
Chapter 4
Attribute-Based Decision Graphs and Their
Roles in Machine Learning Related Tasks

João Roberto Bertini Junior and Maria do Carmo Nicoletti

Abstract Recently, new supervised machine learning algorithm has been proposed
which is heavily supported by the construction of an attribute-based decision graph
(AbDG) structure, for representing, in a condensed way, the training set associated
with a learning task. Such structure has been successfully used for the purposes of
classification and imputation in both, stationary and non-stationary environments.
This chapter provides a detailed presentation of the motivations and main technical-
ities involved in the process of constructing AbDGs, as well as stresses some of the
strengths of this graph-based structure, such as robustness and low computational
costs associated with both, training and memory use. Given a training set, a collec-
tion of algorithms for constructing a weighted graph (i.e., an AbDG) based on such
data is presented. The chapter describes in details algorithms involved in creating
the set of vertices, the set of edges and, also, assigning labels to vertices and weights
to edges. Ad-hoc algorithms for using AbDGs for both, classification or imputation
purposes, are also addressed.
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4.1 Introduction

In the Machine Learning (ML) area, two broad groups of algorithms can be consid-
ered, referred to as supervised and unsupervised algorithms. Supervised algorithms
use a particular information associated to each training instance, referred to as class;
such algorithms induce knowledge representations which are conventionally known
as classifiers. Usually unsupervised algorithms do not require the class information;
most of them can be characterized as clustering algorithms which, given as input a
set of training instances induce, as output, a set of disjoint sets of such instances (i.e.,
a clustering). In an unsupervised context, the inductive process can be viewed as the
provider of some sort of organization to the given data; the concept of similarity (or
dissimilarity) is used to guide the grouping of similar instances [33].

In the context of supervised automatic learning as well as of the several super-
vised methods focused on this chapter, there are mainly two kinds of data which
can be organized as graph-based structures. Data that naturally reflect a graph struc-
ture are the so-called relational data [27], and the commonly available data, usually
described as vectors of attribute values, referred to as vector-based data. Lately, there
has been an increasing number of machine learning tasks addressed by graph-based
approaches (see e.g. [1, 11]). Graph-based approaches have been adopted in super-
vised classification tasks in works such as [10, 25].

Also, the capability of a graph-based structure to model data distribution has
been explored in the context of unsupervised learning, involving clustering tasks
[33]. There is an emphasis on graph-based representation in both, unsupervised
and semi-supervised learning environments, as the basic structure to model knowl-
edge, particularly in semi-supervised tasks, such as transduction and induction [12,
16]. Reference [38] describes a semi-supervised learning framework based on graph
embedding.Within the complex network theory [31], for instance, large data sets can
be clustered using a community detection algorithm, such as in [19, 28, 37]. In [23,
24] the graph-based relational learning (GBRL) is discussed as a subarea of graph-
based data mining (GBDM), which conceptually differs from logic-based relational
learning, implemented by, for example, inductive logic programming algorithms [29,
30]. As pointed out in [23], GBDM algorithms tend to focus on finding frequent sub-
graphs i.e., subgraphs in the data whose number of instances (they represent) are
above some minimum support; this is distinct from a few GBRL developed systems
which, typically, involve more than just considering the frequency of the pattern in
the data, such as the Subdue [15] and the GBI [39].

So far in the literature, research work having focus on the process of graph con-
struction, for representing a particular training set of vector-based data, has not yet
attracted the deserved scientific community attention; this is particularly odd, taking
into account the crucial role that data representation plays in any automatic learning
process [40]. The way a training data is represented has a deep impact on its further
use by any learning algorithm. Although one can find several works where graphs
have been used as structures for representing training sets, the many ways of using
graphs’ representational potentialities have not been completely explored yet.
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Invariably, most of the available graph-based learning algorithms are restricted,
considering they employ only one out of a few algorithms for creating the graph
that represents a given training set. Also, the graph construction methods surveyed
so far always represent each training instance as a vertex and, then, define edges
between vertices as a way of representing some sort of similarity between them.
Graphs constructed in this way are referred to as data graphs. Among the most
popular methods for constructing graphs are those that construct KNN graphs and
ε-graphs [14, 17], as well as fully connected weighted graphs, where weights are
defined by a given function, such as the Gaussian, as in [41]. Regardless of being a
suitable solution for data mining related problems, these kind of graphs are still tied
to their inherent advantages and disadvantages.

As alreadymentioned, generallymethods for constructing graphs rely on some ad-
hoc concept of neighborhood, which commonly gives rise to local structures within
the data set; the global data structure is then left to be addressed by the learning
algorithm [22]. Proposals contemplating new types of graph-based structures for
representing data and, also, algorithms for dealingwith them,will certainly contribute
for further progress in areas such as data mining and automatic learning. As pointed
out in [3], graph-based representations of vector-based data are capable of modelling
arbitrary local data configurations, enabling the learning algorithm best capture the
underlying data distribution.

