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Preface

Managing uncertainty and inconsistency has been extensively explored in the field of
artificial intelligence over a number of years. Now, with the advent of massive amounts
of data and knowledge from distributed, heterogeneous, and potentially conflicting
sources, there is interest in developing and applying formalisms for uncertainty and
inconsistency in systems that need to better manage these data and knowledge. To meet
the challenge of representing and manipulating large amounts of uncertain information,
researchers are drawing from a wide range of different methodologies and uncertainty
models. While Bayesian methods remain the default choice in most disciplines,
sometimes there is a need for more cautious approaches, relying for instance on
imprecise probabilities, ordinal uncertainty representations, or even purely qualitative
models.

The International Conference on Scalable Uncertainty (SUM) aims to provide a
forum for researchers who are working on uncertainty management, in different
communities and with different uncertainty models, to meet and exchange ideas.
Previous SUM conferences have been held in Washington DC (2007), Naples (2008),
Washington DC (2009), Toulouse (2010), Dayton (2011), Marburg (2012),
Washington DC (2013), Oxford (2014), Québec City (2015), and Nice (2016).

This volume contains contributions from the 11th SUM conference, which was held
in Granada, Spain, during October 4–6, 2017. The conference attracted 35 submissions,
of which 30 were accepted for publication and presentation at the conference, based on
three rigorous reviews by the members of the Program Committee or external
reviewers.

In addition, the conference greatly benefited from invited lectures by three
world-leading researchers: Alberto Bugarín Diz, Fabio Gagliardi Cozman, and Martin
Theobald. To further embrace the aim of facilitating interdisciplinary collaboration and
cross-fertilization of ideas, and building on the tradition of invited speakers at SUM,
the conference featured eight tutorials, covering a broad set of topics related to
uncertainty management. We thank Olivier Cailloux, Inés Couso, Francisco Herrera,
Rafael Peñaloza Nyssen, Régis Sabbadin, Antonio Salmerón, Laurent Vercouter, and
Nic Wilson for preparing and presenting these tutorials. A companion paper for several
of them can be found in this volume.

We would like to thank all the authors and invited speakers for their valuable
contributions, and the members of the Program Committee and external reviewers for
their detailed and critical assessment of the submissions. We are also very grateful to
the University of Granada for hosting the conference.

October 2017 Serafín Moral
Olivier Pivert

Daniel Sánchez
Nicolás Marín
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What Uncertainty Models Do We Need
for Natural Language

in Data-To-Text Systems?

Alberto Bugarín

Centro de Investigación en Tecnoloxías da Información (CiTIUS),
Universidade de Santiago de Compostela
alberto.bugarin.diz@usc.es

Abstract. Automatic data-to-text (D2T) systems are increasingly being used to
remove the barrier between data stored in information systems and the people
that demand information from them. D2T are a part of the wide field of Natural
Language Generation, which automatically generate high-quality narratives
which summarize in natural language the most relevant information hidden in
the data, which are typically numerical (as in time series), symbolic or both. The
produced narratives are provided in a form that can be directly consumed and
understood by human users. D2T systems are usually built as a way to directly
information to users or as a complement of other means (graphical representa-
tions, numeric tables, …). In this talk we will present and describe the general
architecture of D2T systems (the so called D2T pipeline). We will also carry out
a review of real D2T systems of high impact, in areas such as robot-journalism,
meteorological forecasting, and clinical and industrial supervision systems,
among others. We will present the models used in D2T for managing uncer-
tainty in the language realizations. Special attention will be devoted to discuss
the role that fuzzy logic and Computing with words play in the D2T field as well
as to present potential areas of convergence between these two paradigms.
Finally, we will present some open issues in D2T related to uncertainty man-
agement in natural language and to scalability of this approach within the contex
provided by large volumes of data.

Keywords: Data-To-Text systems • Computing with words • Natural language
generation



Scalable RDF Data Management
With a Touch of Uncertainty

Martin Theobald

Faculty of Science, Technology & Communication, University of Luxembourg
martin.theobald@uni.lu

Abstract. The invited talk provides an overview of our recent research activities
and also highlights a number of research challenges in the context of extracting,
indexing, and querying large collections of RDF data. A core part of our work
focuses on handling uncertain facts obtained from various information-
extraction techniques, where we aim to develop efficient algorithms for query-
ing the resulting uncertain RDF knowledge base with the help of a probabilistic
database. A further, very recent research focus lies on scaling out these
approaches to a distributed setting. Here, we aim to process declarative queries,
posed in either SQL or logical query languages such as Datalog, via a proprietary,
asynchronous communication protocol based on the Message Passing Interface.
Our current RDF engine, coined “TriAD”, has proven to be one of the fasted such
engines over a number of RDF benchmarks with up to 1.8 billion triples.

1 Joint Named-Entity Recognition & Disambiguation

Virtually all of the recently proposed approaches for Named-Entity Recognition and
Disambiguation, henceforth coined “NERD”, proceed in two strictly separated stages.
At the NER stage, text spans containing entity mentions are detected and tagged with
coarse-grained types like Person, Organization, Location, etc. This is typically per-
formed by a trained Conditional Random Field (CRF) over word sequences. At the
NED stage, mentions are then mapped to entities in an underlying Knowledge Base
(KB) based on contextual similarity measures and their semantic coherence (see, e.g.,
[6, 9, 11, 13]). This two-stage, pipelined approach has several limitations. First, NER
may produce false positives that can misguide NED. Second, NER may miss out on
some of the entity mentions, and NED has no chance to compensate for these false
negatives. Third, NED is not able to help NER, for example, by disambiguating “easy”
mentions (e.g., of prominent entities with more or less unique names) and then using
the entities and contextual knowledge about them as enriched features for NER. Our
method, called J-NERD [14], is based on a supervised, non-linear graphical model that
combines multiple per sentence models into an entity-coherence-aware global model.
The global model detects mention spans, tags them with coarse-grained types, and
maps them to entities in a single joint-inference step based on either the Viterbi
algorithm (for exact inference) or Gibbs sampling (for approximate inference). Our
ongoing work also focuses on the extraction of RDF triples (and even higher-arity
facts) by clustering patterns of verbal phrases into a canonical set of relationships
among entities.



2 Uncertain RDF Data & Inference in Probabilistic Databases

Managing uncertain RDF data obtained from the aforedescribed extraction techniques
provides a perfect showcase for Probabilistic Databases (PDBs). PDBs encompass a
plethora of applications, ranging from scientific data management, sensor networks, data
integration, to information extraction and knowledge management [15]. While classical
database approaches benefit from a mature and scalable infrastructure for the manage-
ment of relational data, probabilistic databases aim to further combine these
well-established data management strategies with efficient algorithms for probabilistic
inference by exploiting given independence assumptions among database tuples
whenever possible. Moreover, PDBs adopt powerful query languages from relational
databases, including Relational Algebra, the Structured Query Language (SQL), and
logical query languages such as Datalog. The Trio probabilistic database system [12],
which we developed at Stanford University back in 2006, was the first such system that
explicitly addressed the integration of data management (using SQL as query language),
lineage (aka. “provenance”) management via Boolean formulas, and probabilistic
inference based on the lineage of query answers. The Trio data model, coined
“Uncertainty and Lineage Databases” (ULDBs) [1], provides a closed and complete
probabilistic extension to the relational data model under all of the common relational
(i.e., SQL-based) operations. Our recent research contributions in the domain of PDBs
comprise lifted top-k queries over non-materialized database views [3], learning of tuple
probabilities from user feedback [5], as well as temporal-probabilistic extensions [2, 4].

3 Distributed RDF Indexing & SPARQL Processing

The last part of the talk takes an in-depth look at the architecture of our TriAD (for
“Triple-Asynchronous-Distributed”) [7] engine, which provides an end-to-end system
for the distributed indexing of large RDF collections and the processing of queries
formulated in the SPARQL 1.0 standard. TriAD combines a novel form of sharded,
main-memory-based index structures with an asynchronous communication protocol
based on the Message Passing Interface (MPI). It thus aims to bridge the gap between
shared-nothing MapReduce engines [10], on the one hand, and shared-everything
graph engines [16], on the other hand. TriAD is designed to achieve higher parallelism
and less synchronization overhead during query executions than MapReduce engines
by adding an additional layer of multi-threading for entire execution paths within a
query plan that can be executed in parallel. TriAD is the first RDF engine that employs
asynchronous join executions, which are coupled with a lightweight join-ahead pruning
technique based on graph summarization. Our current work also considers the
processing of distributed set-reachability [8] queries, as they may occur, for example, in
the recent “Property Paths” extension of SPARQL 1.1.

Scalable RDF Data Management With a Touch of Uncertainty XV
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2 IRIT, CNRS Université Paul Sabatier, Toulouse, France
dubois@irit.fr

3 Department of Computer Science, Universität Paderborn, Paderborn, Germany
eyke@upb.de

Abstract. The term coarse data encompasses different types of incom-
plete data where the (partial) information about the outcomes of a ran-
dom experiment can be expressed in terms of subsets of the sample space.
We consider situations where the coarsening process is stochastic, and
illustrate with examples how ignoring this process may produce mislead-
ing estimations.

Keywords: Coarse data · Grouped data · Coarsening at random · Max-
imum likelihood · Visible likelihood · Face likelihood

1 Introduction

The term “coarse data” [15] covers a number of situations treated in the lit-
erature such as rounded, heaped, censored or partially missing data. It refers
to those situations where we do not get access to the exact value of the data,
but only to some subset of the sample space that contains it. Thus, formally
speaking, the observations are not assumed to belong to the sample space, but
to its power set (see [4,8] for further discussions on set-valued data).

