
Chapter 14

Role of TCTP for Cellular Differentiation

and Cancer Therapy

Ean-Jeong Seo, Nicolas Fischer, and Thomas Efferth

Abstract The translationally controlled tumor protein (TCTP) is a highly con-

served protein that is regulated due to a high number of extracellular stimuli. TCTP

has an important role for cell cycle and normal development. On the other side,

tumor reversion and malignant transformation have been associated with TCTP.

TCTP has been found among the 12 genes that are differentially expressed during

mouse oocyte maturation, and an overexpression of this gene was reported in a wide

variety of different cancer types. Its antiapoptotic effect is indicated by the inter-

action with several proapoptotic proteins of the Bcl-2 family and the p53 tumor

suppressor protein. In this article, we draw attention to the role of TCTP in cancer,

especially, focusing on cell differentiation and tumor reversion, a biological process

by which highly tumorigenic cells lose their malignant phenotype. This protein has

been shown to be the most strongly downregulated protein in revertant cells

compared to the parental cancer cells. Decreased expression of TCTP results either

in the reprogramming of cancer cells into reversion or apoptosis. As conventional

chemotherapy is frequently associated with the development of drug resistance and

high toxicity, the urge for the development of new or additional scientific

approaches falls into place. Differentiation therapy aims at reinducing differentia-

tion backward to the nonmalignant cellular state. Here, different approaches have

been reported such as the induction of retinoid pathways and the use of histone

deacetylase inhibitors. Also, PPARγ agonists and the activation of the vitamin D

receptor have been reported as potential targets in differentiation therapy. As TCTP

is known as the histamine-releasing factor, antihistaminic drugs have been shown to

target this protein. Antihistaminic compounds, hydroxyzine and promethazine,

inhibited cell growth of cancer cells and decreased TCTP expression of breast

cancer and leukemia cells. Recently, we found that two antihistaminics,

levomepromazine and buclizine, inhibited cancer cell growth by direct binding to

TCTP and induction of cell differentiation. These data confirmed that TCTP is an

exquisite target for anticancer differentiation therapy and antihistaminics have
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potential to be lead compounds for the direct interaction with TCTP as new

inhibitors of human TCTP and tumor growth.

Abbreviations

ADDS Adenylosuccinate synthase

AIF Apoptosis-inducing factor

APL Acute promyelocytic leukemia

ATRA All-trans retinoic acid

Bcl-2 B-cell lymphoma 2

BMP Bone morphogenic proteins

CH60 Mitochondrial 60 kDa heat shock protein

CHFR Checkpoint with forkhead and ring finger domains

COF1 Cofilin-1

ENOA α-Enolase
ER60 Probable protein disulfide isomerase

ES Embryonic stem

FABP Liver fatty acid-binding protein

GTA1 Glutathione S-transferase alpha

HDAC Histone deacetylase

HSP105 Heat shock protein 105

KCRB Creatine kinase B

Mcl-1 Myeloid cell leukemia 1

MDM2 Murine double minute 2

MPSS Megasort and massively parallel signature sequencing

NDKA Nucleoside diphosphate kinase A

NPM2 Nucleoplasmin 2

Oct4 Octamer-binding transcription factor 4

PDCD6IP Programmed cell death six-interacting protein

PPARγ Peroxisome proliferator-activated receptor-γ
PS1 Presenilin 1

RARs Retinoic acid receptors

RMS Rhabdomyosarcoma

SAHA Suberoylanilide hydroxamic acid

SIAH1 Seven in absentia homologue 1

Sox2 Sex-determining region Y-box 2

STAT3 Signal transducer and activator of transcription 3

STI1 Stress-inducible phosphoprotein 1

TACC3 Transforming acidic coiled-coil protein 3

TCTP Translationally controlled tumor protein

TSAP Tumor suppressor-activated pathway

VDR Vitamin D receptor
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14.1 Introduction

The translationally controlled tumor protein (TCTP) encoded by the TPT1 gene is a
highly conserved protein that can be found within all eukaryotic organisms, all

tissues and cell types (Oh et al. 2013; Acunzo et al. 2014). It was initially identified

in Ehrlich ascites tumor cells, and no homologies to other proteins have been found

at that time (Oh et al. 2013). Due to its numerous functions, it is also known as

histamine-releasing factor, TPT1, p23, or fortilin (Acunzo et al. 2014; Nagano-Ito

and Ichikawa 2012). It can be found in both, in the nucleus and the cytoplasm of cells,

and it is regulated by a high number of extracellular stimuli. The protein interacts

with itself and with a wide variety of other proteins [such as myeloid cell leukemia

