
Chapter 10
Feature Selection with a Genetic Algorithm
for Classification of Brain Imaging Data

Annamária Szenkovits, Regina Meszlényi, Krisztian Buza, Noémi Gaskó,
Rodica Ioana Lung and Mihai Suciu

Abstract Recent advances in brain imaging technology, coupled with large-scale
brain research projects, such as the BRAIN initiative in the U.S. and the European
Human Brain Project, allow us to capture brain activity in unprecedented details. In
principle, the observed data is expected to substantially shape our knowledge about
brain activity, which includes the development of new biomarkers of brain disorders.
However, due to the high dimensionality, the analysis of the data is challenging, and
selection of relevant features is one of the most important analytic tasks. In many
cases, due to the complexity of search space, evolutionary algorithms are appropriate
to solve the aforementioned task. In this chapter, we consider the feature selection
task from the point of view of classification tasks related to functional magnetic
resonance imaging (fMRI) data. Furthermore, we present an empirical comparison of
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conventional LASSO-based feature selection and a novel feature selection approach
designed for fMRI data based on a simple genetic algorithm.

Keywords Functional magnetic resonance imaging (fMRI) · Functional
connectivity · Classification · Feature selection · Mild cognitive impairment ·
Biomarker

10.1 Introduction

Advanced brain imaging technology allows us to capture brain activity in unprece-
dented details. The observed data is expected to substantially shape our knowledge
about the brain, its disorders, and to contribute to the development of new bio-
markers of its diseases, including mild cognitive impairment (MCI). MCI represents
a transitional state between the cognitive changes of normal aging and very early
dementia and is becoming increasingly recognized as a risk factor for Alzheimer
disease (AD) [14].

The brainmay be studied at various levels. At the neural level, the anatomy of neu-
rons, their connections and spikes may be studied. For example, neurons responding
to various visual stimulii (such as edges) as well as neurons recognizing the direc-
tion of audio signals have been identified [49, 50]. Despite these spectacular results,
we note that C. Elegans, having only 302 neurons in total, is the only species for
which neural level connections are fully described [43]. Furthermore, in this respect,
C. Elegans is extremely simple compared with many other species. For example,
the number of neurons in the human brain is approximately 100 billion and each of
them has up to 10,000 synapses [16]. Imaging neural circuits of that size is difficult
due to various reasons, such as diversity of cells and limitations of traditional light
microscopy [27].

While neurons may be considered as the elementary components of the brain, at
the other end, psychological studies focus on the behavior of the entire organism.
However, due to the large number of neurons and their complex interactions, it is
extremely difficult to establish the connection between low-level phenomena (such
as the activity of neurons) and high-level observations referring to the behavior of
the organism. In fact, such connections are only known in exceptional cases: for
example, deprivation to visual stimuli causes functional blindness due to modified
brain function, in other words: the brain does not “learn” how to see, if no visual
input is provided [20, 46].

In order to understand how the brain activity is related to phenotypic conditions,
many recent studies follow an “explicitly integrative perspective” resulting in the
emergence of the new domain of “network neuroscience” [2]. While there are brain
networks of various spatial and temporal scale, in this study we focus on networks
describing functional connectivity between brain regions. Two regions are said to
be functionally connected if their activations are synchronized. When measuring
the activity of a region, usually, the aggregated activity of millions of neurons is
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captured as function of time. Spatial and temporal resolution (number of regions
and frequency of measurements) depend on the experimental technology. In case of
functional magnetic resonance imaging (fMRI), the spatial resolution is currently
around fifty-thousand voxels (i.e., the brain activity is measured in approximately
fifty-thousand cubic areas of the brain), while the temporal resolution is between 0.5
and 2 s. Roughly speaking, the raw data consists of approximately fifty-thousand
time-series, each one corresponding to one of the voxels in which the brain activity
is measured.

When analyzing fMRI data, after the necessary preprocessing steps, voxels are
organized into regions of interest (ROIs). The time series of the voxels belonging
to a ROI are aggregated into a single time series representing the activation of the
ROI as function of time. Next, functional connectivity strength between ROIs can
be calculated. This process is illustrated in Fig. 10.1. Traditionally, functional con-
nectivity strength is described with linear correlation coefficients between the time
series associated with the ROIs. However, according to recent results, more complex
relationships can be represented with other time series distance measures such as
dynamic time warping (DTW) [30].

The functional brain network can be represented with the connectivity matrix of
the aforementioned ROIs, i.e., by the functional connectivity strength between each
pair of ROIs. Functional connectivity matrices show remarkable similarity between
subjects, however some connectivity patterns may be characteristic to various condi-
tions and disorders such as gender, age, IQ, and schizophrenia, addiction or cognitive
impairment, see e.g. [28, 29] and the references therein.

