
Modeling animal brains with evolutive cognitive schemas

Pierre Bonzon1

1 Dept of Information Systems, Faculty of HEC, University of Lausanne, Switzerland

pierre.bonzon@unil.ch

Abstract. Very specifically, functional behavior assessment is a domain in de-
velopmental psychology looking at the reasons behind a child’s observed be-
havior. More generally, it can be considered as the search for the explanation of
human and non-human actions. Towards this goal, computational cognitive
neuroscience offers a new range of possibilities that contrast with the usual sta-
tistical approaches. An attempt to assess brain functionalities in learning is il-
lustrated here through the simulation of analogical inferences. As a main result
of this paper, the mapping of evolutive cognitive schemas onto neural connec-
tion structures involving two types of cognitive transfer points out to a possible
discontinuity between human and non-human minds.

Keywords: hebbian learning, neural process, cognitive schema, analogical
infehrence, simulation.

1 Introduction

As early as in 1936, Piaget considered, and later defined [1], a cognitive schema as
being “a cohesive, repeatable action sequence possessing component actions that are
tightly interconnected and governed by a core meaning”. According to this theory,
cognitive schemas constitute the building blocks for knowledge acquisition. This
concept has been first found incompatible (see e.g., [2]) with the then dominant para-
digm of behaviorism, essentially because at that time the corresponding internal pro-
cesses could not be observed nor measured. Since then, the statistical analysis of so-
phisticated experimental results and/or simulations [3] has led to the discovery of
patterns of neuronal activations that could be identified with building blocks of per-
ception [4]. Acquired memory and skills could thus rely on combining these elemen-
tary assemblies into higher-order constructs. These results, however, do not identify
the processes relating perception and behavior. In other words, as pointed out by
many commentators (see e.g., [5][6]), they do not allow for describing algorithms and
underlying circuits. What is then needed, they conclude, is a ‘‘middle-out’’ approach
that can identify plausible structures linking biology and cognition.

© Springer International Publishing AG 2017

DOI: 10.1007/978-3-319-67615-9_9
C. Frasson and G. Kostopoulos (Eds.): BFAL 2017, LNAI 10512, pp. 98–107, 2017

98

This need can be related to the general “what” and “how” questions of cognitive
science as addressed by the historical Marr’s “tri-level” hypothesis [7] that distin-
guishes computational, algorithmic and implementation levels. Adding on this,
Poggio [8] argues that, in order to discover the representations used by the brain, one
needs to understand “how an individual organism learns and evolves them from expe-
rience of the natural world”, and that “learning algorithms and their a priori assump-
tions are deeper and more useful than a description of the details of what is actually
learned”. As a consequence, evolution and learning should be added to the levels in
cognitive studies.

Towards this goal, a different approach to brain modeling has been proposed [9].
Defined by a logic program of about 300 lines, an experimental platform for this new
type of modeling can be run on any PC. The corresponding formal framework stands
out of the usual methods by focusing on processes. It relies for this on three concepts
of computer science and mathematical logic i.e., the formal notions of:

- an object in context represented by expressions in a logical language
- communicating processes between concurrent threads that can be used to

model the interaction of objects obeying various communication protocols
- a virtual machine interpreting virtual code that differs from a processor's na-

tive code.
In software engineering, a virtual machine constitutes the key mechanism that al-

lows for interfacing high level objects i.e., software, with their low level physical
support i.e., hardware. In a multi-level model of brain structures and processes, such a
machine does function as an interface between the neural and cognitive levels, there-
fore allowing for grounded models of cognition to be formulated by relating percep-
tion and behavior at a symbolic level. This does not mean however that abstracting
away physiological details detaches cognitive models from their supporting neural
substrate: quite to the contrary, as we shall briefly review below, communication pro-
tocols representing synaptic plasticity actually drive the hebbian learning of cognitive
structures.