1 (Mcl-1) and p53] (Acunzo et al. 2014). Furthermore, TCTP is expressed extra-

and intracellularly, implicating that it is involved in many biological processes such

as development (Kubiak et al. 2008; Hsu et al. 2007; Chen et al. 2007a), cell cycle

(Brioudes et al. 2010; Gachet et al. 1999), cellular growth (Koziol and Gurdon

2012), protein synthesis (Cans et al. 2003), cytoskeleton (Burgess et al. 2008;

Tsarova et al. 2010), immune response (MacDonald et al. 1995), cell death

(Li et al. 2001; Liu et al. 2005; Yang et al. 2005), and induction of pluripotent

stem cells (Acunzo et al. 2014) (Fig. 14.1). On the other hand, it has also been

associated with tumor reversion and malignant transformation (Tuynder et al. 2002;

Rho et al. 2011).

Its crucial biological functions have been demonstrated in several studies.

Knockout of TCTP was lethal in utero in mice (Chen et al. 2007a; Susini et al.

2008), pointing to its role in normal development of organisms. Within the cell

cycle, TCTP binds to tubulin and associates with the microtubules during different

phases of the cell cycle (Gachet et al. 1999). In metaphase, TCTP is bound to the

mitotic spindle. During the transition from metaphase to anaphase, it is dissociated

from the spindle (Acunzo et al. 2014).

Phosphorylation of TCTP by PLK1 is necessary for cell cycle. Additionally,

TCTP interacts with CHFR and thus prevents the entry into mitosis (Acunzo et al.

2014).

TCTP is able to interact with Mcl-1 (Li et al. 2001; Liu et al. 2005) and other

members of the B-cell lymphoma 2 (Bcl-2) family (Yang et al. 2005; Susini et al.

2008) and thus plays an important role in the regulation of apoptosis. Destabilizing

the tumor suppressor p53 leads to an additional antiapoptotic effect (Rho et al.

2011; Amson et al. 2011), indicating an involvement in tumorigenesis.

Besides the direct effect on the cell cycle, TCTP reduces cellular stress and

protects the cell from thermal shock by binding to denatured proteins and refolding

them by acting as a molecular chaperone (Gnanasekar et al. 2009). Additionally, it

acts as an antioxidant by neutralizing radicals directly (Bini et al. 1997).

Due to the involvement in numerous biological cell processes, its relevance as

target for cancer therapy has been discussed. Overexpression of TCTP in a large

variety of cancers was reported (Acunzo et al. 2014; Nagano-Ito and Ichikawa

2012; Amson et al. 2013b; Telerman and Amson 2009; Miao et al. 2013).
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Telerman’s group demonstrated that downregulation of TCTP in MCF7 and T47D

cells caused a reorganization of cells (Acunzo et al. 2014; Tuynder et al. 2002).

Additionally, they showed that the protein was drastically downregulated within the

process of tumor reversion and correlated with clinical and pathological parameters

of the aggressiveness of breast cancer (Acunzo et al. 2014; Amson et al. 2011). This

indicates a role of TCTP as prognostic factor for breast cancer (Amson et al.

2013b). A change in the expression of TCTP was associated with in vivo colon

carcinogenesis. A decrease of TCTP by 2.7-fold during cell differentiation in Caco2

cells has been observed (Stierum et al. 2003), indicating the importance of the

protein for the differentiation process. The limited number of tumor markers

especially in colon cancer makes the retrieval for new targets more urgent (Stierum

et al. 2003; Williams et al. 1996).

In other cancer types, an involvement of TCTP in tumor reversion was also

found, e.g., prostate cancer, lung cancer, leukemia, erythroleukemia, glioma, lym-

phoma, squamous cell carcinoma, colon cancer, hepatocellular cancer, liver cancer,

larynx cancer, and melanoma (Acunzo et al. 2014; Amson et al. 2013b; Miao et al.

2013). In this wide variety of cancers, higher TCTP expression levels were found in

tumors compared to the corresponding normal tissues (Acunzo et al. 2014; Tuynder

et al. 2002; Amson et al. 2013b; Sinha et al. 2000).

In conclusion, the involvement of TCTP in cell differentiation and tumor

reversion makes it an interesting target for anticancer therapy (Acunzo et al. 2014).

14.1.1 TCTP in Differentiation Processes

Cellular differentiation is a process in the development of immature cells to more

complex states. TCTP plays an important role in cell differentiation, not only in

humans but also in microorganisms, plants, and animals.

