
A Percentile Transition Ranking Algorithm
Applied to Knapsack Problem

José Garćıa1,2(B), Broderick Crawford2, Ricardo Soto2, and Gino Astorga2,3

1 Centro de Investigación y Desarrollo Telefónica, 7500961 Santiago, Chile
joseantonio.garcia@telefonica.com

2 Pontificia Universidad Católica de Valparáıso, Valparáıso, Chile
{broderick.crawford,ricardo.soto}@pucv.cl

3 Universidad de Valparáıso, 2361864 Valparáıso, Chile
gino.astorga@uv.cl

Abstract. The binarization of Swarm Intelligence continuous meta-
heuristics is an area of great interest in operational research. This interest
is mainly due to the application of binarized metaheuristics to combina-
torial problems. In this article we propose a general binarization algo-
rithm called Percentile Transition Ranking Algorithm (PTRA). PTRA
uses the percentile concept as a binarization mechanism. In particular
we will apply this mechanism to the Cuckoo Search metaheuristic to
solve the set multidimensional Knapsack problem (MKP). We provide
necessary experiments to investigate the role of key ingredients of the
algorithm. Finally to demonstrate the efficiency of our proposal, we solve
Knapsack benchmark instances of the literature. These instances show
PTRA competes with the state-of-the-art algorithms.

Keywords: Combinatorial optimization · Multidimensional knapsack
problem · Metaheuristics

1 Introduction

In recent years, the areas of physics and swarm intelligence have generated a
large number of algorithms, many of which have been effective and efficient in
solving complex optimization problems. Examples of these algorithms are Ant
Colony Optimization [8], Firefly Algorithm [17], Gravitational Search Algorithm
[14], Cuckoo Search Algorithm [18], Particle Swarm Optimization [9]. Many of
these algorithms have the characteristic that the movement of the particles are
performed in a continuous space. On the other hand, combinatorial problems
arise in many areas of computer science and application domains. For exam-
ple in protein structure prediction, grouping routing, planning, scheduling and
timetabling problems. It is natural to try to apply algorithms inspired by physics
and swarm intelligence in these combinatorial problems [4]. In the process of
adaptation a series of difficulties arise when moving from continuous spaces to
discrete spaces. Examples of these difficulties are spacial disconnect, hamming

c© Springer International Publishing AG 2018
R. Silhavy et al. (eds.), Applied Computational Intelligence and Mathematical Methods,
Advances in Intelligent Systems and Computing 662, DOI 10.1007/978-3-319-67621-0 11

A Percentile Transition Ranking Algorithm Applied to Knapsack Problem 127

cliffs, loss of precision and the curse of dimension [12]. This has the consequence
that binarizations are not always effective and efficient [11].

In this paper, a general binarization technique called Percentile Transition
Ranking Algorithm (PTRA) is proposed to binarize continuous swarm intelli-
gence metaheuristics. The main operator corresponds to the percentile ranking
transition operator. This operator performs the binarization using percentiles
grouping process and it is complemented with local search and perturbation
operators. The main goal of this work corresponds to evaluate our algorithm
when dealing with an NP-hard combinatorial optimization problem such as the
MKP. To develop the evaluation, we used the metaheuristic Cuckoo Search.
The metaheuristic Cuckoo Search was chosen because it is a swarm intelligence
continuous metaheuristic that has been widely used in combinatorial problems
[5,15].

Experiments were developed that shed light on the contribution of the dif-
ferent operators to the effectiveness of the algorithm. Moreover, our algorithm
was compared with recent algorithms that use transfer functions as binariza-
tion method. For this purpose we use tests problems from the OR-Library.1 We
compared our framework with the Binary Artificial Algae Algorithm (BAAA)
published by [19]. The numerical results show that PTRA achieves highly com-
petitive results.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the Knapsack problem. In Sect. 3 we explain the transition ranking bina-
rization algorithm. The results of numerical experiments are presented in Sect. 4.
Finally we provide the conclusions of our work.