While the connectivity features can be seen as a compact representation of brain
activity compared with the raw data, the dimensionality of the resulting data is still
very high, making feature selection essential for subsequent analysis. Therefore, in
this studywe consider the task of feature selection,which can be described as follows:
given a set of features, the goal is to select a subset of features that is appropriate for
the subsequent analysis tasks, such as classification of instances. In many cases, due
to the complexity of search space, evolutionary algorithms are appropriate to solve
this task.

In the last decade, extensive research has been performed on evolutionary algo-
rithms for feature selection. In this chapter, we will consider the feature selection
task with special focus on its applications to functional magnetic resonance imaging
(fMRI) data. Furthermore, we will present an empirical comparison of conventional
feature selection based on the “Least Absolute Shrinkage and Selection Operator”
(LASSO) and a novel feature selection approach designed for fMRI data based on
a minimalistic genetic algorithm (mGA). Finally, we point out that feature selec-
tion is essential for the successful classification of fMRI data which is a key task in
developing new biomarkers of brain disorders.
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10.2 Materials and Methods

In this section we provide details of the dataset and pre-processing (Sect. 10.2.1), the
feature selectionmethodsweconsider:LASSO(Sect. 10.2.2) andmGA(Sect. 10.2.3).
Subsequently, we describe our experimental protocol in Sect. 10.2.4.

10.2.1 Data and Preprocessing

We used publicly available data from the Consortium for Reliability and Repro-
ducibility (CoRR) [52], in particular, the LMU 2 and LMU 3 datasets [3, 4]. The
datasets contain fourty-nine subjects (22 males, age (mean ± SD): 68.6 ± 7.3 years,
25 diagnosed with mild cognitive impairment (MCI)), each subject participated at
several resting-state fMRI measurement sessions, thus the total number of mea-
surement sessions is 146. In each measurement session, besides high resolution
anatomical images, 120 functional images were collected over 366 sec, resulting
in time-series of length 120 for every brain voxel. The dataset was collected at the
Institute of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany.
For further details on how the data was obtained we refer to the web page of the data:
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/lmu_2.html.

Preprocessing of the raw data includes motion-correction, identification of gray
matter (GM) voxels, and the application of low-pass and high-pass filters. For a
detailed description of the preprocessing pipeline, see [30].

We used the Willard functional atlas of FIND Lab, consisting of 499 functional
regions of interest (ROIs) [34] to obtain 499 functionallymeaningful averaged blood-
oxygen-level dependent (BOLD) signals in each measurement. This allows us to
calculate ROI-based functional connectivity as follows: we calculate the pairwise
dynamic timewarping (DTW)distances [36] between the aforementioned 499BOLD
signals, resulting in 499 × 498/2 = 124251 connectivity features.We obtained these
connectivity features for each of the 146 measurement sessions, leading to a dataset
of 146 instances and 124251 features. From the publicly available phenotypic data,
mild cognitive impairment (MCI) was selected as classification target.

Given the relatively lowamount of instances, selection of relevant features (i.e., the
ones that are characteristic for the presence or absence of mild cognitive impairment)
is a highly challenging task to any of the feature selection techniques.

10.2.2 Least Absolute Shrinkage and Selection Operator

The Least Absolute Shrinkage and Selection Operator is widely used for the analysis
of high-dimensional data, including brain imaging data. Therefore, we review this
technique next.
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We are given a dataset X ∈ R
N×d containing N instances with d features. Each

instance xi (the i-th row of X) is associated with a label yi , the vector y contains
all the labels: y = (y1, . . . , yN ). We aim at finding a function f (x) in the form

f (x) =
d∑

j=1
θ( j)x ( j), where x ( j) is the j-th component of vector x , and ∀ j : θ( j) ∈ R,

so that the function fits the data, i.e., f (xi ) ≈ yi for all (xi , yi ) pairs. For simplicity,
we use θ = (θ(1), . . . , θ (d)) to denote the vector of all the parameters.

The above task can be considered as an ordinary least squares (OLS) regression
problem, where the objective is to find the parameter vector θ∗ that minimizes the
sum of squared errors:

θ∗ = argmin
θ

1

N
||y − Xθ ||2

2
. (10.1)

In the case when N ≥ d (and matrix X has a full column rank), i.e., when we have
more training instances than features, the optimal θ∗ vector exists and is unique.
However, if the number of features exceeds the number of available training instances,
matrix X loses its full column rank, therefore the solution is not unique anymore. In
this case, the model tends to overfit the dataset X, in the sense that it fits not only to
the “regularities” of the data, but also to measurement noise while it is unlikely to fit
to unseen instances of a new dataset X′.

