualized put–get interface.
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 642–652, 2017.
https://doi.org/10.1007/978-3-319-67630-2_45

Aggregating and Managing Memory Across Computing Nodes 643

This paper presents a mechanism, called GV-Tmem (Globally Visible
Tmem), that extends the hypervisor to share the memory capacity of the nodes
across the computing infrastructure. GV-Tmem introduces minimal changes to
the hypervisor, keeping it small, secure and self-contained. Most of the com-
plexity is in a user-space memory manager process running in the privileged
domain that supports memory management policies, inter-node communication
and dynamic addition and isolation of nodes. Our main contributions are:

1. A software architecture to aggregate memory across nodes using Tmem.
2. A two-tier mechanism for allocation and management of aggregated memory.

This paper is organized as follows. Section 2 gives the necessary background
on virtualization, Tmem and coherence islands. Section 3 explains GV-Tmem.
Section 4 describes the experimental methodology and Sect. 5 shows our results.
Section 6 compares with related work and Sect. 7 concludes the paper and out-
lines future work.

2 Background

2.1 Virtualization in IaaS Clouds

Cloud computing provides on-demand access to an apparently unlimited pool
of computing resources. There are multiple cloud computing service models,
but the most fundamental is Infrastructure-as-a-Service (IaaS). IaaS shares the
underlying hardware memory resources among customers using virtualization
software known as a hypervisor.

Virtualization and Memory Management. The hypervisor virtualizes the
physical resources, including memory, of the node. It creates and manages Vir-
tual Machines (VMs), each of which runs its own (guest) Operating System
(OS). When a VM is created, the hypervisor allocates to it a portion of the
physical memory capacity. If a VM later requires more memory (memory under-
provisioning) it will generate accesses to its (virtual) disk device, even if some
of the node’s memory is unassigned or sits idle in a VM that does not need it.
When a VM has more memory than needed (memory overprovisioning), then
the memory is underutilized and will be used for disk caches. In both cases, it
is beneficial to re-allocate memory, making it available to the VM that needs it.

There are solutions for dynamically re-allocating memory among VMs,
including memory ballooning and memory hotplug, both implemented in the
Xen and Linux. These mechanisms have been widely deployed in current data
centres, with significant performance benefits in terms of higher memory uti-
lization. However, they do not provide adequate interfaces to aggregate memory
capacity across multiple nodes.

State-of-the-Art TranscendentMemory. Transcendent memory (Tmem) [1]
is another memory management mechanism that pools the idle or unassigned
physical pages. Tmem is abstracted as a key–value store in which pages are

644 L.A. Garrido and P. Carpenter

accessed through a put–get interface, a put operation to write a page in the store
that becomes mapped to the VM that issued it, and a get operation to read pages
back. The Tmem interface supports also flush-page and flush-object operations,
which return pages to the Tmem pool. In order to enable Tmem, the VMs need
to have a Tmem kernel module (TKM) which handles all accesses to the Tmem
pages on behalf of the VM by issuing hypercalls to the hypervisor.

2.2 Hardware Support for Coherence Islands

In systems such as Venice [2] and EUROSERVER [3] (based on ARM), the
processors in each node are connected in clusters via a local cache-coherent inter-
connect to local resources. In particular, the Euroserver architecture implements
the UNIMEM (Unified Memory) model [3].

In UNIMEM, remote memory is visible through the global physical address
space, and communication across nodes is achieved through an inter-node inter-
face and global interconnect. Systems that implement UNIMEM usually consist
of 4 to 8 nodes. There are other architectures that also implement a global
physical address space using different memory models, such as dRedBox [4] and
Beehive [5]. The essential characteristics of these architectures are:

– Each node executes its own hypervisor and OSs.
– Global physical memory address space with low-latency access.
– Routing is based on the global physical address (e.g. high-order bits).
– Fast communication is provided across the nodes of the system, bypassing

traditional network protocols (e.g. TCP/IP).

3 GV-Tmem Design

GV-Tmem consists of three software components:

– Extended Xen Hypervisor (Sect. 3.1)
– Tmem Kernel Module in the kernel of all domains (Sect. 3.2)
– Memory Manager (MM) in user space in Dom0 (Sect. 3.3)

3.1 Xen Hypervisor with Extensions

The hypervisor extensions for GV-Tmem are minimum and localized in the
Tmem subsystem. First, the hypervisor enforces the memory allocation con-
straints determined by the MM. Second, it allocates and deallocates physical
pages and passes ownership of blocks of pages in and out of the hypervisor.
Third, it collects information of Tmem utilization that it sends to the MM.

Enforcing Local per-VM Memory Constraints: The hypervisor constrains
the Tmem consumption of its VMs, based on the allocation determined by the
MM. The MM specifies the maximum number of pages a VM can use.

Aggregating and Managing Memory Across Computing Nodes 645

Page Allocation and Transfer of Ownership: GV-Tmem ensures that each
physical page is owned by at most one hypervisor. Tmem pages owned by a
hypervisor are allocated using a zoned Buddy allocator, with a zone for each
node from which it has ownership of at least one page.

A Tmem put operation allocates the closest free page from the allocators. A
Tmem flush operation causes a page to be returned to the corresponding Buddy
allocator. A Grant hypercall is used when the MM receives ownership of a list of
blocks (each an appropriately-aligned power-of-two number of pages). These are
added as free blocks to the appropriate Buddy allocator. In contrast, a Request
hypercall is used to release ownership of pages on behalf of another node.

Memory Statistics: The hypervisor collects information about the Tmem uti-
lization of the VMs. More specifically, the hypervisor monitors:

– Number of active VMs
– Amount of total Tmem capacity available to the hypervisor
– Amount of Tmem capacity in use by each VM
– Number of put, get and flush operations of each VM
– Number of failed put operations of each VM

The information gathered needs to be minimum to avoid communication over-
head from the hypervisor to the MM. The hypervisor sends this information
to the MM approximately every second by issuing a custom virtual interrupt
request (VIRQ) to the privileged domain. The TKM (Sect. 3.2) captures the
interrupt and forwards the information to the MM.

3.2 Tmem Kernel Module (TKM)

Interfacing to the Tmem client interface requires a kernel module in each VM,
but the kernel module in the privileged domain (Dom0) acts only as an interface
between the hypervisor and the node’s MM (using netlink sockets).

3.3 Dom0 User-space Memory Manager (MM)

Each node has a user-space Memory Manager (MM) in Dom0. The MMs perform
most of the work of GV-Tmem by cooperating to:

1. Distribute memory owned by each node among its guests
2. Distribute global memory capacity among nodes
3. Implement the flow of page ownership among nodes
4. Enable nodes to join and leave, and handle failures

Joining the GV-Tmem System: There is one MM Master (MM–M) that
controls the system and distributes the global memory capacity. The messages
passed among the MMs are listed in Table 1. A node requires a configuration
file, which provides the network addresses of all nodes, their mappings to a node
ID and credentials to establish secure connections. When a node R wishes to

646 L.A. Garrido and P. Carpenter

Table 1. MM message types. SL: slave, MT : master, I: Inactive, A: Active, R: Recov-
ery, L: Leaving

Command Direction Description Slave state

Distribution of global memory capacity

Statistics(S) SL→MT Send node statistics S to Master A

Grant-Any(n, x) SL→MT Request grant of n pages to slave x A

Grant-Fwd(n, x) MT→SL Forward request of n pages to y from x A

Force-Return(x) MT→SL Return pages located at x and disable it A

Mem-Limit(n) MT→SL Limit allocated pages to store local data A

Flow of page ownership

Grant(b, · · ·) SL/MT→SL Transfer ownership of blocks of pages A

Node state changes

Register SL→MT Register a new node I → A

Leave-Req SL→MT Node requests to leave or shutdown A → L

Leave-Notify MT→SL MM–M notifies that the recipient has left L → I

Enable-Node(x, e) MT→SL Accept (e = 1) or reject (e = 0) pages at x A

join the GV-Tmem system, it sends Register to the MM–M (see Table 1). The
MM–M sets R’s state to Active. Then it sends a Enable-Node(R,1) message to
all registered nodes. Every node maintains a bitmap of the active nodes.

Distributing Memory Owned by a Node Among Guests: The local MM
determines the maximum number of pages for each VM. This is done using
a policy that determines this maximum based on the statistics sent from the
hypervisor. This is the first tier of the memory management strategy. Pages are
distributed subject to a memory consumption limit, set by the MM–M using the
Mem-Limit hypercall. The MM detects when a VM is running out of memory
and starts generating disk accesses in a specific period of time.

Distributing Global Memory Capacity Among Nodes: Nodes in the
Active state, regularly send Statistics messages to the MM–M. These messages
consist of the statistics gathered by the hypervisor of each node and information
regarding the utilization and requests for remote memory of the node. In this
way, the MM–M has a general view of the status of each node.

Based on these statistics and the global memory policy, the MM–M redis-
tributes the memory among nodes when it receives a new Grant-Any message,
which is a request to transfer ownership of a number of free physical pages to
a node that requested memory. The MM–M can forward the request to another
node by sending a Grant-Fwd message or give some of its pages to the requesting
node. This is the second tier of the memory management strategy.

Implementing Flow of Page Ownership: The MM–M rebalances me-
mory capacity, without knowing the physical addresses. Ownership of physical
addresses is transferred in a peer-to-peer way using Grant messages, which passes

Aggregating and Managing Memory Across Computing Nodes 647

a list of blocks, each an appropriately-aligned power-of-two number of addresses
of physical pages.

Once a node is granted ownership of remote pages, it has exclusive access to
them, and it is free to allocate these pages to store data on behalf of its VMs.
The other nodes in the system, including the donor node, will not perform any
reads or writes to those pages, since a page can be owned by only one node at
a time. Thus, there is no need to order writes among multiple nodes.

With this way of distributing memory, the OS inside VMs is oblivious to the
amount and location of the Tmem pages, only the hypervisor has a clear view
of these details. The VMs are able to store any data that its VMs attempt to
swap to disk, without any constraints regarding the nature of the data.
Leaving the GV-Tmem System. To cleanly shutdown a node R that is in
GV-Tmem, the following procedure must be followed.

1. Node R sends a Leave-Req message to the MM–M.
2. Upon receiving the Leave-Req, the MM–M sets the node to Leaving state and

sends Force-Return(R) to all nodes. The nodes return the pages at R that
they own and will reject any pages received in future Grant messages.

3. Node R frees all pages used by Tmem and returns ownership of all remote
pages to their home nodes.

4. Periodically, each node sends Grant messages to node R to return ownership
of the pages that it had borrowed.

5. Once the MM–M has received Statistics messages from all nodes indicating
that R is disabled and that it owns no pages at R, the MM–M moves R to
Inactive and sends Leave-Notify to R.

6. At this point, the node R may shutdown.

Hardware Support for Memory Aggregation. GV-Tmem is suitable for
UNIMEM-based architectures such as Euroserver [3]. GV-Tmem requires the
underlying hardware to provide the following features:

1. A fast interconnect, providing a synchronous interface across the system.
2. Direct memory access from the hypervisor to all the memory available. Mem-

ory accesses from the hypervisor could be either through load/store instruc-
tions or RDMA, bypassing TCP/IP or similar protocols.

3. Remote access to a node’s pages is disabled on hardware boot. Access is
enabled only when the node joins GV-Tmem by sending the Register message.

4. Given a physical address, it must be possible to extract the Node ID.

4 Experimental Methodology

We tested GV-Tmem in a platform consisting of three nodes, which is consistent
with UNIMEM-based architectures that currently have 4 to 8 nodes, with 6 to 8
processor cores per node [3]. Every VM runs Ubuntu 14.04 with Linux kernel
3.19.0+ as the OS, and Xen 4.5. The MMs in the nodes communicate using
Ethernet TCP/IP sockets. Node 2 acts as the Master node and executes no
VMs. Table 2 summarizes the hardware properties of the nodes.

648 L.A. Garrido and P. Carpenter

Table 2. Hardware characteristics

Node CPU Frequency Memory

Node 1 AMD FX Quad-Core 1.4 GHz 6GB

Node 2 Intel Core i7 2.10 GHz 8GB

Node 3 Intel Xeon 2.262 GHz 64GB

Table 3. List of scenarios used for benchmarking

Scns. VM Parameters Description

Scn. 1 VM1, VM2: 768MB RAM,
1 CPU; VM3: 1GB RAM,
1 CPU

All VMs execute in-memory-analytics, sleep
5 seconds and then execute it again. The
data set used is from [7].

Scn. 2 VM1, VM2, VM3: 512MB
RAM, 1 CPU

VM1 and VM2 execute usemem, and VM3
starts when VM1 allocates 640MB.

Scn. 3 VM1, VM2: 512MB RAM,
1 CPU

Every VM executes graph-analytics once.
They use the dataset provided by [8–10].

The shared global address space was emulated using the node’s local memory.
Remote access emulation was the best choice in order to offer the possibilty to
analyze the impact of the latency of the interconnect on the memory aggregation
and management mechanisms. However, the analysis of the impact of latency
and non-uniform latencies is out of the scope of this work. We modified Xen to
start up using a portion of the physical memory capacity, equalling the emulated
memory capacity of the node. The rest of the node’s memory capacity was
reserved to emulate remote data storage. Whenever the hypervisor performs an
“emulated” remote access after remote memory becomes available, we add a
delay in the hypervisor lasting 50 µs to model hardware latency.

We evaluate GV-Tmem using CloudSuite 3.0 [6]. We also designed a
microbenchmark called usemem, which allocates a varying amount of memory,
starting with 128 MB. Every time it allocates memory, it performs a series of
write/read operations while checking the correctness of the values read in the
allocated memory. We execute at most three DomUs simultaneously, and refer
to each set of DomUs as a scenario (or Scn). Table 3 shows the scenarios used.
For Scns. 1 and 3, all nodes have 1 GB of Tmem capacity. For Scn. 2, Node 2
has 1 GB of Tmem, while Nodes 1 and 3 have 384 MB.

This paper uses three memory management policies:

– greedy-local: Default policy used in Tmem with only local memory, which
gives memory away on demand. No maximum values are set to limit the
amount of memory taken by a VM.

– greedy-remote: An extended version of greedy-local using remote memory.
– TTM: A two-tier memory management strategy that allocates memory locally

for each VM (first-tier) depending on the node’s statistics, and issues requests
for remote memory (second-tier) depending on the perceived memory pressure.

Aggregating and Managing Memory Across Computing Nodes 649

Fig. 1. Running time for Scn. 1 in nodes 1 and 3. Time is in seconds (less is better).

Fig. 2. Tmem capacity (nod-tmem) obtained by every VM in node 3 for Scn. 1. The
label target-VM3 refers to the target allocation of VM3.

The pages allocated and deallocated to a VM are increased by a percentage
%P of the pages owned by the node (local or remote).

5 Results

Results for Scenario 1. Figure 1 shows the average running times of each
VM for Scn. 1. The running time improves by an average of 19.4% and 23.5%
in nodes 1 and 3, respectively, when going from greedy-local to greedy-remote.
When implementing TTM with P = 2.0%, there is further improvement of 6.0%
and 4.0% over greedy-remote, demonstrating the need to implement memory
management policies when there is significant memory pressure.

Figure 2 shows the amount of Tmem capacity that each VM is able to use
for the three policies mentioned in node 3. With greedy-local (Fig. 2(a)), VM3
in both iterations cannot obtain a fair share of the available Tmem capacity.
With greedy-remote (Fig. 2(b)), the VMs are able to get more total Tmem, but
because of the lack of memory management policies, some VMs are unable to
obtain a fair share of Tmem. With TTM (Fig. 2(c)), every VM is ensured a
fair amount of the available Tmem, demonstrating that TTM is able to ensure
fairness regarding the VMs’ allocation of Tmem, improving the running times.
Results for Scenario 2: the Usemem Scenario. The average running times
for Scn. 2 are shown in Fig. 3. When enabling greedy-remote, VM3, VM2 and
VM1 reach an average performance improvement of 63%, 20% and 13% respec-

650 L.A. Garrido and P. Carpenter

Fig. 3. Running time for Scn. 2 for nodes 1 and 3.

Fig. 4. Tmem capacity (nod-tmem) obtained by every VM in node 3 for Scn. 2.

Fig. 5. Running time for Scn. 3 for nodes 1 and 3.

tively. When TTM is enabled, VM3 shows a maximum and minimum improve-
ment of 27% and 5.5% in node 1, respectively, and a maximum and minimum
improvement of 51% and 9.3%, respectively, in node 3. However, VM1 and VM2
both experience a performance reduction.

Figure 4 shows the remote memory capacity that each VM is using for the
three policies. Figure 4(a) shows that VM3 struggles to obtain memory pages
using greedy-remote. This is similar to the case in Fig. 2(a), in which the VM3
was unable to reach its fair share of Tmem. With TTM, VM3 obtains a larger
amount of Tmem, improving its performace. Here, VM3’s improvement comes at
the expense of VM1 and VM2, balancing the Tmem pages every VM can have.
Results for Scenario 3. The average running times for Scn. 3 are shown in
Fig. 5. In this case, node 1 improves by a maximum and a minimum of 92.3%

Aggregating and Managing Memory Across Computing Nodes 651

and 92.1%, respectively, when comparing greedy-local to greedy-remote. When
enabling TTM, it improves by a maximum and a minimum of 6.0% and 0.9%.

In node 3, there’s a maximum and mininum improvement of 84.4% and 83.1%
when comparing greedy-local to greedy-remote. However, performance degrades
by 10% with TTM compared to greedy-remote. When enabling TTM, the VMs
require more memory but TTM enforces limits, although flexible, on the memory
they can take, similar to what occurs in Scn. 2 for VM1 and VM2. When disabling
TTM, the VMs take memory unrestrained thus performing slightly better than
TTM. This highlights the need for more adaptive memory management policies.

6 Related Work

Zcache [11] is a backend that provides a compressed cache for swap and clean
filesystem pages. RAMster [11] is an extension of zcache that uses kernel sockets
to store pages in the RAM of remote nodes. In contrast, our approach grants and
releases blocks of pages at greater granularity, reducing the amount of software
communication between nodes, since we exploit the shared global address space.
RAMster is implemented in the kernel whereas our approach uses a user-space
process in a privileged VM, providing greater flexibility for memory manage-
ment. RAMCloud [12] is a POSIX-like filesystem in which all data is stored in
DRAM across nodes, placing the data in one or more nodes, introducing issues
of global coherency and exclusivity of access. Our solution aggregates mem-
ory exploiting a global shared address space, without requirements for global
coherency. Hecatonchire [13] achieves resource aggregation by decoupling vir-
tual resource management from physical resources. It uses a mediation layer
that arbitrates how applications access resources. We differ from [13] by making
memory available to the hypervisor through a user-space process.

7 Conclusions and Future Work

This paper introduces GV-Tmem, a method that exploits Tmem to share mem-
ory capacity across multiple nodes. We evaluated GV-Tmem using CloudSuite,
obtaining up to 51% performance improvement using simple memory manage-
ment policies. The results demonstrate the effectiveness of GV-Tmem, and the
need for two-tier memory management strategies within and across nodes.

Future work will investigate how to integrate GV-Tmem with other resource
management mechanisms of other cloud software. It is also necessary to develop
more sophisticated two-tier global memory management policies, in order to
improve adaptivity and responsiveness to changes in memory demand. Aspects
of resiliency fault tolerance also need to be addressed, as well as scalable non-
centralized memory aggregation approaches that do not require a MM–M.

Acknowledgements. This research has received funding from the European Union’s
7th Framework Programme (FP7/2007-2013) under grant agreement number 610456

652 L.A. Garrido and P. Carpenter

(Euroserver). The research was also supported by the Ministry of Economy and Com-
petitiveness of Spain under the contract TIN2012-34557, HiPEAC-3 Network of Excel-
lence (ICT- 287759), and the FI-DGR Grant Program (file number 2016FI B 00947)
of the Government of Catalonia.

References

1. Magenheimer, D., Mason, C., McCracken, D., Hackel, K.: Transcendent memory
and Linux. In: Proceedings of the Linux Symposium, pp. 191–200. Citeseer (2009)

2. Dong, J., Hou, R., Huang, M., Jiang, T., Zhao, B., Mckee, S., Wang, H., Cui,
X., Zhang, L.: Venice: exploring server architectures for effective resource sharing.
In: IEEE International Symposium on High-Performance Computer Architecture
(HPCA) (2016)

3. Durand, Y., Carpenter, P., Adami, S., Bilas, A., Dutoit, D., Farcy, A., Gaydadjiev,
G., Goodacre, J., Katevenis, M., Marazakis, M., Matus, E., Mavroidis, I., Thomson,
J.: Euroserver: energy efficient node for european micro-servers. In: 17th Euromicro
Conference on Digital System Design (DSD), pp. 206–2013. IEEE (2014)

4. Katrinis, K., Syrivelis, D., Pnevmatikatos, D., Zervas, G., Theodoropoulos, D.,
Koutsopoulos, I., Hasharoni, K., Raho, D., Pinto, C., Espina, F., Lopez-Buedo, S.,
Chen, Q., Nemirovsky, M., Roca, D., Klosx, H., Berends, T.: Rack-scale disaggre-
gated cloud data centers: the dReDBox project vision. In: Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE (2016)

5. Thacker, C.: Beehive: a many-core computer for FPGAs. In: MSR, Silicon Valley
(2010)

6. Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D.,
Kaynak, C., Popescu, A.D., Ailamaki, A., Falsafi, B.: Clearing the clouds: a study
of emerging scale-out workloads on modern hardware. In: Proceedings of the 17th
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 37–48. ACM (2012)

7. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. In:
ACM Transactions on Interactive Intelligent Systems, pp. 19:1–19:19. ACM (2015)

8. Rossi, R.A., Ahmed, N.K.: SOC-twitter-follows - Social Networks. http://
networkrepository.com/soc-twitter-follows.php

9. Ross, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: Proceedings of the 29th AAAI Conference on AI
(2015)

10. Ross, R.A., Ahmed, N.K.: An interactive data repository with visual analytics.
SIGKDD Explor. 17(2), 37–41 (2016)

11. Magenheimer, D.: Zcache and RAMster (oh, and frontswap too) overview
and some benchmarking (2012). https://oss.oracle.com/projects/tmem/dist/
documentation/presentations/LSFMM12-zcache-final.pdf

12. Ousterhout, J., Agrawal, P., Erickson, D., Kozyrakis, C., Leverich, K., Mazières, D.,
Mitra, S., Narayanan, A., Parulkar, G., Rosenblum, M., Rumble, S., Stratmann,
E., Stutsman, R.: The case for RAMClouds: scalable high-performance storage
entirely in DRAM. In: SIGOPS Operating Systems Review, vol. 43, pp. 92–105.
ACM (2010)

13. Svärd, P., Hudzia, B., Tordsson, J., Elmroth, E.: Hecatonchire: towards multi-
host virtual machines by server disaggregation. In: Lopes, L., et al. (eds.)
Euro-Par 2014. LNCS, vol. 8806, pp. 519–529. Springer, Cham (2014). doi:10.
1007/978-3-319-14313-2 44

http://networkrepository.com/soc-twitter-follows.php
http://networkrepository.com/soc-twitter-follows.php
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/LSFMM12-zcache-final.pdf
https://oss.oracle.com/projects/tmem/dist/documentation/presentations/LSFMM12-zcache-final.pdf
http://dx.doi.org/10.1007/978-3-319-14313-2_44
http://dx.doi.org/10.1007/978-3-319-14313-2_44

Visualization at Scale: Deployment Case
Studies and Experience Reports

In-situ Visualization for Computation
Workflows

Alejandro Ribes1(&), Ovidiu Mircescu1, Anthony Geay1,
and Yvan Fournier2

1 EDF Lab Paris-Saclay, 91120 Palaiseau, France
alejandro.ribes@edf.fr

2 EDF Lab Chatou, 78400 Chatou, France

Abstract. The open-source numerical simulation platform SALOME provides
a set of services to create simulation workflows that connect different compu-
tation units. These computation units can be different solvers that communicate
to create a complex multi-physics simulation. The SALOME platform can
execute such a workflow on a distributed network of computers or on a
supercomputer. This article presents the integration of in-situ visualization using
Catalyst into the computation workflows module of the SALOME platform.
This integration allows complex simulations to easily use in-situ visualization
and requires no development efforts.

Keywords: In-situ visualization � Large numerical simulations � Computation
workflows

1 Introduction

1.1 An Industrial Context

In the past, studies and improvements in scientific simulation have been mainly focused
on the solver, due to being the most cycle-consuming part in the simulation process.
Thus, visualization has been traditionally run sequentially on a smaller computer and at
the very end of the solver computation. At the time, this was easily explained by the
small need for both memory and computation resources in most of the visualization
cases. Nevertheless, with the increase of our computational capabilities, we tend to use
and generate much more data than what we were used to. Thus, as the scale of
industrial simulation problems is getting larger, specific issues are emerging related to
input/output efficiency. In particular, data generated during the solver computation and
used for the visualization are the source of a worrisome overhead. Even worse, some
researchers are starting to spend more time for writing and reading data than for
running solvers and visualizations (Ross et al. 2008). Storage volume, even short-lived,
can also be an issue. This trend is pushing us to design new I/O strategies and consider
visualization as a part of our high-performance simulation systems.

Electricité de France (EDF), being one of the biggest electricity producer in Europe,
extensively uses numerical simulation and has developed, for the past 25 years, several
solvers. Examples of these solvers are: code_aster (solid mechanics finite elements

© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 655–661, 2017.
https://doi.org/10.1007/978-3-319-67630-2_46

solver [http://code-aster.org/]), Telemac-2D (Hervouet 2000) (shallow water equations
solver [http://opentelemac.org/]), Code_Saturne (navier-stokes solver [http://code-
saturne.org]), SYRTHES (thermodynamics solver) or Code_Carmel (electromagnetic
solver [http://code-carmel.univ-lille1.fr/]). EDF has several supercomputers that regu-
larly run these code in order to perform analysis involving large amounts of data. In this
context, the post-processing and visualization of data becomes a critical step.

EDF also develops (in collaboration with OpenCascade and the French Center of
Atomic Research, CEA) an open-source numerical simulation platform called SAL-
OME, [http://www.salome-platform.org/]. This platform provides generic methods for
Pre- and Post-Processing of numerical simulations. It is based on an architecture made
of reusable components. Among others, these components deal with: computer aided
design, meshing, HPC execution management, multi-physics coupling, data
post-processing and visualization. ParaView is currently integrated in this platform as a
visualization module.

1.2 A Catalyst Adaptor for Code_Saturne

In 2012 (five years before writing the current article), we successfully integrated
Catalyst into Code_Saturne:

• Catalyst is an in-situ visualization library developed by Kitware to help reduce the
data post-treatment overhead.

• Code_Saturne is a computational fluid dynamics software designed to solve the
Navier-Stokes equations in the cases of 2D, 2D axisymmetric or 3D flows.

Both Catalyst (Fabian et al. 2011) and Code_Saturne (Archambeau et al. 2004) are
Open Source software and can be download, used or tested freely. At the time the
implementation was performed and after testing the prototype in our former corporate
supercomputer Ivanoe, we found Catalyst to be a relevant solution to provide in-situ
visualization. Catalyst proved to allow a simple and fast implementation of an adaptor;
51 M and a 204 M elements mesh where tested, which was above the average size case
used by EDF engineers in our industrial environment at that time. A detailed report of
this work can be found in (Ribés et al. 2015).

1.3 In-situ Visualization for Computation Workflows

Nowadays, several solvers of the SALOME eco-system at EDF are implementing
in-situ services. This is a consequence of the positive experience using Catalyst on
Code_Saturne. In this context, the choice of Catalyst is not questioned but we worry
about the generalization of this approach. Indeed, EDF has designed numerous (at least
20) solvers during the last 25 years and in-situ services are in increasing demand from
the physicists and engineers. Thus, are we going to build a Catalyst adapter in every
single solver? If this is the case, can we ease this integration? Or maybe there exists a
more general solution to this problem?

In this article, we present an ongoing effort to generalize the use of in-situ visu-
alization in the SALOME platform. This is performed by using the computation

656 A. Ribes et al.

http://code-aster.org/
http://opentelemac.org/
http://code-saturne.org
http://code-saturne.org
http://code-carmel.univ-lille1.fr/
http://www.salome-platform.org/

workflows of this platform. The idea is to integrate Catalyst in a node of a workflow
which will allow a twofold positive effect:

1. Solvers already implementing SALOME interfaces for using computation work-
flows can perform in-situ or in-transit visualization without any development effort.

2. Existing or future workflows, for instance multi-physics simulations, can be enri-
ched with several in-situ or in-transit visualization outputs.

2 Computation Workflows in SALOME

2.1 SALOME

The SALOME platform is an open source software framework for the integration of
numerical solvers in various scientific domains. CEA (French Center of Atomic
Research) and EDF (Electricité de France) are using SALOME to perform a wide
range of simulations, which are typically related to industrial equipment in power
plants (nuclear power plants, wind turbines, dams…). Among primary concerns are the
design of new-generation reactor types, nuclear fuel management and transport,
material ageing for the life-cycle management of equipment, and the reliability and
safety of the nuclear facilities.