A new data structure for storing relevant information about training data sets
was proposed in [5] and is referred to as Attribute-based Data Graph (AbDG); an
AbDG models a given vector-based training data set as a weighted graph. The main
motivation for proposing the AbDGwas to devise a data structure compact and easily
manageable, able to represent and condense all information present in a given training
data set, which could also be used as the source of information for classification tasks.
This chapter addresses and reviews Attribute-based Data Graph (AbDG) as well as
the two task-oriented subjacent algorithms associated with AbDGs; the first that
constructs the graph representing a giving training set of vector-based instances and,
the second, that uses the graph for classification purposes.

Besides the Introduction section, this chapter is organized into six more sections.
Section4.2 introduces the main technicalities involved for the establishment of the
concept of Attribute-based Decision Graph, focusing on the proposal of two possi-
ble graph structures namely a p-partite, in Sect. 4.2.1.1, and a complete p-partite, in
Sect. 4.2.1.2, where p refers to the number of attributes that describe a vector-based
training instance. Formal notation is introduced and the processes involved in the
AbDG construction are described. The section first discusses the construction of the
vertex set, given a vector-based data set and, then, the two possible strategies for
inserting edges connecting vertices. Once the construction of the graph-structure is
finished, the process that assigns labels to vertices and its counterpart, that assigns
weights to edges, complete and finalize the graph construction process. Section4.3
details the process of using the information embedded in an AbDG for classifica-
tion purposes and, for that, defines the classification process as some sort of graph
matching process between the AbDG and one of its subgraphs i.e., the one defined
by the instance to be classified. Section4.4 presents a numerical example of the
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induction of an AbDG aiming at a classification task and the use of the induced
AbDG in the processes of classifying a new unclassified instance. Section4.5 reviews
the convenience of using AbDGs when learning from data sets with absent attribute
values. Section4.6 approaches the process of constructing an AbDG as a search task
conducted by a genetic algorithm (GA) and, finally, Sect. 4.7 resumes the main con-
tributions of the AbDG approach, highlighting some of its main advantages and the
technicalities involved in the construction/use of such structure. The section ends
with some new insights for continuing the research work with focus on AbDGs.

4.2 The Attribute-Based Decision Graph Structure (AbDG)
for Representing Training Data

The AbDG is a graph-based structure proposed in [5] and extended in [9], aiming at
modelling data described as vectors of attribute values; such structure has been later
employed in several machine learning related tasks, such as those presented in [5–8].

4.2.1 Constructing an AbDG

Consider a training data set X , where each instance x = (x1, . . . , xp, c) in X is a
p-dimensional data vector of features followed by a class label c ∈ {ω1, . . . ωM},
representing one among M classes. The process that constructs the AbDG for rep-
resenting X initially focuses on the construction of the set of vertices, then on the
construction of the set of edges and finally, on assigning labels to vertices andweights
to edges of the induced graph, turning it into a weighted labeled data graph repre-
senting X .

As mentioned before, given a data set X having N p-dimensional instances, most
approaches for constructing the set of vertices of a graph that represents X , usually
define each data instance in X as a vertex of the graph being constructed, resulting
in a graph with N vertices. Approaches adopting such a strategy can be found in
[2, 33, 36]. In an AbDG graph the vertices represent data intervals associated with
values the attributes that describe training instances can have. Thus, once attribute
Aa has been divided into na intervals, it can be viewed as a set of disjoint intervals
A = {Ia,1, . . . , Ia,n1} where each interval Ia,i stands for vertex va,i in the graph.

Due to vertices being defined by data intervals, the construction of an AbDG
is heavily dependent on the type of the attributes used for describing the training
instances. Basically three types of attributes are commonly used for describing a
given training set X , referred to as numerical (continuous-valued), categorical (whose
possible values are limited and usually fixed, having no inherent order) and ordinal
(whose possible values follow a particular pre-established order).
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The construction of the set of vertices of an AbDG graph, representing a given
data set X , starts by discretizing the values of each one of the p attributes {A1, A2,
A3, . . . Ap} that describes X . A discretization process applied to each one of the p
attributes associates, to each of them, a set of disjoint intervals of attribute values.
As the set of intervals associated to each attribute Ai (i = 1, . . . p) depends on the
type of the attribute Ai (i.e., categorical, numerical (continuous-valued) or ordinal),
as well as the range of values of Ai in X , a discretization method should deal with
the different types of attributes.

If an attribute is categorical, the simplest way to create its associated set of vertices
is by considering each of its possible values as a degenerate interval; this is the
approach used for constructing AbDGs. As an example, if the values of attribute
A5 in X (taking into account all instances in X ) are 0, 1, 2, 3, 4 and 5, during the
construction of the vertex set, the set of degenerate intervals: {[0 0], [1 1], [2 2], [3
3], [4 4], [5 5]} is associated with A5 and each interval is considered a vertex in the
graph under construction.