Interaction with tubulin
and mitotic spindle

Knockdown results
smaller cell number and size

in Drosophila

TCTP TCTP TCTP TCTP TCTP

Knockdown lethal
in utero in mice

Interaction with microtubules
and actin

Interaction with members of
Bcl-2 family,

Destabilization of P53
Destabilization of P53
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transformationCell DeathCytoskeletonDevelopmentCell growth

Cell Cycle Differentiation
Reduction of

cellular stress
Immune

response
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Direct antioxidant
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Fig. 14.1 Multiple functions of TCTP
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TcpA, a protein with high similarity to TCTP, can be found in Aspergillus
nidulans. TcpA plays an important role in cell cycle progression and development

of this model organism. Furthermore, TcpA expression influences the balance

between asexual and sexual differentiation in A. nidulans, further stressing its

role in cell differentiation (Oh et al. 2013).

Also in plants, TCTP or homologues can be identified. In Robinia pseudoacacia,
the TCTP homologue Rpf41 regulates symbiotic nodulation in legume, indicating

an involvement of TCTP in symbiotic cell differentiation. Functional parallels in

the regulation of cell division by TCTP between Arabidopsis and Drosophila were

found. Here, the TCTP expression levels in the plant varied due to stress conditions

such as darkness, cold, salt, drought, or heavy metals. Especially high TCTP gene

expression was observed in physically active tissues (Chou et al. 2016). Low TCTP
expression was found during the reversion of cells from the transformed to the

normal phenotype (Chou et al. 2016). In Arabidopsis two isoforms AtTCTP1 and

AtTCTP2 have been detected. The two TCTP homologues reveal different func-

tions. AtTCTP1 is an important regulator of mitosis, while AtTCTP2 plays a role in

vegetative reproduction (Toscano-Morales et al. 2015).

AmphiTCTP is a TCTP orthologous gene in Amphioxus. The expression pattern

of AmphiTCTP correlated with differentiation of notochord and somite, implying a

role in embryonic development (Chen et al. 2007b). In Hydra vulgaris, another
TCTP homologue showed an expression pattern coinciding with the proliferation

status (Yan et al. 2000).

TCTP is among the 12 genes that are differentially expressed during mouse oocyte

maturation. The other genes are the transforming acidic coiled-coil protein 3 (TACC3),

heat shock protein 105 (HSP105), programmed cell death six-interacting protein

(PDCD6IP), stress-inducible phosphoprotein 1 (STI1), importin α2, adenylsuccinate
synthase (ADDS), nudix, spindlin, lipocalin, lysozyme, and nucleoplasmin 2 (NPM2)

(Vitale et al. 2007). Mouse embryonic stem cells represent a good model system for

studying stem cell biology since murine and human embryonic stem cells share many

conserved pathways in self-renewal and differentiation (Sato et al. 2003; Ginis et al.

2004). They can differentiate into two different types of neurons. Proteomic analysis of

E14 cells and neurons showed that TCTP was significantly downregulated. In motor

neurons, a stronger downregulation was found than in dopaminergic neurons. The

TCTP expression levels were independent of the extracellular Ca2+-concentrations

during neuronal differentiation. This indicates an involvement of TCTP in neurogenesis

through modulating tubulin expression and Ca2+ binding (Wang and Gao 2005). In

mouse cells, TCTP expression is highly regulated at both transcriptional and

translational levels by a broad range of extracellular signals (Bommer and Thiele

2004). Human embryonic stem cells represent pluripotent cells. They are able to self-

renew and proliferate without limitations. Originating from the inner cell mass of the

human blastocysts of the embryo, they differentiate into any fetal or adult cell type

(Donovan and Gearhart 2001). A small number of key transcription factors were

described for self-renewal and suppression of differentiation (Chambers et al. 2003).

In embryotic stem cells, several genes are upregulated, among them octamer-binding

transcription factor 4 (Oct4) acting as marker of pluripotency (Pesce and Sch€oler 2001)
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and differentiation, as it is able to repress and activate the expression of different genes

by directly binding to their promotor regions or indirectly by neutralizing their tran-

scription activators (Pan et al. 2002). Oct4 becomes silent after gastrulation in mouse

and human mammalian somatic cells (Kirchhof et al. 2000). Oct4 is highly conserved

(Koziol and Gurdon 2012). For Oct4 activation, nuclear actin polymerization is

necessary in Xenopus laevis oocytes (Miyamoto et al. 2011). As TCTP has an actin

binding site, interaction can be expected here (Koziol and Gurdon 2012). Another

central player in pluripotency is Nanog, which is required for maintaining the

undifferentiated state of early postimplantation embryos and ES cells (Chambers

et al. 2003; Mitsui et al. 2003). It leads embryonic stem (ES) cells into self-renewal

by acting in parallel with cytokine stimulation of signal transducer and activator of

transcription 3 (STAT3). Nanog has exclusively been identified in ES cells (Chambers

et al. 2003; Mitsui et al. 2003). In human nuclei, a change in the transcriptional level of

Oct4 and Nanog has been demonstrated under the influence of TCTP (Koziol et al.

