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Abstract. Čyras and Toni claimed that assumption-based argumenta-
tion equipped with preferences (p ABA) cannot solve two examples pre-
sented by them since the given preferences don’t work in their p ABAs
whose underlying ABAs have a unique extension, and hence they pro-
posed ABA+. However in p ABAs encoded by them, we found that they
mistook hypotheses contained in their example for assumptions, while
Čyras ignored some constrains contained in another example. Hence
against their claim, first this paper shows that p ABAs in which we
expressed the respective knowledge correctly give us solutions of them
without any difficulties. Second we present the technique to represent
hypotheses in ABA as well as a method to incorporate some kind of con-
straints in p ABA. Finally we show a famous non-monotonic reasoning
example with preferences that ABA+ leads to incorrect results.

1 Introduction

Assumption-Based Argumentation (ABA) [1,9] is a general-purpose argumenta-
tion framework whose arguments are structured. It does not have a mechanism
to deal with the given explicit preferences though explicit preferences are often
required to resolve conflicts between arguments in human argumentation.

Recently to overcome difficulties of the existing approaches that map the
explicit preferences into ABA, we proposed an assumption-based argumenta-
tion framework equipped with preferences (p ABA) [22,23], which incorporates
explicit preferences over sentences into ABA. As discussed in [23], our approach
introducing preferences over sentences in the framework is inspired by prior-
itized circumscription [15,16], namely, the most well-established formalization
for commonsense reasoning with preferences that enables us to represent vari-
ous preferences by means of priorities over its minimized predicates. In regard
to the semantics of p ABA, we provide a method to ‘lift’ a sentence ordering
given in p ABA to the argument ordering. Accordingly we can freely give any
semantics to the proposed p ABA based on either an argument ordering or a
sentence ordering. W.r.t. other frameworks (e.g. ASPIC+ [17,18]), the lift from
preferences to argument orderings is also performed. However based on their
argument orderings, the altered argumentation framework with a modified suc-
cessful attacks (i.e. defeat) is constructed, to which Dung’s argument-based
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semantics is applied. This denotes that the extension of the altered argumenta-
tion framework is not always an extension of the initial argumentation frame-
work without preferences but a modified one, which is in conflict with our phi-
losophy based on the idea to treat preferences in prioritized circumscription
[15,16]. Now recall that, when every model is a Herbrand model, a model of
prioritized circumscription expressed by Circum(T ;P 1 > · · · >P k;Z) is a min-
imal one among Herbrand models of the first order theory T w.r.t. the model
(i.e. structure) ordering ≤P 1>···>Pk;Z lifted from the given predicate ordering
P 1 > · · · > P k. Thus in a similar way, we presented a method to lift a sentence
ordering (resp. an argument ordering) to the extension ordering (�ex). Thanks
to the extension ordering, the semantics of p ABA is given by P-argument
extensions along with P-assumption extensions which are maximal ones w.r.t.
the extension ordering �ex among extensions of its underlying ABA. Thus in
a special case of Circum(T ;P 1 > · · · > P k;Z) where T has a unique model,
Circum(T ;P 1> · · · >P k;Z) has a unique model which coincides with the model
of T since the unique model of T is always minimal w.r.t. ≤P 1>···>Pk;Z regardless
of the given P 1 > · · · > P k. This means that when T has a unique model, any
of other interpretations of T which are inevitably inconsistent is never selected
as a model of Circum(T ;P 1> · · ·>P k;Z) by taking account of priorities. Hence
inheriting the same property, in a special case of p ABA such that its underlying
ABA (which satisfies rationality postulates [10]) has a unique extension, p ABA
〈L,R,A, C,�〉 has a unique P extension which coincides with the extension of its
underlying ABA since the unique argument extension of such ABA is maximal
w.r.t. �ex regardless of the given �.

As for this property, Čyras and Toni claimed that a p ABA framework can-
not solve two examples (i.e. [5, Example 1], [4, Example 1]) since the given
preferences don’t work in p ABAs encoded by them whose underlying ABAs
have a unique extension, and hence they proposed ABA+ [5]. However in their
p ABAs, we found that they mistook hypotheses contained in [5, Example 1] for
assumptions, while Čyras ignored some constrains contained in another one [4,
Example 1]. Hence against their claim, first we show that p ABAs in which we
expressed the respective knowledge correctly give us solutions of them without
any difficulties, and the given preferences work well in the p ABAs where the
underlying ABAs have the multiple extensions. Second we present the technique
to represent hypotheses in ABA as well as a method to incorporate some kind of
constraints in ABA and p ABA. Finally, and perhaps most importantly, we show
a famous non-monotonic reasoning example involving the use of preferences that
ABA+ leads to incorrect results, while p ABA avoids this problem.

This paper is organized as follows. Section 2 gives preliminaries. Section 3
presents how to represent hypotheses in ABA. Section 4 presents an ABA
equipped with preferences and constrains. Section 5 discusses related work.
Section 6 concludes this paper while showing a counterexample to ABA+.
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2 Preliminaries

Definition 1 (ABA). An assumption-based argumentation framework (an
ABA framework, or an ABA, for short) [1,9,13] is a tuple 〈L,R,A, C〉, where

– (L,R) is a deductive system, with L a language consisting of countably many
sentences and R a set of inference rules of the form b0 ← b1, . . . , bm(m ≥ 0),
where b0 (resp. b1, . . . , bm) is called the head (resp. the body) of the rule.