To be able to choose the “correct” parameter vector from the numerous possibil-
ities, one must assume some knowledge about the parameters, and use that in the
optimization. The most common solution of this problem is to add a regularization
term to the function we try to minimize, called objective function. In case of the
well-known ridge-regression method [17] we assume that the Euclidean-norm (L2-
norm) of the θ vector is small, and the objective is to find the parameter vector θ∗
that minimizes the sum of squared errors and the regularization term:

θ∗ = argmin
θ

( 1

N
||y − Xθ ||2

2
+ λ||θ ||2

2

)
, (10.2)

where λ ∈ R is a hyperparameter controlling the regularization, i.e., in case of λ = 0
the method is equivalent to the OLS, but as we increase the λ value, the L2-norm of
the θ vector has to decrease to minimize the objective function.

However, in cases when we can hypothesize that only some of all the available
features have influence on the labels, the above regularization based on the L2-norm
of θ may not lead to an appropriate solution θ∗. In particular, ridge-regressionmethod
results in low absolute value weights for the features, while it tends to “distribute” the
weights between features, i.e., in most cases almost all of the features will receive
nonzero weights. In contrast, regularization with L1-norm usually results in zero
weights for many features, therefore this method can be seen as a feature selection
technique: it selects those features for which the associated weights are not zero,
while the others are not selected. This method is called LASSO [42].

Formally, LASSO’s objective is to find the parameter vector θ∗ that minimizes
the sum of squared errors and the L1 regularization term:
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θ∗ = argmin
θ

( 1

N
||y − Xθ ||2

2
+ λ||θ ||1

)
, (10.3)

where λ ∈ R is a hyperparameter controlling the sparsity of the resulting model, i.e.
the number of weights that are set to zero.

As mentioned above, in brain imaging studies the number of instances is usually
much lower than the number of features, therefore LASSO may be used. Indeed, it
has been shown to be successful for classification tasks related to brain networks [28,
29, 35] in cases where the number of features is 10–50 times larger than the number
of instances. In [28, 29] the features selected by LASSO, i.e., functional connectivity
strength values, did not only lead to good classification performance, but the selected
connections showed remarkable stability through the rounds of cross-validation and
resulted in well-interpretable networks that contain connections that differ the most
between groups of subjects. The task we consider in this study is evenmore challeng-
ing compared with the tasks considered in [28, 29], because the number of features
is more than 800 times higher than the number of available instances.

10.2.3 Minimalist Genetic Algorithm for Feature Selection

Evolutionary Algorithms (EAs) represent a simple and efficient class of nature
inspired optimization techniques [10, 18]. In essence, EAs are population based
stochastic techniques that mimic natural evolution processes to find the solution for
an optimization problem. The main advantages of these approaches are their low
complexity in implementation, their adaptability to a variety of problems without
having specific domain knowledge, and effectiveness [13, 31, 37].

There are many variants of EAs with different operators (e.g. selection, recom-
bination, mutation, etc.) and control parameters such as population size, crossover
and mutation probabilities [12]. A set of random solutions is evolved with the help
of some variation operators and only good solutions will be kept in the population
with the help of selection for survivor operators. Solutions are evaluated by using a
fitness function constructed depending on the problem. Inmost cases it represents the
objective of the optimization problem, and guides the search to optimal solutions by
preserving during the selection process solutions with high (for maximization prob-
lems) fitness values. Based on the encoding and operators used, the main classes
of evolutionary algorithms are considered to be: Genetic algorithms, Genetic pro-
gramming (tree structure encoding), Evolution strategies (real-valued encoding), and
Evolutionary programming (typically uses only mutation) [12].

Genetic algorithms (GAs) use binary encoding and specific mutation and cross-
over operators [12]. A potential solution evolved within a GA is referred to as an
individual, encoded as a chromosome which is composed of genes - and represented
in its simplest form as a string of 0 and 1. Encoding/decoding of an individual is
problem dependent.
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As the feature selection problem aims at selecting the relevant features from a
large number of features [45], evolutionary algorithms seem to be an appropriate
choice for tackling it because they can deal with the search space generated by
the high number of features [21, 45]. Evaluation is performed by using either the
classification accuracy or some convex combination between various indicators, such
as classification accuracy, number of features, overall classification performance,
class specific accuracy, and Pearson correlation [6, 39, 44, 47]. Multi-objective
optimization algorithms have also been used to find trade-offs between the number
of features and classification accuracy as two conflicting objectives [19, 25].

Genetic Algorithms are a natural choice for approaching the feature selection
problem due to the encoding used: in the binary string each value shows if the
corresponding feature is selected or not. Consequently, there are many studies that
employ various variants of genetic algorithms for solving feature selection problems
in fields such as computer science, engineering, medicine, biochemistry, genetics and
molecular biology, chemistry, decision sciences, physics and astronomy, pharmacol-
ogy, toxicology and pharmaceutics, chemical engineering, business, management
and accounting, agricultural and biological sciences, materials science, earth and
planetary sciences, social sciences and humanities. For example, in [24] a genetic
algorithm is used to select the best feature subset from 200 time series features and
use them to detect premature ventricular contraction - a form of cardiac arrhythmia.
In [7] a genetic algorithm was used to reduce the number of features in a complex
speech recognition task and to create new features on machine vision task. In [33],
a genetic algorithm optimizes a weight vector used to scale the features.

