
Chapter 12

The Translationally Controlled Tumor Protein

and the Cellular Response to Ionizing

Radiation-Induced DNA Damage

Jie Zhang, Grace Shim, Sonia M. de Toledo, and Edouard I. Azzam

Abstract The absorption of ionizing radiation by living cells can directly disrupt

atomic structures, producing chemical and biological changes. It can also act

indirectly through radiolysis of water, thereby generating reactive chemical species

that may damage nucleic acids, proteins, and lipids. Together, the direct and

indirect effects of radiation initiate a series of biochemical and molecular signaling

events that may repair the damage or culminate in permanent physiological changes

or cell death. In efforts to gain insight into the mechanisms underlying these effects,

we observed a prominent upregulation of the Translationally Controlled Tumor

Protein (TCTP) in low dose/low dose rate 137Cs γ-irradiated cells that was associ-

ated with adaptive responses that reduced chromosomal damage to a level lower

than what occurs spontaneously. Therefore, TCTP may support the survival and

genomic integrity of irradiated cells through a role in the DNA damage response.

Consistent with this postulate, TCTP was shown to physically interact with ATM,

an early sensor of DNA damage, and to exist in a complex with γH2A.X, in agreement

with its distinct localization with the foci of the DNA damage marker proteins

γH2A.X, 53BP1, and P-ATM. Cells lacking TCTP failed to repair chromosomal

damage induced by γ-rays. Further, TCTP was shown to interact with the

DNA-binding subunits, Ku70 and Ku80, of DNA-PK, a major participant in

nonhomologous end joining of DNA double strand breaks. Moreover, TCTP

physically interacted with p53, and its knockdown attenuated the radiation-induced

G1 delay, but prolonged the G2 delay. Here, we briefly review the biochemical

events leading to DNA damage by ionizing radiation and to its sensing and repair,
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and highlight TCTP’s critical role in maintaining genomic integrity in response to

DNA-damaging agents.

12.1 Introduction

Cells in the human body are challenged by a variety of harmful compounds

generated by normal physiological processes and through exposure to environmen-

tal agents. For example, we are constantly exposed to low levels of ionizing

radiation from natural sources, and we may also be exposed to radiation released

to the environment from nuclear fallouts and man-made sources, including con-

sumer products, and discharges of radioactive waste. In addition, humans may

become exposed to radiation during occupational activities related to nuclear

technology, mining, high altitude airline travel, and deep space exploration. In

particular, with the explosive growth in the use of diagnostic radiology, an increas-

ing numbers of individuals are being repeatedly exposed to low and moderate doses

of radiation during conventional as well as computed tomography, and nuclear

medicine imaging procedures (NCRP 2009). In addition to low dose exposures, the

use of different irradiation modalities (e.g., external beam therapies, brachytherapy

with various sources of radiation) remains an effective and widely used means to

treat cancer and other pathological conditions such as arteriovenous malformations

(Coutard 1937; Hacein-Bey et al. 2014). Currently, 20–60% of all new cancer cases

worldwide are treated with external photon beam radiotherapy as a standard option

(Tyldesley et al. 2001; Delaney et al. 2005).

Exposures to ionizing radiation are, therefore, an inevitable part of the environ-

ment and increasingly of modern life. Hence, elucidation of the mechanisms

underlying the cellular responses to low dose radiation is essential for estimating

long-term health risks of low level exposures, for understanding the basis of normal

tissue toxicities that arise following therapeutic exposures, and for enhancing the

efficacy of radiotherapy through combined treatment modalities. Importantly, the

study of the biochemical and molecular events underlying cellular and tissue

responses to radiation have been major contributors to our knowledge of the stress

response to radiation exposure, in particular the DNA damage response.

When cells are exposed to ionizing radiation, nucleic acids, proteins, lipids and

other cellular constituents undergo chemical modifications. Of all the cellular

constituents, stability of DNA is undoubtedly critical. Damage to the nuclear

genome by direct interaction of DNA with radiation, or indirectly by its interaction

with reactive compounds (e.g., reactive oxygen and nitrogen species) generated

following cellular exposure to radiation, can cause a variety of adverse chemical/

structural changes. Depurinations, depyrimidinations, base oxidation and strand

breaks are some of the DNA damages that may occur (Dizdaroglu 2012). If

unrepaired or misrepaired and propagated to progeny cells, these changes can

lead to mutations that promote the development of cancer and degenerative diseases

(Georgakilas 2011; Hall and Giaccia 2006; Little 2000).
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The early radiation effects on the nuclear genome may be enhanced by excess

oxidative stress resulting from persistent perturbations in oxidative metabolism,

which can result in excess generation of reactive chemical species that exacerbate

harmful conditions (Azzam et al. 2012; Spitz et al. 2004). In response to these

stresses, cells have evolved multiple mechanisms to prevent the chemical/structural

changes to DNA from occurring and/or repair the damage once it has occurred, thus

maintaining genomic integrity. Cells react to genotoxic stress by activating a large

network of signaling pathways that sense specific types of damage and trigger a

coordinated and complex response to the chromosomal insults by activation of

DNA damage sensing and repair pathways that restitute the damage or attenuate its

level (Harper and Elledge 2007; Jeggo et al. 2016). In addition, cells activate

antioxidant defenses to scavenge reactive chemical species (Petkau 1987) and

cell cycle checkpoints to provide additional time for the defense mechanisms to

operate (Little 1968; Zhou and Elledge 2000). In exposed tissues, immune

responses may be triggered to promote repair and/or eliminate damaged cells

(Jackson and Bartek 2009). In addition, apoptosis, necrosis, or mitotic death

pathways may also be induced, particularly when the damage is severe (Okada

and Mak 2004). These protective pathways have been under intense investigation

and have been a fertile field for discovery of new players in the cellular defense

against exogenous and endogenous stresses.