– A ⊆ L, is a (non-empty) set, referred to as assumptions.
– C is a total mapping from A into 2L \ {∅}, where each c ∈ C(α) is a contrary

of α ∈ A.
We enforce that ABA frameworks are flat, namely assumptions do not occur as
the heads of rules. For a special case such that each assumption has the unique
contrary sentence (i.e. |C(α)|=1 for ∀α ∈ A), an ABA framework is usually
defined as 〈L,R,A, ¯̄ 〉, where a total mapping ¯̄ from A into L is used.

In ABA, an argument for (the claim) c ∈ L supported by K ⊆ A (K 
 c in
short) is a (finite) tree with nodes labelled by sentences in L or by τ , and attacks
against arguments are directed at the assumptions in their supports as follows.

– An argument K 
 c attacks an assumption α iff c ∈ C(α).
– An argument K1 
 c1 attacks an argument K2 
 c2 iff c1 ∈ C(α) for ∃α ∈ K2.

Corresponding to ABA F = 〈L,R,A, C〉, the abstract argumentation framework
AFF = (AR, attacks) is constructed based on arguments and attacks addressed
above, and all argumentation semantics [7] can be applied to AFF . For a set Args
of arguments, let Args+={A| there exists an argument in Args that attacks A}.
Args is conflict-free iff Args ∩ Args+ = ∅. Args defends an argument A iff each
argument that attacks A is attacked by an argument in Args.

Definition 2 [2,7,9,13]. Let 〈L,R,A, C〉 be an ABA framework, and AR the
associated set of arguments. Then Args ⊆ AR is: admissible iff Args is conflict-
free and defends all its elements; a complete argument extension iff Args is
admissible and contains all arguments it defends; a preferred (resp. grounded)
argument extension iff it is a (subset-)maximal (resp. (subset-)minimal) complete
argument extension; a stable argument extension iff it is conflict-free and Args∪
Args+ = AR; an ideal argument extension iff it is a (subset-)maximal complete
argument extension that is contained in each preferred argument extension.

The various ABA semantics [1] is also described in terms of sets of assumptions.
– A set of assumptions Asms attacks an assumption α iff Asms enables the

construction of an argument for the claim ∃c ∈ C(α).
– A set of assumptions Asms1 attacks a set of assumptions Asms2 iff Asms1

attacks some assumption α ∈ Asms2.

For a set of assumptions Asms, let Asms+ = {α ∈ A|Asms attacks α}. Asms
is conflict-free iff Asms ∩ Asms+ = ∅. Asms defends an assumption α iff each
set of assumptions that attacks α is attacked by Asms. Assumption extensions
are defined like argument extensions as follows.
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Definition 3 [2,9,13]. Let 〈L,R,A, C〉 be an ABA framework. Then Asms is:
admissible iff Asms is conflict-free and defends all its elements; a complete
assumption extension iff Asms is admissible and contains all assumptions it
defends; a preferred (resp. grounded) assumption extension iff it is a (subset-)
maximal (resp. (subset-)minimal) complete assumption extension; a stable
assumption extension iff it is is conflict-free and Asms ∪ Asms+ = A; an ideal
assumption extension iff it is a (subset-)maximal complete assumption extension
that is contained in each preferred assumption extension.

Let Sname ∈ {complete, preferred, grounded, stable, ideal}. It is shown that
there is a one-to-one correspondence between assumption extensions and argu-
ment extensions of a given ABA 〈L,R,A, C〉 under the Sname semantics as
follows.

Theorem 1 [2,22,23]. Let 〈L,R,A, C〉 be an ABA framework, AR be the
set of all arguments that can be constructed using this ABA framework, and
Asms2Args :2A → 2AR and Args2Asms :2AR → 2A be functions such that,

Asms2Args(Asms) = {K 
 c ∈ AR | K ⊆ Asms},

Args2Asms(Args) = {α ∈ A | α ∈ K for an argument K 
 c ∈ Args}.

Then if Asms ⊆ A is a Sname assumption extension, then Asms2Args(Asms)
is a Sname argument extension, and if Args ⊆ AR is a Sname argument exten-
sion, then Args2Asms(Args) is a Sname assumption extension.
Proof. In [23], proofs for Sname ∈ {complete, preferred, grounded, stable} are
given. For Sname = ideal, it is also easily proved like [2,8]. �
For notational convenience, let claim(Ag) stand for the claim c of an argument
Ag such that K 
 c, and Concs(E) = {c ∈ L | K 
 c ∈ E} for an extension E.

Definition 4 (ABA equipped with preferences [22,23]). An assumption-
based argumentation framework equipped with preferences (a p ABA framework,
or p ABA for short) is a tuple 〈L,R,A, C,�〉, where
– 〈L,R,A, C〉 is an ABA framework,
– �⊆ L×L is a sentence ordering called a priority relation, which is a preorder,

that is, reflexive and transitive. As usual, c′ ≺ c iff c′ � c and c �� c′. For any
sentences c, c′ ∈ L, c′ � c (resp. c′ ≺ c) means that c is at least as preferred
as c′ (resp. c is strictly preferred to c′).

For a special case such that each assumption has the unique contrary sen-
tence (i.e. |C(α)|=1 for ∀α ∈ A), a p ABA framework may be represented as
〈L,R,A, ¯̄ ,�〉 instead of 〈L,R,A, C,�〉, where a total mapping ¯̄ from A into
L is used instead of a total mapping C from A into 2L \ {∅} like ABA.

