
Chapter 16

History of Histamine-Releasing Factor (HRF)/

Translationally Controlled Tumor Protein

(TCTP) Including a Potential Therapeutic

Target in Asthma and Allergy

Susan M. MacDonald

Abstract Histamine-releasing factor (HRF) also known as translationally con-

trolled tumor protein (TCTP) is a highly conserved, ubiquitous protein that has

both intracellular and extracellular functions. Here we will highlight the subcloning

of the molecule, its clinical implications, as well as an inducible-transgenic mouse.

Particular attention will be paid to its extracellular functioning and its potential role

as a therapeutic target in asthma and allergy. The cells and the cytokines that are

produced when stimulated or primed by HRF/TCTP will be detailed as well as the

downstream signaling pathway that HRF/TCTP elicits. While it was originally

thought that HRF/TCTP interacted with IgE, the finding that cells not binding IgE

also respond to HRF/TCTP called this interaction into question. HRF/TCTP or at

least its mouse counterpart appears to interact with some, but not all IgE and IgG

molecules. HRF/TCTP has been shown to activate multiple human cells including

basophils, eosinophils, T cells, and B cells. Since many of the cells that are activated

by HRF/TCTP participate in the allergic response, the extracellular functions of

HRF/TCTP could exacerbate the allergic, inflammatory cascade. Particularly excit-

ing is that small molecule agonists of the phosphatase SHIP-1 have been shown to

modulate the P13 kinase/AKT pathway and may control inflammatory disorders.

This review discusses this possibility in light of HRF/TCTP.
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16.1 Introduction/Cloning

Histamine-releasing factor (HRF) was originally classified as a tumor protein

(translationally controlled tumor protein, TCTP) in both mouse acidic tumor and

mouse erythroleukemia. Brawerman’s group in the 1980s named the protein, but its

function remained a mystery (Yenofsky et al. 1983; Chitpatima et al. 1988). We

identified a histamine-releasing activity that was found in late-phase fluids from

nasal lavages, bronchoalveolar lavage fluids (BAL), and skin blister fluids that

directly induced histamine release from basophils isolated from a subpopulation of

allergic donors (HRF-responders [HRF/TCTP-R]) (MacDonald et al. 1987b). By

definition, donors with basophils who did not directly respond to HRF/TCTP were

termed HRF-non-responders (HRF/TCTP-NR).

Although an IgE-dependent HRF can be detected in nasal lavages (MacDonald

et al. 1987b), PBMC culture supernatants (Sampson et al. 1989), and fluids from

human late-phase reactions (LPR) (MacDonald et al. 1987b), we used supernatants

from overnight cultures of U937 cells, a human macrophage cell line (Sundstrom

and Nilsson 1976), for the isolation and sequencing of the HRF. Fifty liters of these

supernatants were concentrated, and the proteins were contained therein purified by

Sephadex G75 gel filtration, MONO Q anion exchange, and repetitive Superdex

chromatography. The basophil-releasing activity was concentrated, subjected to

SDS-polyacrylamide gel electrophoresis (PAGE), blotted onto a polyvinylidene

difluoride membrane, and stained with Coomassie blue, revealing four major protein

bands (at 60 kDa and 29 kDa and a doublet at 23 kDa). The NH2-terminal sequences

of each of these four bands were determined by protein sequencing. The 18

NH2-terminal amino acids of one of the 23-kDa components after a GenBank search

revealed 94% homology to p2l, a predicted 21-kDa murine peptide whose comple-

mentary DNA (cDNA) was isolated from mouse tumor cells (MacDonald et al.

1987b), as well as identity to p23, the human homolog, described by Bohm et al.

(1989). Both were cloned on the basis of their abundant expression in tumor cells,

and no function has been ascribed to either molecule. Because there is a stop codon

upstream from the initial methionine, it appears that p2l and p23 are not

posttranslationally processed at their NH2-termini. p21 cDNA was subcloned into

the pGEX-2T plasmid (Smith and Johnson 1988), expressed as a fusion protein with

glutathione-S-transferase (GST), purified, and isolated from GST by cleavage with

thrombin. Due to the homology between p2l and p23, the same synthetic primers,

based on the mouse p2l sequence, were used to isolate the human p23 cDNA from

the U937 cell line. This protein also was expressed in Escherichia coli as a GST

fusion protein and was subsequently cleaved from GST with thrombin.

After purification and cloning, HRF was found to be identical to TCTP, which is

also known as p23 (MacDonald et al. 1995). Our recombinant molecule was found to

have the same properties and ability to induce histamine release from selected

donors as did the originally described HRF/TCTP derived from nasal secretions.