2007). Due to its highly conserved function, an effect of TCTP on the activation of

pluripotency can be predicted (Tani et al. 2007). Also, bone morphogenic proteins

(BMP), which inhibit differentiation, can be seen as pluripotency markers (Masui et al.

2007). They suppress differentiation and thus lead to a higher pluripotency (Ying et al.

2003). One more important marker of pluripotency is sex-determining region Y-box

2 (Sox2), which binds Oct4 and activates genes promoting pluripotency (Nishimoto

et al. 1999) and controls its inhibitors (Niwa et al. 2000). Sox2 regulates several

transcription factors affecting the expression of Oct3/4 making Sox2 an essential factor

for maintaining ES cells in a pluripotent state (Masui et al. 2007).

TCTP is expected to promote pluripotency in two different ways, one by directly

activating pluripotency genes such as Sox2, Nanog, Oct4, and Klf4 and one indirect
way by inhibiting the expression of somatic genes (Koziol and Gurdon 2012).

14.2 TCTP in Cancer

14.2.1 TCTP and Tumor Reversion

Tumor reversion is a biological process, by which highly tumorigenic cells lose

their malignant phenotype (Telerman and Amson 2009; Amson et al. 2013a). For

instance, teratoma cells differentiated into normal somatic tissues, and tumor cells

acquired the molecular circuitry that resulted in the negation of chromosomal

instability, translocations, oncogene activation, and loss of tumor suppressor

genes (Telerman and Amson 2009; Askanazy 1907). Telemann’s group developed

a series of revertants using the H1 parvovirus, which is a small DNA virus that

preferentially kills tumor cells, but keeps their normal counterparts alive. They

analyzed changes in gene expression (Tuynder et al. 2002, 2004; Telerman et al.

1993; Toolan 1967; Mousset and Rommelaere 1982; Nemani et al. 1996; Amson

et al. 1996; Roperch et al. 1999) and identified about 300 genes as gene tumor
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reversion by mRNA differential display, Megasort and massively parallel signature

sequencing (MPSS) (Tuynder et al. 2002; Amson et al. 1996; Roperch et al. 1999;

Liang and Pardee 1992; Brenner et al. 2000a, b; Israeli et al. 1997). P53-regulated

proteins were seven in absentia homologue 1 (SIAH1), an E3 ligase and a tran-

scriptional target of p53 (Nemani et al. 1996; Amson et al. 1996; Roperch et al.

1999; Fiucci et al. 2004), presenilin 1 (PS1), a predisposition gene for familial

Alzheimer’s disease (Roperch et al. 1998), tumor suppressor-activated pathway

(TSAP), a transcriptional target of p53 controlling the secretion of proteins (Amson

et al. 1996; Passer et al. 2003; Amzallag et al. 2004; Lespagnol et al. 2008), and

translationally controlled tumor protein (TCTP), the inhibitor of p53 activity (Cans

et al. 2003; Tuynder et al. 2002, 2004; Susini et al. 2008; Amson et al. 2011).

Inhibition of TCTP expression increased the number of revertant cells, which

regained sensitivity to contact inhibition and decreased tumor-forming capability

(Telerman and Amson 2009; Tuynder et al. 2004). As TCTP was the most strongly

downregulated protein in the revertant cells compared to the parental cancer cells,

the effects of its inhibition in several biological and genetic models have been

studied (Tuynder et al. 2002, 2004; Amson et al. 2011; Telerman and Amson 2009).

Decreasing TCTP expression resulted in either reprogramming of cancer cells into

revertants or apoptosis.

14.2.2 TCTP as Antiapoptotic Protein

TCTP is known to play a key role in the regulation of apoptosis. TCTP regulated

antiapoptotic activity by suppressing Mcl-1 degradation through blocking its

ubiquitination (Li et al. 2001; Liu et al. 2005; Yang et al. 1995). However, TCTP

and Mcl-1 could independently protect cells from apoptosis (Graidist et al. 2004).