When the attribute is numerical, the usual basic procedure a discretization method
adopts is to divide the attribute range into disjoint intervals. Several discretization
methods found in the literature can be used to create such set of disjoint intervals
associated with a continuous-valued attribute [21].

As pointed out in [9] in relation to the problem of discretizing a continuous-
valued attribute, the solution starts by finding a set of what is called cut point
candidates in the range of the attribute, then to use a heuristic to evaluate the poten-
tialities of the selected cut point candidates and, finally, choose the most promis-
ing subset as the actual cut points for defining the intervals. Cut point candidates
are determined by sorting each attribute and then, searching for consecutive dif-
ferent attribute values whose corresponding instances belong to different classes, a
process formalized as follows. Consider the values of attribute A and let s A rep-
resent an ordered version of the values of A. The process can be formally stated
as if s A[i] �= s A[i + 1] and class_instance(s A[i]) �= class_instance(s A[i + 1]),
where class_instance() gives the class of the data instance having A[i] as value for
attribute A, then determine the middle point between values s A[i] and s A[i + 1] and
assume the obtained value as a cut point. Once the vertex set has been built, edges
are then established by taking into account the corresponding attribute values of
patterns in X , aiming at connecting intervals (i.e. vertices) to reflect the correlations
between different attributes [13]. Taking into account a p-dimensional data set, two
edge structures are considered, which give rise to two different graph structures, the
p-partite (Sect. 4.2.1.1) and the complete p-partite (Sect. 4.2.1.2).

4.2.1.1 The AbDG as a p-Partite Graph

Given a data set X and considering that the sets of vertices associated with each
attribute have already been created, the induction of a p-partite graph, for represent-
ing X , assumes a pre-defined order among the attributes, which can be randomly
established or, then, by sorting the attributes according to some criteria. So, given
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A1 A2 A3

I1,1 (v1,1) 

I1,2 (v1,2) 

I1,3 (v1,3) 

I3,1 (v3,1) 

I3,2 (v3,2)

I3,3 (v3,3) 

I3,4(v3,4) I2,2(v2,2) 

A
I2,1(v2,1) 

Fig. 4.1 A 3-partite AbDG structure created from a data set X with N vector-based instances, each
described by 3 attributes, A1, A2 and A3. The discretization process associates to each attribute Ai
(1 ≤ i ≤ 3), ni intervals (i.e., vertices), n1 = 3, n2 = 2 and n3 = 4

the pre-defined attribute order and the sets of vertices associated to each attribute,
edges can only be introduced between two consecutive (taking into account the given
order) vertices. The whole graph structure is affected by the established order.

It has been empirically verified that sorting the attributes according to the descent
order of their corresponding information gain values can be a convenient choice (see
[9]) since it promotes and maintains connections between attributes with highest
information gains. Figure4.1 shows an example of a 3-partite AbDG associated
with a hypothetical training set X defined by three attributes A1, A2 and A3 and
an associated class, where the discretization process associated to each attribute Ai

(1 ≤ i ≤ 3) produced, respectively, ni intervals (i.e., vertices), namely n1 = 3, n2 = 2
and n3 = 4. Figure4.2 shows a high level pseudocode for creating a p-partite AbDG
structure, given a data set with N instances described as p-dimensional vectors and
an associated class, out of M possible classes.

4.2.1.2 The AbDG as a Complete p-Partite Graph

When constructing the complete p-partite structure, however, the attribute order is
irrelevant, due to the intrinsic nature of complete p-partite graphs. In a complete
p-partite graph all possible edges between intervals (i.e., vertices) associated with
different attributes are inserted in the graph under construction. Figure4.3 shows an
example of a 3-partite AbDG associated with a hypothetical training set X , defined
by three attributes A1, A2 and A3 and an associated class.

4.2.2 Assigning Weights to Vertices and Edges

This section gives the motivations for introducing labels and weights in an AbDG
structure, and explains how labels associated with vertices and weights associated
with edges of an AbDG are defined. Let X be a data set having N training instances
from M different classes, {ω1, ω2, . . ., ωM}, where each instance is described by p
attributes and an associated class.
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Fig. 4.2 High-level pseudocode for constructing a p-partite AbDG structure

I1,1 (v1,1) 

I1,2 (v1,2) 

I1,3 (v1,3) 

I3,1 (v3,1) 

I3,3 (v3,3) 

I2,2(v2,2) I2,2I2,1(v2,1) 

I3,3

2,2(v2,2)I2,22,1(v2,1)

1,1)

1,2)

1,3)
A3

A2

A1

AI3,2 (v3,2) 

I3,4(v3,4) 

Fig. 4.3 A complete 3-partite AbDG structure created from a data set X with N vector-based
instances, each described by 3 attributes, A1, A2 and A3. The discretization process applied
to each attribute associates to each attribute Ai (1 ≤ i ≤ 3), ni intervals (i.e., vertices), namely
n1 = 3, n2 = 2 and n3 = 4. Edges are created between all vertices except those related with the
same attribute
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After the AbDG structure has been constructed, as a p-partite or complete p-
partite, M-dimensional vectors are created and associated to each vertex and to each
edge of the AbDG structure, by the two processes described next. In real domain
data it is not common that instances sharing the same class are the only ones that
have values of an attribute Ai (1 ≤ a ≤ p) within one of the na subintervals (i.e.,
Ia,1, …, Ia,na ). Instances belonging to other classes may as well have their Ai values
within that same subinterval. Aiming at evaluating the representativeness (i.e., the
information for characterizing the class of an instance) of each particular subinterval
created (i.e., each vertex of the AbDG), a M-dimensional weight vector is associated
to each vertex.