2 Material and methods.

Our overall methodology can be described by the following sequence:
a) micro scale virtual circuits implementing synaptic plasticity through asynchro-

nous communicating processes are first defined
b) meso scale virtual circuits corresponding to basic cognitive processes are then

composed out of these micro scale circuits
c) both types of virtual circuits are finally compiled into virtual code to be inter-

preted by a virtual machine.
Communication protocols for micro scale circuits as well as the specifications of our
virtual machine are given in open access in [9]. Examples of mesoscale circuits
corresponding to cognitive software running on top of a simulated biological substrate
are presented below for illustrative purposes. At the same time, they do constitute the
building blocks of the developments to be presented in our Results section.

Modeling animal brains with evolutive cognitive schemas 99

2.1 A case of classical conditioning

As a general evolution principle, organisms tend to devise and use “tricks” for their
survival. The ability to evaluate a threat by learning predictive relationships e.g., by
associating a noise and the presence of a predator, is an example of such tricks real-
ized by classical conditioning.

Let us consider the classical conditioning in the defensive siphon and gill with-
drawal reflex of aplysia californica [10]. In this experiment, a light tactile conditioned
stimulus cs elicits a weak defensive reflex, and a strong noxious unconditioned stim-
ulus us (usually an electric shock) produces a massive withdrawal reflex. After a few
pairings of stimuli cs and us, where cs slightly precedes us, a stimulus cs
alone triggers a significantly enhanced withdrawal reflex i.e., the organism has
learned a new behavior. This can be represented by a wiring diagram, or virtual cir-
cuit (see Figure 1), adapted from [11] to allow for a one to one correspondence with
symbolic expressions.

 sense(cs)-*->=>-motor(cs)
 /|\
 ltp
 |
 sense(us)-+->=>-motor(us)

Fig. 1. A virtual circuit implementing classical conditioning.

In Figure 1, the components sense(us) and sense(cs) are coupled with
sensors (not shown here) capturing external stimuli us and cs and correspond to
sensory neurons. The components motor(us) and motor(cs) are coupled with
action effectors (also not shown) and correspond to motor neurons. Finally, the com-
ponent ltp embodies the mechanism of long term potentiation and acts as a
facilitatory interneuron reinforcing the pathway (i.e. augmenting its weight) between
sense(cs) and motor(cs). The interaction of these components are represented
by the iconic symbols ->=>- and /|\ that correspond to a synaptic transmission
(i.e., ->=>- represents a synapse) and to the modulation of a synapse, respectively.
The symbols * and + stand for conjunctive and disjunctive operators (i.e., they are
used to represent the convergence of incoming signals and the dissemination of an
outgoing signal, respectively). Classical conditioning then follows from the applica-
tion of hebbian learning [12] i.e., “neurons that fire together wire together”. Though it
is admitted today that classical conditioning in aplysia is mediated by multiple neu-
ronal mechanisms [13] including a postsynaptic retroaction on a presynaptic site, the
important issue is that the learning of a new behavior requires a conjoint activity of
multiple neurons. This activity in turn depends critically on the temporal pairing of
the conditioned and unconditioned stimuli cs and us, which in conclusion leads to
implement the ltp component as a detector of coincidence.

100 P. Bonzon

2.2 A simple case of operant conditioning

The ability to assess and to remember the consequences of one's own actions is anoth-
er example of associative learning providing survival advantages. In this case, operant
conditioning [14] associates an action and its result, which can be positive or negative.
Toward this goal, the organism will first receive either an excite or an inhibit feedback
stimulus, corresponding for instance to a reward or punishment, respectively; it will
then associate this feedback with an appropriate action.

Let us consider a simple thought experiment where a pigeon is learning to discrim-
inate between grains and pebbles corresponding to two possible vectors I of external
visual stimuli [mat,smooth] and [shiny,smooth]. The circuit given in Fig-
ure 2, represents the wiring of four components sense(I),
learn(accept(I)), accept(I) and reject(I), together with two ltp and
two opposite ltd (for long term depression) components. In addition to the external
stimuli captured by component sense(I), this circuit incorporates the two internal
stimuli excite(accept(I)) and inhibit(accept(I)) that correspond to
feedbacks from probing the food according to a set of accepted elements.