One key problem consists in estimating the distribution of the underlying
random variable on the basis of the available incomplete sample data. During
the last two decades, different authors have independently studied the way to
adapt maximum likelihood estimation (MLE) to this case [5,6,11,13,15,17,20].
In fact, the maximum likelihood procedure results in a consistent estimator of
the parameter under some regularity conditions [16], and therefore it is one of
the most usual approaches in a variety of machine learning problems. One may
adapt the MLE method to incomplete data by considering the collection of pos-
sible completions of data, which would lead to a set-valued likelihood function.
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Thus, maximizing the likelihood function for each of the feasible samples would
lead to a set-valued counterpart of the MLE. But this does not seem to be
the most reasonable procedure (see comments about extension principle -based
approaches in [17], for further details). Two dual alternative procedures have
been recently explored [13,14,17]. They consist in replacing the set-valued like-
lihood either by its upper [17] or its lower bound [13], and seeking for the arg
max of the corresponding real-valued mappings. They are respectively referred
to as the maximax and the maximin estimators. Some properties of both of them
have been recently studied in [14].

A third approach focusses on the observations rather than on the underly-
ing (ill-known) outcomes represented by them. The so-called “visible” likelihood
function [6,7] represents the probability of observing the actual observed (set-
valued) sample, as a function of a vector of parameters. In order to determine
such a function, we do not only need to parametrize the underlying experiment,
but also of the coarsening process. The joint distribution over the collection of
pairs constituted by the outcomes and their corresponding (incomplete) obser-
vations is univocally determined by the marginal distribution over the sample
space plus a transition probability from the sample space to its power set, repre-
senting the coarsening process. The “visible” likelihood function is nothing else
but the likelihood of the marginal distribution over the power set, expressed as
a function of the vector of parameters. Different aspects of the arg max of this
function have been recently studied in the literature [1,3,5–7,20]. This paper
surveys those advances.

2 What Has Occurred and What Do We Know About It?

2.1 Preliminaries and Notation

Let a random variable X : Ω → X represent the outcome of a certain
random experiment. For the sake of simplicity, let us assume that its range
X = {a1, . . . , am} is finite. Suppose that instead of directly observing X, one
observes a coarse version of it, Y � X. Let Y = {b1, . . . , br} denote the (finite)
set of possible observations, with bj = Aj ⊆ X , ∀ j = 1, . . . , r. Let us introduce
the following notation:

– pkj = P (X = ak, Y = bj) denotes the joint probability of getting the precise
outcome X = ak and observing bj = Aj ,

– pk. = P (X = ak) denotes the probability that the precise outcome is ak,
– p.j = P (Y = bj) denotes the probability that the generation plus the impre-

cisiation processes lead us to observe bj = Aj .
– p.j|k. = P (Y = Aj |X = ak) denotes the (conditional) probability of observing

bj = Aj if the precise outcome is ak,
– pk.|.j = P (X = ak|Y = Aj) denotes the (conditional) probability that the

value of X is ak if we have been reported that it belongs to bj = Aj .
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We may represent the joint distribution of (X,Y ) by means of the matrix
(M |p): ⎛

⎝
p.1|1. . . . p.r|1. p1.

. . . . . . . . . . . .
p.1|m. . . . p.r|m. pm.,

⎞
⎠

where (p1., . . . , pm.)T characterizes the distribution of the underlying generating
process, while M = (p.j|k.)k=1,...,m;j = 1, . . . , r represents the coarsening process.
M is the so-called mixing matrix [25]. We can alternatively characterise it by
means of (M ′|p′): ⎛

⎝
p1.|.1 . . . pm.|.1 p.1

. . . . . . . . . . . .
p1.|.r . . . pm.|.r p.r

⎞
⎠

where the vector (p.1, . . . , p.r)T characterises the probability distribution of the
observation process, and M ′ = (pk.|.j)k=1,...,m;j=1,...,r represents the conditional
probability of X (precise outcome) given Y (observation).

Now, let us assume that the above joint distribution (or equivalently, each
of the matrices (M |p) and (M ′|p′)) is characterized by means of a (vector of)
parameter(s) θ ∈ Θ. We naturally assume that the dimension of θ is less than or
equal to the number of elements in both matrices, i.e., it is less than or equal to
min{m×(r+1), r(m+1)}. We also assume that X cannot be written as a function
of Y , because such a situation would involve a trivial coarsening process, were
Y is just some kind of “encoding” of X. Similarly, we can assume without much
loss of generality that X and Y are not independent. Otherwise, the restriction
X ∈ Y would imply that Y is constant, and its image includes all the possible
outcomes for X. Furthermore, the parameter is said to be separable [6] wrt (M |p)
if it can be “separated” into two (maybe multidimensional) components θ1 ∈ Θ1,
θ2 ∈ Θ2 such that Θ = Θ1 × Θ2, where pθ

.j|k. and pθ
k. can be respectively written

as functions of θ1 and θ2. This definition corresponds to an earlier notion of
“distinctness” of the parameters [15]. Alternatively, θ is said to be separable wrt
(M ′|p′) if it can be “separated” into two (maybe multidimensional) components
θ3 ∈ Θ3, θ4 ∈ Θ4 such that Θ = Θ3 × Θ4 and pθ

k.|.j and pθ
.j can be respectively

written as functions of θ3 and θ4. One may think that the notion of “separability”
implies some kind of “independence” between X (outcome) and Y (imprecise
observation), but this is not the case, as we illustrate below.

We will provide three examples illustrating three different situations: In the
first case, Y can be expressed as a function of X, and therefore it determines a
partition on X , but their joint distribution depend on a single one-dimensional
parameter. In the second case, Y can also be written as a function of X, but the
parameters are separable. In the third case, Y is not a function of X, and in fact,
it represents a “coarsening at random process” [15] and the joint distribution of
(X,Y ) depends on a one-dimensional parameter.

Example 1 (Taken from [7]). Let us consider the following example by Dempster
et al. in [10] under the light of our analysis. It is based on a former example
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by Rao. There is a sample of 197 animals distributed into four categories, so
that the observed data consist of:

n.1 = 125, n.2 = 18, n.3 = 20, n.4 = 34.

Suppose that the first category is in fact a mixture of two sub-categories, but
we do not have information about the number of individuals observed from each
of them. On the other hand, a genetic model for the population specifies the
following restrictions about the five categories: p11 = 0.5, p12 = p.4, p.2 = p.3.
If we use the notation: p12 = 0.25π = p.4 and p.2 = 0.25(1 − π) = p.3, the
corresponding matrix (M ′|p′) is given as

⎛
⎜⎜⎝

0.5
0.5+0.25π

0.25π
0.5+0.25π 0 0 0 0.5 + 0.25π

0 0 1 0 0 0.25(1 − π)
0 0 0 1 0 0.25(1 − π)
0 0 0 0 1 0.25π

⎞
⎟⎟⎠

and only depends on a single parameter.

Example 2. Let X be the random variable that represents the score shown on
the top face of a die. Let (p1, . . . , p6) characterize the probability distribution
over the set of possible outcomes. Let us suppose that we are just told whether
X takes an even or an odd value. We identify the possible observations (values
of Y ) respectively with b1 = {1, 3, 5} and b2 = {2, 4, 6}. This example is formally
equivalent to the case of grouping data, where Y can be expressed as a function of
X. In other words, the coarsening process is a deterministic procedure where all
the values in the mixing matrix M are either 0 or 1. Thus, the distribution of Y
only depends on θ1 = p1+p2+p3. Let us now consider the matrix M ′ = (m′

ij)i,j

where the two-dimensional variable (X,Y ) can take six different values, and its
joint distribution can be expressed in terms of (p1, . . . , p5). It can be also written
as a function of θ1 = p1 + p3 + p5 (determining the marginal distribution of Y )
and the four-dimensional vector θ2 = (p1

θ1
, p3

θ1
, p2
1−θ1

, p4
1−θ1

) (that characterizes the
disambiguation process). Thus, the joint distribution is separable wrt M ′ and p′.

Example 3. Suppose a coin is flipped and let X be the binary random vari-
able that takes the value 1= “heads”, and 0=“tails”. Suppose that half of the
times, we are not informed about the result (regardless what the result is). The
coarsening process is therefore characterised as follows:

P (Y = {0, 1}|X = 0) = P (Y = {0, 1}|X = 1) = 0.5,

P (Y = {0}|X = 0) = P (Y = {1}|X = 1) = 0.5.

This process agrees with the notion of coarsening at random (CAR) introduced
by Heitjan and Rubin, to be discussed later on, since the fact of being informed of
the result does not depend on the result itself. Furthermore, it satisfies a stronger
property called “superset assumption” [18], since we are informed half of the
times, on average, about the result of the coin, whatever it is. Notwithstanding,
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the joint distribution of (X,Y ) can be expressed in terms of the one-dimensional
parameter p ∈ (0, 1) denoting the probability of heads. In fact, under the above
assumptions, we have:

P (X = 1, Y = {1}) = P (X = 1, Y = {0, 1}) = 0.5p,

P (X = 0, Y = {0}) = P (X = 0, Y = {0, 1}) = 0.5(1 − p).

As a conclusion, the above example satisfies the so-called property of “missing at
random” (MAR), but the joint distribution of (X,Y ) is completely characterised
by marginal distribution of Y , since both of them depend on the same -single-
parameter.

As a matter of fact, the parameter of the joint distribution can be written
as a function of the parameter of the distribution of Y when the distribution
about the instantiation process is known, given the marginal distribution of Y .
This does not seem to be related to the degree of dependence between X and
Y . In this case, the problem of identifiability of the parameter of the marginal
distribution of Y reduces to the problem of identifiability of the parameter of the
joint likelihood function, and therefore, a MLE procedure based on the “visible”
likelihood function seems a good option in order to estimate the parameter.

2.2 The Outcomes of an Experiment and Their Incomplete
Observations

According to the framework developed in the last subsection, we can easily
observe that, given some bj = Aj ∈ Y, the two events X ∈ Aj and Y = Aj do
not coincide in general. In fact, it is generally assumed that the latter implies
the former, but the equivalence does not hold in general: For, suppose that
X ∈ Aj implies Y = Aj . Therefore, for every ak ∈ Aj , we can derive that
X = ak implies X ∈ Aj and therefore Y = Aj . Thus, we can deduce that
P (Y = Aj |X = ak) = 1,∀ ak ∈ Aj . Thus, the above implication entails a
deterministic coarsening process, inducing a partition over the set of outcomes X .