4.2.2.1 Assigning Weights to Each Vertex of the AbDG

Let na represent the number of vertices associated with attribute Aa . The vertex
va,k (1 ≤ a ≤ p and 1 ≤ k ≤ na) has an associated weight vector given by Γa,k =
〈γ1, . . . , γ j , . . . , γM 〉, where γ j relates to class ω j , noted as Γa,k( j). Considering
that Ia,k is the interval that defines va,k , Γa,k( j) is defined by Eq. (4.1).

Γa,k( j) = P(ω j |Ia,k) = P(Ia,k, ω j )

P(Ia,k)
(4.1)

The joint probability in Eq. (4.1), P(Ia,k, ω j ), is the probability of a data instance
having both i.e., classω j and its value of attribute Aa in the interval Ia,k . By rewriting
the joint probability as P(Ia,k, ω j ) = P(ω j )P(Ia,k |ω j ), the conditional probability
P(Ia,k |ω j ) can be given by Eq. (4.2). P(ω j ) is the marginal probability of class ω j ,
obtained by dividing the number of data instances belonging to class ω j by the total
number of data instances (i.e., N ).

P(Ia,k |ω j ) = |{xi ∈ X | xi,a ∈ Ia,k ∧ ci = ω j }|
|{xi | ci = ω j }| (4.2)

In Eq. (4.1) the marginal probability, P(Ia,k), is the normalizing term, defined
as the sum of the probabilities P(Ia,k |ω j ), for all possible classes i.e., P(Ia,k) =
∑M

i=1 P(Ia,k |ωi ).

4.2.2.2 Assigning Weights to Each Edge of the AbDG

The procedure for assigning a weight to an AbDG’s edge is similar to the one for
assigning a label to a vertex. Let (va,k , vb,q ) be an edge between the vertices repre-
senting the kth interval of attribute Aa and the qth interval of attribute Ab, and let this
edge be weighted by the weight vector Δ

a,b
k,q = 〈δ1, . . . , δM 〉, where δ j (1 ≤ j ≤ M)

is associated to class ω j , noted as Δ
a,b
k,q( j). The edge weight δ j (1 ≤ j ≤ M) repre-



4 Attribute-Based Decision Graphs . . . 61

sents the probability of a given data instance xi , with attribute value xi,a ∈ Ia,k and
xi,b ∈ Ib,q , belonging to class ω j , as given by Eq. (4.3).

Δ
a,b
k,q( j) = P(ω j |Ia,k, Ib,q) = P(Ia,k, Ib,q , ω j )

P(Ia,k, Ib,q)
(4.3)

Considering that P(Ia,k, Ib,q , ω j ) = P(ω j )P(Ia,k, Ib,q |ω j ), then define
P(Ia,k, Ib,q |ω j ) as the ratio of the number of instances belonging to class ω j , whose
values of attribute Aa lay within the kth interval and those of the attribute Ab lay
within the qth interval, as in Eq. (4.4).

P(Ia,k, Ib,q |ω j ) = |{xi ∈ X |ci = ω j ∧ xi,a ∈ Ia,k ∧ xi,b ∈ Ib,q}|
|{xi |ci = ω j }| (4.4)

The probability of a data instance to have attribute values belonging to interval
Ia,k and Ib,q , regardless its class label, is the normalizing term in Eq. (4.3) and is
given by the sum of Eq. (4.4), over all classes, as states Eq. (4.5).

P(Ia,k, Ib,q) =
M∑

j=1

P(Ia,k, Ib,q , ω j ) (4.5)

4.2.3 Computational Complexity for Building an AbDG

The complexity order for constructing an AbDG has been completely derived in
Refs. [8, 9]. In what follows, a brief overview on the computational complexity
required to build the AbDG is presented. Consider the complexity order with respect
to the size of the training set, N , and to the number of attributes, p; thus building the
AbDG involves:

1. Constructing the vertex set, which depends on the employed discretization
method. As sorting is usually required as a preprocessing step to various dis-
cretizationmethods, building the vertex set has order ofO(pNlogN ). If p << N ,
which is true for most domains, than building the vertex set has order of
O(NlogN ); otherwise, if p ≈ N it can scale up to the order of O(N 2logN ).