2 KnapSack Problem

The MKP is a combinatorial problem that has multiple applications in science
and engineering. For example capital budgeting and project selection applica-
tions. The MKP has also been introduced to model problems like cutting stock,
loading problems, allocation of processors in a distributed data processing [7],
and delivery in vehicles with multiple compartments [3].

Numerous methods have been developed to solve the MKP. The exact meth-
ods were applied in the 80’s to solve MKP. They generate a variety of meth-
ods including dynamic programming, branch-and-bound, network approach and
reduction schemes. The exact methods have made possible the solution of middle
size MKP instances. The major drawback of these methods remains the tempo-
ral complexity when dealing with large instances. Therefore, many researchers
focus on heuristic and meta-heuristic search methods which can produce solu-
tions of good qualities in a reasonable amount of time. In recent years, many
bio-inspired and physics based algorithms, such Swarm Optimization [2], Firefly
algorithm [1], Binary Black Hole [6] and Binary Fruitfly [16] have been proposed
to solve large instances of the MKP.

1 OR-Library: http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html.

http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html

128 J. Garćıa et al.

The MKP problem belongs to the class of NP-hard problems. MKP corre-
sponds to a model of resource allocation, whose objective is to select a subset
of objects that produce the greatest benefit considering certain capacity con-
straints. Each object j consumes a different amount of resources in each dimen-
sion. Also each object has a profit associated. Formally the MKP can be set
as:

maximize
n∑

j=1

pjxj (1)

subjected to
n∑

j=1

cijxj ≤ bi , i ∈ {1, ...,m} (2)

with xj ∈ {0, 1} , j ∈ {1, ..., n} (3)

where pj is the profit for the item j, cij corresponds to the consumption of
resources of item j in the dimension i, and bi is the capacity constraint of each
dimension i. The representation of a solution of the problem is modelled naturally
in binary form where 0 in the j -th position means that the j item is not included
in the Knapsack and 1 indicates that j is included.

3 Percentile Transition Ranking Algorithm

The first step of PTRA corresponds to the initialization of the feasible solutions
Sect. 3.2. Once the initialization of the particles is performed, it is consulted if the
detention criterion is satisfied. This criterion includes a maximum of iterations.
Subsequently, if the criterion is not satisfied, the percentile transition ranking
operator is executed (Sect. 3.2). This operator is responsible for performing the
iteration of solutions. Once the transitions of the different solutions are made,
we compare the resulting solutions with the best solution previously obtained.
In the event that a superior solution is found, this replaces the previous one.
When a replacement occurs, the new solution is subjected to a local search
operator. Finally, having met a number of iterations where there has not been a
replacement for the best solution, a perturbation operator is used. The general
algorithm scheme is detailed in Fig. 1. In the following subsection we will explain
in detail the initialization method, the percentile transition ranking operator and
the repair operator. The explanation of the other operators will be left for an
extended version.

3.1 Initialization and Element Weighting

PTRA uses a binarization of swarm-intelligence metaheuristics to try to find the
optimum. Each of these possible solutions, is generated as follows: First we select
an item randomly. Subsequently we consulted the constraints of our problem if
there are other elements that can be incorporated. The list of possible elements
to be incorporated is obtained, the weight for each of these elements is calculated

A Percentile Transition Ranking Algorithm Applied to Knapsack Problem 129

Fig. 1. Flowchart of the percentile transition ranking algorithm.

and the best element is selected. The procedure continues until no more elements
can be incorporated. The initialization algorithm is detailed in Fig. 2.

Several techniques were proposed in the literature, to calculate the weight
of each element. For example [13] introduced the pseudo-utility in the surrogate
duality approach. The pseudo-utility of each variable was given in Eq. 4. The
variable wj is the surrogate multiplier between 0 and 1 which can be viewed as
shadow prices of the j -th constraint in the linear programming (LP) relaxation
of the original MKP

δi =
pi∑m

j=1 wjcij
(4)

Another more intuitive measure is proposed by [10]. This measure is focused on
the average occupancy of resources. Its equation is shown in 5.