The protein is ubiquitously expressed as an intracellular protein, and homologs of

HRF/TCTP are found in parasites including Plasmodium falciparum, Wuchereria
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bancrofti, Brugia malayi, and Schistosoma Mansoni. All of these parasites possess
mast cell/basophil histamine-releasing activity (MacDonald et al. 2001; Gnanasekar

et al. 2002; Rao et al. 2002). Our group, as well as another group, has identified the

interaction between HRF and elongation factor-1δ, also known as eukaryotic elon-

gation factor 1B-β (Langdon et al. 2004; Cans et al. 2003). Thus, HRF/TCTP may

have an intracellular role in interfering with the elongation step of protein synthesis.

16.2 Clinical Relevance of HRF/TCTP

The history of HRFs dates back to 1979 when Thueson et al. (1979) first described a
histamine-releasing activity produced by cultured peripheral blood mononuclear

cells that had been stimulated with mitogens or antigens. This HRF was further

characterized and found to be very heterogeneous, containing molecular weight

species ranging from 15,000 to 50,000 kDa. A number of other groups confirmed

this finding (reviewed in MacDonald et al. 1987b). HRFs are produced in vitro by a

variety of cell types such as T and B lymphocytes, mononuclear cells, alveolar

macrophages, platelets, vascular endothelial cells, and various cell lines, including

the U937 monocyte/macrophage-like cell line and RPMI 8866 B-cell line. Not only

is HRF found in vitro, but it is also found in vivo.

HRF/TCTP’s link to human asthmatic, allergic disease has been well accepted. It

has been found in human respiratory secretions (BAL) and skin blister fluids

(MacDonald et al. 1987b). Since not all donors’ basophils release histamine when

exposed to HRF/TCTP, we undertook a study to define the responding population.

Sixty-four ragweed allergic patients with a history of seasonal rhinitis and one or

more positive skin tests were compared to 17 nonatopic controls who were skin test

negative. Sensitivity to HRF/TCTP was restricted to a subpopulation of atopic

individuals (MacDonald et al. 1987a). In a separate study of 55 ragweed allergic

patients, there was a significant correlation between the intensity of symptoms in the

late-phase reaction and basophil histamine release to HRF/TCTP (MacDonald

1993). In studies from another group, peripheral blood mononuclear cells from

patients with asthma spontaneously produced HRF/TCTP (Alam et al. 1984; Alam

and Rozniecki 1985). That production of HRF/TCTP not only correlated with

bronchial hyperreactivity but the bronchial sensitivity to methacholine of the patient

correlated with the magnitude of HRF/TCTP production (Alam et al. 1987).

Sampson et al. have shown that the production of HRF/TCTP also is associated

with clinical status of food allergy and atopic dermatitis (Sampson et al. 1989).

Using blood from food allergic children with atopic dermatitis, they found that their

basophils have a high spontaneous release of histamine and their cultured mononu-

clear cells spontaneously produce HRF/TCTP. When these children were placed on

an avoidance diet, they improved clinically, their basophils no longer spontaneously

secreted histamine, and their mononuclear cells no longer spontaneously produced

HRF/TCTP. Two groups have reported the effects of immunotherapy onHRF/TCTP

production. One group showed a striking correlation between the production of
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HRF/TCTP by mononuclear cells and the change in bronchial sensitivity to hista-

mine (PC20) after 2 years of immunotherapy (Kuna et al. 1989). Brunet et al. showed

immunotherapy in allergic rhinitis patients without asthma improved symptoms and

also avoided the seasonal increase of spontaneous and antigen-driven HRF/TCTP

production from peripheral blood mononuclear cells (Brunet et al. 1992). Moreover,

we have measured HRF in human BAL fluids of allergics following antigen chal-

lenge. While HRF/TCTP increases over baseline after antigen challenge, it is not

significant with the number of patients (n ¼ 8) we have investigated (unpublished

observations).

With the availability of recombinant material, we examined the lymphocytes of

allergic and nonallergic patients for the generation of HRF/TCTP mRNA and

protein. Twelve patients (four HRF/TCTP-R, four HRF/TCTP-NR, and four

nonallergic) were recruited. Blood was drawn for serum IgE measurements and

for basophil histamine release in response to recombinant HRF/TCTP and anti-IgE.

In addition, peripheral blood mononuclear cells were cultured for HRF/TCTP

production and processed for mRNA extraction and subsequent reversed tran-

scribed polymerase chain reaction for HRF/TCTP mRNA. The geometric mean

serum IgE levels were 356 ng ml�1 in the HRF/TCTP-R group versus 52 μg ml�1

and 4.2 μg ml�1 in the HRF/TCTP-NR and nonallergic subjects, respectively.