In order to accurately simulate complex industrial systems, scientists and engineers
need to integrate most fields of physics such as material science, solid mechanics,
structural dynamics, fluid physics, thermo-hydraulics, nuclear physics, radiations or
electromagnetism. The SALOME platform gathers all these fields in one single sim-
ulation environment.

The main features of the SALOME are:

• Design of the geometric representation for physical systems (CAD modelling) and
its associated discretized model (meshing functions for finite elements or finite
volumes solvers).

• Ability to integrate domain specific solvers into normalized software components
with standard interface to facilitate the coupling of different physical domains.

• Supervision of computation workflows defined as graphs of distributed software
components, including CAD modelling, domain specific solvers and data pro-
cessing components.

• Analysis of simulation output, in particular using visualizations of physical fields
resulting from computation workflows in 3D views using ParaView.

In this context, one of the key points of the platform is the usage of standardized
data models to describe physical concepts for numerical analysis, and to ensure
interoperability between software components. For instance, the MED data model is
used for meshes and fields descriptions. Figure 1 depicts the main parts of the SAL-
OME platform.

The SALOME platform is available under LGPL license and can be downloaded
from its web site [http://www.salome-platform.org/] for several Linux distributions and

In-situ Visualization for Computation Workflows 657

http://www.salome-platform.org/

for Windows. The site provides tutorials, a forum section and gives access to the user
documentation and the source code.

2.2 Supervision of Computation Workflows

There is an increasing need for multidisciplinary simulations in various research and
engineering domains. Fluid-structure interaction and thermal coupling are two exam-
ples. The software strategy in many contexts of simulation (at least at EDF) is to
develop numerical solvers dedicated to their own domain, and then to execute
multi-domains simulation by coupling these specific solvers.

SALOME provides a set of services to create a simulation workflow that connects
different computation units. Then it executes this workflow on a distributed network of
computers or HPC resources. The main features are:

The possibility to integrate domain specific solvers as normalized components
with standard interfaces to ease the coupling of different physical domains.
These SALOME components can be used as the computational units of a simulation
process. Some tools are provided to automatize this integration for standard configu-
rations (integration of executable programs, functions of a library or python scripts).

The supervision of a computation workflow defined as a graph of connected
SALOME components, including CAD modelling, meshing, domain specific solvers
and data processing components. The graph can be edited using a graphical user
interface (GUI) or the Python Text User Interface (TUI). A GUI snapshot of a
multi-physics simulation for a nuclear safety study is shown in Fig. 2.

The distribution on HPC resources. SALOME contains a job manager that can be
used to define a computation job (including either a simple SALOME component or a
complete workflow) and to drive the submission of the job to a distributed set of
computers or HPC resources. The job manager can handle many batch systems like
PBS, LSF, SGE, LOADLEVELER or SLURM through a normalized generic interface.
A GUI, a C++ interface or a Python interface can be used (or combined) to create
simple scripts or domain specific tools.

Fig. 1. Depiction of the three main steps when performing a simulation on the SALOME
platform.

658 A. Ribes et al.

3 Inserting Visualization in Computation Workflows

3.1 Visualization as a Graph Node

The main idea we have implemented is dealing with visualization as another node in
the graph representing a computation workflow. This is illustrated in Fig. 3 where we
can see a simple graph representing a simulations: the node of the left side encapsulates
a solver while the node on the right side encapsulates the visualization. Thus, by
inserting a “visualization node” in a graph like the one shown in Fig. 2 a user can run a
multi-physics simulation with in-situ or in-transit visualization services. This involves
no programming efforts.

3.2 Some Implementation Details

The aim of the work described in this document is to propose, in the SALOME
workflows, an “in-situ” visualization service usable by various solvers. A first con-
straint that emerges from this objective is to use a standard data format for the rep-
resentation of the data to be visualized. The standard format that SALOME uses for
exchange in its computation workflows is MED. Indeed, MED serves mainly for the
representation of meshes and fields and this format is implemented in the MEDCou-
pling library. As part of the integration into SALOME, the visualization services must
accept data in the MED format, however Catalyst only deals with VTK. An adaptor
was then implemented, inside the visualization service, in order to perform this con-
version. Figure 4 schematically represents this process.

Fig. 2. Example of a multi-physics simulation involving the coupling of a neutronics model
with a thermal-hydraulics model for a nuclear safety study (study performed at the CEA/DEN).

In-situ Visualization for Computation Workflows 659

A new workflow component
From the point of view of SALOME, a component is a distributed object (CORBA)

which has an internal state and can provide services. Thus, our new visualization
service is a component. A distributed object is an object that can be called remotely
from a, for example, the CORBA communication bus. The object is instantiated in a
process (“container” in SALOME terminology) and behaves like a server.

By making its services available to other components, these services behave like
black boxes that generate output data from input data. The SALOME computation
workflow’ terminology uses the concept of “port” to refer to the input and output data
of a service. On the other hand, services are the processes represented in the nodes of
the computation workflow; the creation of such a computation workflow is to connect
the ports of the different nodes involved in the calculation. In Fig. 3 we can see how
arrows graphically connect the ports of two nodes.

The data exchanges in the computation workflows are done by serialization and
transfer through a CORBA communication bus. This data is transmitted from a
CORBA object to another. The processes described in the calculation nodes are exe-
cuted in “containers”. A container is a process launched by the computation workflow
on a computing resource (a machine that has a version of SALOME installed and
registered in the resource catalog). Each node of the workflow must be associated with
a container, but a container can execute several nodes. If several nodes run in the same
container, it means that they are executed on the same machine and in the same
process.

It is also possible to have MPI containers, which gather processes run by an MPI
session. MPI containers can host MPI components that dispatch components over every
MPI process available. From the workflow point of view simply one node, one com-
ponent and one container are seen. When a service of an MPI component is called, the
request is relayed to the components of every MPI process in order to provide MPI
parallelism. MPI components can deal with distributed data, as input or output, which
are a group of CORBA objects distributed over MPI processes. From this angle,
CORBA objects are just used as a broker choosing the best way to perform the data
transfer; no copy using the CORBA channel is performed.

In conclusion, in the context of in-situ techniques the data exchange is performed
by a memory pointer and no copy is needed. Indeed, the visualization component
automatically detects if the two components (solver and visualization) are in the same

Fig. 3. Using visualization in a simple computation workflow, a solver (left node) is connected
to a visualization service (right node).

660 A. Ribes et al.

container. If this is the case (for instance in the same node of a supercomputer) then the
visualization service just reads a memory pointer and an in-situ execution is performed.
In the other case, a copy is made and send over the network to the visualization service
thus implementing an in-transit visualization system.

4 Conclusion

We have presented our ongoing effort to generalize the use of in-situ visualization in
the SALOME platform. This is performed by using the computation workflows of this
platform. We have successfully integrated Catalyst as a node of a workflow which
allows a solvers already implementing SALOME interfaces for using computation
workflows (MED format) to perform in-situ or in-transit visualization without any
development effort. Thus, multi-physics simulations, can be enriched with several
in-situ or in-transit visualization outputs.

We used Code_Saturne and a turbulent fluid dynamics numerical simulation to
validate our visualization services in the SALOME workflows. Our preliminary tests
are satisfactory but large scale HPC testing is still required before using this new
component into industrial multi-physics simulations.

References

Archambeau, F., Mechitoua, N., Sakiz, M.: Code_Saturne: a finite volume code for the
computation of turbulent incompressible flows. Industrial applications. Int. J. Finite 1, 1–62
(2004)

Fabian, N., Moreland, K., Thompson, D., Bauer, A.C., Marion, P., Geveci, B., Rasquin, M.,
Jansen, K.E.: The paraview coprocessing library: a scalable, general purpose in situ
visualization library. In: IEEE Symposium on Large Data Analysis and Visualization
(LDAV), pp. 89–96 (2011)

Ribés, A., Lorendeau, B., Jomier, J., Fournier, Y.: In-situ visualization in computational fluid
dynamics using open-source tools: integration of catalyst into Code_Saturne. In: Bennett, J.,
Vivodtzev, F., Pascucci, V. (eds.) Topological and Statistical Methods for Complex Data.
MV, pp. 21–37. Springer, Heidelberg (2015). doi:10.1007/978-3-662-44900-4_2

Ross, R.B., Peterka, T., Shen, H.-W., Hong, Y., Ma, K.-L., Yu, H., Moreland, K.: Visualization
and parallel i/o at extreme scale. J. Phys: Conf. Ser. 125(1), 012099 (2008)

Hervouet, J.-M.: TELEMAC modelling system: an overview. Hydrol. Process. 14(13), 2209–
2210 (2000)

Fig. 4. Using visualization in a simple computation workflow, a solver (left node) is connected
to a visualization service (right node).

In-situ Visualization for Computation Workflows 661

http://dx.doi.org/10.1007/978-3-662-44900-4_2

From Big Data to Big Displays
High-Performance Visualization at Blue Brain

Stefan Eilemann(B), Marwan Abdellah, Nicolas Antille, Ahmet Bilgili,
Grigory Chevtchenko, Raphael Dumusc, Cyrille Favreau, Juan Hernando,

Daniel Nachbaur, Pawel Podhajski, Jafet Villafranca, and Felix Schürmann

Blue Brain Project, Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland

{stefan.eilemann,marwan.abdellah,nicolas.antille,ahmet.bilgili,
grigory.chevtchenko,raphael.dumusc,cyrille.favreau,juan.hernando,

daniel.nachbaur,pawel.podhajski,jafet.villafranca,

felix.schurmann}@epfl.ch

Abstract. Blue Brain has pushed high-performance visualization
(HPV) to complement its HPC strategy since its inception in 2007. In
2011, this strategy has been accelerated to develop innovative visualiza-
tion solutions through increased funding and strategic partnerships with
other research institutions.

We present the key elements of this HPV ecosystem, which integrates
C++ visualization applications with novel collaborative display systems.
We motivate how our strategy of transforming visualization engines into
services enables a variety of use cases, not only for the integration with
high-fidelity displays, but also to build service oriented architectures,
to link into web applications and to provide remote services to Python
applications.

1 Motivation

The Blue Brain Project (BBP) uses simulation-based research to analyze and
reverse engineer cortical neuron circuits. The simulated models go beyond using
detailed models of individual neurons or large-scale network models of simplified
neurons, they model in the order of hundreds of thousands of detailed neurons
in a fully connected circuit. The project generates a multitude of data for the
model building and during the simulation of these models. This data ranges
from terabyte-sized image stacks for data extraction to detailed in-silico circuit
models of large geometric complexity and terabyte-size simulation reports.

Visualization supports the BBP along all parts of the project to understand
and debug model data, building and simulation algorithms as well as validat-
ing and discovering new insight from the in-silico experiments. Our strategy to
support this mission is based on components linked through network protocols:
High-fidelity display systems to see more detail in complex data, a set of stan-
dard rendering engines (rasterization, out-of-core volume rendering, interactive

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 662–675, 2017.
https://doi.org/10.1007/978-3-319-67630-2_47

From Big Data to Big Displays High-Performance Visualization 663

raytracing), and decoupled, light-weight applications using these components
remotely. In the following we will present these components along with a few use
cases.

2 High-Fidelity Displays

High-fidelity display systems are the integration point of the Blue Brain visu-
alization capabilities. They are the evolution of existing visualization systems,
enabling high resolution, immersion and team collaboration. Compared to cur-
rent single-user or single-presenter systems, collaborative display systems allow
real team work through a combination of size, resolution and user friendly imple-
mentation. Compared to immersive visualization systems like the CAVE, they
provide a more approachable environment for high-fidelity visualization. For all
use cases, the increased display size and resolution allows better data exploration
for 2D and 3D content, facilitating large data exploration.

2.1 Tiled Multitouch Display Walls

The core of the Blue Brain visualization infrastructure are multiple high-
resolution tiled display walls driven by our Tide software [1]. All walls are
equipped with a multitouch user interface and can be remote controlled from
any web browser. The walls are built using thin-bezel, 55 inch, Full HD LCD
panels with a hardened glass sheet. We use 4 × 3 and 3 × 3 configurations for a
total of 24 and 18 Megapixel resolution, respectively. The display size of over five
meter diagonally (four meter for 3×3) allows team-size collaboration (up to ten
people) or project-wide presentations (up to a hundred people). Figure 1 shows
one wall during a project-wide presentation with multiple interactive applica-
tions running remotely on the wall.

2.2 Tide

Tide (Tiled Interactive Display Environment) is the software driving the Blue
Brain tiled display walls. It provides multi-window, multi-user touch interaction
on large surfaces — think of a giant collaborative wall-mounted tablet. Tide is
a distributed application that can run on multiple machines to power display
walls or projection systems of any size. Its user interface is designed to offer an
intuitive experience on touch walls. It works just as well on non touch-capable
installations by using its web interface from any web browser. Figure 1 shows
Tide on a 4×3 display wall and Fig. 2 shows the Tide web interface in a browser.

While there is substantial research on tiled display wall software [3,4,6,11,
12,14], we found that most solutions were not ready for production use in a
24×7 unattended environment. For this reason, we started with the TACC Dis-
playCluster open source software [12], which we incrementally refactored and
improved to the current TIDE implementation. On the other hand, the hard-
ware has been commoditized to make these type of installations affordable to

664 S. Eilemann et al.

Fig. 1. Blue Brain 4 × 3 tiled display wall

Fig. 2. Tide web interface

medium-sized institutions which allowed us to build the software integration for
a reasonable startup cost. We have focused on the multitouch user interface,
which implements a low entry barrier for new users, a unique capability of our
solution.

Tide supports three types of content: files (high-resolution images, movies,
pdfs), built-in applications (web browser, whiteboard) and remote applica-
tions using the Deflect library (DesktopStreamer, Equalizer-based applications,
Brayns). The multitouch user interface can handle multiple users manipulating
different windows and their content simultaneously.

From Big Data to Big Displays High-Performance Visualization 665

2.3 Deflect

Deflect is the client library for Tide. It provides an API for pixel streaming to
Tide and for receiving events from Tide. The pixel streaming allows synchronized
parallel streaming from parallel rendering application as well as monoscopic and
stereoscopic streams. Various events allow the application to react to multi-touch
input from the wall.

Deflect is integrated into the Equalizer parallel rendering framework [5],
enabling transparent usage of Equalizer applications on Tide walls. Further-
more, the DesktopStreamer application mirrors the desktop of other machines
onto a wall window and allows interaction with the remote desktop. Other ren-
dering applications, such as our interactive raytracing engine Brayns [2] are easily
integrated with Deflect and Tide.

2.4 OpenDeck

OpenDeck is our next-generation visualization system, aiming to integrate the
success of tiled display walls with a seamless transition to fully immersive envi-
ronments. We are currently in the process of installing a system which consists
of a semi-cylindrical back-projection screen with 41 Megapixel usable resolution
on a 36 m2 surface (Fig. 3). Like the display walls, it is equipped with multitouch
capabilities which makes it usable as a monoscopic collaboration system from
the first day of installation. Unlike tiled display walls, it is active stereo capable
and equipped with a 3D tracking system for immersive rendering. For increased
immersion, a lower resolution front projection system fills in the floor area. Open-
Deck will run TIDE and our immersive applications based on Equalizer [5] once
the system is installed.

OpenDeck will provide a unique environment for the research and devel-
opment of new visualization techniques. It will open a set of questions along

Fig. 3. OpenDeck concept rendering

666 S. Eilemann et al.

immersive touch user interfaces, transitions and mixing of monoscopic to immer-
sive usage, the combination of tracked and touch devices, multi-user immersion,
latency reduction for remote immersive rendering as well as multi-site collabo-
ration.

3 Rendering Applications

The rendering applications form the backbone of our ecosystem. They cover a
wide range of established rendering algorithms to serve a broad set of use cases
for visual debugging, scientific illustrations and communication.

3.1 Brayns: Interactive Raytracing

Advances in computer hardware and software have brought raytracing to the
point where it replaces classical rasterization for virtually all use cases in scien-
tific visualization. On one hand, OpenGL-like local illumination for typical data
sets used with rasterization (up to hundred million triangles) can be done at
similar framerates to OpenGL [16]. For small datasets, OpenGL performs bet-
ter, but for larger data sets raytracing outperforms OpenGL. This is due to a
better scalability with respect to the data set size (O(logN) vs O(n)). Further-
more, CPU-based raytracing allows the rendering of larger data sets without
any level-of-detail algorithms due to the larger memory size. Last, but not least,
advanced rendering algorithms such as shadowing, reflections and global illumi-
nation (Fig. 4, left) are significantly easier to implement in a raytracer. The only
area where rasterization provides a benefit is for rendering at very high frame
rates, needed for example for immersive visualization, or very high resolutions.

It is for these reasons that interactive raytracing is the future technology
for interactive and offline rendering at Blue Brain. We have developed a first
open source implementation of a visualization engine with different backends:

Fig. 4. Interactive raytracing for neuroscience

From Big Data to Big Displays High-Performance Visualization 667

OSPRay [16] for CPU-based raytracing and OptiX [15] for GPU-based raytrac-
ing. This application called Brayns can load and visualize our data sets in a
variety of modes and integrates with our messaging solution to be accessible
from Python. We are currently integrating the key algorithms from Livre for
out-of-core volume rendering in Brayns, which will also facilitate mixing polyg-
onal with large volumetric data in a single scene (Fig. 4, right).

3.2 RTNeuron: OpenGL Parallel Rendering

RTNeuron [10] is the oldest of our interactive visualization tools. Originally
conceived as a standalone application for visualizing simulation results, it has
evolved into a rasterization-based rendering engine library implemented in C++
with a Python wrapping. The power of RTNeuron lies in a domain specific
API designed for the visualization of detailed neuronal circuit models, this API
allows for building custom applications tailored for specific use cases. It pro-
vides features to visualize static circuit data and some simulation results. Static
data visualization includes different visual representations for neurons, synapses,
selective pruning of neuronal trees, clipping planes and others. The simulation
results that can be displayed are the spiking activity of the neurons and scalar
variables from the cable models mapped to the neuron surface. The color maps
for displaying these data are highly configurable, allowing to apply different color
maps to different cell subsets.

Neurons can be displayed with different levels of detail ranging from simple
spheres, cylinder-like geometric models and detailed polygonal meshes. Advanced
rendering techniques included are several types of parallel rendering algorithms
(such as sort-first and sort-last) and several algorithms for transparency render-
ing that enable efficient and correct rendering of scenes with great geometrical
complexity and high depth complexity. Transparency is particularly suitable for
masking and highlighting features of interest on the circuit. Ongoing work is
a more scalable parallel rendering algorithm specially suited for transparency.
Tiled rendering is also possible, which allows very high resolution renderings
suitable for printing at sizes larger than A0 (the original of Fig. 5 left is a 36640
× 26000 pixel image).

The core engine is implemented in C++ using Equalizer and OpenScene-
Graph and leverages part of our messaging framework to allow coupling with
other applications. The 3D view can be embedded inside Qt applications (Fig. 5,
right), in particular in Python with PyQt and QML for overlaying GUI elements.
Several use case specific applications have been built this way.

3.3 Livre: Out-of-Core Volume Rendering

Livre is an interactive volume rendering engine available under a permissive
open source license. Our main contributions are: a state-of-the-art implementa-
tion of an octree-based level-of-detail (LOD) selection, a task parallel rendering

668 S. Eilemann et al.

Fig. 5. RTNeuron rendering the simulated membrane potential of a fraction of the
simulation (left) and a circuit visualization application for hippocampus model valida-
tion (right)

pipeline, a multi-GPU parallel rendering engine, and an easily extensible ren-
derer through the use of plugin data sources. Our system brings together state-
of-the art algorithms to create a volume rendering engine capable of handling
extremely high-resolution volumes using a high degree of parallelism, both on a
single system and in a distributed cluster. We employ a GPU-based ray casting
algorithm to compute the radiance absorption of the given volumetric data. The
computation is executed per pixel on the pixel shader hardware of the GPU.

In our out-of-core data access layer, multi-resolution data is represented as an
octree data structure. This representation accelerates the selection of the proper
level-of-detail and to track the status of the LODs (in CPU memory, in GPU
memory, not loaded). While rendering, view-based LOD selection is performed
using the screen-space-error (SSE) [9] technique. Figure 6 shows the rendering
of a MicroCT dataset with an illustration of the selected LOD levels.

The creation of volume bricks, their upload to the GPU and the rendering are
executed in separate tasks. These tasks run asynchronously, that is, rendering
is decoupled from data loading. Livre uses a plugin mechanism to access the
volume data, where data sources are implemented as shared libraries and are

Fig. 6. Livre rendering a MicroCT dataset (left) and the selected LODs (right)

From Big Data to Big Displays High-Performance Visualization 669

loaded on application startup based on the URI of the input data. Data sources
only have to provide the requested volume bricks, that is, there is no defined
file format or even requirement to read the input data from a file system. This
flexibility of the plugin approach lead to novel volume rendering use cases, where
volume representations are created on the fly from different input data sets, for
example from simulation data.

4 Messaging and Service Architecture

All Blue Brain applications integrate messaging libraries which allow them to
be used as services in a variety of use cases. For example, the Tide web server
providing the user interface shown in Fig. 2, is based on this messaging solution.
Other use cases are remote python APIs, JavaScript user interfaces and service
architectures combining multiple visualization applications with data providers
such as HPC simulations (Fig. 7).

Fig. 7. Messaging-enabled use
cases

The base communication layer ZeroEQ uti-
lizes ZeroMQ as the transport layer, the Zero-
Conf protocol for discovery, and our novel Zer-
oBuf serialization library for high-performance
messaging. A fully integrated HTTP server
provides a bridge to JavaScript, Python and
similar environments by implementing REST
APIs with JSON payload. Figure 8 shows a
class diagram of our messaging solution.

4.1 ZeroEQ

ZeroEQ is our C++ messaging library, wrapping up existing technologies into
an API which is convenient to use and easy to integrate into C++ code. It

Fig. 8. UML Diagram of the main messaging classes

670 S. Eilemann et al.

zerobuf : : render : : Camera camera ;
zeroeq : : Pub l i sher pub l i sh e r ;
zeroeq : : Subsc r ibe r sub s c r i b e r ;

s ub s c r i b e r . sub s c r i b e (camera) ;

while (r ender ing)
{

i f (updateCamera (camera)) // had user event
pub l i sh e r . pub l i sh (camera) ;

else // p o l l subscr ip t i on
s ub s c r i b e r . r e c e i v e (0 /∗ms∗/) ;

renderFrame (camera) ;
}

Listing 1.1. Publish-Subscribe Example

zeroeq : : URI u r i (” tcp :// l o c a l h o s t ”) ;
zeroeq : : Pub l i sher pub l i sh e r (ur i , zeroeq : : NULL SESSION) ;

// deac t i va t e zeroconf
zeroeq : : Subsc r ibe r sub s c r i b e r (pub l i sh e r . getURI ()) ;

// use concrete port

Listing 1.2. Explicit Addressing

provides two messaging services: publish-subscribe and HTTP. For binary and
JSON encodings it relies on a simple Serializable interface, for which ZeroBuf
provides a sample implementation. To facilitate the simple use case of linking
a few applications, ZeroEQ uses the zeroconf protocol to discover and connect
to related applications. For more complex scenarios, explicit connections are
supported.

Publish-Subscribe. The publish-subscribe service is implemented in a Pub-
lisher and Subscriber class. It provides event-based messaging, based on a 128-bit
message type with arbitrary payload. The message type is used for message sub-
scription, filtering and routing. The payload is expected to be uniquely identified
by the message type, that is, all applications agree for the decoding and seman-
tics of any given message type. ZeroBuf provides a sample implementation for
this. The underlying transport uses ZeroMQ pub-sub sockets.

The pub-sub service is stateless, that is, applications have no expectation of
when messages are received or who receives published messages. This commu-
nication pattern naturally leads to robust services, since there is no possibility
for deadlocks or undefined behaviour. The pub-sub API is provided in two fla-
vors: a simple pointer & size memory buffer, and a higher level object-based
abstraction. The object-based API is syntactic sugar for the low-level API, and
allows automatic publish and update of objects with a few lines of code. It uses
the toBinary() and fromBinary() methods of the Serializable interface to call the
low-level API.

The example in Listing 1.1 shows the integration of camera synchronization
in a visualization application. This example relies on the built in zeroconf proto-

From Big Data to Big Displays High-Performance Visualization 671

zeroeq : : Subsc r ibe r l o c a l (zeroeq : : URI(” l o c a l h o s t :29387 ”)) ;
zeroeq : : Subsc r ibe r g l oba l (l o c a l) ;

l o c a l . sub s c r i b e (colorMap) ;
g l oba l . sub s c r i b e (camera) ;

while (true)
l o c a l . r e c e i v e () ; // updates colorMap and camera

Listing 1.3. Subscriber Sharing

col to connect application instances. Subscribers only subscribe to events from
publishers within the same session. The default session name is the user name,
and can be customized using an environment variable or non-default construc-
tor. Similarly, the subscriber can subscribe by session or address. Listing 1.2
illustrates an explicitly addressed subscription. Notice that the subscriber uses
the publisher URI, which will contain the concrete port chosen for the publisher.

Subscribers are derived from a (Receiver) base class, which is shared with
the http server. All receivers can share their receive() operation at construction
time, that is, the blocking receive operation applies to all receivers in the shared
group. Listing 1.3 shows an example of selectively receiving different updates on
different input sockets.

HTTP Server. The http server is built using cppnetlib [8] for the transport and
http protocol handling. It supports all standard http verbs (GET, POST, PUT,
PATCH, DELETE). It is a zeroeq::Receiver, that is, it can share its receive()
update operation with other subscribers and http servers. Unlike a subscriber,
the http server follows the HTTP request-reply semantics, that is, a request
received by a server has to be followed directly by its reply. To allow asynchro-
nous request processing, the return value from the request handler is a std::future
which is retrieved from an internal thread, thus allowing the application to con-
tinue operations.

The data served by the http server is introspectable, it allows querying
the available endpoints (objects) and the JSON schema [13] for each endpoint.
Listing 1.4 shows an excerpt of the Tide registry, and Listing 1.5 an excerpt of
the schema for one of the exposed objects. This REST API is used by the Tide
web interface from Javascript and to generate remote python APIs.

> GET / r e g i s t r y HTTP/1.0
{
[. . .]

” t i d e /open” : [”PUT”] ,
” t i d e / opt ions ” : [”GET” , ”PUT”] ,
” t i d e / r e s i z e −window” : [”PUT”] ,

[. . .]
}

Listing 1.4. HTTP Server Registry

> GET / t i d e / opt ions /schema HTTP/1.0
{
[. . .]

” p r op e r t i e s ” : {
” alphaBlending ” : {

” type” : ” boolean ”
} ,

[. . .]
}

Listing 1.5. Object JSON Schema

672 S. Eilemann et al.

4.2 ZeroBuf

ZeroBuf is a sample implementation of serialization for ZeroEQ. Based on a
grammar closely related to Flatbuffers schemas [7], it generates C++ classes with
random set/get access. All data is stored internally in one continuous memory
buffer, which can be used for the ZeroEQ binary serialization without any copy.
The conversion to and from a JSON representation involves a copy using a
std::string. ZeroBuf can store:

– (u)int[8,16,32,64,128] t, float, double and string members
– fixed size arrays and dynamic vectors of static-sized elements (intrinsic mem-

bers or composite types)
– static and dynamic sub-classes (composite types of the above)

Figure 9 shows two simple ZeroBuf schemas together with example usage of
the generated code in C++ and their memory layout. The static example shows

Fig. 9. ZeroBuf Examples for static (top) and dynamic (bottom) sized objects

From Big Data to Big Displays High-Performance Visualization 673

nested ZeroBuf classes for the camera used in Listing 1.1, and the dynamic exam-
ple shows how raw data access is used to prepare a JPEG image for publishing.

4.3 Remote Python API

The remote python API provides easy to use access to remote applications using
the http server. It integrates two features: generic code generation for the REST
API exposed by the application, and automatic resource allocation and applica-
tion launch.

The generic code generation is implemented in a pure python module, which
has no dependency to the interfaced C++ application. It queries the http server
and generates a python API for all exposed objects. This API can then be
conveniently used in python to remote control the application.

Access to the application is established either through an explicit connection
of a pre-launched application, or via a resource allocator. The allocator hides the
details of allocating a resource, e.g. using a scheduling system like slurm, launching
and connecting to the launched application from the python programmer.

Fig. 10. Example Jupyter notebook session using Brayns

674 S. Eilemann et al.

Figure 10 shows an example session of using this Python API from a Jupyter
notebook, allocating and launching a Brayns instance, setting relevant rendering
parameters and retrieving an image. Note that the whole notebook runs in a
light-weight VM with no GPU and interacts with a Brayns instance launched
on a bare-metal visualization cluster node.

5 Discussion and Conclusion

We presented a modular visualization architecture for large data visualization
over a wide range of use cases, glued together by a modern and easy to use
messaging infrastructure. This ecosystem allows us to flexibly support novel use
cases, while pushing novel visualization capabilities, providing Blue Brain with
a competitive visualization infrastructure. Messaging and remote APIs not only
surprised us in their versatility and ease of integration with other ecosystems,
but also have a significant potential for future exploration in classical visual-
ization software. Interactive raytracing is the future rendering algorithm for us,
and Brayns is becoming the integration point for our domain-specific visual
applications and algorithms. Tiled display walls are affordable for a large set
of institutions, and coupled with our open source TIDE software create new
ways of truely collaborative work. TIDE, together with cheaper visualization
hardware, will evolve in the future towards a seamless integration of immersive
visualization.