The Translationally Controlled Tumor Protein (TCTP) was identified over

25 years ago in Ehrlich’s ascites tumor and in mouse erythroleukemia (Yenofsky

et al. 1983; Chitpatima et al. 1988; Thomas et al. 1981). The protein was also named

histamine releasing factor (HRF), fortilin, tpt1, Q23, P21, and P23 by independent

groups, based on its multiple characteristics and activities (Thomas et al. 1981;

Yenofsky et al. 1982; Bohm et al. 1989; MacDonald et al. 1995; Li et al. 2001).

TCTP is an evolutionarily conserved molecule expressed in many eukaryotic cells

(Bommer and Thiele 2004), which highlights its central biological importance. The

complex nature of TCTP regulation during normal physiological functions and in

response to stress continues to evolve. The various chapters in this book compre-

hensively describe the role of TCTP in various physiological functions and in

cancer. TCTP has been implicated in transcription (Koziol et al. 2007), protein

synthesis (Cans et al. 2003), cell cycle control (Brioudes et al. 2010), cytoskeleton

regulation (Gachet et al. 1999; Burgess et al. 2008; Tsarova et al. 2010), immune

responses (Macdonald 2012; Kashiwakura et al. 2012), development (Chen et al.

2007a, b; Hsu et al. 2007), viability (Susini et al. 2008), and cancer induction and

reversion (Chan et al. 2012; Jung et al. 2011; Tuynder et al. 2002, 2004). Our

emerging work has identified a novel role for TCTP in the repair of radiation-

induced DNA damage, which is critical to health and disease (Zhang et al. 2012):

Unrepaired DNA damage leads to genomic instability, which is a hallmark of

cancer (Huang et al. 2003). As a background to this role, we briefly review the

cellular effects of ionizing radiation. In particular, we discuss the induction of

radiation-induced DNA damage and its repair, and the role of TCTP in the repair

of DNA damage. Throughout, we identify areas where research may further

illuminate the role of TCTP in this critical field.
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12.2 Primary Effects of Ionizing Radiation

12.2.1 Direct and Indirect Effects of Ionizing Radiation

In mammalian cells, significant chemical modifications take place during or shortly

after (within 10�15 to 10�6 s) the radiation exposure (Barendsen 1964; O’Neill and
Wardman 2009; Meesungnoen et al. 2001). These modifications occur through

direct interaction of the radiation with components of the exposed cells (e.g.,

DNA) or indirectly through generation of oxidizing species from water radiolysis

(Fig. 12.1). Water is the major (�80%) constituent of cells. A thorough knowledge

of water radiolysis is therefore critical for understanding radiobiological effects

(Zimbrick 2002; LaVerne and Pimblott 1993).

The absorption of energetic radiations by water results in both excitations and

ionizations leading to production of free radicals that in turn can attack other critical

molecules (indirect effect). The schematic in Fig. 12.1 describes the complex

events that accompany the absorption of high-energy photons or the passage of

fast charged particles through water. These events can be divided into four, more or

less clearly demarcated, consecutive, temporal stages (Platzman 1958). During the

first or “physical” stage, the energy deposition is caused by the incident radiation
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Fig. 12.1 The direct and indirect cellular effects of ionizing radiation on macromolecules.

Absorption of ionizing radiation by living cells directly disrupts atomic structures, producing

chemical and biological changes and indirectly through radiolysis of cellular water and generation

of reactive chemical species by stimulation of oxidases and nitric oxide synthases. Ionizing

radiation may also disrupt mitochondrial functions significantly contributing to persistent alter-

ations in lipids, proteins, nuclear DNA (nDNA), and mitochondrial DNA (mtDNA)
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and secondary electrons are generated. The resulting species are extremely unstable

and undergo fast reorganization in the second or “physicochemical” stage. These

processes produce radical and molecular products of radiolysis that are distributed in

a nonhomogeneous track structure. The initial (�10�12 s) spatial distribution of

reactants is then directly used as the starting point for the so-called stage of

“nonhomogeneous chemistry.” During this third stage, the various chemically reac-

tive species diffuse and react with one another or with the environment (�10�6 s).

Finally, in a physiologic system, the “biological” stage follows, in which the cells

respond to the damage resulting from the products formed in the preceding stages.

During this stage (�10�3 s or longer, depending very much upon the medium), the

biological responses affecting the long-term consequences of radiation exposure are

induced. In an aerobic cellular environment at physiological pH, the major reactive

species at homogeneity (�10�6 s) include O2
•�, •OH, and H2O2 [reviewed in Azzam

et al. (2012)]. Whereas �1/3 of DNA damage from sparsely ionizing radiation (low

linear energy transfer type such as energetic X- or γ-rays) emanates from direct

interaction of the DNA with radiation, �2/3 results from indirect effects involving

water radiolysis products (Fig. 12.1) (Hall and Giaccia 2006). In the case of densely

ionizing radiations such as alpha particles emanating from environmental radon gas,

or high atomic number (Z) and high energy (E) (HZE) particles used in modern

radiotherapy (Newhauser and Durante 2011) or encountered by astronauts during

deep space travel (Li et al. 2014), it is commonly accepted that the cellular effects of

HZE particles on macromolecules are mainly due to direct rather than indirect effects

involving water radiolysis products (Hall and Giaccia 2006). Regardless, in cells

exposed to such particulate radiations, the concentration of radiolytic species is very

dense in and around the particle track (Goodhead 1988; Muroya et al. 2006; Chat-

terjee and Schaefer 1976), causing extensive covalent modifications in affected

macromolecules (Li et al. 2014). Therefore, it would be of great interest to investigate

the protective role of TCTP in the cellular defense against the damages induced by

either sparsely or densely ionizing radiations.