 ---*->=>-accept(I)
 | /|\
 | LTP
 | |
 | +---
 | | |
 | LTD |
 | \|/ |excite(accept(I))--
 sense(I)-+---*->=>-learn(accept(I))|
 | /|\ |inhibit(accept(I))-
 | LTD |
 | | |
 | +---
 | |
 | LTP
 | \|/
 ---*->=>-reject(I)

Fig. 2. A generic virtual circuit implementing simple operant conditioning

At the beginning of the simulation, the pathways from sense(I) to
learn(accept(I)) is open, while the pathways to both accept(I) and
reject(I) are closed. After a few trials, the pigeon will have learned to close
learn(accept(I)) and to open either accept(I) or reject(I). This
process matches a fundamental principle in circuit neuroscience according to which
inhibition in neuronal networks during baseline conditions allows in turn for
disinhibition, which then stands as a key mechanism for circuit plasticity, learning,
and memory retrieval [15]; this gives rise in turn to two populations of neurons that
have opposing spiking patterns in anticipation of movement [16] as well as two
eligibility traces with different temporal profiles, one corresponding to the induction
of ltp, and the other to the induction of ltd [17][18].

Modeling animal brains with evolutive cognitive schemas 101

3 Results
Following our previous results [9] on modeling the first three levels of animal
awareness according to Pepperberg & Lynn (2000 [19]), the mapping of analogical
inference schemas onto neural connection structures involving two types of cognitive
transfer points out to a possible discontinuity between human and non-human minds.

3.1 Learning a simple analogical inference schema

Let us first consider a simple analogical inference schema involving two predicates p
and q applied to objects X1 and X2, i.e.
{p(X1)} {big(dog)}
{p(X2)} e.g., {big(bear)}
 q(X1) strong(dog)
 q(X2) strong(bear)

where {F} represents a fact F, or proposition, that has been previously memorized.
This schema can be viewed as first inducing an implication i.e., p(X) -> q(X),
where X is a variable, and then applying modus ponens i.e.,
 p(X) -> q(X)
 p(X)
 q(X)

The corresponding circuits (where A, B are parameters defining a context e.g., left,
right, and I,J vectors of percepts representing p,q) are given below. In Fig. 3,
each half circuit implements the operant conditioning for building a storage memory
trace relying on a long term storage (lts) process [9]. In Fig. 4, a structure relying
on a long term retrieval (ltr) process and representing an implication is build in the
upper half and then applied in the lower half through iterated hebbian learning.

 p(X1) {p(X1)}
 --*>=>-see(A(X1(I)))-+---*--{see(A(X1(I)))}
 | /|\ | /|\
 | ltp | lts
 | | | |
 | | ---
 | +--
 | | |
 | ltd |
 p(X1) | \|/ |
 sense(A(X1(I)))-+--*->=>-learn(see(A(X1(I))))|excite(see(A(I)))-

 sense(B(X2(I)))-+--*->=>-learn(see(B(X2(I))))|excite(see(B(I)))-
 p(X2) | /|\ |
 | ltd |
 | | |
 | +--
 | | ---
 | | | |
 | ltp | lts
 | \|/ | \|/
 --*>=>-see(B(X2(I)))-+---*--{see(B(X2(I)))}
 p(X2) {p(X2)}

Fig. 3. Virtual circuit for memorizing perceptions

102 P. Bonzon

Fi
g.

 4
.

V
irt

ua
l c

irc
ui

t f
or

 im
pl

em
en

tin
g

a
si

m
pl

e
ca

se
 o

f a
na

lo
gi

ca
l i

nf
er

en
ce

Modeling animal brains with evolutive cognitive schemas 103

-
-
*
-
>
=
>
-
l
e
a
r
n
(
s
e
e
(
A
(
X
1
(
J
)
)
)
)
|
e
x
c
i
t
e
(
s
e
e
(
A
(
J
)
)
)
-
-

|

/
|
\

|

|

l
t
d

|

 |

|

|

 |

|

|

 |

|

|

|

|

|

|

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

 |

|

 |

|

|

|

|

l
t
p

|

\
|
/

q
(
X
1
)