Acknowledgments. This publication was supported by the Blue Brain Project
(BBP), the Swiss National Science Foundation under Grant 200020-129525, the King
Abdullah University of Science and Technology (KAUST) through the KAUST-EPFL
alliance for Neuro-Inspired High Performance Computing, the Spanish Ministry of Sci-
ence and Innovation under grant (TIN2010-21289-C02-01/02), the Cajal Blue Brain
Project, Hasler Stiftung Projekt Nr. 12097, and from the European Unions Horizon
2020 research and innovation programme under grant agreement No 720270 (HBP
SGA1). We would also like to thank the people from GMRV at the Rey Juan Carlos Uni-
versity (URJC) for their collaboration under the Cajal Blue Brain and HBP projects.

References

1. Blue Brain Project. Tide: Tiled Interactive Display Environment (2016). https://
github.com/BlueBrain/Tide

2. Blue Brain Project. Brayns: Interactive raytracing of neuroscience data (2017).
https://github.com/BlueBrain/Brayns

3. DeFanti, T.A., Leigh, J., Renambot, L., Jeong, B., Verlo, A., Long, L., Brown,
M., Sandin, D.J., Vishwanath, V., Liu, Q., Katz, M.J., Papadopoulos, P., Keefe,
J.P., Hidley, G.R., Dawe, G.L., Kaufman, I., Glogowski, B., Doerr, K.-U., Singh,
R., Girado, J., Schulze, J.P., Kuester, F., Smarr, L.: The optiportal, a scalable
visualization, storage, and computing interface device for the optiputer. Future
Gener. Comput. Syst. 25(2), 114–123 (2009)

https://github.com/BlueBrain/Tide
https://github.com/BlueBrain/Tide
https://github.com/BlueBrain/Brayns

From Big Data to Big Displays High-Performance Visualization 675

4. Doerr, K.-U., Kuester, F.: CGLX: a scalable, high-performance visualization frame-
work for networked display environments. IEEE Trans. Vis. Comput. Graph. 17(2),
320–332 (2011)

5. Eilemann, S., Makhinya, M., Pajarola, R.: Equalizer: a scalable parallel rendering
framework. IEEE Trans. Vis. Comput. Graph. 15(3), 436–452 (2009)

6. Febretti, A., Nishimoto, A., Mateevitsi, V., Renambot, L., Johnson, A., Leigh, J.:
Omegalib: a multi-view application framework for hybrid reality display environ-
ments. In: 2014 IEEE Virtual Reality (VR), pp. 9–14, March 2014

7. Google, Inc., Cross Platform Serialization Library (2017). http://google.github.io/
flatbuffers/

8. D.M.B.G.M. Google, Inc., The C++ Network Library Project (2017). http://
cpp-netlib.org/

9. Guthe, S., Strasser, W.: Advanced techniques for high-quality multi-resolution vol-
ume rendering. Comput. Graph. 28(1), 51–58 (2004)

10. Hernando, J.B., Biddiscombe, J., Bohara, B., Eilemann, S., Schürmann, F.: Prac-
tical parallel rendering of detailed neuron simulations. In: Proceedings of the 13th
Eurographics Symposium on Parallel Graphics and Visualization, EGPGV, Aire-
la-Ville, Switzerland, pp. 49–56. Eurographics Association (2013)

11. Johnson, A., Leigh, J., Morin, P., Van Keken, P.: GeoWall: stereoscopic visualiza-
tion for geoscience research and education. IEEE Comput. Graph. Appl. 26(6),
10–14 (2006)

12. Johnson, G.P., Abram, G.D., Westing, B., Navr’til, P., Gaither, K.: DisplayCluster:
an interactive visualization environment for tiled displays. In: 2012 IEEE Interna-
tional Conference on Cluster Computing, pp. 239–247, September 2012

13. JSON Schema. JSON Schema (2017). http://json-schema.org/
14. Marrinan, T., Aurisano, J., Nishimoto, A., Bharadwaj, K., Mateevitsi, V., Renam-

bot, L., Long, L., Johnson, A., Leigh, J.: SAGE2: a new approach for data intensive
collaboration using scalable resolution shared displays. In: Collaborative Comput-
ing: Networking, Applications and Worksharing, pp. 177–186 (2014)

15. Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAl-
lister, D., McGuire, M., Morley, K., Robison, A., Stich, M.: OptiX: a general pur-
pose ray tracing engine. ACM Trans. Graph. 29, 66:1–66:13 (2010)

16. Wald, I., Johnson, G., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Gnther, J.,
Navratil, P.: OSPRay - a CPU ray tracing framework for scientific visualization.
IEEE Trans. Vis. Comput. Graph. 23(1), 931–940 (2017)

http://google.github.io/flatbuffers/
http://google.github.io/flatbuffers/
http://cpp-netlib.org/
http://cpp-netlib.org/
http://json-schema.org/

Workshop on Performance
and Scalability of Storage Systems

(WOPSSS)

Workshop on Performance and Scalability
of Storage Systems

Jean-Thomas Acquaviva1 and Jalil Boukhobza2

1 DDN, Meudon la Forêt 92360, France
jacquaviva@ddn.com

2 UBO, Brest 29200, France

Summary of 2017 Edition

In our pre-Exacale era, profound changes are on-going in storage architectures. New
storage media technologies are revisiting the traditional relation between latency and
bandwidth. Consequently novel designs are blossoming in the community. WOPSSS
intends to be an opportunity for members of the storage community to analyze on these
emerging technologies with a specific focus on performance evaluation.

This year Michele Weilland from EPCC has presented a comprehensive utilization
of these new storage devices in the frame of the NextGenIO European project.
Fol-lowing her keynote, two papers were proposing performance evaluation of new
stor-age systems. George Markomanolis from KAUST presented an in-depth study of
the impact of burst buffers on scientific applications. The second paper from Julian
Kun-kel, DKRZ, has detailed the performance impact of proxy I/O nodes based on
DRAM. The corpus of applications analyzed was centered on MPI. These two research
papers focused on performance analysis are illustrating the general motivation of the
WOPSSS workshop.

The second powerful trend in the redesign on the storage architectures is coming
from disruptive usages, namely the Cloud. In this field the scalability is specifically
challenged. An invited talk of Gabriele Paciucci from INTEL detailed DAOS a new
object storage architecture proposing to bring scalability to new heights. Then Georgios
Bitzes, from CERN, tackled the key bottleneck in file system scalability: the names-
pace. A second paper form CERN, authored by Jakob Blomer, was centered on the
Large Hadrons Collider storage stack.

Michael Kuhn from the University of Hamburg addressed a convergence of these
two trends, novel architectures plus new functionalities requested by users. He
advo-cated for more flexibility in storage stack with the ability to provide plug-in
extension at the opposite of dominant monolith approaches. The last presentation was
from Georgios Koloventzos, BSC, where he proposed to harness the diversity of
possible storage back-end technologies in a unified, yet heterogeneous file system.

The workshop was concluded by a discussion panel about both the results
present-ed and the general scientific orientations in the storage community. Overall,
revisiting the legacy software stack and re-think current architectures is a daunting task
which needs a considerable effort from our community. Such a long and probably
painful journey cannot be envisioned without insights. At it modest scale WOPSSS is
trying to contribute to this effort.

An MPI-IO In-Memory Driver for Non-volatile
Pooled Memory of the Kove XPD

Julian Kunkel(B) and Eugen Betke(B)

German Climate Computing Center (DKRZ), Hamburg, Germany
kunkel@dkrz.de, betke@dkrz.de

Abstract. Many scientific applications are limited by the performance
offered by parallel file systems. SSD based burst buffers provide signif-
icant better performance than HDD backed storage but at the expense
of capacity. Clearly, achieving wire-speed of the interconnect and pre-
dictable low latency I/O is the holy grail of storage. In-memory storage
promises to provide optimal performance exceeding SSD based solutions.
KoveR©’s XPDR© offers pooled memory for cluster systems. This remote
memory is asynchronously backed up to storage devices of the XPDs and
considered to be non-volatile. Albeit the system offers various APIs to
access this memory such as treating it as a block device, it does not allow
to expose it as file system that offers POSIX or MPI-IO semantics.

In this paper, we (1) describe the XPD-MPIIO-driver which supports
the scale-out architecture of the XPDs. This MPI-agnostic driver enables
high-level libraries to utilize the XPD’s memory as storage. (2) A thor-
ough performance evaluation of the XPD is conducted. This includes
scale-out testing of the infrastructure and “metadata” operations but
also performance variability.

We show that the driver and storage architecture is able to nearly
saturate wire-speed of Infiniband (60+ GiB/s with 14FDR links) while
providing low latency and little performance variability.

Keywords: MPI-IO · Evaluation · In-memory storage

1 Introduction

In an alternative storage architecture, a burst buffer [1,2] is placed between
compute nodes and the storage. Acting as an intermediate storage tier, it’s goal
is to catch the I/O peaks from the compute nodes. Therefore, it provides a low
latency and high bandwidth to the compute nodes, but also utilizes the backend
storage by streaming data constantly at a lower bandwidth.

In-memory systems, like the Kove R© XPD R© [3], provide better latency,
endurance and availability as flash chips. Theoretically, the address space of the
XPD could be used to deploy a parallel file system, but performance would be
limited by the POSIX semantics. The relaxed MPI-IO semantics would enable
lock-free access. Since many of the current MPI-IO implementation are opti-
mized for the conventional storage, we believe a in-memory MPI-IO driver for
pooled memory deserves a thorough analysis.
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 679–690, 2017.
https://doi.org/10.1007/978-3-319-67630-2_48

680 J. Kunkel and E. Betke

Our contributions are: (1) we provide an MPI-IO implementation for the
pooled memory of the XPD (2) we investigate the performance of the developed
MPI-IO driver. While the large and scale-out storage provided by the XPD is
valuable by itself, the driver can be considered as an intermediate step towards
a burst buffer solution.

This paper is structured as follows: Sect. 2 discusses related work, then
Sects. 3 and 4 describe the used API and MPI-IO implementation, Sects. 5 and
6 show the test setup and performance results. Finally, the paper is summarized
in Sect. 7.

2 Related Work

Relevant state-of-the-art can be grouped into performance optimization, burst
buffers to speedup I/O and in-memory storage solutions.

Optimization and tuning of file systems and I/O libraries is traditionally an
important but daunting task as many configuration knobs can be considered
in parallel file system servers, clients and the I/O middleware. Without tuning,
typical workloads stay behind the peak-performance by orders of magnitude.
With considerable tuning effort a well fitting problem can yield good results: [4]
reports 50% peak performance with a single 291 TB file. In [5] MPI-IO and
HDF5 were optimized and adapted to each other, improving write bandwidth
by 1.4x to 33x.

Many existing workloads can take benefit of a burst buffer as fast write-
behind cache that transparently migrates data from the fast storage to tradi-
tional parallel file system. Burst buffers rely on flash or NVRAM to support ran-
dom I/O workloads. For flash based SSDs many vendors offer high-performance
storage solutions, for example, DDN Infinite Memory Engine (IME) [6], IBM
FlashSystem [7] and Cray’s DataWarp accelerator [8]. Using comprehensive
strategies to utilize flash chips concurrently, these solutions are powerful and
robust to guarantee availability and durability of data for many years.

The integration of Cray DataWarp burst buffer into the NERSC HPC archi-
tecture [9] increased the I/O performance of Chumbo-Crunch simulator by 2.84x
to 5.73x, compared to Lustre. However, for the sake of efficient burst buffer
usage, the serial simulator workflow had to be split into single stages (i.e. simu-
lation, visualization, movie encoding), which then were executed in parallel. The
research group at JSC uses DDN IME burst buffer [10] and GPFS to identify
requirements for the next HPC generation. The main purpose is to accelerate
the I/O performance of the NEST (“NEural Simulation Tool”). The prelimi-
nary IOR experiments show, that I/O performance can be increased upto 20x.
BurstFS [11] uses local NVRAM of compute nodes, instead of dedicated remote
machines. An elaborated communication scheme interconnects the distributed
NVRAM and provides a contiguous storage space. This storage is allocated at
beginning and exists for the lifetime of the job. In the experiments, BurstFS
outperforms OrangeFS and PLFS by several times.

An MPI-IO In-Memory Driver for Non-volatile Pooled Memory 681

In [12], a user-level InfiniBand-based file system is designed as intermediate
layer between compute nodes and parallel file system. With SSDs and FDR
Infiniband, they achieve on one server a throughput of 2 GB/s and 3 GB/s for
write and read, respectively.

The usage of DRAM for storing intermediate data is not new and ram-
drives have been used in MSDOS and Linux (with tmpfs) for decades. However,
offered RAM storage was used as temporary local storage and not durable and
usually not accessible from remote nodes. Exporting tmpfs storage via parallel
file systems has been used mainly for performance evaluation but without dura-
bility guarantees. Wickberg and Carothers introduced the RAMDISK Storage
Accelerator [13] for HPC applications that by flushes data to a backend. It con-
sists of a set of dedicated nodes that offer in-memory scratch space. Jobs can
use the storage to prefetch input data prior job execution or as write-behind
cache to speedup I/O. A prototype with a PVFS-based RAMDISK improved
performance of 2048 processes compared to GPFS (100 MB/s vs. 36 MB/s for
writes). Burst-mem [14] provides a burst buffer with write-behind capabilities
by extending Memcached [15]. Experiments show that the ingress performance
grows up to 100 GB/s with 128 BurstMem servers. In the field of big data, in-
memory data management and processing has become popular with Spark [16].
Now there are many software packages providing storage management and com-
pute engines [17].

The Kove XPD [3] is a robust scale-out pooled memory solution that allows to
aggregate multiple Infiniband links and devices into one big virtual address space
that can be dynamically partitioned. Internally, the Kove provides persistency
by periodically flushing memory with a SATA RAID. Due to the performance
differences, the process comes with a delay, but the solution is connected to
a UPS to ensure that data becomes durable in case of a power outage. While
providing many interfaces, the XPD does not offer a shared storage that can be
utilized from multiple nodes concurrently.

3 XPD KDSA API

The XPD KDSA API is a low-level API that allows to send and receive data
using write/read calls by utilizing RDMA. Data can be transferred synchronously
or asynchronously, additionally, memory can be pre-registered for use with the
Infiniband HCA. Since registration of memory is time consuming, for unregis-
tered memory regions, the system may either use an internal (pre-registered)
buffer and copy the user’s data to the buffer, or for larger accesses it registers
the memory, performs an RDMA data transfer and then unregisters the memory.

To address an XPD volume as a virtual address space, the XPD uses a con-
nection specifier in the form: <local address>/<server>.<link>:<volume ID>.
Multiple volumes and client or server links can be aggregated by adding them
with a +, data is then striped across these volumes/links. Similar to parallel file
systems, this allows to scale the number of connections with the requirements.
Upon connecting to an XPD, a client spawns a thread per volume to drive the

682 J. Kunkel and E. Betke

I/O, flags can control its behavior. To improve latency, this thread can use spin
locks to wait for requests and transfer the data or it conserves CPU time by
only becoming active upon events. The latter option is chosen as default for our
driver.

4 XPD-MPIIO-Driver

The driver1 is implemented as a shared library and usable with any MPI. It can
be selected at startup of an application using LD PRELOAD with the shared
library. All implemented routines check the file name for the prefix “xpd:”. With-
out the prefix, they route the accesses to the underlying MPI. Thus, files can be
selectively stored on XPD volumes.

The file driver implements important functions utilizing the relaxed consis-
tency semantics offered by MPI-IO: MPI File open, close, delete, get position,
get size, preallocate, read at, write at, read at all, write at all, read, write, seek,
set size, set view and sync. Collective read/write are calling the independent
counter part. The selection is inspired by the needs of HDF5 and IOR. Note
that the driver does not cache any I/O on the client side.

The implementation comes with a few limitations: Since we do not know the
memory regions, the KDSA calls for unregistered memory are used implying
overhead as described above. During the open/close the Infiniband connections
to the XPD’s are established and destroyed. This causes additional overhead but
offers the freedom to choose the volumes on a file basis. Partial support for file
views as needed by NetCDF4/HDF5 is provided.

Internally, the file driver uses the shared memory space provided by one or
multiple XPD volumes. It records the actual file size at the beginning of this
memory region but cannot grow beyond the aggregated size of the volumes.
Each process tracks its view of the file size and exchanges this information upon
file close or flush as needed by MPI-IO semantics. The data space is not initial-
ized with zeros, which is an issue if files are written in a sparse format. Since for
many use cases, the file is completely overwrite, this is not a show stopper – for
instance, with fill-values, NetCDF/HDF5 initializes the data regions. A format-
ting tool is contained in the repository that initializes file size (alternatively call
MPI file delete()) or completely zeroes memory regions.

5 Test Setup

5.1 Testsystems

The tests with the XPD were run on Cooley, the visualization cluster of Mira
on ALCF. It provided three XPD’s with a total of 14 FDR connections and is
connected to a GPFS file system. Each node is equipped with one FDR HCA.

1 The code is available as open source. http://github.com/JulianKunkel/
XPD-MPIIO-driver.

http://github.com/JulianKunkel/XPD-MPIIO-driver
http://github.com/JulianKunkel/XPD-MPIIO-driver

An MPI-IO In-Memory Driver for Non-volatile Pooled Memory 683

To investigate the difference between XPD and other state-of-the-art HPC
systems, we run some benchmarks on Cooley’s GPFS and many on DKRZ’s
supercomputer Mistral. Mistral hosts 3000 compute nodes each equipped with
an FDR interconnect and a Lustre storage system with 54 PByte capacity. The
peak transfer rate of the file system we used is 450 GiB/s2. When we conducted
our measurements, the phase 2 storage system was almost unused by other users.

5.2 Benchmarks

As our primary benchmark, IOR [18] is used varying access granularity,
processes-per-node, nodes, XPD connections and access pattern (random and
sequential). In all cases MPI-IO with independent I/O is measured. IOR is used
with a transfer size equal to the access granularity and 20 GiB of data per XPD
connection (and volume)3. To synchronize the measurements the inter-phase
barriers were turned on (IOR option -g). For the Lustre benchmarks we were
trying to reuse the XPD parameters wherever possible. Collective buffer was
enabled for write operations smaller than 512 KiB, we configured MPI-IO to use
one aggregator per node and, in all cases the number of stripes was twice as
much as the number of nodes.

Finally, to measure performance of individual operations to investigate vari-
ability, the sequential benchmark io-modelling is used4 It uses a high-precision
timer and supports various access patterns on top of the POSIX interface.

6 Evaluation

The goal of our evaluation is to systematically investigate the scaling behavior of
the Kove XPD’s. The following experiments are conducted: (1) scaling clients for
14 connections; (2) scale-out performance on 14 nodes with increasing number
of connections; (3) variability of performance; Additionally, a comparison to
DKRZ’s Lustre system is made and some results are obtained on Cooley’s GPFS
system.

Since the storage capacity is rather small (files up to 100 GiB have been
accessed) compared to the speed of the tests, the time for open/close are investi-
gated explicitly in experiment (4). In average across all conducted experiments,
the time of open/close reduces the reported performance of the XPD by 10%.
However, for production runs, larger files and capacities are assumed, reducing
this overhead. Therefore, the performance reported subsequently in this paper
is reported without the open/close time.

Note that on the XPD sequential and random I/O behave similarly due to
the DRAM storage and, thus, we usually report random performance.

2 http://www.vi4io.org/hpsl/2016/de/dkrz/lustre02.
3 The memory capacity of the XPD’s is shared amongst all users, therefore, we had

access to 14 volumes each 20 GiB.
4 https://github.com/JulianKunkel/io-modelling.

http://www.vi4io.org/hpsl/2016/de/dkrz/lustre02
https://github.com/JulianKunkel/io-modelling

684 J. Kunkel and E. Betke

(a) Read (b) Write

Fig. 1. Performance overview: varying client node count and PPN. The graph contains
fitting curves for 100 KiB and 1 MiB blocks.

6.1 Scaling the Number of Clients

In this first experiment, the maximum number of available volumes and IB links
available are used (14).

Figure 1 shows the achieved performance for 1 to 98 client nodes and 1 to
12 processes per node (performance between 3 and 12 PPN is between the mea-
surements). Under optimal conditions, the performance should increase linearly
from 1 to 14 nodes as each is equipped with one IB FDR HCA and then it should
saturate the network. Assuming roughly 6 GiB/s throughput for the FDR link,
84 GiB/s of performance should be observable.
Observations: (1) read/write behave mostly symmetrically, i.e., good read per-
formance implies good write performance; (2) performance increases nearly with
the number of client nodes and then saturates, but with PPN = 1 it scales beyond
14 client nodes; (3) for small access granularities, the workload is dominated by
the latency of IB and the compute overhead, thus, it improves beyond 14 client
nodes and using more PPN; (4) for large access granularities, a high percentage
of peak is achieved quickly. Overall, 14 nodes with 12 PPN saturate at least
50% of the available network throughput and 24 clients reach almost peak; (5)
performance of 100 KByte accesses is higher than for 1 MiB in many cases. This
is due to the pre-registered memory region inside the KDSA library. This buffer
is used for small accesses but not for 1 MiB. Therefore, the overhead for memory
registration is added which slows down the I/O.

An MPI-IO In-Memory Driver for Non-volatile Pooled Memory 685

(a) Granularity: 16 KiB (b) Granularity: 100 KByte (c) Granularity: 10 MiB

Fig. 2. Read performance with variable connections and PPN. Isolines for multiples of
5000MiB/s are shown.

6.2 Scale-Out with Multiple Connections

To show the scale-out behavior, the performance when varying PPN and the
number of XPD connections has been measured for the fixed configuration of 14
client nodes (that should theoretically be able to saturate all XPD connections).
Figure 2 shows a heat-map for different block granularities. This gives us also
another perspective to investigate scaling behavior for variable PPN. In the
best case, performance increases linearly with the number of connections and is
constantly at a high level for variable numbers of PPN.
Observations: (1) for large accesses, the performance isolines show that about
25 GB/s are achievable per connection up to 5 connections regardless of the PPN;
(2) starting with 6 connections, multiple PPN are needed to drive I/O and the
scaling is not optimally any more. Still, as seen in Fig. 1, more PPNs and about
24 client nodes would increase throughput to 60 GiB/s; (3) smaller granularities
also yield good performance with PPN =1, but the hill like structure shows that
multiple PPNs are necessary to drive the latency bound I/O. Overall, the system
scale well when increasing the number of XPD connections and servers.

6.3 Performance Variability

The variability of access time has been investigated. When re-running an experi-
ment, the overall performance of the repeated run should exhibit a similar perfor-
mance behavior. Since each experiment takes at least several seconds to complete,
we additionally investigated the runtime of repeatedly invoking the same I/O call.

A comparison of the runtime of the three repeats for each individual config-
uration (min−max

max) reveals the variability when re-running an experiment. On
the XPD, the arithmetic mean value of variability is 1.23% for read and 1.78%
for write accesses, albeit the mean runtime of an experiment was only about
10s. Thus, on average, when repeating an experiment, performance can be 1.8%
worse than in the best case. Across the experiments, Lustre varies about 5% for
read and write although its runtime is longer and, thus, less variation is to be

686 J. Kunkel and E. Betke

(a) XPD (b) Lustre

Fig. 3. Density of the variability range across all conducted experiments (span across
three repeats each).

Table 1. Variability test: mean performance in MiB/s over the runtime

Size Type Read Write

XPD GPFS Lustre XPD GPFS Lustre

16KiB seq 707.8 659.8 522.0 709.8 533.0 778.0

100 k seq 1653.8 1139.2 1082.2 1773.3 611.7 927.7

1MiB seq 1837.3 1062.5 996.2 1768.2 629.8 965.9

10MiB seq 3401.7 928.3 994.3 3274.3 742.3 916.9

16KiB rnd 676.8 1.2 1.5 600.4 71.7 20.6

100 k rnd 1538.5 4.7 9.2 1636.1 346.7 80.6

1MiB rnd 2052.6 29.6 49.2 1967.1 184.6 157.6

10MiB rnd 3456.6 301.2 277.6 3335.6 430.0 352.1

expected. The density (similar to a fine-grained histogram) for all experiments
is shown in Fig. 3.

Performance Variability with Individual I/Os. This experiment is con-
ducted measuring timing of 10,000 individual I/Os with a single process on
Cooley’s XPD and GPFS, and on DKRZ’s Lustre. The density plots of measur-
ing these results is shown in Fig. 4. This graph shows the qualitative difference
between the file systems. The mean performance for each experiment is shown
in Table 1, i.e., the average performance when timing a complete run; naturally,
a few very slow operations lead to a significant reduced mean performance.
Observations: As suggested by comparing application runs, the XPD’s perfor-
mance does not vary much between individual I/Os, i.e., the observed runtime
always forms a group. While some reads in the optimized sequential I/O can
perform as fast as on the XPD – i.e., with wire speed, most operations do not
and, obviously, random I/O from parallel file systems is significantly slower.
Actually, for sequential reads, in combination with caching, the read-ahead and

An MPI-IO In-Memory Driver for Non-volatile Pooled Memory 687

(a) 16 KiB sequential read (b) 16 KiB sequential write

(c) 16 KiB random read (d) 16 KiB random write

(e) 1 MiB sequential read (f) 1 MiB sequential write

(g) 1 MiB random read (h) 1 MiB random write

Fig. 4. Density of timing individual I/O operations

688 J. Kunkel and E. Betke

write-behind strategy of Lustre and GPFS can result in faster performance than
the XPD for individual operations. Still, the mean performance over the complete
experiment, i.e., when doing all 10,000 operations is faster in all cases except for
sequential write of 16 KiB of data on Lustre. The reason is the reduced perfor-
mance variability on the XPD.

6.4 Additional Experiments

Besides, we investigated open/close behavior of XPDs, and could create a linear
model for prediction of open/close times. For example, our model says that for
NN =500 nodes and PPN =12 an open time will be about 2.5 s. On Lustre using
the same parameters we observed open times around 0.7 s.

Furthermore, we measured performance of NetCDF4 on XPDs, GPFS and
Lustre using collective, independent, and chunked I/O modes. Our main obser-
vation in these experiments was that XPDs are insensitive to the different I/O
modes, whereas in experiments with GPFS and Lustre we could see an irregular
I/O behavior.

7 Summary

Storage on XPDs significantly outperforms our Lustre system in the small-blocks
random I/O benchmarks. In this case and in contrast to XPD, the increasing
number of nodes and processes accessing the storage don’t provided the desired
scaling effect. The performance benefit of the XPD is smaller when we use large
access granularities. While we have not exploited all available tuning knobs for
Lustre and GPFS, it becomes apparent that the MPI-IO driver on top of the
XPD outperforms GPFS and Lustre. Also, with our MPI-IO driver, the need
to tune too many knobs vanishes, users can rely on the performance without
changing one of many parameters as needed for other file systems. For applica-
tion relevant workloads using NetCDF, XPD is relatively insensitive to various
settings of the I/O method and chunking. It simply scales with the number of
processes and nodes up to a rather predictable throughput of 4 GiB/s per client
node. In particularly, due to the nature of the storage technology, the I/O vari-
ance is much less than for other file systems leading to much better performance
predictability. From these results, it appears that this MPI-IO driver supports
I/O heavy workloads. A burst buffer system equipped with a set of XPDs has
potential for improvement of I/O performance by several times.

Acknowledgment. Thanks to Kove for their support and discussion. Thanks to our
sponsor William E. Allcock for providing access and feedback. This research used
resources of the Argonne Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC02-06CH11357.

