
Chapter 3
Improving Bagging Ensembles for Class
Imbalanced Data by Active Learning

Jerzy Błaszczyński and Jerzy Stefanowski

Abstract Extensions of under-sampling bagging ensemble classifiers for class
imbalanced data are considered. We propose a two phase approach, called Actively
Balanced Bagging, which aims to improve recognition of minority and majority
classes with respect to so far proposed extensions of bagging. Its key idea consists
in additional improving of an under-sampling bagging classifier (learned in the first
phase) by updating in the second phase the bootstrap samples with a limited number
of examples selected according to an active learning strategy. The results of an exper-
imental evaluation of Actively Balanced Bagging show that this approach improves
predictions of the two different baseline variants of under-sampling bagging. The
other experiments demonstrate the differentiated influence of four active selection
strategies on the final results and the role of tuning main parameters of the ensemble.

Keywords Class imbalance · Active learning · Bagging ensembles ·
Under-sampling

3.1 Introduction

Supervised learning of classifiers from class imbalanced data is still a challenging
task in machine learning and pattern recognition. Class imbalanced data sets are
characterized by uneven cardinalities of classes. One of the classes, usually called
a minority class and being of key importance in a given problem, contains signifi-
cantly less learning examples than other majority classes. Class imbalance occurs in
many real-world application fields, such as: medical data analysis, fraud detection,
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technical diagnostics, image recognition or text categorization. More information
about them can be found in [24, 54, 57].

If imbalance in the class distribution is severe, i.e., some classes are strongly
under-represented, standard learning algorithms do not work properly. Constructed
classifiers may have difficulties, in some cases they may be even completely unable,
to classify correctly new instances from the minority class. Such behaviour have
been demonstrated in several experimental studies such as [23, 29, 39].

Several approaches to improve classifiers for imbalanced data have been pro-
posed [11, 25, 54]. They are usually categorized as: classifier-independent pre-
processingmethods ormodifications of algorithms for learning particular classifiers.
Methods within the first category try to re-balance the class distribution inside the
training data by either adding examples to the minority class (over-sampling) or by
removing examples from the majority class (under-sampling). The other category of
algorithm level methods involves specific solutions dedicated to improving a given
classifier. Specialized ensembles are among the most effective methods within this
category [40].

Besides developing new approaches, some researchers attempt to better under-
stand the nature of the imbalance data and key properties of its underlying distri-
bution, which makes the class imbalanced problem difficult to be handled. They
have shown, that so called, data difficulty factors hinder the learning performance
of classification algorithms [22, 29, 41, 53]. The data difficulty factors are related
to characteristics of class distribution, such as decomposition of the class into rare
sub-concepts, overlapping between classes or presence of rare minority examples
inside the majority class regions. It has been shown that some classifiers and data
pre-processing methods are more sensitive to some of these difficulty factors than
others [45, 52].

Napierała et al. have shown that several data difficulty factors may be approxi-
mated by analyzing the content of theminority example neighbourhood andmodeling
several types of data difficulties [45]. Moreover, in our previous works [6, 7] it has
been observed, that neighbourhood analysis of minority examples may be used to
change the distribution of examples in bootstrap samples of ensembles. The result-
ing extensions of bagging ensembles are cable to significantly improve classification
performance on imbalanced data sets. The interest in studying extensions of bagging
ensembles is justified by recent promising experimental results of their comparison
against other classifiers dedicated to imbalanced data [6, 7, 33, 37].

Nevertheless, a research question could be posed, whether it is still possible to
improve performance of these ensembles. In experimental studies, such as [5, 7, 37],
it has been shown that the best proposals of extending bagging by under-sampling
may improve the minority class recognition at the cost of strong decrease of recogni-
tion ofmajority class examples.We claim that it would bemore beneficial to construct
an ensemble providing a good trade-off between performance in both classes instead.

To address this research question we plan to consider a quite different perspective
of extending bagging ensembles than it is present in the current solutions, which
mainly modify the generation of bootstrap samples. Here, we propose instead a two
phase approach. First, we start with construction of an ensemble classifier according
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to one of under-sampling extensions designed for imbalanced data. Then, we modify
bootstrap samples, constructed in the first phase, by adding a limited number of learn-
ing examples, which are important to improve performance in both classes. To per-
form this kind of an example selection we follow inspiration coming from the active
learning paradigm [2]. This type of learning is commonly used in the semi-supervised
framework to update the classifier learned on labeled part of data by selecting the
most informative examples from the pool of unlabeled ones. Active learning can
also be considered to filter examples from the fully labeled data sets [2]. In this way,
active strategies have been already applied to imbalanced learning, although these
attempts are still quite limited, see Sect. 3.3.

In this chapter we will discuss a new perspective of using active learning to select
examples while extending under-sampling bagging ensembles. We call the proposed
extension Actively Balanced Bagging (ABBag) [8].

In the first phase of the approach, ABBag is constructed with previously pro-
posed algorithms for generating under-sampling bagging extensions for imbalanced
data. In the experiments we will consider two different efficient algorithms, namely
Exactly Balanced Bagging (EBBag) [13], and Neighbourhood Balanced Bagging
(NBBag) [7]. Then, in the second phase the ensemble classifier will be integrated
with the active selection of examples. In ABBag this strategy exploits the decision
margin of component classifiers in ensemble votes, which is more typical for the
active learning. Since, contrary to typical active learning setting, we are dealing
with fully labeled data, errors of component classifiers in ensemble will be taken
into account as well. Moreover, following experiences from the previous research
on data difficulty factors, the neighbourhood analysis of the examples will be also
explored. All these elements could be integrated in different way, which leads us to
consider four versions of the active selection strategies.

The preliminary idea of ABBag was presented in our earlier conference paper [8].
In this chapter, we discuss it in more details and put in the context of other related
approaches. The next contributions include carrying out a comprehensive experimen-
tal study of ABBag usefulness and its comparison against the baseline versions of
under-sampling extensions of bagging for imbalanced data. Furthermore, we exper-
imentally study properties of ABBag with respect to different active selection strate-
gies and tuning its parameters.

The chapter is organized as follows. The next section summarizes the most related
research on improving classifiers learned from class imbalanced data. The following
Sect. 3.3, discusses use of active learning in class imbalanced problems. Ensembles
specialized for imbalanced data are described in Sect. 3.4. The Actively Balanced
Bagging (ABBag) is presented in Sect. 3.5. The results of experimental evaluation
of ABBag are given in Sect. 3.6. The final section draws conclusions.
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3.2 Improving Classifiers Learned from Imbalanced Data

In this section we discuss concepts, which are the most related to our proposal. For
more comprehensive reviews of specialized methods for class imbalanced data the
reader could refer to, e.g., [11, 25, 54]. In this chapter, we consider only a typical
binary definition of the class imbalance problem, where the selected minority class is
distinguished from a single majority class. This formulation is justified by focusing
our interest on the most important class and its real-life semantics [24, 54]. Recently
some researchers study more complex scenarios with multiple minority classes, see
e.g., reviews in [49, 56].

3.2.1 Nature of Imbalanced Data

In some problems characterized by high class imbalance, standard classifiers have
been found to be accurate, see e.g., [3]. In particular, it has been found that, when
there is a good separation (e.g., linear) between classes, the minority class may
be sufficiently recognized regardless of the high global imbalance ratio between
classes [46]. The global imbalance ratio is usually expressed as either Nmin:Nmaj or
Nmin
N , where Nmaj , Nmin , N are the number of majority, minority, and total number

of examples in the data set, respectively.
Some researches have shown that the global class imbalance ratio is not nec-

essarily the only, or even the main, problem causing the decrease of classification
performance [22, 32, 41, 42, 47, 51]. These researchers have drawn attention to
other characteristics of example distributions in the attribute space called data com-
plexity or data difficulty factors. Although these factors should affect learning also
in balanced domains, when they occur together with class imbalance, then the dete-
rioration of classification performance is amplified and affects mostly the minority
class. The main data difficulty factors are: decomposition the minority class into rare
sub-concepts, overlapping between classes, and presence of outliers, rare instances,
or noise.

