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1 History

Mathematical Fuzzy Logics [51,60] have a long tradition with roots going back
to the many-valued logics of �Lukasiewicz, Gödel, and Kleene [57,68,73] and the
Fuzzy Set Theory of Zadeh [111]. Their purpose is to model vagueness or impre-
cision in the real world, by introducing new degrees of truth as additional shades
of gray between the Boolean true and false. For example, one can express the
distinction between a person x having a high fever or a low fever as the degree
of truth of the logical statement Fever(x). One of the central properties of fuzzy
logics is truth functionality—the truth degree of a complex logical formula is
uniquely determined by the truth degrees of its subformulas. This is a fun-
damental difference to other quantitative logics like probabilistic or possibilistic
logics [56,83]. The semantics of fuzzy logics are thus given by functions interpret-
ing the logical constructors conjunction, implication, and negation. For example,
the truth degree of the conjunction (Fever ∧ Headache)(x) can be computed as a
function of the degrees of Fever(x) and Headache(x). The functions proposed by
Zadeh [111] are a popular choice, because they lead to good computational prop-
erties. A different approach uses operators called triangular norms (t-norms) and
their associated residua to interpret conjunction and implication [60,69].

More recently, Description Logics (DLs) were developed as fragments of first-
order logic, with a focus on their computational properties [3]. They use concepts
(unary predicates, such as Fever and Headache) and roles (binary predicates like
hasSymptom) to describe knowledge about the world. For example, the descrip-
tion logic axiom

∃hasDiagnosis.Flu � ∃hasSymptom.Fever � ∃hasSymptom.Headache (1)

says that whenever patients are diagnosed with flu, they must have the symp-
toms fever and headache, i.e. fever and headache are necessary symptoms for a
flu diagnosis. Different choices of concept constructors (such as conjunction �
and existential restrictions ∃) can be used to tailor the description logic to the
needs of a specific domain, ranging from lightweight to very expressive logics, for
which nevertheless highly optimized reasoning systems have been developed. The
first Fuzzy Description Logics (FDLs) were developed based on Zadeh’s fuzzy
semantics [95,106,110], and classical DL algorithms were extended to deal with
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the additional expressivity provided by the truth degrees. Since then, a multitude
of combinations of description logics with fuzzy semantics have been investigated,
they have been subject of several surveys and monographies [10,24,47,74,102],
and many FDL reasoners have been implemented [1,14,23,86,107]. Returning
to the example axiom (1), FDLs enable us to grade a flu diagnosis as mild or
severe, based on the severity of its symptoms.

In this survey, we focus on a prototypical FDL based on the classical descrip-
tion logic ALC, and demonstrate the effects of different fuzzy semantics on the
complexity of reasoning with general TBoxes. Section 2 introduces the basic syn-
tax, semantics, and reasoning problems of the logic, and the subsequent chap-
ters deal with different kinds of semantics, sorted roughly by their complexity:
Zadeh semantics and semantics based on finitely many degrees of truth (Sect. 3),
semantics based on the Gödel t-norm (Sect. 4), and other t-norms such as the
�Lukasiewicz t-norm or the product t-norm (Sect. 5). We conclude with a discus-
sion of related logics and reasoning problems, and some open problems.

2 The Prototypical Fuzzy Description Logic

As a prototypical FDL, we briefly introduce a generic fuzzy extension of ALC,
called L-NALC, where L denotes an algebra specifying the fuzzy semantics, and
N denotes the presence of an additional concept constructor � called residual
negation. In the following sections, we instantiate this generic definition with
different concrete semantics.

Truth degrees. We consider algebras of the form L = (L, ∗L,⇒L) where L is a
totally ordered set of truth degrees, including 0 (false) and 1 (true), respectively;
∗L is a t-norm, i.e. an associative, commutative, and monotonic binary operator
on L that has unit 1; and ⇒L is a binary operator on L called implication function.
To simplify the notation, we usually denote the set L as L. In most cases, ⇒L is a
residuum of ∗L (formally defined in Sect. 4), and the associated residual negation
is the function x �→ x ⇒L 0, for x ∈ L. Another popular fuzzy negation function
is the involutive negation defined by x �→ 1 − x. In the following, we consider a
logic that uses both involutive and residual negation.