+
-
-
*
-
>
=
>
-
s
e
e
(
A
(
X
1
(
J
)
)
)
-
-
-
-
-
-
-

 |

|

 |

|

|

|

 |

|

 |

|

|

l
t
p

 q
(
X
1
)

|

{
p
(
X
1
)
}

\
|
/

q
(
X
1
)

 s
e
n
s
e
(
A
(
X
1
(
J
)
)
)
-
+
-
-
*
-
>
=
>
-
r
e
c
a
l
l
(
A
(
X
1
(
I
)
)
)
-
+
-
-
*
-
>
=
>
-
i
n
f
e
r
(
A
(
X
1
(
J
)
)
)
-
-
-
-
-
-
-

|

/
|
\

|

|

|

l
t
r

|

|

{
p
(
X
1
)
}

|

|

|

|

{
s
e
e
(
A
(
X
1
(
I
)
)
)
}
-
-
*
-
-

|

|

|

|

{
s
e
e
(
B
(
X
2
(
I
)
)
)
}
-
-
*
-
-

|

|

{
p
(
X
2
)
}

|

|

|

|

|

l
t
r

l
t
p

l
t
p

|

\
|
/

\
|
/

\
|
/

 s
e
n
s
e
(
B
(
X
2
(
_
)
)
)
-
+
-
-
*
-
>
=
>
-
r
e
c
a
l
l
(
B
(
X
2
(
I
)
)
)
-
*
-
-
>
=
>
-
m
a
t
c
h
(
A
(
X
1
(
I
)
,
B
(
X
2
(
I
)
)
)
-
*
-
>
=
>
-
i
n
f
e
r
(
B
(
X
2
(
J
)
)
)
-

 q
(
X
2
)

|

{
p
(
X
2
)
}

q
(
X
2
)

|

|

l
t
p

|

\
|
/

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
*
-
>
=
>
-
s
e
e
(
B
(
X
2
(
J
)
)
)

|

q
(
X
2
)

 |

 |

 |

 |

|

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

|

|

|

|

l
t
d

|

|

\
|
/

|

-
-
*
-
>
=
>
-
l
e
a
r
n
(
s
e
e
(
B
(
X
2
(
_
)
)
)
)
|
i
n
h
i
b
i
t
(
s
e
e
(
B
(
_
)
)
)
-

 P(X,Y)
 P(Y,Z)
 P(X,Z)

Let us extend the definition of the perceptual context by adding two parameters C,
D e.g., front, rear. The circuit implementing this inference schema is given in Fig.
5. As a distinctive difference from the previous circuit, where remembered facts
{p(X1)} and {p(X2)} need to be matched to ensure that they involve the same
property p (see the center of Fig.4), the circuit in Fig. 5 relies on remembered facts
{p(X1,Y1),p(Y1,Z1)} and {q(X2,Y2),q(Y2,Z2)} that possibly call for differ-
ent properties p and q, and thus cannot be matched. As a result, whereas the analogi-
cal inference implemented in Fig. 4 allows for the cognitive transfer of a property q,
the circuit of Fig. 5 allows for the cognitive transfer of structural analogies between
any two transitive relations. Consequently, the learning step leading to in-
fer(D(_(K),Z2(L))) in Fig.5 still carries a non instantiated argument, thus high-
lighting the fact that these brain inferences are partial processes inscribed in a context
D relating a perception to an action, in this case see(D(X2(K),Z2(L))).

Without entering into the details of these virtual circuits (see [9]), let us just men-
tion the role played by the parameters defining context i.e. , A, B, C, D (e.g., left,
right, front, rear), which allow for representing perceived invariant structures
and their memorization for later reuse, as just discussed above.
3.2 Characterizing the differences between human and non-human minds
Let us finally turn to an example of relational inference of the following type
{p(X1,Y1),q(Y1,Z1)} {father(bill,mary),mother(mary,sam)}

{p(X2,Y2),q(Y2,Z2)} e.g., {father(tom,cathy),mother(cathy,jack)}
 r(X1,Z1) grandfather(bill,sam)
 r(X2,Z2) grandfather(tom,jack)