The influence of class decomposition has been noticed by Japkowicz et al. [29,
32]. They experimental showed that the degradation of classification performance has
resulted from decomposing the minority class into many sub-parts containing very
few examples, rather than from changing the global imbalance ratio. They have also
argued that the minority class often does not form a compact homogeneous distribu-
tion of the single concept, but is scattered into many smaller sub-clusters surrounded
by majority examples. Such sub-clusters are referred to small disjuncts, which are
harder to learn and cause more classification errors than larger sub-concepts.

Other factors related to the class distribution are linked to high overlapping
between regions of minority and majority class examples in the attribute space.
This difficulty factor has already been recognized as particularly important for stan-
dard, balanced, classification problems, however, its role is more influential for the
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minority class. For instance, a series of experimental studies of popular classifiers on
synthetic data have pointed out that increasing overlapping has been more influential
than changing the class imbalance ratio [22, 47]. The authors of [22] have also shown
that the local imbalance ratio inside the overlapping region is more influential than
the global ratio.

Yet another data difficulty factor which causes degradation of classifier perfor-
mance on imbalanced data is the presence of minority examples inside distributions
of the majority class. Experiments presented in a study by Napierała et al. [42] have
shown that single minority examples located inside the majority class regions cannot
be always treated as noise since their proper treatment by informed pre-processing
may lead to improvement of classifiers. In more recent papers [45, 46], they have
distinguished between safe and unsafe examples. Safe examples are the ones located
in homogeneous regions populated by examples from one class only. Other examples
are unsafe and they are more difficult to learn from. Unsafe examples were further
categorized into borderline (placed close to the decision boundary between classes),
rare cases (isolated groups of few examples located deeper inside the opposite class),
and outliers.

The same authors have introduced an approach [45] to automatically identify the
aforementioned types of examples in real world data sets by analyzing class labels
of examples in the local neighbourhood of a considered example. Depending on the
number of examples from the majority class in the local neighbourhood of the given
minority example, we can evaluate whether this example could be safe or unsafe
(difficult) to be learned.

3.2.2 Evaluation of Classifiers on Imbalanced Data

Class imbalance constitutes difficulty not only during construction of a classifier but
also when one evaluates classifier performance. The overall classification accuracy is
not a good criterion characterizing classifier performance, in this type of problem, as
it is dominated by the better recognition of the majority class which compensates the
lower recognitionof theminority class [30, 34]. Therefore, othermeasures defined for
binary classification are considered, where typically the class label of the minority
class is called positive and the class label of the majority class is negative. The
performance of the classifiers is presented in a binary confusionmatrix as inTable3.1.

Table 3.1 Confusion matrix for the classifier evaluation

Predicted
Positive

Predicted
Negative

True Positive T P FN

True Negative FP T N
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Onemay construct basicmetrics concerning recognition of the positive (minority)
and negative (majority) classes from the confusion matrix:

Sensi tivi t y = Recall = TP

TP + FN
, (3.1)

Speci f ici t y = T N

FP + T N
, (3.2)

Precision = T P

TP + FP
. (3.3)

Somemore elaboratedmeasuresmayalsobe considered (please see e.g., overviews
of the measures presented in [25, 30]).

As the class imbalance task invariably involves a trade off between false posi-
tives FP and false negatives FN , to control both, some single-class measures are
commonly considered in pairs, e.g., Sensi tivi t y and Speci f ici t y or Sensi tivi t y
and Precision. These single-class measures are often aggregated to form fur-
ther measures [28, 30]. The two admittedly most popular aggregations are the
following:

G-mean = √
Sensi tivi t y · Speci f ici t y, (3.4)

F-measure = (1 + β) · Precision · Recall
β · Precision + Recall

. (3.5)

The F-measure combines Recall (Sensi tivi t y) and Precision as a weighted
harmonic mean, with the β parameter (β > 0) as the relative weight. It is most
commonly used with β = 1. This measure is exclusively concerned with the posi-
tive (minority) class. Following inspiration from its original use in the information
retrieval context, Recall is a recognition rate of examples originally from the positive
class while precision assesses to what extent the classifier was correct in classifying
examples as positive that were actually positive. Unfortunately it is dependent to the
class imbalance ratio.

The most popular alternative, G-mean, was introduced in [34] as a geometric
mean of Sensi tivi t y and Speci f ici t y. It has a straightforward interpretation since
it takes into account the relative balance of the classifier performance in both positive
class and negative class. An important, useful property of the G-mean is that it
is independent of the distribution of examples between classes. As both classes
have equal importance in this formula, various further modifications to prioritize
the positive class, like the adjusted geometric mean, have been postulated (for their
overview see [30]).

The aforementioned measures are based on single point evaluation of classifiers
with purely deterministic predictions. In case of scoring classifiers, several authors
use the ROC (Receiver Operating Characteristics) curve analysis. The quality of the
classifier performance is reflected by the area under a ROC curve (so called AUC
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measure). Alternative proposals include Precision Recall Curves or other special cost
curves (see their review in [25, 30]).

3.2.3 Main Approaches to Improve Classifiers
for Imbalanced Data

The class imbalance problemhas received growing research interest in the last decade
and several specialized methods have been proposed. Please see [11, 24, 25, 54] for
reviews of these methods, which are usually categorized in two groups:

• Classifier-independent methods that rely on transforming the original data to
change the distribution of classes, e.g., by re-sampling.

• Modifications of either a learning phase of the algorithm, classification strategies,
construction of specialized ensembles or adaptation of cost sensitive learning.

The first group include data pre-processing methods. The simplest data pre-
processing (re-sampling) techniques are: random over-sampling, which replicates
examples from the minority class, and random under-sampling, which randomly
eliminates examples from the majority classes until a required degree of balance
between classes is reached. Focused (also called informed) methods attempt to take
into account the internal characteristics of regions around minority class examples.
Popular examples of such methods are: OSS [34], NCR [38], SMOTE [14] and some
extensions these methods: see e.g., [11]. Moreover, some hybrid methods integrating
over-sampling of selected minority class examples with removing the most harmful
majority class examples have been also proposed, see e.g., SPIDER [42, 51].

The other group includes many quite specialized methods based on different prin-
ciples. For instance, some authors changed search strategies, evaluation criteria or
parameters in the internal optimization of the learning algorithm - see e.g., exten-
sions of induction of decision tress with the Hellinger distance or the asymmetric
entropy [16], or reformulation of the optimization task in generalized versions of
SVM [24]. The final prediction technique can be also revised, for instance authors
of [23] have modified conflict strategies with rules to give more chance for minor-
ity rules. Finally, other researchers adapt the imbalance problem to cost sensitive
learning. For a more comprehensive discussion of various methods for modifying
algorithm refer to [24, 25].

The neighbourhood analysis has been also used to modify pre-processing meth-
ods, see extensions of SMOTE or over-sampling [9], rule induction algorithm
BARCID [43] or ensembles [7].
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3.3 Active Learning

Active learning is a research paradigm in which the learning algorithm is able to
select examples used for its training. Traditionally, thismethodology has been applied
interactively with respect to unlabeled data. Please refer to the following survey for
a review of different active strategies in semi-supervised learning perspective [50].
The goal of active learning, in this traditional view, is to minimize costs, i.e., time,
effort, and other resources related to inquiring for class labels needed to update /
train classifier.

Nevertheless, active learning may also be applied when class labels are known.
The goal is then to select the best examples for training. Such definition of a
goal is particularly appealing to learning from imbalanced data, where one has a
limited number of examples from the minority class and too high number of exam-
ples from the majority class. Thus, a specialized selection of the best examples from
majority class may be solved by an active approach. The recent survey [11] clearly
demonstrates an increasing interest in applying active learning strategies to
imbalanced data.

In pool-based active learning, which is of our interest here, one starts with a given
pool (i.e., a set) of examples. The classifier is first built on examples from the pool.
Then one queries these examples outside the pool that are considered to be potentially
the most useful to update the classifier. The main problem for active learning strategy
is computing the utility of examples outside the pool. Various definitions of utility
have already been considered in the literature [48]. Uncertainty sampling and query-
by-committee are the two most frequently applied solutions.