δi =

∑m
j=1

cij

mbj

pi
(5)

In this paper, we propose a variation of this last measure focused on the
average occupation. However this variation considers the elements that exist in
backpacks to calculate the average occupancy. In each iteration depending on
the selected items in the solution the measure is calculated again. The equation
of this new measure is shown in Eq. 6.

δi =

∑m
j=1

cij

m(bj−∑i∈S cij)

pi
(6)

130 J. Garćıa et al.

Fig. 2. Flowchart of generation of a new solution.

3.2 Percentile Transition Ranking Operator

Considering that our metaheuristic is a continuous and swarm intelligence. Due
to its iterative nature, it needs to update the position of particles at each
iteration. When the metaheuristic is continuous, this update is performed in
R

n space. In Eq. 7, the position update is presented in a general form. The
xt+1 variable represents the x position of the particle at time t+1. This posi-
tion is obtained from the position x at time t plus a Δ function calculated at
time t+1. The function Δ is proper to each metaheuristic and produces values
in R

n. For example in Cuckoo Search Δ(x) = α ⊕ Levy(λ)(x), in Black Hole
Δ(x) = rand × (xbh(t) − x(t)) and in the Firefly, Bat and PSO algorithms Δ
can be written in simplified form as Δ(x) = v(x).

xt+1 = xt + Δt+1(x(t)) (7)

In the percentile transition ranking operator, we considering the movements
generated by the metaheuristic in each dimension for all particles. Δi(x) cor-
responds to the magnitude of the displacement Δ(x) in the i-th dimension for
the particle x. Subsequently these displacement are grouped using Δi(x), the
magnitude of the displacement. This grouping is done using the percentile list.
In our case the percentile list used the values {20, 40, 60, 80, 100}.

The percentile operator has as entry the parameters percentile list (per-
centileList) and the list of values (valuesList). Given an iteration, the list of
values corresponds to the magnitude Δi of all particles in all dimensions. As
a first step the operator uses the valueList and obtains the values of the per-
centiles given in the percentileList. Later, each value in the valueList is assigned
the group of the smallest percentile to which the value belongs. Finally, the list
of the percentile to which each value belongs is returned (percentileGroupValue).

A transition probability through the function Ptr is assigned to each element
of the valueList. This assignment is done using the percentile group assigned to

A Percentile Transition Ranking Algorithm Applied to Knapsack Problem 131

each value (percentileGroupValue). For the case of this study, we particularly
use the Step function given in rule 8.

Ptr(x
i) =

{
0.1, if xi ∈ group {0, 1}
0.5, if xi ∈ group {2, 3, 4} (8)

Afterwards the transition of each particle is performed. In the case of Cuckoo
search the rule 9 is used to perform the transition, where x̂i is the complement
of xi. Finally, each solution is repaired using the repair operator. The algorithm
is shown in 1.

xi(t + 1) :=
{

x̂i(t), if rand < Ptg(xi)
xi(t), otherwise (9)

Algorithm 1. Percentile ranking operator
1: Function percentileRankingTransition(valueList, percentileList)
2: Input valueList, percentileList
3: Output percentileGroupValue
4: percentileValue = getPercentileValue(valueList, percentileList)
5: for each value in valueList do
6: percetileGroupValue = getPercentileGroupValue(percentileValue,valueList)
7: end for
8: return percetileGroupValue

