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Abstract. Correspondence analysis is a very common and renowned
statistical technique, with applications in data summarization, classi-
fication, regression, etc. One particular approach is that of comparing
different partitions over the same set of objects. Moreover, it can be
interesting to analyze correspondences at different detail levels, not only
between partitions, but between classes in these partitions. In addition,
the case of fuzzy partitions over data is still a researching milestone in
development. In this work we propose a novel measure following a previ-
ous definition of an alternate methodology in terms of data mining tools,
in order to overcome some limitations of the former one for the case of
considering partial and global correspondences between fuzzy partitions.
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1 Introduction

Correspondence analysis [3] is a well-known statistical technique that can be
commonly applied to obtain and describe existing relations between two cat-
egorical variables. It is a helpful tool for data dimensionality reduction, as an
initial step before more complex processes such as classification, regression, dis-
criminant analysis, etc. Further extensions and applications of this technique
can be found throughout the literature [9,12].

Nevertheless, since it is based on distances and graphical representations, the
interpretation can be subjective and sometimes confusing. As a way to overcome
this, an alternative to classical correspondence analysis based on data mining
techniques was introduced in [19]. This approach allows to obtain local, partial,
and global correspondences, according to the required detail level. In contrast
to the usual graphical interpretation of distances, correspondences are expressed
in terms of data mining tools such as association rules and approximate depen-
dencies, and as a consequence, we can apply the same metrics to interpret and
measure the original correspondences.
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Furthermore, it must be taken into account the fact that in most of real
world problems, unclear boundaries between partitions can be found, as some
particular elements, due to their nature, may belong to more than one class, with
different degrees, inside a same partition. Fuzzy logic allows us to extend existing
techniques such as classification, clustering, etc., in order to cope with this issue.
As a result, techniques for comparing sets of partitions have been extended in
the same way. Renowned metrics as the Rand [17] or Jaccard indices [14] meet
their counterparts in fuzzy contexts as, for example, approaches as those of
Campello [8], Frigui et al. [11], Brouwer [6], Hüllermeier and Rifqi [13] and
Anderson et al. [2]. In [1] the reader may find a more extensive comparison of
the cited indices.

Similarly, in [7] the mentioned methodology for correspondence analysis in
terms of data mining tools is extended to the fuzzy case, and in [16] an initial
comparison with some of the previous measures is discussed. Nevertheless, as it is
discussed in [7], some restrictions apply in the original definition of fuzzy partial
and global correspondences, as non-atomic values (i.e., elements belonging to
more than one partition) are not fully allowed. This paper is intended to continue
this research line, introducing an ad hoc measure, in order to overcome the cited
drawback. The document is structured as follows. After this introduction, the
original proposal for (fuzzy) correspondence analysis in terms of data mining
tools is recalled. Following this, we define our new index, and some examples of
use are discussed. Concluding remarks as well as future works proposals end the
paper.

2 Correspondences as Data Mining Tools

Correspondence analysis is usually applied as an early stage for integration or
fusion of different classifications over a same set of objects. In classical correspon-
dence analysis, partitions are displayed by means of a contingency table. Instead,
we represent partitions by means of a relational table. For sake of brevity, we
will refer directly to the fuzzy case, since the crisp case is easy to particularize
from the former one.

Let O be a finite set of objects, and ˜P = { ˜P1, . . . , ˜Pp} and ˜Q = { ˜Q1, . . . , ˜Qq}
be two fuzzy partitions over O. Let ˜T

˜P ˜Q be the fuzzy transactional table asso-
ciated to O, where each transaction represents an object, that is, | ˜T

˜P ˜Q| = |O|.
Table 1 shows an example of representation (let us remark that, in this partic-
ular example, partitions are not in Ruspini form). Given o ∈ O, ˜Pi ∈ ˜P and
˜Qj ∈ ˜Q, we noted for ˜Pi(o) (respectively, ˜Qj(o)) the membership degree of o

in ˜Pi (respectively, ˜Qj). Each object must belong to at least one class of each
partition, that is, ∀o ∈ O,∃ ˜Pi ∈ ˜P/ ˜Pi(o) > 0, and each class must contain at
least one object, that is, ˜Pi, ˜Qj �= ∅. Let us note that, for sake of simplicity,
each class in ˜P (resp. ˜Q) can be associated to a single column. Without loss of
generality, we can say that columns ˜P1 . . . ˜Pp (resp. ˜Q1 . . . ˜Qq) represent the set
of possible classes in ˜P (resp. ˜Q).
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Table 1. Example of fuzzy transactional table ˜T
˜P ˜Q

O ˜P ˜Q
˜P1

˜P2
˜P3

˜Q1
˜Q2

˜Q3

o1 0.81 0 0 0.47 0.63 0

o2 0.72 0.35 0 0 0.93 0

o3 0.41 0.65 0 0 1.0 0

o4 0.09 0.9 0 0 1.0 0.02

o5 0 0.69 0.1 0 0.78 0.51

o6 0 0 0.7 0 0.52 0.89

o7 0 0 0.89 0 0.02 0.63

Let us remark that this approach allows us to consider not only perfect cor-
respondences, but also those with possible exceptions. Hence, we are concerned
with measuring the accuracy of correspondences between partitions.