Uncertainty sampling queries examples one by one, at each step, selecting the one
for which the current classifier is the most uncertain while predicting the class. For
imbalanced data, it has been applied together with support vector machines (SVM)
classifiers. In such a case, uncertainty is defined simply as a distance to the margin of
SVMclassifier. Ertkin et al. have started this direction and proposed an active learning
with early stopping with online SVM [17]. These authors have also considered an
adaptive over-sampling algorithm VIRTUAL, which is able to generate synthetic
minority class examples [18]. Another method, also based on uncertainty sampling,
has been proposed by Ziȩba and Tomczak. This proposal consists in an ensemble of
boosted SVMs. Base SVM classifiers are trained iteratively on examples identified
by an extended margin created in previous iteration [60].

Query by committee (QBC) [1], on the other hand, queries examples, again,
one by one, at each step selecting the one for which a committee of classifiers
disagrees themost. The committeemaybe formed in differentways, e.g., by sampling
hypotheses from the version space, or through bagging ensembles [48]. Yang andMa
have proposed a random subspace ensemble for class imbalance problem that makes
use of QBC [59]. More precisely, they calculate the margin between two highest
membership probabilities for the two most likely classes predicted by the ensemble.

The idea of QBC have also been considered by Napierala and Stefanowski in
argument based rule learning for imbalanced data, where it selects the most difficult
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examples to be annotated [44]. The annotated examples are further handled in gen-
eralized rule induction. The experimental results of [44] show that this approach
significantly improved recognition of both classes (minority and majority) in partic-
ular for rare cases and outliers.

Other strategies to compute utility of exampleswere also considered. For example,
Certainty-Based Active Learning (CBAL) algorithm has been proposed for imbal-
anced data [20]. In CBAL, neighbourhoods are explored incrementally to select
examples for training. The importance of an example is measured within the neigh-
bourhood. In this way, certain, and uncertain areas are constructed and then used
to select the best example. A hybrid algorithm has been also proposed for on-line
active learning with imbalanced classes [19]. This algorithm switches between dif-
ferent selection strategies: uncertainty, density, certainty, and sparsity.

All of the algorithmsmentioned this far query only one example at time. However,
querying more examples, in a batch, may reduce the labeling effort and computation
time. One does not need to rebuild the classifier after each query. On the other hand,
batch querying introduces additional challenges, like diversity of batch [10]. To best
of our knowledge no batch querying active learning algorithm has been proposed for
class imbalanced data.

3.4 Ensembles Specialized for Imbalanced Data

Specialized extensions of ensembles of classifiers are among the most efficient cur-
rently known approaches to improve recognition of the minority class in imbalanced
setting. These extensions may be categorized differently. The taxonomy proposed by
Galar et al. in [21] distinguishes between cost-sensitive approaches vs. integrations
with data pre-processing. The first group covers mainly cost-minimizing techniques
combined with boosting ensembles, e.g., AdaCost, AdaC or RareBoost. The second
group of approaches is divided into three sub-categories: Boosting-based, Bagging-
based orHybrid depending on the type of ensemble techniquewhich is integrated into
the schema for learning component classifiers and their aggregation. Liu et al. cate-
gorize the ensembles for class imbalance into bagging-like, boosting-based methods
or hybrid ensembles depending on their relation to standard approaches [40].

Since the most of related works [4, 6, 21, 33, 36] indicate superior performance
of bagging extensions versus the other types ensembles (e.g., boosting), we focus
our consideration, in this study, on bagging ensembles.

Bagging [12] classifier, proposed by Breiman, is an ensemble ofmbag base (com-
ponent) classifiers constructed by the same algorithm from mbag bootstrap samples
drawn from the original training set. The predictions of component classifiers are
combined to form the final decision as the result of the equal weight majority voting.
The key concept in bagging is bootstrap aggregation, where the training set, called a
bootstrap, for each component classifier is constructed by random uniform sampling
examples from the original training set. Usually the size of each bootstrap is equal
to the size of the original training set and examples are drawn with replacement.
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Algorithm 3.1: Bagging scheme
Input : LS training set; TS testing set; CLA learning algorithm;

mbag number of bootstrap samples;
Output: C∗ final classifier

Learning phase;1
for i := 1 to mbag do2

Si := bootstrap sample {sample examples with replacement} ;3
Ci := CLA (Si ) {generate a component classifier} ;4

end5

Classification phase;6
foreach y in TS do7

C∗(x) := combination of predictions Ci (x), where i = 1, . . . ,mbag8
{prediction for example x results from majority voting Ci} ;9

end10

Since bootstrap sampling, in the standard version, will not change drastically the
class distribution in constructed bootstrap samples, theywill be still biased toward the
majority class. Thus, most of proposals to adapt/extend bagging to class imbalance
overcome this drawback by applying pre-processing techniques, which change the
balance between classes in each bootstrap sample. Usually they construct bootstrap
samples with the same, or similar, cardinalities of bothminority andmajority classes.

In under-sampling bagging approaches the number of themajority class examples
in each bootstrap sample is randomly reduced to the cardinality of the minority
class (Nmin). In the simplest proposal, called Exactly Balanced Bagging (EBBag),
while constructing training bootstrap sample, the entire minority class is copied and
combined with randomly chosen subsets of the majority class to exactly balance
cardinalities between classes [13].

While such under-sampling bagging strategies seem to be intuitive and work effi-
ciently in some studies, Hido et al. [26] observed that they do not truly reflect the
philosophy of bagging and could be still improved. In the original bagging the class
distribution of each sampled subset varies according to the binomial distribution
while in the above under-sampling bagging strategy each subset has the same class
ratio as the desired balanced distribution. InRoughly Balanced Bagging (RBBag) the
numbers of instances for both classes are determined in a different way by equaliz-
ing the sampling probability for each class. The number of minority examples (Smin)
in each bootstrap is set to the size of the minority class Nmin in the original data.
In contrast, the number of majority examples is decided probabilistically according
to the negative binomial distribution, whose parameters are the number of minor-
ity examples (Nmin) and the probability of success equal to 0.5. In this approach
only the size of the majority examples (Smaj ) varies, and the number of examples
in the minority class is kept constant since it is small. Finally, component classi-
fiers are induced by the same learning algorithm from each i-th bootstrap sample
(Simin ∪ Simaj ) and their predictions form the final decision with the equal weight
majority voting.
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Yet another approach has been considered in Neighbourhood Balanced Bag-
ging (NBBag), which is based on different principles than aforementioned under-
sampling bagging ensembles. Instead of using uniform sampling, in NBBag, proba-
bility of an example being drawn into the bootstrap is modified according to the class
distribution in his neighbourhood [7]. NBBag shifts sampling probability toward
unsafe examples located in difficult to learn sub-regions of the minority class. To
perform this type of sampling weights are assigned to the learning examples. The

weight of minority example is defined as: w = 0.5 ×
(

(N ′
min)

ψ

k + 1
)
where N ′

min is

the number of majority examples among k nearest neighbours of the example, and
ψ is a scaling factor. Setting ψ = 1 causes a linear amplification of an example
weight together with an increase of unsafeness, and settingψ to values higher than 1
results in an exponential amplification. Each majority example is assigned a constant
weight w = 0.5 × Nmaj

Nmin
, where Nmaj is the number of majority class examples in the

training set and Nmin is the number of minority class examples in the
training set. Then sampling is performed according to the distribution of weights.
In this sampling, probability of an example being drawn to the bootstrap sample is
reflected by its weight.

Another way to overcome class imbalance in a bootstrap sample consists in per-
forming over-sampling of the minority class before training a component classifier.
In this way, the number of minority examples is increased in each sample (e.g., by
a random replication), while the majority class is not reduced as in under-sampling
bagging. This idea was realized in many ways as authors considered several kinds of
integrations with different over-sampling techniques. Some of these ways are also
focused on increasing diversity of bootstrap samples. OverBagging is the simplest
version which applies a simplest random over-sampling to transform each training
bootstrap sample. Smaj of minority class examples is sampled with replacement to
exactly balance the cardinality of the minority and the majority class in each sam-
ple. Majority examples are sampled with replacement as in the original bagging. An
over-sampling variant of Neighbourhood Balanced Bagging (NBBag) has also been
proposed [7]. In this variant, weights of examples are calculated in the same way as
for under-sampling NBBag.