Histamine release in response to the recombinant HRF/TCTP paralleled that of

our native HRF/TCTP preparation in that only the four HRF/TCTP-R patients

released histamine to this stimulus. The quantity of mRNA for HRF/TCTP, when

compared to that for beta-actin, the housekeeping gene, did not appear different

among the groups. The bioactivity of the recombinant HRF/TCTP on lactic acid-

treated cells passively sensitized with an IgE containing serum from a HRF/TCTP-

R, however, was greater in the allergic, HRF/TCTP-R patients than in the

nonallergic subjects (MacDonald 1996; Langdon et al. 1995). Thus, it appears

that all individuals make mRNA for HRF/TCTP, but atopic subjects more effec-

tively translate it to protein. In an abstract, the serum from some patients with atopic

dermatitis, but not normals, demonstrated increased levels of HRF/TCTP-reactive

IgE levels (Ando et al. 2012). These atopic dermatitis patients’ sera could cause

cytokine secretion from human mast cells (Ando et al. 2012).

16.3 HRF/TCTP Extracellular Functions

Secreted by an ER/Golgi-independent route, HRF/TCTP has no leader sequence, as

documented by Amzallag et al. (2004). They discerned that secreted HRF/TCTP

comes from an existing intracellular pool and co-distributes with TSAP6, a member

of a family that is involved in vesicular trafficking and secretory processes

(Amzallag et al. 2004; Moldes et al. 2001; Korkmaz et al. 2002). Our focus has

been on the extracellular functions of HRF/TCTP. HRF was initially described as a

complete secretagogue for histamine and IL-4 secretion from basophils of allergic

donors (Schroeder et al. 1996). These donors were thought to have a certain type of
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IgE that interacted with HRF/TCTP to induce secretion (MacDonald et al. 1995).

However, it was subsequently demonstrated that HRF/TCTP primed all basophils

for histamine release, IL-4 and IL-13 secretion regardless of the type of IgE

(Schroeder et al. 1997). Additional studies demonstrated that HRF/TCTP did not

appear to interact with IgE. Namely, pharmacologic agents that altered HRF/TCTP-

induced histamine release, i.e., rottlerin, did not affect anti-IgE-induced histamine

release (Bheekha-Escura et al. 1999). Rat basophilic leukemia cells transfected with

the α, β, and γ chains of the human IgE receptor, FcεRI, did not release histamine to

HRF/TCTP despite sensitization with IgE molecules from an HRF/TCTP-R donor

(Wantke et al. 1999). HRF/TCTP was shown to stimulate eosinophils to produce

IL-8 and induce an intracellular calcium response (Bheekha-Escura et al. 2000).

This was also observed in the eosinophil cell line, AML-3D10, which does not

express the α chain of the FcεR1 on the surface of the cell (Bheekha-Escura et al.

2000). Very recently, HRF/TCTP was found to have an inflammatory role in mouse

models of asthma and allergy, whereby HRF/TCTP was found to exist as a dimer,

bound to a subset of IgE and IgG antibodies by interacting by its N-terminus and

some internal regions with the Fab region of immunoglobulins (Kashiwakura et al.

2012). These interactions were described with mouse HRF/TCTP and interacted on

mouse mast cells.

At the level of gene transcription, HRF/TCTP has been shown to inhibit cytokine

production from stimulated primary T cells and the Jurkat T-cell line (Vonakis et al.

2003). Thus, HRF/TCTP, in addition to functioning as a histamine-releasing factor,

can modulate secretion of cytokines from human basophils, eosinophils, and T

cells. It has also been identified as a B-cell growth factor by Kang et al. They

demonstrated that HRF/TCTP bound to B cells and induced cytokine production

(Kang et al. 2001). More recently, HRF/TCTP was shown to stimulate bronchial

epithelial cells to produce IL-8 and GM-CSF (Yoneda et al. 2004). These effects of

HRF/TCTP on different cell types are depicted in Fig. 16.1.

16.4 Other Functions of HRF/TCTP (Mainly Intracellular)

While this review focuses mainly on the extracellular functions of HRF/TCTP, it is

important to discuss some of its broad spectrums of intracellular functions.

HRF/TCTP is both transcriptionally and posttranscriptionally regulated by calcium

(Xu et al. 1999). It is also a tubulin-binding protein and has been shown to

transiently associate with microtubules during the cell cycle (Gachet et al. 1999).

Also the vitamin D receptor, the NF-κβ regulatory subunit, Iκκγ(NEMO), the

myeloid cell leukemia protein 1 (MCL1), and Bcl-XL have been demonstrated to

interact with HRF/TCTP (Rid et al. 2010; Fenner et al. 2010; Zhang et al. 2002;

Yang et al. 2005). High levels of HRF/TCTP have been associated with various

cancers, such as prostate, breast, and colon cancer (Arcuri et al. 2004; Vercoutter-

Edouart et al. 2001; Chung et al. 2000). Furthermore, the gene for HRF/TCTP was

downregulated in tumor reversion, and more specifically, the level was significantly
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reduced in a lung cancer cell line, A549, and revertant cells (Tuynder et al. 2004).