Let us illustrate the difference between the events X ∈ Aj and Y = Aj and
their corresponding probabilities with an example:

Example 4 (Taken from [7]). Consider the random experiment that consists on
rolling a dice. We do not know whether the dice is fair or not. Take a sample of
N tosses of the dice and assume that the reporter has told us n1 of the times
that the result was less than or equal to 3 and the remaining n2 = N −n1 tosses,
he told us that it was greater than or equal to 3. After each toss, when the actual
result (X) is 3, the reporter needs to make a decision. Let us assume that the
conditional probability P (Y = {1, 2, 3}|X = 3) is a fixed number α ∈ [0, 1]. The
joint distribution of (X,Y ) can be written as a function of (p1, . . . , p6) and α,
since it is determined by the following matrix: (M |p) :



8 I. Couso et al.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 p1
1 0 p2
α 1 − α p3
0 1 p4
0 1 p5
0 1 p6

⎞
⎟⎟⎟⎟⎟⎟⎠

corresponding to the joint probability

Y,X 1 2 3 4 5 6
y1 p1 p2 α p3 0 0 0
y2 0 0 (1 − α) p3 p4 p5 p6

We can easily make the distinction between the two events X ∈ {1, 2, 3} (the
result is less than or equal to 3) and Y = {1, 2, 3} (we are told that the result is
less than or equal to 3) and their corresponding probabilities. According to the
above notation, the probability of the first event is

P (X ∈ {1, 2, 3}) = p1 + p2 + p3,

while the probability of the latter is:

P (Y = {1, 2, 3}) =
P (X = 1, Y = {1, 2, 3}) +P (X = 2, Y = {1, 2, 3}) + P (X = 3, Y = {1, 2, 3})

= p1 + p2 + α p3.

3 The Optimization Problem: What Should We
Maximise?

Let us consider a sequence Z = ((X1, Y1), . . . , (XN , YN )) of N iid copies of Z =
(X,Y ). We will use the nomenclature z = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N

to represent a specific sample of the vector (X,Y ). Thus, y = (y1, . . . , yN ) will
denote the observed sample (an observation of the vector Y = (Y1, . . . , YN )),
and x = (x1, . . . , xN ) will denote an arbitrary artificial sample from X for the
unobservable (latent) variable X, that we shall vary in X N . We can describe any
sample z in frequentist terms assuming exchangeability:

– nkj =
∑N

i=1 1{(ak,bj)}(xi, yi) is the number of repetitions of (ak, bj) in the
sample z;

–
∑m

k=1 nkj = n.j be the number of observations of bj = Aj in y;
–

∑r
j=1 nkj = nk. be the number of appearances of aj in x.

Clearly,
∑m

k=1 nk. =
∑r

j=1 n.j = N . Let the reader notice that, once a specific
sample y = (y1, . . . , yN ) ∈ YN has been observed, the number of nkj repetitions
of each pair (ak, bj) ∈ X × Y in the sample, can be expressed as a function of
x = (x1, . . . , xN ).
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3.1 Different Generalizations of the Notion of the Likelihood
Function

We may consider the following two generalizations of the likelihood function (and
their respective logarithms), depending on whether our sequence of observations
y = (y1, . . . , yN ) is interpreted either as a singleton in YN or as a non-trivial
subset of X N :

– p(y; θ) =
∏N

i=1 p(yi; θ) denotes the probability of observing y ∈ YN , assum-
ing that the value of the parameter is θ. It can be alternatively expressed
as p(y; θ) =

∏r
j=1(p

θ
.j)

n.j , where n.j denotes the number of repetitions of
bj = Aj in the sample of size N (the number of times that the reporter says
that the outcome of the experiment belongs to Aj .) The logarithm of this
likelihood function will be denoted by

Ly(θ) = log p(y; θ) =
N∑

i=1

log p(yi; θ) =
r∑

j=1

n.j log pθ
.j .

We call p(y; θ) the visible likelihood function [7], because we can compute it
based on the available data only, that is the observed sample y. It is also
sometimes called the marginal likelihood of the observed data in the EM liter-
ature, not to be confused with the marginal likelihood in a Bayesian context
(see [2], for instance).

– Alternatively,

λ(y; θ) =
r∏

j=1

P (X ∈ Aj ; θ)n.j ,

called the “face likelihood” in [9,20] does not refer to the observation process,
and replaces the probability of reporting Aj as the result of an observation (i.e.
P (Y = Aj)) by the probability that the precise outcome falls inside the set
Aj , P (X ∈ Aj). As we have previously noticed, the occurrence of event “X ∈
Aj” is a consequence of, but does not necessarily coincide with the outcome
“Y = Aj”. In our context, p(y; θ) represents the probability of occurrence of
the result “(Y1, . . . , YN ) = y”, given the hypothesis θ. Therefore given two
arbitrary different samples y �= y′ the respective events (Y1, . . . , YN ) = y and
“(Y1, . . . , YN ) = y′” are mutually exclusive. In contrast, λ(y; θ) denotes the
probability of occurrence of the event (X1, . . . , XN ) ∈ y1× . . .×yN . Events of
this form may overlap, in the sense that, given two different samples y �= y′,
the corresponding events (X1, . . . , XN ) ∈ y1 × . . . × yN and (X1, . . . , XN ) ∈
y′
1 × . . . × y′

N are not necessarily mutually exclusive. Therefore λ(y; θ) can
not be regarded as a likelihood in the sense of Edwards [12]. This criterion
has been generalized to uncertain data and exploited in the Evidential EM
algorithm of Denœux [11]. This extension of EM has been successfully used
in some applications (see [23,24] and references therein).

The above functions p and λ do coincide if and only if the coarsening process
is deterministic, and therefore, the collection of sets {A1, . . . , Ar} forms a par-
tition of X . In fact, P (Y = Aj) ≤ P (X ∈ Aj) for every j = 1, . . . , r and the
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equalities hold when the coarsening is deterministic. Otherwise, if there exists a
pair (k, j) with ak ∈ Aj and P (Y = Aj |X = ak) < 1 then we easily derive that
P (Y = Aj) is strictly smaller than P (X ∈ Aj) and therefore, we deduce that
p(y, θ) is strictly less than λ(y, θ). But we may ask ourselves whether the maxi-
mization of each of those functions leads or not to the same pair of maximizers,
even in those cases where they do not coincide. The next example illustrates a
situation where both methods lead to completely different estimators.

Example 5. Consider again the situation described in Example 4. Furthermore,
suppose that the reporter provides us with the following additional information:
when the result is X = 3, he will flip a coin. If it lands heads, he will tells us that
the result is less than or equal to 3. Otherwise, he will tell us that it is greater
than or equal to 3. Mathematically, α = P (Y = {1, 2, 3}|X = 3) = 0.5. Under
these conditions, the visible likelihood is

p(y, θ) = (p1 + p2 + 0.5 p3)300 + (0.5 p3 + p4 + p5 + p6)700.

It attains its maximum value for every (p̂1, . . . , p̂6) satisfying the restrictions:
p̂1 + p̂2 + 0.5 p̂3 = 0.3 and 0.5 p̂3 + p̂4 + p̂5 + p̂6 = 0.7 (The set of solutions is not
a singleton). Alternatively, the face likelihood function is calculated as follows:

λ(y, θ) = (p1 + p2 + p3)300 + (p3 + p4 + p5 + p6)700.

It attains the maximum value for (p̂1, . . . , p̂6) = (0, 0, 1, 0, 0, 0). In other words,
according to this maximization procedure, the experiment is assumed to be deter-
ministic.

Both optimization procedures lead to completely different solutions. In fact,
according to the first set of solutions, p3 is upper bounded by 0.6, while in the
second case it is assumed to be equal to 1. Furthermore, according to the Weak
Law of Large Numbers, the relative frequencies n.1

N and n.2
N respectively converge

in probability to p.1 and p.2 that, according to the information, respectively
coincide with p1+p2+0.5 p3 and 0.5 p3+p4+p5+p6. Thus, the first procedure (the
one based on the visible likelihood) satisfies the following consistency property:

lim
n→∞ p̂1 + p̂2 + 0.5 p̂3 = p1 + p2 + 0.5 p3

and
lim

n→∞ 0.5 p̂3 + p̂4 + p̂5 + p̂6 = 0.5 p3 + p4 + p5 + p6.

In contrast, the estimation based on the face likelihood does not satisfy the above
consistency property unless the underlying probability satisfies the following
equality:

p1 + p2 + 0.5 p3 = 0.5 p3 + p4 + p5 + p6 = 0.5.

The differences between the visible and the face likelihood functions have
been studied in practice in relation with incomplete ranked data in [1,3]. In
fact, incomplete rankings are viewed there as coarse observations of ranked
data. Let X = S3 denote the collection of rankings (permutations) over a set
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U = {a1, a2, a3} of 3 items. We denote by π : {1, 2, 3} ⇒ {1, 2, 3} a complete
ranking (a generic element of S3), where π(k) denotes the position of the kth

item ak in the ranking. An incomplete ranking τ can be associated with the
collection of complete rankings that are in agreement with it denoted E(τ). An
important special case is an incomplete ranking τ in the form of a pairwise
comparison ai 
 aj , which is associated with the set of extensions

E(τ) = E(ai 
 aj) = {π ∈ SK : π(i) < π(j)}.

For every pair (i, j), let ni denote the number of times that the incomplete
ranking τi is observed in a sample of size N . Let us furthermore assume that the
marginal distribution of X on S3 belongs to a family of distributions parame-
trized by some vector of parameters θ, while the coarsening process is determined
by some λ. The face likelihood based on the above sample is calculated as follow:

λ(y; θ) =
3∏

i=1

∏
j �=i

Pθ(X ∈ E(τi))ni ,

while the visible likelihood function is calculated as

p(y; θ) =
3∏

i=1

∏
j �=i

P(θ,λ)(Y = τi)ni .