In addition to a role of protecting against DNA damage induced through the

direct effect of radiation, TCTP may have a role in promoting the scavenging of the

reactive/DNA-damaging species generated during the biological stage of water

radiolysis, which is consistent with TCTP’s antioxidant role and the general cellular
stress response (Gnanasekar and Ramaswamy 2007). While TCTP may act at early

stages following irradiation, it could also exert an antioxidant role for longer times

to help alleviate oxidative stress induced as a result of activation of oxidases/

perturbations in oxidative metabolism (Spitz et al. 2004). Interestingly, although

the family of TCTP proteins showed no primary sequence homology to any other

protein family, the core domain of TCTP displays remarkable structural similarity

with three families of proteins: Mss4/Dss4 proteins, which bind to the GDP/GTP-

free form of Rabs proteins (Thaw et al. 2001), methionine sulfoxide reductases, and

RNA helicases (Amson et al. 2013). Notably, methionine sulfoxide reductases play

an important role in antioxidant defense, protein regulation, and survival

(Moskovitz 2005). It is, therefore, attractive to speculate that TCTP may protect

cells against oxidative stress by a mechanism that is yet to be discovered due to its
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structural similarity with methionine-R-sulfoxide reductase B1. Furthermore, it is

of interest that one of the TCTP genes deposited in GenBank is designated as a PO2

related protein (accession no. AAM51565) (Oikawa et al. 2002).

12.3 Endogenous and Radiation-Induced DNA Alterations

A strong emphasis thus far has been on the effect of exogenous agents such as

ionizing radiation on DNA damage. However, improvements in the sensitivity of

analytic methods to measure oxidative damage (Cadet et al. 2011) have revealed

altered bases and nucleotides in the DNA of normal cells that have not been

exposed to ionizing radiation or other mutagens (Weinberg 2007). The analyses

have shown that endogenous biochemical processes greatly contribute to genome

mutations. The reactive oxygen species (ROS) produced during normal cellular

metabolic processes (mainly O2
•� and H2O2) cause extensive depurinations and, to

a lesser extent, depyrimidinations. In addition, ROS can oxidize bases in DNA,

such as the oxidation of deoxyguanosine (dG) to 8-hydroxyguanine (8-oxodG),

with �100–500 of such lesions being formed per day in a human cell (Lindahl

1993). The rate of occurrence of these alterations has been closely linked to the rate

of oxidative metabolism: higher oxygen consumption in different species were

correlated with an increased rate of base oxidation in DNA (Ames 1989). A failure

to repair oxidized bases creates a risk of mutation during DNA replication. For

example, 8-oxodG mispairs with deoxyadenosine (dA) rather than deoxycytosine

(dC), resulting in a C–A point mutation. Notably, oxidatively induced DNA lesions

and DNA repair proteins have been suggested as potential biomarkers for early

detection, cancer risk assessment, prognosis, and for monitoring therapy

(Dizdaroglu 2012).

Several cellular defenses act to restore DNA integrity. Interestingly, the knock-

down of TCTP by RNA interference (RNAi) in normal unirradiated human diploid

fibroblasts led to an increase in the spontaneous rate of DNA damage in the form of

micronuclei, which was validated by an increase in the average number of γH2A.X
foci per cell [(Zhang et al. 2012); see results described in Fig. 12.5]. Micronuclei

arise mainly from DNA double strand breaks (DSBs), a serious DNA lesion that

leads to cell death (Fenech and Morley 1985; Baumstark-Khan 1993). Therefore, it

is attractive to speculate that the increase in micronuclei upon knockdown of TCTP

is likely due to abrogation of its antioxidant function, leading to the accumulation of

oxidized bases that eventually result in DNA breaks.
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12.3.1 DNA Damage Response Pathways and DNA Damage
Repair Mechanisms

As highlighted above, DNA is continuously exposed to damaging agents from

endogenous and external environmental stresses, along with lifestyle factors. This

constant assault on DNA yields tens of thousands of DNA lesions per day in every

human cell (Weinberg 2007). These DNA lesions must be repaired to prevent loss

or incorrect transmission of genetic material, which can lead to tumorigenesis and

other pathologies (Jackson and Bartek 2009; Lin et al. 2012).

As illustrated in Fig. 12.2, the direct interaction of DNA with ionizing radiation

and the radiation-induced ROS induces a wide range of DNA damage of varying

levels of complexity, such as base damage, single strand breaks (SSBs), abasic

sites, DNA–protein cross-links, and DSBs (Nikjoo et al. 2001). Figure 12.3 shows

that the choice of the repair system depends on the type of DNA lesion. Single

strand breaks or single-base damage (i.e., DNA lesions on a single strand that do not

significantly disrupt the helical structure) are generally repaired by base excision

repair (BER) (Chou et al. 2015), whereas DNA damage that significantly distorts

the DNA helix (e.g., bulky lesions and crosslinks) is repaired by nucleotide excision

repair (NER) (Petruseva et al. 2014). Small chemical changes affecting a single

base are repaired via direct repair (DR) (Yi and He 2013), and mismatches in base

pairing caused by DNA replication errors are repaired by mismatch repair (MMR)

(Larrea et al. 2010). Finally, DSBs are repaired via homologous recombination

(HR) and/or nonhomologous end joining (NHEJ). The choice of repair system for

DSB repair depends on the phase of the cell cycle and the expression, availability,

and activation of DNA repair proteins (Lieber 2008; Shah and Mahmoudi 2015).

Regardless of the type of lesion and the mechanisms required for its repair, cells

initiate a complex signaling cascade that includes activation of DNA repair path-

ways, cell cycle arrest to allow time for repair of DNA damage, and in certain cases,

initiation of senescence or apoptosis. These series of coordinated events are known

as the DNA damage response (DDR) pathways (Jackson and Bartek 2009). Upon

induction of DSBs, the central components of DDR activation are ATM, ATR, and

DNA-dependent protein kinase (DNA-PK), members of the phosphatidyl inositol

3-kinase-like kinase (PIKK) family. ATM and DNA-PK are predominantly acti-

vated by DNA DSBs, whereas other types of DNA damage (e.g., replication-

induced DSBs, base adducts, and cross-links) activate ATR (Branzei and Foiani

2008; Nam and Cortez 2011; Shiloh and Ziv 2013). Our studies have shown that

TCTP interacts with components of both HR and NHEJ to promote repair of DNA

damage (Zhang et al. 2012).