This was eloquently described by Telerman and Amson in a publication entitled

The Molecular Programmme of Tumors Reversion: The Steps Beyond Malignant
Tumor Formation (Telerman and Amson 2009). The role of HRF/TCTP in tumor

development may be associated with its antiapoptotic activity (Yang et al. 2005; Li

et al. 2001). This is further supported by reports of HRF/TCTP antagonizing Bax

function and controlling the stability of the tumor suppressor p53 (Susini et al.

2008; Rho et al. 2011). In a very recent publication, HRF/TCTP promoted p53

degradation, and p53 directly repressed HRF/TCTP transcription (Amson et al.

2011). With this report of a previously unrecognized regulatory circuit, HRF/TCTP

may be extremely relevant in cancer (Amson et al. 2011). As previously mentioned,

our lab and others have shown involvement of HRF/TCTP in the elongation step of

protein synthesis (Langdon et al. 2004; Cans et al. 2003). Thus HRF/TCTP’s
intracellular functions are wide ranging. The extracellular functions, however,

seem to focus on inflammation.

16.5 An Inducible HRF/TCTP Transgenic Mouse

Although HRF/TCTP has been extensively investigated for many years, most

studies have been carried out in cultured cells and pathologic samples. Until

recently, there has been no established animal model available to explore the

HRF/TCTP

Bronchial epithelial cells
IL-8, GM-SCF

GM-CSF primed eosinophils
IL-8

Basophils
Direct: HR, IL-4 on select cells
Prime: HR, IL-4, IL-13 all cells

B cells
MHC class II, IL-1, IL-6

T cells
Inhibit: IL-2, IL-13

Fig. 16.1 Effects of HRF/TCTP on various cell types. HRF/TCTP either directly activates (direct)

basophils producing HR and IL-4 on certain cells or primes (prime) anti-IgE-induced HR and IL-4

and IL-3. HRF/TCTP induces IL-8 from GM-CSF-primed eosinophils. Similarly, it produces IL-8

and GM-CSF from bronchial epithelial cells and MHC class II, IL-1, and IL-6 from B cells.

Contrary to the enhanced interleukin production, HRF/TCTP inhibits IL-2 and IL-12 from T cells.

Abbreviations: GM-CSF, granulocyte-macrophage colony-stimulating factor; HR, histamine

release; HRF/TCTP, histamine-releasing factor/translationally controlled tumor protein; IL, inter-

leukin; MHC, major histocompatibility complex
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function of HRF/TCTP. Several groups generated HRF/TCTP knockout mice by

targeted gene disruption, but these HRF/TCTP knockout mice were embryonically

lethal (Susini et al. 2008; Chen et al. 2007). There has been a TCTP mouse

generated by Telerman and colleagues (Thébault et al. 2016). Since HRF/TCTP

is ubiquitous and highly conserved, our approach was to create an inducible

HRF/TCTP mouse model using the tet-on system. We wanted to target HRF/TCTP

to the lungs, so we used the CC10 promoter that is expressed in Clara cells of the

lung epithelium to generate a transgenic TRE-HRF-EGFP mouse. The HRF trans-

genic plasmid was generated by the combination of three main components

(Fig. 16.2). The first component is the pTRE-tight vector (provided by Dr. Zhu in

our division), which contains a modified TRE (tetracycline response element)

controlling the inducible expression of the gene of interest. The second component

is human HRF cDNA, which was cloned from U937 cells by RT-PCR and further

confirmed by sequencing. The third component is the pIRES2-EGFP vector, pro-

vided by Dr. Vonakis in our division. The IRES2 (internal ribosome entry site)

allows the EGFP (enhanced green fluorescent protein) gene to be expressed indi-

vidually as a reporter protein along with HRF in order to facilitate the recognition of

expression of transgenic human HRF. Thus, the transgenic TRE-HRF-EGFP con-

struct will express HRF and EGFP individually under the regulation of tetracycline

or doxycycline. Using this model, we saw an enhanced asthmatic, allergic pheno-

type after OVA challenge (Yueh-Chiao et al. 2010). This enhancement is in the

C57BL/6 mouse, not the traditional “allergic” BALB/c mouse. The development of

an inducible-transgenic HRF/TCTP animal model will yield insights into its under-

lying pathophysiologic characteristics and provide a tool to define the mechanism

of this enhanced or primed phenotype.