Recently, genetic algorithms have been used for feature selection and classifi-
cation of brain related data. Problems approached include brain tumor classifica-
tion [15, 26], EEG analysis [22, 23], and seizure prediction [9]. Genetic algorithms
are designed as stand-alone feature selection methods [32] or as part of a more com-
plex analysis combined with simulated annealing [23, 26], neural networks [9, 15,
41] or support vector machines [22, 26, 41]. To the best of our knowledge, genetic
algorithms have not yet been used for feature selection on fMRI data.

In the followingwe propose aminimalist version of a genetic algorithm formining
features in the brain data. The Minimalist Genetic Algorithm (mGA) evolves one
binary string encoded individual by using only uniform mutation for a given number
of generations in order to improve the classification accuracy while restricting the
number of selected features. In what follows, the mGA is described in detail.

Encoding

mGA uses bit string representation of length L = 124251 – equal to the total number
of features – where 1 means that a feature is selected, and 0 means that the certain
feature is not selected:

010 . . . 100︸ ︷︷ ︸
length: L=124251

. (10.4)
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Initialization

In the first generation a random initial solution is generated by assigning each gene
a value of 1 with probability pin . The probability pin controls number of selected
features in the initial individual, it is problemdependent, and thus can be set according
to domain knowledge.

Evaluation of the fitness function

The aim of the search is to maximize the classification accuracy while avoiding over-
fitting. Thus we construct a fitness function based on accuracy, considering also as a
penalization the proportion of the selected features to the length of the chromosome
(individual). By combining both accuracy and number of selected features, we hope
to achieve a trade-off between them and to avoid overfitting. In particular, the fitness
f of individual I is computed as:

f (I ) = A(I ) − nI

L
, (10.5)

where A(I ) is the classification accuracy and nI is the number of features selected in
I (the number of 1 s in the binary representation). We divide the number of selected
features nI by the total length of the chromosome to keep the two terms in Eq. (10.5)
in [0, 1] and maintain a balance between them.

Mutation

mGAuses the uniform randommutation for variation bywhich each gene ismodified
with a probability pm . In detail, for each gene a random number between 0 and 1 is
generated following a uniformdistribution; if this value is less than the givenmutation
probability pm , the value of the gene is modified (from 1 to 0 or conversely).

In the following example, the second gene of individual I in the left is modified
from 0 to 1 as the second random number generated is 0.001:

I = 01 . . . 10 −−−−−−−−−−−−−−−−−−→
rand():0.236,0.001,...,0.385,0.798

I ′ = 00 . . . 10. (10.6)

Outline of mGA

The main steps of mGA are outlined in Algorithm 1. First, a random initial solution
I is generated. Then, the following steps are repeated until the stopping criterion is
met: (i) creation of an offspring I ′ by the application of mutation to the individual I
representing the current solution, (ii) if the offspring has a higher fitness value, we
keep it as the new current solution, otherwise we do not change the current solution.
The process stops after a predefined number of iterations, denoted by MaxGen.

Parameters

mGA uses the following parameters: pin: the probability of each gene being set to 1
when generating the random individual in the first generation, pm : the probability
used for uniform mutation and the number of generations (MaxGen).
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Algorithm 10.1: Outline of mGA
Initialize random individual (I );
Evaluate I ;
nrGen = 0;
while nrgen < MaxGen do
Apply mutation to I → I ′ ;
Evaluate I ′;
if f (I ′) > f (I ) (I ′ better than I ) then
I = I ′;

end if
nrgen + +;

end while

Table 10.1 mGA Parameter
settings

Parameter pm pin MaxGen

Value 0.004 0.004 3000

10.2.4 Experimental Set-Up

The goal of our experiments was to compare the mGA with LASSO in terms of
their ability to select relevant features. In order to objectively compare the selected
feature sets, and to quantitatively assess their quality, we aimed to classify subjects
according to the presence or absence of mild cognitive impairment (MCI) using the
selected features. In other words: we evaluated both algorithms indirectly in context
of a classification task. Next, we describe the details of our experimental protocol.

As measurements from the same subjects are not independent, we performed
our experiments according to the leave-one-subject-out cross-validation schema. As
our dataset contains measurements from 49 subjects, we had 49 rounds of cross-
validation. In each round, the instances belonging to one of the subjects were used
as test data, while the instances of the remaining 48 subjects were used as training
data. We performed feature selection with both methods (i.e., the mGA and LASSO)
using the training data.1 Subsequently, both sets of selected features were evaluated.