3.3 Repair Operator

In each movement performed by operators: transition ranking, local search and
perturbation, it is possible to generate solutions that are infeasible. There-
fore, each candidate solution must be checked and modified to meet every con-
straint. This verification and subsequent repairing is performed using the mea-
sure defined in Sect. 3.1 Eq. 6. The procedure is shown in Algorithm 2. As input
the repair operator receives the solution Sin to repair, and the output of the
repair operator gives the repaired solution Sout. As a first step, the repair algo-
rithm asks whether the solution needs to be repaired. In the case that the solution
needs repair, a weight is calculated for each element of the solution using the
measure defined in Eq. 6. The element of the solution with the largest measure
is returned and removed from the solution. This element is named smax. This
process is iterated until our solution does not require repair. The next step is to
improve the solution. The Eq. 6 is again used for obtaining the element with the
smallest measure that meets the constraints smin and add smin to the solution.
In the case of absence of elements, empty is returned. The algorithm iterates
until there are no elements that satisfy the constraints.

132 J. Garćıa et al.

Algorithm 2. Repair Algorithm
1: Function Repair(Sin)
2: Input Input solution Sin

3: Output The Repair solution Sout

4: S ← Sin

5: while needRepair(S) == True do
6: smax ← getMaxWeight(S)
7: S ← removeElement(S, smax)
8: end while
9: state ← False

10: while state == False do
11: smin ← getMinWeight(S)
12: if smin == ∅ then
13: state ← True
14: else
15: S ← addElement(S, smin)
16: end if
17: end while
18: Sout ← S
19: return Sout

4 Results

4.1 Insight of PTRA Algorithm

In this section we investigated some important ingredients of PTRA to get insight
into the behavior of the proposed algorithm. To carry out this comparison the
first 10 problems of the set cb.5.250 of the OR library were chosen. The contri-
bution of the percentile transition ranking operator on the final performance of
the algorithm was studied. The contribution of the perturbation and local search
operators will be developed in an extended version. To compare the distributions
of the results of the different experiments we use violin Chart. The horizontal
axis X corresponds to the problems, while Y axis uses the measure % - Gap
defined in Eq. 10

% − Gap = 100
BestKnown − SolutionV alue

BestKnown
(10)

Furthermore, a non-parametric test, Wilcoxon signed-rank test is carried
out to determine if the results of PTRA with respect to other algorithms have
significant difference or not. The parameter settings and browser ranges are
shown in Table 1.

Evaluation of Percentile Transition Ranking Operator. To evaluate the
contribution of the percentile transition ranking operator to the final result. We
designed a random operator. This random operator executes the transition with

A Percentile Transition Ranking Algorithm Applied to Knapsack Problem 133

Table 1. Setting of parameters for Cuckoo Search Algorithm.

Parameters Description Value Range

ν Coefficient for the perturbation operator 3% [2, 3, 4]

N Number of Nest 20 [15, 20, 25]

G Number of percentiles 5 [4, 5, 6]

γ Step Length 0.01 [0.009,0.01,0.011]

κ Levy distribution parameter 1.5 [1.4,1.5,1.6]

Iteration
Number

Maximum iterations 1000 [1000]

a fixed probability (0.5) without considering the ranking of the particle in each
dimension. Two scenarios were established. In the first one the perturbation
and local search operators are included. In the second one these operators are
excluded. PTRA corresponds to our standard algorithm. 05.pe is the random
variant that includes the perturbation and local search operators. wpe corre-
sponds to the version with percentile transition operator without perturbation
and local search operators. Finally 05.wpe describes the random algorithm with-
out perturbation and local search operators.

When we compared the Best Values between PTRA and 05.pe which are
shown in Table 2. PTRA outperforms to 05.pe. However the Best Values between
both algorithms are very close. In the Average comparison, PTRA outperforms
05.pe in all problems. The comparison of distributions is shown in Fig. 3. We
see the dispersion of the 05.pe distributions are bigger than the dispersions of
PTRA. In particular this can be appreciated in the problems 1, 4, 5, 6, and 9.
Therefore, the percentile transition ranking operator together with perturbation

Fig. 3. Evaluation of percentile transition operator with perturbation and Local Search
operators