As shown in Fig. 12.3, DNA-PK and ATM are activated by the recruitment of

Ku70/Ku80 and the MRN complex, respectively, to DSBs. Ku70/Ku80 and

DNA-PK promote NHEJ repair of DSBs. The DNA-PK catalytic subunit

(DNA-PKcs) keeps the broken DNA ends in close proximity during NHEJ repair

and recruits end-processing factors (e.g., Artemis, PNKP, APE1, and TDP1), which

prepare the DNA ends for re-ligation by the XRCC4–XLF–LIG4 complex
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(Fig. 12.4) (Postel-Vinay et al. 2012; Panier and Boulton 2014). In recent years,

alternative end-joining pathways that repair DSBs independently of one or more

core components of this classical-NHEJ machinery have been described

(Decottignies 2013; Badie et al. 2015). Our work has indicated that cells lacking

TCTP failed to repair chromosomal damage induced by γ-rays (Fig. 12.5), which as
will be shown below, perhaps as a result of decreased binding of the Ku proteins to

damaged DNA. Significantly, defects in DNA repair genes have long been associ-

ated with human disease and in cellular sensitivity to DNA-damaging agents

(Jackson and Bartek 2009; McKinnon 2009; Hoeijmakers 2009; Jasin 2015;

Weichselbaum et al. 1980).

As a consequence of DSB induction, ATM is activated (Shiloh 2003) and

phosphorylates the histone H2A.X (to form γH2A.X), which leads to both structural
alterations to the chromatin around the damaged site to allow repair proteins access

to the damaged regions of the DNA and the recruitment and retention of key DDR

factors (Stucki and Jackson 2006). In addition, accumulating evidence indicates

that γH2A.X may also be involved in functions that are not directly related to its

function as a DNA DSB marker [reviewed in detail in Turinetto and Giachino

(2015)]. γH2A.X foci are formed within minutes after exposure to ionizing radiation

in a dose-dependent manner, peak at <1 h post-irradiation, and then rapidly decay

to baseline levels within one to several days, depending on the dose received

(Rogakou et al. 1998). H2A.X phosphorylation leads to recruitment of many

checkpoint and repair factors, such as MDC1, MRN, and the ubiquitin ligases

RNF8 and UBC13 (Postel-Vinay et al. 2012; Panier and Boulton 2014). These

factors promote the recruitment of 53BP1, BRCA1, and more ATM to facilitate the

spreading of the DDR signal through the nucleus. These proteins go on to initiate

the phosphorylation and dimerization of checkpoint kinases CHK2/CHK1, which

targets effectors including p53, CDC25A, and CDC25C that in turn activates cell

cycle checkpoints or induce apoptosis (Raynaud et al. 2008; Thompson 2012).

While NHEJ is active in all phases of the cell cycle, HR is restricted to the S and G2

phases when sister chromatids are available in close proximity as repair templates

(Branzei and Foiani 2008; Symington and Gautier 2011). Significantly, we have
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Fig. 12.2 DNA lesions induced by ionizing radiation. Cellular exposure to ionizing radiation

induces a wide range of damage in DNA including single strand breaks (SSB), base damage,

abasic sites, DNA-protein cross-links, and double strand breaks (DSB)
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Fig. 12.4 DNA DSB repair pathways. The two main DNA DSB repair pathways in eukaryotic

cells: nonhomologous end joining (NHEJ; part a) and homologous recombination (part b).
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shown that upon exposure of normal human cells that are in different phases of the

cell cycle to low dose γ-rays, the TCTP protein level was greatly increased, with a

significant enrichment in nuclei. TCTP upregulation occurred in a manner depen-

dent on ATM and DNA-PK (cells deficient in ATM or DNA-PKcs function failed

to upregulate TCTP) and was associated with protective effects against DNA

damage and cell killing (Fig. 12.5). In chromatin of irradiated cells, TCTP was

found to physically interact with ATM and to exist in a complex with γH2A.X, in
agreement with its distinct localization with the foci of the DNA damage marker

proteins γH2A.X, 53BP1, and p-ATM (Fig. 12.6). Importantly, compared to cells

transfected with Scr siRNA, depletion of TCTP by siRNA resulted in opposite

abundance patterns of Ku proteins in cytoplasm and nucleus of γ-irradiated cells.

The dramatic reduction in TCTP level was associated with radiation dose-

dependent decrease in Ku70 and Ku80 in the nucleus. Furthermore, relative to

Scr siRNA-treated cells, the decreases in Ku70 and Ku80 abundance in nuclei of

irradiated siTCTP-transfected cells were associated with significant attenuation

(>50%, p < 0.001) in the DNA-binding activity of Ku70 and Ku80 from extracts

of irradiated cells (Fig. 12.7) (Zhang et al. 2012). These findings constitute previ-

ously unrecognized roles for TCTP in maintaining genome integrity under stressful

conditions (Zhang et al. 2012; Bommer et al. 2010; Nagano-Ito et al. 2009;

Gnanasekar et al. 2009). However, the exact function of TCTP in DNA damage

sensing and the different modes of DNA repair still remains to be clearly elucidated.