For p ABA 〈L,R,A, C,�〉, let F = 〈L,R,A, C〉 be the associated ABA and
AFF = (AR, attacks). Then ≤⊆ AR × AR is the argument ordering over AR
constructed from � as follows.

For any arguments Ag1, Ag2 ∈ AR such that K1 
 c1 and K2 
 c2,

Ag1 ≤ Ag2 iff c1 � c2 for ci=claim(Agi) (1 ≤ i ≤ 2)
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Definition 5 (Preference relations �ex). Given p ABA 〈L,R,A, C,�〉, let
E be the set of Sname argument extensions of the AA framework AFF =
(AR, attacks) corresponding to the ABA framework F = 〈L,R,A, C〉 under
Sname semantics and f : 2AR × 2AR → 2AR be the function s.t. f(U, V ) =
{X| claim(X) = claim(Y ) for X ∈ U, Y ∈ V }. Then �ex over E (i.e.
�ex⊆ E ×E) is defined as follows [22,23]. For any Sname argument extensions,
E1, E2 and E3 from E,

1. E1 �ex E1,
2. E1 �ex E2 if for some argument Ag2 ∈ E2 \ Δ2,

(i) there is an argument Ag1 ∈ E1 \ Δ1 s.t. claim(Ag1) � claim(Ag2) and,
(ii) there is no argument Ag3 ∈ E1 \ Δ1 s.t. claim(Ag2) ≺ claim(Ag3),

where Δ1 = f(E1, E2) and Δ2 = f(E2, E1),
3. if E1 �ex E2 and E2 �ex E3, then E1 �ex E3;

�ex is a preorder. We write E1 �ex E2 if E1 �ex E2 and E2 ��ex E1 as usual.

The preference relation �ex can be also defined by using the argument ordering
≤ in a way that claim(Ag1) � claim(Ag2) and claim(Ag2) ≺ claim(Ag3) is
replaced with Ag1 ≤ Ag2 and Ag2 < Ag3 in item no. 2 of Definition 5 [22,23].

Let Sname ∈ {complete, preferred, grounded, stable, ideal}. The semantics
of p ABA is given by Sname P extensions which are the maximal ones w.r.t.
�ex among Sname extensions as follows.

Definition 6 (P-extensions [22,23]).Givenap ABAframework 〈L,R,A,C,�〉,
let E be the set of Sname argument extensions of AFF = (AR, attacks) correspond-
ing to the ABA framework 〈L,R,A, C〉 under Sname semantics. Then a Sname
argument extension E ∈ E is called a Sname P-argument extension of the p ABA
framework if E �ex E′ implies E′ �ex E (with respect to �) for any E′ ∈ E. In
other words, E is a Sname P-argument extension of a p ABA iff there is no Sname
argument extension E′ ∈ E such that E �ex E′. For a Sname P-argument exten-
sion E, Args2Asms(E) is called a Sname P-assumption extension. Both a Sname
P-argument extension and a P-assumption extension may be called a Sname P
extension for short.

3 Representing Hypotheses in ABA

In logic programming, NAF literals are used to perform non-monotonic and
default reasoning, while hypotheses (i.e. abducibles, abducible facts) are used to
perform abductive reasoning or hypothetical reasoning. In [14,20], it is shown
that an abductive logic program (or an abductive program) can be transformed
into a logic program without abducibles, where for each abducible a, a new atom
a′ is introduced representing the complement of a and a new pair of rules:

a ← not a′, a′ ← not a

is added to the program. Such transformation for hypotheses was also used to
compute abductive argumentation [21].
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In ABA, hypotheses are different from assumptions as abducible literals are
different from NAF literals in logic programming. Hence when hypotheses (or
abducible facts) are contained in the knowledge, each one, say a, can be also
expressed by a new pair of rules in ABA as follows:

a ← δ, a′ ← δ′

where a′ is a newly introduced sentence representing the complement of a, while
δ, δ′ are newly introduced assumptions such that δ = a′, δ′ = a.

Example 1. Consider the example shown in [5, Example 1] as follows:
“Zed wants to go out and two of his friends, Alice and Bob, are available. Best,
Zed would take them both, but as far as he knows, Bob does not like Alice,
although she does not have anything against Bob. If Zed offers to both of them
at the same time, Bob may be in the awkward position to refuse Alice’s company.
Offering separately, Alice is up for all three going, while Bob insists on cutting
Alice out. Zed may opt for the latter option. However, had Zed a preference
between the two, - say Alice were a better friend of his - then he would go out
with her.” �

In what follows, a (resp. b) denotes that Alice (resp. Bob) might go out with
Zed, while ¬a (resp. ¬b) denotes the negation of a (resp. b). Since Alice (resp.
Bob) might go out with Zed or might not, a and b are not assumptions but
hypotheses. Hence the situation about them is expressed by the following rules:

a ← α, ¬a ← α′, b ← β, ¬b ← β′,

where A = {α, α′, β, β′}, α = ¬a, α′ = a, β = ¬b and β′ = b. The opted option
such that Bob insists on cutting Alice out is expressed by ¬a ← b. Preferences
such that best, Zed would take them both, but he prefers Alice to Bob are
expressed by:

{¬a,¬b} � {b} � {a} � {a, b} (1)

According to [23, Definition 25], preferences between conjunctive knowledge
shown above can be encoded in p ABA 〈L,R,A, ¯̄ ,�〉 by introducing new rules:

c1 ← a, b, c2 ← ¬a,¬b,

along with preferences:

c2 � b � a � c1 (a, b, c1, c2 ∈ L \ A) (2)