The mechanism of HRF/TCTP’s enhanced response yielding increases in IL-4,

IgE, and eosinophils after OVA challenge in our transgenic model is currently

unknown. All of these events that could be attributed to the action of HRF/TCTP

on the basophil is plausible considering the data on HRF/TCTP and the human

basophil. We have shown that HRF/TCTP activates human basophils to produce

IL-4 (Schroeder et al. 1996). It is well accepted that IL-4 is important for B-cell class

switching and production of IgE. Furthermore, human basophils possess the β-1
integrin that is important for firm adhesion. The ligand for β-1 integrin, vascular

cell adhesion molecule (VCAM-1) is upregulated by IL-4 and is important for the

transendothelial migration of eosinophils and Th2 cells (Schroeder 2009). Therefore,

the production of IL-4 by basophils could explain the enhanced asthmatic, allergic

phenotype we see after overproduction of HRF/TCTP in our OVA-challenged model.

This, of course, assumes that the mouse basophil acts in a similar manner as its human

counterpart. While the existence of the mouse basophil dates back over two decades,

this cell has reemerged in the last several years as an important initiator in mouse Th2

inflammation (Seder et al. 1991; Min and Paul 2008; Obata et al. 2007).

The multifactorial disease that is asthma makes it highly unlikely that one single

cell such as the mouse basophil is solely responsible for HRF/TCTP’s effect on

asthmatic lung disease. Furthermore, one must consider eosinophils and T cells. It is

well known that the activation, recruitment, and proliferation of the T cell are
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associated with asthmatic lung disease (Jacobsen et al. 2008). Given the

HRF/TCTP’s activation of eosinophils and the increased eosinophils we find in

the BAL fluid of the OVA-challenged transgenic mouse, it is logical to examine the

role of this cell in the mechanisms of action of HRF/TCTP in vivo (Bheekha-Escura

et al. 2000; Yueh-Chiao et al. 2010). In the congenitally eosinophil-deficient PHIL

mouse, there is a diminution of Th2 responses (Lee et al. 2004). Furthermore,

eosinophils also secrete IL-4 and act as antigen-presenting cells yielding T-cell

activation after allergen provocation in the lung (Obata et al. 2007; Mayr et al.

2002). Therefore, HRF/TCTP may exert additional enhancing effects through the

eosinophil. Since an antibody to IL-5 has been shown to suppress eosinophil

recruitment following OVA challenge in WT and FcεRα-/- mice (Mayr et al.

2002), giving anti-IL-5 to our OVA-challenged HRF/TCTP mice could help deter-

mine HRF/TCTP’s mechanism upon eosinophil recruitment. Alternately, cross-

breeding our HRF/TCTP transgenic mice with the eosinophil knockout PHIL

mouse could ablate all HRF/TCTP-induced enhancing effects or just affect eosino-

phils. Future possibilities are many using this model as a tool.

16.6 The Importance of Ship-1 on HRF/TCTP Signaling

That human basophils are cells capable of being “primed” or having an enhanced

functional response has long been appreciated. Some of the molecules that are

known to prime human basophils include IL-3, NGF, HRF/TCTP, and the

nonphysiologic stimulus D2O (Schroeder 2009; MacDonald et al. 1989, 1991). In

general, these substances show a greater releasability (as evidenced by histamine or

IL-4 secretion) when stimulating basophils from allergic or allergic/asthmatic sub-

jects. They do not generally activate basophils from normal subjects. The exception

to this is the HRF/TCTP-R basophils. Basophils from these subjects are directly

activated by D2O, IL-3, and HRF/TCTP (MacDonald et al. 1989, 1991).

TRE

HRF/TCTP

IRES

EGFP

AMP

Fig. 16.2 Schema of the

transgenic TRE-HRF/

TCTP- EGFP plasmid

construction. The human

HRF gene was inserted

between the TRE and IRES-

EGFP elements.

Abbreviations: TRE,

tetracycline response

element; HRF/TCTP,

histamine-releasing factor;

IRES, internal ribosome

entry site; EGFP, enhanced

green fluorescent protein
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The molecular basis for the releasability of the HRF/TCTP’s basophils remained

elusive until relatively recently. It has become accepted that the term releasability
(i.e., control of release of mediators from basophils in response to different stimuli)

involves several biochemical events in addition to the surface density of IgE

molecules. There have been reports of certain signaling molecule deficiencies in

nonreleasing basophils (Kepley et al. 1999; Lavens-Phillips and MacGlashan

2000). While these deficiencies are documented, there is little variation of SHIP-

1 in the general population (Vilari~no et al. 2005). To date, we are the first group to

show the negative association of the phosphatase, SHIP-1, with histamine release to

HRF/TCTP in hyperreleasing basophils (Vonakis et al. 2001). See Fig. 16.3.