Finally, Lango et al. have proposed to integrate a random selection of attributes
(following inspirations of [27, 35]) into Roughly Balanced Bagging [36]. Then the
same authors have introduced a generalization of RBBag for multiple imbalanced
classes, which exploits the multinomial distribution to estimate cardinalities of class
examples in bootstrap samples [37].

3.5 Active Selection of Examples in Under-Sampling
Bagging

Although a number of interesting under-sampling extensions of bagging ensembles,
for class imbalanced data, have been recently proposed, the prediction improvement
brought by these extensions may come with a decrease of recognition of majority
class examples. Thus, we identify a need for better learning a trade-of between
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performance in both classes. Then an open research problem is how to achieve this
balance of performance in both classes.

In this study we want to take a different perspective than in current proposals.
These proposals mainly make use of various modifications of sampling examples
to bootstraps (usually oriented toward balancing bootstrap) and then construct an
ensemble, in a standard way, by learning component classifiers in one step and
aggregating their predictions according to the majority voting (please see details of
bagging and its variants in [12, 35]).

More precisely, we want to consider another hypothesis: given an already good
technique of constructing under-sampling bagging, could one perform an additional
step of updating its bootstraps by selecting a limited number of remaining learning
examples, which could be useful for improving the trade-off between recognizing
minority and majority classes.

Our proposed approach, called Actively Balanced Bagging (ABBag) [8], is com-
posed of two phases. The first phase consists in learning an ensemble classifier by
one of approaches for constructing under-sampling extensions of bagging. Although
one can choose any good performing extension, we will further consider quite sim-
ple, yet effective one: Exactly Balanced Bagging (EBBag) [21], and more complex
one based on other principles: Neighbourhood Balanced Bagging NBBag [7]. The
current literature, such as [7, 33, 36], contains several experimental studies, which
have clearly demonstrated that both these ensembles, and Roughly Balanced Bag-
ging [26], are the best ensembles and they also out-performed single classifiers for
difficult imbalanced data. Furthermore their modifications of sampling examples are
based on completely different principles which is an additional argument to better
verify the usefulness of the proposed active selection strategies in ABBag. For more
information on constructing the EBBag and NBBag ensembles the reader may refer
to Sect. 3.4.

The second phase includes an active selection of examples. It includes:

1. An iterative modification of bootstrap samples, constructed in the first phase, by
adding selected examples from the training set;

2. Re-learning of component classifiers on modified bootstraps. The examples
selected in (1) are added to bootstraps in batches, i.e., small portions of learning
examples.

The proposed active selection of examples can be seen as a variant of Query-by-
committee (QBC) approach [1]. As discussed in the previous sections QBC uses a
decision margin, or simply a measure of disagreement between members of the com-
mittee, to select the examples. Although QBC has been already successfully applied
in active learning of ensemble classifiers in [10]. It has been observed that QBC does
not take into account global (i.e., concerning the whole training set) properties of
examples distribution, and in result, it can focus too much on selecting outliers and
sparse regions [10]. Therefore, we need to adapt this strategy for imbalanced data,
which are commonly affected by data difficulty factors.

Furthermore, one should remember that selecting one single example at a time
is a standard strategy in active learning [50]. Contrary, in ABBag we promote, in
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each iteration, to select small batches of examples instead of single example. We
motivate the batch selection by a potential reduction of computation time, as well
as, an increase of diversity of examples in the batch. As it was observed in [10], a
greedy selection of single example with respect to a single criterion, typical for active
strategy, where highest utility/uncertaintymeasure is taken into account [50] does not
provide desired diversity. In our view, giving chance for random drawing also some
slightly sub-optimal examples besides the best ones may result in a higher diversity
of new bootstraps and increased diversity of re-learned component classifiers.

We address the abovementioned issues twofold. First, and foremost, the proposed
active selection of examples considers multiple factors to determine the usefulness
of an example to be selected. More precisely, they are following:

1. Decision margin of component classifiers, and a prediction error of the single
component classifier (which is a modification of QBC).

2. Factors specific to imbalanced data, which reflect more global (i.e., concerning
the whole training set) and/or local (i.e., concerning example neighbourhood)
class distribution of examples.

3. Additionally we use a specific variant of rejection sampling to enforce diversity
within the batch through extra randomization.

The algorithm for learning ABBag ensemble is presented as a pseudocode Algo-
rithm3.2. It starts with training set LS, and mbag bootstrap samples SSS and results in
constructing an under-sampling extension of bagging in the first phase (lines 2–4).
Moreover, it makes use of initial balancing weightswww, which are calculated in accor-
dance with the under-sampling bagging extension, used in this phase. These ini-
tial balancing weights www allow us to direct sampling toward more difficult to learn
examples. In case of EBBag, balancing weights www reflect only the global imbalance
of an example in the training set. In case of NBBag, balancing weights www expresses
both global and local imbalance of an example in the training set. In the end of the
first phase, component classifiers are generated from each of bootstraps SSS (line 3).

In the second phase, the active selection of examples is performed between lines
5–13. All bootstraps from SSS are iteratively (mal times) enlarged by adding batches,
and new component classifiers are re-learned.

In each iteration, new weightsw′w′w′ of examples are calculated according to weights
update method um (which is described in the next paragraph), and then they are
sorted (lines 7–8). Each bootstrap is enhanced by nal examples selected randomly
with the rejection sampling according to α = w′(xnal ) + ε, i.e., nal random examples
with weights w′ higher than α are selected (lines 9–10). The parameter ε introduces
additional (after α) level of randomness into the sampling. Finally, new component
classifier Ci is learned resulting in new ensemble classifier CCC (line 11).

We consider here four different weights update methods. The simplest method,
called margin (m),1 is substituting the initial weights of examples with a decision
margin between component classifiers inCCC . For a given testing example it is defined

1For simplicity margin will be denoted as m - in particular in experiments see Tables3.3, 3.4, 3.5
and 3.6; further introduced weight update methods will be denoted analogously.
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Algorithm 3.2: Actively Balanced Bagging Algorithm
Input : LS training set; TS testing set; CLA component classifier learning algorithm; mbag

number of bootstrap samples; SSS bootstrap samples; www weights of examples from
LS; um weights update method; mal number of active learning iterations; nal
maximum size of active learning batch

Output: CCC ensemble classifier

Learning phase;1
for i := 1 to mbag do2

Ci := CLA (Si ) {generate a component classifier} ;3
end4
for l := 1 to mal do5

for i := 1 to mbag do6
w′w′w′ := updateWeights(www,CCC,um) {update weights used in sampling} ;7
sort all x with respect to w′(x), so that w′(x1) ≥ w′(x2) ≥ . . . ≥ w′(xn) ;8
S′
i := random sample from x1, x2, . . . , xnal according to w′w′w′ {rejection sampling from9
top nal x sorted according to w′w′w′; α = w′(xnal ) } ;10

Si := Si ∪ S′
i ;11

Ci := CLA (Si ) {re-train a new component classifier} ;12
end13

end14

Classification phase;15
foreach x in TS do16

CCC(x) := majority vote of Ci (x), where i = 1, . . . ,mbag {the class17
assignment for object x is a combination of predictions of component classifiers Ci} ;

end18

as:margin orm = 1 −
∣
∣
∣ Vmaj−Vmin

mbag

∣
∣
∣, where Vmaj is a number of votes for majority class

and Vmin is number of votes for minority class. As the margin may not be directly
reflecting the characteristic of imbalanced data (indeed under-sampling somehow
should reduce bias of the classifiers)we consider combining it with additional factors.
This leads to three variants of weights update methods. In the first extension, called,
margin andweight (mw), newweightw′ is a product ofmarginm and initial balancing
weight w. We reduce the influence of w in subsequent iterations of active example
selection, as l is increasing. The reason for this reduction of influence is that we
expect margin m to improve (i.e., better reflect the usefulness of examples) with
subsequent iterations, and thus initial weights w becoming less important. More

precisely, mw = m × w
(

mal−l
mal

)
.