For LASSO, we set the parameter λ to 0.005 in order to restrict the number of
selected features to be around the number of instances (154 ± 5.1).2 The parameter
values used for mGA are presented in Table10.1. The values of pm and pin were set
empirically to limit the number of selected features (starting with approx. 500 and
increasing only if better sets are generated) in order to avoid overfitting caused by
selecting unnecessarily large feature sets.

In order to assess the quality of a selected feature set, we classified test instances
with a simple 1-nearest neighbor [1] classifier with Euclidean distance based on the

1The accuracy for the fitness function ofmGAwas calculated solely on the training data. In particular
we measured the accuracy of a nearest neighbor classifier in an internal 5-fold cross-validation on
the training data.
2We note that λ = 0.001 and λ = 0.0001 led to very similar classification accuracy. For simplicity,
we only show the results in case of λ = 0.005 in Sect. 10.3.
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selected features only. That is: we restrict test and training instance vectors to the
selected feature set, and for every test instance x we search for its nearest neighbor
in the training data. With nearest neighbor of the test instance x wemean the training
instance that is the closest to x according to the Euclidean distance. The predicted
label of the test instance x is the label of its nearest neighbor.

For the task-based evaluation of feature sets in context of the classification accord-
ing to MCI described above, in principle, one could use various classifiers such as
recent variants of neural networks [40] or decision rules [51], however, we decided
to use the nearest neighbor classifier, because our primary goal is to compare the set
of selected features and nearest neighbor relies highly on the features. Furthermore,
nearest neighbor is well-understood from the theoretical point of view and works
surprisingly well in many cases [5, 8, 11].

To demonstrate how our classifiers perform compared to the chance level, we
generated 100 000 random labeling with “coin-flipping” (50–50% chance of gener-
ating the label corresponding to the presence or absence of MCI), and calculated the
accuracy values of these random classifications. The 95th percentile of this random
classifier’s accuracy-distribution is 56.8%. Therefore, we treat the classification as
significantly better than random “coin-flipping” if its accuracy exceeds the threshold
of 56.8%.

10.3 Results

Classification accuracy

The classification accuracy of 1-nearest neighbour classifier based on LASSO-
selected and mGA-selected feature sets are presented in Fig. 10.2.

For both LASSO-selected and mGA-selected feature sets, the classification accu-
racy is significantly better than the accuracy of “coin-flipping”. Furthermore, in this
task, where the number of features is extremely high compared with the number
of instances, the mGA-based feature selection clearly outperforms LASSO-based
feature selection in terms of classification accuracy.

Fig. 10.2 Classification
accuracy using features
selected by LASSO and
mGA
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Table 10.2 Mean ± standard deviation of selected feature set sizes through the 49 rounds of
cross-validation with the two methods

LASSO mGA

154.3 ± 5.1 775.4 ± 249.4

Stability of the selected features

A good feature selection algorithm should result not only in good classification
performance, but an interpretable feature set aswell. The two approacheswe consider
in this study, LASSO and mGA, differ greatly in the number of selected features (see
Table10.2). The LASSO algorithm selects about 154 features with a low standard
deviation, while the mGA algorithm chooses about 5 times more features with large
standard deviation.

The selected feature sets can be examined from the point of view of stability, i.e.,
we can calculate how many times each feature was selected during the 49 rounds of
cross-validation (Fig. 10.3a). As features describe connections between brain ROIs,
we can also calculate how many times each ROI was selected through the cross-
validation (Fig. 10.3b).

In terms of the stability of features, the difference between the two algorithms
is undeniable (Fig. 10.3a). Clearly, the feature set selected by LASSO is very stable
compared with the mGA-selected features, as there are 47 connections that were
selected in at least 40 rounds (about 80%) out of all the 49 rounds of cross-validation,
while in case of the mGA algorithm, there is no feature that was selected more than
6 times. Interestingly, the distinction between the two algorithms almost disappears
if we consider the stability of selected ROIs. In Fig. 10.3b one can see that both
algorithms identify a limited number (less than five) hubROIs, that have considerably
more selected connections, than the rest of the brain.