An MPI-IO In-Memory Driver for Non-volatile Pooled Memory 689

References

1. Liu, N., Cope, J., Carns, P., Carothers, C., Ross, R., Grider, G., Crume, A.,
Maltzahn, C.: On the role of burst buffers in leadership-class storage systems.
In: Proceedings of the 2012 IEEE Conference on Massive Data Storage (2012)

2. Romanus, M., Parashar, M., Ross, R.B.: Challenges and considerations for
utilizing burst buffers in high-performance computing (2015). arXiv preprint:
arXiv:1509.05492

3. KOVE: about xpress disk (xpd) (2015). http://www.hamburgnet.de/products/
kove/Kove-XPD-L3-4-datasheet.pdf

4. The HDF Group: A Brief Introduction to Parallel HDF5. https://www.alcf.anl.
gov/files/Parallel HDF5 1.pdf

5. Howison, M., Koziol, Q., Knaak, D., Mainzer, J., Shalf, J.: Tuning HDF5 for Lus-
tre file systems. In: Workshop on Interfaces and Abstractions for Scientific Data
Storage (IASDS 2010), Heraklion, Crete, Greece, 24 September 2010 (2012)

6. DDN: Worlds’s most advanced application aware I/O acceleration solutions.
http://www.ddn.com/products/infinite-memory-engine-ime14k

7. IBM: Flash Storage. http://www-03.ibm.com/systems/storage/flash
8. Cray: CRAY XC40 DataWarp Applications I/O Accelerator. http://www.cray.

com/sites/default/files/resources/CrayXC40-DataWarp.pdf
9. Ovsyannikov, A., Romanus, M., Straalen, B.V., Weber, G.H., Trebotich, D.: Sci-

entific Workflows at DataWarp-Speed: Accelerated Data-Intensive Science using
NERSC’s Burst Buffer (2016)

10. Schenck, W., El Sayed, S., Foszczynski, M., Homberg, W., Pleiter, D.: Early evalu-
ation of the “Infinite Memory Engine” burst buffer solution. In: Taufer, M., Mohr,
B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 604–615.
Springer, Cham (2016). doi:10.1007/978-3-319-46079-6 41

11. Wang, T., Mohror, K., Moody, A., Sato, K., Yu, W.: An ephemeral burst-buffer file
system for scientific applications. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2016,
Piscataway, NJ, USA, pp. 69:1–69:12. IEEE Press (2016)

12. Sato, K., Mohror, K., Moody, A., Gamblin, T., de Supinski, B.R., Maruyama, N.,
Matsuoka, S.: A user-level infiniband-based file system and checkpoint strategy
for burst buffers. In: 2014 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 21–30. IEEE (2014)

13. Wickberg, T., Carothers, C.: The RAMDISK storage accelerator: a method of
accelerating I/O performance on HPC systems using RAMDISKs. In: Proceed-
ings of the 2nd International Workshop on Runtime and Operating Systems for
Supercomputers, p. 5. ACM (2012)

14. Wang, T., Oral, S., Wang, Y., Settlemyer, B., Atchley, S., Yu, W.: BurstMem:
a high-performance burst buffer system for scientific applications. In: 2014 IEEE
International Conference on Big Data (Big Data), pp. 71–79. IEEE (2014)

15. Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J., Wasi-ur Rahman, M.,
Islam, N.S., Ouyang, X., Wang, H., Sur, S., et al.: Memcached design on high
performance RDMA capable interconnects. In: 2011 International Conference on
Parallel Processing, pp. 743–752. IEEE (2011)

http://arxiv.org/abs/1509.05492
http://www.hamburgnet.de/products/kove/Kove-XPD-L3-4-datasheet.pdf
http://www.hamburgnet.de/products/kove/Kove-XPD-L3-4-datasheet.pdf
https://www.alcf.anl.gov/files/Parallel_HDF5_1.pdf
https://www.alcf.anl.gov/files/Parallel_HDF5_1.pdf
http://www.ddn.com/products/infinite-memory-engine-ime14k
http://www-03.ibm.com/systems/storage/flash
http://www.cray.com/sites/default/files/resources/CrayXC40-DataWarp.pdf
http://www.cray.com/sites/default/files/resources/CrayXC40-DataWarp.pdf
http://dx.doi.org/10.1007/978-3-319-46079-6_41

690 J. Kunkel and E. Betke

16. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation, p. 2. USENIX Association
(2012)

17. Zhang, H., Chen, G., Ooi, B.C., Tan, K.L., Zhang, M.: In-memory big data man-
agement and processing: a survey. IEEE Trans. Knowl. Data Eng. 27(7), 1920–1948
(2015)

18. Loewe, W., McLarty, T., Morrone, C.: IOR Benchmark (2012)

HetFS: A Heterogeneous File System
for Everyone

Georgios Koloventzos1(B), Ramon Nou1, Alberto Miranda1, and Toni Cortes1,2

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{georgios.koloventzos,ramon.nou,alberto.miranda,toni.cortes}@bsc.es

2 Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Storage devices have been getting more and more diverse
during the last decade. The advent of SSDs made it painfully clear that
rotating devices, such as HDDs or magnetic tapes, were lacking in regards
to response time. However, SSDs currently have a limited number of write
cycles and a significantly larger price per capacity, which has prevented
rotational technologies from begin abandoned. Additionally, Non-Volatile
Memories (NVMs) have been lately gaining traction, offering devices that
typically outperform NAND-based SSDs but exhibit a full new set of
idiosyncrasies.

Therefore, in order to appropriately support this diversity, intelligent
mechanisms will be needed in the near-future to balance the benefits
and drawbacks of each storage technology available to a system. In this
paper, we present a first step towards such a mechanism called HetFS, an
extension to the ZFS file system that is capable of choosing the storage
device a file should be kept in according to preprogrammed filters. We
introduce the prototype and show some preliminary results of the effects
obtained when placing specific files into different devices.

1 Introduction

Storage devices have shown a significant evolution in the latest decade. As the
improvements in the latencies of traditional hard disk drives (HDDs) have dimin-
ished due to the mechanical limitations inherent to their design, other technolo-
gies have been emerging to try and take their place. For instance, NAND-based
solid state drive (SSD) technology has been extremely successful in improving
I/O latency and bandwidth, and this has led to SSD devices often being incor-
porated into the storage stack as a caching tier for HDD-based storage systems,
and also to being used as the principal data repositories. This, in turn, has forced
any major applications that were bound by access times (such as databases [3]),
to change in order to adapt to this new technology. Nevertheless, completely
replacing HDDs by more efficient SSDs can be economically prohibitive due the
larger cost per capacity of the latter. More importantly, however, NAND-based
SSDs have a limited number of write cycles and, in fact, recent researches on

R. Nou and A. Miranda—The authors contributed equally to this work.

c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 691–700, 2017.
https://doi.org/10.1007/978-3-319-67630-2_49

692 G. Koloventzos et al.

long-term SSD usage in data warehouses have proved that, after intensive usage,
the SSDs degrade so much that response times may equal those of HDDs [5,6].

In addition to SSDs, Non-Volatile Memory (NVM) technology is currently
being researched as a better alternative. The different NVM technologies being
explored typically exhibit faster I/O latencies than SSDs, which are closer to
those of DRAM rather than to NAND-based devices. As such, current research
efforts are focusing on whether these devices should be used as an extension of
DRAM or included as an additional (persistent) caching layer to the storage
stack [14].

Moreover, despite the recent advancements in SSDs and NVMs, the techno-
logical development of HDDs has not stopped. For instance, hard drives featuring
an Helium-filled enclosure were recently introduced to the market since the gas
density allows for more platters and a higher rotational speed of up to 19,000
rpms [22]. Shingled Magnetic Recording (SMR) [1] is also starting to find its way
to customers, since it allows for a higher track density and increased capacity at
similar cost.

Thus, in the near future, file systems will need to cope with a myriad of stor-
age devices, each with particular performance and capacity characteristics, and
each suitable to certain types of I/O workload. Current file systems, however,
typically distribute data into available devices by placing them into a hierarchy
according to performance, and using prefetching and multi-tier caching algo-
rithms to reduce I/O latency.

This, however, typically disregards other considerations such as extending
the life of devices such as SSDs through wear leveling, or tailoring a file’s data
distribution according to the usage that applications make of it. For instance,
software engineers typically rely on writing to a file as barrier or as an atomic
operation, a usage which is crucial for the resilience and for synchronization
of applications [4]. This access pattern can represent a significant disadvantage
for SSDs since it will wear the medium faster. Similarly, the OS libraries are
primarily read dominant [2,19] and could be classified according to how often
they are accessed, placing the rarely-used into an HDD for cold storage and the
more commonly used ones into an SSD for improved performance. Multimedia
files i.e., RIFF format, can be split. The first part with all the information of
the file in a fast medium and the rest that accessed mostly sequentially to a
rotating one. Lastly, intra-file formats could also be exploited by placing each
file section into the storage device more suitable for the expected access patterns.
Therefore, in order to support the diversity in storage media, file systems will
need to provide intelligent algorithms that (1) appropriately quantify and model
the benefits and drawbacks of each available storage device; (2) capture the more
typical patterns that applications use to access data; and (3) use this information
to create a tailored dynamic data distribution that optimizes the usage of the
available hardware.

In this paper, we present HetFS, an extension to the ZFS file system that
includes a component to capture information about file usage, and a simple
decision making mechanism that uses this information to decide, according to

HetFS: A Heterogeneous File System for Everyone 693

a user-provided classification, the storage device where a file should be placed.
We introduce the HetFS prototype and show some preliminary results measured
by applying different precomputed file distributions to the kernel’s boot process.
The results offer an insight to the expected ZFS overhead added by the new
mechanisms and showcase the potential benefits of such distributions. Please
note that these modifications are meant as a first step towards a more complex
feedback loop where HetFS will automatically capture file usage information
and will use this information (allowing some degree of tuning from the user) to
produce a data distribution that is optimized w.r.t. a file’s more common access
patterns and the features of the available storage devices.

The remainder of the paper is organized as follows: Sect. 2 describes the mod-
ifications made to ZFS in order to capture usage information and implement the
user-provided file distributions. Section 3 describes our experiments regarding
boot times with different file distributions. Related work is discussed in Sects. 4,
and 5 concludes with our findings.

2 Heterogeneous File System

This section discusses the modifications done to ZFS in order to support the
HetFS file forwarding mechanism. We chose to implement HetFS as an extension
of ZFS1 because this file system offers facilities to manage both the physical
and the logical layers [16]. While historically file systems have been constructed
on top of a single physical device, ZFS manages physical storage by means of
storage pools (or zpools), which can be created using multiple and heterogeneous
devices such as HDDs, SSDs, NVM or even tapes. A zpool describes the physical
characteristics of the storage devices that compose it (called vdevs), and acts as
an arbitrary data store from which file systems can be created. By leveraging
this feature as an extension of ZFS, HetFS is able to produce a file classification
based on access patterns and later use this information to guide requests to a
specific storage device within a zpool.

2.1 File Classification

File classification is done by modifying the ZFS Posix Layer (ZPL), which is the
ZFS layer responsible for interfacing between the VFS and the underlying ZFS
data management layers. This layer still has enough semantic information about
which file is being accessed by a read() or write() operation, and also offers
enough detail to allow us to track the access to individual data blocks. Thus,
we include a red-black tree in the ZPL where each node contains two separate
linked lists for read and write requests.

The information traced is inserted into the red-black tree by a specialized
kernel thread after a request has returned without errors, in order to not inter-
fere much with it. Currently, the data consists of the file name, the offset of the
1 Given that ZFS is proprietary software, we used a fork of OpenZFS [11] named ZFS

on Linux (ZoL) [24]. For clarity we will keep referring to it as ZFS.

694 G. Koloventzos et al.

request, the length, and the type, that are extracted from the request. We also
capture the time when the request arrived, and use this information to merge
small requests into bigger ones if the current captured time is close to the pre-
viously stored one, and also if the offset is contiguous to the previous one. This
approach gives us an insight on how files are accessed from applications, and
also allows us to track if particular part of a file is accessed more which will help
us to assess the access patterns for each individual file in future research.

Currently, the analysis of the collected information is done post-mortem, and
the final decision of the available vdevs should store a particular file is left to the
user. This decisions can be communicated to HetFS by means of a custom procfs
interface with some pre-configured characteristics. In the future the operating
system will conduct an automated analysis of these information to make an
informed decision on which storage medium a file should be placed. If a manual
decision has been made the analysis will not be taken into consideration.

2.2 Device Selection

Files can be typically classified by their access patterns: for instance, multimedia
files are most likely to be accessed sequentially, and documents created from word
processors follow complex internal structures which makes parts of the file more
likely to be accessed with different frequencies and patterns than others. This
means that the former would benefit from a ZFS vdev optimized for sequential
access, whereas the latter would benefit from a ZFS vdev optimized for random
accesses. Other files, like bitmaps, indexes, and even the file system’s metadata
would be better stored in a ZFS vdev that could benefit from byte addressability
(e.g. NVM).

In order to forward I/O requests to the desired vdev, we modify the ZFS
Block Allocation mechanism to use the analyzed information produced by the
file classification mechanism, which is conveyed to HetFS through the aforemen-
tioned procfs interface. Information about the chosen vdev for a file is encoded
into the ZFS equivalent of VFS’ i-nodes, so that it can be propagated to all the
necessary ZFS layers, and is then used to allocate ZFS block pointers into the
appropriate vdev. Since the standard ZFS Block Allocation strategy relies on
dynamic striping to maximize bandwidth, we modify the vdev selection algo-
rithm to simply choose the device encoded into the file. In the future, however,
this selection will also consider other factors like the vdevs performance, their
optimal access mode as well as any limiting features. We also leverage existing
code [23] by the ZFS team to place metadata into SSDs and extend it to several
vdevs.

Note that, currently, a user or system administrator could decide to move
files that need a lower access latency to a SSD for faster I/O bandwidth. If these
files were write-intensive, it would decrease the durability of the SSD but the
file would actually be served faster. These kinds of compromises would need to
be decided either by the administrator or automatically by system wide policies.
For example, if durability of an SSD is pursued, moving files that are accessed
scarcely and sequentially to an HDD will give us a better life expectancy. In the

HetFS: A Heterogeneous File System for Everyone 695

future, HetFS should move files dynamically to appropriate vdevs in response
to changes made by the administrator to pursue certain system-wide optimiza-
tion goals. For instance, HetFS could decide to move files that have not been
accessed for a certain period of time to a network storage system, which could be
represented by another “device” in the ZFS pool. At default, operating system
will analyze patterns and will be able to choose between storage media. A file
that more than 50% is accessed contiguous will be sent to HDD. If more random
access patterns emerge or even byte accesses the file could be sent to a SSD or
NVRAM respectively. If a system administrator has created a rule about a file,
the automatic decision will not be calculated.

3 Evaluation

This section describes our experiments when testing how several file distributions
differently affect the boot process of the Linux kernel. Our experiment platform
is a bare metal machine running Ubuntu 16.04 with Linux kernel 4.4.0–21. It is
equipped with a processor Intel(R) Core(TM)2 Quad CPU Q9300 @ 2.50 GHz
with 4 cores. It also has 8 GB RAM in 4 modules of 2 GB. For storage we have
a Seagate BarraCuda at 250 GB with 7200 rpm and 8 MB cache connected with
SATA 3.0 Gb/s and a Samsung SSD 850 at 250 GB with 512 MB cache.

3.1 Boot Time

We use HetFS to choose in which media to store different boot files in order to
see how it affects the booting time of our test machine. We decided to use the
boot time because it is a straight forward experiment that heavily involves the
underlying file system. Also boot time is crucial when a new system is deployed.
Having a simple performance experiment helps us measure if our approach to
store files into specific storage media adds a reasonable overhead.

For each experiment, we rebooted the machine 100 times and write the output
of systemd-analyze to a file. In Fig. 2 there are the boxplots of the median, best
and worst total booting times for each run. First we did the experiment with the
ZoL [24] version 0.6.5.6 (which is the one that can now be found in the Ubuntu
16.04 repositories), to measure the time of a stable run. Second we run ZoL
with 0.7.0-rc3 and commit “935550f” since this is the commit before our code
was introduced. This experiment is done in order to see if any major differences
have been introduced between the ZFS versions. The third experiment is run by
storing only the files that are read during the boot process in the SSD (labeled
RO in the figure). The fourth experiment, which is labeled RO+META in the
figure, is a set up where all files that are read during boot time and all ZFS meta-
data of every file is stored to the SSD. Finally, we add a fifth experiment where
all the files and the metadata are stored in the SSD (labeled RW+META). All
measurements were done by the systemd-analyze [18] command version 229. The
systemd-analyze command returns the time spent in the kernel as well as the

696 G. Koloventzos et al.

time spent in initrd before normal system userspace is reached. A userspace time
is also provided which is the time normal system userspace took to initialize.

Figure 1 depicts our results. First of all, we can observe some differences
between the 2 versions of ZFS which evidence changes between the versions. For
instance, ZFS 0.7 has a 15% performance hit on kernel time but a speed up
on userspace time of 27% when compared to ZFS 0.6. Nevertheless, this results
in a less than 1% degradation to the total boot time. Placing only the read
files in an SSD creates a 2% overhead at kernel time and an 8% overhead to
userspace time, which sets the overhead of HetFS around 4%, but with a better
expected SSD lifetime. In contrast, the results for the fourth run where also the
ZFS metadata is stored in the SSD are significantly different: the kernel time
is almost identical to the ZoL 0.7 baseline, but userspace time yields a 43%
speedup. Overall, HetFS obtains a final 10% boost, which demonstrates that
placing the file system’s internal metadata into an SSD can significantly affect
performance (and decrease the expected SSD lifetime as well). The final run,
where all the data is stored in the SSD, obtains an improvement of a 20% with
respect to the plain ZFS, which is to be expected since no data is stored in the
slower HDD. Overall the results show that our approach of acquiring the data
has a low impact at the responding time of the machine.

Fig. 1. Mean boot time using different configurations.

HetFS: A Heterogeneous File System for Everyone 697

Fig. 2. Median, worst and best boot time for each run.

3.2 Write Requests

As is apparent from the previous section, significant performance gains can be
expected from placing boot files into an SSD. Nevertheless, in order to better
understand how much stress the SSD received, we also measured how many
I/O requests ended up going to this media, along with the total count and size
of the writes operations issued. The results are shown in Table 1. We observe
that, since the boot process is not write-intensive, using the SSD to its full
capability for storing also the ZFS metadata does not represent a significant
load, since only 3 MB are requested to be written in the device (RO+META).
Nevertheless, using the SSD to store exclusively read-only data results in only
a 5% drop in performance when compared to a standard ZFS installation, but
with significantly less data written to the SSD (1 MB/28 requests vs 2 MB/139
requests, respectively). Moreover, the worst scenario for an SSD is, as expected,
to move all the data to it, which increases the total size of the writes to 3.3 MB,
but with a 1.22x speedup when compared to standard ZFS.

Table 1. SSD writes vs. speedup

ZFS 0.7.3 RO RO+META RW+META

Total size 2 MB 1 MB 3 MB 3.3 MB

of requests 139 28 162 200

Speedup 1x 0.95x 1.11x 1.22x

698 G. Koloventzos et al.

4 Related Work

Research on hybrid or heterogeneous file systems is divided between how such
a system will improve the performance of specific application and designs from
scratch. There are numerous examples on specific application optimization, par-
ticularly in databases [3,7–9,14,21]. In contrast, our approach treats all appli-
cations equally unless the user specifies otherwise.

Hybrid file systems from scratch have their fare share of research. Combo [13]
is a Windows-based file system. They achieved file separation because they are
looking for free large contiguous parts for storing a file. This approach lacks the
ability to automatically change medium based on access patterns. Conquest [20]
achieved to mix HDDs and NVMs, but requires special host hardware which ours
does not need. A new form of hybrid file system from scratch called N-hybrid was
proposed in [10]. N-hybrid utilizes an SSD as a write-through cache for recently
used files. Storing a file in a specific medium is possible in N-hybrid but only at
the request level. If a file is requested in big chunks, it will be placed in an HDD.
Our approach curates files not only by access patterns but also by user needs.

Extending the life of SSDs has also been an issue in recent years. Typically,
either an HDD [17] or a NVM-enabled device [15] is used as a caching media
at a higher stack level to protect the SSD from writes. Rather than setting up
a hierarchy of storage devices, we try to achieve less SSD wearing by statically
analyzing the file access patterns, and creating a file distribution that attempts
to optimally forward I/O requests to the available devices, instead of just limiting
the access to SSD.

Similarly to our work, Oracle has published a white paper [12] where they
discuss how to achieve a hybrid storage system within the proprietary ZFS file
system. They describe applications that would benefit from this facility but do
not discuss any results, performance or otherwise. Instead, our approach focuses
in the file system level and how it orchestrates where the files would be stored.
Moreover, our work will engulf all storage media and it will make informed
decisions based on access patterns on where a file should be placed.

5 Conclusions and Future Work

In this paper, we presented an extension to ZFS aimed to allow system adminis-
trators and/or normal users to specify which storage device belonging to a zpool
to use to store specific files (e.g. HDDs, SSDs, NVMs or others). Moreover, this
extension is presented to the user as a file system with a single mount point.
We introduce two separate mechanisms: one for capturing information about
file usage, and another that can use this information to decide the placement of
individual files. An administrator could use these mechanisms to counteract the
drawbacks of one medium with benefits from others, by actively defining which
files should be placed in which device.

The experiments done with HetFS conclude that the overhead introduced
by the mechanisms implemented is low, and different benefits can be achieved

HetFS: A Heterogeneous File System for Everyone 699

depending on the metric considered. For example, it is possible to reduce nearly
100% the number of writes going to an SSD, which helps with wear-leveling
but at the same time somewhat impacts performance, or only move certain
number of files to the SSD to have different ratios of performance improvement.
Nevertheless, given that different devices have different behaviors, and different
I/O workloads have different constraints, these decisions should be taken by
automatic mechanisms that can adapt, learn and decide the best placement for
a certain target metric.

Thus, the modification presented is a first step to incorporate more advanced
or automatic techniques that can take this kind of decisions. Our future research
lines are to rely on these mechanisms to automatically detect data access pat-
terns, and define optimization algorithms that are able to use this information to
decide the appropriate vdev for a certain file. This algorithms should accurately
model a device characteristics and combine this information to target predefined
optimization goals (e.g. SSD wear should be reduced by 25% but performance
should not drop below 5%). Moreover, placement of file fragments can also be
helpful for internally complex files. For example, headers of files that are usually
read and written once could be stored in an HDD, whereas the heavily-accessed
parts of a database index would benefit from being in NVM. With HetFS, we
lay the foundation for developing such a system.

Acknowledgments. The research leading to these results has received funding from
the European Community under the BIGStorage ETN (Project 642963 of the H2020-
MSCA-ITN-2014), by the Spanish Ministry of Economy and Competitiveness under the
TIN2015-65316 grant and by the Catalan Government under the 2014-SGR-1051 grant.
To learn more about the BigStorage project, please visit http://bigstorage-project.eu/.

References

1. Aghayev, A., Shafaei, M., Desnoyers, P.: Skylight–A window on shingled disk oper-
ation. Trans. Storage 11(4), 16:1–16:28 (2015)

2. Atlidakis, V., Andrus, J., Geambasu, R., Mitropoulos, D., Nieh, J.: POSIX abstrac-
tions in modern operating systems: the old, the new, and the missing. In: Proceed-
ings of the Eleventh European Conference on Computer Systems, EuroSys 2016,
pp. 19:1–19:17. ACM, New York (2016)

3. Canim, M., Mihaila, G.A., Bhattacharjee, B., Ross, K.A., Lang, C.A.: SSD buffer-
pool extensions for database systems. Proc. VLDB Endow. 3(1–2), 1435–1446
(2010)

4. Harter, T., Dragga, C., Vaughn, M., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.:
A file is not a file: understanding the I/O behavior of apple desktop applications. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples, SOSP 2011, pp. 71–83. ACM, New York (2011)

5. Jung, M., Kandemir, M.: Revisiting widely held SSD expectations and rethink-
ing system-level implications. In: Proceedings of the ACM SIGMETRICS/
International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS 2013, pp. 203–216. ACM, New York (2013)

http://bigstorage-project.eu/

700 G. Koloventzos et al.

6. Klimovic, A., Kozyrakis, C., Thereska, E., John, B., Kumar, S.: Flash storage
disaggregation. In: Proceedings of the Eleventh European Conference on Computer
Systems, EuroSys 2016, pp. 29:1–29:15. ACM, New York (2016)

7. Koltsidas, I., Viglas, S.D.: Flashing up the storage layer. Proc. VLDB Endow. 1(1),
514–525 (2008)

8. Lee, S.-W., Moon, B., Park, C.: Advances in flash memory SSD technology for
enterprise database applications. In: Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2009, pp. 863–870. ACM,
New York (2009)

9. Liu, X., Salem, K.: Hybrid storage management for database systems. Proc. VLDB
Endow. 6(8), 541–552 (2013)

10. No, J.: NAND flash memory-based hybrid file system for high I/O performance.
J. Parallel Distrib. Comput. 72(12), 1680–1695 (2012)

11. OpenZFS, January 2017. http://open-zfs.org/wiki/Main Page
12. Oracle. Deploying Hybrid Storage Pools with Oracle Flash Technology and the

Oracle Solaris ZFS File System, pp. 1–17, August 2011
13. Payer, H., Sanvido, M.A., Bandic, Z.Z., Kirsch, C.M.: Combo drive: optimizing

cost and performance in a heterogeneous storage device. In: First Workshop on
Integrating Solid-state Memory into the Storage Hierarchy, vol. 1, pp. 1–8 (2009)

14. Pelley, S., Wenisch, T.F., Gold, B.T., Bridge, B.: Storage management in the
NVRAM Era. Proc. VLDB Endow. 7(2), 121–132 (2013)

15. Qiu, S., Narasimha Reddy, A.L.: NVMFS: a hybrid file system for improving ran-
dom write in NAND-flash SSD. In: 2013 IEEE 29th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1–5, May 2013

16. Rodeh, O., Teperman, A.: zFS: a scalable distributed file system using object
disks. In: Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSS 2003), MSS 2003, pp. 207–218. IEEE
Computer Society, Washington, DC (2003)

17. Soundararajan, G., Prabhakaran, V., Balakrishnan, M., Wobber, T.: Extending
SSD lifetimes with disk-based write caches. In: Proceedings of the 8th USENIX
Conference on File and Storage Technologies, FAST 2010, p. 8. USENIX Associa-
tion, Berkeley (2010)

18. systemd-analyze, January 2017. http://manpages.ubuntu.com/manpages/xenial/
man1/systemd-analyze.1.html

19. Tsai, C.-C., Jain, B., Abdul, N.A., Porter, D.E.: A study of modern Linux API
usage, compatibility: what to support when you’re supporting. In: Proceedings
of the Eleventh European Conference on Computer Systems, EuroSys 2016, pp.
16:1–16:16. ACM, New York (2016)

20. Wang, A.-I.A., Kuenning, G., Reiher, P., Popek, G.: The conquest file system:
better performance through a disk/persistent-RAM hybrid design. Trans. Storage
2(3), 309–348 (2006)

21. Xu, Q., Siyamwala, H., Ghosh, M., Suri, T., Awasthi, M., Guz, Z., Shayesteh, A.,
Balakrishnan, V.: Performance analysis of NVMe SSDs and their implication on
real world databases. In: Proceedings of the 8th ACM International Systems and
Storage Conference, SYSTOR 2015, pp. 6:1–6:11. ACM, New York (2015)

22. Yang, J., Tan, C.P.H., Ong, E.H.: Thermal analysis of helium-filled enterprise disk
drive. Microsyst. Technol. 16(10), 1699–1704 (2010)

23. ZFS Development Team. Rotor vector allocation (small records favour SSD)
24. ZoL: ZFS on Linux, January 2017. http://zfsonlinux.org/

http://open-zfs.org/wiki/Main_Page
http://manpages.ubuntu.com/manpages/xenial/man1/systemd-analyze.1.html
http://manpages.ubuntu.com/manpages/xenial/man1/systemd-analyze.1.html
http://zfsonlinux.org/

Scientific Applications Performance Evaluation
on Burst Buffer

George S. Markomanolis(B), Bilel Hadri, Rooh Khurram, and Saber Feki

Supercomputing Core Laboratory, King Abdullah University
of Science and Technology, Thuwal, Kingdom of Saudi Arabia

georgios.markomanolis@kaust.edu.sa

Abstract. Parallel I/O is an integral component of modern high per-
formance computing, especially in storing and processing very large
datasets, such as the case of seismic imaging, CFD, combustion and
weather modeling. The storage hierarchy includes nowadays additional
layers, the latest being the usage of SSD-based storage as a Burst Buffer
for I/O acceleration. We present an in-depth analysis on how to use
Burst Buffer for specific cases and how the internal MPI I/O aggrega-
tors operate according to the options that the user provides during his
job submission. We analyze the performance of a range of I/O intensive
scientific applications, at various scales on a large installation of Lustre
parallel file system compared to an SSD-based Burst Buffer. Our results
show a performance improvement over Lustre when using Burst Buffer.
Moreover, we show results from a data hierarchy library which indicate
that the standard I/O approaches are not enough to get the expected
performance from this technology. The performance gain on the total
execution time of the studied applications is between 1.16 and 3 times
compared to Lustre. One of the test cases achieved an impressive I/O
throughput of 900 GB/s on Burst Buffer.

Keywords: DataWarp · I/O · Burst Buffer

1 Introduction

While the computational power of new supercomputers is increasing significantly,
I/O throughput is not increasing with the same rate. The humorous statement
by computer engineer Ken Batcher that “a supercomputer is a device for turning
compute-bound problems into I/O-bound problems” is becoming more genuine,
since I/O subsystems, are typically slow compared to others parts of a super-
computer. This is mainly due to the well-known performance gap that keeps
outspreading between the computing components (focusing more on the speed)
and the storage devices (focusing more on the capacity of storage and less on
performance). Thus, any new technology that promises a boost in I/O perfor-
mance is becoming popular among the HPC-related research groups. The real
world engineering applications demand reduction in the total time to solution,
not just on the compute time, especially in cases where I/O is a significant part
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 701–711, 2017.
https://doi.org/10.1007/978-3-319-67630-2_50

702 G.S. Markomanolis et al.

of the whole execution time. Optimizing the I/O is a complex process as the
layers of data storage increases in modern supercomputers. In order to achieve
better performance, it is harder but crucial to understand the signature of I/O
during the execution of the application.