Then based on p ABA consisting of R= {¬a ← b, a ← α, ¬a ← α′, b ←
β, ¬b ← β′, c1 ← a, b, c2 ← ¬a,¬b}, A = {α, α′, β, β′}, α = ¬a, α′ = a,
β = ¬b, β′ = b and c2 � b � a � c1, arguments and attacks are constructed as
follows:

• A : {α} 
 a • A′ : {α′} 
 ¬a • B : {β} 
 b • B′ : {β′} 
 ¬b
• X : {β} 
 ¬a • C1 : {α, β} 
 c1 • C2 : {α′, β′} 
 c2 • ξ : {α} 
 α
• ξ′ : {α′} 
 α′ • η : {β} 
 β • η′ : {β′} 
 β′
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attacks={(A,A′), (A, ξ′), (A,C2), (A′, A), (A′, ξ), (A′, C1), (X,A), (X, ξ), (X,C1),
(B,B′), (B, η′), (B,C2), (B′, B), (B′, η), (B′,X), (B′, C1)}.

The underlying ABA has the preferred (resp. stable) argument extensions Ei

(1 ≤ i ≤ 3) as follows:

E1 = {A′, B,X, ξ′, η}, with Concs(E1) = {¬a, b, α′, β},
E2 = {A,B′, ξ, η′}, with Concs(E2) = {a,¬b, α, β′},
E3 = {A′, B′, C2, ξ

′, η′}, with Concs(E3) = {¬a,¬b, c2, α
′, β′}.

Due to E3 � E1 � E2 derived from (2), E2 is the unique preferred (resp.
stable) P-argument extension in the p ABA. Hence against Čyras and Toni’s
claim [5], E2 gives us the solution that Zed would go out with Alice and without
Bob.

Remark: In [5], Čyras and Toni expressed this example by p ABA consisting of
R = {α ← β}, A = {α, β}, β � α. Then they claimed that regarding arguments
A for Alice and B for Bob, A for Alice cannot be obtained from the extension
of p ABA encoded by them since its underlying ABA has the unique extension
{B}, where attacks = {(B, A)} and B < A. Therefore the reason why they could
not obtain the solution based on p ABA is that they mistook the hypothetical
knowledge a, b for assumptions α, β; and it is not due to the property of p ABA.

4 Assumption-Based Argumentation Equipped with
Preferences and Constraints

4.1 Problematic Knowledge Representation

As addressed in introduction, Čyras [4] claimed that p ABA cannot solve the
example called “Cakes” presented by him, whose scenario is shown as follows.

Example 2 (Cakes [4, Example 1]). There are three pieces of cakes on a table: a
piece of Almond cake, a Brownie, and a piece of Cheesecake. You want to get as
many cakes as possible, and the following are the rules of the game.

1. You can take cakes from the table in two ‘rounds’:
(a) In the first round you can take at most two cakes;
(b) In the second round you can take at most one cake.

2. If you take Almond cake and Cheesecake in the first round, Brownie will not
be available in the second round. (Nothing is known about other possible
combinations.)

3. Finally, very importantly, suppose that you prefer Brownie over Almond cake.
(No other preferences.)

Which pair(s) of cakes would you choose in the first round? �
The solution of Cakes is that “either a pair of Brownie cake and Cheesecake

or a pair of Almond and Brownie cakes is chosen in the first round”.
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In [4], Čyras expressed the knowledge of Cakes in p ABA consisting of infer-
ence rules R= {b ← a, c}, assumptions A = {a, b, c} and preference a < b,
and claimed that p ABA cannot obtain its solution since the given preference
doesn’t work in his p ABA whose underlying ABA has a unique extension. On
the other hand, he expressed the knowledge in ASPIC+ consisting of the strict
rules Rs = {a, c → ¬b, a, b → ¬c, b, c → ¬a}, premises Kp = {a, b, c} and pref-
erence a < b, and concluded that the ASPIC+ cannot obtain the solution since
three extensions exist under the Elitist comparison (resp. the Democratic com-
parison). Now recall the Prakken and Modgil’s result [17,18] that ABA is a
special case of ASPIC+ with only strict inference rules Rs, premises Kp [17] (or
assumptions Ka [18]) and no preferences. However for Cakes, there is no corre-
spondence between his ASPIC+ except preferences (i.e. Rs) and the underlying
ABA of his p ABA (i.e. R). This indicates that Čyras’ knowledge representation
for Cakes is problematic. Thereby for Cakes, let us construct the p ABA from
his ASPIC+ according to Prakken and Modgil’s result. Then we obtain p ABA
〈L,R,A, ¯̄ ,�〉, where R = {¬b ← a, c, ¬c ← a, b, ¬a ← b, c}, A = {a, b, c},
a = ¬a, b = ¬b, c = ¬c and a � b. We can construct arguments A: {a} 
 a,
B: {b} 
 b, C: {c} 
 c, A′: {b, c} 
 ¬a, B′: {a, c} 
 ¬b, C′: {a, b} 
 ¬c, and
obtain attacks = {(C′, C), (C′, A′), (C′, B′), (B′, B), (B′, A′), (B′, C′), (A′, A), (A′, B′),
(A′, C′)}. Its associated ABA has three extensions: E1 = {C, A, B′}, E2 = {B, C, A′},
E3 = {A, B, C′}. Since E1 �ex E2 is derived due to a � b, both E2 and E3
(resp. Args2Asms(E2) = {b, c}, Args2Asms(E3) = {a, b}) is obtained as the pre-
ferred and stable P-argument extensions (resp. P-assumption extensions). This
means that the solution is obtained based on the p ABA reconstructed from his
ASPIC+.