Syntax. Let NI, NC, and NR be mutually disjoint sets of individual-, concept-,
and role names. Concepts of L-NALC are defined by the following grammar rule,
where A ∈ NC and r ∈ NR:

C:: = A | ¬C | �C | C � C | ∃r.C | ∀r.C

A TBox is a finite set of general concept inclusions (GCIs) 〈C � D ≥ q〉, where
C,D are concepts and q ∈ [0, 1]. An ABox is a finite set of concept assertions
〈C(a) �� q〉 and role assertions 〈r(a, b) �� q〉 with a, b ∈ NI, r ∈ NR, C a concept,
�� ∈ {≤,≥}, and q ∈ [0, 1]. An ontology is composed of a TBox and an ABox.
We refer to GCIs and assertions as axioms.

Semantics. Interpretations I = (ΔI , ·I) consist of a non-empty set ΔI , called
domain, and an interpretation function ·I that maps every a ∈ NI to an element
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aI ∈ ΔI , every A ∈ NC to a function AI : ΔI → L, and every r ∈ NR to
rI : ΔI ×ΔI → L. This function is extended to concepts C by similarly assigning
them a truth function CI : ΔI → L as follows. For every x ∈ ΔI ,

(¬C)I(x) := 1 − CI(x);

(�C)I(x) := CI(x) ⇒L 0;

(C � D)I(x) := CI(x) ∗L DI(x);

(∃r.C)I(x) := sup
y∈ΔI

rI(x, y) ∗L CI(y); and

(∀r.C)I(x) := inf
y∈ΔI

rI(x, y) ⇒L CI(y).

The interpretation I satisfies (or is a model of)

– the GCI 〈C � D ≥ q〉 iff CI(x) ⇒L DI(x) ≥ q holds for all x ∈ ΔI ;
– the concept assertion 〈C(a) �� q〉 iff CI(aI) �� q;
– the role assertion 〈r(a, b) �� q〉 iff rI(aI , bI) �� q; and
– the ontology O iff it satisfies all axioms in O.

We are interested in deciding consistency in L-NALC, i.e. whether a given ontol-
ogy has a model.

Witnessed models. The semantics of the existential restriction ∃r.C com-
putes the supremum over a potentially infinite set of truth degrees, which may
lead to unwanted or unexpected results. For that reason, witnessed models have
been introduced [61], in which this supremum—and, dually, the infimum from
∀r.C—is required to be reached by some domain element, becoming a maximum
(or minimum, respectively). After having been introduced for FDLs, witnessed
models were also studied in the context of fuzzy predicate logics [62–64]. Fol-
lowing the standard approach in FDLs, in the following we implicitly restrict all
models to be witnessed, in particular for Sects. 4 and 5. For work that does not
enforce this restriction, we refer the interested reader to [24,29,32,37,40,48,61].

In the following sections, we instantiate the logic L-NALC with different
semantics, represented by various choices for the algebra L, and discuss the
effect of these choices on the complexity of deciding (witnessed) consistency.

3 Zadeh and Finitely Valued Semantics

We start with the “traditional” FDL Z-NALC, where Z = ([0, 1], ∗Z,⇒Z) is given
by the Gödel (or minimum) t-norm x ∗Z y = min{x, y} and the Kleene-Dienes
implication x ⇒Z y = max{1 − x, y} [55,68]. These functions were initially
proposed in the context of Fuzzy Set Theory [111] to model the intersection
and inclusion of fuzzy sets. This semantics allows various simplifications in Z-
NALC. For example, ¬C is equivalent to �C, and—as in classical logic—∀r.C
can be expressed as ¬∃r.¬C. This is not always the case for other semantics. It
was noticed early on that this choice of functions also results in an effectively
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finitely valued FDL, i.e. that the set of truth degrees can be restricted without
loss of generality to be finite, as long as it contains 0, 0.5, and 1, and is closed
under application of the involutive negation x �→ 1 − x [97]. For this reason,
we see it as a special case of finitely valued FDLs, where L is a fixed, finite
set, which can be assumed to be of the form {0, 1

n , . . . , n−1
n , 1}, and ∗L and ⇒L

are arbitrary functions as introduced in Sect. 2. In such logics, the restriction to
witnessed models is not necessary anymore, since any supremum over a finite
set of values is automatically a maximum. Reasoning approaches for Zadeh and
finitely valued FDLs can be divided into three classes: tableaux-, crispification-,
and automata-based algorithms.