They do not coincide in general. Let us consider, for instance, the top-2 setting,
in which always the two items on the top of the ranking are observed. The
corresponding mixing matrix denotes a one-to-one correspondence between πi

and τi, for i = 1, . . . , 6, where:

π1(1) = 1, π1(2) = 2, π1(3) = 3
π2(1) = 1, π2(2) = 3, π2(3) = 2
π3(1) = 2, π3(2) = 1, π3(3) = 3
π4(1) = 2, π4(2) = 3, π4(3) = 1
π5(1) = 3, π5(2) = 1, π5(3) = 2
π6(1) = 3, π6(2) = 2, π6(3) = 1

and

τ1 = a1 
 a2

τ2 = a1 
 a3

τ3 = a2 
 a1

τ4 = a3 
 a1

τ5 = a2 
 a3

τ6 = a3 
 a2

Thus Y takes the “value” τi if and only if X = πi, for all i = 1, . . . , 6. Let us
furthermore notice that each partial ranking τi represents a collection of three
different complete rankings:

E(τ1) = {π1, π2, π4}
E(τ2) = {π1, π2, π3}
E(τ3) = {π1, π2, π4}
E(τ4) = {π1, π2, π4}
E(τ5) = {π1, π2, π4}
E(τ6) = {π1, π2, π4}
Thus, the face and the visible likelihood functions are respectively calculated

as follows:

λ(y; θ) =
6∏

i=1

Pθ(X ∈ E(τi))ni
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while

p(y, θ) =
∏ 6∏

i=1

Pθ(X = πi)ni .

They do not lead in general to the same estimations, as it is checked in [3]. In
fact, under some general assumptions about the underlying generating process,
the visible likelihood-based estimator is consistent, while the face likelihood-
based estimator is not. Some additional formal studies about the consistency of
both estimators under different assumptions about the coarsening process are
performed in [1].

3.2 Different Assumptions About the Coarsening
and the Disambiguation Processes

Different assumptions about the coarsening and the disambiguation processes
have been investigated in the literature [1,15,18,21,22]. The purpose in some
of those cases was to establish simple conditions under which the stochastic
nature of the coarsening process could be ignored when drawing inferences from
data. This subsection reviews two assumptions, one about the coarsening process
and the other one about the disambiguation process, both of them commonly
considered in the literature.

Coarsening at Random. One common assumption about the coarsening
process is the so-called “coarsening at random” assumption (CAR). It was intro-
duced by Heitjan and Rubin [15]. According to it, the underlying data do not
affect the observations. Mathematically,

P (Y = Aj |X = ak) = P (Yj = Aj |X = ak′), ∀ ak, a′
k ∈ Aj .

Two remarkable particular cases of CAR are:

– Grouping. We speak about grouped data [15] when the coarsening process
is deterministic, and therefore P (Y = Aj |X = ak) is either 1 (if ak ∈ Aj)
or 0 (otherwise). In this case, the set {A1, . . . , Ar} forms a partition of the
collection of possible outcomes X .

– Missing at random (MAR).- It particularizes the CAR assumption to the
case where data are either completely observed or missing, and therefore,
the collection of possible observations is Y = {{a1}, . . . , {am},X}. The MAR
assumption means that missingness is not affected by the underlying outcome.

The first one illustrates the partition case.

Example 6 (Taken from [19]). Let X = (X1,X2) with X = X1 × X2 = {p, n} ×
{p, n} We interpret X1, X2 as two medical tests with possible outcomes positive
or negative. Suppose that test X1 always is performed first on a patient, and that
test X2 is performed if and only if X1 comes out positive. Possible observations
that can be made then are b1 = {(n, n), (n, p)}, b2 = {(p, n)} and b3 = {(p, p)}.
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These three outcomes determine a partition of X . Therefore, the matrix M is
determined by the following 0–1 conditional probabilities, and CAR is trivially
satisfied. In fact:

P (Y = b1|X = (n, n)) = P (Y = b1|X = (n, p)) = 1,

P (Y = b2|X = {(p, n)}) = 1,

P (Y = b3|X = {(p, p)}) = 1.

The following example illustrates the missing at random assumption:

Example 7 (Taken from [7]). A coin is tossed. The random variable X : Ω → X ,
where X = {h, t}, represents the result of the toss. We do not directly observe
the outcome, that is reported by someone else, who sometimes decides not to
tell us the result. The rest of the time, the information he provides about the
outcome is faithful. Let Y denote the information provided by this person about
the result. It takes the “values” {h}, {t} and {h, t}.

This example corresponds to the following matrix (M |p) where akj = p.j|k.,
k = 1, 2; j = 1, 2, 3: (

1 − α 0 α p
0 1 − β β 1 − p

)

The marginal distribution of X (outcome of the experiment) is given as

– p1. = P (X = h) = p,
– p2. = P (X = t) = 1 − p.

The joint probability distribution of (X,Y ) is therefore determined by:
⎛
⎝

X\Y {h} {t} {h, t}
h (1 − α)p 0 αp
t 0 (1 − β)(1 − p) β(1 − p)

⎞
⎠

Under the MAR assumption, we have that α = β, i.e.,

P (Y = {h, t}|X = h) = P (Y = {h, t}|X = t).

When furthermore the model is separable with respect to the matrix (M |p),
the coarsening process can be ignored, in the sense that both the visible and
the face likelihood lead to the same estimator of the parameter. This has been
proved by Heitjan and Rubin (see [15,20]). Additional conditions under which
the stochastic nature of the coarsening process can be ignored in some practical
problems have been recently studied in [1,3].
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Uniform Disambiguation Process. We can alternatively make assumptions
about the disambiguation process. When dealing with noisy observations, it is
not unusual to assume that all the possible outcomes compatible with an obser-
vation Y = Aj (i.e., all the elements in Aj) are equally probable, and therefore
P (X = ak|Y = Aj) = 1Aj

(ak) · 1
#Aj

, ∀ ak ∈ Aj . According to this assumption,
the probability induced by X on X corresponds to the pignistic transform [26]
of the mass function derived from the marginal distribution of Y as follows:

m(Aj) = P (Y = Aj), j = 1, . . . , r.

Contrarily to what happens with the CAR assumption, under this alternative
assumption, the face and the visible likelihood do not necessarily lead to the same
estimator.

Example 8. Consider once more the situation described in Example 4, and
assume a uniform disambiguation process. Let p denote the probability of the
event Y = {1, 2, 3}. The visible likelihood can be written as a function of p as:

p(y, p) = pn.1(1 − p)n.2 .

The marginal probability over X can be written as a function of p as follows:

P (X = 1) = P (X = 2) =
p

3
, P (X = 3) =

p

3
+

1 − p

4
,

P (X = 4) = P (X = 5) = P (X = 6) =
1 − p

4
.

Therefore, the face likelihood is different from the visible likelihood:

λ(y, p) =
(

p +
1 − p

4

)n.1 (p

3
+ (1 − p)

)n.2

.

4 Concluding Remarks

We have provided an overview of the maximization procedures based on the so-
called visible and face likelihood functions. The face likelihood depends on the
marginal distribution of X, while the visible likelihood depends on the marginal
distribution of Y . Both, the face and the visible likelihoods have their advan-
tages and their caveats. When the parameter is separable with respect to the
matrix (M |p) (distinctness in the context of Heitjan and Rubin), the first one
only depends on θ3 while the second one depends on both, θ3 and θ4. The MLE
based on the visible likelihood is therefore not unique in this case, unless the
parameter set Θ4 is a singleton. But, although the arg max of the face likelihood
may be unique in those cases, it is not a consistent estimator in general, as we
have observed. The visible likelihood involves the probability of observing the
different outcomes Y = Aj (as a function of the parameter) and the proportion
of times each of them is observed in the sample. Such a proportion converges in
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probability to the (true) probability of the event, and therefore, under some reg-
ularity conditions, the arg max of the visible function is consistent. Alternatively,
the face likelihood replaces the probability of observing Y = Aj by the proba-
bility of occurrence of X ∈ Aj . The vector (q1, . . . , qr), where qi = P (X ∈ Aj)
for all j1 is not proportional in general to the vector (p.1, . . . , p.r) and therefore,
the arg max of the face likelihood is not consistent in general.

Some recent studies compare the maximization of the visible likelihood func-
tion with other strategies such as the maximax and the maximin approaches
mentioned at the beginning of this paper. In this line, the face likelihood can be
regarded as a max-average approach, in the sense that it maximizes the aver-
age of the likelihoods of all the feasible samples on X N (all the samples of the
form x = (x1, . . . , xn) satisfying the restriction xi ∈ yi, ∀ i) (see [17] for fur-
ther details.) Further theoretical and empirical studies are needed in order to
determine what is the best strategy in each practical situation.
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Abstract. Literature involving preferences of artificial agents or human
beings often assume their preferences can be represented using a complete
transitive binary relation. Much has been written however on different
models of preferences. We review some of the reasons that have been
put forward to justify more complex modeling, and review some of the
techniques that have been proposed to obtain models of such preferences.

1 Introduction

Preferences of agents are usually assumed to be representable with a weak order
(a complete and transitive binary relation). We are interested in discussing the
completeness assumption.

Preference models are especially important in two fields: choosing an alter-
native when it is evaluated according to different aspects (multi-criteria decision
making, or MCDM), and picking an alternative whose quality depends on states
of the world that are uncertainly known (decision making under uncertainty,
or DMU). In MCDM, the common assumption is that the alternatives, i.e., the
state of the world, is known without ambiguity, and the difficulty is to deter-
mine the structure of the user’s preferences over these well-defined alternatives.
In DMU, the alternatives are usually not described over several criteria, but the
problem is to recommend an alternative given our uncertainty about the world.