However it should be noted that the constraints no. 2 and no. 1 (b) in Cakes
are not expressed in Rs of his ASPIC+, while constraints no. 1 (a) and no. 1 (b)
are not expressed in R of his p ABA. In the following, we show that the solution
of Cakes can be obtained from each of three different p ABAs respectively where
the knowledge of Cakes is expressed in three different ways.

4.2 Solving Cakes Example Based on the Semantics of P ABA

p ABA with the contrary function C gives us the solution of Cakes as follows.

Example 3 (Cont. Example 2). Suppose that a, b, c stand for a piece of Almond
cake, a piece of Brownie, and a piece of Cheesecake respectively, while ai

(resp. bi, ci) (1 ≤ i ≤ 2) stands for the solution of the problem such that
Almond cake (resp. Brownie cake, Cheesecake) is taken at i-th round, where
A = {a1, b1, c1, a2, b2, c2}. Moreover the symbol t x1 (resp. t x2) denotes the
operation such that x ∈ {a, b, c} is taken in the first (resp. second) round, and the
symbol t xy1 denotes the operation such that both x ∈ {a, b, c} and y ∈ {a, b, c}
where x �= y are taken in the first round according to the rules of the game.
Then the cake example is modeled in p ABA FpABA = 〈L,R,A, C,�〉, where

– R= {t ab1 ← a1, b1, t bc1 ← b1, c1, t ca1 ← c1, a1, t a1 ← a1,
t b1 ← b1, t c1 ← c1, t a2 ← a2, t b2 ← b2, t c2 ← c2}
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– A = {a1, b1, c1, a2, b2, c2},
– C(a1) = {t a2, t bc1}, C(b1) = {t b2, t ca1}, C(c1) = {t c2, t ab1},

C(a2) = {t a1, t b2, t c2}, C(b2) = {t b1, t a2, t c2, t ca1},
C(c2) = {t c1, t a2, t b2} and ai � bj , ai � ai, bj � bj (1 ≤ i, j ≤ 2).

15 arguments are constructed in FpABA as follows.
• A1 : {a1} 
 t a1 • A2 : {a2} 
 t a2 • B1 : {b1} 
 t b1
• B2 : {b2} 
 t b2 • C1 : {c1} 
 t c1 • C2 : {c2} 
 t c2
• AB : {a1, b1} 
 t ab1 • BC : {b1, c1} 
 t bc1 • CA : {c1, a1} 
 t ca1
• α1 : {a1} 
 a1 • α2 : {a2} 
 a2 • β1 : {b1} 
 b1 • β2 : {b2} 
 b2
• γ1 : {c1} 
 c1 • γ2 : {c2} 
 c2

Then the associated ABA of FpABA has preferred and stable extensions as follows:
E1 = {A1, C1, α1, γ1, CA}, with Args2Asms(E1) = {a1, c1}
E2 = {A2, B1, C1, α2, β1, γ1, BC}, with Args2Asms(E2) = {a2, b1, c1}
E3 = {A1, B1, C2, α1, β1, γ2, AB}, with Args2Asms(E3) = {a1, b1, c2}

Since E1 �ex E2 is derived due to αi ≤ βj or ai � bj (1 ≤ i, j ≤ 2), both E2

and E3 (resp. {a2, b1, c1} and {a1, b1, c2}) are obtained as preferred and stable
P-argument extensions (resp. P-assumption extensions) in FpABA. Hence E2 and
E3 give us solution of Cakes that either a pair of Brownie cake and Cheesecake
or a pair of Almond and Brownie cakes is chosen in the first round.

4.3 Assumption-Based Argumentation Equipped with Preferences
and Constraints

In this subsection, we present a general method to express some kind of con-
straints in ABA 〈L,R,A, ¯̄ 〉 as well as p ABA 〈L,R,A, ¯̄ ,�〉. Moreover we show
that the solution of Cakes is also obtained by applying the method to p ABA.

Definition 7 (Constraints). Given an ABA framework 〈L,R,A, ¯̄ 〉, a rule
without head of the form:

← a1, . . . , am (or equivalently ← {a1, . . . , am})

is called a constraint, where ai ∈ A (1 ≤ i ≤ m).
In general, let bi∈L such that there exists an argument Bi 
 bi where Bi �= ∅.

Then ←b1, . . . , bm, or equivalently ← ⋃m
i=1{bi} stands for a set of the constraints

← ⋃m
i=1 Bi obtained by replacing {bi} with Bi⊆A in every possible way.

Satisfaction of constraints is defined as follows.

Definition 8 (Satisfaction).

– A set of assumptions Asms ⊆ A satisfies a constraint ← a1, . . . , am iff
{a1, . . . , am} �⊆ Asms holds.

– A set of assumptions Asms ⊆ A satisfies a set of constraints C
iff {a1, . . . , am} �⊆ Asms holds for ∀ ← a1, . . . , am ∈ C.
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Definition 9 (ABA equipped with constraints). Given an ABA framework
F = 〈L,R,A, ¯̄ 〉 and a set of constraints C, an ABA framework FC equipped with
constraints is defined as

FC = 〈L,R ∪ RC,A, ¯̄ 〉, where

RC = {¬ai ← a1, . . . , ai−1, ai+1, . . . , am| ← a1, . . . , am ∈ C, āi = ¬ai,
1 ≤ i ≤ m}.