134 J. Garćıa et al.

Table 2. Evaluation of percentile transition ranking operator

Set Best Best Best Best Best Avg Avg Avg Avg

known 05.pe PTRA 05.wpe wpe 05.pe PTRA 05.wpe wpe

cb.5.250-0 59312 59211 59211 59158 59175 59132.1 59151.8 59071.8 59134.5

cb.5.250-1 61472 61435 61435 61409 61409 61324.6 61393.1 61288.3 61380.3

cb.5.250-2 62130 62036 62074 61969 61990 61894.4 61974.4 61801.6 61921.3

cb.5.250-3 59463 59367 59446 59365 59349 59257.8 59331.2 59136.1 59275.6

cb.5.250-4 58951 58914 58951 58883 58914 58725.6 58812.4 58693.6 58761.5

cb.5.250-5 60077 60015 60015 59990 60015 59904.6 59970.4 59837.8 59951.2

cb.5.250-6 60414 60355 60355 60348 60355 60208.2 60324.9 60230.6 60315.7

cb.5.250-7 61472 61436 61436 61407 61401 61290.8 61341.8 61233.9 61343.9

cb.5.250-8 61885 61829 61829 61790 61829 61737.1 61803.4 61644.9 61743.9

cb.5.250-9 58959 58832 58866 58822 58851 58769.1 58786.9 58653.7 58782.8

Average 60413.5 60343 60361.8 60314.1 60328.8 60224.4 60289.0 60159.2 60261.1

p-value 5.27 e-06 1.85 e-05

and local search operators, contribute to the precision of the results. Finally,
the PTRA distributions are closer to zero than 05.pe distributions, indicating
that PTRA has consistently better results than 05.pe. When we evaluate the
behaviour of the algorithms through the Wilcoxon test, this indicates that there
is a significant difference between the two algorithms.

Our next step is trying to separate the contribution of local search and per-
turbation operator from the percentile transition operator. For this, we compared
the algorithms wpe and 05.wpe.

Fig. 4. Evaluation of percentile transition operator without perturbation and Local
Search operators

A Percentile Transition Ranking Algorithm Applied to Knapsack Problem 135

When we check the Best Values shown in the Table 2, we note that wpe
performs better than 05.wpe in all problems except 3 and 7. However the results
are quite close. In the case of the average indicator, wpe outperforms in all
problems to 05.wpe. The Wilcoxon test indicates that the difference is significant.
This suggests that wpe is consistently better than 05.wpe. In the violin chart