Burst buffer is a new I/O technology that adds a layer between the compute
nodes and the standard parallel file system, for more details see [1]. In this
paper, we are reporting the I/O performance of six applications on Burst Buffer
technology in its Cray implementation DataWarp [2]. These applications are
taken from various scientific disciplines, namely: computational fluid dynamics,
combustion, climate and earth sciences. In addition to the real applications, two
synthetic benchmarks are also studied. The performance of these six test cases
is compared to Lustre parallel filesystem. For more information on start working
with Burst Buffer and how the MPI I/O aggregators work, see [1].

2 Related Work

National Energy Research Scientific Computing Center (NERSC) have done
significant work through NERSC Burst Buffer Early User Program [3]. They have
shown cases where the Burst Buffer achieves better performance than Lustre.
Moreover, they have identified various challenges to achieve better performance.
We experienced similar challenges, and that is why in a following section we
provide instructions for better utilization of the resources. In [4] the researchers
evaluate the DataDirect Networks (DDN) Infinite Memory Engine (IME). For
their experiments, they used IOR [5] which is designed to measure parallel file
system I/O performance at both the POSIX and MPI-IO level, and the NEural
Simulation Tool (NEST) applications, where they showed that IME has better
I/O performance than GPFS file system. The main contribution of this paper
is to report our experience on the Burst Buffer performance on a wide range of
applications at large scale.

3 Burst Buffer

We used in our experiments the Shaheen II XC40 system [6], which includes
richly layered data storage architecture. The primary data storage solution is a
Lustre Parallel file system with a usable storage capacity of 17.2 PB delivering
around 500 GB/s of I/O throughput. The Cray Sonexion 2000 installation is
configured using 72 Scalable Storage Units (SSU) and144 Object Storage Ser-
vices (OSS) connected to the XC40 via 72 LNET router service nodes. ShaheenII
is also composed of 268 Cray DataWarp (DW) accelerator nodes hosting a total
of 536 Intel P3608 SSD cards. Each Burst Buffer node provides aggregated peak
write/read bandwidth 6 GB/s and 10 GB/s respectively. The combination pro-
vides an aggregate Burst Buffer capacity of 1.56 PB to Shaheen users. This fast
middle storage layer provides up to three times the performance of the Lustre
parallel file system and it is connected directly to the compute nodes through
Aries interconnection. The IOR benchmark was launched using all 268 DataWarp

Scientific Applications Performance Evaluation on Burst Buffer 703

nodes and 5,628 compute nodes achieving 1.54 TB/s and 1.66 TB/s in IOR write
and IOR read, respectively.

4 Experiments

In this section, we study six applications/benchmarks. The scope of this work is
to evaluate their performance on Bust Buffer and identify the potential perfor-
mance improvements.

4.1 Fluent

Widely used commercial code, Fluent [7], is used in this study. The provided
binary was not compiled from the vendor with the appropriate MPICH version
for Burst Buffer. Moreover, we used serial I/O during these tests. A large test
case commonly known as F1 Race Car Test Case [8] is used. The computational
domain is discretized by using 140 million cell mesh. These simulations are typ-
ically done for calculating external aerodynamics properties of race cars, with
the objective of drag reduction. In order to understand the turbulent features
emanating from the wake of the car, solution files are written, after every few
time steps, to the disk for generating pictures and movies for post simulation
analysis. Each solution dump generates 21 GB of output data. In this study, the
IO speed for Lustre and DataWarp is investigated. 20% improvement in I/O is
observed on SSD for writing the file, as compared to Lustre. Three tests are done
for checking repeatability. No significant variation is observed in the repeated
tests. In the next study, the effect of specifying more SSD nodes is observed.
23% faster I/O is observed when 2 SSD nodes are specified, as compared to 1
SSD node, using more than 2 DW nodes, did not provide significant performance
improvement.

4.2 Weather Research and Forecasting Model (WRF)

Weather Research and Forecasting Model (WRF) [9] is one of the most used
models in Earth Sciences related fields. WRF code consumes significant amount
of core-hours on many supercomputers. The purpose of this study is to evaluate
the I/O of a large simulation and identify if it can benefit from DataWarp.
For this study, we use a benchmark with high-resolution domain - the Alaska
domain with 1 Km resolution [10]. We use WRF v3.7.1 with Cray compiler,
MPICH v7.4.2, 256 compute nodes, 4 MPI processes per node and 8 OpenMP
threads. WRF can be configured to save the simulation data in history and
restart files. The former includes simulation data for specific time steps and the
later can be used to restart the simulation. We configure WRF for intensive I/O,
so we save the history and restart files every 30 simulation minutes. The size for
history and restart files is around 81 GB and 361 GB, respectively. We stage-in
around 110 GB of data, and the stage-out phase after one hour of simulation
yields almost 1 TB of data and this happens asynchronously, before and after the

704 G.S. Markomanolis et al.

execution of the model, without reserving compute resources. For the case that
we save the data to one single file, we use PnetCDF. One significant problem
with the measurement of I/O performance on WRF is the calculation of the I/O
bandwidth through the reported time from the output file. However, sometimes
it was quite difficult to understand why the performance is not efficient. We
followed different approaches to investigate the situation. The first one, and
more direct, is to activate the debug option on WRF to report all the routines
that are called, to break down the I/O time, where we observed thousand smaller
I/O calls that could decrease the performance.

Although the latest Cray Environment CNL 6.X is not available to us, which
will fix some performance issues, we tried to increase the collective buffering
to investigate any improvements and use the CrayPAT instrumentation tool to
examine the I/O on DataWarp. For the sake of simplicity, some of the com-
mands/outputs include only the information that is required. We use 64 MPI
I/O aggregators for the restart files, and change the size of collective buffering
to 32 MB, while the default is 8 MB.

In Table 1 we present the performance data from CrayPAT regarding the I/O
performance while writing the restart file with default collective buffering 8 MB.
The average achieved I/O bandwidth is 1.4 GB/s per MPI process, and each
of them writes almost 4.4 GB, and totally we have 46,960 I/O calls of 8 MB
each. However, the collective buffering is changed to 32 MB and the average I/O
bandwidth is 1.98 GB/s with totally 12,028 I/O calls. Thus, the size of collective
buffer is also important depending on the application, and in this case the I/O
bandwidth was improved by 41.4%.

Table 1. Measuring WRF I/O with CrayPAT for the restart file with default collective
buffer size

Write MBytes Write rate (MB/s) Writes Bytes/call Filename/PE

369,720 1,437 46,690 8,303,272 Total - wrfrst d01

4,448 1,371 560 8,328,689 pe.584

4,456 1,390 562 8,313,976 pe.528

The CrayPAT results are not in agreement with WRF output because Cray-
PAT measures the I/O per MPI aggregator, but WRF reports the total time of
the collective I/O, including the data communication.

From the CrayPAT analysis, Lustre achieved a peak performance of 65 GB/s
while a peak of 82 GB/s was reached using Burst Buffer. According to the
WRF output report timings, we have the results of Fig. 1 where the I/O write
performance of Burst Buffer increases while we increase the number of DataWarp
nodes and we always use 144 OSTs for Lustre I/O. The DataWarp performance
gets closer to the Lustre, but not better than it. However, reading the input
file on DataWarp is more efficient than Lustre and the total execution time is
shorter. If we compare the total execution time which is presented in Fig. 1 on

Scientific Applications Performance Evaluation on Burst Buffer 705

Fig. 1. DataWarp vs Lustre on WRF I/O performance

right side, then the Burst Buffer is faster than Lustre for almost all the cases,
with maximum improvement of 16%. In WRF there is significant computation
duration which is not influenced from DataWarp.

4.3 NGA

This case study is benchmarking a code on a turbulence partially premixed
flames at high Reynolds number. The NGA code [11] can perform large-eddy
simulation (LES) and direct numerical simulation (DNS). The benchmark used
is this study is the Bunsen flame at a Reynolds number Re = 11,200 using
2.8 Billion grid points requiring around 25 runs of 24 h using 1024 nodes with
32,768 cores. Typically, in production mode, the checkpointing is performed
several times daily, generating each time a solution file of approximately 560
GB. Figure 2 shows the results using different DataWarp nodes, Burst Buffer
demonstrated with up to 3.75 times performance improvement with 32 nodes
when compared to Lustre. Overall, this achieves up to 25% decrease of the
complete simulation if regular checkpointing are performed. According to our
experience, DataWarp requires a significant amount of data to stress the SSDs,
more DW nodes we use, more data we need for the cases that the I/O is not
optimized for such technologies.

Fig. 2. Write time speedup on Burst Buffer compared to Lustre using different
DataWarp Nodes

706 G.S. Markomanolis et al.

4.4 ATLIB

Natural migration [12] computes an image according to the equation

Image(x) =
N∑

s

N∑

r

[G(s, x, t) ∗ G(r, x, t)] · G1(s, r, t),

where s and r, respectively, denote seismic data source and receiver coordinates,
and x denotes image coordinates. The Green’s functions G(s, x, t), and G(r, x, t),
and the scattered data G1(s, r, t) are precomputed and stored in a single file with
more than 86 GB of size. Within the file, there are N = 5297 Greens functions;
each is a 3D volume in time and 2D space. The implementation of natural
migration is a hybrid MPI/OpenMP code distributed such that each MPI process
runs on a socket with 16 OMP threads. The algorithm does N2 data accesses
to the Green’s functions for computing the image. The time convolution (∗)
and dot-product (·) operations in the equation above are computationally cheap
compared to the IO cost for retrieving the Green’s function off disks. Therefore,
the performance of the natural migration algorithm is I/O bound. Optimization
of such algorithm is necessary considering that the equation above is applied
repeatedly for different geophysical parameters.

An equal amount of work is given to each MPI process in the scalability aspect
of this performance analysis. Our experiments show that the performance of the
code gets worse when the number of MPI processes/Lustre clients is increased.
This performance degradation, however, dramatically improves by increasing the
Lustre stripe count. As an example, the execution time on 100 nodes is around
452 s versus 930 s while using 250 nodes with a stripe count of 4. By increasing
the stripe count to 10, the execution time on 250 nodes is significantly reduced
to 505 s. Figure 3 on the left shows the same kind of performance analysis but
using DataWarp Burst Buffer. The number of DataWarp nodes is the equiv-
alent of stripe count in Lustre. Similarly, we notice that the performance on
DataWarp improves while increasing the number of DataWarp nodes up to 40
nodes. However, increasing it to 100 just hits the performance significantly with
any of the node counts used in this study. This could be explained by the differ-
ence of the underlying file system putting together the pool of allocated SSDs
and its limited scalability in comparison to Lustre parallel file system in its
current version. Nonetheless, DataWarp Burst Buffer technology provides good
performance benefits of up to 34% for small to medium size runs (50, 100 and
250 nodes) as shown in Fig. 3, right side. Performance degradation is noticed on
higher node counts (500 and 1000), and gets worse and worse as the number
of I/O clients is increased. While we scale to 2649 compute nodes (to read all
the sources with one execution) and 144 I/O clients, we could achieve similar
performance to 50 compute nodes, which is quite efficient.

4.5 NAS Parallel Benchmarks Block Triagonal I/O

The NAS Parallel Benchmarks (NPB) [13] are constituted by a set of appli-
cations/benchmarks with a scope to evaluate the performance of parallel

Scientific Applications Performance Evaluation on Burst Buffer 707

Fig. 3. Execution time per iteration of ATLIB on Burst Buffer and comparison with
Lustre

supercomputers. In this study, we use the NAS Parallel Benchmarks Block-
Tridiagonal (BT) I/O [14] to evaluate the I/O bandwidth on the available
DataWarp installation. BT I/O presents a block-tridiagonal partitioning pattern
on a three-dimensional array across a square number of processes. Each process
handles multiple Cartesian subsets of the entire data set, and they increase with
the square root of the number of processes participating in the computation. Mul-
tiple global arrays are consecutively written to a shared file by appending one
after another. The number of global arrays can be adjusted, more information is
provided in [15] For our experiments, we compile NPB v3.3.1 with Cray-MPICH
v7.4.2, Cray compiler v8.5.2, and Parallel-NetCDF 1.7.0. We are interested in
studying the I/O performance of various file formats and one of them is Par-
allel NetCDF (PnetCDF). Thus we chose an implementation of BT I/O which
employs this format [16]. For the experiments that take place on Lustre, we
always use the maximum amount of OSTs, which is 144. In Fig. 4, we compare
results from Lustre and DataWarp. We have two categories of experiments for
Lustre; one is with 128 compute nodes (using 32 cores per node) because this
is also the maximum number of compute nodes that are used for the DataWarp
experiments. The second one is with 512 compute nodes because we can achieve
the peak performance on Lustre, and increasing the number of nodes does not
provide any gain of the performance. For DataWarp we achieve maximum perfor-
mance with 128 compute nodes and while we scale, we increase the problem size.
We start with 400 GB of PnetCDF file with 2 DataWarp nodes. After numerous
experiments we found a sweet spot at 51 TB i.e. 256 DataWarp nodes. From the
results in Fig. 4, left side, we observe that DataWarp is at least three times faster
than Lustre, achieving close to 90 GB/s, which corresponds almost to the ratio
of IOR performance between DataWarp and Lustre. We achieved the maximum
performance by applying 8 MPI aggregators per DataWarp node.

However, it is important to know if the I/O bandwidth is efficient as com-
pared to the optimal performance. From IOR results we know that the maximum
I/O bandwidth per DataWarp nodes for write, is around 5.7 GB/s. Thus we can
extrapolate and calculate the I/O bandwidth efficiency to obtain the results of
Fig. 4, right side. The I/O efficiency starts a bit over 50% with 2 DataWarp
nodes and falls under 10% with 256 DataWarp nodes which mean that the I/O

708 G.S. Markomanolis et al.

bandwidth is not scalable in this case. Thus, with this benchmark, DataWarp is
three times better than Lustre, but the I/O pattern does not utilize optimally
the DataWarp. As we use 128 compute node, and we have 8 MPI I/O aggre-
gators per DataWarp node, with 16 DataWarp nodes, we have totally 128 MPI
I/O aggregators, which means one per compute node. Increasing further the
DataWarp nodes, we have more than one MPI I/O aggregator per node. Thus,
there is some network contention and the performance is decreased.

Fig. 4. NAS BT I/O on DW

From Darshan data, Fig. 5, it is clear that while we increase the size of the
output file from 400 GB (left side) to 3.2 TB (right side), there are more write
calls and so more seek operations, while more than 85% of the total execution
time, is I/O. This hurts both filesystems, but DW is constituted by SSDs drives
which are faster as also the increase of the MPI I/O aggregators can improve
the performance according to [1].

Fig. 5. Comparison of DataWarp and Lustre for NAS BT IO

4.6 Parallel IDX Benchmark

The IDX format provides efficient, cache oblivious, and progressive access to
large-scale scientific data by storing the data in a hierarchical Z (HZ) order [17].
The HZ order is calculated for each data sample using the spatial coordinates
of that sample. In order to study large datasets a parallel version of IDX, called

Scientific Applications Performance Evaluation on Burst Buffer 709

PIDX [18], was developed. To achieve high scalability with PIDX, the develop-
ers of the framework did implement the total I/O procedure in three phases.
Initially, we have the restructuring; blocks of data are created to optimize the
layout for I/O. In the continuation, we have the in-core reorganization of data in
a read-friendly format following by the data aggregation to optimize disk access.
During data restructuring, there is high utilization of the network between the
participated processes, and only a subset of them have the required data to par-
ticipate in next phase. Then, HZ encoding is applied locally on all processes of
phase 1. Afterward, the data aggregation occurs, and the data are written to
many IDX files. The data aggregation is constituted by steps, in which the first
one, data are gathered to aggregators using one-sided MPI communication, and
then each aggregator writes its IDX file. This method combines an aggregation
strategy that the final phase does not create contention because it creates multi-
ple files. In this work, we use a PIDX tutorial that the developers include in the
distribution and they call it checkpoint simple. It reproduces the I/O in the case
that we integrate PIDX in a real application. In order to produce an average
I/O workload per MPI process, that could correspond to a real application, we
declare in our experiment that each MPI process handles 64 MB of data, so all
together the 32 cores, are saving 2 GB of data in a file. Moreover, the 64 MB
per process are constituted by 32 variables. In Fig. 6 we present the results using
144 OSTs on Lustre and 16 to 256 DataWarp nodes.

Fig. 6. Comparison of DataWarp and Lustre for PIDX

Moreover, we use 256 compute nodes for 16 DataWarp nodes, till 1024 com-
pute nodes for 256 DataWarp nodes. For 256 compute nodes, we save 512 GB
files, and the global domain is 20×8×2048×512, while for 1024 compute nodes,
we save 2 TB files, and the global domain is 2048 × 2048 × 2048. The requested
size of I/O per MPI process remains 64 MB for all the experiments. Although,
till 64 DataWarp nodes, the Burst Buffer and Lustre have similar write I/O per-
formance, for more DataWarp nodes, Burst Buffer is scaling while Lustre does
not. More accurate for 256 DataWarp nodes, Burst Buffer, achieves 900 GB/s
which is three times faster than Lustre’s peak, 300 GB/s. All the experiments
took place in non dedicated mode and peak performance can be influenced. The
right part of Fig. 6 shows the PIDX I/O efficiency based on IOR peak results.

710 G.S. Markomanolis et al.

Till 144 DataWarp nodes, the I/O efficiency is above 75%, and it drops a bit
more than 60% for 256 DataWarp nodes. As we scale on the system, and with
regard to the phase of PIDX that utilizes the network, if the system is busy the
results can vary because of the Aries network on XC-40. Thus, we believe that
some experiments could be better with dedicated mode and newer compute node
Linux which will be available on this system in a few months. From the results
we understand that PIDX is an efficient I/O library and it is quite scalable.
Thus, it is evident that we need to adapt our I/O approach.

5 Conclusions and Future Work

With the continuous and fast growth of the computational power, the I/O in
scientific applications becomes a more significant performance bottleneck. We
have evaluated the impact of different file system configurations including the
newly added I/O layer of Burst Buffer with various scientific applications. A
performance improvement is noted in all case and a correlation between the best
balance between the number of compute and DataWarp nodes was identified in
some of these cases.

The modified NAS BT benchmark with PnetCDF obtained 3 times better
performance than Lustre. The serialized I/O in the Fluent software is also evalu-
ated, and a performance gain of 20% with Burst Buffer was observed. The NGA
application had a significant I/O performance improvement, which led to 25%
total execution time improvement. ATLIB was studied with various combina-
tions of DataWarp and compute nodes and its performance improved by 34%.
PIDX achieved 900 GB/s, which is a significant result since this a benchmark
could provide a faster I/O solution for real applications by using its API. For
future improvements, we consider modifying the open source codes to integrate
PIDX library or any other efficient I/O library for DataWarp, such as LibHIO
[19]. Moreover, we foresee the need for an auto-tuning tool for optimizing I/O
operations on DataWap to alleviate the burden of tuning so many parameters
from end users.

Acknowledgment. For computer time, this research used the resources of the Super-
computing Core Laboratory at King Abdullah University of Science & Technology
(KAUST) in Thuwal, Saudi Arabia.

References

1. Markomanolis, G.S.: Getting started with the burst buffer. doi:10.6084/m9.
figshare.4871738

2. Cray: XC-40, datawarp applications I/O accelerator. http://www.cray.com/sites/
default/files/resources/CrayXC40-DataWarp.pdf

3. Bhimji, W., Bard, D., Romanus, M., Paul, D., Ovsyannikov, A., Friesen, B.,
Bryson, M., Correa, J., Lockwood, G.K., Tsulaia, V., Byna, S., Farrell, S., Gursoy,
D., Daley, C., Beckner, V., Straalen, B.V., Trebotich, D., Tull, C., Weber, G.,
Wright, N.J., Antypas, K., Prabhat: Accelerating science with the NERSC burst
buffer early user program. Cray User Group (2016)

http://dx.doi.org/10.6084/m9.figshare.4871738
http://dx.doi.org/10.6084/m9.figshare.4871738
http://www.cray.com/sites/default/files/resources/CrayXC40-DataWarp.pdf
http://www.cray.com/sites/default/files/resources/CrayXC40-DataWarp.pdf

Scientific Applications Performance Evaluation on Burst Buffer 711

4. Schenck, W., El Sayed, S., Foszczynski, M., Homberg, W., Pleiter, D.: Early evalu-
ation of the “Infinite Memory Engine” burst buffer solution. In: Taufer, M., Mohr,
B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 604–615.
Springer, Cham (2016). doi:10.1007/978-3-319-46079-6 41

5. IOR: test. www.csm.ornl.gov/essc/io/IOR-2.10.1.ornl.13/USER GUIDE
6. Hadri, B., Kortas, S., Feki, S., Khurram, R.: Overview of the KAUST’s Cray X40

system – Shaheen II. Cray User Group (2015)
7. ANSYS: AnsysR© academic research, release 17.0, fluent, ansys inc.
8. Ansys: External flow over a formula-1 race car (2016)
9. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G.,

Wang, X., Powers, J.G.: A description of the advanced research WRF version 3.
NCAR Technical Note NCAR/TN-475+STR (2008)

10. Morton, D., Nudson, O., Stephenson, C.: Benchmarking and evaluation of the
weather research and forecasting (WRF) model on the Cray XT5 (2009)

11. Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative
finite difference scheme for variable density low mach number turbulent flows. J.
Comput. Phys. 227(15), 7125–7159 (2008)

12. AlTheyab, A., Lin, F.C., Schuster, G.T.: Imaging near-surface heterogeneities by
natural migration of backscattered surface waves. Geophys. J. Int. 204, 1332–1341
(2016)

13. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS parallel benchmarks-summary
and preliminary results. In: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing (Supercomputing 1991), pp. 158–165. ACM, New York (1991)

14. Wong, P., Van der Wijngaart, R.F.: NAS parallel benchmarks I/O version 2.4
(2003)

15. Liao, W.K.: Design and evaluation of MPI file domain partitioning methods under
extent-based file locking protocol. IEEE Trans. Parallel Distrib. Syst. 22(2), 260–
272 (2011)

16. Northwestern University: Benchmarking MPI-I/O with PnetCDF on NAS parallel
benchmark BT. #benchmarks (2013). http://cucis.ece.northwestern.edu/projects/
PnetCDF/#benchmarks

17. Pascucci, V., Frank, R.J.: Global static indexing for real-time exploration of very
large regular grids. In: Proceedings of the 2001 ACM/IEEE Conference on Super-
computing (SC 2001), p. 2. ACM, New York (2001)

18. Kumar, S., Vishwanath, V., Carns, P.H., Summa, B., Scorzelli, G., Pascucci, V.,
Ross, R.B., Chen, J., Kolla, H., Grout, R.W.: PIDX: Efficient parallel I/O for
multi-resolution multi-dimensional scientific datasets. In: CLUSTER (2011)

19. Los Alamos National Security: Libhio, a library intended for writing data to hier-
archical data store systems (2016). https://github.com/hpc/libhio

http://dx.doi.org/10.1007/978-3-319-46079-6_41
www.csm.ornl.gov/essc/io/IOR-2.10.1.ornl.13/USER_GUIDE
http://cucis.ece.northwestern.edu/projects/PnetCDF/#benchmarks
http://cucis.ece.northwestern.edu/projects/PnetCDF/#benchmarks
https://github.com/hpc/libhio

JULEA: A Flexible Storage Framework for HPC

Michael Kuhn(B)

Universität Hamburg, 20146 Hamburg, Germany
michael.kuhn@informatik.uni-hamburg.de

https://wr.informatik.uni-hamburg.de/

Abstract. JULEA is a flexible storage framework that allows offering
arbitrary client interfaces to applications. To be able to rapidly prototype
new approaches, it offers data and metadata backends that can either
be client-side or server-side; backends for popular storage technologies
such as POSIX, LevelDB and MongoDB have already been implemented.
Additionally, JULEA allows dynamically adapting the I/O operations’
semantics and can thus be adjusted to different use-cases. It runs com-
pletely in user space, which eases development and debugging. Its goal
is to provide a solid foundation for storage research and teaching.

Keywords: Flexible storage framework · High performance computing ·
Parallel file system · Object store · Key-value store

1 Introduction

File systems are typically monolithic in design: They support a single storage
backend, a single interface and a single set of semantics. While this design has
benefits with regards to portability, it is too inflexible for research and teaching.
It makes it hard to try new algorithms and approaches because they often require
changes to many different components of the file system.

There are two majors problems caused by this: On the one hand, many spe-
cialized solutions are created that try to solve a particular problem [11,19,21].
While these are often based on existing file systems, the code is seldom con-
tributed back because it does not meet the original design goals; this makes it
hard to maintain these approaches in the long term. On the other hand, it is
necessary to have a more or less complete understanding of the file systems due
to their complex design. This is especially problematic in the context of shorter
projects and presents an unnecessary hurdle for young researchers and students
to gain experience with file systems.

A possible solution for these problems is a flexible storage framework that is
extensible using plugins for its application-facing interface, its storage backend
and its internal behavior, that is, its semantics. This provides the flexibility
required to support the many different use-cases found in HPC.

Many applications do not access the file system directly but instead rely on
high-level libraries to perform I/O efficiently. This is especially common in scien-
tific applications where exchangeability of data is a primary concern; libraries for
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 712–723, 2017.
https://doi.org/10.1007/978-3-319-67630-2_51

JULEA: A Flexible Storage Framework for HPC 713

self-describing data formats such as NetCDF and HDF5 are widely used there.
An exemplary software stack is shown in Fig. 1a. Applications only directly inter-
face with NetCDF, which depends on HDF5 and so on. Due to the complex
interplay of different components and optimizations in this stack, performance
issues are a common occurrence. One of the reasons are the strict POSIX seman-
tics that are typically provided by the underlying parallel file system and forced
upon the upper layers [18].

Fig. 1. Current HPC I/O stack and proposed JULEA I/O stack

Multiple projects are currently investigating possibilities of eliminating this
problem by integrating the I/O libraries and file systems more closely [5,12].
Providing such an interface natively could have many benefits but is hard to
achieve with current file systems. There are also approaches to combine tech-
nologies from the HPC and big data fields and use object stores instead of
full-fledged file systems [3,13]. Additionally, there has been research regarding
alternative file system interfaces [2,17] and to allow the file systems semantics
to be adapted according to the applications’ requirements [1,9,19].

While some of these approaches can use existing storage systems and extend
them according to their goals, many need to implement basic functionality from
scratch because they do not fit within the architecture of existing solutions.

The main contribution of this paper is JULEA, a flexible storage frame-
work that can be used to rapidly prototype new approaches in research and
teaching. Therefore, it provides basic storage building blocks that are powerful
yet generic enough to support parallel and distributed storage use-cases. This
kind of flexible functionality requires well-defined and well-documented plugin
interfaces with common requirements in mind. To make it more accessible to
developers, readability is favored over performance and there is a clear separa-
tion of functionality. It is possible to run it without system-level access to enable
easy large-scale experiments on supercomputers, where such access is typically
not available.

The resulting software stack is shown in Fig. 1b. All functionality is provided
in user space to ease development and debugging. Existing I/O libraries like

714 M. Kuhn

MPI-IO or HDF5 can be adapted to make use of JULEA’s functionality. Alter-
natively, applications can interface directly with JULEA, which manages data
and metadata storage.

This paper is structured as follows: Sect. 2 presents JULEA’s goals and design
in detail; this includes the general architecture and different components. The
implementation’s current status is shown in Sect. 3. Some preliminary evaluation
results are displayed in Sect. 4. Related work is presented in Sect. 5. Finally, the
paper is concluded and future work is presented in Sect. 6.

2 Design

JULEA follows a traditional client-server design where clients communicate with
servers via the network. In contrast to existing file systems that only provide a
single client interface, JULEA makes it possible to offer arbitrary interfaces to
applications. This can be used to offer traditional file system interfaces as well
as completely new types of interfaces. The servers are able to use a multitude
of existing storage technologies to foster experimentation; this is achieved by
supporting multiple backends. To facilitate rapid prototyping, both clients and
backends are easy to implement and exchange. Additionally, JULEA supports
dynamically adaptable semantics for all I/O operations. This allows clients to
support a wide range of use-cases, such as the very strict POSIX semantics as
well as the more relaxed MPI-IO semantics.

Fig. 2. JULEA’s main components

Figure 2 shows the main components of JULEA’s design. An application can
use one or more JULEA clients to talk to the storage servers. While applications
can directly use JULEA’s clients, it is also possible to adapt I/O libraries to make
use of them; for instance, this could be used to provide an appropriate MPI-IO
module or HDF5 plugin. JULEA’s servers are split into data and metadata
servers, which allows tuning the servers for their respective access patterns.

2.1 Clients

Clients are completely unrestricted regarding the interface they provide. Tra-
ditional file systems typically offer a single interface that can not be changed

JULEA: A Flexible Storage Framework for HPC 715

easily due to it being interwoven with the rest of the file system architecture.
Therefore, it is often only possible to add extensions to these existing interfaces,
which limits the amount and degree of experimentation.

Because JULEA will be implemented in user space, arbitrary interfaces can
be provided. This is typically problematic for kernel space file systems, whose
client interfaces are restricted by the VFS. Clients can either be directly used
by applications or offer interfaces to be used by high-level I/O libraries.

