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Abstract. The main result of the paper is the applicability of Dantzig-Wolfe
method for Large-Scale Nonlinear Programming with composite (block) struc-
ture of the function and constraints. Equivalent transformation of this problem is
a task decomposition and coordination. This result allows to propose a new class
of decomposition methods, which differ in approximating a feasible solution set
of the coordination problem.
The authors propose the modification of the Dantzig-Wolfe algorithm for

solving mathematical programming problems, where coordinating solutions is a
convex set. It was applied as a decomposition algorithm for a quadratic pro-
gramming problem. The algorithm was implemented in MS Excel environment
and its efficiency was studied and tested. The rate of convergence in the number
of global iterations was defined in tests, and it is shown that the proposed
algorithm is not significantly different from the Dantzig-Wolfe algorithm in
linear block programming.
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1 Introduction

The paper discusses Large-Scale optimization problems with the number of decision
variables and the number of constraints. Such problems arise, for example, in finding
optimal solutions in complex systems (production, economic and social). It is discussed
in the papers [1–3].

There are two methodologies of Large-Scale problem solving: parallel computing
based on mathematical programming algorithms and problem decomposition at the
stage of defining of numerical algorithms. The last method is developed within the
framework of block programming and is examined in this work.

Theoretical and applied methods of block programming is not limited only to
development of efficient computing schemes and algorithms for Large-Scale opti-
mization. These methods allow to study of information systems and the processes of
coordination in complex systems [3]. In a general sense, algorithmic computation may
be an example of public hierarchical system with distributed decision-making.
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Lower elements play a leading role in making decisions in industrial practice.
These elements are also known as “blocks” in mathematical researches [2].

Coordination Centre provides decisions on resources and production constraints.
However, the main role of the Centre is to ensure the optimality of block solutions to
serve the target function well.

The hierarchical system is driven by information flows between the elements. The
volume of flows is substantially less than task dimensions.

To the present time has been widely used block methods of linear programming, in
particular, the Dantzig-Wolfe Decomposition [1, 2, 4]. In [2, 4] it is shown that the
linear programming problems to be solved by this method are a special case of the
composite (block) tasks of nonlinear programming problem. This fact can be used to
solve convex mathematical Large-Scale programming problems. In this paper, this
method is used to build hierarchical algorithms for solving quadratic programming
problems in which the objective function is convex and the constraints coincide with
the linear programming problems.

2 Methods

The method of Dantzig-Wolfe Decomposition is obtained and justified as a specialized
case of the simplex method for solving Large-Scale linear programming problems with
a block structure system of constraints.

In this section, we will show that this method is applicable for convex mathematical
programming problems, where the objective function has a composite (block) structure
and constraints.

Let’s describe this class of Large-Scale problems [2].
Let Zi be a set of function values ziðxiÞ.
We introduce the notation:

x ¼ fx1; . . .; xng 2 X ¼ �
Yn
i¼1

Xi; zðxÞ ¼ ðz1ðx1Þ; . . .; znðxnÞÞ 2 Z ¼ �
Yn
i¼1

Zi;

~X ¼ fx 2 XjgðzðxÞÞ 2 Gg;
~Z ¼ fz 2 ZjgðzÞ 2 Gg;

where �Qn
i¼1

Xi ¼X1 � . . .� Xn & �Qn
i¼1

Zi ¼ Z1 � . . .� Zn are the Cartesian product of

the sets X1; . . .;Xn and Z1; . . .; Zn, respectively.
Write n-block optimization problem:

max ff ðzðxÞÞjx 2 ~Xg ð1Þ

We introduce a system of tasks.
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The task of the center:

maxff ðzÞjz 2 ~Zg ð2Þ

The objective of the unit i; i ¼ 1; . . .; n ::