Runtime

In our experiments, the runtime of a single evaluation in mGA was ≈3.5 s on an
Intel® Core™ i7-5820K CPU @ 3.30GHz × 12, 32 GB RAM, with the settings
fromTable10.1. The total runtime is influenced by the parameter settings (MaxGen,
pm and pin) as they control the number of evaluations and the number of selected
features involved in the evaluation of the classification accuracy in (10.5). Using
the MATLAB-implementation of LASSO, on average, ≈4 s were needed for the
selection of features in each round of the cross-validation. As mGA requires multiple
evaluations, the total runtime of LASSO is much lower than that of mGA.
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Fig. 10.3 a, The stability of selected features for LASSO and mGA. Considering the 49 rounds of
leave-one-subject-out cross-validation, for each n = 1, . . . , 49, we count howmany features appear
at least n-times among the selected features. The vertical axis shows n, while the horizontal axis
displays the number of features that appear at least n-times among the selected features. b, The
stability of selected ROIs for LASSO and mGA. Considering all 49 rounds of cross-validation, we
count how many times each ROIs is selected in total (the selection of a feature corresponds to the
selection of two ROIs; as several features are associated with the same ROI, a ROI may be selected
multiple times: e.g., if both features f1,2 = (r1, r2) and f1,3 = (r1, r3) were selected in all the 49
rounds of cross-validation, and no other features were selected, ROI r1 would appear 49 × 2 = 98
times in total, while r2 and r3 would appear 49 times in total). The left and right vertical axes
show nmGA and nLASSO , while the horizontal axis shows how many ROIs were selected at least
nmGA-times and nLASSO -times, respectively. (As mGA selects about 5 times more features in each
round of the cross-validation, there is a scaling factor of 5 between the two vertical axes.)
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10.4 Discussion

The results show that even in the case of extremely high number of features (number
of features is more than 800 times higher than the number of instances), both LASSO
and mGA algorithms are able to classify subjects according to presence or absence
of MCI significantly better than “coin flipping”. In terms of accuracy, mGA clearly
outperformed LASSO. In contrast, the set of features selected by LASSO is substan-
tially more stable. With respect to the stability of selected ROIs, in our experiments,
the two algorithms resulted in very similar characteristics.

The differences regarding stability may be attributed to inherent properties
of the algorithms: if two features are similarly useful for fitting the model to the
data, but one of them is slightly better than the other, due to its regularization term,
LASSO tends to select the better feature, while mGA may select any of them with
similar probabilities.

The most frequently selected ROIs can be important from a clinical point of
view as well. The top five ROIs of the two algorithms show a significant overlap
(see Table10.3).

The top 20% of ROIs are visualized in Fig. 10.4a, b. One can note that while the
most important ROIs i.e. the hubs of the twomethods are the same, the LASSO based
map is more symmetric, i.e. it respects strong homotopic (inter-hemispheric) brain
connections, while the mGA based map shows clear left hemisphere dominance.
Most importantly, several out of the top 20% ROIs selected by both the LASSO and
the mGA, have been reported in meta-studies examining Alzheimer’s disease and
MCI [38, 48].

Table 10.3 The top five selected ROIs in case of LASSO and mGA

LASSO mGA

ROI ID Region ROI ID Region

1 143 Cuneal cortex 1 143 Cuneal cortex

2 144 Occipital pole, Lingual gyrus 2 144 Occipital pole, Lingual gyrus

3 147 Left lateral occipital cortex,
superior division

3 145 Right precentral gyrus

4 149 Cerebellum 4 24 Left frontal pole

5 145 Right precentral gyrus 5 146 Frontal medial cortex,
subcallossal cortex
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Fig. 10.4 The top 20% of selected ROIs using LASSO (a), and mGA (b). Warm colors represent
more frequently chosen ROIs (hubs)

10.5 Conclusions

The analysis of brain imaging data is a challenging task, because of the high dimen-
sionality. Selecting the relevant features is a key task of the analytic pipeline. We
considered two algorithms, the classic LASSO-based feature selection, and a novel
genetic algorithm (mGA) designed for the analysis of functional magnetic resonance
imaging (fMRI) data. We compared them in context of the recognition of mild cog-
nitive impairment (MCI) based on fMRI data. In terms of classification accuracy, the
features selected by mGA outperformed the features selected by LASSO. Accord-
ing to our observations, the set of features selected by LASSO is more stable over
multiple runs. Nevertheless, both methods provide meaningful information about the
data, confirming the search potential of genetic algorithms and providing a starting
point to further and deeper analyses of brain imaging data by heuristic methods.

Acknowledgements This work partially was supported by a grant of the Romanian National
Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-
TE-2014-4-2332 and theNationalResearch,Development and InnovationOffice (Hungary), project
number: NKFIH 108947 K.



200 A. Szenkovits et al.

References

1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am.
Stat. 46(3), 175–185 (1992)

2. Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017)
3. Blautzik, J., Keeser, D., Berman, A., Paolini, M., Kirsch, V., Mueller, S., Coates, U., Reiser, M.,

Teipel, S.J., Meindl, T.: Long-term test-retest reliability of resting-state networks in healthy
elderly subjects and patients with amnestic mild cognitive impairment. J. Alzheimer’s Dis.
34(3), 741–754 (2013)

4. Blautzik, J., Vetter, C., Peres, I., Gutyrchik, E., Keeser, D., Berman, A., Kirsch, V., Mueller,
S., Pöppel, E., Reiser, M., et al.: Classifying fmri-derived resting-state connectivity patterns
according to their daily rhythmicity. NeuroImage 71, 298–306 (2013)

5. Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Time-series classification based on individu-
alised error prediction. In: 13th International Conference on Computational Science and Engi-
neering, pp. 48–54. IEEE (2010)

6. Canuto,A.M.P.,Nascimento,D.S.C.:Agenetic-based approach to features selection for ensem-
bles using a hybrid and adaptive fitness function. In: The 2012 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8 (2012). https://doi.org/10.1109/IJCNN.2012.6252740

7. Chang, E.I., Lippmann, R.P.: Using genetic algorithms to improve pattern classification perfor-
mance. In: Proceedings of the 1990 Conference on Advances in Neural Information Processing
Systems 3. NIPS-3, pp. 797–803. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1990)

8. Chen, G.H., Nikolov, S., Shah, D.: A latent source model for nonparametric time series clas-
sification. In: Advances in Neural Information Processing Systems, pp. 1088–1096 (2013)

9. D’Alessandre, M., Vachtseyanos, G., Esteller, R., Echauz, J., Sewell, D., Litt, B.: A systematic
approach to seizure prediction using genetic and classifier based feature selection. In: Interna-
tional Conference on Digital Signal Processing, DSP, vol. 2 (2002). https://doi.org/10.1109/
ICDSP.2002.1028162

10. De Jong, K.: Evolutionary Computation: A Unified Approach. MIT Press, Bradford Book
(2006)

11. Devroye, L., Gyorfi, L., Krzyzak, A., Lugosi, G.: On the strong universal consistency of nearest
neighbor regression function estimates. Ann. Stat. 1371–1385 (1994)

12. Eiben,A.E., Smith, J.E.: Introduction toEvolutionaryComputing, 2nd edn. Springer Publishing
Company, Incorporated (2015). https://doi.org/10.1007/978-3-662-44874-8

13. de la Fraga, L.G., Coello Coello, C.A.: A review of applications of evolutionary algorithms
in pattern recognition. In: Wang, P.S.P. (ed.) Pattern Recognition, Machine Intelligence and
Biometrics, pp. 3–28. Springer Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22407-2_1

14. Grundman, M., Petersen, R.C., Ferris, S.H., Thomas, R.G., Aisen, P.S., Bennett, D.A., Foster,
N.L., Jack Jr., C.R., Galasko, D.R., Doody, R., et al.: Mild cognitive impairment can be dis-
tinguished from Alzheimer disease and normal aging for clinical trials. Arch. Neurol. 61(1),
59–66 (2004)

15. Gwalani, H., Mittal, N., Vidyarthi, A.: Classification of brain tumours using genetic algorithms
as a feature selection method (GAFS). In: ACM International Conference Proceeding Series,
vol. 25–26, August (2016). https://doi.org/10.1145/2980258.2980318

16. Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Front.
Hum. Neurosci. 3, 31 (2009)

17. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems.
Technometrics 12(1), 55–67 (1970)

18. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA
(1992)

19. de la Hoz, E., de la Hoz, E., Ortiz, A., Ortega, J., Martínez-Álvarez, A.: Feature selection by
multi-objective optimisation: application to network anomaly detection by hierarchical self-
organising maps. Knowl. Based Syst. 71, 322–338 (2014). https://doi.org/10.1016/j.knosys.
2014.08.013

https://doi.org/10.1109/IJCNN.2012.6252740
https://doi.org/10.1109/ICDSP.2002.1028162
https://doi.org/10.1109/ICDSP.2002.1028162
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-642-22407-2_1
https://doi.org/10.1007/978-3-642-22407-2_1
https://doi.org/10.1145/2980258.2980318
https://doi.org/10.1016/j.knosys.2014.08.013
https://doi.org/10.1016/j.knosys.2014.08.013


10 Feature Selection with a Genetic Algorithm for Classification... 201

20. Hyvärinen, J., Carlson, S., Hyvärinen, L.: Early visual deprivation alters modality of neuronal
responses in area 19 of monkey cortex. Neurosci. Lett. 26(3), 239–243 (1981)

21. de la Iglesia, B.: Evolutionary computation for feature selection in classification problems.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 3(6), 381–407 (2013). https://doi.org/10.
1002/widm.1106

22. Jalili, M.: Graph theoretical analysis of Alzheimer’s disease: discrimination of AD patients
from healthy subjects. Inf. Sci. 384 (2017). https://doi.org/10.1016/j.ins.2016.08.047

23. Ji, Y., Bu, X., Sun, J., Liu, Z.: An improved simulated annealing genetic algorithm of EEG
feature selection in sleep stage. In: 2016, Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference. APSIPA 2016 (2017). https://doi.org/10.1109/
APSIPA.2016.7820683