This extension involves the two types of cognitive transfers just considered. A combi-
nation of the two corresponding circuits is however far from being straightforward,
the difficulty being here the parallel matching of multiple interleaved properties.
Whereas behaviors relying on simple analogical reasoning and transitive inference, as
modeled by the circuits of Fig. 4 and 5, have been observed in non-humans animals,
this more complex example is unarguably out of their reach. It is interesting to note
that previous modeling approaches relying on substitutions [20] have led to similar
conclusions [21]. On the other hand, further results [22] pertaining to a simple form of
meta-cognition observed in animals, namely memory awareness, have been obtained

104 P. Bonzon

 P(X,Y), P(Y,Z) -> P(X,Z)

and then applying modus ponens
{P(X,Y), P(Y,Z) -> P(X,Z)}

This inference consists in first inducing a second order implication representing a
generic transitive relation, where P,X,Y,Z are variables

3.2 Learning an analogical inference schema implementing transitive relations

Let us now consider a case of relational inference based on transitive relations i.e.,
{p(X1,Y1),p(Y1,Z1)} {smaller(mouse,cat),smaller(cat,dog)}

{q(X2,Y2),q(Y2,Z2)} e.g., {higher(tree,house),higher(house,car)}
 p(X1,Z1) smaller(mouse,dog)
 q(X2,Z2) higher(tree,car)

Fi
g.

 5
.

V
irt

ua
l c

irc
ui

t i
m

pl
em

en
tin

g
tra

ns
iti

ve
 in

fe
re

nc
es

Modeling animal brains with evolutive cognitive schemas 105

-
-
*
-
>
=
>
-
l
e
a
r
n
(
s
e
e
(
C
(
X
1
(
I
)
,
Z
1
(
J
)
)
)
)
|
e
x
c
i
t
e
(
s
e
e
(
C
(
I
,
J
)
)
)
-

|

/
|
\

|

|

l
t
d

|

|

|

|

|

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

|

|

|

l
t
p

|

\
|
/

p
(
X
1
,
Z
1
)

+
-
-
*
-
>
=
>
-
s
e
e
(
C
(
X
1
(
I
)
,
Z
1
(
J
)
)
)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

|

|

|

l
t
p

p
(
X
1
,
Z
1
)

|

p
(
X
1
,
Y
1
)

p
(
Y
1
,
Z
1
)

\
|
/

p
(
X
1
,
Z
1
)

s
e
n
s
e
(
C
(
X
1
(
I
)
,
Z
1
(
J
)
)
)
-
+
-
-
*
-
>
=
>
-
r
e
c
a
l
l
(
C
(
A
(
…
)
)
)
-
-
-
+
-
-
*
-
>
=
>
-
r
e
c
a
l
l
(
C
(
B
(
…
)
)
)
-
*
-
>
=
>
-
i
n
f
e
r
(
C
(
X
1
(
I
)
,
Z
1
(
J
)
)
)
-

|

/
|
\

|

/
|
\

|

|

l
t
r

|

l
t
r

|

{
p
(
X
1
,
Y
1
)
}

|

|

{
p
(
Y
1
,
Z
1
)
}

|

|

|

{
s
e
e
(
A
(
X
1
(
I
)
,
Y
1
(
J
)
)
)
}
-
-
*
-
-

{
s
e
e
(
B
(
Y
1
(
I
)
,
Z
1
(
J
)
)
)
}
-
*
-
-

|

|

|

|

|

|

|

|

|

{
s
e
e
(
A
(
X
2
(
K
)
,
Y
2
(
L
)
)
)
}
-
-
*
-
-

{
s
e
e
(
B
(
X
2
(
K
)
,
Y
2
(
L
)
)
)
}
-
*
-
-

|

{
q
(
X
2
,
Y
2
)
}

|

|

{
q
(
Y
2
,
Z
2
)
}

|

|

|

|

l
t
r

|

l
t
r

l
t
p

|

\
|
/

|

\
|
/

\
|
/

s
e
n
s
e
(
D
(
X
2
(
K
)
,
Z
2
(
L
)
)
)
-
+
-
-
*
-
>
=
>
-
r
e
c
a
l
l
(
D
(
A
(
…
)
)
)
-
-
-
+
-
-
*
-
>
=
>
-
r
e
c
a
l
l
(
D
(
B
(
…
)
)
)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
*
-
>
=
>
-
i
n
f
e
r
(
D
(
_
(
K
)
,
Z
2
(
L
)
)
)
-