12.4 TCTP and the Sensing of Genotoxic Stress

There is extensive evidence indicating that TCTP is abundantly expressed in

eukaryotes and interacts with several proteins to exert various physiological func-

tions (Amson et al. 2012). Following exposure to environmental insults, the cells in

most tissues dramatically increase the production of a small group of proteins that

are collectively known as “heat-shock” or stress proteins. Their increased expres-

sion in tissues that are subjected to various proteotoxic stressors is an adaptive

response that enhances cell survival (Whitesell and Lindquist 2005). In numerous

⁄�

Fig. 12.4 (continued) APE1¼ AP endonuclease 1; BLM¼ Bloom’s syndrome helicase; BRCA1/

2 ¼ breast cancer 1/2; CtIP ¼ CtBP-interacting protein; DNA2 ¼ DNA replication

ATP-dependent helicase; DNAPKcs ¼ DNA-PK catalytic subunit; EXO1 ¼ exonuclease 1;

LIG4 ¼ DNA ligase 4; MRN (MRE11–RAD50–NBS1) complex; PNKP ¼ polynucleotide

kinase/phosphatase; RMI ¼ RecQ-mediated genome instability protein 1; RPA ¼ replication

protein A; SDSA ¼ synthesis-dependent strand annealing; ssDNA ¼ single-stranded DNA;

TDP1 ¼ tyrosyl–DNA phosphodiesterase 1; TOP3α ¼ topoisomerase 3α; XLF ¼ XRCC4-like

factor; XRCC4 ¼ X-ray repair cross complementing protein 4 [adapted from Panier and Boulton

(2014)]
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experimental settings and biological systems, it was established that TCTP levels

are highly regulated in response to a wide range of extracellular signals and cellular

conditions, including heat, heavy metals, hypoxia, and oxidative stress (Bommer

and Thiele 2004). Since both human TCTP (HuTCTP) and a TCTP homolog from

Schistosoma mansoni (SmTCTP) can bind to a variety of denatured proteins and

protect them from the harmful effects of thermal shock, it has been suggested that

TCTP may belong to a novel heat shock protein with chaperone-like activity

(Gnanasekar et al. 2009). Our immuno-precipitation (IP) and mass spectrometry

(MS) analyses indicated that TCTP interacts with heat shock 90 kDa, 70 kDa, and

60 kDa proteins in irradiated cells (Zhang et al. 2012), which may also imply a

chaperone role of TCTP.

Low doses of toxic agents often induce protective mechanisms that enhance the

ability of the organism to cope with stress from normal metabolism or from

exogenous agents (Azzam 2011; Azzam et al. 2016). A study by Lucibello et al.
proposed TCTP as a “stress hallmark” in cancer cells (Lucibello et al. 2011): TCTP

levels were upregulated in cells surviving mild oxidative stress and were

downregulated when cells were treated with severe oxidative stress, which was

followed by cell death. In our studies, we showed that doses of γ-rays as low as even

1 cGy, particularly when delivered at very low dose-rate (0.2 cGy/h), upregulate

TCTP expression and decrease the frequency of micronuclei formation to below the

spontaneous rate in normal human fibroblasts (Zhang et al. 2012). These significant

changes in TCTP expression were also detected when normal cells were treated
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50 cGy exposure. The cells were transfected with scrambled (Scr) or TCTP siRNA. Scrambled

siRNA-transfected cells were also treated with PJ34 or Nu7441 that inhibit DNA repair. (b)
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with low levels of t-butyl hydroperoxide and hyperthermia (data unpublished). Like

ionizing radiation and t-butyl hydroperoxide, some effects of hyperthermia are

mediated by ROS (Katschinski et al. 2000). In contrast, cells exposed to UVC,

which induces the formation of DNA photoproducts, did not change TCTP levels

(data unpublished). Thus, these results support the association of TCTP

upregulation by low levels of environmental stresses with oxidative stress. Cells,

especially embryonic mouse stem cells exposed to dioxin, a potent toxic synthetic

environmental pollutant that induces production of ROS, experience significant

upregulation of the expression and secretion of TCTP (Oikawa et al. 2002), which

also support the role of TCTP in sensing and defending cells against oxidative

stress.

12.5 TCTP and the Repair of DNA Damage

Presence of abundant amounts of TCTP in the nucleus strongly suggests that this

ubiquitous molecule may have a role in protecting the DNA from insults. Our data

showed the induction of TCTP occurred in both the soluble nuclear fraction and the

chromatin-enriched fraction of irradiated cells. When nucleoplasmic proteins were

Fig. 12.6 (continued) mouse or rabbit serum (PI). Immunoblots were then reacted with antibodies

against ATM, TCTP, γH2A.X, or H2AX. (b) Benzonase-treated nuclear extracts isolated 30 min

after exposure of U2OS confluent cells to 0 or acute 50 cGy were immunoprecipitated with anti-

TCTP, anti-p53 or control anti-TBP antibodies. Mouse or rabbit preimmune serum (PI) was used as

a control. Immunoblotting was performed using antibodies against p53, TCTP, or TBP. (c)

Immunoblotting of TCTP, Ku70, and Ku80 in benzonase-treated nuclear extracts of control

unirradiated U2OS confluent cells after immunoprecipitation with either normal serum (PI) or

antibodies against TCTP, Ku70, or Ku80. (d) Untreated or γ-irradiated (acute 100 cGy) AG1522

asynchronous cells were pre-extracted, fixed 1 h later, and immunostained in situ with anti-TCTP,

anti-P-ATM (S1981), anti-γH2A.X, or anti 53BP1 antibodies. Bars, 10 μm. (e) Quantitative

assessment of co-localization of TCTP foci with those of P-ATM (S1981) (left panel), γH2A
(middle panel), and 53BP1 (right panel) in AG1522 asynchronous cells at 1 h after exposure to

50, 100, or 200 cGy [adapted from Zhang et al. (2012)]
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removed by detergent treatment, nuclear TCTP foci were clearly visible, and their

number increased as a function of radiation dose, strongly supporting a role for

TCTP in repair and/or sensing of DNA damage induced by radiation (Zhang et al.

2012). Studies by Ramaswamy demonstrated that the entry of TCTP into the

nucleus is important for its antioxidant function, and TCTP transport into the

nucleus is mediated by sumoylation (Munirathinam and Ramaswamy 2012).