TCTP interacted with other antiapoptotic proteins from the Bcl-2 family such as

Bcl-xL (Yang et al. 2005) or Bax (Susini et al. 2008) (Fig. 14.2). Yang et al.

identified the interaction site to the N-terminal region of TCTP and the Bcl-2

homology domain 3 of Bcl-xL and demonstrated that the TCTP N-terminal region

mediates inhibition of apoptosis (Yang et al. 2005). This result corresponds to data

from Zhang et al., who showed that Arg21 in the N-terminal region of TCTP was

critical for TCTP binding to Mcl-1 (Zhang et al. 2002). The homodimerization of

proapoptotic Bax is required for its apoptotic activity. TCTP prevented the apopto-

tic effect of Bax by inserting into the mitochondrial membrane and inhibiting Bax

dimerization. Unlike Mcl-1 and Bcl-xL, TCTP did not directly bind Bax (Susini

et al. 2008).

P53 protein is well-known as tumor suppressor. It is a transcription factor and

regulates the transcription of numerous genes. It activates the transcription of DNA

repair genes upon DNA damage by regulating genes involved in cell cycle and

apoptosis such as Bax and Bcl-2 (Riley et al. 2008). P53 promotes apoptosis in

cancer cells, whereas TCTP prevents apoptosis by repressing the transcription of

p53 (Rho et al. 2011; Amson et al. 2011) (Fig. 14.2). TCTP bound p53 and prevented
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apoptosis by destabilizing the protein (Rho et al. 2011). The murine double minute

2 (MDM2) is a transcriptional target of p53. If it is overexpressed, MDM2

ubiquitinates and degrades p53. TCTP directly associates with the E3 ubiquitin

ligase MDM2, increasing MDM2-mediated ubiquitination of p53 and promoting

its degradation (Amson et al. 2011; Amit et al. 2009) (Fig. 14.2). Nutlin-3, a protein

that promotes apoptosis, blocked the interaction between MDM2 and TCTP

(Funston et al. 2012) (Fig. 14.2).

14.2.3 Cell Cycle Regulation of TCTP

TCTP is involved in the cell cycle (Gachet et al. 1999). It has a tubulin-binding site

that allows binding to microtubules in a cell-cycle-dependent way (Gachet et al.

1999) (Fig. 14.2). TCTP is recruited to the mitotic spindle during metaphase, but is

released at the M/G1 transition (Gachet et al. 1999). TCTP interacts with the protein

checkpoint by the forkhead and ring finger domains (CHFR) that binds to micro-

tubules (Burgess et al. 2008). If microtubules are depolymerized, CHFR and TCTP

interaction is reduced. This interaction senses microtubule abnormalities by CHFR

that results in CHFR activation, polo-like kinase 1 (PLK1) degradation, and finally

cell cycle arrest (Burgess et al. 2008). If PLK1 phosphorylation sites on TCTP were

blocked, increased numbers of multinucleated cells were observed, indicating that

the completion of mitosis was inhibited (Yarm 2002). This result demonstrates that

TCTP is crucial for cell cycle regulation and that its phosphorylation by PLK1 is

required for the precise exit from mitosis (Yarm 2002).

Fig. 14.2 Interaction partners of TCTP to differentiation and apoptosis regulation
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14.2.4 TCTP Reduces Cellular Stress

Cell death can be induced by Ca2+ influx. The level of TCTP is controlled by the

intracellular Ca2+ concentration, and elevation of Ca2+ increased TCTPmRNA in cells

(Xu et al. 1999). Binding of TCTP to Ca2+ was first reported using Trypanosoma brucei
protein and later on using the human protein (Haghighat and Ruben 1992; Sanchez

et al. 1997). Thapsigargin increased cytosolic levels by blocking the ability of the cells

to pump calcium into the ER, which depletes its Ca2+ stores. This activated plasma

membrane calcium channels allowing Ca2+ influx into the cytosol, thereby initiating

apoptosis. The lack of TCTP resulted in exaggerated increases of Ca2+ in thapsigargin-

challenged cells (Graidist et al. 2007). Increasing the intracellular Ca2+ levels beyond

the normal range could damage the mitochondrial membranes and leads to the release

of cytochrome C and apoptosis-inducing factor (AIF), resulting in apoptosis. Ca2+

binding of TCTP was required for cellular protection against thapsigargin-induced

apoptosis (Graidist et al. 2007) (Fig. 14.2). TCTP binds to and scavenges Ca2+, thus

preventing the ion from activating downstream apoptotic execution pathways (Graidist

et al. 2007) (Fig. 14.2). Thapsigargin also induced ER stress, in which unfolded

proteins were accumulated in the organelle (Nagano-Ito and Ichikawa 2012).

Thapsigargin decreased Ca2+ concentration in the ER and suppressed small molecule

Ca2+-dependent chaperones in the organelle, allowing accumulation of abnormal

proteins, which eventually drove cells to undergo apoptosis (Nagano-Ito and Ichikawa

2012).

Therefore, it can be concluded that TCTP protects cells from ER stress-induced

apoptosis by inhibiting the corresponding signal pathways.