di ¼ min f jjz�i � ziðxiÞjj jxi 2 Xi g ¼ 0 ð3Þ

where z� ¼ ðz�1; . . .; z�nÞ is one of the solutions to problem (2).
Let’s show that problems (1) and (2)–(3) are equivalent.
The vector x� ¼ ðx�1; . . .; x�nÞ is obtained from solving all n problems (3). Let’s s call

it the solution of the problem (2)–(3).
Thus, the vector z is considered to be an auxiliary vector.
Two extreme problems are equivalent if the set of solutions coincides. Suppose that

there is the solution of problems.
For the problem (3) let z�i 2 Zi. Then for any z�i 2 Zi we get di ¼ 0, i.e. there is true

equality

z�i ¼ ziðx�i Þ ð4Þ

where x�i is the solution of the problem (3).
We will show that any solution of problem (1) is the solution of the system (2)–(3).
Let x� be a solution of problem (1), i.e. x� 2 ~X; f ðzðx�ÞÞ� f ðzðxÞÞ 8x 2 ~X.

Examine the vector z� ¼ zðx�Þ. For this vector, the fair inclusion z� 2 Z and relation-
ships f ðz�Þ ¼ f ðzðx�ÞÞ� f ðzÞ ¼ f ðzðxÞÞ 8x 2 ~X.

The inequality is fulfilled when z 2 ~Z, i.e. z� 2 ~Z; f ðz�Þ� f ðzÞ 8z 2 ~Z. There-
fore z� is the solution of the problem (2). Since (4) is satisfied, the vector x� ¼
ðx�1; . . .; x�nÞ is the solution of the problem (3).

We will show that any solution of the system (2)–(3) is the solution of problem (1).
Let z� ¼ ðz�1; . . .; z�nÞ; x� ¼ ðx�1; . . .; x�nÞ be solutions of problems (2) and (3) respectively.
The condition (4) is satisfied. We have gðz�Þ ¼ gðzðx�ÞÞ 2 G; x�i 2 Xi; i ¼ 1; . . .; n;
whence it follows that x� 2 ~X. Next, a vector z�, by definition, satisfies the condition
f ðz�Þ� f ðzÞ 8z 2 ~Z. Given this expression and the definition ~Z, we have
f ðz�Þ ¼ f ðzðx�ÞÞ� f ðzðxÞÞ 8x 2 ~X. Thus, x� is the solution of the problem (1).

It is easy to show that if the problem (1) has no solution, there is no solution in (2),
and vice versa. In addition, the extreme values of the problem functions (1) and (2)
coincide. So, we have proved the equivalence of problems (1) and (2)–(3). Therefore, it
is proved that the system (n + 1) of extreme problems (2)–(3) is the block decompo-
sition of extremal problem (1).

Problems (2), (3) can be solved with a set Z known in the task of center and, thus,
all hierarchical algorithms have to find Z at the initial stage, or a subset �Z� � Z that
contains the optimal solution or, finally, the point z�. Here it is assumed that
�Z� \Argmax ff ðzÞjz 2 Z; gðzÞ 2 Gg 6¼ /.
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Thus, the set of all algorithms may be classified in accordance with the following:

(1) It restores a set Z as a whole.
(2) It restores a significant part �Z� of the set Z.
(3) It builds a maximizing sequence fzkg1k¼1, converging to z�.

Let’s consider below the 2nd way of building hierarchical algorithms in the case of
inner approximation of the set Z. In the case of a convex set Z, it is similar to
Dantzig-Wolfe Decomposition. In a specific example, we consider the example of the
algorithm for solving the quadratic programming problem.

3 Results

Consider the second way of building hierarchical algorithms in the case of inner
approximation of the set Z

Let’s write it in the following form:

Step 1. (starting the algorithm). Set Z1
i with a defined condition Z1

i �Zi;
Qn
i¼1

Z1
i ¼

Z1 \fzjgðzÞ 2 Gg 6¼ /. Believe k ¼ 1.
Step 2. Solve the problem of the Centre in the formulation (2). Find zk and the

possible ways of checking the optimality of this solution for the set Z.
Step 3. Check the optimality condition of the point zk on the set Z. If the point zk is

optimal on the set Z, go to step 5. Otherwise, find the point ~zk, at which the optimality
conditions on Z are violated.