2.1 Local, Partial, and Global Correspondences

Due to space restriction issues, we will recall only the definitions regarding the
fuzzy case. A complete discussion about crisp correspondence analysis by means
of data mining tools can be found in [19]. One of the advantages of this approach
is that correspondences can be measured with the same metrics as those of
data mining tools. In particular, certainty factor [20] returns a value between -1
(perfect, negative correspondence) and 1 (perfect, positive correspondence).

This methodology was later extended in order to manage correspondences
between fuzzy partitions in [7]. Representing fuzzy partitions as in Table 1, the
following types of fuzzy correspondences can be defined.

Definition 1 ([7]) Fuzzy local correspondence. Let ˜Pi ∈ ˜P and ˜Qj ∈ ˜Q.
There exists a fuzzy local correspondence from ˜Pi to ˜Qj, noted ˜Pi ⇒ ˜Qj, if
˜Pi ⊆ ˜Qj, that is, ∀o ∈ O, ˜Pi(o) ≤ ˜Qj(o).

Fuzzy local correspondences can be obtained in terms of fuzzy association
rules (e.g., following the formal model proposed in [10]). Fuzzy partial and global
correspondences were defined as well, following the model for fuzzy approximate
dependencies introduced in [5]. But, as it is addressed in [7], in these cases,
we must manage not classes, but partitions. It would be necessary to define
an overall membership degree of an object regarding a whole partition, that is,
˜A(o). This issue introduced a multidimensionality problem and, hence, objects
were limited to belong to only one class in every partition, for example, that one
with the highest membership degree.

Definition 2 ([7]) Fuzzy partial correspondence. There exists a fuzzy par-
tial correspondence from ˜P to ˜Q, noted ˜P � ˜Q, when ∀ ˜Pi ∈ ˜P ∃ ˜Qj ∈ ˜Q such
that ˜Pi ⊆ ˜Qj, that is, ∀o ∈ O/to[ ˜P] = ˜Pi implies to[ ˜Q] = ˜Qj and ˜P(o)≤̇ ˜Q(o).
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≤̇ defines a vectorial order relation that, for this particular case, corresponds
to a classic order relation. Finally, the step from fuzzy partial correspondences
to fuzzy global correspondences is straightforward.

Definition 3 ([7]) Fuzzy global correspondence. There exists a fuzzy global
correspondence between ˜P and ˜Q, noted ˜P ≡ ˜Q, when ˜P � ˜Q and ˜Q � ˜P.

In order to continue and complete this approach, in the following section
we propose a new index, specifically intended for measuring fuzzy partial (and
global) correspondences between fuzzy partitions.

3 Ad Hoc Index for Fuzzy Partial Correspondences

According to Definition 2, there is a fuzzy partial correspondence between two
partitions, when we find that classes from the first partition are included, to some
extent, in classes from the second partition. Hence, if we are capable of measure
these inclusions for each pair of classes and aggregate the obtained values into
a general index, we could measure a partial (and later, global) correspondence
between these two partitions. With this idea in mind, we define our index as
follows:

Definition 4. Let O = {o1, . . . , on}, be again a set of objects, with ˜P =
{ ˜P1, . . . , ˜Pp} and ˜Q = { ˜Q1, . . . , ˜Qq}, two fuzzy partitions over O. There is a par-
tial correspondence from ˜P to ˜Q when all classes from partition ˜P are included
in classes from ˜P, to some extent, which we measure by means of the following
index:

adhoc( ˜P, ˜Q) = AGGRp
i=1

⎛

⎝

q
⊕

j=1

(

AV Gn
k=1

(

˜Pi(ok) ⊗ ˜Qj(ok)
))

⎞

⎠ (1)

where ⊗ is a t-norm, ⊕ a t-conorm, AGGR is an aggregation operator, and
AV G is an averaging operator.

The reasoning behind this definition is that, for each pair ˜Pi ∈ ˜P, ˜Qj ∈ ˜Q,
we check to what extent is the former one included in the latter one according
to all objects in O, by means of the t-norm ⊗. In our experiments we have
considered a ⊗ b = min(a, b). Next, by means of an averaging operator (in our
case, an average mean), we aggregate all these values for each ˜Qj ∈ ˜Q in order
to obtain an estimated inclusion degree. Among all these degrees, we select
the most representative one for each ˜Pi ∈ ˜P (we took ⊕ = max). Finally, we
obtain our index as an aggregation (AGGR = sum, in our case) of the previous
values. The closer the value to 1, the more similar the partitions are. In fact,
adhoc( ˜P, ˜Q) = 1, if ˜P = ˜Q. Algorithm 1 describes the process in a more formal
way.