Variation of SHIP-1 levels is also documented in a subset of patients with chronic

idiopathic urticaria, where levels of SHIP-1 are increased and anti-IgE-induced

histamine release is reduced (Vonakis et al. 2007). Thus, SHIP-1 levels appear to be

altered in some human disease states.

A clue to the underlying mechanisms of increased releasability of basophils was
demonstrated in a mouse knockout of SHIP-1 (Krystal 2000; Huber et al. 1998).

Mast cells grown from the bone marrow (BMMC) of SHIP-1 knockout mice showed

decreased hydrolysis of phosphatidylinositol (PI)-3,4,5,P3 (PIP3) (Huber et al.

1998). SHIP-1 participates in the pathway in which the lipid phosphatidylinositol

4,5 bisphosphate (PI4,5,P2) is phosphorylated by PI3 kinase to produce PIP3 which

can be acted upon to produce PI(3,4)bisphosphate (PI3,4P2) (Rohrschneider et al.

2000; Scharenberg and Kinet 1998). We have demonstrated that the compound,

LY294002, an inhibitor of PI3 kinase, inhibits histamine release induced by

HRF/TCTP in basophils from HRF/TCTP-R donors (Vonakis et al. 2001). The

activity of PI3 kinase is central to many basophil functions, and SHIP-1 acts to

oppose the function of PI3 kinase by removing the 50phosphatase from PIP3, making

SHIP-1 an important regulator of these reactions. Mouse SHIP-1 knockout mast

cells had an excess of PIP3 that resulted in a sustained calcium signal that was critical

for degranulation (Lioubin et al. 1996). Furthermore, SHIP is a suppressor of IgE

plus antigen-induced degranulation of not only bone marrow-derived mast cells but

also negatively regulates IgE plus antigen-induced degranulation of connective

tissue and mucosal mast cells by repressing the P13 kinase pathway (Ruschmann

SHIP-1
Expression

Maximum % HRF/TCTP Histamine Release

Fig. 16.3 Negative

correlation between SHIP-1

protein expression and

histamine release to

HRF/TCTP. Histamine

release was performed on

the same day as SHIP-1

measurements
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et al. 2012). Additionally, PIP3 recruits the serine tyrosine kinase, Akt, to the plasma

membrane (Brauweiler et al. 2000), which is present in human basophils and

transiently phosphorylated after anti-IgE stimulation (Miura et al. 2001). Akt is

phosphorylated by HRF/TCTP in HRF/TCTP-R donors but not in HRF/TCTP-NR

donors (Vonakis et al. 2008). Furthermore, we see prolonged Akt phosphorylation

kinetics in HRF/TCTP-R (Vonakis et al. 2008), which is supportive of the involve-

ment of this pathway in HRF-induced activation. Data from the SHIP-1 knockout

mice and our own published data suggest that SHIP-1 may play a “gatekeeper role”

in mouse and human basophils and mast cells. One would expect SHIP-1 to limit

effector cell responsiveness in normal individuals, while a SHIP-1 deficiency would

predispose an individual to excess inflammatory-mediator production and, hence, a

hyperreleasable phenotype.
In order to address this more directly, we altered SHIP-1 levels in human

basophils. These studies have been limited by the fact that the basophil is an

end-stage nondividing cell and extremely difficult to transfect or transduce. Many

attempts have been tried to transfect primary human basophils. These include lipid-

based reagents, lentivirus, and nucleofection. Most failed either due to toxicity or

very low transfection efficiency. Only nucleofection (Amaxa) gave a limited

transfection efficiency that was useful only for single-cell analysis (Vilarino and

MacGlashan 2005). There is one report that a TAT-fusion protein was used in

transfecting human basophils (Didichenko et al. 2008). We set out to determine a

more efficient method of altering signal transduction pathways in human basophils.

To that end, we established a model of culturing human peripheral blood-derived

basophils from CD34+ cells that have the morphologic and functional characteris-

tics of human basophils (Langdon et al. 2008). We utilized this model to alter SHIP-

1 levels using siRNA technology and demonstrated a decrease in SHIP-1 levels that

was associated with an increase in histamine release to HRF/TCTP. Using CD34+

peripheral-derived basophils, it is possible to perform a more direct test of the

hypothesis that SHIP-1 has a role in modulating basophil responsiveness, both to

HRF/TCTP and IgE-mediated stimulation.

16.7 Additional Intracellular Signaling by HRF/TCTP

Another possible mechanism of action for HRF/TCTPmay be IgE-dependent enhance-

ment. Originally, HRF/TCTP was called the IgE-dependent HRF (MacDonald et al.

1995). This designation resulted from the fact that HRF seemed to act as a secretagogue

for human basophils from a subpopulation of allergic donors. Moreover, passive

sensitization of serum containing IgE from these responding donors rendered

nonresponsive donors’ basophils responsive to HRF/TCTP (MacDonald et al. 1995).