2. Defining the weights of an AbDG for vertices and edges, has complexity order
of O(N ). The complexity order associated to the number of attributes for vertex
weighting has order of O(p). Edge weighting depends on the graph structure;
for the p-partite structure the order is linear on the number of attributes, O(p),
while for the complete p-partite, the complexity order of edge weighting scales
quadratically to the number of attributes, O(p2).

Therefore, building an AbDG has an order of O(NlogN ) with the size of the
data set, when the discretization method requires sorting. What is costly about
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building the graph is sorting each attribute prior to apply some discretizationmethod,
as the MDLPC [18] for instance, to obtain the vertices. However, if some heuristic is
employed, as dividing each attribute into subintervals of equal length, and thus not
requiring sorting, building the vertex set has complexity of O(N ). Results regard-
ing both ways to build the graph are reported in [9]; indeed, the equi-sized version
presented comparative, or even better results than those versions which employ a
discretization method.

4.3 Using the AbDG Structure for Classification Tasks

Once the construction of anAbDG for representing a given data set X of instances has
finished, it can be used as the source of information on X for various tasks; among
them, it can support a classifier, provided a procedure for exploring the informa-
tion stored in the AbDG is defined. This section focuses on the description of such
procedure. Taking into account a given AbDG, the assignment of classes to new
unclassified instances (which can be modelled as a p-partite sub-graph of the given
AbDG), can be conducted by checking how the subgraph defined by an instance, con-
forms to the existing connection patterns in the AbDG, embedded in its structure.
As a consequence, the graph structure has a vital importance on the classification
accuracy of AbDG-based classifiers.

Among the various possible ways to combine the information given by an AbDG,
the proposal described next has shown to be a sound alternative for implementing a
classification process based on a AbDG, and is based on calculating the product of
vertex weights and the sum of edge weights. Consider classifying a new data instance
y. Given the AbDG and y, two conditional probabilities, P(y|ωi ) and Q(y|ωi ), can
be calculated. P(y|ωi ) relates y to the vertex set of the AbDG, and Q(y|ωi ) relates
y to the edge set of the AbDG. Equations (4.6) and (4.7) describe both probabilities,
respectively, for a p-partite AbDG.

P(y|ωi ) = PW (y)ωi
∑M

j=1 PW (y)ω j

; PW (y)ωi =
p∏

a=1,ya∈Ia,k

γi ∈ Γa,k (4.6)

Q(y|ωi ) = SW (y)ωi
∑M

j=1 SW (y)ω j

; SW (y)ωi =
p−1∑

a=1,b=a+1,ya∈Ia,k∧yb∈Ib,q
δi ∈ Δ

a,b
k,q (4.7)

After determining both probabilities, an estimate for the class label of the y
instance is given by Eq. (4.8). The class inferred for the new data y, noted ϕ(y), is
the one having the greatest value for the mean of the normalized probabilities.

ϕ(y) = arg max{ω j | j=1,...,M}

(

ηP(y|ω j ) + (1 − η)Q(y|ω j )

)

(4.8)
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In Eq. (4.8), η is a parameter of the classifier which allows to vary the empha-
sis between the conditional probabilities and enhances the flexibility of the model.
The classification of y can be approached as a graph matching process. First the p
attribute values of y help to detect the corresponding interval associated with each
of the attributes i.e., the p vertices defining the subgraph representing y. Then edges
connecting each pair of vertices in sequence are added, resulting in a subgraph struc-
ture of the AbDG. Then, the weights associated to the graph help to define the class
of y, as the one that promotes the best matching.

An in-depth detailed analysis of the complexity orders of AbDG-related algo-
rithms, considering both structures, the p-partite and the complete p-partite, is pre-
sented in [9]. Both structures share the same process for the vertex set definition, as
well as the corresponding vertex labeling process, and differ in relation to the set
of edges they have. In the referred work, both structures are approached separately
when dealing with the complexity of the algorithm for constructing the edge set and
the corresponding weighting process. Also, in [9], the authors present an empirical
validation of the AbDG-based algorithms by conducting an experimental compar-
ative analysis of classification results with other five well-known methods namely,
the C4.5 [32], the multi-interval ID3 [18], the weighted KNN [20], the Probabilis-
tic Neural Networks [34] and the Support Vector Machine [35]. Statistical analyses
conducted by the authors show evidence that the AbDG approach has significantly
better performance than four out of the five chosen algorithms.