Also, Rid et al. showed that H2O2-dependent translocation of TCTP into the nucleus

enables its interaction with the vitamin D receptor (VDR) in human keratinocytes

(Rid et al. 2010). However, how TCTP translocates into the nucleus soon after

cellular exposure of normal or tumor cells to ionizing radiation remains unknown. It

is attractive to speculate that this may occur either through its chaperone function or

by sumoylation.

As discussed above, eukaryotes have evolved complex mechanisms to repair

DSBs through coordinated actions of protein sensors, transducers, and effectors.

Our data established a functional relation between TCTP and several key proteins

such as ATM, Ku70, Ku80, and p53 that participate in DSB sensing and repair.

Exposure to ionizing radiation induced a significant TCTP protein enrichment in

nuclei, which was dependent on early sensors of DNA damage, specifically ATM

and DNA-PK (Bakkenist and Kastan 2004). Importantly, this induction was asso-

ciated with protective effects against DNA damage. Like in the case of cells treated

with DNA repair inhibitors, repair of γ-ray-induced chromosomal damage was

compromised in TCTP-deficient cells (Fig. 12.5). In chromatin of irradiated cells,

TCTP was found to exist in complex with ATM and γH2AX, in agreement with its

distinct localization with the foci of the DNA damage marker proteins γH2A.X,
53BP1, and p-ATM (Fig. 12.6) (Zhang et al. 2012). However, the exact nature of

the interaction (direct or indirect) between TCTP and ATM kinase remains

unknown. Although TCTP contains putative PI3K phosphorylation sites (e.g.,

T39, S46 and S53), in experiments involving IP of TCTP from AG1522 normal

human fibroblasts (wildtype ATM), U2OS human bone osteosarcoma cells

(wildtype ATM) or AG4405 human fibroblasts (mutated ATM) exposed to γ-rays,
followed by in-gel trypsin digestion, and analysis by liquid chromatography/mass

spectrometry (LC-MS/MS) on “Orbitrap velos instrument,” we did not detect any

phosphorylation site within the protein. Therefore, the issue of how TCTP might be

recruited to the ends of DBSs remains open.

Ku proteins are of central importance to DNA repair in eukaryotes. Ku70/86

heterodimer is the first component of NHEJ as it directly binds DNA and recruits

other NHEJ factors to promote the repair of the broken ends (Downs and Jackson

2004). TCTP is required for the DNA-binding activity of Ku70 and Ku80 in

response to irradiation. Such important effects of TCTP on Ku proteins also

highlight the role of TCTP in NHEJ; furthermore, inactivation of Ku proteins

leads to defects in telomere maintenance and chromosomal end fusion (Williams

et al. 2009). Further, Ku has a key role in a number of other fundamental cellular

processes such as transcription and apoptosis (Downs and Jackson 2004). There-

fore, a possible chaperone role of TCTP in Ku translocation may imply additional

functions of TCTP (Gnanasekar et al. 2009).
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Interestingly, IP/MS experiments also indicate that TCTP interacts with filamin-

A (Zhang et al. 2012). Filamin-A interacts with the DNA damage response proteins

BRCA1 and BRCA2 and therefore may be required for efficient HRR. Defects in

filamin-A impair the repair of DSBs resulting in sensitization of cells to ionizing

radiation (Yue et al. 2009). The role of TCTP in such critical mechanisms that

maintain genomic integrity may explain in part why homozygous mutation in

TCTP is embryonically lethal (Chen et al. 2007a). However, more work will be

required to establish how the TCTP/filamin-A complex functions in DNA repair.

12.6 TCTP and Control of Cell Cycle Progression Under

Normal and Stress Conditions

TCTP is a conserved mitotic growth integrator in animals and plants (Brioudes et al.

2010). Overexpression of TCTP resulted in growth retardation of cells and affected

microtubule stabilization and cell morphology (Gachet et al. 1999). Several nuclear

proteins involved in mitotic progression have been proposed to interact with TCTP,

either regulating or being regulated by TCTP (Bommer 2012). Association of TCTP

with microtubules, the important apparatus of the mitotic spindle, has been demon-

strated through binding tubulin (Gachet et al. 1999) and actin (Bazile et al. 2009) in a

cell cycle-dependent manner. While TCTP is bound to the mitotic spindle, predom-

inantly to the poles, to stabilize spindle microtubules, it is detached from the spindle

during metaphase–anaphase transition (Gachet et al. 1999; Burgess et al. 2008;

Yarm 2002). Two phosphorylation sites, for mitotic polo-like kinase (Plk-1) in the

flexible loop of the TCTP structure, have been identified (Yarm 2002). Phosphory-

lation decreases the microtubule-stabilizing activity of TCTP and promotes the

increase in microtubule dynamics that occurs after metaphase. Expression of a

TCTP protein mutated in these sites led to severe disturbance of mitotic progression

and to the formation of multinucleated cells (Yarm 2002; Johnson et al. 2008).

Phospho-TCTP-ser46 was even confirmed as a marker for Plk-1 activity in vivo

(Cucchi et al. 2010). Notably, Johansson et al. described the interaction of TCTP

with the two nuclear proteins, nucleophosmin and nucleolin, in embryonic stem cells

(Johansson et al. 2010a). In the case of nucleophosmin, the interaction was shown to

be independent of phosphorylation by Plk-1 (Johansson et al. 2010a, b), suggesting

the involvement of additional unrecognized mechanisms.

Deregulatedmicrotubule dynamics and chromosome segregation enhances geno-

mic instability (Rao et al. 2009). CHFR (checkpoint protein with FHA and RING

domains) is a modulator of the mitotic stress checkpoint that delays entry into

metaphase (Scolnick and Halazonetis 2000). Chfr is a tumor suppressor that ensures

chromosomal stability by controlling the expression levels of key mitotic proteins

such as Aurora A (Yu et al. 2005). Interestingly, the interaction of Chfr with TCTP

occurs throughout the cell cycle, but it could be diminished by depolymerization of

the microtubules (Burgess et al. 2008). Although Chfr could be the sensor that
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detects microtubule disruption and then activates the prophase checkpoint, it

remains to be examined whether TCTP binding to Chfr protects the latter from

being degraded. Recently, a novel pathway CHD1L/TCTP/Cdc25C/Cdk1 involved

in hepatocellular carcinoma development has been identified. Overexpression of

TCTP transcriptionally induced by CHD1L promoted the ubiquitin–proteasome

degradation of Cdc25C during mitotic progression, which caused a failure in

dephosphorylation of Cdk1 and decreased Cdk1 activity. Consequently, a faster

mitotic exit and chromosome mis-segregation led to chromosomal instability (Chan

et al. 2012).