HRF/TCTP was then shown to activate other cells that do not possess the high-affinity

IgE receptor, FcεR1 (Bheekha-Escura et al. 2000; Vonakis et al. 2003). We have

demonstrated that HRF/TCTP has signal transduction events that are similar, but not

identical, to signaling through FcεR1 (Vonakis et al. 2008). With the availability of
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both the FcεR1α knockout mouse and the IgE knockout mouse (Dombrowicz et al.

1993; Oettgen et al. 1994), the question of whether HRF/TCTP is dependent on IgE can

be definitively addressed. As mentioned, a manuscript has very recently been published

that demonstrates mouse HRF/TCTP does bind to certain IgE and IgG molecules

(Kashiwakura et al. 2012).

In order to address the molecular mechanisms of HRF/TCTP-induced secretion,

we designed experiments to elucidate specific actions of HRF/TCTP on human

basophils and to characterize the nature of intracellular signaling that follows

stimulation with HRF/TCTP. Given the similarities in secretion kinetics following

IgE-mediated stimulation, we hypothesized there would be some signaling charac-

teristics similar to those previously found for IgE-mediated release. However, due

to the differential sensitivity to treatment with rottlerin between HRF/TCTP and

anti-IgE (Wantke et al. 1999), we also expected differences in signaling. We used

human basophils from two donor populations, HRF/TCTP-R and HRF/TCTP-NR.

Consistent with the ability of HRF/TCTP to either induce secretion directly from

HRF/TCTP-R basophils or prime HRF/TCTP-NR basophils, we have shown bind-

ing of HRF/TCTP by flow cytometry to both donor populations (Vonakis et al.

2008). We demonstrated that HRF/TCTP induced activation of intracellular signal

transduction events in basophils only from those donors who directly release

histamine to HRF/TCTP, namely, HRF/TCTP-R. Specifically, we have been able

to demonstrate increases in the arachidonic acid metabolite, LTC4, from basophils

of HRF/TCTP-R donors stimulated with anti-IgE. Additionally, we have demon-

strated LTC4 release from basophils stimulated with HRF/TCTP (Vonakis et al.

2008). One might predict that this might well be due to prolonged phosphorylation

of MEK and ERK 1/2. Using human basophils isolated from leukopheresis packs,

Miura et al. have demonstrated that the activation of ERK1/2 is linked to

arachidonic acid metabolism but not to histamine or IL-4 release (Miura et al.

1999). Phosphorylation of ERK1/2 is transient, peaks at 5 min, and returns to

baseline by 30 min. We have demonstrated that both MEK and ERK1/2 are

phosphorylated by HRF/TCTP in basophils from HRF/TCTP-R donors but not

from HRF/TCTP-NR donors (Vonakis et al. 2008). Thus, the characteristics of

the signaling responses were very similar to those observed for stimulation with

anti-IgE antibody or antigen with a couple of exceptions. Notably, there was no

phosphorylation of FcεR1γ, and there was absolutely no phosphorylation of any

downstream signal transduction molecules in the HRF/TCTP-NR basophils.

16.8 HRF/TCTP as a Therapeutic Target

Based on the above observations, we believe that HRF/TCTP may be an important

element of the pathogenesis of asthmatic, allergic diseases. Since HRF/TCTP is

present in late-phase reaction fluids in vivo, it may be contributing to mediator

release that is found in the late response. Therefore, it is most reasonable to consider

HRF as a therapeutic target. The most direct way to prove that HRF/TCTP is a
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therapeutic target would be to block its binding to its receptor. However, despite

numerous attempts by different laboratories, the HRF/TCTP receptor has remained

elusive. An HRF/TCTP-blocking antibody would prove useful in this approach.

Unfortunately, no specific antibody exists. A recent publication does demonstrate

that the extracellular actions of HRF/TCTP can be explained, at least in part by

specific binding sequences on mouse HRF (mHRF) to some IgE and IgG molecules

(Kashiwakura et al. 2012). In two regions, the N-terminal 19-residue peptide and

residues 107–135, the H3 region, were found to be important for this binding to

immunoglobulins (Kashiwakura et al. 2012). These regions overlapped only in part

with the antigen binding site. Furthermore, only certain, but not all, IgE and IgE

molecules supported or bounded to HRF/TCTP (Kashiwakura et al. 2012). Never-

theless, this observation warrants further investigation.

Two additional observations remain. The possibility exists that this HRF/TCTP-

immunoglobulin interaction could be explained by nonspecific ionic interactions or

interactions of different parts of the immunoglobulins. Moreover, BAL and sera

from naı̈ve mice contain HRF/TCTP that does not normally yield inflammation

(Kashiwakura et al. 2012). This suggests there might be a suppressive mechanism

of inflammation induced by endogenous HRF/TCTP. Our own SHIP data with the

inverse correlation of levels of SHIP-1 protein with histamine release to HRF/TCTP

would support this (Vonakis et al. 2001).