4.4 Using an AbDG for Classification Purposes - A Case
Study

This section presents a simple example illustrating the classification process based on
an AbDG. Figure4.4 shows a 3-partite AbDG structure, similar to the one depicted
in Fig. 4.1, but now with the associated values for the intervals. In the figure, A1

and A2 are numerical attributes whose values are in the interval [0, 10] and [0, 1],
respectively. A3 is a categorical attribute having values in the set {0, 1, 2, 3}. Consider
classifying the instance y = (5.5, 0.31, 2), whose match against the AbDG is shown

Fig. 4.4 Match of instance
y = (5.5, 0.31, 2) to a
particular 3-partite AbDG
with the purpose of
classification

I1,1 = (0, 3] 

I1,2 = (3, 4] 

I1,3 = (4, 10) 
0.33, 0.67

I3,1 = [0 0] 

I3,2 = [1 1] 

I3,3 = [2 2]
0.85, 0.15

I3,4= [3 3] I2,2 = (0.4, 1) 

I2,1 = (0, 0.4] 
0.8, 0.2

0.5, 0.5
0.63, 0.47

A1 A2 A3
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in the figure (dashed line). For the sake of visualization, only the weights associated
with matching the sub-graph representing y against the AbDG are displayed. The
task is to classify y into one of two possible classes {ω1, ω2}.

The classification procedure is carried out by matching the unlabeled instance
against the AbDG followed by estimating the probabilities, as stated in Eqs. (4.6)
and (4.7), for all classes in the problem. In the case study, given y = (5.5, 0.31, 2),
the followingmatches to the AbDG are obtained: 5.5 ∈ I1,3 = (4, 10); 0.31 ∈ I2,1 =
(0, 0.4] and 2 ∈ I3,3 = [2 2]. For classification purposes, when a new value falls off
the attribute range it is considered to belong to the nearest one. As a consequence,
the weight vectors to be used are: Γ1,3 = 〈0.33, 0.67〉; Γ2,1 = 〈0.8, 0.2〉 and Γ3,3 =
〈0.85, 0.15〉 and the corresponding edges weights are Δ

1,2
3,1 = 〈0.5, 0.5〉 and Δ

2,3
1,3 =

〈0.63, 0.47〉. Next, PW and SW are calculated according to Eqs. (4.6) and (4.7).

PW (y)ω1 = 0.33 × 0.8 × 0.85 = 0.2244

SW (y)ω1 = 0.5 + 0.63 = 1.13

PW (y)ω2 = 0.67 × 0.2 × 0.15 = 0.0201

SW (y)ω2 = 0.5 + 0.47 = 0.97

Therefore the probabilities for each class are given as follows,

P(y|ω1) = 0.2244/0.2445 = 0.918

Q(y|ω1) = 1.13/2.1 = 0.538

P(y|ω2) = 0.0201/0.2445 = 0.082

Q(y|ω2) = 0.97/2.1 = 0.462

Finally, considering η = 0.5, according to Eq. (4.8) y is classified in class ω1, since
0.5 × 0.918 + 0.5 × 0.538 > 0.5 × 0.082 + 0.5 × 0.462.

4.5 Using the AbDG Structure for Imputation Tasks

Missing attribute values is a common problem present in almost every kind of real
world application. Themost frequent solutions to handle such problem reported in the
literature are: (1) remove the instances having missing attribute values; (2) employ
an imputation algorithm as a preprocessing step to the learning method and (3) adopt
a learning method having internal mechanisms that enable training and classifying in
the presence of missing attribute values. Regarding the previous alternatives, the first
is the most used and may work well for applications having a few missing values in
the training set and, also, those where ignoring a test instance with a missing value is
acceptable. Clearly, this method imposes too many restrictions and it can be applied
to very specific tasks. Therefore, alternatives (2) and (3) are more appealing to the
majority of real world applications.
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Fig. 4.5 High-level pseudocode for conducting an imputation process through an AbDG

The AbDG approach can be employed in both situations, either as an imputation
method used to infer plausible values for the missing ones, prior to some other
learning algorithm [8], or as a classification method able to handle the missing values
found at the training or the classification phase [9]. The core mechanism to handle
missing values through an AbDG, for both tasks, is practically the same, and is
outlined in Fig. 4.5.

Let G be an AbDG and x be a data instance with, at least, a missing attribute
value, say xa . The imputation procedure based on AbDGs aims to find the interval
of Aa in G, where the value of xa should belong to. Thus, for each one of the na
intervals of Aa , an estimate sa,k (1 ≤ k ≤ na) is calculated, taking into account the
sub-graph resulted from the match between the existing values of x and the AbDG.
Let Γa,k( j) be the weight of the vertex associated to class ω j which sa,k represents;
and for each existing value in x, say xb, laying in interval q of attribute Ab, let βb,
Γb,q( j) andΔ

a,b
k,q( j) be the information gain (or some other attribute measure) of Ab,

the weight of the vertex vb,q and the weight of the edge (va,k, vb,q ) associated to class
ω j , respectively; sa,k , for a complete p-partite graph, is given by Eq. (4.9).

sa,k = Γa,k( j)
p∑

b=1,b �=a,∃xi,b∧xi,b∈Ib,q
βbΓb,q( j)Δ

a,b
k,q( j) (4.9)
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Once all the sa,k , 1 ≤ k ≤ na , have been calculated, the one with the highest value
indicates the most plausible interval into which the missing attribute value should
belong to. If the AbDGhas been used as a classifier, knowing the interval is enough to
proceed.However, if it has been used as an imputationmethod, a step to infer an actual
value is necessary. In the pseudocode given in Fig. 4.5, the procedure infer_value()
infers a single value, given an interval as argument; possible methods which could
implemented are the mean, the mode, a random number within the interval, and so
on. Notice that in Eq. (4.9) the used weights are all from a single class, ω j , which is
the same class as the data instance being imputed. When imputing from unlabeled
data instances, the process is carried out for all possible classes and, then, the highest
estimate, considering all classes, is chosen as the one which the missing value should
belong to.