Step 4. Go to set Zkþ 1, apply k ¼ kþ 1 and go to step 2.
Step 5 (finding solutions). For zki solve the problem (3) with dki ¼ 0; because zki 2 Zi.

For step 3 of the algorithm, consider a general nonlinear programming problem:

max f f ðzÞjgjðzÞ� 0; j ¼ 1;m1; gjðzÞ ¼ 0; j ¼ m1 þ 1;m; z 2 Z g ð5Þ

where f ; gjðzÞ is a continuously differentiable functions; Z - convex closed set con-
taining interior points.

It is known the following property of problem (5), named as a generalized rule of
Lagrange multipliers [5]. Let z0 - the solution of problem (5). Suppose that the vectors
gijðz0Þ j 2 fm1 þ 1; . . .;m g[ f i ¼ 1; 2; . . .;m1jgiðz0Þ ¼ 0 g are linearly independent.

Then there exist non-zero multipliers k0j ðj ¼ 0; 1; . . .;mÞ, such that k0j � 0;

j ¼ 0; 1; . . .;m1; k
0
j � gjðz0Þ ¼ 0, j ¼ 1; . . .;m, and for all z 2 Z is fulfilled ðk0f 0ðz0ÞþPm

j¼1
k0j g

0
jðz0Þ; z� z0Þ	 0.

Let discuss the use of this result for block quadratic programming. In step 4 of the
algorithm, it is possible to apply the approach of method Dantzig-Wolfe Decomposi-
tion to construct a sequence of sets �Zk of convex linear combinations k of the known
points from the set Z.
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Consider the mathematical model of production planning T industrial enterprises in
the following form:

max
x2X

XT
t¼1

�ðPH
t � ptxtÞ2jxt 2 Xt; t ¼ 1; . . .; T ;

XT
t¼1

�Axt 	B

( )
ð6Þ

where PH
t - the profit potential, and Xt – a valid set of unit plans t: Xt ¼ fxt 2

RnjAtxt 	Bt; xt � 0.
The matrix in the above expressions have the following dimensions: pt � ð1�

ntÞ; xt � ðnt � 1Þ; �At � ðm� ntÞ; B� ðm� 1Þ; At � ðmt � ntÞ; Bt � ðmt � 1Þ, where
the first number indicates the number of rows, the second - the number of columns.

The economic meaning of the planning model is to optimize production plans of
enterprises, where the potential possibilities for profit are maximally implemented.

Let’s introduce the units Pt ¼ ptxt; St ¼ �Atxt for problem (6) and the set Zt of
possible values for these units. Then problem (2) in this case has the form:

max
ðP;SÞ

XT
t¼1

�ðPH
t � PtÞ2jðPt; StÞ 2 Zt; t ¼ 1; . . .; T;

XT
t¼1

St 	B

( )
ð7Þ

Let is found set Zk
t �Zt on iteration k of the algorithm. By solving the problem (7)

for these sets, there is obtained points zkt 2 Zt and the dual variables uk. According to
(5) the point is optimal for the corresponding block problem (7), when for all zt 2 Zt
fulfilled the inequality:

2ðPH
t � Pk

t ÞðPt � Pk
t Þþ ukðSt � Skt Þ	 0 ð8Þ

If inequality (8) is fulfilled for all t ¼ 1; . . .; T , then the solution of problem (7) is
found.