To maintain genome integrity, cells need to adequately respond to various

modes of genotoxic stress. DNA damage is known to trigger cell cycle arrest in

the G1, S, or G2 phases of the cell cycle through activation of DNA-damage

checkpoints (Iliakis et al. 2003). This arrest can be reversed once the damage has

been repaired, but irreparable damage can promote apoptosis or senescence. Alter-

natively, cells can reenter the cell cycle before repair has been completed, giving

rise to mutations (Medema and Macurek 2012). Our study (Zhang et al. 2012)

showed that TCTP physically associates with p53, a protein with essential function

in radiation-induced G1 checkpoint (Sengupta and Harris 2005). Depletion of TCTP

greatly attenuated the magnitude of radiation-induced G1 delay in normal human

fibroblasts, as well as the induction of p21Waf1, a cyclin-dependent kinase inhibitor

(Abbas and Dutta 2009). The loss of normal G1 checkpoint control could disrupt

DNA repair and is an early step in carcinogenesis (Syljuasen et al. 1999), which

highlights the role for TCTP in p53-dependent mechanisms that maintain genome

integrity under stressful conditions.

Further, our studies have shown that knockdown of TCTP modulates the

γ-ray-induced G2 checkpoint. While an earlier entry into G2 phase may be a

consequence of faster progression through G1 to S phase in irradiated cells with

downregulated levels of TCTP, the longer delay in G2 following exposure to

ionizing radiation is likely due to a greater level of DNA damage (Zhang et al.

2012). Clearly, additional studies are needed to clarify the role of TCTP in

checkpoint control in irradiated cells. As mentioned previously, Phospho-TCTP-

ser46 is a marker for Plk-1 activity in vivo (Cucchi et al. 2010). Plk-1 activation can

promote mitotic entry in an unperturbed cell cycle, but following a DNA-damaging

insult, cells come to completely rely on Plk1 to reenter the mitotic cycle following

G2 arrest (van Vugt et al. 2010). Indeed, it has been shown that Plk-1 phosphory-

lates G2- and S-phase-expressed protein-1, which acts as a negative regulator of

p53, thus suggesting that Plk1 activity contributes to suppression of p53 during

checkpoint recovery (Liu et al. 2010). Therefore, it will be of interest to see if

phosphorylated TCTP would also be a new negative regulator of p53. Interestingly,

overexpression of TCTP was shown in lung carcinoma cells to destabilize p53 (Rho

et al. 2011). Our results in normal human fibroblasts therefore open an exciting

possibility that TCTP effects on p53 may differ in different cell lines/strains

subjected to genotoxic stress.
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12.7 TCTP and Cell Death

Several models have been proposed to explain how TCTP functions as a mediator

of programmed cell death. During early mammalian development, it plays a role in

anti-apoptotic activity through functional antagonism of the BMP4 pathway (Koide

et al. 2009). As a Ca++-scavenger and molecular chaperone, TCTP protects cells

under Ca++-stress (Graidist et al. 2007) or heat shock conditions (Gnanasekar et al.

2009). In addition, it has been shown that TCTP blocks the cleavage of poly

(ADP-ribose)-polymerase (PARP) (Tuynder et al. 2002), a key event in apoptosis

(Lazebnik et al. 1994). Also, TCTP protects ovarian carcinoma cells against

TSC-22-mediated apoptosis (Lee et al. 2008).

TCTP proteins contain a H2–H3 helices structural similarity to channel-forming

helices (Petros et al. 1644) of the pro-apoptotic protein Bax (Suzuki et al. 2000).

Investigations showed that TCTP exerts its anti-apoptotic function by insertion into

the mitochondrial membrane and inhibiting the dimerization of Bax (Susini et al.

2008). Also, it has been shown that TCTP interacts with Bcl-xL (Yang et al. 2005)

and Mcl-1 (Liu et al. 2005; Zhang et al. 2002), two other anti-apoptotic proteins of

the Bcl-2 family. The N-terminal region of TCTP and the BH3 domain of Bcl-xL

are thought to mediate the interaction between these two proteins (Yang et al.

2005), which may inhibit T-cell apoptosis by preventing the phosphorylation/

inactivation of Bcl-xL. However, the interaction between TCTP and Mcl-1 is

debatable; while some suggested that the two proteins stabilize each other (Liu

et al. 2005; Zhang et al. 2002), others showed that they exert their anti-apoptotic

function independently of each other (Graidist et al. 2004).

Recently, a novel function of TCTP in intercellular signaling leading to anti-

apoptotic effects was proposed by Sirois et al. (2011), which sheds light on a new

direction in bystander effects research, which is under intense investigation in

radiation studies (Azzam et al. 2003; Mothersill and Seymour 2004; Prise et al.