Tableaux algorithms were developed as extensions of classical tableaux tech-
niques for description logics. The basic idea is to iteratively apply tableaux rules to
decompose complex assertions into simpler ones. For example, 〈(C � D)(a) ≥ q〉
is split into 〈C(a) ≥ q1〉 and 〈D(a) ≥ q2〉, where q1 and q2 are nondeterministically
chosen such that q = q1 ∗L q2. For an assertion 〈(∃r.C)(a) ≥ q〉 involving an exis-
tential restriction, a new individual x has to be introduced, together with asser-
tions 〈r(a, x) ≥ q1〉 and 〈C(x) ≥ q2〉 as above. In general, there are many choices
for q1 and q2, which result in a high degree of nondeterminism; however, for some
semantics (e.g. Zadeh) the rules can be simplified. Since there are only finitely
many possibilities for such assertions over a single individual, appropriate blocking
conditions can ensure termination of these algorithms. Fuzzy tableaux algorithms
have been developed, starting from the initial works in [95,96,106], for very expres-
sive extensions of L-NALC with more concept constructors [38,43,88,89,92,93].
They usually do not provide tight complexity bounds for deciding consistency, but
they have been successfully implemented in FDL reasoners like fuzzyDL [23] and
FiRE [86].

Crispification algorithms are also among the first reasoning methods to be
developed for finitely valued FDLs [97,100]. The idea is to translate the fuzzy
ontology into a classical DL ontology, and then use optimized algorithms for
classical reasoning. In this translation, each concept name A is replaced by
finitely many classical concept names A≥q that represent all those individu-
als that belong to A with a degree of at least q. The order structure on L
is then expressed by GCIs A≥q2 � A≥q1 where q1 < q2. Since the order has
to be preserved also for role names, these reductions introduce so-called role
inclusion axioms, which usually do not increase the complexity of reasoning.
Finally, the original fuzzy axioms are recursively translated into classical axioms
by using the new concept and role names. The ontology resulting from this
translation is consistent in the classical sense iff the original fuzzy ontology is
consistent. The first reductions for general finitely valued semantics included
an exponential blowup [13,15,16,20,22,75], which can however be avoided by
preprocessing the ontology [35]; again, this problem does not occur when using
the Zadeh semantics [11,12,97]. Based on these polynomial translations, it can
be shown that deciding consistency in finitely valued FDLs has the same com-
plexity as in the underlying classical DLs. In particular, consistency in L-NALC
with finite L is ExpTime-complete. It was pointed out recently [35] that some
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reductions [16,20,75] are incorrect for so-called number restrictions, which allow
to restrict the number of r-successors of a particular type; unfortunately, no
alternative reduction has been found so far. The crispification approach has
been implemented in the FDL reasoner DeLorean [14].

Automata-based algorithms generalize similar techniques from classical DLs.
The basic idea behind these algorithms is to use tree automata to decide the
existence of a forest-shaped model of the ontology [36,41,45]. In some cases,
e.g. in the presence of nominals (concepts that can refer to specific individual
names), a forest-shaped model does not need to exist, but the automata-based
techniques can be adapted [25]. One disadvantage of this approach is that it
cannot handle ABoxes naturally. In fact, a pre-completion step, which is based
on the tableau rules mentioned before, is necessary to ensure correctness of the
algorithms [38]. On the other hand, automata-based algorithms are useful for
finding tight complexity bounds. In particular, using the notions from [4], one
can show that consistency in L-NALC is PSpace-complete when restricted to
so-called acyclic TBoxes [41].

In summary, reasoning in finitely valued FDLs (including those using Zadeh
semantics) is usually decidable and has the same complexity as in the underlying
classical DLs; moreover, efficient implementations of reasoning algorithms are
available. The only known exceptions are FDLs that are less expressive than
L-NALC, where additional truth degrees can actually increase the complexity of
reasoning, e.g. from P to ExpTime in EL [26].

4 Gödel Semantics

Hájek initiated a systematic investigation of FDLs with t-norm-based semantics
in [61], founded on his work on Mathematical Fuzzy Logic [60,65]. Such seman-
tics use the infinite set of truth degrees [0, 1] and t-norms ∗L as introduced in
Sect. 2. However, as implication function they use an associated residuum ⇒L

that satisfies, for all x, y, z ∈ [0, 1], the equivalence x ∗L z ≤ y iff z ≤ x ⇒L y. We
consider here only continuous t-norms ∗L, which ensures that their residuum is
unique [69]. It is long known [82] that all infinitely many continuous t-norm can
be constructed using so-called ordinal sums from three fundamental t-norms:
the Gödel t-norm (which is also used in the Zadeh semantics), the �Lukasiewicz
t-norm, and the product t-norm. Without going into the details of this construc-
tion, we focus here on these fundamental t-norms themselves; however, in the
literature many results for their combinations have been obtained.