Both considered so far weights update methods produce bootstrap samples which,
in the same iteration l, differ only according to randomization introduced by the
rejection sampling, i.e., weightsw′w′w′ are the same for each i . That is why, we consider
yet another modification of methodsm andmw, which makesw′w′w′, and, consequently,
each bootstrap dependent on performance of the corresponding component classifier.
These two new update methods: margin and component error (mce), and margin,
weight and component error (mwce) are defined, respectfully, as follows: mce =
m + 1e × w, and mwce = mw + 1e × w. In this notation, 1e is an indicator function
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Table 3.2 Characteristics of benchmark real-world data sets

Data set # examples # attributes Minority class IR [%]

abalone 4177 8 0-4 16-29 11.47

breast-cancer 286 9 recurrence-events 2.36

car 1728 6 good 24.04

cleveland 303 13 3 7.66

cmc 1473 9 2 3.42

ecoli 336 7 imU 8.60

haberman 306 4 2 2.78

hepatitis 155 19 1 3.84

scrotal-pain 201 13 positive 2.41

solar-flare 1066 12 f 23.79

transfusion 748 4 1 3.20

vehicle 846 18 van 3.25

yeast 1484 8 ME2 28.10

defined so that 1e = 1 when a component classifier is making a prediction error on
example, and 1e = 0 otherwise.

3.6 Experimental Evaluation

In this sectionwewill carry out experiments designed to provide better understanding
of the classification performance of Actively Balanced Bagging. The following two
aims of these experiments are considered. First, we want to check to what extent the
predictive performance of Actively Balanced Bagging can be improved in compari-
son to under-sampling extensions of bagging. For this part of experiments we choose
two quite efficient, in classification performance, extensions of bagging: Exactly Bal-
anced Bagging (EBBag) [13], and Neighbourhood Balanced Bagging (NBBag) [7].
Then, the second aim of experiments is to compare different variants of proposed
active selection methods, which result in different versions of ABBag. Moreover, the
sensitivity analysis of tuning basic parameters of ABBag is carried out.

3.6.1 Experimental Setup

The considered Actively Balanced Bagging ensembles are evaluated with respect to
averaged performance in bothminority andmajority classes. That is whywe consider
G-mean measure, introduced in Sect. 3.2.2, since we want to find a good trade-off
between recognition in both classes.



40 J. Błaszczyński and J. Stefanowski

Similarly to our previous studies [6–8, 45] we will focus in our experiments
on 13 benchmark real-world class imbalanced data sets. In this way, we include in
this study data sets which have been often analyzed in many experimental studies
with imbalanced data. This should make it easier to compare the achieved perfor-
mances to the best results reported in the literature. The characteristics is of these
data sets are presented in Table3.2. The data sets represent different sizes, imbalance
ratios (denoted by IR), domains and have both continuous and nominal attributes.
Taking into account results presented in [45] some of data sets should be easier
to learn for standard classifiers while most of them constitute different degrees of
difficulties. More precisely, such data as vehicle and car, are easier ones as
many minority class examples may categorized as safe ones. On the other hand, data
sets breast cancer, clevaland, ecoli contain many borderline examples,
while the remaining data sets could be estimated as the most difficult one as they
additionally contain many rare cases or outliers.

Nearly all of benchmark real-world data sets were taken from the UCI repository.2

One data set includes a medical problem and it was also used in our earlier works
of on class imbalance.3 In data sets with more than one majority class, they are
aggregated into one class to have only binary problems, which is also typically done
in other studies presented in the literature.

Furthermore, we include in this study a few synthetic data sets with a priori
known (i.e., designed) data distribution. To this end, we applied a specialized gen-
erator for imbalanced data [58] and we produced two different types of data sets.
In these data sets, examples from the minority class are generated randomly inside
predefined spheres and majority class examples are randomly distributed in an area
surrounding them. We consider two configurations of minority class spheres, called
according to the shape they form: paw and flower, respectively. In both data
sets the global imbalance ratio I R is equal to 7, and the total cardinality of exam-
ples are 1200 for paw and 1500 for flower always with three attributes. The
minority class is decomposed into 3 or 5 sub-parts. Moreover, each of this data set
has been generated with a different number of potentially unsafe examples. This
fact is denoted by four numbers included in the name of data set. For instance,
flower5-3d-30-40-15-15 represents flower with minority class that con-
tains approximately 30% of safe examples, 40% inside the class overlapping (i.e.,
boundary), 15% rare and 15% outliers.

3.6.2 Results of Experiments

We conducted our experiments in two variants of constructing ensembles. In the first
variant, standard EBBag or under-sampling NBBag was used. In the second variant,

2http://www.ics.uci.edu/mlearn/MLRepository.html.
3We are grateful to prof. W. Michalowski and the MET Research Group from the University of
Ottawa for providing us an access to scrotal-pain data set.

http://www.ics.uci.edu/ mlearn/MLRepository.html.
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the size of each of the classes in bootstrap samples was further reduced to 50% of the
size of the minority class in the training set. Active selection parameters, used in the
second phase,mal , and nal were chosen in away,which enables the bootstrap samples
constructed in ABBag to excess the size of standard under-sampling bootstrap by a
factor not higher than two. The size of ensembles mbag , in accordance with previous
experiments [7], was always fixed to 50. We used WEKA4 implementation of J48
decision tree as the component classifier in all of considered ensembles.We set under-
sampling NBBag parameters to the same values as we have already used in [7]. All
measures are estimated by a stratified 10-fold cross-validation repeated five times to
improve repeatability of observed results.

In Tables3.3, 3.4, 3.5 and 3.6, we present values of G-mean for all considered
variants of ABBag on all considered real-world and synthetic data sets. Note that in
Tables3.3 and 3.4, we present results of active balancing of 50% under-sampling
EBBag, and 50% under-sampling NBBag, respectively. Moreover, in Tables3.5
and 3.6, we present results of active balancing of standard under-sampling EBBag,
and standard under-samplingNBBag, respectively. The last row of each of Tables3.3,
3.4, 3.5 and 3.6, contains average ranks calculated as in the Friedman test [30]. The
interpretation of average rank is that the lower the value, the better the classifier.

The first, general conclusion resulting from our experiments is that ABBag per-
forms better than under-sampling extensions of bagging, both: EBBag, and NBBag.
Let us treat EBBag, and NBBag as baselines in Tables3.3, 3.4, 3.5 and 3.6, respec-
tively. The observed improvements of G-mean are statistically significant regardless
of the considered version of ABBag. More precisely, each actively balanced EBBag
has the lower average rank than the baseline EBBag, and, similarly, each actively bal-
anced NBBag has lower average rank than the baseline NBBag. Moreover, Friedman
tests result in p-values � 0.00001 in all of comparisons of both EBBag (Tables3.3
and 3.5) NBBag (Tables3.4 and 3.6). According to Nemenyi post-hoc test, criti-
cal difference CD between average ranks in our comparison is around 1.272. The
observed difference between average ranks of each actively balanced EBBag and
the baseline EBBag is thus higher than calculated CD. We can state that ABBag
improves significantly classification performance over base line EBBag. An analo-
gous observation holds for each actively balanced NBBag and the baseline NBBag.
We can conclude this part of experiments by stating that ABBag is able to improve
baseline classifier regardless of the setting.

However, th observed improvement of G-mean introduced by ABBag depends
on the data set. Usually improvements for easier to learn data sets, like car, are
smaller than these observed for the other data sets. Themost apparent (and consistent)
improvements are noted for the hardest to learn versions of synthetic data sets.
In both cases of flower5-3d-10-20-35-35, and paw3-3d-10-20-35-35
application of baseline versions of EBBag, and NBBag gives values of G-mean equal
to 0. These results are remarkably improved by all considered versions of ABBag.

4Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA Workbench. Online Appendix
for “Data Mining: Practical Machine Learning Tools and Techniques”, Morgan Kaufmann, Fourth
Edition, 2016.
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Table 3.3 G-mean of actively balanced 50% under-sampling EBBag

Data set EBBag m-EBBag mce-EBBag mw-EBBag mwce-EBBag

abalone 79.486 79.486 80.056 79.486 79.603

breast-cancer 57.144 59.628 60.471 60.640 60.900

car 96.513 97.785 98.359 97.806 98.359

cleveland 70.818 73.154 70.818 73.672 70.818

cmc 64.203 65.146 64.572 64.771 64.687

ecoli 87.836 88.870 89.259 88.926 88.638

flower5-3d-10-20-35-35 0.000 55.055 54.251 52.653 54.046

flower5-3d-100-0-0-0 92.315 93.415 94.570 93.501 94.812

flower5-3d-30-40-15-15 77.248 77.995 78.502 78.022 78.423

flower5-3d-30-70-0-0 91.105 91.764 93.729 92.019 93.993

flower5-3d-50-50-0-0 91.966 92.470 93.972 92.317 93.834

haberman 62.908 65.355 65.916 67.299 65.520

hepatitis 78.561 79.132 80.125 79.208 80.079

paw3-3d-10-20-35-35 0.000 51.152 51.148 52.318 50.836

paw3-3d-100-0-0-0 90.857 93.020 94.001 93.011 94.391

paw3-3d-30-40-15-15 74.872 76.277 78.241 76.546 77.544

paw3-3d-30-70-0-0 88.545 90.510 91.410 90.927 91.106

paw3-3d-50-50-0-0 91.424 92.087 92.825 92.038 93.537

scrotal-pain 72.838 73.572 73.574 73.692 72.838

solar-flare 82.048 83.126 83.064 83.013 83.064

transfusion 66.812 67.929 66.812 67.448 66.812

vehicle 95.506 95.840 97.120 96.010 97.120

yeast 82.658 84.026 84.818 85.337 84.984

average rank 4.848 3.087 2.065 2.652 2.348

Now we move to examination of the influence of the proposed active modifica-
tions, i.e., weights update methods in the active selection of examples, on the clas-
sification performance. We make the following observations. First, if we consider
actively balanced 50%under-samplingEBBag,margin and component error weights
update method, thus (mce-EBBag), has the best average rank and the best value of
median calculated for all G-mean results in Table3.3. The second best performing
weight update method in this comparison is margin, weight and component error,
and thus (mwce-EBBag). These observations are, however, not statistically signifi-
cant according to the critical difference and results of Wilcoxon test for a selected
pair of classifiers. Results of actively balanced standard under-sampling EBBag, pre-
sented in Table3.5, provide more considerable distinction. The best weights update
method in this case ismargin, weight and component error, and thus (mwce-EBBag).
Moreover the observed difference in both average rank and p-value in Wilcoxon test
allows us to state thatmwce-EBBag is significantly better performing thanm-EBBag.
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Table 3.4 G-mean of actively balanced 50% under-sampling NBBag

Data set NBBag m-NBBag mce-NBBag mw-NBBag mwce-NBBag

abalone 78.297 79.384 79.264 79.034 79.339

breast-cancer 56.521 62.559 61.957 60.106 62.316

car 93.918 95.698 97.816 97.405 98.182

cleveland 74.275 76.131 75.000 78.000 74.275

cmc 63.944 64.969 64.390 64.969 64.807

ecoli 88.056 89.326 88.846 89.412 89.139

flower5-3d-10-20-35-35 0.000 51.940 51.302 52.069 52.105

flower5-3d-100-0-0-0 89.851 92.844 94.465 93.427 94.869

flower5-3d-30-40-15-15 73.869 77.081 77.266 76.614 77.484

flower5-3d-30-70-0-0 88.513 92.055 93.814 91.903 93.975

flower5-3d-50-50-0-0 89.164 92.227 93.969 91.734 94.107

haberman 58.618 65.165 65.087 65.068 65.386

hepatitis 79.632 79.632 80.449 80.778 80.270

paw3-3d-10-20-35-35 0.000 50.644 49.804 43.549 52.541

paw3-3d-100-0-0-0 85.165 91.889 94.000 92.596 93.584

paw3-3d-30-40-15-15 29.157 75.499 75.000 74.818 70.950

paw3-3d-30-70-0-0 82.767 89.944 91.631 90.739 91.331

paw3-3d-50-50-0-0 84.787 91.327 92.079 91.826 92.474

scrotal-pain 74.471 75.180 75.625 76.507 75.363

solar-flare 82.275 85.049 83.620 83.954 83.233

transfusion 65.259 65.816 65.351 65.259 65.509

vehicle 94.304 96.720 97.733 96.513 97.498

yeast 82.450 84.454 84.887 83.549 85.005

average rank 4.935 2.652 2.435 2.957 2.022

Second best performing weight update method in this case ismargin and component
error weights update method, thus (mce-EBBag). Differences between this method
and the other weights updatemethods are, however, again not statistically significant.

Similar observations are valid for actively balanced NBBag. In this case, the best
weights update method according to average rank is margin, weight and component
error, and thus (mwce-NBBag), regardless of the variant of the fist phase of the active
selection, as seen in Tables 3.4 and 3.6. On the other hand, margin and component
error weights update method, and thus (mce-NBBag), has the best value of median
when 50% under-sampling mce-NBBag is considered. However, this observation
is not statistically significant. So are all the observed differences among different
weights update methods in active selection for NBBag.

To sum up observations noted so far, we should report that all different factors
that we take into account in weights update methods: margin of classifiers in ensem-
ble, weight of example, and component error are important for improving ABBag
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Table 3.5 G-mean of actively balanced under-sampling EBBag

Data set EBBag m-EBBag mce-EBBag mw-EBBag mwce-EBBag

abalone 76.927 77.740 77.940 77.740 77.874

breast-cancer 57.979 58.488 58.316 58.632 59.305

car 97.611 97.760 98.100 97.780 98.185

cleveland 68.207 68.207 68.207 68.207 68.207

cmc 62.242 62.552 62.242 62.280 62.242

ecoli 87.677 87.677 87.677 87.677 87.677

flower5-3d-10-20-35-35 0.000 43.713 54.854 51.077 54.419

flower5-3d-100-0-0-0 92.601 93.506 94.860 93.399 95.007

flower5-3d-30-40-15-15 77.749 78.027 78.654 77.977 78.979

flower5-3d-30-70-0-0 91.614 92.165 93.629 91.994 93.544

flower5-3d-50-50-0-0 91.338 92.651 94.622 92.451 94.469

haberman 60.673 64.379 64.327 65.124 65.251

hepatitis 74.217 77.505 78.631 76.937 76.688

paw3-3d-10-20-35-35 0.000 41.322 53.729 37.655 52.275

paw3-3d-100-0-0-0 92.507 93.811 94.233 93.765 94.329

paw3-3d-30-40-15-15 76.756 76.756 78.846 76.756 78.839

paw3-3d-30-70-0-0 89.362 90.206 91.069 91.443 90.990

paw3-3d-50-50-0-0 92.107 92.107 92.445 92.107 92.757

scrotal-pain 74.258 74.258 74.258 74.549 74.258

solar-flare 84.444 84.444 84.444 84.444 84.654

transfusion 64.078 65.492 67.534 65.911 67.589

vehicle 95.117 96.327 96.771 96.476 96.849

yeast 81.689 82.248 84.234 83.933 84.541

average rank 4.565 3.283 2.174 3.087 1.891

performance. Moreover, two weight update methods tend to give better results than
the others. These are: margin and component error (mce), and margin, weight and
component error (mwce). These results may be interpreted as an indication that
proposed active selection of examples is able to make good use of the known labels
of minority and majority examples, since weight, and component error factors
are important.