2.2 Backends

To allow backends to be optimized for different use-cases and access patterns,
they are separated into data and metadata backends and are used by data and
metadata servers, respectively. While data backends are meant to serve large
streaming I/O, metadata backends should excel at small random accesses. Data
backends manage objects and their interface is therefore very close to popular
object stores and file systems. Metadata backends manage key-value pairs with
an appropriate interface for this use-case.

To define an appropriate interface for the data backends, interfaces of exist-
ing file systems (such as Lustre and OrangeFS), object stores (such as Ceph’s
RADOS) and I/O interfaces (such as MPI-IO) have been taken into considera-
tion. The resulting functions supported by data backends are as follows:

– create: Creates an object given by its name.
– open: Opens an object given by its name.
– delete: Deletes an object.
– close: Closes an object.
– status: Returns an object’s modification time and size.
– sync: Syncs an object to the underlying storage device.
– read: Reads data of a given length from an object at the specified offset.
– write: Writes data of a given length to an object at the specified offset.

The create and open functions return an object handle on success that can
then be used with all other functions. The delete and close functions destroy the
object handle. In contrast to POSIX’s stat, the status function only returns
very basic information to be able to support a wide range of data backends.

As for the data backends, existing database (such as SQLite and MongoDB)
and key-value (such as LevelDB and LMDB) solutions have been investigated to
define a common interface for all metadata backends. This resulted in a common
set of functions that are offered by metadata backends:

– batch start: Starts a batch that can include put and delete operations.
– batch execute: Executes a batch.
– put: Stores a value for a given key.
– delete: Delete a key-value pair for a given key.
– get: Returns the value for a given key.
– get all: Returns all values.

716 M. Kuhn

– get by prefix: Returns all values for keys starting with a given prefix.
– iterate: Iterates over a multi-value result.

Batches allow aggregating multiple put and delete operations to improve
performance; this functionality is also commonly found in current database sys-
tems. While the get function returns the value for a single key, the get all and
get by prefix functions can return multiple values. For this reason, the iterate
function allows iterating over the respective results.

Data and metadata backends support namespaces to allow multiple clients to
co-exist and not interfere with each other. Additionally, they support initializa-
tion and finalization functions to set up and destroy necessary data structures.

2.3 Semantics

JULEA allows many aspects of its operations’ semantics to be changed at run-
time. Several key areas of the semantics have been identified as important to
provide opportunities for optimizations and are briefly described below. Even
though it is possible to mix the settings for each of these semantics, not all
combinations might produce reasonable results. Semantics templates make it
possible to easily emulate existing semantics such as POSIX.

– The atomicity semantics can be used to specify whether or not it is possible
for clients to see intermediate states of operations. These are possible because
large operations usually involve several servers. If atomicity is required, some
kind of locking has to be performed to prevent other clients from accessing
data that is currently being modified.

– The concurrency semantics can be used to specify whether concurrent
accesses will take place and, if so, how the access pattern will look like.
This allows handling different patterns appropriately without the need for
heuristics to recognize them. Depending on the level of concurrency, different
algorithms might be appropriate for operations such as locking or metadata
access.

– The consistency semantics can be used to specify if and when clients will
see modifications performed by other clients and applies to both metadata
and data. This information can be used to enable client-side read caching
whenever possible.

– The ordering semantics can be used to specify whether operations are allowed
to be reordered. Because there can be a large number of operations, the
additional information can be exploited to optimize their execution.

– The persistency semantics can be used to specify if and when data and meta-
data must be written to persistent storage. This can be used to enable client-
side write caching whenever possible.

– The safety semantics can be used to specify how safely data and metadata
should be handled. It provides guarantees about the state of the data and
metadata after the execution of operations has finished.

For more in-depth information about JULEA’s semantics, please see [8–10].

JULEA: A Flexible Storage Framework for HPC 717

3 Implementation

The design discussed in the previous section has been implemented within the
JULEA project, which is freely available.1 It is written in modern C11 code and
features only two mandatory dependencies (GLib [6], libbson [14]) to make it
easily portable. The code uses the GNU Lesser General Public License (LGPL
3.0 or later) to allow proprietary clients and backends in addition to the available
open source ones.

While the clients are provided in the form of shared libraries that can be
linked into the application, the server is a specialized program that can function
as both a data and metadata server. The shared libraries are written in such a
way as to allow applications to use multiple clients at the same time. Backends
are also built as shared libraries and can be loaded by the clients and servers.

Fig. 3. JULEA’s architecture with two applications using different configurations

Figure 3 shows two exemplary uses of JULEA. Both applications use
JULEA’s item client (libjulea-item.so) that provides an easy-to-use cloud-
like I/O interface. For the application on the right side, JULEA has been con-
figured to use its client-side MongoDB metadata backend (libmongodb.so)
and its server-side POSIX data backend (libposix.so). JULEA’s core library

1 https://github.com/wr-hamburg/julea.

https://github.com/wr-hamburg/julea

718 M. Kuhn

(libjulea.so) automatically loads all required client-side backends at runtime.
The client forwards all requests to the core library, which in turn forwards them
to the appropriate servers. For the application on the left side, JULEA has been
configured to use its server-side LevelDB metadata backend (libleveldb.so)
and its server-side POSIX data backend (libposix.so). In this case, no addi-
tional client-side backend has to be loaded. Both configurations are completely
transparent for the application and provide the same functionality.

JULEA’s flexibility results in a high number of possible configurations: In
addition to the data and metadata backends being configurable, the semantics
can be set for batches of operations. To facilitate easy verification and perfor-
mance evaluation, JULEA contains extensive test and benchmark suites.

Additionally, JULEA includes miscellaneous utilities (a command line inter-
face for creating, listing and deleting objects and key-value pairs; a tool for
manipulating JULEA’s configuration; a tool to gather server statistics) and
proof-of-concept codes (a FUSE file system using JULEA). This makes it easy
to achieve fast results with JULEA and provides insight into its internals.

3.1 Clients

Clients provide interfaces that can be used by applications or other I/O libraries.
They are typically required to use their own, separate namespaces to not interfere
with each other. This makes it possible to use multiple clients on top of the same
JULEA installation. For instance, the item client would manage all its data and
metadata within the item namespace while the POSIX client would use the
posix namespace. This provides flexibility that is currently not available with
many existing file systems. Currently, JULEA contains the following clients from
which applications and libraries can choose depending on their requirements:

– The object client provides direct access to JULEA’s data store and is able
to access arbitrary namespaces. It provides abstractions for single-server and
distributed objects that can be used by other clients; this allows other clients
to focus on their respective functionalities.

– The kv client provides direct access to JULEA’s metadata store and is able to
access arbitrary namespaces. It provides an abstraction for key-value pairs.
As with the object client, this allows other clients to make easy use of this
functionality.

– The item client provides a cloud-like interface that supports collections and
items. Collections are the top-level entity and can contain only items, which
results in a relatively flat hierarchy. Both collections and items can be listed
using iterators. Items can be distributed over the available data servers using
JULEA’s distributions; the client makes use of the object client’s distributed
object abstraction and the kv client’s key-value abstraction to achieve this.

– The posix client implements a POSIX file system using the FUSE framework
on top of JULEA. It currently uses the item client but will be migrated to
the object and kv clients.

JULEA: A Flexible Storage Framework for HPC 719

3.2 Backends

Backends determine how data and metadata operations are handled. They are
completely transparent from the client point of view and can be exchanged using
the configuration. Backends can be either client-side or server-side, which causes
them to be loaded and used by JULEA’s clients and servers, respectively. Due
to the standardized backend interface, additional backends can be implemented
easily. JULEA already contains the following backends:

– The posix server-side data backend provides compatibility with existing
POSIX file systems. Due to using a full-featured file system as the data back-
end, certain functionalities – such as path lookup and permission checking –
can be duplicated within the I/O stack depending on the used client.

– The gio server-side data backend uses the GIO library that provides a mod-
ern, easy-to-use VFS API supporting multiple backends of its own, including
POSIX, FTP and SSH. It is mainly intended as a proof of concept and allows
experimenting with GIO’s more exotic backends.

– The lexos server-side data backend uses LEXOS to provide a light-weight data
store. LEXOS has been designed and implemented in [16] and only provides
basic I/O operations suited for an object store.

– The null server-side data backend is intended for performance measurements
of the overall I/O stack. It excludes the influence of underlying storage hard-
ware by returning dummy information and discarding all incoming data.
Operations are still sent to the appropriate servers to allow measurements
of JULEA’s network components.

– The leveldb server-side metadata backend uses LevelDB for metadata stor-
age. Due to JULEA’s metadata interface and LevelDB’s interface being very
similar, the backend is a relatively thin wrapper.

– The mongodb client-side metadata backend uses MongoDB and maps key-
value pairs to documents using appropriate indexes to speed up operations.
In contrast to server-side backends, the connections to the MongoDB servers
are handled by the MongoDB C driver [15].

4 Evaluation

JULEA’s performance heavily depends on the used data and metadata backends.
For this reason, this section will focus on some general performance aspects. The
local results have been generated on a desktop machine (Intel Xeon E3-1225v3)
with a consumer SSD (Samsung SSD 840 EVO). The remote results have been
measured with two dual-socket nodes (Intel Xeon X5650) with an HDD (Seagate
Barracuda 7200.12) that are connected via Gbit Ethernet; one node has been
used as a client and one node has been used as a server.

Table 1 shows performance results for the posix and null data backends as well
as the leveldb and mongodb metadata backends. The local and remote results

720 M. Kuhn

Table 1. Performance of different data and metadata backends

Storage Backend Operation Perf. (local) Perf. (remote)

Data POSIX Create 19,500 ops/s 3,600 ops/s

Delete 29,500 ops/s 4,300 ops/s

Status 39,500 ops/s 4,500 ops/s

NULL Create 49,000 ops/s 5,500 ops/s

Delete 49,500 ops/s 5,000 ops/s

Status 49,500 ops/s 4,900 ops/s

Metadata LevelDB Put 41,500 ops/s 4,300 ops/s

Delete 43,000 ops/s 4,300 ops/s

MongoDB Put 7,500 ops/s 1,400 ops/s

Delete 8,000 ops/s 1,500 ops/s

differ significantly because the remote results are limited by the Ethernet net-
work’s high latency.2 While the posix data backend already shows satisfactory
throughput, the null data backend shows the maximum throughput of JULEA’s
current implementation. The performance difference is even more pronounced
when looking at the metadata backends: While the leveldb metadata backend
almost achieves the maximum throughput possible, the mongodb one is signifi-
cantly slower. Is is important to note that these numbers were generated using
JULEA’s built-in benchmark suite by simply using a different configuration file
via the JULEA CONFIG environment variable. Additionally, the benchmark suite
currently uses only a single thread, that is, performance is likely better in real-
world applications using multiple threads.

Table 2 shows performance results of different safety semantics when using
the leveldb metadata backend. As mentioned previously, the safety semantics
can be used to specify how safely data and metadata should be handled. The
none setting provides no guarantees and does not even check whether the data
has reached the servers; the network setting (which is the default) guarantees
that data has reached the servers; the storage setting guarantees that data has
been written to persistent storage. The safety semantics is handled implicitly by
the storage framework but clients are free to override it. This can be used to
considerably decrease overhead depending on applications’ safety requirements.

Even though the presented results only highlight a few key aspects of
JULEA’s design, it can be seen that the framework is able to handle a mul-
titude of different use-cases due to its flexibility. Adding new backends requires
only a small amount of code3 and is easy due to JULEA’s clearly defined plu-
gin architecture. Moreover, being able to adapt the semantics allows satisfying
different requirements and tuning performance according to them.

2 The network’s round-trip time is 0.110ms, which results in a maximum of 9,090
ops/s.

3 The existing backends are between 200 and 400 lines of code each.

JULEA: A Flexible Storage Framework for HPC 721

Table 2. Performance of the LevelDB backend with different safety levels

Safety Operation Perf. (local) Perf. (remote)

None Put 225,000 ops/s 62,000 ops/s

Delete 197,000 ops/s 59,500 ops/s

Network Put 41,500 ops/s 4,300 ops/s

Delete 43,000 ops/s 4,300 ops/s

Storage Put 29,500 ops/s 3,800 ops/s

Delete 31,000 ops/s 3,900 ops/s

5 Related Work

OrangeFS (formerly known as PVFS) is a user-level parallel file system [4,7]. Its
Trove layer abstracts the underlying storage technologies and currently supports
arbitrary POSIX file systems for data and BDB for metadata. There are cur-
rently projects to allow using LMDB and Cassandra for metadata. The metadata
backend to use has to be specified at configure time; JULEA allows configuring
the metadata backend using its configuration file. Additionally, JULEA’s back-
ends do not have to be integrated into the storage framework but can be built
externally.

Ceph has gone through different underlying storage technologies [20]. In the
past, it used EBOFS, a custom low-level object store. Current versions sup-
port arbitrary POSIX file systems but due to requirements regarding extended
attributes only XFS, btrfs and ext4 are properly supported. Future versions will
also support BlueStore, a custom file system built specifically for Ceph.

Lustre is a kernel file system and only provides a POSIX interface. There is
work underway to establish DAOS, which is based on Lustre and offers interfaces
for containers, key-value pairs, multi-dimensional arrays and blobs [12]. This
will be used to provide an HDF5 interface directly on top of these interfaces.
DAOS’s approach is very similar to JULEA but has different goals. While DAOS
is meant to be a production exascale storage system, JULEA’s goal is to provide
a convenient framework for research and teaching that can be used to evaluate
the functionality and performance of new concepts. These concepts can then be
integrated into production systems if deemed successful.

6 Conclusion and Future Work

JULEA provides a flexible storage framework and contains all the necessary
building blocks to facilitate rapid prototyping and evaluation of different stor-
age technologies. It has few dependencies and can be used without system-level
access, making it a good candidate for research and teaching.

While the basic storage framework and some initial backends have been fin-
ished, more work remains to be done. First, to investigate the potential benefits

722 M. Kuhn

of separating metadata and data of high-level data formats, we will implement an
HDF5 VOL plugin that makes use of JULEA. While the actual data (datasets)
will be stored using the data backend, everything else will be handling by the
metadata backend, enabling efficient access to structural namespace information
and attributes. We expect this approach to provide interesting insights because
the current I/O stack causes HDF5 metadata access to be handled by the file
systems’ data servers, which are usually not tuned for these specific access pat-
tern. Second, we will further extend JULEA’s backend support. Specifically, we
will add a data backend for Ceph’s RADOS. This will allow both easy integra-
tion of JULEA into existing Ceph environments and facilitate comparison of
different approaches found in RADOS and JULEA’s distribution functionality.
These additional data and metadata backends will lead to further improvements
to JULEA’s backend interface, which will allow it to remain stable in the fore-
seeable future and provide a reliable base for third-party backends.

References

1. Al-Kiswany, S., Gharaibeh, A., Ripeanu, M.: The case for a versatile stor-
age system. Operating Syst. Rev. 44(1), 10–14 (2010). http://doi.acm.org/
10.1145/1740390.1740394

2. Albadri, N., Watson, R., Dekeyser, S.: TreeTags: bringing tags to the hierarchical
file system. In: Proceedings of the Australasian Computer Science Week Multicon-
ference, Canberra, Australia, 2–5 February 2016, p. 21 (2016). http://doi.acm.org/
10.1145/2843043.2843868

3. BigStorage: Storage-Based Convergence Between HPC and Cloud to Handle Big
Data (2017). http://bigstorage-project.eu/. Accessed Mar 2017

4. Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: PVFS: A parallel file sys-
tem for linux clusters. In: 4th Annual Linux Showcase and Conference, Atlanta,
Georgia, USA, 10–14 October 2000. https://www.usenix.org/conference/als-2000/
pvfs-parallel-file-system-linux-clusters

5. ESiWACE: Centre of Excellence in Simulation of Weather and Climate in Europe
(2017). https://www.esiwace.eu/. Accessed Mar 2017

6. GLib: GLib Reference Manual (2017). https://developer.gnome.org/glib/.
Accessed Mar 2017

7. Gu, P., Wang, J., Ross, R.: Bridging the gap between parallel file systems and
local file systems: A case study with PVFS. In: 2008 International Conference on
Parallel Processing, ICPP 2008, 8–12 September 2008, Portland, Oregon, USA, pp.
554–561 (2008). http://dx.doi.org/10.1109/ICp.2008.43

8. Kuhn, M.: A semantics-aware I/O interface for high performance computing. In:
Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2013. LNCS, vol. 7905, pp.
408–421. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38750-0 31

9. Kuhn, M.: Dynamically adaptable I/O semantics for high performance computing.
In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance 2015. LNCS, vol. 9137,
pp. 240–256. Springer, Cham (2015). doi:10.1007/978-3-319-20119-1 18

10. Kuhn, M.: Dynamically adaptable I/O semantics for high performance comput-
ing. Ph.D. Thesis, Universität Hamburg (2015). http://ediss.sub.uni-hamburg.de/
volltexte/2015/7302/

http://doi.acm.org/10.1145/1740390.1740394
http://doi.acm.org/10.1145/1740390.1740394
http://doi.acm.org/10.1145/2843043.2843868
http://doi.acm.org/10.1145/2843043.2843868
http://bigstorage-project.eu/
https://www.usenix.org/conference/als-2000/pvfs-parallel-file-system-linux-clusters
https://www.usenix.org/conference/als-2000/pvfs-parallel-file-system-linux-clusters
https://www.esiwace.eu/
https://developer.gnome.org/glib/
http://dx.doi.org/10.1109/ICp.2008.43
http://dx.doi.org/10.1007/978-3-642-38750-0_31
http://dx.doi.org/10.1007/978-3-319-20119-1_18
http://ediss.sub.uni-hamburg.de/volltexte/2015/7302/
http://ediss.sub.uni-hamburg.de/volltexte/2015/7302/

JULEA: A Flexible Storage Framework for HPC 723

11. Kuhn, M., Kunkel, J.M., Ludwig, T.: Dynamic file system semantics to enable
metadata optimizations in PVFS. Concurrency Comput. Pract. Experience 21(14),
1775–1788 (2009). http://dx.doi.org/10.1002/cpe.1439

12. Lofstead, J.F., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J., Barton, E.: DAOS
and friends: a proposal for an exascale storage system. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2016, Salt Lake City, UT, USA, 13–18 November 2016, pp. 585–
596 (2016). http://dx.doi.org/10.1109/SC.2016.49

13. Matri, P., Costan, A., Antoniu, G., Montes, J., Pérez, M.S.: Týr: blob storage
meets built-in transactions. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2016, Salt
Lake City, UT, USA, 13–18 November 2016, pp. 49:1–49:12 (2016). http://dl.acm.
org/citation.cfm?id=3014970

14. MongoDB, I.: Libbson: A BSON utility library (2017). https://github.com/
mongodb/libbson. Accessed Mar 2017

15. MongoDB, I.: Libmongoc: A high-performance MongoDB driver for C (2017).
https://github.com/mongodb/mongo-c-driver. Accessed Mar 2017

16. Schröder, S.: Design, Implementation, and Evaluation of a Low-Level Extent-Based
Object Store. Master’s Thesis, Universität Hamburg (2013)

17. Seltzer, M.I., Murphy, N.: Hierarchical file systems are dead. In: Proceedings of
HotOS 2009: 12th Workshop on Hot Topics in Operating Systems, 18–20 May
2009, Monte Verità, Switzerland (2009). http://www.usenix.org/events/hotos09/
tech/full papers/seltzer/seltzer.pdf

18. Stender, J., Kolbeck, B., Hupfeld, F., Cesario, E., Focht, E., Hess, M., Malo, J.,
Mart́ı, J.: Striping without sacrifices: Maintaining POSIX semantics in a parallel
file system. In: Proceedings of the First USENIX Workshop on Large-Scale Com-
puting, LASCO 2008, 23 June 2008, Boston, MA, USA (2008). http://www.usenix.
org/events/wiov08/tech/full papers/stender/stender.pdf

19. Vilayannur, M., Nath, P., Sivasubramaniam, A.: Providing tunable consistency
for a parallel file store. In: Proceedings of the FAST 2005 Conference on File
and Storage Technologies, 13–16 December 2005, San Francisco, California, USA
(2005). http://www.usenix.org/events/fast05/tech/vilayannur.html

20. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: A scal-
able, high-performance distributed file system. In: 7th Symposium on Operating
Systems Design and Implementation (OSDI 2006), 6–8 November 2006, Seattle,
WA, USA, pp. 307–320 (2006). http://www.usenix.org/events/osdi06/tech/weil.
html

21. Wright, C.P., Spillane, R.P., Sivathanu, G., Zadok, E.: Extending ACID semantics
to the file system. TOS 3(2), 4:1–4:42 (2007). http://doi.acm.org/10.1145/1242520.
1242521

http://dx.doi.org/10.1002/cpe.1439
http://dx.doi.org/10.1109/SC.2016.49
http://dl.acm.org/citation.cfm?id=3014970
http://dl.acm.org/citation.cfm?id=3014970
https://github.com/mongodb/libbson
https://github.com/mongodb/libbson
https://github.com/mongodb/mongo-c-driver
http://www.usenix.org/events/hotos09/tech/full_papers/seltzer/seltzer.pdf
http://www.usenix.org/events/hotos09/tech/full_papers/seltzer/seltzer.pdf
http://www.usenix.org/events/wiov08/tech/full_papers/stender/stender.pdf
http://www.usenix.org/events/wiov08/tech/full_papers/stender/stender.pdf
http://www.usenix.org/events/fast05/tech/vilayannur.html
http://www.usenix.org/events/osdi06/tech/weil.html
http://www.usenix.org/events/osdi06/tech/weil.html
http://doi.acm.org/10.1145/1242520.1242521
http://doi.acm.org/10.1145/1242520.1242521

Delivering LHC Software to HPC Compute
Elements with CernVM-FS

Jakob Blomer(B), Gerardo Ganis, Nikola Hardi, and Radu Popescu

European Organization for Particle Research (CERN), Geneva, Switzerland
{jblomer,ganis,nhardi,rpopescu}@cern.ch

Abstract. In recent years, there was a growing interest in improving
the utilization of supercomputers by running applications of experiments
at the Large Hadron Collider (LHC) at CERN when idle cores cannot
be assigned to traditional HPC jobs. At the same time, the upcom-
ing LHC machine and detector upgrades will produce some 60 times
higher data rates and challenge LHC experiments to use so far untapped
compute resources. LHC experiment applications are tailored to run on
high-throughput computing resources and they have a different anatomy
than HPC applications. LHC applications comprise a core framework
that allows hundreds of researchers to plug in their specific algorithms.
The software stacks easily accumulate to many gigabytes for a single
release. New releases are often produced on a daily basis. To facilitate the
distribution of these software stacks to world-wide distributed comput-
ing resources, LHC experiments use a purpose-built, global, POSIX file
system, the CernVM File System. CernVM-FS pre-processes data into
content-addressed, digitally signed Merkle trees and it uses web caches
and proxies for data distribution. Fuse-mounted files system clients on
the compute nodes load and cache on demand only the small fraction of
files needed at any given moment. In this paper, we report on problems
and lessons learned in the deployment of CernVM-FS on supercomputers
such as the supercomputers at NERSC in Berkeley, at LRZ in Munich,
and at CSCS in Lugano. We compare CernVM-FS to a shared soft-
ware area on a traditional HPC storage system and to container-based
systems.

1 Introduction

Computing for High-Energy Physics (HEP) collider experiments benefits from
its embarrassingly parallel workload. HEP software processes so-called “events”.
Events represent the data that a particle detector captured as a result of particle
collisions; they can be processed independently from each other. In the case of the
CERN Large Hadron Collider (LHC) this is reflected in the experiments’ high-
throughput computing (HTC) infrastructure, the World-wide LHC Computing
Grid (WLCG) [1]. A federation of some 170 globally distributed data centers
contributes resources in the form of commodity, Linux-based x86 64 servers.
A middleware presents these resources as one coherent batch and data man-
agement system to hundreds of individual physics research groups. The aggre-
gated amount of resources in WLCG, approximately half a million cores and one
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 724–730, 2017.
https://doi.org/10.1007/978-3-319-67630-2_52

Delivering LHC Software to HPC Compute Elements with CernVM-FS 725

exabyte of storage, is comparable to a large supercomputer. Yet the computing
environment comes closer to a typical Big Data installation than to an HPC
system. Compute resources are considered as a set of independent CPU cores.
A typical compute job runs for a few hours on a particular core. It has access
to 2 GB to 4 GB memory, node-local scratch space, a GbE Internet connection
to access central databases and to read and write data, and a standard Linux
environment with a few custom system software packages. Substantial success
was made in porting compute intensive simulation codes to special architectures
found on supercomputers, including KNL and PowerPC systems [6]. Still, the use
of supercomputers has been a manual, labor intensive task. A lack of bridging
on the systems level between HTC and HPC worlds prevents LHC experiments
to integrate supercomputers in a seamless and automated way into the general
pool of resources. Custom approaches tailored to individual HPC centers are
carried out in order to stage input data, write out output data, integrate with
the supercomputer’s job manager and to deliver codes to compute nodes. In this
contribution, we will discuss the distribution of large software stacks to HPC
resources.

2 Software Distribution in High-Throughput Computing

In the traditional HPC world, the distribution of codes is usually not a problem.
Applications are carefully optimized, often statically linked binaries tailored to
run on a specific supercomputer. They are either sent together with the compute
job definition or they can reside on a shared cluster file system. In the HTC
world, compute jobs can potentially be executed on any of the hundreds of the
world-wide distributed data centers, whose compute nodes run different flavors
of Linux with different sets of pre-installed libraries. Therefore, LHC experiments
have long developed a discipline of bundling all the dependencies (compilers and
system libraries) together with the application software. Overall, a single LHC
software release consists of the order of ten gigabytes and hundred thousand
files. New releases are produced on a daily basis.

Size and volatility of the LHC experiment software combined with the large
number of compute nodes makes it difficult to use containers for software distrib-
ution. Instead, LHC experiments and other scientific collaborations use CernVM-
FS, a purpose-built, global file system to provide a shared software area for
compute nodes around the world. CernVM-FS pre-processes data into content-
addressed, digitally signed Merkle trees and it uses web caches and proxies for
data distribution. [2,3] Fuse-mounted [10,16] files system clients on the worker
nodes provide access to the entire repository of precompiled software under the
/cvmfs directory. Currently, LHC experiments provide close to half a billion
(small) files in CernVM-FS.

The client loads and caches on demand only the tiny fraction of files and
file meta-data needed at any given moment. This way, most data and meta-data
requests are served from the compute nodes’ local caches, with cache hit rates
well over 99%. A typical cache hierarchy comprises some 100 MB in the worker

726 J. Blomer et al.

node RAM, 10 GB on the worker node hard disk, and 50 GB on a handful of web
proxies within the data center. Caching is key to CernVM-FS’ ability to scale a
very meta-data intensive workload—up to the MHz range of meta-data requests
per node—to tens of thousands of nodes.

3 Aspects of HPC Computing Environments

For traditional HPC storage systems, such as Lustre and GPFS, the high meta-
data load from LHC software is challenging. Storage of tens of millions of small
files easily exceeds the user’s inode quota. The synchronization of such a large
number of files into the supercomputers storage system, for instance through
rsync invocations on the login nodes, is error-prone and time consuming. At
runtime, meta-data servers can easily become overloaded.

Another problem with copying software from CernVM-FS into a shared loca-
tion is that its contents are often not relocatable. The supercomputer’s systems
team either need to create a symbolic link on the compute nodes from /cvmfs
into the actual location or binaries and scripts need to be post-processed after
copying. For one of the LHC experiments, this post-processing affected tens of
thousands of files. [18]

The straight deployment of CernVM-FS on supercomputers, on the other
hand, is often difficult because

1. restrictive policies for compute nodes prevent the deployment of the CernVM-
FS client,

2. compute nodes might not have outgoing Internet connectivity, which is needed
to populate the caches from central CernVM-FS servers,

3. compute nodes might lack local hard disks, removing a key caching layer of
CernVM-FS.

The following sections discuss these obstacles. It is worth noting that binaries
can be pre-compiled or cross-compiled for a variety of destination platforms and
placed on CernVM-FS beforehand. In one instance, the software pre-compiled
by gcc for standard x86 64 nodes even ran 20% faster compared to the same
code compiled by Cray’s compiler. [8]

3.1 File System Interface

Binary files containing the scientific codes have to reside on a “real” file system
ready to be loaded by the operating system kernel. This is different from data,
which can in principal also be accessed from applications through user-level
libraries. CernVM-FS clients are based on the Fuse file system toolkit (cf. Fig. 1).
Fuse is a kernel level file system that forwards all calls to a user-level module.
Thus errors in the file system code do not cause kernel crashes. Although part
of the Linux kernel, many supercomputers disable Fuse on the compute nodes.