It must be remarked that, reviewing the literature, a similar index has been
already proposed by Beringer and Hüllermeier in [4], where similarities between
classes within partitions, instead of objects, are taken into account.
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4 Experiments

As an initial but illustrative example, let us remember the example shown in
Table 1. Following the original approach for fuzzy partial correspondences intro-
duced in [7], a certainty factor CF = 0.80 (resp., 0.20) was returned for the fuzzy
partial correspondence ˜P � ˜Q (resp., ˜Q � ˜P). Our index returned a value of
0.839 (resp., 0.641). Apart from this, we have compared different set of partitions.
Starting from randomly generated values, we compare a 5-classes fuzzy parti-
tion with a 7-classes one over an hypothetical set of 400 objects. Let ˜A5 be the
former one, and ˜A7, the latter one. We measured fuzzy partial correspondence
˜A5 � ˜A7 (resp. ˜A7 � ˜A5) with a value of our index of adhoc(˜A5, ˜A7) = 0.571
(resp. 0.787). This first experimental instance was mainly intended to test the
behavior of the metric.

Table 2. Fuzzy partitions computed over wiki4HE dataset

˜W1
˜W2

˜W3
˜W4

Distance Euclidean Manhattan

Clusters 19 11 19 11

Error 1.3715 3.2144 0.4853 0.8590

In second place, we took wiki4HE Dataset [15] from UCI Machine Learning
Repository, and applied different FCM (R package e1071 ) executions in order
to generate different partitions (Table 2). Two different metrics (Euclidean and
Manhattan) were applied, and for each one, two possible partitions were com-
puted, with different number of classes. It is expected that, since both metrics
are relatively similar, our index should reflect this with a high value. Moreover,
high values for fuzzy partial correspondences are expected from more detailed
(higher number of classes) partitions to more general (lower number of classes)
ones, and vice versa.

Our index, together with the proposed one in [4], were computed between
those partitions, in order to measure the fuzzy partial correspondences between
them. The results are summarized in Table 3, the first value being that of our
index, and the second one, Beringer and Hüllermeier’s.

Table 3. Fuzzy partial correspondences between partitions (row � column)

˜W1
˜W2

˜W3
˜W4

˜W1 1.000/1.000 0.998/0.974 0.819/0.974 0.988/0.974

˜W2 0.468/0.943 1.000/1.000 0.476/0.943 0.763/0.943

˜W3 0.853/0.971 0.955/0.971 1.000/1.000 0.955/0.971

˜W4 0.483/0.947 0.903/0.947 0.521/0.947 1.000/1.000
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It must be noticed how fuzzy partial correspondences ˜W1 � ˜W2 and
˜W3 � ˜W4 are strong (index value close to 1), since the latter ones are sum-
marizations of the former ones. That is, a reduction in the number of clusters
induces that the former clusters are included, to some degree, in the latter ones.
The opposite correspondences have a lower index value, which, according to the
previous reasoning, seems logical. Since this issue is not detected in Beringer
and Hüllermeier’s proposal, whose index shows similar values for each pair of
partitions, a deeper study should be conducted in order to explain it.

Finally, we also computed our index over the same partitions considered
in [7], and found an interesting issue; our ad hoc index returned a value higher
than 1. This could be due to the fact that one of the partitions was not in
Ruspini [18] form. This situation may suggest that fuzzy operators in Eq. 1 needs
to be properly adjusted.

Algorithm 1. Algorithm AdHoc

Input : O = {o1, . . . , on}, a set of objects, ˜P = { ˜P1, . . . , ˜Pp} and
˜Q = { ˜Q1, . . . , ˜Qq}, two fuzzy partitions over O.

Output: adhoc( ˜P, ˜Q), measure of the fuzzy partial correspondence from ˜P to
˜Q, ˜P � ˜Q.

1 VP ← ∅
2 foreach ˜Pi ∈ ˜P do
3 VQ ← ∅
4 foreach ˜Qj ∈ ˜Q do

/* Consider how ˜Pi is included in every ˜Qj according to O */

5 VQ[j] ← AV Go∈O

((

˜Pi(o) ⊗ ˜Qj(o)
))

6 end

/* For each ˜Pi, select the most representative value in Vq */

7 VP [i] ←⊕q
1 (VQ[j])

8 end
/* Finally, aggregate all values in VP */

9 adhoc( ˜P, ˜Q) ← AGGRp
i=1 (VP [i])

5 Concluding Remarks and Further Works

In this work our intention has been to continue a previous methodology for
fuzzy correspondence analysis. To this purpose, we have proposed a new ad
hoc index (in absence of a better name) to measure fuzzy partial, and global,
correspondences between two fuzzy partitions, based on the extent to which
the classes of a partition are included in the classes of the second partition,
according to every object in a collection. First experiments suggest that the
obtained results seem reasonable (values close to 1 where expected, and vice
versa), although a deeper analysis, interesting properties study, and comparison
with existing indices is still pending in order to validate and refine our proposal.
They will be properly addressed in a future extension of this paper.
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