In this section, we consider the first of the three fundamental t-norms. As
mentioned earlier, the Gödel semantics G = ([0, 1], ∗G,⇒G) differs from the Zadeh
semantics only by using as implication function the Gödel residuum, which is
defined, for all x, y ∈ [0, 1], as

x ⇒G y =

{
1 if x ≤ y,

y otherwise.
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The first work to deal with Gödel semantics in FDLs was [13]. There, the
authors attempted to replicate the ideas successfully employed for the Zadeh
semantics, and show that reasoning can be restricted to a finite subset of truth
degrees. Unfortunately, this claim turned out to be incorrect. The main reason
lies in the fact that the constructors � and ∀, which require the Gödel residuum
in their interpretation, can be used to guarantee the existence of truth degrees
strictly greater than others, which may, however, be arbitrarily close.

Using this insight, it was later shown in [31] that G-NALC does not have the
finite model property (FMP). That is, there exist consistent G-NALC ontologies
that have only infinite models. Since classical ALC has the FMP, a direct conse-
quence of this result is that it is impossible to apply the crispification approach
from finitely valued FDLs to the Gödel semantics. This result was strengthened
further, by showing that some ontologies can only be satisfied by models that
use infinitely many different truth degrees [31].

Interestingly, it turns out that satisfiability of a G-NALC ontology does not
depend on the precise truth degrees used by an interpretation, but rather on their
relative order. Moreover, only finitely many such orderings are relevant. Hence,
a new crispification approach was developed in [44], where the classical concepts
represent orderings between the degrees given to different fuzzy concepts. Build-
ing on this idea, a tableaux-based method, which decomposes complex concepts
into simpler (ordered) concepts, was developed in [46]. From these algorithms,
it was possible to obtain complexity bounds for reasoning in FDLs under Gödel
semantics that mostly match those of reasoning in their classical variants. In
particular, deciding consistency in G-NALC is again ExpTime-complete.

5 �Lukasiewicz and Product Semantics

We now consider the remaining two of the three fundamental continuous t-norms.
Following the formalization of [60], the product semantics is given by the algebra
Π = ([0, 1], ∗Π,⇒Π), with x ∗Π y = x · y and

x ⇒Π y =

{
1 if x ≤ y,
y
x otherwise.

The �Lukasiewicz semantics is given by �L = ([0, 1], ∗�L,⇒�L), where

x ∗�L y = max{x + y − 1, 0} and
x ⇒�L y = min{1 − x + y, 1}.

After t-norm-based semantics were proposed for FDLs in [61], many tableaux algo-
rithms were developed for these logics [17,18,59,87,103,104]. Most of them are
based on a novel combination of traditional tableaux algorithms with mixed inte-
ger programming solvers. The former decompose complex assertions into smaller
ones, while generating a set of constraints; and the latter are then used to find a
solution for these constraints. In a simple example, 〈(C � D)(a) ≥ 0.5〉 is decom-
posed into 〈C(a) ≥ x〉 and 〈D(a) ≥ y〉, and the constraint x · y ≥ 0.5 is added



Fuzzy Description Logics – A Survey 37

to a set of inequations (under product semantics). At the end, an external solver
computes a solution to this inequation, e.g. {x �→ 0.8, y �→ 0.7}. Unfortunately,
as observed in [5,9], these logics also lack the FMP and, consequently, none of
these algorithms can decide consistency in the presence of GCIs. In fact, these
algorithms are correct only for so-called unfoldable TBoxes (similar to acyclic
TBoxes). A detailed discussion of the reasons for restricting the expressivity of the
ontologies can be found in [2]. Different algorithms tailored towards FDLs using
the product and �Lukasiewicz t-norms in the absence of GCIs were used to show
decidability in [1,47,48,61].

Surprisingly, many such FDLs were subsequently shown to have an unde-
cidable consistency problem, first for product semantics [5–7], and then for
�Lukasiewicz semantics [49]. These results are based on reductions from the Post
Correspondence Problem. They were later generalized to cover a variety of com-
binations of t-norms and concept constructors [33,39], including both Π-NALC
and �L-NALC, even if all axioms are restricted to be crisp, i.e. of the form 〈α ≥ 1〉.
At the same time, it was discovered that these results are quite sensitive to the
choice of concept constructors and axioms allowed. For example, consistency
in Π-NALC becomes decidable if the constructor ¬ and assertions of the form
〈α ≤ q〉 are disallowed. Indeed, it was shown that, to decide consistency in this
restricted logic, it suffices to consider classical interpretations, which use only
the truth values 0 and 1; effectively, the logic cannot even be considered to be
fuzzy [30,33]. On the other hand, consistency in �L-NALC remains undecidable
even without ¬ and ∀, and with only crisp axioms [39]. Very recently, it was
discovered that even �L-EL, which extends a logic with polynomial complexity in
the classical case, has an undecidable consistency problem [27,28]; however, no
such result is known for the variant Π-EL with product semantics. For a detailed
discussion of the border between decidability and undecidability in t-norm-based
FDLs, we refer the reader to [33].