In the next step of our experiments, we tested the influence of ε parameter on
the performance of ABBag. ε controls the level of randomness in active selection of
examples (see Sect. 3.3 for details). The results of this analysis favour small values of
ε, which means that, in our setting, it is better to select the best (or almost the best, to
be more precise) examples into active learning batches. This result may be partially
explained by a relatively small size of batches used in the experimental evaluation.
For small batches it should be important to select as good examples as possible



3 Improving Bagging Ensembles for Class Imbalanced Data by Active Learning 45

Table 3.6 G-mean of actively balanced under-sampling NBBag

Data set NBBag m-NBBag mce-NBBag mw-NBBag mwce-NBBag

abalone 78.714 79.308 79.291 79.317 79.460

breast-cancer 58.691 62.752 62.698 62.191 62.501

car 96.200 97.518 97.847 97.775 98.801

cleveland 73.004 73.004 73.931 74.170 74.776

cmc 65.128 65.128 65.128 65.365 65.128

ecoli 88.581 88.581 88.581 88.581 88.581

flower5-3d-10-20-35-35 0.000 51.952 51.527 52.800 51.073

flower5-3d-100-0-0-0 92.373 93.594 94.481 93.437 94.683

flower5-3d-30-40-15-15 76.914 78.080 77.913 77.570 78.196

flower5-3d-30-70-0-0 91.120 92.297 93.490 92.141 94.112

flower5-3d-50-50-0-0 92.003 93.126 93.209 92.889 94.322

haberman 64.128 65.101 65.251 66.059 65.590

hepatitis 78.017 78.078 79.665 79.269 80.739

paw3-3d-10-20-35-35 0.000 50.916 49.912 51.239 52.142

paw3-3d-100-0-0-0 90.122 92.792 93.141 93.190 94.388

paw3-3d-30-40-15-15 63.966 76.440 75.945 76.990 77.057

paw3-3d-30-70-0-0 87.208 90.072 90.966 90.871 91.116

paw3-3d-50-50-0-0 91.317 92.105 92.295 91.582 92.984

scrotal-pain 73.205 75.023 74.812 75.636 74.891

solar-flare 83.435 84.731 83.574 84.015 84.286

transfusion 65.226 65.943 66.239 65.226 65.226

vehicle 95.339 96.776 97.463 96.759 97.401

yeast 84.226 84.780 85.580 85.067 85.247

average rank 4.783 3.000 2.630 2.783 1.804

while with an increase of the size of batch, more diversity in batches resulting from
selection of more sub-optimal examples, should be also found to be useful.

We finish the presented experimental evaluation with an analysis of influence
of parameter mal , and parameter nal on the classification performance of ABBag.
Parameter nal is, in the results presented further on, the size of active learning batch
determined as the percentage of the size of minority class. Parameter mal is the
number of performed active learning iterations. We restrict ourselves in this analysis
tomargin, weight and component error (mwce) weight update method, since it gave
the best results for majority of considered variants. Moreover, we will only present
results of an analysis of some harder to learn data sets since they provide more
information about behaviour of ABBag. Results for other data sets demonstrate
usually the same tendencies as for the chosen data sets, though these tendencies
might be less visible. We present changes in values of G-mean for four different data
sets: cleveland, flower5-3d-10-20-35-35, paw3-3d-10-20-35-35,
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Fig. 3.1 cleveland - influence of mal and nal on G-mean of actively balanced (mwce) 50%
under-sampling, and standard under-sampling of EBBag and NBBags

and yeast in the following figures: Figs. 3.1, 3.2, 3.3, and 3.4, respectively. In
each of these figures one can compare G-mean performance of actively balanced
EBBag ensemble, and actively balanced NBBag ensemble (in a trellis of smaller
figures). Three different plots are presented, in each of figures, for each of ensembles,
according to tested value of nal = {2, 7, 15}. On each of plots relation between mal

and G-mean is presented for ensembles resulting from 50% under-sampling, and
standard (i.e., 100%) under-sampling performed at the first phase of ABBag.

A common tendency for majority of plots representing G-mean performance of
mwce ABBag on real-world data sets (here represented by data sets: cleveland
in Fig. 3.1, and yeast in Fig. 3.4) is that, regardless of other parameters, one can
observe an increase of G-mean performance for initial active balancing iterations
(i.e., small values of mal), followed by stabilization or decrease of performance for
the further iterations. A decrease of performance is more visible for further iterations
of actively balanced EBBag. Thus, the tendency observed for real-word data sets is
in line with our motivation for proposing ABBag expressed by an intuition that it
should suffice to perform a limited number of small updates of bootstrap by actively
selected examples to sufficiently improve performance of under-sampling extensions
of bagging.

Adifferent tendency is visible on plots representingG-meanperformance ofmwce
ABBag on hard to learn synthetic data sets that we analyzed (represented by data
sets: flower5-3d-10-20-35-35 in Fig. 3.2, and paw3-3d-10-20-35-35
in Fig. 3.3). One can observe an almost permanent increase of actively balanced
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Fig. 3.2 flower5-3d-10-20-35-35—influence of mal and nal on G-mean of actively bal-
anced (mwce) 50% under-sampling, and standard under-sampling of EBBag and NBBag
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NBBag ensemble G-mean performance in the following iterations of actively bal-
ancing procedure, regardless of other parameters. For active balancing EBBag this
tendency is more similar to performance on real-world data sets. After an increase of
performance observed for initial iterations, comes a decrease (e.g., see 50% under-
sampling EBBag for mal = 2 in Fig. 3.3) or stabilization (e.g., see under-sampling
EBBag formal > 2 in the same Fig. 3.3). One should take into account, however, that
these are really hard to learn data sets, for which base-line classifiers were perform-
ing poorly. Thus, the active selection of examples, in the second phase of ABBag,
had more place for improvement of the bootstraps, which may explain why more
iterations were needed.

3.7 Conclusions

The main aim of this chapter has been focused on the attempts to improve clas-
sification performance of the under-sampling extensions of the bagging ensembles
to better address class imbalanced data. The current extensions are mainly based on
modifying the example distributions inside bootstrap samples (bags). In our proposal
we have decided to additionally add a limited number of learning examples coming
from outside the given bag. As a result of such small adjusting bootstrap bags, the
final ensemble classifier should better balance recognition of examples fromminority
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and majority classes. To achieve this aim, we have introduced a two phase approach,
which we have called Actively Balanced Bagging (ABBag).

Thekey idea, in this approach, is tofirst learn anunder-samplingbagging ensemble
and, then, to carry out steps of updating bootstraps by small batches composed of
a limited number of actively selected learning examples. These batches are drawn
by one of proposed active learning strategies, with one of the example weights.
Their definition takes into account a decision margin of ensemble votes for the
classified instance, balancing of the example class distribution in its neighbourhood,
and prediction errors of component classifiers. To best of our knowledge such a
combined approach has not been considered yet.

The results of experiments have demonstrated that:

• The new proposed ABBag ensemble with the active selection of examples has
improved G-mean performance of two baseline under-sampling bagging Exactly
Balanced Bagging (EBBag) and Nearest Balanced Bagging (NBBag), which are
already known to be very good ensemble classifiers for imbalanced data and out-
performs several other classifiers (see, e.g., earlier experimental results in [7]).

• Another observation resulting from the presented experiments is that an active
selection strategy performs best when it integrates the ensemble disagreement, i.e.
the decision margin (which is typically applied in the standard active learning such
as QBC) with information on class distribution in imbalanced data and prediction
errors of component classifiers. The best performing selection strategy is mwce
for both EBBag and NBBag classifiers.

• A more detailed analysis of ABBag performance on harder to learn data sets
allowed us to observe that it is usually better to add a small number of examples
in batches to obtain the best classification performance.

Finally, an open problem for further research, related to the main topic of this
book, concerns dealing with a higher number of attributes in the proposed ensemble.
Highly dimensional imbalanced data sets are still not sufficiently investigated in the
current research (please see, e.g., discussions in [11, 15]). In case of ensembles,
it is possible to look for other solutions than typical attribute selection in a pre-
processing step or in a special wrapper such as, e.g., proposed in [31]. A quite
natural modification could be applying random subspace methods (such as Ho’s
proposal [27])while constructing bootstraps. It has alreadybeen applied in extensions
of Roughly Balanced Bagging [37].