Miu, Ong, and colleagues have discovered small molecule agonists of SHIP-1

that inhibit the P13K pathway (Ong et al. 2007). These are potent and specific

activators of SHIP-1. Initial mouse model studies suggested that these agonists

might be useful therapeutically. Our laboratory received such an agonist and was

able to demonstrate that anti-IgE-induced basophil histamine release was inhibited

while F-met-leu-phe-induced release was not (data not shown). In fact, it has

recently been reported at the American Thoracic Society Meeting in May 2012 in

San Francisco that the SHIP-1 agonist, AQX-1125, from Aquinox Pharmaceuticals

was tested in a three-part phase I study that included a single ascending dose, a

multiple ascending dose, and a food-effect study in healthy human volunteers (Tam

et al. 2012). The drug was well tolerated and had a half-life that supported a once-

daily oral administration.

“Aquinox Pharmaceuticals is a clinical-stage pharmaceutical company discov-

ering and developing targeted therapeutics in disease areas of inflammation and

immune oncology. Our primary focus is anti-inflammatory product candidates

targeting SH2-containing inositol-50-phosphate 1, or SHIP1, which is a key regulator
of an important cellular signaling pathway in immune cells, known as the P13K

pathway. Our lead product candidate, AQX-1125, is a small molecule activator of

SHIP1 suitable for oral, once daily dosing. Having successfully completed multiple

preclinical studies and seven clinical trials with AQX-1125, they are now advancing

towards pivotal Phase 3 trials with AQX-1125, in our lead indication of bladder pain

syndrome/interstitial cystitis (BPS/IC). Aquinox has a broad intellectual property

portfolio and pipeline of preclinical drug candidates that activate SHIP1 (www.

aqxpharma.com).” It should be noted that AQX-1125 was used to determine its

ability to reduce symptoms exacerbations in COPD. The results of that trial called
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FLAGSHIP was reported in July 2015 and demonstrated no difference between

AQX-1125 and placebo, and therefore further development of AQX-1125 for COPD

has been suspended and redirected their efforts into bladder pain syndrome/intesti-

nal cystitis (BAS/IC) (www.aqxpharma.com).

“AQX-1125, Aquinox’s lead drug candidate, is a small molecule activator of

SHIP1, which is a regulating component of the P13K cellular signaling pathway. By

increasing SHIP1 activity, AQX-1125 accelerates a natural mechanism that has

evolved to maintain homeostasis of the immune system and reduce the immune

cell activation and migration to sites of inflammation. AQX-1125 has demonstrated

preliminary safety and favorable drug properties for once daily oral administration

in multiple preclinical studies and seven completed clinical trials. Aquinox com-

pleted a successful Phase 2 clinical trial with AQX-1125 for the treatment of IC/BPS

in the third quarter of 2016 (www.aqxpharma.com).”

There have been three published papers, two in vitro and animal models and one

in vivo in humans characterizing AQX-1125. The first describes the effects of cell

activation and chemotaxis in vitro (Stenton et al. 2013b). This paper documents that

this compound is suitable for testing in various models of inflammation. The second

paper shows the effects of AQX-1125 in rodent models of pulmonary and allergy.

The efficacy of AQX-1125 is dependent on the presence of SHIP-1 (Stenton et al.

2013a). Finally, AQX-1125 was demonstrated efficacious in humans with mild to

moderate asthma (Leaker et al. 2014). In this manuscript AQX-1125 significantly

reduced the late response to allergen challenge with a trend in reduction of inflam-

mation. Clinical side effects were very mild and did not lead to discontinuation of

therapy. This was performed in a randomized, double-blind placebo-controlled,

two-way crossover study in 22 steroid-naı̈ve mild-to-moderate asthmatic individuals

with documented late-phase response to inhaled allergen. These results might suggest

a role for this SHIP-1 agonist in HRF/TCTP- induced symptoms.

16.9 Summary

In conclusion, further defining the extracellular role of the mechanism of HRF/

TCTP-induced priming in vivo using our HRF/TCTP inducible-transgenic mouse

and in vitro using both peripheral blood-derived basophils and CD34+ peripheral-

derived cultured basophils could yield additional insight into HRF/TCTP’s partic-
ipation in the propagation of the Th2 asthmatic allergic response. The successful

completion of these studies could lead to an inhibition of the function of this unique

cytokine and its amelioration of its role in the allergic, asthmatic diathesis. SHIP-1

agonists may well be useful as therapeutic targets for the actions of HRF/TCTP in

allergic responses.
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