Constrains defined in Definition 7 help users in expressing knowledge. And
furthermore they are useful to eliminate undesirable Sname extensions in ABA
just as integrity constraints are used to eliminate undesirable answer sets in
answer set programming [19,20]. (Details are omitted due to limitations of
space.)

The following properties hold for Fc.

Theorem 2. Asms ⊆ A is conflict-free in FC = 〈L,R ∪ RC,A, ¯̄ 〉 if and only
if Asms is conflict-free in F = 〈L,R,A, ¯̄ 〉 and satisfies a set of constraints C,
namely {a1, . . . , am} �⊆ Asms for ∀ ← a1, . . . , am ∈ C.

Proof. See Appendix. �

Theorem 3. A conflict-free set Asms in FC = 〈L,R ∪ RC,A, ¯̄ 〉 satisfies a set
of constraints C.

Proof. See Appendix. �

Proposition 1. In FC = 〈L,R∪RC,A, ¯̄ 〉, every Sname assumption extension
Asms ⊆ A satisfies a set of constraints C.

Proof. This is obviously proved based on Theorem 3. �

Example 4 (Cont. Example 2). Let us express the knowledge of Cakes except
preferences (i.e. the game rule no. 3) in ABA. Suppose that ai (resp. bi, ci)
(1 ≤ i ≤ 2) stands for the solution of the problem such that Almond cake (resp.
Brownie cake, Cheesecake) is taken at i-th round. Let A = {a1, b1, c1, a2, b2, c2}
and āi = ¬ai, b̄i = ¬bi, c̄i = ¬ci, where ¬ai (resp. ¬bi, ¬ci) denotes the negation
of ai (resp. bi, ci). Then

– the game rule no. 1 (a) is expressed by four constraints as follows:
← a1, b1, c1 ← a1, a2 ← b1, b2 ← c1, c2

– The game rule no. 1 (b) is expressed by three constraints as follows:
← a2, b2 ← b2, c2 ← c2, a2

– The game rule no. 2 is expressed by the rule as follows:
¬b2 ← c1, a1
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Cakes except preferences is modeled in ABA FC=〈L,R ∪ RC,A, ¯̄ 〉, where

– R = {¬b2 ← c1, a1}
– RC = {¬c1 ← a1, b1, ¬a1 ← b1, c1, ¬b1 ← c1, a1, ¬a2 ← a1,

¬a1 ← a2, ¬b2 ← b1, ¬b1 ← b2, ¬c2 ← c1, ¬c1 ← c2,
¬b2 ← a2, ¬a2 ← b2, ¬c2 ← b2, ¬b2 ← c2, ¬a2 ← c2, ¬c2 ← a2}

– A = {a1, b1, c1, a2, b2, c2}, and āi = ¬ai, b̄i = ¬bi, c̄i = ¬ci (i = 1, 2).

22 arguments are constructed in FC as follows.
• A1 : {a1} 
 ¬a2 • A2 : {a2} 
 ¬a1 • B1 : {b1} 
 ¬b2
• B2 : {b2} 
 ¬b1 • C1 : {c1} 
 ¬c2 • C2 : {c2} 
 ¬c1
• AB : {a1, b1} 
 ¬c1 • BC : {b1, c1} 
 ¬a1 • CA : {c1, a1} 
 ¬b1
• α1 : {a1} 
 a1 • α2 : {a2} 
 a2 • β1 : {b1} 
 b1 • β2 : {b2} 
 b2
• γ1 : {c1} 
 c1 • γ2 : {c2} 
 c2 • CA2 : {c1, a1} 
 ¬b2
• P1 : {a2} 
 ¬b2 • P2 : {a2} 
 ¬c2 • Q1 : {b2} 
 ¬a2

• Q2 : {b2} 
 ¬c2 • R1 : {c2} 
 ¬b2 • R2 : {c2} 
 ¬a2

Thus FC has three preferred and stable argument extensions Ei (resp. assumption
extensions asmsi = Args2Asms(Ei) satisfying constraints) (1 ≤ i ≤ 3) as follows:

E1 = {A1, C1, α1, γ1, CA,CA2}, with asms1 = {a1, c1}
E2 = {A2, B1, C1, α2, β1, γ1, BC, P1, P2}, with asms2 = {a2, b1, c1}
E3 = {A1, B1, C2, α1, β1, γ2, AB,R1, R2}, with asms3 = {a1, b1, c2}

Note that E1 (resp. E2, E3) as well as asms1 (resp. asms2, asms3) denote
that a pair of Almond and Cheesecake cakes (resp. a pair of Brownie cake and
Cheesecake, a pair of Almond and Brownie cakes) is chosen in the first round.

Definition 10 (ABA equipped with preferences and constraints). Given
an ABA framework F = 〈L,R,A, ¯̄ 〉, a set of constraints C and a sentence
ordering �⊆ L × L, an ABA framework FPC equipped with preferences � and
constraints C is defined as

FPC = 〈L,R ∪ RC,A, ¯̄ ,�〉, where

RC = {¬ai ← a1, . . . , ai−1, ai+1, . . . , am| ← a1, . . . , am ∈ C, āi = ¬ai,
1 ≤ i ≤ m}.