In this paper, we review some reasons to relax preference completeness and
modeling approaches (either in MCDM or DMU) that support this relaxation.
We discuss in particular reasons to consider that the assumption of completeness
is empirically falsified. Although these reasons are not new, we think it is interest-
ing to discuss this question here and now because of (as we perceive it) a relative
ignorance of these discussions in research fields that use preference models but
are not specialized in preference modeling per se, and because of recent and
ongoing advances in analysis of incomplete preferences. We try to cover a wide
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scope by discussing some of the goals, assumptions and basic definitions related
to preference modeling and reviewing a wide range of techniques for obtaining
such models. In counterpart, this review does not claim to be comprehensive and
does not provide technical details. To further simplify the discussion, we pretend
that the MCDM and DMU contexts are sharply separated. (In reality, it is often
possible to cover MCDM contexts while taking uncertainty into account (Keeney
and Raiffa 1993).) We also do not discuss transitivity.

We briefly present the MCDM and DMU settings considering completeness in
Sect. 2. Section 3 discusses completeness in descriptive and normative approaches
(recalling their difference at the same time). Finally, we review models that
departs from completeness in Sect. 4.

2 Assuming Completeness

In this section, we are going to recall the main models that consider completeness
and transitivity of preferences as a consequence of natural requirements, if not
as pre-requisite of any preference modeling. We will also recall normative views
and descriptive views of these concepts.

2.1 MCDM

We consider a simple and classical setting in MCDM. We assume that the alter-
natives are evaluated using a set of criteria G, each having an evaluation scale
Xg. The set of all possible alternatives is X =

∏
g∈G Xg, that is, every combi-

nation of evaluations are considered possible. We are interested in a preference
relation � defined as a binary relation over X .

Example 1. Say the Decision Maker (DM) must choose what to plant in her
garden. The set of alternatives X are all possible vegetables, the criteria G =
{g1, g2, g3} measure the taste, quantity, and price of each vegetable. The scales
are Xg1 = {A,B,C,D}, a set of labels, with x1 representing the taste of the
vegetable x ∈ X as considered by the DM (A is the worst taste, D the best),
Xg2 = [0, 100], with x2 representing the number of meals that the DM would
enjoy if deciding to plant x, and Xg3 = R, thus x3 indicates the price to pay for
planting x.

Typical approaches in MCDM assume that there is some real-valued function
v : X → R mapping alternatives to their values, and that x � y iff v(x) ≥ v(y).

2.2 DMU

In the simplest form of DMU considered here (SDMR, for Simple Decision Mak-
ing under Risk), we consider a set S of possible states of the world, a finite set
of consequences C, and each act x : S → C is modeled as a function where
x(s) is the consequence of performing x when s is the actual state of the world.
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Define X , for simplicity, as all possible or imaginary acts (thus X = CS). In
SDMR, uncertainty is modeled by a probability measure p over the power set
of S, P(S), thus with p(s) ∈ [0, 1] indicating the probability of occurence of s
(with s ⊆ S), and p(S) = 1. We consider a preference relation � defined as a
binary relation over X . Given an act x and a probability measure p, it is usu-
ally convenient to view x as px, a probability mass over the consequences: define
px : C → [0, 1] as px(c) = p(x−1(c)), where x−1(c) designate the set of states in
which x leads to the consequence c. Such a px is usually called a lottery.

Example 2. Assume you want to go out and wonder about taking or leaving
your umbrella. You consider relevant weather state to be A =“shiny” and
B =“raining”, with A,B ⊆ S. We assume A∪B = S for simplicity. Two simple
actions are x1: “take the umbrella” and x2: “leave the umbrella home”, and the
consequences are c1: “encumbered” (when taking your umbrella, irrelevant of
the weather), c2: “free” (when leaving your umbrella and weather is A), and c3:
“wet” (when leaving your umbrella and weather is B). Assume the probabili-
ties of the states A and B are 0.2 and 0.8. Then the constant act x1 can also
be described as px1 with px1(c1) = 1 and px1 being zero everywhere else, and
similarly the act x2 can be associated to px2 where px2(c1) = 0, px2(c2) = 0.2,
px2(c3) = 0.8.

In most DMU frameworks, consequences can be mapped to a real-valued
reward or utility through a function u1 : C → R, in which case u1(x(s)) denotes
the utility of performing x in state s, and acts can be evaluated using a utility
function u : X → R defined as u(x) =

∑
s∈S p(s)u1(x(s)), such that u(x) ≥ u(y)

iff x � y. It follows from this definition that u and u1 are coherent, in the
following sense: given an act x that brings a consequence c with probability one,
u(x) = u1(c).

Expected utility has been justified axiomatically by different authors, the
main ones being Savage (1972), de Finetti (2017) and von Neumann and Mor-
genstern (2004) (hereafter, vNM). In the de Finetti setting, utilities are given as
random variables, and a precise price can be associated to each random variable.
That reasoning should be probabilistic and choices made according to expected
utility follow from two axioms: linearity and boundedness of those prices. vNM
postulate conditions on � ensuring that utility functions u and u1 satisfying the
above conditions exist. The axioms assume completeness of the preferences, and
the probabilities are assumed to be given. In the Savage setting, both proba-
bilities and expected utility follow from axioms about preferences between acts.
In particular, his first axiom (P1) is that any pair of act should be comparable.
Completeness is therefore postulated in the axioms, and expected utility and
probabilistic reasoning follow from the axioms.

While these theoretical constructs have set very strong foundations for the
use of probabilities, in practice experiments such as the Ellsberg (1961) urn
(contradicting Savage sure-thing principle) suggest that people do not always
act according to expected utility (MacCrimmon and Larsson 1979).

Since then, many different extensions have been proposed (Wakker 2010,
Quiggin 2012). Others propose to relax the probabilistic assumption, for instance
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by considering a possibilistic setting (e.g., Dubois et al. (2003) discuss Savage-like
axioms), by considering sets of probabilities such as in decision under ambiguity
(Gajdos et al. 2008), or by simply considering completely missing information,
such as Wald’s (1992) celebrated maximin criterion.

All models presented thus far assume that � is complete (by which we mean
that if � is incomplete, then no suitable function exists in the class of functions
admitted by models presented thus far).

3 Questioning Completeness

Before discussing the reasonableness of restrictions about �, we need to say a
word about what those preferences really represent and what the goal of mod-
eling those may be. Indeed, the meaning of completeness depend on whether a
descriptive or a normative approach is adopted. In particular, we will later dis-
cuss “how much” descriptive one must accept to be in order for the completeness
hypothesis to stand.

3.1 Descriptive and Normative Approaches

In the descriptive approach to preferences, the goal of the model is to reflect the
observed behavior of a DM. Typically, a set of sample choices of the DM is first
collected, say, of choices of food products in his favorite store, and we would
then try to obtain the model that best reflects his choice attitude. Or, we would
query an individual’s preference about pairs of objects, and then try to build
a predictive model on the whole set of possible pairs of alternatives (a method
called active learning in the machine learning community). Such a model may
be used to predict his behavior, e.g. for marketing or regulation purposes.

Under the normative approach, the goal is to model the way the DM ought
to choose rationally. Rationality may corresponds to accepted external norms,
or to rules accepted by the DM after careful thinking. (In the second case, the
term prescriptive or constructive may be used instead of normative, but different
authors use these terms differently (Roy 1993, Tsoukiàs 2007); we will stick to the
term “normative” as an umbrella.) In both cases, the decision outcome using such
approach may differ from empirically observed decisions. Consider as an example
a recruiter in an enterprise who wants to model the recruitment procedure. After
having collected data, it may appear that for some (possibly unconscious) rea-
son, the recruitment is biased against some particular socio-economic category.
The DM may then want to find a recruitment strategy that avoids such biases,
therefore actively trying to build a model contradicting empirical observations.

McClennen (1990), Guala (2000) discuss philosophical grounds for accepting
a normative model. Anand (1987), Mandler (2001) discuss normative grounds
for usual axioms about preferences, including completeness.

Choosing between normative or descriptive approaches is not always easy. For
instance recommender systems often adopt a descriptive approach. But descrip-
tive approaches will, by design, reflect our cognitive limitations. Those limita-
tions are numerous and sometimes obviously not in agreement with what the DM
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himself would do when thinking more carefully, as will be illustrated in Sect. 3.3.
Providing (more) normative-based automatic recommendations might help pro-
vide sound advices, help increase serendipity, and possibly build trust (or avoid
mistrust) in the recommender system. For example, the DM might appreciate
that the recommender system’s advices protect him from exploitations of the
DM’s cognitive limitations by merchants. (As an old but known example, “the
credit card lobby is said to insist that any price difference between cash and
card purchases should be labeled a cash discount rather than a credit surcharge”
(Tversky and Kahneman 1986).)

3.2 Defining and Testing Incompleteness

Defining and testing incompleteness in preferences requires to define “prefer-
ence” (and thus �), as its everyday usage can be ambiguous: Frankfurt (1971)
gives seven interpretations of “to want to”, and this exercice transposes, mutatis
mutandis, to the notion of preference.

Here is what vNM say about the preference relation (we have taken this from
the very insightful presentation of the vNM approach by Fishburn (1989)): “It
is clear that every measurement – or rather every claim of measurability – must
ultimately be based on some immediate sensation, which possibly cannot and
certainly need not be analyzed any futher. In the case of utility the immediate
sensation of preference – of one object or aggregate of objects as against another
– provides this basis” (3.1.2); “Let us for the moment accept the picture of an
individual whose system of preferences is all-embracing and complete, i.e. who,
for any two objects or rather for any two imagined events, possesses a clear
intuition of preference. More precisely we expect him, for any two alternative
events which are put before him as possibilities, to be able to tell which of the
two he prefers.” (3.3.2) (The “events” correspond to our alternatives.)

Expanding on vNM, we define that the DM prefers a to b when expressing an
intuitive attraction towards a when presented with a and b, or an equal attraction
towards a and b; and this attraction does not change along a reasonable time
span and as well as when irrelevant changes in the context happen. Here, we
assume that a, b are alternatives in X described by their evaluations on the
criteria (in MCDM) or by the relevant probability distributions and consequences
(in SDMR), and consider as irrelevant changes anything that does not change
those descriptions.