On such systems, individual applications can access /cvmfs by means of
the CernVM-FS connector for Parrot [15]. Parrot provides virtual file systems

Delivering LHC Software to HPC Compute Elements with CernVM-FS 727

Fig. 1. CernVM-FS file system options. Left hand with Fuse upcalls to user space,
right hand in pure user space with Parrot.

for Linux processes using ptrace-level sandboxing (cf. Fig. 1). As such, Parrot
requires no special privileges but it also introduces a performance penalty. We
found that the performance penalty is negligible for most compute tasks. Some
HPC centers, however, reported problems with certain multi-core applications
and with direct GPU access caused by the ptrace sandboxing. [8]

We are currently investigating Cray’s Data Virtualization Service (DVS) [14]
to provide network file systems to compute nodes. DVS can provide NFS volumes
to compute nodes, and as such it can provide an NFS exported CernVM-FS
mount point to compute nodes. In our experience, an NFS server providing
/cvmfs scales up to a few thousand cores. Caching within DVS, however, could
increase the scalability.

3.2 Local Cache Space

Much of CernVM-FS’ scalability relies on the presence of node-local caches that
satisfy most data and meta-data requests. When local hard disks are missing,
the CernVM-FS client’s cache can be placed on a cluster file system and shared
by all the compute nodes. In contrast to a plain copy of the /cvmfs, in the
CernVM-FS cache data format files are deduplicated and file meta-data is stored
in larger blocks of typically a few hundred thousand files. The load from CernVM-
FS clients accessing a cache on a shared file system is therefore much smaller
than compute nodes directly loading software from a shared file system. At one
supercomputer, the running time of codes with a shared cache on GPFS was
more than three times shorter than running the software from a plain shared
software area on GPFS due to inode cache thrashing in GPFS in the latter
case. [17]

Even when exploiting the CernVM-FS cache format, however, millions of
small files can end up on GPFS or Lustre and thousands of files can be opened
concurrently by the compute nodes. To avoid the “many small files” pattern
altogether, the CernVM-FS cache can be provided as a loopback device on the

728 J. Blomer et al.

cluster file system. This requires one file per compute node, typically between
one and ten gigabytes in size. The files are formatted with a local file system so
that compute nodes are able to mount them as loopback devices. Because there
is only a single file for every node, the parallelism of the cluster file system can
be exploited and all the requests from CernVM-FS circumvent the cluster file
system’s meta-data server(s).

In our view, an efficient cache management requires flexibility in the CernVM-
FS client in order to adapt to node size, network characteristics, and the stor-
age technologies at hand. To this end, we created a plug-in interface to the
client’s cache subsystem so that customized cache algorithms can be indepen-
dently developed and deployed. Many options are conceivable, for instance tap-
ping burst buffers or a fully decentralized cache algorithm among the compute
nodes [4]. For now, we provide a tiered cache manager and an in-memory cache
manager. The two cache managers can be combined, allowing for a small hot set
kept in the compute nodes’ RAM and a larger warm set on a shared file system.
Scale tests of these uncommon cache configurations are underway.

3.3 Internet Access

On a local cache miss, CernVM-FS clients reach out to a web server on the
Internet to fetch data and populate the cache. HPC compute nodes often do
not have access to the Internet but only dedicated login nodes have Internet
connectivity.

We developed a “cache preloader” in order to pre-populate the entire content
of a CernVM-FS directory tree from a login node into a location internal to
the supercomputer, so that content becomes visible to the compute nodes. The
cache preloader makes use of the Merkle trees to efficiently keep the data area on
the shared file system synchronized. After an initial synchronization run, only
change sets need to be transferred. Even for directories with hundreds of millions
of files, incremental synchronization runs usually finish in a few seconds up to
a few minutes. The cache preloader can furthermore prune the directory tree so
that only relevant parts (for instance: the latest software versions) are copied.

4 Practical Examples

In recent years, various groups in the high-energy physics community acquired
grants to run on HPC systems in the U.S. and in Europe. These included some
Leadership Class Facilities such as Titan at the Oak Ridge National Lab and
Mira at the Argonne National Lab. Almost all of these efforts made content
from CernVM-FS available on supercomputers in one way or another. Table 1
provides an overview of code distribution approaches by different groups.

Delivering LHC Software to HPC Compute Elements with CernVM-FS 729

Table 1. Examples of code distribution on supercomputers used by LHC experiments.

HPC System Loc CernVM-FS Deployment

3 Piz Daint CH Fuse client with loopback cache [8]

4 Titan US Rsync of /cvmfs into GPFS [13]

9 Mira US Custom binaries [6]

20 Stampede US Rsync of /cvmfs [9]

33 HPC2 RU Standard fuse client [11]

40 SuperMUC DE Parrot client with preloaded cache [17]

72 Edison US Shifter, parrot client with preloaded cache (tested) [7]

73 Archer UK Rsync of /cvmfs [18]

389 NEMO DE OpenStack virtual machines (tested) [12]

5 Related Work

A tool chain around the Shifter container system [5] was developed in order
to copy the /cvmfs tree into a container. The content was deduplicated and
compressed on a squashfs loopback device in order to reduce the size of the
final container image to “only” a few hundred gigabytes. The main drawback
of this approach is the time of some 24 hours it takes to produce the images.
Containers in general are a promising approach to provide a commodity Linux
environment on compute nodes. They can be combined with application delivery
by CernVM-FS so that the container images remain small and manageable.

A utility called uncvmfs has been used to provide a more efficient copy of the
/cvmfs tree. With uncvmfs, files are deduplicated by means of hardlinks. Unlike
the CernVM-FS cache format, directories and symbolic links are not grouped
into larger blocks, preserving many of the scalability issues of plain copies of the
/cvmfs tree.

6 Summary

We have shown several options to approach code distribution of typical HTC
applications onto supercomputers. While software stacks for LHC experiments
are particularly large and volatile, we believe that typical Big Data applications
will face similar challenges as HPC centers become more open for non-traditional
workloads. While there are a number of successful efforts to use HPC resources
in LHC computing, a generally applicable and automated approach to code
distribution would be highly desirable. Beyond the scope of code distribution,
using HPC resources for HTC workloads raises several other open questions, such
as the integration into experiments’ global data management, job management,
and identity federation systems.

730 J. Blomer et al.

References

1. Bird, I., et al.: LHC computing grid: Technical design report. Technical report
LCG-TDR-001, CERN (2005)

2. Blomer, J., Aguado-Sanchez, C., Buncic, P., Harutyunyan, A.: Dis-
tributing LHC application software and conditions databases using
the CernVM file system. J. Phys. Conf. Ser. 331, 042003 (2011).
http://iopscience.iop.org/article/10.1088/1742-6596/331/4/042003/meta

3. Blomer, J., Buncic, P., Meusel, R., Ganis, G., Sfiligoi, I., Thain, D.: The evolution
of global scale filesystems for scientific software distribution. Comput. Sci. Eng.
17(6), 61–71 (2015)

4. Blomer, J., Fuhrmann, T.: A fully decentralized file system cache for the Cern-
VMFS. In: Proceedings 10th International Conference on Computer and Commu-
nications Networks (ICCCN), August 2010

5. Canon, S., Jacobsen, D.: Shifter: Containers for hpc. In: Proceedings of the Cray
User Group (2016)

6. Childersa, J.T., Gerhardt, L.: Developments in architectures and services for using
high performance computing in energy frontier experiments. In: Proceedings 38th
International Conference on High Energy Physics (ICHEP 2016) (2016)

7. Fasel, M.: Using nersc high-performance computing (hpc) systems for high-energy
nuclear physics applications with alice. J. Phys. Conf. Ser. 762, 012031 (2016).
IOP Publishing

8. Filipcic, A., Haug, S., Hostettler, M., Walker, R., Weber, M.: Atlas computing on
cscs hpc. J. Phys. Conf. Ser. 664, 092011 (2015). IOP Publishing

9. Gardner, R.: Xsede integration. In: US ATLAS Physics Support, Software and
Computing Technical Planning Meeting (2016)

10. Henk, C., Szeredi, M.: Filesystem in Userspace (FUSE). http://fuse.sourceforge.
net, http://fuse.sourceforge.net/

11. Mashinistov, R.: Panda @ nrc ki. Talk at the PanDA Workshop (2016)
12. Meier, K., Fleig, G., Hauth, T., Janczyk, M., Quast, G., von Suchodoletz, D.,

Wiebelt, B.: Dynamic provisioning of a hep computing infrastructure on a shared
hybrid hpc system. J. Phys. Conf. Ser. 762, 012012 (2016). IOP Publishing

13. Nilsson, P., Panitkin, S., Oleynik, D., Maeno, T., De, K., Wu, W., Filipcic, A.,
Wenaus, T., Klimentov, A.: Extending atlas computing to commercial clouds and
supercomputers. PoS, p. 034 (2014)

14. Sugiyama, S., Wallace, D.: Cray dvs: Data virtualization service. In: Cray User
Group Annual Technical Conference (2008)

15. Thain, D., Livny, M.: Parrot: an application environment for data-intensive com-
puting. Scalable Comput. Pract. Experience 6(3), 9–18 (2005)

16. Vangoor, B.K.R., Tarasov, V., Zadok, E.: To FUSE or Not to FUSE: performance
of user-space file systems. In: Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST 2017) (2017)

17. Walker, R.: Hep software on supercomputers. In: Talk at the CernVM Users Work-
shop (2016)

18. Washbrook, A.: Processing lhc workloads on archer. In: Talk at GridPP35 Confer-
ence (2015)

http://iopscience.iop.org/article/10.1088/1742-6596/331/4/042003/meta
http://fuse.sourceforge.net
http://fuse.sourceforge.net
http://fuse.sourceforge.net/

Scaling the EOS Namespace

Andreas J. Peters, Elvin A. Sindrilaru, and Georgios Bitzes(B)

CERN IT, Geneva, Switzerland
Georgios.bitzes@cern.ch

Abstract. EOS is the distributed storage system being developed at
CERN with the aim of fulfilling a wide range of data storage needs,
ranging from physics data to user home directories. Being in production
since 2011, EOS currently manages around 224 petabytes of disk space
and 1.4 billion files across several instances.

Even though individual EOS instances routinely manage hundreds of
disk servers, users access the contents through a single, unified namespace
which is exposed by the head node (MGM), and contains the metadata
of all files stored on that instance.

The legacy implementation keeps the entire namespace in-memory.
Modifications are appended to a persistent, on-disk changelog; this way,
the in-memory contents can be reconstructed after every reboot by
replaying the changelog.

While this solution has proven reliable and effective, we are quickly
approaching the limits of its scalability. In this paper, we present our
new implementation which is currently in testing. We have designed and
implemented QuarkDB, a highly available, strongly consistent distrib-
uted database which exposes a subset of the redis command set, and
serves as the namespace storage backend.

Using this design, the MGM now acts as a stateless write-through
cache, with all metadata persisted in QuarkDB. Scalability is achieved
by having multiple MGMs, each assigned to a subtree of the namespace,
with clients being automatically redirected to the appropriate one.

1 Introduction

The EOS project [1] started in 2011 to fulfill the data storage needs of CERN,
and in particular storing and making available the physics data produced by
the LHC experiments. Being developed and in production since 2011, EOS is
built upon the XRootD [8] client-server framework, supports several data access
protocols (XRootD, gsiftp, WebDAV, S3), and currently manages around 224
petabytes of disk space with 1.4 billion files across several instances.

Recently, the scope of EOS has expanded to additionally serve as the backend
for user home directories and a file syncing service, CERNBox [3], as the future
replacement to the AFS [2] service provided by CERN IT.

The gradual growth in the total number of files stored on EOS has revealed
certain scalability limitations in the original design of the namespace subsys-
tem. In this paper, we describe the legacy implementation and its shortcomings,
c© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 731–740, 2017.
https://doi.org/10.1007/978-3-319-67630-2_53

732 A.J. Peters et al.

discuss our new implementation based on a separate highly-available metadata
store exposing a redis-like interface, and present some preliminary performance
measurements.

2 Architectural Overview

An EOS instance is composed of several distinct components:

– The File Storage nodes (FSTs) are responsible for handling the physical stor-
age — in a typical deployment, each FST manages several tens of hard drives.

– The Metadata Manager (MGM) is the initial point of contact for external
clients, handles authentication and authorization, and redirects clients to the
appropriate FSTs on both reading and writing.

– The Message Queue (MQ) handles inter-cluster communication between the
MGM and the FSTs, delivering messages such as heartbeats and configuration
changes.

The component this paper focuses on is the MGM, and in particular its
namespace subsystem which stores all file metadata and among other things is
responsible for translating logical paths to the physical locations where the files
reside within the cluster.

Example 1. Sample namespace entry representing /eos/somedir/filename.
Inode number: 134563
Name: filename
Parent directory inode: 1234, meaning eos/somedir
Size: 19183 bytes
File layout: 2 replicas
Physical replica 1: Filesystem #23, meaning fst-1.cern.ch:/mnt34/
Physical replica 2: Filesystem #45, meaning fst-2.cern.ch:/mnt11/
Checksum: md5-567c100888518c1163b3462993de7d47

In the process of developing a better namespace implementation, and for the
sake of being able to run experiments and measurements easily, we moved the
namespace subsystem into a separate plugin. The rest of the MGM code uses
a standard interface to talk to it, thus facilitating an easy way of replacing it
without affecting the rest of the code.

Making the namespace more scalable involved some changes to the above
architecture; namely, the addition of a new highly-available database component,
as well as enabling the use of multiple MGMs for load-balancing. These changes
are described in more detail in later sections.

Scaling the EOS Namespace 733

3 The Legacy In-Memory Namespace

One of the primary goals of EOS from the beginning has been to deliver good and
consistent performance. This includes being able to fully exploit the underlying
hardware in terms of I/O and network performance of the FSTs, as well as
perform low-latency metadata operations on the MGM.

The initial design includes a namespace implementation where all metadata
lives in-memory on the MGM, and is persisted on-disk in the form of a changelog.
In more detail:

– During MGM boot, the entire namespace is reconstructed in-memory by
replaying the on-disk changelog.

– File lookups require no I/O operations, as all metadata is retrieved from
memory. Entries are stored in a dense hash map (provided by the Google
SparseHash library), keyed by the inode number, and consume approximately
1kb of memory each.

– For metadata updates, the memory contents are modified and an entry is
appended to the changelog, which is fsynced periodically.

– A background thread compacts the changelog on regular intervals, thus purg-
ing out-of-date entries which have been superseded by newer ones. This
process ensures the size of the changelog remains under control, and stays
proportional to the total size of the instance, and not to the entire history of
operations on it.

While this solution has proven reliable and effective, it has several important
limitations:

– The total size to store the entire namespace of an instance cannot exceed
the physical RAM available on the head node, since everything is stored in-
memory.

– Replaying the changelog after a reboot can take a long time, upwards to one
hour for some of our larger instances.

– The use of a single head node represents a scalability bottleneck, as well as a
single point of failure.

The effects of long boot time can however be mitigated by employing optional
active-passive replication, through which is possible to have a slave MGM on
hot standby that can be manually promoted to master, in case the current one
fails. During normal operation, the master MGM performs continuous one-way
synchronization of its changelog towards any configured slaves.

4 The New, Scalable Namespace

One of the more promising ideas for replacing the legacy namespace has been
to store all metadata on a redis [4] instance, a datastore well-known for its high
performance and flexibility. We implemented a namespace plugin which used

734 A.J. Peters et al.

redis for metadata persistence — what made it unsuitable for our use-case was
the need to accommodate very large datasets. Redis poses the requirement that
the total data stored is smaller than the physical RAM of the machine hosting it.

A different idea has been to use an embeddable, on-disk key-value store such
as RocksDB [5] directly on the MGM. This solves both major issues of the legacy
design:

– No need for unreasonable amounts of RAM on the MGM, since the contents
can be retrieved from disk when needed. This is certainly much slower than
a memory lookup, but we can mitigate the effects by adding a caching layer
for hot entries.

– Initialization time is nearly instantaneous even for datasets spanning several
terabytes.

While such a design would solve all immediate problems we faced, an impor-
tant downside remained. The MGM would still represent a scalability bottleneck
and single point of failure, and losing it would result in the entire cluster becom-
ing unavailable, requiring manual intervention.

Our final design combines the two ideas above. We implemented a highly
available distributed datastore, QuarkDB, which supports and exposes a small
subset of the redis command set, using RocksDB as the storage backend and
translating all redis commands into equivalent RocksDB key-value transactions.

The MGM encodes all metadata in a redis-compatible format using a com-
bination of STRING, HASH, and SET redis commands, serialized with protocol
buffers [6].

To minimize the impact of an extra network roundtrip between the MGM
and QuarkDB for most metadata operations, the MGM caches hot entries locally
under a Least-Recently-Used eviction policy. As we shall see later in the measure-
ments, there is no performance loss compared to the in-memory implementation
for cached read operations, which is usually the dominating access pattern in
terms of frequency.

Using the above architecture, it now becomes possible to spread the client
load by employing multiple MGMs, having each responsible for a subtree of the
namespace. In this regard, each MGM essentially acts as a write-through cache
for all metadata which is persisted on QuarkDB. To simplify the management
and deployment of multiple MGMs, the configuration setup moves from being
stored in files locally on an MGM, to being centrally managed in QuarkDB.

5 Designing QuarkDB, a Highly Available Datastore

5.1 Choosing a Storage Backend and Access Protocol

As mentioned earlier, the goal of QuarkDB is to serve as the namespace metadata
backend for EOS. In order to avoid the time-consuming task of re-implementing
the low-level details of a database, we leverage the RocksDB library, a highly-
performant embeddable datastore based on the log-structured merge-tree data

Scaling the EOS Namespace 735

structure. We made this choice based on the fact that RocksDB is open source,
actively maintained, and used across several important projects already.

We chose the Redis Serialization Protocol, the same one used in the official
redis server, based on its simplicity of use and implementation and the fact that
there already exist tools compatible with it. (e.g. redis-cli, redis-benchmark).

5.2 Redis Data Structures Stored in RocksDB

The next step was to decide on a way to translate between redis operations and
RocksDB key-value transactions. We implemented the following simple encoding
scheme:

– Each redis key is associated to a key descriptor stored in RocksDB, which is
its name prefixed by the letter “d”, containing its type (whether a STRING,
a HASH, or SET) and size. This allows to detect errors, for example when the
user attempts to use an existing HASH like a SET.

– The contents of a STRING are stored in a key containing its name prefixed by
the letter “a”.

– Each element in a HASH or SET is stored in its own RocksDB key: the key
name concatenated with the symbol “#” plus the element name, prefixed by
the letter “b” or “c”, depending on whether it’s a HASH or a SET.

To make things more clear, the following example shows the steps performed
during a lookup using the HGET redis command.

1. The client issues HGET mykey myelement. In this context, the client is an
EOS MGM.

2. The key descriptor for mykey is retrieved by looking up dmykey in RocksDB.
3. If the key descriptor does not exist, an empty reply is returned. If the key

descriptor is not associated to a HASH but some other data structure, an error
is returned.

4. A lookup for bmykey#myelement is done in RocksDB, and the contents are
returned to the client. If the lookup finds no result, it means there’s no
myelement within mykey, and an empty reply is returned.

Listing the contents of a container works in a similar way – after retrieving
the key descriptor, a range scan is performed with the appropriate prefix, which
returns all elements in the corresponding hash or set.

5.3 Introducing High Availability

To prevent QuarkDB from becoming the single point of failure, we implemented
native quorum-consensus replication based on the Raft [7] consensus algorithm:

– The QuarkDB cluster is able to tolerate losing some nodes without any impact
on availability, provided that a majority (or quorum) remain online. In a
typical deployment with 3 replica nodes, as long as at least 2 out of 3 nodes
are alive and connected to each other, the cluster is fully operational.

736 A.J. Peters et al.

– Replication is semi-synchronous, meaning that clients receive an acknowl-
edgement to a write as soon as it has been replicated to a quorum of nodes.

Raft works by essentially replaying a series of operations towards a database
(called the state machine in Raft terminology), ensuring they are identical across
all nodes and are applied with an identical order. In our case, the state machine
is represented by the class which translates redis commands into RocksDB trans-
actions, and is mostly separate from the consensus logic – this way, QuarkDB can
be run in standalone mode as well, without having to pay for the high overhead
of consensus in case high availability is not needed.

5.4 Ensuring Correctness

Since QuarkDB is to become a critical component of every EOS instance, ensur-
ing correctness has been of paramount importance, especially given that imple-
menting distributed consensus correctly can be quite tricky. QuarkDB is being
written following the spirit of Test Driven Development (TDD), which has
resulted in a large suite of unit, functional, and stress tests. This is in addi-
tion to several internal assertions that detect possible inconsistencies between
the nodes, so as to further reduce the risk of the replicas getting out of sync and
opting to crash early instead.

6 Preliminary Measurements

6.1 Test Setup

We used three identical bare-metal machines running CERN CentOS 7 with
dual-socket Intel Xeon E5-2650 v2 at 2.60 GHz, providing a total of 32 cores on
each machine.

6.2 QuarkDB Performance

Performance depends heavily on whether pipelining is used, that is if the client
sends multiple commands at the same time without waiting for an acknowledge-
ment of the previous ones. This amortizes the roundtrip latency and allows for
certain optimizations, such as batching several responses to the client using a
single write() system call.

All measurements were taken using the redis-benchmark tool with keyspace-
len of 10 million – this ensures the load is spread over a large set of keys.

Ping Throughput. PING is a redis command to which the server simply replies
with PONG. This test is useful to verify that the machinery handling network
sockets and threads is efficient: QuarkDB is able to reach a peak of 1.6 million
pings per second (Fig. 1).

Scaling the EOS Namespace 737

1 16 128
0K

500K

1,000K

1,500K

concurrent clients

o
p
er

a
ti
o
n
s

p
er

se
co

n
d

No pipelining

Pipeline length: 10

Pipeline length: 100

Fig. 1. QuarkDB PING throughput

Standalone Mode. Write performance reaches a peak of around 105 thousand
operations per second using the SET command (Fig. 2). Each write was 200 bytes
in size. Read performance reaches a peak of 320 thousand operations per second
(Fig. 3).

Replicated Mode with Raft Consensus. Write performance reaches a peak
of 9000 operations per second – the major limiting factor here is the Raft journal
into which all write operations must be serialized (Fig. 4). Read performance is
identical as in standalone mode (Fig. 3), since in our implementation reads go
directly to the state machine, without passing through the raft journal.

6.3 EOS Measurements

There is currently a major limitation in how EOS handles writes into the
namespace: certain locks prevent multiple clients from performing concurrent
updates, resulting in low parallelism and limited use of pipelining towards
QuarkDB.

We are in the process of fixing this limitation – even so, the performance
achieved in replicated mode is still several times higher than what we currently
see in production (20 Hz file creation rate). The goal is to eventually reach and
surpass the rates achieved by the in-memory namespace.

738 A.J. Peters et al.

1 16 128
0K

20K

40K

60K

80K

100K

concurrent clients

o
p
er

a
ti
o
n
s

p
er

se
co

n
d

No pipelining

Pipeline length: 10

Pipeline length: 100

Fig. 2. QuarkDB write performance in standalone mode, SET command, 200 bytes

1 16 128
0K

100K

200K

300K

concurrent clients

o
p
er

a
ti
o
n
s

p
er

se
co

n
d

No pipelining

Pipeline length: 10

Pipeline length: 100

Fig. 3. QuarkDB read performance, GET command

Scaling the EOS Namespace 739

1 16 128
0

2,000

4,000

6,000

8,000

concurrent clients

o
p
er

a
ti
o
n
s

p
er

se
co

n
d

No pipelining

Pipeline length: 10

Pipeline length: 100

Fig. 4. QuarkDB write performance in Raft mode, SET command, 200 bytes

open(create) open(read) Delete
0

1,000

2,000

3,000

o
p
er

a
ti
o
n
s

p
er

se
co

n
d

QuarkDB replicated

QuarkDB standalone

In-memory namespace

Fig. 5. End-to-end operations towards EOS

740 A.J. Peters et al.

Measurements were taken using our custom load-testing tool through the
XRootD file access protocol. It’s important to note that operations such as file
creation and deletion result in several key writes towards QuarkDB, which is
why these measurements are presented separately (Fig. 5).

7 Conclusions and Future Work

We set out to improve the scalability shortcomings in the original design of the
EOS namespace. We implemented a highly available metadata server component
based on the redis serialization protocol, the RocksDB embeddable key-value
store, and the Raft consensus algorithm.

Our measurements show that the new namespace implementation is capable
of offering the next order of magnitude of scaling for EOS, ready to meet the
data needs of the LHC experiments and CERN as a whole. Future work could
improve on the design in several areas:

– Implementing automatic sharding in QuarkDB to overcome the inherent bot-
tleneck imposed by the serial Raft log.

– Adding automatic and transparent failover to the MGM layer. An MGM fail-
ure could be made detectable by the rest, thus transferring its responsibilities
and assigned namespace subtree to a different node, automatically and with
minimal impact on availability.

– QuarkDB could be made to additionally serve as a highly available message
queue, replacing the current one and removing one of the few remaining single
points of failure in EOS.

References

1. Peters, A.J., Janyst, L.: Exabyte scale storage at CERN. J. Phys. Conf. Ser. 331(5),
052015 (2011). IOP Publishing

2. Howard, J.H.: An overview of the Andrew file system. Carnegie Mellon University,
Information Technology Center (1988)

3. Mascetti, L., et al.: CERNBox+ EOS: end-user storage for science. J. Phys. Conf.
Ser. 664(6), 062037 (2015). IOP Publishing

4. Sanfilippo, S., Noordhuis, P.: Redis (2009)
5. Borthakur, D.: Under the Hood: Building and Open-Sourcing RocksDB. Facebook

Engineering Notes (2013)
6. Varda, K.: Protocol Buffers. Google Open Source Blog (2008)
7. Ongaro, D., Ousterhout, J.K.: In search of an understandable consensus algorithm.

In: USENIX Annual Technical Conference (2014)
8. Dorigo, A., et al.: XROOTD-A highly scalable architecture for data access. WSEAS

Trans. Comput. 1(4.3), 348–353 (2005)

Erratum to: Performance Portability Analysis
for Real-Time Simulations of Smoke

Propagation Using OpenACC

Anne Küsters1(&) , Sandra Wienke2,3 , and Lukas Arnold1

1 JSC, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße,
52428 Jülich, Germany

a.kuesters@fz-juelich.de
2 IT Center, RWTH Aachen University, Seffenter Weg 23,

52074 Aachen, Germany
3 JARA-HPC, 52074 Aachen, Germany

Erratum to:
Chapter “Performance Portability Analysis for Real-Time
Simulations of Smoke Propagation Using OpenACC” in:
J.M. Kunkel et al. (Eds.):
High Performance Computing, LNCS 10524,
https://doi.org/10.1007/978-3-319-67630-2_35

The ORCIDs of the second and third authors were incorrect in the original version of
the paper. The ORCIDs have been corrected.