14.3 TCTP for Differentiation Therapy

14.3.1 Approaches of Differentiation Therapy in General

Cancer cells fail to differentiate into functional mature cells, and differentiation

therapy aims to reinducing differentiation backward to nonmalignant cellular states.

This process is termed tumor reversion (Spira and Carducci 2003; Pierce andWallace

1971). Differentiation therapy is based on the assumption that specific neoplastic

cells exhibit aberrant patterns of differentiation and that treatment with appropriate

agents results in tumor reprogramming, ultimately leading to a loss in proliferative

capacity and induction of differentiation (Leszczyniecka et al. 2001). Conventional

chemotherapy is frequently associated with the development of drug resistance and

high toxicity, both of which limit its therapeutic efficacy (Lal et al. 1993). Stierum

et al. studied protein expression changes in differentiating Caco-2 cells by proteomics

approach (Stierum et al. 2003). Eleven proteins were identified including TCTP, liver

fatty acid-binding protein (FABL), three forms of α-enolase (ENOA), nucleoside

diphosphate kinase A (NDKA), cofilin-1 (COF1), mitochondrial 60 kDa heat shock
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protein (CH60), probable protein disulfide isomerase (ER60), creatine kinase B

(KCRB), and glutathione S-transferase alpha (GTA1) (Stierum et al. 2003). This

differentiation-related change in phenotype of Caco-2 cells involved changes in a

variety of distinct biochemical pathways (Stierum et al. 2003). The processes were

related to protein folding and disulfide bridge formation, cytoskeleton formation and

maintenance, nucleotide metabolism, glycolysis, as well as tumorigenesis-associated

proteins (Stierum et al. 2003).

14.3.2 Retinoids

Retinoids are a class of compounds derived from vitamin A possessing the ability to

regulate cell proliferation, differentiation, and apoptosis in normal and cancer cells

(Garattini et al. 2007). Retinoids play a fundamental role in chemoprevention of

carcinogenesis and in differentiation therapy (Hansen et al. 2000). Retinoids exert

their bioactivity by binding to retinoic acid receptors (RARs) (Garattini et al. 2007).

Treatment of osteosarcoma and chondrosarcoma cell lines with all-trans retinoic

acid (ATRA) resulted in reversible growth inhibition and decreased colony forma-

tion (Thein and Lotan 1982; Ng et al. 1985). Clinically, ATRA is successfully

applied to treat acute promyelocytic leukemia (APL) with an aberrant chromosomal

translocation (Waxman 2000). This translocation results from the fusion of the

PML gene with the RAR gene (PML-RARα) (Spira and Carducci 2003). ATRA

differentiates APL cells into mature neutrophils (Huang et al. 1987a, b). Retinoids

reduced cell proliferation and induced myogenic differentiation in a variety of

rhabdomyosarcoma (RMS) cell lines derived from either alveolar or embryonal

RMS (Luo et al. 2010; Crouch and Helman 1991; Brodowicz et al. 1999; Barlow

et al. 2006).

14.3.3 Histone Deacetylase Inhibitors

Histone deacetylation by histone deacetylases (HDACs) leads to chromatin com-

paction. Histone deacetylation is related to transcriptional repression of tumor

suppressors involved in regulating cell growth and differentiation in various can-

cers (Mai et al. 2005; Cress and Seto 2000). DMS53 small cell lung carcinoma cells

changed their morphology upon treatment with the histone deacetylase inhibitor,

trichostatin A, and showed cellular differentiation (Platta et al. 2007). Five quino-

lone compounds, which inhibited HDAC activity in vitro, stimulated cell differen-

tiation at growth inhibitory concentrations in MCF-7 breast carcinoma cells

(Martirosyan et al. 2004). The morphology of MCF-7 cells was changed after

treatment of suberoylanilide hydroxamic acid (SAHA) or vorinostat, suggesting

the induction of epithelial mammary differentiation (Munster et al. 2001).
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14.3.4 PPARγ Agonists

Peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of

cell proliferation, differentiation, and apoptosis in a variety of cell types such as

hepatocytes, fibroblasts, myoblasts, and adipocytes (Grommes et al. 2004; Sertznig

et al. 2007). Treatment of 3T3-L1 preadipocytes and murine fibroblast cells with the

PPARγ agonist, troglitazone, induced the expression of cyclin-dependent kinase

inhibitors (CDKIs) p18 and p21 allowing terminal adipogenic differentiation

(Morrison and Farmer 1999). Activation of PPARγ with either endogenous

PPARγ agonists or synthetic agonists induced cell cycle exit by terminal differen-

tiation of preadipocytes and fibroblast cells (Morrison and Farmer 1999; Tontonoz

et al. 1994; Wahli et al. 1995). Primary human liposarcoma (LPS) cells were

effectively induced to undergo terminal adipocytic differentiation after treatment

of the PPARγ agonist, pioglitazone (Tontonoz et al. 1997). Furthermore, promising

preclinical results about the effects in differentiation of PPARγ agonist treatment in

liposarcoma have been reported in a clinical phase II trial utilizing the PPARγ
agonist, rosiglitazone (Debrock et al. 2003; Dusso et al. 2005).