Example 5 (Cont. Example 4). By incorporating the preferences given in Cakes,
i.e. ai � bj (1 ≤ i, j ≤ 2) into the ABA FC shown in Example 4, we obtain
p ABA FPC = 〈L,R ∪ RC,A, ¯̄ ,�〉, where FC = 〈L,R ∪ RC,A, ¯̄ 〉 has three
preferred (resp. stable) argument extensions E1, E2, E3 as shown in Example 4.

Since E1 �ex E2 is derived due to αi ≤ βj or ai � bj (1 ≤ i, j ≤ 2), both E2

and E3 (resp. {a2, b1, c1} and {a1, b1, c2}) are obtained as preferred and stable
P-argument extensions (resp. P-assumption extensions) in FPC. Accordingly we
again obtain the solution of Cakes.
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4.4 Prioritized Logic Programming As Argumentation Equipped
with Preferences

In [23], we showed that p ABA can capture Sakama and Inoue’s preferred answer
sets of a prioritized logic program (PLP) [19]. Hence we show that the PLP
expressing the knowledge of Cakes as well as the p ABA instantiated with the
PLP enable us to obtain its solution based on the respective semantics as follows.

Example 6 (Cont. Example 2). Let ai (resp. bi, ci) (1 ≤ i ≤ 2) be a propositional
atom which means that Almond cake (resp. Brownie cake, Cheesecake) is taken
at i-th round. Then

• The game rule no. 1 (a) is expressed by rules of a normal logic program as
follows:
b1 ← not a1, c1 ← not a1, c1 ← not b1, a1 ← not b1, a1 ← not c1,
b1 ← not c1

• The game rules no. 1 (b) and no. 2 are expressed by rules as follows:
a2 ← not a1, b2 ← not a1, not c1, c2 ← not c1

• The game rule no. 3 is expressed by ai � bj (1 ≤ i, j ≤ 2).

These lead to PLP (P,Φ) as follows:
P = {b1 ← not a1, c1 ← not a1, c1 ← not b1, a1 ← not b1, a1 ← not c1,

b1 ← not c1, a2 ← not a1, b2 ← not a1, not c1, c2 ← not c1}
Φ = {(ai, bj)|1 ≤ i, j ≤ 2)}.

P has three answer sets (i.e. stable models) Si (1 ≤ i ≤ 3) as follows:
S1 = {a1, c1}, S2 = {b1, c1, a2}, S3 = {a1, b1, c2}.

S1 �as S2 is derived due to Φ∗ [19]. Hence S2 and S3 corresponding to asms2
and asms3 in Example 5 are obtained as preferred answer sets of the PLP (P ,Φ).

On the other hand, according to [23, Corollary 2] (i.e. [22, Theorem 2]), we
can construct the p ABA FPLP = 〈LP , P,A, ¯̄ , Φ∗〉 instantiated with this PLP,
where A = HBnot = {not p | p ∈ HBP } for HBP = {a1, b1, c1, a2, b2, c2},
LP = HBP ∪ HBnot, not p = p for p ∈ HBP and Φ∗ is the reflexive
and transitive closure of Φ = {(ai, bj)|1 ≤ i, j ≤ 2)}. Then as indicated by
[23, Corollary 2], we can obtain two stable P-argument extensions E2 and E3 of
FPLP with

Concs(E2) = {b1, c1, a2, not a1, not b2, not c2},
Concs(E3) = {a1, b1, c2, not c1, not a2, not b2}

corresponding to S2 and S3. As a result, we again obtain the solution of Cakes.

5 Related Work

Čyras and Toni [5] proposed an ABA+ framework: 〈L,R,A, ¯̄ ,�〉, where 〈L,R,
A, ¯̄ 〉 is an ABA framework and � is a preorder on A. They newly introduced
<-attacks ⊆ P(A)×P(A) consisting of two types depending on �. Its semantics
is given by a <-Sname extension E ⊆ A as defined by replacing the notion of
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attacks with <-attacks in standard ABA. Compared ABA+ with p ABA, the
form of ABA+ is a special case of p ABA 〈L,R,A, C,�〉 as far as its underlying
ABA is flat because �⊆ A × A is a subset of �⊆ L × L and ¯̄ is a special
case of C s.t. |C(α)|=1 for ∀α ∈ A. Hence none of preferences over hypotheses
(e.g. (1), (2)), preferences over goals G ⊆ L \ A which are often required in
decision-making and practical reasoning, and preferences on (defeasible) rules
for epistemic reasoning can be expressed in ABA+. In contrast, p ABA has a
mechanism to represent and reason with all of these preferences in its framework
[22,23]. Therefore p ABA has far much more expressive power than ABA+.

Prakken proposed ASPIC+ for structured argumentation with preferences
[17,18]. Comparison between ASPIC+ and p ABA is discussed in detail in [23].

Dung [11,12] proposed a new approach of structured argumentation with
priorities for ASPIC+-type argumentation formalisms. A novel attack relation
(assignment) called regular [12] (resp. normal [11]) which takes account of pri-
orities over defeasible rules is defined without constructing argument orderings.

Coste-Marquis et al. proposed constrained argumentation frameworks [3]
where constraints on admissible arguments in abstract argumentation are con-
sidered. Instead in our approach, constraints on assumptions expressed by rules
without head can be treated in ABA and p ABA as shown in Subsect. 4.3.

6 Discussion and Conclusion

Čyras andToni claimed that p ABAcannot solve two examples (i.e. [5, Example 1],
[4, Example 1]) since the given preferences do not work in their p As whose under-
lying ABAs have a unique extension, and proposed ABA+. Against their claim, it
is shown in Sects. 3 and 4 that p ABAs in which we encoded the respective knowl-
edge give us solutions of them without any difficulties. In conclusion, they could
not obtain the solutions of these examples not due to the property of p ABA but
due to their incorrect knowledge encodings in p ABA.