Under this definition, postulating completeness of � amounts to say that
choices of the DM will not change along time or when irrelevant changes hap-
pen. While this is not the only possible definition (others will be mentioned),
it appears reasonable and sufficiently formal to make the condition empirically
testable.

A first, immediate argument against completeness is that preferences are not
stable over even very short period of time, a well-accepted fact in experimental
psychology. Quoting Tversky (1969), individuals “are not perfectly consistent in
their choices. When faced with repeated choices between x and y, people often
choose x in some instances and y in others. Furthermore, such inconsistencies are
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observed even in the absence of systematic changes in the decision maker’s taste
which might be due to learning or sequential effects. It seems, therefore, that the
observed inconsistencies reflect inherent variability or momentary fluctuation in
the evaluative process”.

This argument may not be strong enough however. In absence of other argu-
ments, one might agree that preferences are in reality incomplete but claim that
they may appropriately be modeled as complete: a model of complete prefer-
ences would simply deviate from time to time from what individuals declare
because of (perhaps rare) random fluctuations in their expressions of prefer-
ences. In order to discuss this hypothesis, we turn to the second (and much
more interesting) reason for failure of completeness, which is also brought by
the literature in empirical psychology. It appears that preferences change may
not be attributed solely to random fluctuations: they change in systematic ways
according to changes in the presentation of the alternatives or the context that
should have no impact from a normative point of view.

3.3 Empirical Evidence of Incompleteness

In multicriteria contexts, psychologists have shown systematic differences
between the so-called choice and matching elicitation procedures (Tversky et al.
1988). Assume you want to know which of two alternatives x, y the DM prefers,
in a problem involving two criteria. You can present both and directly ask for a
choice. Alternatively, with the matching procedure, you present x with its two
evaluations g1(x), g2(x), and y′ with only g1(y′) = g1(y), and ask the DM for
which value g2(y′) y′ would be indifferent to x. Assuming � satisfies dominance
and transitivity, you then know that x � y iff g2(y′) ≥ g2(y). Although the two
elicitation procedures should be equivalent, the authors confirm the prominence
hypothesis stating that the more prominent criterion has more importance in
choice than in matching. One of their study confront the subject to a hypothet-
ical choice between two programs for control of a polluted beach. Program x
completely cleans up the beach at a yearly cost of $750 000; program y partially
cleans it up for a yearly cost of $250 000. They assume that pollution is the more
prominent criterion here, hence expect that x will be chosen more often in choice
than in matching. Indeed, 48% out of the 104 subjects confronted with a choice
procedure selected x, whereas only 12% out of the 170 subjects selected it in a
matching procedure. Similar effects apply to lotteries in SDMR (Luce 2000).

This phenomenon is known as preference reversal due to a breach of procedure
invariance. Another reversal is the one due to description invariance (or framing
effect), showing that preferences can change by changing the descriptions of
alternatives. In Tversky and Kahneman (1981), two groups have to choose a
program to prepare against an epidemic outspring that would result otherwise
in 600 deaths. The two groups are presented with the same numeric alternatives
x and y, but on the first group the alternatives are presented in terms of numbers
of life saved, while in the second they are presented in terms of death counts.
The experiment shows that preferences differ predictably in the two groups.
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It is indeed well-known that results are perceived differently depending on their
descriptions as losses or gains Thaler (1980).

Numerous other studies exist that show and discuss preference reversal effects
(Deparis 2012, Chap. 2 (from which we took the two studies described here
above), Lictenstein and Slovic 2006a, Tversky et al. 1990, Kahneman et al. 1981,
Kahneman and Tversky 2000). How to best account for and predict preference
reversals is still debated, but their existence is consensual (Wakker 2010, Birn-
baum 2017). Some skeptics did try to show that preference reversals could be
attributed to deficiencies in the design of the studies, but finally came around
(Slovic and Lichtentstein 1983).

This shows that the � relation cannot be expected to be complete given
our definition. For some alternatives, individuals may be led to declare different
preferences, denoting an absence of a clear, intuitive preference for each pairs
of alternatives. When thinking more about the comparison and presented with
different views of the same problem, individuals may in some cases change their
preference. This has been studied empirically (Slovic and Tversky 1974, Mac-
Crimmon and Larsson 1979, Lichtenstein and Slovic 2006b) and Savage (1972,
pp. 101–103) famously reported that it happened to him.

One may of course want to preserve completeness of preferences, for exam-
ple to preserve mathematical and computational simplicity. One way to do so,
common in experimental psychology, is to restrict further the frame in which
preferences are considered. For instance, Luce (2000) indicates clearly that he
studies preferences in terms of choice, not judgment; MacCrimmon et al. (1980)
exclude some kind of loteries from the scope of the model. In such cases, com-
pleteness may well be justified. In other settings, such as normative approaches
or recommender systems, it is unclear that such reductions should be enforced,
as they may be hard to impose in practice or lead to behavior that the user may
not desire.

We also mention two related interesting articles: Deparis et al. (2012) study
the behavior of individuals when they are allowed to make explicit statements
of incomparability; Danan and Ziegelmeyer (2006) propose to consider that an
incomparability is observed whenever the DM is ready to pay a small price to
postpone the decision.

Another, more evident, reason to be interested in models allowing incomplete-
ness is that it may well be that provided information is insufficient to obtain a
fully precise models.

The next section describes approaches that allow incomplete preference rep-
resentations.

4 Dropping Completeness

4.1 Incompleteness in MCDM

Some approaches in MCDM in the family of outranking methods (Roy 1996,
Greco et al. 2016, Bouyssou et al. 2000, 2006, Bouyssou and Pirlot 2015) can
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represent incomparabilities. A much used idea is to take into account two points
of view, leading to weak-orders �1 and �2, then define � = �1 ∩ �2. Thus,
when the two weak-orders strongly disagree about some pair of objects, the
result can declare them incomparable. As an example, consider (a simplification
of) the ELECTRE III method (our much simplified description only consider the
aspects sufficient to obtain incomparabilities). It builds a concordance relation C
that determines whether alternative x is sufficiently better than y, by accounting
only for the criteria in favor of x; and a discordance relation D that determines
whether x is so much worst than y on some criterion that x cannot possibly be
considered better than y (thus implementing a veto effect). Precise definitions
of C and D depend on parameters to be fixed when implementing the method.
Then, the model declares that x � y iff xCy and not xDy.

Example 3. Consider X = R
3, each criteria to be maximized, and a model

according to which xCy iff x is better than or equal to y for at least two criteria,
and xDy iff for some g, yg − xg ≥ 2. Such a model would consider the two
alternatives x = (0, 0, 2) and y = (1, 1, 0) as incomparable: neither x � y nor
y � x hold.

Such approaches tend to consider incomparabilities as intrinsic to the
preferences, since even a completely specified preference could lead to
incomparabilities.

Robust methods in MCDM exist that distinguish conclusions about prefer-
ences that hold for sure, given limited preferential information from the DM,
from conclusions that possibly hold. Such methods typically start from a class
M of possible models (similar to hypothesis space in machine learning) assumed
to be candidate representative models of the DM preferences. A robust method,
given a class M and a set of constraints C reducing the set of possibles models
(typically preference statements given by the DM), will consider that a is nec-
essarily preferred to b, a �N b, whenever a � b for all relations � in M that
satisfy C (Greco et al. 2008).

Example 4. Assume that the only thing you know about the DM is that she
prefers x = (0, 0, 2) to y = (0, 4, 0), and you assume that � satisfies preferencial
independence, meaning that the way two alternatives compare does not change
when changing equal values on a given criterion. Thus, M contains all relations
that satisfy preferencial independence, and C is the constraint x 	 y. You may
then conclude that a = (3, 0, 2) is preferred to b = (3, 4, 0), thus, a 	N b, but
you ignore whether c = (1, 1, 1) is preferred to d = (0, 2, 2), thus, ¬(c �N d) and
¬(d �N c).

In such approach, the relation �N is able to represent incomparabilites. Incom-
parabilities stem here from a lack of knowledge, and are not intrinsic to the
modeled preference relation, as in principle one could collect enough constraints
C about M to identify a unique compatible relation 	 on a set of alternatives.

It is of course also possible to include in M some models that allow for
incomparabilities (Greco et al. 2011).
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4.2 Incompleteness in DMU

As recalled in Sect. 1, probability theory and expected utility are the most widely
used tools when having to decide under uncertainty, and naturally induce com-
pleteness of preferences. It should however be noted early scholars were critical
about the fact that completeness could hold in practice. von Neumann and Mor-
genstern (1953, p. 630) for example themselves considered completeness as a
strong condition: “it is very dubious, whether the idealization of reality which
treats this postulate as a valid one, is appropriate or even convenient”.

Many attempts to relax the completeness axioms does so by considerings
axioms leading to deal with sets of utilities and sets of probabilities (Aumann
1962), entangling together aspects about decision and about information
modeling.

Keeping Precise Probabilities but Not Expected Utility. Even when
having precise probabilities, there are alternatives to expected utility that induce
incomplete preferences. One of them that is particularly interesting is the notion
of stochastic dominance (Levy 1992). Assuming that the set of consequences is
completely ordered by preference, which we denote by C = {c1, · · · , cn} where
ci−1 is preferred to ci, then a lottery px is said to stochastically dominate py iff,
for all 1 ≤ i ≤ n:

px({c1, . . . , ci}) =
i∑

j=1

px(cj) ≥ py({c1, . . . , ci}) =
i∑

j=1

py(cj). (1)

Since Inequality (1) can be satisfied for some i and not for others, possible
incomparabilities immediately follow.

Example 5. Consider the set of consequences C = {c1, c2, c3} and the following
lotteries (induced by different acts x1, x2, x3), given in vectorial forms: p1 =
(0.5, 0.3, 0.2), p2 = (0.6, 0.3, 0.1) and p3 = (0.7, 0, 0.3). Then x2 stochastically
dominates x1, while x3 is incomparable to both x1 and x2, according to stochastic
dominance.