Let denote akt ¼ 2ðPH
t � Pk

t Þ; ckt ¼ akt P
k
t ; b

k
t ¼ ukSkt . Then, during the transition to

the original variables, the inequality (8) for t-block is equivalent to the following
inequality:

dkt ¼ max
xt2Xt

ðakt pt þ uk�AtÞxt � ðckt þ bkt Þ
� �

	 0 ð9Þ

Thus, for the nonlinear problem (6) we found the indicator of optimality of the
current solution (step 3 of the algorithm). It can be checked with a solution of separate
task blocks. There is a finite speed of convergence of the solution to problem (7) for
precise calculations.

Finite convergence of such block programming algorithms for accurately calcu-
lating is proved for example in [4]. According to (9) at each global iteration, the
algorithm has to solve a linear programming problem on a polyhedral set with a limited
number of corner points.
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The study of nonlinear analog Dantzig-Wolfe method and its implementation in a
hierarchical algorithm was conducted in Excel for an enterprise production planning
system (6) with 5 companies (T = 5). All calculations of the lower level (the infor-
mation of companies) was carried out in Excel. The numerical values provided with the
matrix (6) were filled with uniformly-distributed pseudo-random numbers.

The marginal profit of the companies ðPH
t Þ was defined as the maximum, without

the resource constraints, by the decision of local linear programming problems. Exact
solution of the problem (6) was obtained from a solver of Excel.

The formation of the initial coordinating task (7) performed by the classical scheme
of the Danzig Wolfe method. For that, we selected the 2T columns corresponding to
zero and to maximum plans. Additional columns of constraints were formed with using
the expression (9). Each global iteration and the corresponding approximation of
coordination tasks were performed in separate Excel worksheets.

The information exchange between the Centre and agents included current and
optimal values of resource units, i.e. values of variables Pk

t ; S
k
t ; u

k . We show the need to
use performance structure of the optimal plan (Step 5 of the algorithm) because a price
coordination (9) does not allow finding the solution of the problem (6). This effect is
similar to the classical Dantzig Wolfe method, but in our case it has decentralized
decisions, i.e. tasks (3) do not require of knowledge Centre for variables of lower levels.
The proposed algorithm has obtained exact solutions for all considered numerical tasks
(6). So the problem (6) with 12 variables and 24 constraints of 2 resources had error
estimates for 4 initial iterations of functions 9,66%; 1,28%; 0,06%; 0,00% respectively.

4 Discussions

The main result of this paper is to prove the applicability of the Dantzig-Wolfe method
for solving not only linear mathematical programming Large-Scale problems. It is
proposed the modification of the Dantzig-Wolfe algorithm for solving convex math-
ematical programming problems with block (composite) structure in the function and
constraints.

The algorithm for quadratic programming was implemented in MS Excel envi-
ronment and its efficiency was studied. The rate of convergence in the number of global
iterations was defined in tests, and it is shown that the proposed algorithm is not
significantly different for this indicator from the Dantzig-Wolfe algorithm in linear
block programming.

References

1. Tsurkov, V.I.: Decomposition in Large-Scale Problems. Monography, Nauka, Moscow
(1981)

2. Mamchenko, O.P., Oskorbin, N.M.: Modeling Hierarchical Systems: Textbook for Higher
Education Institutions. Publishing House of ASU, Barnaul (2007)

36 N. Oskorbin and D. Khvalynskiy



3. Oskorbin, N.M., Bogovis, A.V., Zharikov, A.V.: Informational processes coordination of
enterprise solutions and computer modeling. Vestn. Novosib. State Univ. Ser. Inf. Technol.
8(1), 54–59 (2010)

4. Oskorbin, N.M.: On the circuits of block programming. Econ. Math. Methods 5, 964–972
(1981)

5. Moiseev, N.N., Ivanilov, Y.P., Stolyarova, E.M.: Methods of optimization. Monography,
Nauka, Moscow (1978)

Decomposition Algorithms 37


	Decomposition Algorithms for Mathematical Programming and Generalization of the Dantzig-Wolfe Method
	Abstract
	1 Introduction
	2 Methods
	3 Results
	4 Discussions
	References