Table 3. OR-Library benchmarks MKP cb.5.500

Instance Best known BAAA best Avg PTRA best Avg Time(s) Std

0 120148 120066 120013.7 120070 120022.6 343 26.8

1 117879 117702 117560.5 117690 117609.5 356 52.8

2 121131 120951 120782.9 121011 120918.0 354 39.5

3 120804 120572 120340.6 120609 120525.7 436 43.8

4 122319 122231 122101.8 122280 122151.5 418 48.5

5 122024 121957 121741.8 121982 121874.4 444 43.7

6 119127 119070 118913.4 119000 118931.0 449 30.1

7 120568 120472 120331.2 120487 120342.6 348 63.1

8 121586 121052 120683.6 121295 121196.5 326 63.5

9 120717 120499 120296.3 120485 120387.0 317 50.5

10 218428 218185 217984.7 218251 218200.2 339 32.6

11 221202 220852 220527.5 220946 220863.2 338 55.6

12 217542 217258 217056.7 217388 217295.9 315 43.5

13 223560 223510 223450.9 223526 223459.2 317 41.7

14 218966 218811 218634.3 218890 218814.4 318 36.9

15 220530 220429 220375.9 220410 220361.9 384 35.5

16 219989 219785 219619.3 219885 219767.2 369 60.0

17 218215 218032 217813.2 218027 217956.6 315 50.6

18 216976 216940 216862.0 216878 216840.0 354 23.1

19 219719 219602 219435.1 219622 219572.6 287 30.0

20 295828 295652 295505.0 295722 295662.9 270 32.2

21 308086 307783 307577.5 307972 307918.0 319 28.0

22 299796 299727 299664.1 299715 299673.8 246 22.4

23 306480 306469 306385.0 306439 306393.8 298 21.9

24 300342 300240 300136.7 300291 300221.6 273 29.5

25 302571 302492 302376.0 302503 302459.8 278 22.8

26 301339 301272 301158.0 301284 301257.2 267 21.5

27 306454 306290 306138.4 306385 306311.2 234 35.2

28 302828 302769 302690.1 302771 302723.4 245 29.6

29 299910 299757 299702.3 299844 299773.7 275 47.1

Average 214168.8 214014.2 213861.9 214055.3 213982.8 327.7 38.7

136 J. Garćıa et al.

shown n the Fig. 4 it is further observed that the dispersion of the solutions for
the case of 05.wpe is much larger than in the case of wpe. This indicates that the
operator percentile transition ranking plays an important role in the precision
of the results.

4.2 PTRA Compared with BAAA

In this section we evaluate the performance of our PTRA with the algorithm
BAAA developed in [19]. BAAA uses transfer functions as a general mechanism
of binarization. In particular BAAA used the tanh = eτ|x|−1

eτ|x|+1
function to per-

form the transference. The parameter τ of the tanh function was set to a value
1.5. Additionally, a elite local search procedure was used by BAAA to improve
solutions. As maximum number of iterations BAAA used 35000. The computer
configuration used to run the BAAA algorithm was: PC Intel Core(TM) 2 dual
CPU Q9300@2.5GHz, 4GB RAM and 64-bit Windows 7 operating system. In
our PTRA algorithm, the configurations are the same used in the previous exper-
iments. These are described in the Table 1.

The results are shown in Table 3. The comparison was performed for the
set cb.5.500 of the OR-library. The results for PTRA were obtained from 30
executions for each problem. In black, the best results are marked for both
indicators the Best Value and the Average. In the Best Value indicator, BAAA
was higher in eight instances and PTRA in twenty two. In the averages indicator
BAAA was higher in two instances, and PTRA in eighteen. We should also note
that the standard deviation in most problems was quite low, indicating that
PTRA has good accuracy.

5 Conclusions and Future Work

In this article, we proposed a algorithm whose main function is to binarize
continuous swarm intelligence metaheuristics. To evaluate the performance of
our algorithm, the multidimensional Knapsack problem was used together with
the Cuckoo Search metaheuristic. The contribution of the main operator of the
algorithm was evaluated, finding that the percentile transition ranking opera-
tor contributes significantly to improve the precision of the solutions. Finally,
in comparison with state of the art algorithms our algorithm showed a good
performance.

As a future works we want to investigate the behaviour of other metaheuris-
tics. Furthermore, the algorithm must be verified with other NP-hard problems.
Moreover to simplify the choice of the appropriate configuration, it is important
to explore adaptive techniques. From an understanding point of view of how the
framework performs binarization, it is interesting to understand how the algo-
rithm alters the properties of exploration and exploitation. Also is interesting to
study how the velocities and positions generated by continuous metaheuristics
are mapped to positions in the discrete space.

A Percentile Transition Ranking Algorithm Applied to Knapsack Problem 137

Acknowledgments. Broderick Crawford is supported by grant CONICYT/
FONDECYT/REGULAR 1171243, Ricardo Soto is supported by Grant CONICYT
/FONDECYT /REGULAR /1160455, and José Garćıa is supported by INF-PUCV
2016.