6 Related Notions

Much research effort has been devoted to extending FDLs towards even more
expressive languages. For example, more complex assertions like 〈Tall(a) >
Tall(b)〉 allow to compare fuzzy degrees between different individuals a and b.
Usually, such extensions do not affect the complexity of consistency [31,44–46].
Going one step further, one can also allow comparisons inside concepts like
Tall > ∀friend.Tall, representing the set of all people that are taller than all their
friends. These latter extensions have so far been studied only for the Zadeh
semantics [67,72].

The papers [21,70,109] propose aggregation operators that generalize concept
conjunctions, and for example allow to express weighted sums of truth degrees,
like a 1

2Comfortable + 1
2Cheap hotel. Due to their generality, however, one has to

be careful not to obtain an undecidable logic, e.g. by restricting to unfoldable
TBoxes. Similarly, one can replace the quantifiers in FDLs by more general
functions [85], or introduce fuzzy modifiers like very [66,112] that can scale and
transform the interpretations of concepts, e.g. very Tall.
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A different direction for generalization is to allow the truth degrees to be only
partially ordered. In particular, extensions of description logics with lattice-based
semantics have been studied in [24,25,36,41,43,58,100]. If the underlying lattice
is finite, then methods similar to those described in Sects. 3 and 4 can be used
to show tight complexity bounds or provide reductions to classical reasoning.
Other (infinite) semantics remain largely unexplored, but they are expected to
be undecidable in most cases.

The standard approach to integrate datatypes into description logics is to
include concrete domains, which provide access to new concrete predicates whose
interpretation is fixed, e.g. the total order on the natural numbers. In [80],
the classical description logic ALC is extended with the use of fuzzy concrete
domains, which provide built-in fuzzy predicates. In the context of FDLs, fuzzy
concrete domains have also been studied in [18,98], but are usually restricted to
unary concrete predicates.

A different reasoning task often considered in description logics is to answer
conjunctive queries (CQs) over an ontology O. More precisely, one is interested
in retrieving all the individuals that satisfy some given properties in every model
of O. In FDLs this problem becomes more involved, since individuals may sat-
isfy the query to some intermediate truth degree. This has motivated different
approaches and solutions to CQ answering over fuzzy ontologies, for example by
crispification or adaptation of classical CQ answering techniques such as query
rewriting [35,75,78,84,99].

A lot of research has been done also on fuzzy extensions of less expressive
description logics like EL [8,26,42,76,90], FL0 [34], and rule-based languages [77,
94,108]. Since the semantics of the standard Web Ontology Language OWL 2 is
based on classical description logics,1 several proposals have been made for a
fuzzy extension of OWL 2 in order to make FDLs more accessible, and fuzzy
plug-ins for ontology editors have been developed [19,88,91].

We have focused here mainly on the theoretical aspects of FDLs and in
particular on the complexity of reasoning in ontologies built with these lan-
guages. The importance of this study is highlighted by several applications that
have been considered. Some of these applications include medicine [81], informa-
tion retrieval [79,101], recommendation [50,53], and detection [52,54]. Another
important aspect is the problem of constructing such ontologies in the first place.
Approaches for learning FDL axioms from data have been suggested in [71,105].

7 Conclusions

As it can be seen from this survey, FDLs are a very active research topic. Par-
ticularly during the current decade, much effort has been made to understand
the computational properties of this family of logics. As a result, the computa-
tional complexity of deciding consistency of FDL ontologies and other related
reasoning tasks is mostly known. The most notable exceptions are perhaps the

1 https://www.w3.org/TR/owl2-primer/.

https://www.w3.org/TR/owl2-primer/
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cases with restricted expressivity—either by the limiting the concept construc-
tors as in FL0 or DL-Lite, or by constraining the available axioms like for acyclic
TBoxes—with general t-norm semantics.

Apart from the identified undecidable logics, there are several candidates of
languages that can be used to effectively represent and reason about imprecise
knowledge. Interestingly, these cases are still expressive enough for the needs
of some existing applications, and mostly retain the same computational com-
plexity as their underlying classical formalisms. However, the development of
efficient, scalable reasoners is still ongoing. Future work should focus on the
development and implementation of specialized optimizations. These reasoners
can then be used to further promote the use of FDLs in practical applications.

References
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37. Borgwardt, S., Peñaloza, R.: Non-Gödel negation makes unwitnessed consistency
undecidable. In: Proceedings of the 25th International Workshop on Description
Logics (DL 2012), pp. 411–421 (2012) (poster paper)
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