As commented earlier, the AbDG has been used for imputing missing data as a
preprocessing step to a learning method. It has been compared against the follow-
ing imputation methods: CART, MEAN, Bayesian Linear Regression, Fast Imputa-
tion, Linear Regression and Random Forests (see [8] for details). Several imputation
methods were employed as a preprocessing step for the learning algorithms: Sup-
port Vector Machines, Multinomial Logistic Regression, Naive Bayes, Multilayer
Perceptron, Parzen classifier, K-nearest neighbor, Classification And Regression
Tree and Probabilistic Neural Networks (details can also be found in [8]).

The AbDG has showed the overall best results and the most stable performance
along a varying rate of missing values. Not only has the AbDG showed its effec-
tiveness to deal with missing value as an imputation method but, in [9], it has been
tested as a classification algorithm that automatically handles missing values. When
compared to the C4.5 and CART, which are two algorithms that support missing
values, the AbDG had showed superior performance and has confirmed itself as an
efficient alternative to cope with missing data.

4.6 Searching for Refined AbDG Structures via Genetic
Algorithms

The AbDG structures reviewed in this chapter were the p-partite structure, which
has subsets of vertices consecutively connected, based on a pre-defined order of
attributes, and the complete p-partite. However, several other graph-based structures
can be devised for the same purpose. As pointed out before, during the creation of an
AbDG, the only restriction to take into account, when creating its corresponding set
of edges, is not to create edges between vertices associated with the same attribute.

As far as the construction of the AbDG edge set is concerned both structures,
the p-partite and the complete p-partite, have minor drawbacks, mostly related to
their fixed (although dependent on the discretization process applied to all attributes)
number of edges, as well as the patterns of connections they establish. Also, add
to that the fact that the algorithm for inducing a p-partite AbDG expects to be
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given, as input, the order in which attributes should be considered (see Fig. 4.2).
Depending on the number of attributes that describe a given data set X , the task of
defining a convenient order is an extra task to be conducted previously to the induction
of the AbDG.

Both structures have all possible connections between vertices, but still subject to
the restriction abovementioned and, if a p-partite, to the given order of attributes. So,
considering their vast number of edges, both structures become capable enough to
represent all sorts of data. It has been empirically verified that, most times, although
depending of the data set, such massive creation of edges is not necessary. A smaller
subset of them would suffice for representing a given data set X.

As an strategy for searching for AbDGs having their set of edges customized to
the given data set X , the work described in [4] explores the use of Genetic Algorithms
(GAs) for inducing parts of an AbDG structure, specifically, a more customized set
of edges, to the given set X . In the work a GA-based algorithm named GA-AbDG
was proposed, for searching for a suitable edge set for a partially constructed AbDG,
which only has its vertex set defined, aiming at finding a more refined set of edges,
which could represent X better than both, p-partite and complete p-partite.

The GA starts with a population of NP randomly generated individuals, where
each individual is an AbDG classifier; individuals differ from each other only in
relation to their edge set. The algorithm aims at identifying the best possible AbDG
among all individuals in the population, using as criteria the value of their accuracy,
by evolving their associated edge sets.

Let P represent a population of individuals such that |P| = NP . At each iteration,
a number of Nbest < NP individuals from P are selected (based on their accuracy
values in a given validation set) for composing the next population. The selected indi-
viduals are then used to create new individuals, which will, eventually, replace those
considered not suitable enough (i.e., those with low accuracy values), when defining
the new population. The new individuals are created by crossover up to restoring the
population to its original size (i.e., NP ). At each generation, any individual, except
for the overall best (elitism), is suitable to undergo the mutation operator. The evo-
lutionary process is controlled by an user-defined number of iterations (i tMax). At
the end of the process, the AbDG with the highest accuracy is selected.