The notion of stochastic dominance has some very attractive properties, as:

1. it does not necessitate to define utilities over consequences, and merely
requires them to be linearly ordered;

2. it can be perceived as a criterion allowing for utilities to be ill-defined, as px
stochastically dominates py if and only if x has a higher expected utility than
y for any increasing utility function u defined over C.

Incompleteness from Non-precise Probabilities. In the past few decades,
different scholars have challenged the need for precise probabilities associated to
classical axiomatics, advocating the use of imprecisely defined prices (expected
values) or of imprecisely defined probabilities. To mention but a few:
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– Levi (1983) advocates the uses of sets of probabilities within a logical inter-
pretation of probabilities;

– Walley (1991) extends the de Finetti axioms by assuming that an agent would
give different buying and selling prices for an act, therefore allowing indecision
if the price is between these bounds;

– Shafer and Vovk (2005) explores a probabilistic setting centered on the notion
of Martingale.

Such theories can most of the time be associated to the use of convex sets of
probabilities, and give rise to decision rules that extend expected utility but do
allow incomparabilities. Once we accept that a convex set P of probabilities (or a
formally equivalent representation) can represent our knowledge, incompleteness
may ensue.

A prototypical way to induce incompleteness between acts from incomplete-
ness in probabilities is to adapt expected utility criterion, and among rules doing
so, maximality is a popular one (it is championed by Walley, but is considered
as early as the 60’s (Aumann 1962)). Given acts x1, x2, maximality says that

x1 � x2 iff u(x1) ≥ u(x2) for all p ∈ P.

Maximality reduces to expected utility when P is a singleton.

Example 6. Going back to Example 2, imagine that x1 is indifferent to x2 exactly
when p(A) = p(“shiny”) = 1/3. Thus, u1(“encumbered”) = 1/3u1(“free”) +
2/3u1(“wet”). Then, x1 and x2 will be incomparable according to maximality
as soon as P contains at least one mass where p(A) < 1/3, and another where
p(A) > 1/3.

It should be noted that other authors have proposed different rules: for
instance Levi (1983) recommends to use a decision rule, often called E-
admissibility, that does not give rise to an incomplete order between acts, but
rather selects all the acts that are Bayes optimal according to at least one prob-
ability p ∈ P. In terms of order, this comes down to consider a set of possible
linear ordering, and to retain only those elements that are maximal for at least
one of them.

Working with Sets of Probabilities and Utilities. Sets of probabilities are
helpful to represent incomplete beliefs or lack of information, yet it is natural
to also consider cases where the DM cannot provide a fully accurate estima-
tion of utilities associated to consequences, or even to completely order them.
In some sense, stochastic dominance is an extreme view of such a case, where
consequences are ordered but the utility function is left totally unspecified.

Other works have dealt with partially specified utilities.

– Dubra et al. (2004) represents preferences over lotteries by a set of utility
functions. Preference holds whenever the expected utility for the preferred
alternative is higher for all utility functions. This idea has been applied in
other contexts (Ok 2002).
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– Dubra and Ok (2002) propose to view the preference relation as a completion
of an intuitive partial preference relation: the DM knows intuitively the result
of some comparisons, and compute the other ones by applying some reasoning
process. They also obtain a preference relation that is representable using a set
of utility functions. This approach directly tackles some of the shortcomings
described in Sect. 3.2.

– Manzini and Mariotti (2008) use a utility function and a vagueness function,
representing the preference using intervals of utilities rather than real valued
utilities. (Beyond DMU, also using this representation, Masatlioglu and Ok
(2005) assume that a specific alternative called the status quo alternative is
prominently chosen whenever the DM faces a choice about which incompa-
rability occur.)

There exist a few works where both requirements of precise probabilities and
utilities are relaxed. This can be traced back at least to Aumann (1962) whose
axioms do not require uniqueness of utilities: x 	 y ⇒ u(x) > u(y), without
requiring the reverse. More recently, Galaabaatar and Karni (2013) are interested
in the Savage-like context where probabilities are unknown and represent an
incomplete preference relation in uncertaintly using a set of pairs of probabilities
and utilities.

5 Incompleteness: Absence of Knowledge or Knowledge
of Absence?

We have tried to browse a general picture of reasons why preference modeling
should accommodate for incompleteness, and how it can do so in multi-criteria
problems and uncertainty modeling.

One issue that transpired in most of the paper is whether incompleteness
should be considered as an intrinsic, or ontic property of the preferences, in
which case incomparability express a knowledge of absence of relation, or if
incompleteness should be considered as an incomplete, epistemic description
of a complete order, in which case it expresses an absence of knowledge. This
mirrors different views about probability sets (Walley’s consider that they model
belief, without assuming an existing precise unknown distribution, while robust
Bayesians consider the opposite).

Our opinion is that both views can be legitimate in different settings, and also
that beyond the philosophical interest of distinguishing the two, this can have an
important practical impact: knowing that incomparabilities are observable facts
may influence strongly our information collection protocol; also, a same piece
of information will be interpreted differently. If a DM pick act a among three
acts {a, b, c}, in the espistemic interpretation, we woud deduce a 	 {b, c}, but in
the ontic one we could only deduce that a is a maximal element (¬(b 	 a) and
¬(c 	 a))
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1 History

Mathematical Fuzzy Logics [51,60] have a long tradition with roots going back
to the many-valued logics of �Lukasiewicz, Gödel, and Kleene [57,68,73] and the
Fuzzy Set Theory of Zadeh [111]. Their purpose is to model vagueness or impre-
cision in the real world, by introducing new degrees of truth as additional shades
of gray between the Boolean true and false. For example, one can express the
distinction between a person x having a high fever or a low fever as the degree
of truth of the logical statement Fever(x). One of the central properties of fuzzy
logics is truth functionality—the truth degree of a complex logical formula is
uniquely determined by the truth degrees of its subformulas. This is a fun-
damental difference to other quantitative logics like probabilistic or possibilistic
logics [56,83]. The semantics of fuzzy logics are thus given by functions interpret-
ing the logical constructors conjunction, implication, and negation. For example,
the truth degree of the conjunction (Fever ∧ Headache)(x) can be computed as a
function of the degrees of Fever(x) and Headache(x). The functions proposed by
Zadeh [111] are a popular choice, because they lead to good computational prop-
erties. A different approach uses operators called triangular norms (t-norms) and
their associated residua to interpret conjunction and implication [60,69].

More recently, Description Logics (DLs) were developed as fragments of first-
order logic, with a focus on their computational properties [3]. They use concepts
(unary predicates, such as Fever and Headache) and roles (binary predicates like
hasSymptom) to describe knowledge about the world. For example, the descrip-
tion logic axiom

∃hasDiagnosis.Flu � ∃hasSymptom.Fever � ∃hasSymptom.Headache (1)

says that whenever patients are diagnosed with flu, they must have the symp-
toms fever and headache, i.e. fever and headache are necessary symptoms for a
flu diagnosis. Different choices of concept constructors (such as conjunction �
and existential restrictions ∃) can be used to tailor the description logic to the
needs of a specific domain, ranging from lightweight to very expressive logics, for
which nevertheless highly optimized reasoning systems have been developed. The
first Fuzzy Description Logics (FDLs) were developed based on Zadeh’s fuzzy
semantics [95,106,110], and classical DL algorithms were extended to deal with
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the additional expressivity provided by the truth degrees. Since then, a multitude
of combinations of description logics with fuzzy semantics have been investigated,
they have been subject of several surveys and monographies [10,24,47,74,102],
and many FDL reasoners have been implemented [1,14,23,86,107]. Returning
to the example axiom (1), FDLs enable us to grade a flu diagnosis as mild or
severe, based on the severity of its symptoms.

In this survey, we focus on a prototypical FDL based on the classical descrip-
tion logic ALC, and demonstrate the effects of different fuzzy semantics on the
complexity of reasoning with general TBoxes. Section 2 introduces the basic syn-
tax, semantics, and reasoning problems of the logic, and the subsequent chap-
ters deal with different kinds of semantics, sorted roughly by their complexity:
Zadeh semantics and semantics based on finitely many degrees of truth (Sect. 3),
semantics based on the Gödel t-norm (Sect. 4), and other t-norms such as the
�Lukasiewicz t-norm or the product t-norm (Sect. 5). We conclude with a discus-
sion of related logics and reasoning problems, and some open problems.

2 The Prototypical Fuzzy Description Logic

As a prototypical FDL, we briefly introduce a generic fuzzy extension of ALC,
called L-NALC, where L denotes an algebra specifying the fuzzy semantics, and
N denotes the presence of an additional concept constructor � called residual
negation. In the following sections, we instantiate this generic definition with
different concrete semantics.

Truth degrees. We consider algebras of the form L = (L, ∗L,⇒L) where L is a
totally ordered set of truth degrees, including 0 (false) and 1 (true), respectively;
∗L is a t-norm, i.e. an associative, commutative, and monotonic binary operator
on L that has unit 1; and ⇒L is a binary operator on L called implication function.
To simplify the notation, we usually denote the set L as L. In most cases, ⇒L is a
residuum of ∗L (formally defined in Sect. 4), and the associated residual negation
is the function x �→ x ⇒L 0, for x ∈ L. Another popular fuzzy negation function
is the involutive negation defined by x �→ 1 − x. In the following, we consider a
logic that uses both involutive and residual negation.

Syntax. Let NI, NC, and NR be mutually disjoint sets of individual-, concept-,
and role names. Concepts of L-NALC are defined by the following grammar rule,
where A ∈ NC and r ∈ NR:

C:: = A | ¬C | �C | C � C | ∃r.C | ∀r.C

A TBox is a finite set of general concept inclusions (GCIs) 〈C � D ≥ q〉, where
C,D are concepts and q ∈ [0, 1]. An ABox is a finite set of concept assertions
〈C(a) �� q〉 and role assertions 〈r(a, b) �� q〉 with a, b ∈ NI, r ∈ NR, C a concept,
�� ∈ {≤,≥}, and q ∈ [0, 1]. An ontology is composed of a TBox and an ABox.
We refer to GCIs and assertions as axioms.