2005). Interestingly, TCTP was identified on the surface of extracellular vesicles

purified from medium conditioned by apoptotic endothelial cells, and caspase-3

activation plays a key role for the release of TCTP when these cells are dying by

apoptosis (Sirois et al. 2011). Further, the nanovesicles, which are different from

apoptotic blebs, induced an extracellular signal-regulated kinase 1/2 (ERK 1/2)-

dependent anti-apoptotic phenotype in vascular smooth muscle cells (VSMC)

(Sirois et al. 2011). During cancer radiotherapy, activated caspase-3 in dying

tumor cells has been shown to regulate the release of prostaglandin E2 (PGE2),

which can potently stimulate growth of surviving tumor cells (Huang et al. 2011). It

would be interesting to determine if TCTP also plays an anti-apoptotic function by

intercellular signaling in radiation-induced bystander effects.
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12.8 Perspective

In humans, DNA can be damaged by various endogenous and environmental

agents, leading to various disorders. Mechanisms must, therefore, exist to protect

or repair DNA. At high doses, ionizing radiation is known to cause excessive DNA

damage, often followed by cancer or degenerative diseases. We studied cellular

responses to low doses of ionizing radiation that are typical of certain occupational

activities or diagnostic radiography. Surprisingly, we observed significant adaptive

responses when normal human cells were exposed to low doses of cesium-137

γ-rays (Azzam et al. 1996; de Toledo et al. 2006) and identified TCTP as a specific

protein involved in this response (Zhang et al. 2012).

In our initial irradiation tests, we found that irradiated cells harbored lower

levels of chromosomal damage than what occurred spontaneously at the basal

level (de Toledo et al. 2006). This unexpected finding prompted us to use a

proteomic approach to identify proteins that are differentially expressed in cells

after exposure to 10 cGy of cesium-137 γ-rays delivered at a low dose over 50 h.

TCTP was found to be upregulated and appeared most sensitive in this context. The

precise pro-survival mechanism mediated by TCTP remains poorly understood.

To this end, we tested the hypothesis that TCTP plays a critical role in response

to DNA damage and that this function is essential particularly for the survival and

genomic integrity of irradiated cells. We found that upon exposure to doses as low

as 1 cGy of cesium-137 γ-rays (a dose received in many diagnostic procedures), the

TCTP level was greatly increased in normal human cells, with a significant enrich-

ment in the nuclei. The protein level was similarly upregulated in tissues of low-

dose-irradiated mice. Moreover, this upregulation was induced by moderate and

high doses of different types of ionizing radiation.

Interestingly, TCTP upregulation was dependent on the early sensors of DNA

damage, specifically the protein ATM and the enzyme DNA-PK. Importantly, this

upregulation was associated with protective effects against DNA damage. As

shown in the case of cells treated with DNA repair inhibitors in previous experi-

ments, repair of γ-ray-induced chromosomal damage was compromised in TCTP-

deficient cells. In the chromatin of irradiated cells, TCTP was found to exist in

complex with ATM and γH2A.X, a protein that marks the sites of DNA damage.

This finding is in agreement with TCTP’s distinct localization with the foci of the

DNA damage marker proteins γH2A.X, 53BP1, and p-ATM. Furthermore, TCTP

was shown to interact with the DNA-binding subunits Ku70 and Ku80 of DNA-PK,

a protein with a major role in repair of DNA DSBs, a particularly harmful form of

DNA damage (Zhang et al. 2012).

Our findings are consistent with the observation that TCTP knockdown led to

decreased levels of Ku70 and Ku80 in the nuclei of irradiated cells and attenuated

the DNA-binding activity of DNA-PK. Interestingly, the protective effects of TCTP

were not confined to low-dose-irradiated cells, but were observed even against the

lethal effects of therapeutic doses of γ-rays. This may explain why knockdown of

TCTP increased the failure of normal human cells to divide, or reproduce, when
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exposed to 200 or 400 cGy (doses received during cancer radiotherapy) (Zhang

et al. 2012).

In normal cells, TCTP did not affect such cell cycle progression towards division

under normal, homeostatic conditions. However, TCTP had a prominent effect on

stress-induced cell cycle checkpoints, which ensure that the cell cycle progresses

without any DNA damage. We found that TCTP interacted with p53, a critical

protein component of such checkpoints that maintains genomic integrity. Further-

more, TCTP knockdown shortened the radiation-induced delay in the G1 phase of

the cell cycle, which is the pre-DNA synthesis phase. The latter effect was associ-

ated with attenuated induction of p21Waf1, an inhibitor of master regulators of the

cell cycle. The loss of the normal G1 checkpoint control disrupts DNA repair and is

an early step in carcinogenesis, thus highlighting the role of TCTP in maintaining

healthy survival. In addition, TCTP has a role in the post-DNA synthesis (G2)

phase, where it modulates the duration of the radiation-induced G2 checkpoint.

Cells with downregulated TCTP entered G2 phase faster than control cells and were

arrested longer in G2 phase (Zhang et al. 2012).

IR

ATM 
( active)

Foci formation

TCTP
Ku70

Ku80

NHEJ repair

p21Waf1

G1 delay

Apoptosis

MRN

Genomic stability
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DNA-PKcs

DNA damage

G2 delay

Filamin A
TCTP

p53TCTP

HR repair

TCTP ATM
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γ

53BP1

H2A.X, etc

P

HSPsTCTP

Fig. 12.8 The role of TCTP in DNA damage sensing and repair. TCTP is upregulated by ionizing

radiation; it interacts with elements of DNA damage sensing and repair and modulates radiation-

induced cell cycle checkpoints (IR ionizing radiation, P phosphorylation,MRN MRE11–RAD50–

NBS1, NHEJ nonhomologous end joining, HR homologous recombination, HSPs heat shock

proteins)
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Together, our results identify TCTP as a new member of a group of proteins

involved in DNA damage response (Fig. 12.8). Our results also point to a

chaperone-like role of TCTP, where it interacts with several stress-induced molec-

ular chaperones/heat-shock proteins in irradiated cells. The new role of TCTP in

sensing and repairing radiation-induced DNA damage will aid in understanding the

system responses to low-dose radiation exposures and in turn help in estimating

health risks of such exposures. It may also aid in understanding the molecular

events induced by therapeutic doses of radiation. Clearly, future studies need to

address the exact role of TCTP in HR, NHEJ, and other modes of DNA repair. To

this end, the use of cells that are proficient or deficient in either of the latter DNA

repair mechanisms and where TCTP levels are altered should be informative.
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