24. Kaya, Y., Pehlivan, H.: Feature selection using genetic algorithms for premature ventricular
contraction classification. In: 2015 9th International Conference on Electrical and Electronics
Engineering (ELECO), pp. 1229–1232 (2015). https://doi.org/10.1109/ELECO.2015.7394628

25. Khan, A., Baig, A.: Multi-objective feature subset selection using non-dominated sorting
genetic algorithm. J. Appl. Res. Technol. 13(1), 145–159 (2015). https://doi.org/10.1016/
S1665-6423(15)30013-4

26. Kharrat, A., Halima, M., Ben Ayed, M.: MRI brain tumor classification using Support Vec-
tor Machines and meta-heuristic method. In: International Conference on Intelligent Systems
Design and Applications, ISDA, vol. 2016, June (2016). https://doi.org/10.1109/ISDA.2015.
7489271

27. Lichtman, J.W., Denk, W.: The big and the small: challenges of imaging the brain’s circuits.
Science 334(6056), 618–623 (2011)

28. Meszlényi, R., Peska, L., Gál, V., Vidnyánszky, Z., Buza, K.: Classification of fmri data using
dynamic timewarping based functional connectivity analysis. In: Signal ProcessingConference
(EUSIPCO), 2016 24th European, pp. 245–249. IEEE (2016)

29. Meszlényi, R., Peska, L., Gál, V., Vidnyánszky, Z., Buza, K.A.: A model for classification
based on the functional connectivity pattern dynamics of the brain. In: Third EuropeanNetwork
Intelligence Conference, pp. 203–208 (2016)

30. Meszlényi, R.J., Hermann, P., Buza, K., Gál, V., Vidnyánszky, Z.: Resting state fmri functional
connectivity analysis using dynamic time warping. Front. Neurosci. 11, 75 (2017)

31. Michalewicz, Z., Dasgupta, D. (eds.): Evolutionary Algorithms in Engineering Applications,
1st edn. Springer-Verlag New York Inc, Secaucus, NJ, USA (1997)

32. Noori, F., Qureshi, N., Khan, R., Naseer, N.: Feature selection based on modified genetic
algorithm for optimization of functional near-infrared spectroscopy (fNIRS) signals for BCI.
In: 2016 2nd International Conference on Robotics and Artificial Intelligence, ICRAI 2016
(2016). https://doi.org/10.1109/ICRAI.2016.7791227

33. Raymer,M.L., Punch,W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction
using genetic algorithms. IEEE Trans. Evol. Comput. 4(2), 164–171 (2000). https://doi.org/
10.1109/4235.850656

34. Richiardi, J., Altmann, A., Milazzo, A.C., Chang, C., Chakravarty, M.M., Banaschewski, T.,
Barker, G.J., Bokde, A.L., Bromberg, U., Büchel, C., et al.: Correlated gene expression supports
synchronous activity in brain networks. Science 348(6240), 1241–1244 (2015)

35. Rosa, M.J., Portugal, L., Hahn, T., Fallgatter, A.J., Garrido, M.I., Shawe-Taylor, J., Mourao-
Miranda, J.: Sparse network-based models for patient classification using fmri. Neuroimage
105, 493–506 (2015)

36. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recog-
nition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

37. Sanchez, E., Squillero, G., Tonda, A.: Industrial Applications of Evolutionary Algorithms.
Springer-Verlag Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-27467-1

38. Schroeter, M.L., Stein, T., Maslowski, N., Neumann, J.: Neural correlates of Alzheimer’s
disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving
1351 patients. Neuroimage 47(4), 1196–1206 (2009)

https://doi.org/10.1002/widm.1106
https://doi.org/10.1002/widm.1106
https://doi.org/10.1016/j.ins.2016.08.047
https://doi.org/10.1109/APSIPA.2016.7820683
https://doi.org/10.1109/APSIPA.2016.7820683
https://doi.org/10.1109/ELECO.2015.7394628
https://doi.org/10.1016/S1665-6423(15)30013-4
https://doi.org/10.1016/S1665-6423(15)30013-4
https://doi.org/10.1109/ISDA.2015.7489271
https://doi.org/10.1109/ISDA.2015.7489271
https://doi.org/10.1109/ICRAI.2016.7791227
https://doi.org/10.1109/4235.850656
https://doi.org/10.1109/4235.850656
https://doi.org/10.1007/978-3-642-27467-1


202 A. Szenkovits et al.

39. daSilva, S.F., Ribeiro,M.X., JoãodoE.S.BatistaNeto, J., Traina-Jr., C., Traina,A.J.: Improving
the ranking quality of medical image retrieval using a genetic feature selection method. Decis.
Support Syst. 51(4), 810 – 820 (2011). https://doi.org/10.1016/j.dss.2011.01.015. (Recent
Advances in Data, Text, and Media Mining & Information Issues in Supply Chain and in
Service System Design)
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