Before presenting the operators, a formal notation is introduced. AnAbDG graph,
G = (V, E), can be viewed as a set of vertices (V ) and a set of edges (E). If G is a p-
partite graph, its set of vertices can be described as a set of disjoint vertex subsets,V =
{V1, . . . , Vp}, where set Va stands for the set of vertices obtained from discretizing
the values associated with attribute Aa , a = 1, . . . , p. Similarly, the edge set E can
bewritten as the set of all edge sets between every pair of distinct attributes Va and Vb,
for a = 1, . . . , p − 1, b = 2, . . . , p and b > a, as E = {E1,2, . . . , Ep−1,p}. Hence,
resulting in

(p
2

)
subsets, where Ea,b comprises the set of all possible edges between

vertices in Va and Vb. The description of an AbDG as a chromosome is given by the
description of its edge set. Each edge set Ea,b can be represented by a |Va| × |Vb|
matrix. In this way, an individual is represented by a set of

(p
2

)
matrices.
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Fig. 4.6 High-level pseudocode of the GA-AbDG procedure

As each individual in the population is an AbDG, let G(i) = (V (i), E (i)) be indi-
vidual i , and straightforwardly E (i)

a,b be the set of edges between vertices from V (i)
a

and V (i)
b . The high level pseudocode of procedure GA-AbDG is given in Fig. 4.6.

Following this notation, consider henceforward, i and j as indexes for parenting
individuals, and o and m indexes for offspring individuals. In the following, each
operator is described in details.

Reproduction - Reproduction is accomplished by selecting consecutive pairs
of individuals ordered according to their fitness values. Each parenting pair G(i)

and G( j) gives rise to two new offsprings G(o) and G(m). When obtaining each of
them, each edge (va,k, vb,q) that is common to both, G(i) and G( j), edge sets, is
maintained in both offsprings i.e., G(o) and G(m). For those vertices that only belong
to one of the parents, each offspring follows the configuration of one of the parents,
with an associated probability of θ (whose value is a parameter to the reproduction
procedure). The reproduction process implements a procedure that generates the
offspring G(o) resembling to G(i); so, G(o) repeats the configuration of G(i) with
probability θ and of G( j) with probability 1 − θ . Offspring G(m) that resembles G( j)

is straightforward. Remember that each reproduction always generates two offspring.
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Crossover - Also performed at every iteration, the crossover operator requires two
parenting individuals G(i) and G( j), randomly selected from the Nbest individuals,
and also generates two offspringG(o) andG(m). Crossover is performed by randomly
selecting a crossing point in the edge sets of both parents and exchanging their
configuration. Crossover is considered at a rate of ρ, usually set to high values.

Mutation - At each iteration an individual has the probability μ of undergoing
mutation. Mutation is implemented by randomly selecting a set of edges between
two attributes e.g., Ea,b, for Va and Vb. Then, for each possible pair in the set, with
probability μ, the mutation operator is applied by adding an edge if such edge does
not exist or by removing it otherwise.

Thework described in [4] presents the classification results obtainedwith the C4.5
[32], the original AbDG, with a p-partite structure and the GA-AbDG, obtained as
the result of the GA-based search process previously described, in 20 data sets from
the UCI-Repository [26]. The results obtained with the GA-AbDG outperformed
those obtained by both, the C4.5 and the original AbDG in 15 out of the 20 data sets
used. The authors concluded that the improvements in classification performance
achieved by the GA-AbDG over the original AbDG, makes the GA-based search
aiming at finding a more suitable edge set worth the extra computational effort.

4.7 Conclusions

This chapter reviews a new data structure proposed in the literature as a suitable
way of condensing and representing the information contained in a training set. The
structure was devised to be used mainly by classification and imputation algorithms,
in supervised automatic learning environments. It is named Attribute-based Data
Graph (AbDG) and it can be described as a labeled p-partite weighted graph.

Taking into account a few other graph-based approaches for representing data,
found in the literature, the main novelty introduced by AbDGs relates to the role
played by theAbDGvertices.While in traditionalmethods vertices represent training
instances, in the AbDG they represent intervals of values related to attributes that
describe the training instances. The AbDG approach is a new way to build a graph
from data which provides a different and more compact way of data representation
for data mining tasks.

This chapter presents and discusses in detail various formal concepts and proce-
dures related to the design, construction, and use of AbDGs, namely:

• The creation of the set of vertices of the graph, which involves the choice and use
of discretization methods;

• Two different ways edges can be inserted, either constructing a p-partite or, then,
a complete p-partite graph-based structure;

• Several technicalities and formal concepts involved in vertex labeling and edge
weighting procedures, which play a fundamental role in adjusting the AbDG struc-
ture for representing X ;
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• A procedure for using a given AbDG for classification purposes, which can be
approached as amethod for determininghowa subgraphof theAbDG, representing
the new unclassified instance conforms to the AbDG structure;

• A GA-based procedure which aims at searching for a suitable set of edges of an
AbDG, so to better represent a given input data set.

The chapter also briefly introduces a fewother issues related to anAbDGstructure,
particularly its contribution for supporting imputation processes, as described in [7,
8]. Although this chapter has no focus on experiments and analyses of their results,
many such results and analyses can be found in a number of works cited in this
chapter. It is a fact though that most of the experimental results published can be
considered evidence of the suitability of the AbDG structure for summarizing and
representing data, as well as the great potential of the proposed algorithms involved
in the AbDG construction and use, mainly due to their robustness, low computational
costs associated with training and memory occupation.
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