q
(
X
2
,
Z
2
)

|

q
(
X
2
,
Y
2
)

q
(
Y
2
,
Z
2
)

q
(
X
2
,
Z
2
)

|

|

l
t
p

|

\
|
/

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
*
-
>
=
>
-
s
e
e
(
D
(
X
2
(
K
)
,
Z
2
(
L
)
)
)

|

q
(
X
2
,
Z
2
)

|

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

|

|

|

|

l
t
d

|

|

\
|
/

|

-
-
*
-
>
=
>
-
l
e
a
r
n
(
s
e
e
(
D
(
X
2
(
K
)
,
Z
2
(
L
)
)
)
)
|
i
n
h
i
b
i
t
(
s
e
e
(
D
(
K
,
L
)
)
)
-

 Various proposals have been made to close the gap between the level of individual
neurons and symbolic levels supporting behavior. A possible solution is to consider
group of neurons, or neural assemblies. It is proposed here to model neural assem-
blies in a simulation framework driven by a virtual machine acting as an interface
between neural dynamics and symbolic information defining perceptions and behav-
iors. While the usual approach to simulating neural dynamics starts with current flows
represented by differential equations, we opted for a conceptual abstraction of synap-
tic plasticity represented by communicating processes between concurrent threads.
Whereas in some simulations threads are equated with individual neurons, in others
they do represent multiple interconnected neurons whose coordinated activity con-
verges into an aggregated result. Threads thus constitute a general and versatile tool
for simulating various levels of structures and/or processes e.g., Hebbian cell assem-
blies. As a consequence, there is no reference to any specific neural network model.
In order to try and discover learning processes, and thus in sharp contrast with the
usual models of interactive brain areas obtained by quantitatively fitting data (i.e.,
where latent estimated parameters are being correlated with neural measures), the
goal here is to construct a generative model of how behaviors can be interfaced with
neural dynamics.

As forcefully argued by Cooper and Peebles [24], models in Cognitive Science
cannot proceed at either level (i.e., computational or implementational in Marr's
sense) without tight coupling to the algorithmic and representation level. The most
important part of their argumentation (which reflects our own views) is summarized
in the following statement: "Integrated cognitive architectures that permit abstract
specification of the functions of components and that make contact with the neural
level provide a powerful bridge for linking the algorithmic and representational level
to both the computational level and the implementational level".

The successful application of this methodology could lead to a reconsideration of
the whole concept of a “neural code” allowing for relating perception and behavior.
Such a neural code may well reside in the spatial arrangement of mesoscale circuit
patterns (i.e., a kind of population or sparse coding, as opposed to the more traditional
rate or temporal coding associated with spike trains). More precisely, perception
might be related to behaviors through the paths found by evolution via iterated
hebbian learning.

106 P. Bonzon

4 Discussion
A common way of characterizing cognitive models is given by the two competing

paradigms of artificial cognitive architectures i.e., the traditional “sense-think-act”
cycle of cognitivist systems, on one side, and the simplified “sense-act” cycle of em-
bodied and/or emergent cognition, on the other. Our proposed model falls into the
second category, but it does so by resorting to a kind of symbolic computational
framework generally associated with the first approach.

revaluation as defined in [23]). If, as argued in [21], one of the challenges confronting
cognitive scientists today is to explain the functional discontinuity between human
and nonhuman minds, then an approach towards answering this question might be to
study the various types of cognitive transfers that need to be embedded in evolutive
cognitive schemas of the kind presented here.

by combining elementary circuits (more precisely, this higher-order functionality can
be reduced to successive layers of associative memories implementing retrospective

5. van der Velde , F., de Kamps, M.:The necessity of connection structures in neural models of
variable binding. Cognitive Neurodynamics 9, 359–37 (2015).

6. Frégnac, Y., Bathellier, B. : Cortical Correlates of Low-Level Perception: From Neural Cir-
cuits to Percepts. Neuron 88 (2015).

7. Marr, D.: Vision: A Computational Investigation into the Human Representation and Pro-
cessing of Visual Information. Freeman (1982).