However, our new proposal exploits modeling of the neighbourhood for minority
class examples. It is based on distances between examples, e.g. with Heterogeneous
Value Difference Metric. As it has been recently shown by Tomasev’s research [55]
on, so called, hubness, a k-nearest neighbourhood constructed on highly dimensional
data may suffer from the curse of dimensionality and such metrics are not sufficient.
Therefore, the current proposal of ABBag should be be rather applied to datasets
with a smaller or medium number of attributes. The prospect extensions of ABBag
for a larger number of attributes should be constructed with different techniques to
estimate the example neighbourhoods.
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9. Błaszczyński, J., Stefanowski, J.: Local data characteristics in learning classifiers from imbal-
anced data. In: J. Kacprzyk, L. Rutkowski, A. Gaweda, G. Yen (eds.) Advances in Data Analy-
sis with Computational Intelligence Methods, Studies in Computational Intelligence. p. 738.
Springer (2017). doi:https://doi.org/10.1007/978-3-319-67946-4_2 (to appear)

10. Borisov, A., Tuv, E., Runger, G.: Active Batch Learning with Stochastic Query-by-Forest
(SQBF). Work. Act. Learn. Exp. Des. JMLR 16, 59–69 (2011)

11. Branco, P., Torgo, L., Ribeiro, R.: A survey of predictive modeling under imbalanced distrib-
utions. ACM Comput. Surv. 49(2), 31 (2016). https://doi.org/10.1145/2907070

12. Breiman, L.: Bagging predictors.Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1007/
BF00058655

13. Chang, E.: Statistical learning for effective visual information retrieval. In: Proceedings of ICIP
2003, pp. 609–612 (2003). doi:https://doi.org/10.1109/ICIP.2003.1247318

14. Chawla,N., Bowyer,K.,Hall, L.,Kegelmeyer,W.: SMOTE:SyntheticMinorityOver-Sampling
Technique. J. Artif. Intell. Res. 16, 341–378 (2002)

15. Chen, X., Wasikowski, M.: FAST: A ROC–based feature selection metric for small samples
and imbalanced data classification problems. In: Proceedings of the 14th ACM SIGKDD, pp.
124–133 (2008). doi:https://doi.org/10.1145/1401890.1401910

16. Cieslak, D., Chawla, N.: Learning decision trees for unbalanced data. In: D. et al. (ed.) Pro-
ceedings of the ECML PKDD 2008, Part I, LNAI, vol. 5211, pp. 241–256. Springer (2008).
doi:https://doi.org/10.1007/978-3-540-87479-9_34

17. Ertekin, S., Huang, J., Bottou, L., Giles, C.: Learning on the border: Active learning in imbal-
anced data classification. In: Proceedings ACM Conference on Information and Knowledge
Management, pp. 127–136 (2007). doi:https://doi.org/10.1145/1321440.1321461

18. Ertekin, S.: Adaptive oversampling for imbalanced data classification. Inf. Sci. Syst. 264, 261–
269 (2013)

https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1007/978-3-319-67946-4_2
https://doi.org/10.1145/2907070
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1109/ICIP.2003.1247318
https://doi.org/10.1145/1401890.1401910
https://doi.org/10.1007/978-3-540-87479-9_34
https://doi.org/10.1145/1321440.1321461


3 Improving Bagging Ensembles for Class Imbalanced Data by Active Learning 51

19. Ferdowsi, Z., Ghani, R., Settimi, R.: Online Active Learning with Imbalanced Classes. In:
Proceedings IEEE 13th International Conference on Data Mining, pp. 1043–1048 (2013)

20. Fu, J., Lee, S.: Certainty-based Active Learning for Sampling Imbalanced Datasets. Neuro-
computing 119, 350–358 (2013). https://doi.org/10.1016/j.neucom.2013.03.023

21. Galar,M., Fernandez, A., Barrenechea, E., Bustince, H.: Herrera, F.: A review on ensembles for
the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans.
Syst. Man Cybern. C 99, 1–22 (2011)

22. Garcia, V., Sanchez, J., Mollineda, R.: An empirical study of the behaviour of classifiers on
imbalanced and overlapped data sets. In: Proceedings of Progress in PatternRecognition, Image
Analysis and Applications, LNCS, vol. 4756, pp. 397–406. Springer (2007)

23. Grzymala-Busse, J., Stefanowski, J., Wilk, S.: A comparison of two approaches to data mining
from imbalanced data. J. Intell. Manuf. 16, 565–574 (2005). https://doi.org/10.1007/s10845-
005-4362-2

24. He H. Yungian, M.: Imbalanced Learning. Foundations, Algorithms and Applications. IEEE -
Wiley (2013)

25. He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Data Knowl. Eng. 21, 1263–
1284 (2009). https://doi.org/10.1109/TKDE.2008.239

26. Hido, S., Kashima, H.: Roughly balanced bagging for imbalance data. Stat. Anal. Data Min.
2(5–6), 412–426 (2009)

27. Ho, T.: The random subspace method for constructing decision forests. Pattern Anal. Mach.
Intell. 20(8), 832–844 (1998)

28. Hu, B., Dong, W.: A study on cost behaviors of binary classification measures in class-
imbalanced problems. CoRR abs/1403.7100 (2014)

29. Japkowicz, N., Stephen, S.: Class imbalance problem: a systematic study. Intell. Data Anal. J.
6(5), 429–450 (2002)

30. Japkowicz, N.: Shah, Mohak: Evaluating Learning Algorithms: A Classification Perspective.
Cambridge University Press (2011). doi:https://doi.org/10.1017/CBO9780511921803

31. Jelonek, J., Stefanowski, J.: Feature subset selection for classification of histological images.
Artif. Intell. Med. 9, 227–239 (1997). https://doi.org/10.1016/S0933-3657(96)00375-2

32. Jo, T., Japkowicz, N.: Class imbalances versus small disjuncts. ACM SIGKDD Explor. Newsl.
6(1), 40–49 (2004). https://doi.org/10.1145/1007730.1007737

33. Khoshgoftaar, T., Van Hulse, J., Napolitano, A.: Comparing boosting and bagging techniques
with noisy and imbalanced data. IEEE Trans. Syst. Man Cybern. Part A 41(3), 552–568 (2011).
https://doi.org/10.1109/TSMCA.2010.2084081

34. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-side selection.
In: Proceedings of the 14th International Conference on Machine Learning ICML-1997, pp.
179–186 (1997)

35. Kuncheva, L.: Combining Pattern Classifiers. Methods and Algorithms, 2nd edn. Wiley (2014)
36. Lango, M., Stefanowski, J.: The usefulness of roughly balanced bagging for complex and

high-dimensional imbalanced data. In: Proceedings of International ECML PKDD Workshop
on New Frontiers in Mining Complex Patterns NFmC, LNAI, vol. 9607, pp. 94–107, Springer
(2015)

37. Lango, M., Stefanowski, J.: Multi-class and feature selection extensions of Roughly Bal-
anced Bagging for imbalanced data. J. Intell. Inf. Syst. (to appear). doi:https://doi.org/10.
1007/s10844-017-0446-7

38. Laurikkala, J.: Improving identification of difficult small classes by balancing class distribu-
tion. Tech. Rep. A-2001-2, University of Tampere (2001). doi:https://doi.org/10.1007/3-540-
48229-6_9

39. Lewis, D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: Pro-
ceedings of 11th International Conference on Machine Learning, pp. 148–156 (1994)

40. Liu, A., Zhu, Z.: Ensemble methods for class imbalance learning. In: Y.M. He H. (ed.)
Imbalanced Learning. Foundations, Algorithms and Applications, pp. 61–82. Wiley (2013).
doi:https://doi.org/10.1002/9781118646106.ch4

https://doi.org/10.1016/j.neucom.2013.03.023
https://doi.org/10.1007/s10845-005-4362-2
https://doi.org/10.1007/s10845-005-4362-2
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1017/CBO9780511921803
https://doi.org/10.1016/S0933-3657(96)00375-2
https://doi.org/10.1145/1007730.1007737
https://doi.org/10.1109/TSMCA.2010.2084081
https://doi.org/10.1007/s10844-017-0446-7
https://doi.org/10.1007/s10844-017-0446-7
https://doi.org/10.1007/3-540-48229-6_9
https://doi.org/10.1007/3-540-48229-6_9
https://doi.org/10.1002/9781118646106.ch4
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