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-67630-2_35

© Springer International Publishing AG 2017
J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, p. E1, 2017.
https://doi.org/10.1007/978-3-319-67630-2_54

http://orcid.org/0000-0002-8172-7791
http://orcid.org/0000-0002-5794-3662
http://orcid.org/0000-0002-5939-8995
https://doi.org/10.1007/978-3-319-67630-2_35
https://doi.org/10.1007/978-3-319-67630-2_35

Author Index

Abdellah, Marwan 662
Al-Ars, Zaid 220
Antille, Nicolas 662
Arenaz, Manuel 237
Arndt, William 334
Arnold, Lukas 477
Aubert, Dominique 309
Austin, Brian 419

Baker, Allison H. 30
Bangalore, Purushotham V. 145
Barnes, Taylor 334
Baude, Jonas 605
Beard, Jonathan C. 106
Beck, Arnaud 309
Bergman, Keren 57, 89
Berrill, Mark 254
Betke, Eugen 3, 174, 679
Bigot, Julien 309
Bilgili, Ahmet 662
Bitzes, Georgios 731
Blomer, Jakob 724
Boehm, Swen 254
Boyer, Eric 309
Britt, Keith A. 98
Brömmel, Dirk 205
Broyles, Martha 275
Brun, Emeric 309
Bussmann, Michael 15, 496
Butko, Anastasiia 115
Buttari, Alfredo 309
Bylaska, Eric J. 404

Cai, Xing 376
Cameo, Victor 309
Cappello, Franck 43
Carpenter, Paul 642
Chandrasekaran, Sunita 557
Chase, Jeffrey S. 187
Chatzikonstantis, George 363
Chen, Zizhong 43
Chevtchenko, Grigory 662
Choi, Jong Youl 15
Christensen, Bjorn 275

Clyne, John P. 30
Cook, Brandon 334, 419
Cortes, Toni 691
Curry, Matthew L. 145

d’Ast, Isabelle 309
de Jong, Wibe A. 404
Deakin, Tom 348
Derouillat, Julien 309
Deslippe, Jack 334, 419, 430
Di, Sheng 43
Dietrich, Robert 457
Dillow, David 187
Doerfler, Doug 334
Donofrio, David 89, 115
Dumusc, Raphael 662

Eilemann, Stefan 662
Elwasif, Wael R. 254
Escobar, Juan 309
Etancelin, Jean-Matthieu 309

Favreau, Cyrille 662
Feki, Saber 701
Feng, Wu 275
Fournier, Yvan 655
Friedline, Kyle 557
Friesen, Brian 334

Ganis, Gerardo 724
Garrido, Luis A. 642
Gaudin, Wayne 348
Geay, Anthony 655
Gerangelos, Stefanos 617
Gerber, Richard A. 327
Gomez-Sanchez, Pilar 160
Grasseau, Gilles 309
Guan, Hang 89

Haddock, Walker 145
Hadri, Bilel 701
Haefele, Matthieu 309
Hammerling, Dorit M. 30
Hammond, Jeff R. 404

Hardi, Nikola 724
Hautreux, Gabriel 309
He, Yun (Helen) 334
Hernandez, Oscar 237, 557
Hernando, Juan 662
Herten, Andreas 205
Hesam, Ahmad 220
Huebl, Axel 15, 496
Humble, Travis S. 98

Jacquelin, Mathias 404
Jarvis, Chad 376
Jiménez, Diego 363
Joubert, Wayne 254
Juckeland, Guido 457

Karpiński, Przemysław 515
Kestener, Pierre 309
Khurram, Rooh 701
Klasky, Scott 15, 187
Klemm, Michael 389, 404
Knüpfer, Andreas 457
Koloventzos, Georgios 691
Koskela, Tuomas 334, 430
Koziris, Nectarios 617
Kuhn, Michael 712
Kuity, Animesh 290
Kunkel, Julian 3, 127, 132, 174, 679
Kurkure, Uday 591
Kurth, Thorsten 334, 419
Küsters, Anne 477

Lacroix, Remi 309
Lalis, Spyros 75
Langguth, Johannes 376
Lankes, Stefan 605
Lartigue, Ghislain 309
Latu, Guillaume 309
Lavallee, Pierre-Francois 309
Lecas, Dimitri 309
Lefurgy, Charles 275
Legaux, Joeffrey 309
Lettieri, Giuseppe 579
Li, Shaomeng 30
Lobet, Mathieu 334
Lofstead, Jay 127, 187
Lopez, M. Graham 557
Luettgau, Jakob 132

Luque, Emilio 160
Lysaght, Michael 327

Maffione, Vincenzo 579
Malas, Tareq 334
Malvagi, Fausto 309
Markomanolis, George S. 701
Matthes, Alexander 15, 496
Maxwell, Don 254
McDonald, John 515
McIntosh-Smith, Simon 348, 538
McMurtrie, Colin 127
Mendez, Sandra 160
Meneses, Esteban 363
Meurdesoif, Yann 309
Michelogiannakis, George 115
Milfeld, Kent 441
Miranda, Alberto 691
Mircescu, Ovidiu 655
Monti, Antonello 605
Moureau, Vincent 309

Nachbaur, Daniel 662
Noack, Matthias 389
Nou, Ramon 691
Novikova, Anastasiia 3

Oliker, Leonid 334
Oral, Sarp 187
Ovsyannikov, Andrey 334

Parnaudeau, Philippe 309
Peddoju, Sateesh Kumar 290
Peltenburg, Johan 220
Pennycook, Simon J. 327
Peters, Andreas J. 731
Pickartz, Simon 605
Pleiter, Dirk 205, 237
Podhajski, Pawel 662
Podhorszki, Norbert 15, 187
Popescu, Radu 724
Price, James 538

Randall, Joshua 106
Renon, Nicolas 309
Requena, Stephane 309
Rexachs, Dolores 160
Ribes, Alejandro 655
Rizzo, Luigi 579

742 Author Index

Rosedahl, Todd 275
Rozis, Michalis 617
Rumley, Sébastien 57, 89

Santogidis, Aram 75
Scemama, Anthony 309
Schaare, Armin 3
Schmitt, Felix 15
Schürmann, Felix 662
Shalf, John 89, 115
Sidiropoulos, Harry 363
Sindrilaru, Elvin A. 731
Sivaraman, Hari 591
Skjellum, Anthony 145
Soudris, Dimitrios 363
Staffelbach, Gabriel 309
Steinke, Thomas 389
Strydis, Christos 363
Suarez, Estela 327

Tao, Dingwen 43
Teh, Min Yee 57
Tharrington, Arnold 254
Tröger, Peter 629
Tschüter, Ronny 457

Vasudevan, Dilip 115
Vergara Larrea, Verónica G. 254
Villafranca, Jafet 662
Vu, Lan 591

Wautelet, Philippe 309
Wen, Ke 89
Wende, Florian 389
Werner, Matthias 629
Widera, René 15, 496
Wienke, Sandra 477
Wilke, Jeremiah J. 57
Williams, Samuel 334, 419
Worpitz, Benjamin 496

Xie, Bing 187
Xu, Haiying 30

Yang, Woo-Sun 334

Zenker, Erik 496
Zhang, Yu 629
Zhao, Zhengji 334
Zitzlsberger, Georg 389

Author Index 743

	Preface
	Organization
	Contents
	The 1st International Workshop on Data Reduction for Big Scientific Data (DRBSD-1)
	Toward Decoupling the Selection of Compression Algorithms from Quality Constraints
	1 Introduction
	2 Related Work
	3 Design
	3.1 Supported Quantities
	3.2 Algorithms
	3.3 Compression Chain
	3.4 Tools

	4 Evaluation
	4.1 Test Data
	4.2 Experiments
	4.3 Compression Ratio Depending on Tolerance
	4.4 Fixed Absolute Tolerance
	4.5 Fixed Precision Bits

	5 Summary
	References

	On the Scalability of Data Reduction Techniques in Current and Upcoming HPC Systems from an Application Perspective
	1 Introduction
	1.1 PIConGPU
	1.2 Physical Observables
	1.3 Two Example Workflows to Explore Complex Systems
	1.4 Structure of This Paper

	2 ORNL Titan and Summit Systems
	2.1 I/O Limitations in State-of-the-Art Systems
	2.2 Staging, Burst Buffers and I/O Backlog

	3 I/O Measurements
	3.1 Preparation of PIConGPU Primary Observables for I/O
	3.2 I/O Performance in a Realistic Production Scenario
	3.3 Measurement of Compression Performance

	4 Analysis
	4.1 Overhead of Compression in Parallel I/O

	5 Summary and Outlook
	5.1 Compression Algorithms
	5.2 I/O Libraries

	References

	Toward a Multi-method Approach: Lossy Data Compression for Climate Simulation Data
	1 Introduction
	2 Challenges
	3 Lossy Compression Algorithms
	4 Metrics
	5 Multi-method Comparison
	5.1 Detailed Investigation of Representative Variables
	5.2 Full Set of Variables

	6 Characterizing Data
	7 Concluding Remarks
	References

	Exploration of Pattern-Matching Techniques for Lossy Compression on Cosmology Simulation Data Sets
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Pattern-Matching Techniques for Lossy Compression
	4.1 LZ77: String Matching Based Lossless Compression
	4.2 SZ-PM: Pattern-matching-based Lossy Compression

	5 Empirical Evaluation
	6 Conclusion
	References

	Third International Workshop on Communication Architectures for HPC, Big Data, Deep Learning and Clouds at Extreme Scale (ExaComm)
	Design Space Exploration of the Dragonfly Topology
	1 Introduction
	2 Dragonfly Variants Description and Construction
	2.1 Definitions
	2.2 Dragonfly Construction
	2.3 Dragonfly Graph Wiring Algorithm
	2.4 Exploring the Dragonfly Using Imbalance and Density Parameters

	3 Constructing Dragonflies for a Minimal Number of End-Points
	4 Design Selection via Cost Comparison
	5 Conclusion
	References

	High-Throughput Sockets over RDMA for the Intel Xeon Phi Coprocessor
	1 Introduction
	2 The Trans4SCIF Library
	2.1 The Symmetric Communication Interface (SCIF)
	2.2 Trans4SCIF API
	2.3 Trans4SCIF Implementation

	3 Integration of Trans4SCIF with ZeroMQ
	3.1 Technical Overview of the ZeroMQ Messaging Library
	3.2 The Trans4SCIF Engine for ZeroMQ

	4 Performance Tests
	5 Related Work
	6 Conclusions
	References

	Workshop on HPC Computing in a Post Moore’s Law World (HCPM)
	Reconfigurable Silicon Photonic Interconnect for Many-Core Architecture
	Abstract
	1 Introduction
	2 Memory Traffic Induced Bottlenecks
	3 Simulation
	3.1 Simulation Parameters and Benchmarks
	3.2 Simulation Results

	4 Conclusion
	Acknowledgments
	References

	Instruction Set Architectures for Quantum Processing Units
	1 Quantum Processing Units
	2 RISC and CISC
	3 QPU ISA Message Considerations
	4 Conclusions
	References

	Eliminating Dark Bandwidth: A Data-Centric View of Scalable, Efficient Performance, Post-Moore
	1 The Problem
	2 Solutions
	2.1 Chopping Down Sparse Data
	2.2 Processing In- or Near-Memory

	3 A Common Problem: Translation
	4 Conclusion: It's the System
	References

	Towards an Integrated Strategy to Preserve Digital Computing Performance Scaling Using Emerging Technologies
	1 Introduction
	2 Motivation and Background
	3 Towards an Integrated Methodology for Comprehensive Evaluation of Optimal Architectures
	4 Modeling Environment
	4.1 Simulation Infrastructure

	5 Conclusion
	References

	HPC I/O in the Data Center (HPC-IODC)
	HPC I/O in the Data Center Workshop (HPC-IODC)
	1 Introduction
	2 Organization of the Workshop
	2.1 Programm Committee

	3 Workshop Summary
	3.1 Research Papers
	3.2 Talks from Experts
	3.3 Discussion Round

	References

	Simulation of Hierarchical Storage Systems for TCO and QoS
	1 Introduction
	2 Related Work
	3 Simulation Overview
	4 Hardware Models
	4.1 Network Topology and Data Transfers
	4.2 Library Topology
	4.3 Tape-Seek- and Drive-Busy-Time Models

	5 Software Models
	6 Evaluation
	6.1 Workload Trace Replay for Verification and Optimization
	6.2 TCO and QoS Optimization Under Varying Drive Configuration

	7 Summary
	References

	GPU Erasure Coding for Campaign Storage
	1 Introduction
	2 Background
	2.1 Ceph
	2.2 RAID
	2.3 System Requirements

	3 Ceph Erasure Coding Plugin Implementation for Gibraltar
	4 Evaluation and Measurement
	4.1 System Description
	4.2 Erasure Code Generation and Reconstruction Performance

	5 Previous Work
	6 Conclusion
	7 Future Work
	References

	PIOM-PX: A Framework for Modeling the I/O Behavior of Parallel Scientific Applications
	1 Introduction
	2 Proposed Framework
	2.1 Tracing I/O Operations
	2.2 Updating I/O Operations
	2.3 Extracting Spatial and Temporal Pattern

	3 Experimental Validation
	3.1 Experimentation
	3.2 Discussion

	4 Experimental Results
	5 Conclusions
	References

	Real-Time I/O-Monitoring of HPC Applications with SIOX, Elasticsearch, Grafana and FUSE
	1 Introduction
	2 Related Work
	3 Components
	3.1 Elasticsearch
	3.2 Grafana
	3.3 IOFS: A FUSE-Based File System
	3.4 SIOX + On-line Monitoring Plug-in

	4 Monitoring Framework Design
	4.1 On-Line Monitoring of Applications
	4.2 On-Line Monitoring of Mount Points

	5 Experiments
	6 Evaluation
	6.1 Performance
	6.2 Overhead
	6.3 User Experience

	7 Summary
	References

	Output Performance Study on a Production Petascale Filesystem
	1 Introduction
	2 Output Behavior on Titan
	2.1 Pipeline Efficiency
	2.2 Many-Pairs Bandwidth and Stragglers
	2.3 Performance Variability of Individual Components
	2.4 Performance Variability and Node Locality

	3 Related Work
	4 Conclusion
	References

	Second International Workshop on OpenPOWER for HPC (IWOPH’17)
	En
	References

	GPU-Accelerated Particle-in-Cell Code on Minsky
	1 Introduction
	2 JuSPIC
	3 Compute Platform
	4 Acceleration for GPUs
	4.1 OpenACC
	4.2 CUDA Fortran
	4.3 Investigation of Slow Data Layout Conversion

	5 Performance Modelling
	5.1 Determination of Effective Bandwidth
	5.2 Clock Rates

	6 Related Work
	7 Summary and Conclusions
	References

	Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware?
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Overview of Data Transfer Approaches
	4.1 Single-Object, Single-Thread Approaches
	4.2 Parallel Access of Collections of Objects

	5 Experimental Setup
	6 Results
	6.1 Single Object
	6.2 Parallel Performance
	6.3 Collection
	6.4 Discussion

	7 Conclusion
	References

	The Technological Roadmap of Parallware and Its Alignment with the OpenPOWER Ecosystem
	1 Introduction
	2 Analysis of Benchmarks: CORAL, NPB and XRayTrace
	2.1 Parallel Design Patterns of Parallware
	2.2 Case Study: ORNL's Miniapp XRayTrace

	3 Parallware Trainer
	3.1 Case Study: CORAL Microbenchmark HACCmk
	3.2 The Parallware Suite

	4 The Technological Roadmap of Parallware
	5 Related Work
	6 Conclusions and Future Work
	References

	Experiences Evaluating Functionality and Performance of IBM POWER8+ Systems
	1 Introduction
	2 System Configuration
	3 Acceptance Test
	4 Benchmarks
	5 Compiler Tests
	6 CORAL Benchmarks
	7 Mini-applications
	8 OLCF Applications
	9 Lessons Learned
	10 Conclusions
	References

	Power/Performance Controlling Techniques in OpenPOWER
	Abstract
	1 Overview
	2 Power/Thermal Management/Measurement Infrastructure Overview
	2.1 Functional Overview
	2.2 OCC Details

	3 Hardware Infrastructure Overview
	4 Data Measurement – OPAL Interface for Power, Thermal, Performance Measurements
	5 Measurement AMESTER – Detailed Profiling Tool
	5.1 Operation
	5.2 Sensors
	5.3 Trace Buffers
	5.4 In Band AMESTER

	6 Workload Optimized Frequency (WOF)
	6.1 WOF Experimental Results

	7 Core/Quad Power on/off
	8 Power Capping and Shifting for GPUs
	9 Conclusion
	References

	Performance Evaluation of Container-Based High Performance Computing Ecosystem Using OpenPOWER
	1 Introduction
	2 Related Work
	3 Container-Based HPC Ecosystem on OpenPOWER
	4 Implementation
	5 Experimental Testbed
	6 Performance of OpenPOWER on HPC Ecosystems
	6.1 Compute Performance
	6.2 Memory Performance
	6.3 Interconnect Performance
	6.4 Disk Performance

	7 Conclusion and Future Work
	References

	Pre-exascale Architectures: OpenPOWER Performance and Usability Assessment for French Scientific Community
	1 Introduction: Technological Watch Group Environment
	1.1 Partners and Goals
	1.2 Platform and Environment Available
	1.3 Applications
	1.4 Performance Indicators

	2 Work Performed on Each Application
	2.1 AVBP
	2.2 EMMA
	2.3 GPS
	2.4 GYSELA
	2.5 Hydro
	2.6 Meso-NH
	2.7 Metalwalls
	2.8 PATMOS
	2.9 QMC=Chem
	2.10 qr_mumps
	2.11 RAMSES
	2.12 SPECFEM3D_GLOBE
	2.13 YALES2

	3 Conclusion and Future Work
	References

	Experiences on Intel Knights Landing at the One-Year Mark (IXPUG)
	IXPUG: Experiences on Intel Knights Landing at the One Year Mark
	1 IXPUG: The Intel Xeon Phi User Group
	1.1 Discussion Forum and Working Groups
	1.2 Steering Committee

	2 Workshop Overview
	3 Call for Papers
	4 Best Paper Award
	5 Workshop Agenda
	6 Program Committee
	7 Workshop Organisers
	References

	Analyzing Performance of Selected NESAP Applications on the Cori HPC System
	1 Introduction
	2 HPC Systems at NERSC
	3 NESAP Results Overview
	3.1 Optimizations Summary
	3.2 Optimized vs. Original
	3.3 Manycore vs. Multicore
	3.4 Value of Wider Vectors (AVX-512)
	3.5 Flat and Cache Memory Mode Comparison
	3.6 Total Savings in CPU Hours

	4 Conclusions
	References

	On the Mitigation of Cache Hostile Memory Access Patterns on Many-Core CPU Architectures
	1 Introduction
	2 Stencil Patterns
	3 Memory Access Patterns
	4 Cache Based Architectures
	5 Investigation into Memory Bandwidth Issues
	5.1 List of Experimental Platforms
	5.2 Baseline Performance
	5.3 Improving the Performance

	6 Conclusions
	References

	From Knights Corner to Landing: A Case Study Based on a Hodgkin-Huxley Neuron Simulator
	1 Introduction
	2 System Design
	2.1 Software
	2.2 Hardware

	3 Evaluation
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Conclusion and Outlook
	References

	Porting Tissue-Scale Cardiac Simulations to the Knights Landing Platform
	1 Introduction
	2 Target Hardware
	3 Tissue-Scale Simulation
	3.1 Multiscale Tissue and Cell Modeling
	3.2 Numerical Strategy

	4 Implementation
	4.1 Parallelization Strategy
	4.2 Vectorized Binomial Sampling
	4.3 Random Number Generation

	5 Experimental Setup
	6 Performance Experiments
	6.1 Code Optimization
	6.2 Strong Scalability
	6.3 Memory Optimization for Large Instances

	7 Conclusion
	References

	KART -- A Runtime Compilation Library for Improving HPC Application Performance
	1 Introduction
	2 Related Work
	3 Design Space
	4 The KART Library
	4.1 Design and Implementation
	4.2 Usage

	5 Evaluation
	6 Conclusion and Outlook
	References

	Performance Evaluation of NWChem Ab-Initio Molecular Dynamics (AIMD) Simulations on the Intel® Xeon Phi� Processor
	1 Introduction
	2 Prior Work
	3 AIMD Implementation for the Intel Xeon Phi Processor
	3.1 3D FFTs
	3.2 Lagrange Multipliers and Non-local Pseudopotentials on 1D and 2D Processor Grids

	4 Performance Evaluation
	5 Conclusion and Future Work
	References

	Performance Variability on Xeon Phi
	1 Introduction
	2 System Architecture
	3 Applications
	4 MCDRAM Cache
	4.1 Introduction
	4.2 Mitigations/Solutions
	4.3 Microbenchmarks
	4.4 Impact on Applications

	5 Dynamic Voltage and Frequency Scaling (DVFS)
	5.1 Introduction
	5.2 Microbenchmarks
	5.3 Impact on Applications

	6 Job Placement
	6.1 Introduction
	6.2 Mitigations/Solutions
	6.3 Impact on Applications

	7 Conclusions
	References

	Optimizing Fusion PIC Code Performance at Scale on Cori Phase Two
	1 Introduction
	2 Roofline Baseline Performance Measurement and Main Bottlenecks
	3 Optimizations and Performance Improvements
	3.1 Vectorization of Electron Push
	3.2 Threading of Charge Deposition

	4 Scaling Results on Cori
	5 Summary and Discussion
	References

	amask: A Tool for Evaluating Affinity Masks in Many-Core Processors
	1 Introduction
	2 Affinity Masks
	3 Acquiring Process Maps in a Parallel Environment
	4 Use Cases
	5 Summary
	6 Future Work
	References

	Second International Workshop on Performance Portable Programming Models for Accelerators (P^3MA)
	Workshop Organizers
	Summary of the Workshop’s CFP Process
	Workshop Summary
	Organizing Committee
	Steering Committee
	Program Committee

	Analyzing Offloading Inefficiencies in Scalable Heterogeneous Applications
	1 Introduction
	2 Related Work
	3 Performance Measurement
	3.1 CUPTI for CUDA Targets
	3.2 OpenCL Library Wrapping
	3.3 OpenACC Profiling Interface
	3.4 OpenMP Tools Interface

	4 Inefficiency Patterns in Offloading Models
	4.1 Early Wait for Device
	4.2 Early Test for Completion
	4.3 Idle Offloading Device
	4.4 Inefficient Data Movement
	4.5 Analysis Limitations for OpenACC

	5 Integrating Offloading Patterns into MPI and OpenMP Analysis
	5.1 MPI with OpenMP or Offloading
	5.2 Multithreading and Offloading

	6 Application Studies
	6.1 Mini-Apps with CUDA and OpenACC
	6.2 Gromacs with OpenCL
	6.3 Pattern Evaluation

	7 Conclusion
	References

	Performance Portability Analysis for Real-Time Simulations of Smoke Propagation Using OpenACC
	1 Introduction
	2 Related Work
	3 Numerical Methods of JuROr
	3.1 Governing Equations
	3.2 Numerical Approach

	4 Parallelization with OpenACC
	5 Roofline Model
	5.1 Peak Floating-Point Performance and Sustainable Memory Bandwidth
	5.2 Arithmetic Intensity

	6 Results
	6.1 Measurement Setup
	6.2 Theoretical and Measured Arithmetic Intensity
	6.3 Performance Portability

	7 Conclusion and Outlook
	References

	Tuning and Optimization for a Variety of Many-Core Architectures Without Changing a Single Line of Implementation Code Using the Alpaka Library
	1 Introduction
	1.1 Motivation
	1.2 Alpaka

	2 The Alpaka General Matrix Multiplication Implementation
	2.1 Tiled GEMM Algorithm
	2.2 Architectures
	2.3 Single Source Code File vs. Optimization

	3 Parameter Tuning
	4 Results of the Scaling
	5 Analysis
	6 Conclusion
	References

	An Embedded Domain Specific Language for General Purpose Vectorization
	1 Introduction
	1.1 Prior Work
	1.2 Selected Problems

	2 Vector EDSL Overview
	2.1 Typeset
	2.2 Syntax

	3 EDSL Implementation
	3.1 Additional Design Patterns
	3.2 Evaluators
	3.3 Language Extensibility

	4 Performance Evaluation
	4.1 Benchmarking Methodology
	4.2 Runge-Kutta Solver
	4.3 BLAS Kernels

	5 Practical Limitations
	6 Conclusions and Future Work
	References

	Exploiting Auto-tuning to Analyze and Improve Performance Portability on Many-Core Architectures
	1 Introduction
	2 Tunable Jacobi Solver
	2.1 The Jacobi Method
	2.2 Implementation
	2.3 Tuning Options

	3 Performance Portability Analysis
	3.1 Approach
	3.2 Devices
	3.3 Results

	4 Multi-objective Auto-tuning
	4.1 Approach
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures
	1 Introduction
	2 Overview of the Programming Model
	3 Methodology
	4 Setup, Compilation Flags and Infrastructure
	5 Results
	5.1 Comparison of PGI Compiler Targeting Various Architectures
	5.2 Comparison of Various PGI Compiler Versions
	5.3 Comparison of PGI 16.10 and PGI 17.3 Multicore Support
	5.4 The GNU Compiler's Accuracy to the OpenACC Specifications

	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	References

	12th Workshop on Virtualization in High-Performance Cloud Computing (VHPC'17)
	A Survey of Fast Packet I/O Technologies for Network Function Virtualization
	1 Introduction
	2 Overview of Existing Solutions
	3 Comparing Architectures and Features
	4 Experimental Evaluation
	5 Conclusions
	References

	Machine Learning Using Virtualized GPUs in Cloud Environments
	Abstract
	1 Introduction
	2 GPU Virtualization for Machine Learning in the Cloud
	2.1 Machine Learning
	2.2 GPU Virtualization for Machine Learning

	3 Performance and Scalability of Virtualized GPU for Machine Learning
	3.1 Machine Learning with Virtualized GPUs
	3.2 Comparison of DirectPath I/O and GRID VGPU

	4 Mixing GPU-Based Workloads on Virtualized Server
	4.1 Configuration and Methodology
	4.2 Performance Results

	5 Conclusion
	Acknowledgements
	References

	A Locality-Aware Communication Layer for Virtualized Clusters
	1 Introduction
	2 Background
	2.1 System-Level Virtualization
	2.2 I/O Virtualization
	2.3 Nahanni
	2.4 The Pscom Library

	3 Design
	3.1 Detection of Locality Information
	3.2 Allocation of the Communication Buffers
	3.3 Migration Within Virtualized Clusters

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	YASMIN: Efficient Intra-node Communication Using Generic Sockets
	1 Introduction
	2 Background
	2.1 Overview of Xen Architecture
	2.2 Xen Default Networking

	3 Design and Implementation
	3.1 Design Overview
	3.2 Implementation Details

	4 Performance Evaluation
	4.1 Microbenchmark Evaluation
	4.2 Scaling Evaluation

	5 Related Work
	6 Conclusion and Future Work
	References

	Dynamic Paging Method Switching - An Implementation for KVM
	1 Introduction
	2 Related Work
	3 Design of the Dynamic Paging Method Switching
	3.1 Performance Data Sampling and Processing
	3.2 Decision Making
	3.3 Switching

	4 Implementation in QEMU-KVM for x86-64
	5 Benchmark Results
	6 Conclusion and Future Work
	References

	Aggregating and Managing Memory Across Computing Nodes in Cloud Environments
	1 Introduction
	2 Background
	2.1 Virtualization in IaaS Clouds
	2.2 Hardware Support for Coherence Islands

	3 GV-Tmem Design
	3.1 Xen Hypervisor with Extensions
	3.2 Tmem Kernel Module (TKM)
	3.3 Dom0 User-space Memory Manager (MM)

	4 Experimental Methodology
	5 Results
	6 Related Work
	7 Conclusions and Future Work
	References

	Visualization at Scale: Deployment Case Studies and Experience Reports
	In-situ Visualization for Computation Workflows
	Abstract
	1 Introduction
	1.1 An Industrial Context
	1.2 A Catalyst Adaptor for Code_Saturne
	1.3 In-situ Visualization for Computation Workflows

	2 Computation Workflows in SALOME
	2.1 SALOME
	2.2 Supervision of Computation Workflows

	3 Inserting Visualization in Computation Workflows
	3.1 Visualization as a Graph Node
	3.2 Some Implementation Details

	4 Conclusion
	References

	From Big Data to Big Displays High-Performance Visualization at Blue Brain
	1 Motivation
	2 High-Fidelity Displays
	2.1 Tiled Multitouch Display Walls
	2.2 Tide
	2.3 Deflect
	2.4 OpenDeck

	3 Rendering Applications
	3.1 Brayns: Interactive Raytracing
	3.2 RTNeuron: OpenGL Parallel Rendering
	3.3 Livre: Out-of-Core Volume Rendering

	4 Messaging and Service Architecture
	4.1 ZeroEQ
	4.2 ZeroBuf
	4.3 Remote Python API

	5 Discussion and Conclusion
	References

	Workshop on Performance and Scalability of Storage Systems (WOPSSS)
	Summary of 2017 Edition

	An MPI-IO In-Memory Driver for Non-volatile Pooled Memory of the Kove XPD
	1 Introduction
	2 Related Work
	3 XPD KDSA API
	4 XPD-MPIIO-Driver
	5 Test Setup
	5.1 Testsystems
	5.2 Benchmarks

	6 Evaluation
	6.1 Scaling the Number of Clients
	6.2 Scale-Out with Multiple Connections
	6.3 Performance Variability
	6.4 Additional Experiments

	7 Summary
	References

	HetFS: A Heterogeneous File System for Everyone
	1 Introduction
	2 Heterogeneous File System
	2.1 File Classification
	2.2 Device Selection

	3 Evaluation
	3.1 Boot Time
	3.2 Write Requests

	4 Related Work
	5 Conclusions and Future Work
	References

	Scientific Applications Performance Evaluation on Burst Buffer
	1 Introduction
	2 Related Work
	3 Burst Buffer
	4 Experiments
	4.1 Fluent
	4.2 Weather Research and Forecasting Model (WRF)
	4.3 NGA
	4.4 ATLIB
	4.5 NAS Parallel Benchmarks Block Triagonal I/O
	4.6 Parallel IDX Benchmark

	5 Conclusions and Future Work
	References

	JULEA: A Flexible Storage Framework for HPC
	1 Introduction
	2 Design
	2.1 Clients
	2.2 Backends
	2.3 Semantics

	3 Implementation
	3.1 Clients
	3.2 Backends

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Delivering LHC Software to HPC Compute Elements with CernVM-FS
	1 Introduction
	2 Software Distribution in High-Throughput Computing
	3 Aspects of HPC Computing Environments
	3.1 File System Interface
	3.2 Local Cache Space
	3.3 Internet Access

	4 Practical Examples
	5 Related Work
	6 Summary
	References

	Scaling the EOS Namespace
	1 Introduction
	2 Architectural Overview
	3 The Legacy In-Memory Namespace
	4 The New, Scalable Namespace
	5 Designing QuarkDB, a Highly Available Datastore
	5.1 Choosing a Storage Backend and Access Protocol
	5.2 Redis Data Structures Stored in RocksDB
	5.3 Introducing High Availability
	5.4 Ensuring Correctness

	6 Preliminary Measurements
	6.1 Test Setup
	6.2 QuarkDB Performance
	6.3 EOS Measurements

	7 Conclusions and Future Work
	References

	Erratum to: Performance Portability Analysis for Real-Time Simulations of Smoke Propagation Using OpenACC
	Erratum to: Chapter “Performance Portability Analysis for Real-Time Simulations of Smoke Propagation Using OpenACC” in: J.M. Kunkel et al. (Eds.): High Performance Computing, LNCS 10524, https://doi.org/10.1007/978-3-319-67630-2_35

	Author Index