8. Poggio, T.: The level of understandings framework. Perception 41, 1007-23 (2012).
9. Bonzon, P. Towards neuro-inspired symbolic models of cognition: linking neural dynamics to

behaviors through asynchronous communications. Cognitive Neurodynamics 11 (4), 327-353
doi:10.1007/s11571-017-9435-3 (2017).

10. Kandel, ER., Tauc, L: Heterosynaptic facilitation in neurones of the abdominal ganglion of
Aplysia depilans. Journal of Physiology (London) 181 (1965).

11. Carew, TJ., Walters, ET., Kandel, ER.: Classical conditioning in a simple withdrawal reflex in
Aplysia californica, The Journal of neuroscience 1(12), 1426-1437 (1981).

12. Hebb, D.: The organization of behavior. A neuropsychological theory. J. Wiley (1949).
13. Antonov, I., Antonova, I., Kandel, ER., Hawkins, RD.: Activity-Dependent Presynaptic Facil-

itation & Hebbian ltp Are Both Required & Interact during Classical Conditioning in Aplysia.
Neuron 37 (1) (2003).

14. Skinner, BF.: Are theories of learning necessary? Psychological review 57, 193-207 (1950).
15. Letzkus, J., Wolff, S., Lüthi, A.: Disinhibition, a Circuit Mechanism for Associative Learning

& Memory. Neuron, 88(3), 264–276 (2015).
16. Zagha, E., Ge X., McCormick G.: Competing Neural Ensembles in Motor Cortex Gate Goal-

Directed Motor Output. Neuron, 88(3), 565–577 (2015).
17. Huertas, M., Schwettmann, S., Kirkwood, A., Shouval, H.: Stable reinforcement learning via

temporal competition between LTP & LTD traces. BMC Neuroscience 15(Suppl 1):O12
(2014).

18. He, K., Huertas, M., Hong, SZ, Tie, XX., Hell J., Souval H., Kirkwood, A.: Distinct Eligibil-
ity Traces for LTP & L.TD in Cortical Synapses. Neuron 88(3), 528–538 (2015).

19. Pepperberg, I, Lynn, S (2000). Possible Levels of Animal Consciousness with Reference to
Grey Parrots (Psittaccus erithacus). American Zoologist, 40, 893-901.

20. Hummel, JE., Holyoak, K.: A Symbolic-Connectionist theory of Relational Inference and
Generalization. Psychological Review 110 (2),220-264 (2003).

21. Penn, DC., Holyoak, K.J., Povinelli, D.J. Darwin's mistake: Explaining the discontinuity
between human and nonhuman minds. Behavioral and Brain Sciences, 31, 109–178 (2008)

22. Bonzon, P. Beyond animal awareness: continuity vs discontinuity between human and non-
human minds (submitted).

23. Holland, PC. Event representations in Pavlovian conditioning: image and action. Cognition
37, 105–131 (1990).

24. Cooper, R, Peebles, D. Beyond Single-Level Accounts: The Role of Cognitive Architectures
in Cognitive Scientific Explanation, Topics in Cognitive Science 7, 243–258 (2015).

Modeling animal brains with evolutive cognitive schemas 107

References
1. Piaget, J.: Jean Piaget. In E. Boring, H. Langfeld, H. Werner, & R. Yerkes (Eds.), History of

psychology in autobiography IV:.237-256. Clark University Press (1952).
2. Bruner, J.: The Process of education. Harvard University Press (1960).
3. Palmeri, T., Turner, M., Love B.: Model-based Cognitive Neuroscience. J. of Math. Psychol-

ogy 76,B (2017).
4. Perin, R., Berger, T., Markram, H.: A synaptic organizing principle for cortical neuronal

groups. Proceedings National Academy Sciences of the USA (PNAS) 108(12) (2011).

	9 Modeling animal brains with evolutive cognitive schemas
	1 Introduction
	2 Material and methods
	2.1 A case of classical conditioning
	2.2 A simple case of operant conditioning

	3 Results
	3.1 Learning a simple analogical inference schema
	3.2 Learning an analogical inference schema implementing transitive relations

	4 Discussion
	References