References

1. Baykasoğlu, A., Ozsoydan, F.B.: An improved firefly algorithm for solving dynamic
multidimensional knapsack problems. Expert Syst. Appl. 41(8), 3712–3725 (2014)

2. Bhattacharjee, K.K., Sarmah, S.P.: Modified swarm intelligence based techniques
for the knapsack problem. Appl. Intell. 46, 158–179 (2016)

3. Chajakis, E., Guignard, M.: A model for delivery of groceries in vehicle with mul-
tiple compartments and lagrangean approximation schemes. In: Proceedings of
Congreso Latino Ibero-Americano de Investigación de Operaciones e Ingenieŕıa de
Sistemas (1992)

4. Crawford, B., Soto, R., Astorga, G., Garćıa, J., Castro, C., Paredes, F.: Putting
continuous metaheuristics to work in binary search spaces. Complexity 2017, 19
(2017)

5. Garćıa, J., Crawford, B., Soto, R., Carlos, C., Paredes, F.: A k-means binariza-
tion framework applied to multidimensional knapsack problem. Appl. Intell., 1–24
(2017)

6. Garćıa, J., Crawford, B., Soto, R., Garćıa, P.: A multi dynamic binary black hole
algorithm applied to set covering problem. In: International Conference on Har-
mony Search Algorithm, pp. 42–51. Springer (2017)

7. Gavish, B., Pirkul, H.: Allocation of databases and processors in a distributed
computing system. Manage. Distrib. Data Process. 31, 215–231 (1982)

8. Glover, F., Kochenberger, G.A.: The ant colony optimization metaheuristic: Algo-
rithms, applications, and advances. In: Handbook of Metaheuristics, pp. 250–285
(2003)

9. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning,
pp. 760–766. Springer (2011)

10. Kong, X., Gao, L., Ouyang, H., Li, S.: Solving large-scale multidimensional knap-
sack problems with a new binary harmony search algorithm. Comput. Oper. Res.
63, 7–22 (2015)

11. Lanza-Gutierrez, J.M., Crawford, B., Soto, R., Berrios, N., Gomez-Pulido, J.A.,
Paredes, F.: Analyzing the effects of binarization techniques when solving the set
covering problem through swarm optimization. Expert Syst. Appl. 70, 67–82 (2017)

12. Leonard, B.J., Engelbrecht, A.P., Cleghorn, C.W.: Critical considerations on angle
modulated particle swarm optimisers. Swarm Intell. 9(4), 291–314 (2015)

13. Pirkul, H.: A heuristic solution procedure for the multiconstraint zero? one knap-
sack problem. Naval Res. Logist. 34(2), 161–172 (1987)

14. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Gsa: a gravitational search algo-
rithm. Inf. Sci. 179(13), 2232–2248 (2009)

15. Soto, R., Crawford, B., Olivares, R., Barraza, J., Figueroa, I., Johnson, F., Paredes,
F., Olgúın, E.: Solving the non-unicost set covering problem by using cuckoo search
and black hole optimization. Natural Comput., January 2017

16. Wang, L., Zheng, X., Wang, S.: A novel binary fruit fly optimization algorithm
for solving the multidimensional knapsack problem. Knowl.-Based Syst. 48, 17–23
(2013)

138 J. Garćıa et al.

17. Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation.
Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

18. Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on
Nature & Biologically Inspired Computing, NaBIC 2009, pp. 210–214. IEEE (2009)

19. Zhang, X., Changzhi, W., Li, J., Wang, X., Yang, Z., Lee, J.-M., Jung, K.-H.:
Binary artificial algae algorithm for multidimensional knapsack problems. Appl.
Soft Comput. 43, 583–595 (2016)

	A Percentile Transition Ranking Algorithm Applied to Knapsack Problem
	1 Introduction
	2 KnapSack Problem
	3 Percentile Transition Ranking Algorithm
	3.1 Initialization and Element Weighting
	3.2 Percentile Transition Ranking Operator
	3.3 Repair Operator

	4 Results
	4.1 Insight of PTRA Algorithm
	4.2 PTRA Compared with BAAA

	5 Conclusions and Future Work
	References