14.3.5 Vitamin D

Vitamin D receptor (VDR) is expressed in many cell types and tissues. It is of a

small intestine, kidney, and bone and is involved in the homeostasis of calcium and

minerals (Dusso et al. 2005; Nagpal et al. 2005; Samuel and Sitrin 2008). Vitamin

D alters cellular proliferation through multiple mechanisms such as cell cycle

progression, apoptosis, and differentiation (Dusso et al. 2005; Nagpal et al. 2005;

Samuel and Sitrin 2008; Masuda and Jones 2006; Banerjee and Chatterjee 2003).

Vitamin D induces cell cycle arrest by inhibiting the transition from the G1 to the S

phase of the cell cycle (Bohnsack and Hirschi 2004). By affecting multiple genes,

multiple effects of vitamin D on this step of the cell cycle, including p21waf1,

p27kip1, cyclin D1, and so on, were observed concerning their transcription and

protein stability (Bohnsack and Hirschi 2004; Liu et al. 1996; Boyle et al. 2001;

Hershberger et al. 2001; Inoue et al. 1999; Rots et al. 1998; Bettoun et al. 2002).

Vitamin D induced maturation of HL-60 and U937 leukemia cells (Olsson et al.

1983; Rigby et al. 1984). It also induced CDKIs such as p27kip1 and perturbated

the subcellular distribution of protein phosphatases (Wang et al. 1997; Song and

Norman 1998).
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14.3.6 Differentiation Therapy with Antihistaminic Drugs

A novel target for differentiation therapy is TCTP, because it was the most

downregulated gene in tumor reversion experiments (Tuynder et al. 2004). Since

TCTP encodes for a histamine-releasing factor, Tuynder et al. hypothesized that

inhibitors of the histaminic pathway could be effective against tumor cells (Tuynder

et al. 2004). Antihistaminics are widely used in cancer patients as antiallergics,

antidepressants, or antiemetic agents (Tuynder et al. 2004). Therefore, it is also

reasonable to test their possible antiproliferative effects. Moreover, some pheno-

thiazines, including promethazine, thioridazine, perphenazine, and chlorpromazine,

revealed antiproliferative effects (Strobl et al. 1990; Gil-Ad et al. 2004; Zhelev

et al. 2004). Antihistaminic compounds decreased TCTP expression, killed cancer

cells, and, eventually, led to strong reversion of the malignant phenotype (Tuynder

et al. 2004). Hydroxyzine and promethazine as model drugs inhibited cell growth of

human leukemia U937 cells and decreased TCTP expression of breast cancer

MDA-MB-231 and monocytic leukemia U937 cells (Tuynder et al. 2004). These

two drugs were also investigated in vivo. The volumes of MDA-MB-231 and U937

xenograft tumors were consistently reduced by treatment with hydroxyzine or

promethazine, indicating that these drugs indeed inhibited tumor growth by

targeting TCTP (Tuynder et al. 2004).

We investigated a series of antihistaminic drugs as new TCTP inhibitors in a

systematic way (Seo and Efferth 2016). In our study, levomepromazine and

buclizine showed higher in silico binding affinities to TCTP among 12 different

antihistaminic compounds including the control drugs, promethazine and hydroxy-

zine, by using Autodock4 and AutodockTools-1.5.7.rc1. We found that

levomepromazine and buclizine bound to the same sites at TCTP as promethazine

and hydroxyzine, but with higher affinities. Recombinant human TCTP protein was

obtained by codon optimization, heterogeneous expression in E. coli, and purifica-

tion using chitin affinity chromatography. We were able to experimentally validate

the binding of levomepromazine and buclizine to recombinant human TCTP using

microscale thermophoresis. Furthermore, we explored the effects of two selected

compounds on cell growth and TCTP protein and observed indeed that they

inhibited cell growth and downregulated TCTP expression in MCF-7 breast cancer

cells, indicating TCTP direct binding and downregulation as causative growth-

inhibitory mechanism of levomepromazine and buclizine. We also investigated the

cell cycle distribution of MCF-7 cells after drug treatment using flow cytometry and