In what follows, we show that the semantics of ABA+ has a serious problem
as to treating preferences. As addressed in Example 1, Čyras and Toni presented
ABA+ consisting of R = {α ← β}, A = {α, β}, β � α. Based on its seman-
tics, {α} is selected as a unique <-complete extension due to β � α though
〈L,R,A, ¯̄ 〉 has a unique extension {β} [5]. Now consider a real world problem
as follows.

Example 7. Usually the famous legal principle: “innocent until proven guilty” is
applied to the suspect under no evidence.

It is expressed by ABA F consisting of R = {innocent ← not guilty}, A =
{not innocent, not guilty}, not innocent = innocent, not guilty =guilty.

Hereupon suppose that someone prefers “not innocent” to “not guilty” (since
he prefers “guilty” to “innocent”) though there is no evidence proving the sus-
pect is guilty. Obviously under this situation, the human legal reasoning result
in court is “innocent” regardless of any preference for innocence or guilt because
there is no evidence of “guilty”. On the other hand, given the preference s.t.
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“not guilty � not innocent” along with F , ABA+ has {not innocent} as its
unique extension, whereas p ABA has the unique P-argument extension E with
Concs(E) = {innocent, not guilty} regardless of preferences since the underlying
ABA has the unique extension E. Thus p ABA yields “innocent”, while ABA+

yields “not innocent”. Hence thanks to the property discussed in the introduc-
tion, p ABA gives us the human legal reasoning result, i.e. “innocent, whereas
ABA+ cannot perform such typical non-monotonic reasoning with preferences.

In contrast, according to the correspondence between ASPIC+ and ABA
[17,18], this ABA+ can be faithfully mapped to ASPIC+ consisting of Rs =
{β → ¬α}, Kp = {α, β} (or Ka = {α, β}), α = ¬α and β ≤′

α. As for the case
Kp = {α, β}, defeat = ∅ is derived. Then the mapped ASPIC+ has a unique
complete extension E+ with concs(E+) = {α, β,¬α}, which is not directly
consistent [17,18]. Similarly this ABA+ may be also mapped to Dung’s rule-
based system [11,12], say Rdung, which consists of d0: ⇒ β d1: ⇒ α r : β → ¬α
and d0 ≺ d1. Surprisingly when we replace the symbol β (resp. α) with a (resp. b),
Rdung coincides with the rule-based system shown in [12, Example 7] in which
no regular attack relation assignment exists as discussed by Dung [12].

We are the first to show prioritized logic programming as argumentation
equipped with preferences (cf. Subsect. 4.4) [23] as Dung showed logic program-
ming as argumentation [7]. Nevertheless our future work is to explore the other
types of the semantics for p ABA so that it can capture the other types of pri-
oritized logic programming such as Brewka and Eiter’s preferred answer sets,
Delgrande, Schaub and Tompits’ preferred answer sets and so on [6].

Acknowledgments. This work was supported by KAKENHI (Grant-in-Aid for Sci-
entific Research(S)17H06103).

Appendix

Proof of Theorem 2 ( ⇐=). Let Asms be conflict-free in F and satisfies
{a1, . . . , am} �⊆ Asms for ∀ ← a1, . . . , am ∈ C. Since Asms is conflict-
free in F , ∀α ∈ Asms is not attacked by arguments constructed by using
only rules from R in FC. Now suppose that Asms is not conflict-free in FC.
Then for some {a1, . . . , ak−1, ak+1, . . . , am} ⊆ Asms, there exists an argu-
ment {a1, . . . , ak−1, ak+1, . . . , am} 
 ¬ak constructed by the rule from RC
that attacks Asms, which denotes that ak (1 ≤ k ≤ m) is in Asms. Thus
{a1, . . . , ak−1, ak, ak+1, . . . , am} ⊆ Asms is derived. This contradicts that Asms
satisfies {a1, . . . , am} �⊆ Asms for ∀ ← a1, . . . , am ∈ C. Thus it is derived that
Asms is conflict-free in FC.

(=⇒) Let Asms be conflict-free in FC= 〈L,R ∪ RC,A, ¯̄ 〉. Then Asms is also
conflict-free in F = 〈L,R,A, ¯̄ 〉 due to R ⊆ (R ∪ RC). Now suppose that for this
Asms which is conflict-free in F , there exists some constraint ∃ ← a1, . . . , am ∈ C
which satisfies {a1, . . . , am} ⊆ Asms. Then in FC, there exists some argument
{a1, . . . , ak−1, ak+1, . . . , am} 
 ¬ak built from RC that attacks Asms. This con-
tradicts that Asms is conflict-free in FC. Hence it holds {a1, . . . , am} �⊆ Asms
for ∀←a1, . . . , am ∈ C w.r.t. Asms which is the conflict-free in F . �
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Proof of Theorem 3. Suppose that in FC, there is some conflict-free set Asms ⊆
A which does not satisfy some constraint in C, that is, {a1, . . . , am} ⊆ Asms
holds for ∃ ← a1, . . . , am ∈ C. Then using rules from RC, it is possible to construct
the argument {a1, . . . , ak−1, ak+1, . . . , am} 
 ¬ak that attacks ak ∈ Asms (1 ≤
k ≤ m). This contradicts that Asms is conflict-free. �
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