found that the percentage of G1 phase cells after levomepromazine or buclizine

treatment increased without showing apoptosis. The mode of the action of two

compounds was investigated using annexin V/PI staining. High concentrations

(IC50 or 2 � IC50) of both drugs for 72 h treatment did not increase the fraction

of dead cells, and most of cells were annexin V/PI negative, demonstrating that the

cells were alive after treatment of two drugs. These results indicated that these two

antihistaminics cause neither necrosis nor apoptosis. Therefore, they were not

cytotoxic. Our cell cycle analysis and annexin V/PI staining results strongly implied
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that levomepromazine and buclizine caused cell growth inhibition by G1 cell cycle

arrest without induction of cell death. Moreover, trypan blue exclusion test showed

that more than 90% of cells were living cells possessing intact cell membranes that

excluded trypan blue staining upon treatment with IC50 or 2 � IC50 concentrations

of levomepromazine or buclizine for 72 h. This result is another proof that these two

drugs inhibited cell growth without inducing cell death. Based on our results, we

conclude that the interaction of TCTP with the apoptotic machinery was not of

major mechanism for the antiproliferative effects of antihistaminic compounds. The

effect of these two drugs on cell cycle arrest, annexin V/PI staining analysis, and

cell viability using trypan blue staining demonstrated that cytostatic rather than

cytotoxic mechanisms were operative. In order to confirm that two drugs really

induced differentiation, lipid droplet staining was performed. Lipid droplets are a

reliable market for functional differentiation of mammary tissues (Munster et al.

2001). Finally, we demonstrated that those two antihistaminics really induced

differentiation in MCF-7 cells by increase of lipid droplets. Thus, we found that

two antihistaminics, levomepromazine and buclizine, inhibited cancer cell growth

by binding to TCTP and induction of cell differentiation.

On the basis of data of Tynder et al. and our study, TCTP is a novel target for

anticancer differentiation therapy, and antihistaminics are promising to serve as

lead compounds for cancer differentiation therapy by targeting TCTP (Tuynder

et al. 2004; Seo and Efferth 2016).

14.4 Conclusions and Perspectives

Many cytotoxic agents against cancer reveal side effects such as bone marrow

suppression, gastrointestinal tract lesions, hair loss, nausea, etc. because these

agents are active on both malignant tumor and healthy normal cells (Thurston

2007; Jain et al. 2013). Therefore, these drugs induce cell death not only in tumors

but also in normal cells (Thurston 2007; Jain et al. 2013). Since cytotoxic drugs lack

sufficient tumor selectivity, they frequently cannot cure patients due to

non-tolerable high side effects that prevent the application of drug doses high

enough to sustainably kill all cells of a tumor.

Another treatment is differentiation therapy, which aims at reactivation of

endogenous differentiation programs in cancer cells with subsequent cellular mat-

uration and loss of the aggressive tumor phenotype (Pierce andWallace 1971). This

novel and potentially less toxic form of cancer therapy comprise agents that modify

the state of differentiation and growth of cancer cells (Leszczyniecka et al. 2001).

Although differentiation therapies such as retinoids, HDACI, PPARγ agonists and

vitamin D have been investigated as described above, it is still relatively in its

infancy.

TCTP represents an exquisite target for differentiation therapy, since

downregulation of TCTP was responsible for the reprogramming of cancer cells

into revertants (Tuynder et al. 2002, 2004). The antihistaminics, promethazine and
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hydroxyzine, showed the inhibition of TCTP indicating that antihistaminic drugs

can be a suitable class of TCTP inhibitors (Tuynder et al. 2002, 2004). Furthermore,

our study demonstrated that antihistaminic drugs, levomepromazine and buclizine,

inhibited the breast cancer cell line MCF-7 growth by binding to TCTP and induce

cell differentiation (Seo and Efferth 2016). Those studies showed the potential that

differentiation therapy with higher tumor specificity and less side effects than

cytotoxic therapy can be reached using antihistaminic TCTP inhibitors.

A synergistic effect was reported between the downregulation of TCTP by

siRNA and antisense oligonucleotides in combination with docetaxel treatment of

prostate cancer models in vitro and in vivo (Baylot et al. 2012). This result

demonstrates that TCTP knockdown with docetaxel therapy could serve as a

novel strategy to treat castration-resistant prostate cancer (Baylot et al. 2012).

Hence, the combination of the targeting of TCTP with classical chemotherapy is

worth to be investigated, because it might reveal synergistic effects and the

opportunity of treating cancer in a more effective way with higher response rates,

lower risks of tumor resistance, and fewer side effects with treatment of less

concentration of cytotoxic substances.
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