Semantics. Interpretations I = (ΔI , ·I) consist of a non-empty set ΔI , called
domain, and an interpretation function ·I that maps every a ∈ NI to an element
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aI ∈ ΔI , every A ∈ NC to a function AI : ΔI → L, and every r ∈ NR to
rI : ΔI ×ΔI → L. This function is extended to concepts C by similarly assigning
them a truth function CI : ΔI → L as follows. For every x ∈ ΔI ,

(¬C)I(x) := 1 − CI(x);

(�C)I(x) := CI(x) ⇒L 0;

(C � D)I(x) := CI(x) ∗L DI(x);

(∃r.C)I(x) := sup
y∈ΔI

rI(x, y) ∗L CI(y); and

(∀r.C)I(x) := inf
y∈ΔI

rI(x, y) ⇒L CI(y).

The interpretation I satisfies (or is a model of)

– the GCI 〈C � D ≥ q〉 iff CI(x) ⇒L DI(x) ≥ q holds for all x ∈ ΔI ;
– the concept assertion 〈C(a) �� q〉 iff CI(aI) �� q;
– the role assertion 〈r(a, b) �� q〉 iff rI(aI , bI) �� q; and
– the ontology O iff it satisfies all axioms in O.

We are interested in deciding consistency in L-NALC, i.e. whether a given ontol-
ogy has a model.

Witnessed models. The semantics of the existential restriction ∃r.C com-
putes the supremum over a potentially infinite set of truth degrees, which may
lead to unwanted or unexpected results. For that reason, witnessed models have
been introduced [61], in which this supremum—and, dually, the infimum from
∀r.C—is required to be reached by some domain element, becoming a maximum
(or minimum, respectively). After having been introduced for FDLs, witnessed
models were also studied in the context of fuzzy predicate logics [62–64]. Fol-
lowing the standard approach in FDLs, in the following we implicitly restrict all
models to be witnessed, in particular for Sects. 4 and 5. For work that does not
enforce this restriction, we refer the interested reader to [24,29,32,37,40,48,61].

In the following sections, we instantiate the logic L-NALC with different
semantics, represented by various choices for the algebra L, and discuss the
effect of these choices on the complexity of deciding (witnessed) consistency.

3 Zadeh and Finitely Valued Semantics

We start with the “traditional” FDL Z-NALC, where Z = ([0, 1], ∗Z,⇒Z) is given
by the Gödel (or minimum) t-norm x ∗Z y = min{x, y} and the Kleene-Dienes
implication x ⇒Z y = max{1 − x, y} [55,68]. These functions were initially
proposed in the context of Fuzzy Set Theory [111] to model the intersection
and inclusion of fuzzy sets. This semantics allows various simplifications in Z-
NALC. For example, ¬C is equivalent to �C, and—as in classical logic—∀r.C
can be expressed as ¬∃r.¬C. This is not always the case for other semantics. It
was noticed early on that this choice of functions also results in an effectively
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finitely valued FDL, i.e. that the set of truth degrees can be restricted without
loss of generality to be finite, as long as it contains 0, 0.5, and 1, and is closed
under application of the involutive negation x �→ 1 − x [97]. For this reason,
we see it as a special case of finitely valued FDLs, where L is a fixed, finite
set, which can be assumed to be of the form {0, 1

n , . . . , n−1
n , 1}, and ∗L and ⇒L

are arbitrary functions as introduced in Sect. 2. In such logics, the restriction to
witnessed models is not necessary anymore, since any supremum over a finite
set of values is automatically a maximum. Reasoning approaches for Zadeh and
finitely valued FDLs can be divided into three classes: tableaux-, crispification-,
and automata-based algorithms.

Tableaux algorithms were developed as extensions of classical tableaux tech-
niques for description logics. The basic idea is to iteratively apply tableaux rules to
decompose complex assertions into simpler ones. For example, 〈(C � D)(a) ≥ q〉
is split into 〈C(a) ≥ q1〉 and 〈D(a) ≥ q2〉, where q1 and q2 are nondeterministically
chosen such that q = q1 ∗L q2. For an assertion 〈(∃r.C)(a) ≥ q〉 involving an exis-
tential restriction, a new individual x has to be introduced, together with asser-
tions 〈r(a, x) ≥ q1〉 and 〈C(x) ≥ q2〉 as above. In general, there are many choices
for q1 and q2, which result in a high degree of nondeterminism; however, for some
semantics (e.g. Zadeh) the rules can be simplified. Since there are only finitely
many possibilities for such assertions over a single individual, appropriate blocking
conditions can ensure termination of these algorithms. Fuzzy tableaux algorithms
have been developed, starting from the initial works in [95,96,106], for very expres-
sive extensions of L-NALC with more concept constructors [38,43,88,89,92,93].
They usually do not provide tight complexity bounds for deciding consistency, but
they have been successfully implemented in FDL reasoners like fuzzyDL [23] and
FiRE [86].

Crispification algorithms are also among the first reasoning methods to be
developed for finitely valued FDLs [97,100]. The idea is to translate the fuzzy
ontology into a classical DL ontology, and then use optimized algorithms for
classical reasoning. In this translation, each concept name A is replaced by
finitely many classical concept names A≥q that represent all those individu-
als that belong to A with a degree of at least q. The order structure on L
is then expressed by GCIs A≥q2 � A≥q1 where q1 < q2. Since the order has
to be preserved also for role names, these reductions introduce so-called role
inclusion axioms, which usually do not increase the complexity of reasoning.
Finally, the original fuzzy axioms are recursively translated into classical axioms
by using the new concept and role names. The ontology resulting from this
translation is consistent in the classical sense iff the original fuzzy ontology is
consistent. The first reductions for general finitely valued semantics included
an exponential blowup [13,15,16,20,22,75], which can however be avoided by
preprocessing the ontology [35]; again, this problem does not occur when using
the Zadeh semantics [11,12,97]. Based on these polynomial translations, it can
be shown that deciding consistency in finitely valued FDLs has the same com-
plexity as in the underlying classical DLs. In particular, consistency in L-NALC
with finite L is ExpTime-complete. It was pointed out recently [35] that some
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reductions [16,20,75] are incorrect for so-called number restrictions, which allow
to restrict the number of r-successors of a particular type; unfortunately, no
alternative reduction has been found so far. The crispification approach has
been implemented in the FDL reasoner DeLorean [14].

Automata-based algorithms generalize similar techniques from classical DLs.
The basic idea behind these algorithms is to use tree automata to decide the
existence of a forest-shaped model of the ontology [36,41,45]. In some cases,
e.g. in the presence of nominals (concepts that can refer to specific individual
names), a forest-shaped model does not need to exist, but the automata-based
techniques can be adapted [25]. One disadvantage of this approach is that it
cannot handle ABoxes naturally. In fact, a pre-completion step, which is based
on the tableau rules mentioned before, is necessary to ensure correctness of the
algorithms [38]. On the other hand, automata-based algorithms are useful for
finding tight complexity bounds. In particular, using the notions from [4], one
can show that consistency in L-NALC is PSpace-complete when restricted to
so-called acyclic TBoxes [41].

In summary, reasoning in finitely valued FDLs (including those using Zadeh
semantics) is usually decidable and has the same complexity as in the underlying
classical DLs; moreover, efficient implementations of reasoning algorithms are
available. The only known exceptions are FDLs that are less expressive than
L-NALC, where additional truth degrees can actually increase the complexity of
reasoning, e.g. from P to ExpTime in EL [26].

4 Gödel Semantics

Hájek initiated a systematic investigation of FDLs with t-norm-based semantics
in [61], founded on his work on Mathematical Fuzzy Logic [60,65]. Such seman-
tics use the infinite set of truth degrees [0, 1] and t-norms ∗L as introduced in
Sect. 2. However, as implication function they use an associated residuum ⇒L

that satisfies, for all x, y, z ∈ [0, 1], the equivalence x ∗L z ≤ y iff z ≤ x ⇒L y. We
consider here only continuous t-norms ∗L, which ensures that their residuum is
unique [69]. It is long known [82] that all infinitely many continuous t-norm can
be constructed using so-called ordinal sums from three fundamental t-norms:
the Gödel t-norm (which is also used in the Zadeh semantics), the �Lukasiewicz
t-norm, and the product t-norm. Without going into the details of this construc-
tion, we focus here on these fundamental t-norms themselves; however, in the
literature many results for their combinations have been obtained.

In this section, we consider the first of the three fundamental t-norms. As
mentioned earlier, the Gödel semantics G = ([0, 1], ∗G,⇒G) differs from the Zadeh
semantics only by using as implication function the Gödel residuum, which is
defined, for all x, y ∈ [0, 1], as

x ⇒G y =

{
1 if x ≤ y,

y otherwise.
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The first work to deal with Gödel semantics in FDLs was [13]. There, the
authors attempted to replicate the ideas successfully employed for the Zadeh
semantics, and show that reasoning can be restricted to a finite subset of truth
degrees. Unfortunately, this claim turned out to be incorrect. The main reason
lies in the fact that the constructors � and ∀, which require the Gödel residuum
in their interpretation, can be used to guarantee the existence of truth degrees
strictly greater than others, which may, however, be arbitrarily close.

Using this insight, it was later shown in [31] that G-NALC does not have the
finite model property (FMP). That is, there exist consistent G-NALC ontologies
that have only infinite models. Since classical ALC has the FMP, a direct conse-
quence of this result is that it is impossible to apply the crispification approach
from finitely valued FDLs to the Gödel semantics. This result was strengthened
further, by showing that some ontologies can only be satisfied by models that
use infinitely many different truth degrees [31].

Interestingly, it turns out that satisfiability of a G-NALC ontology does not
depend on the precise truth degrees used by an interpretation, but rather on their
relative order. Moreover, only finitely many such orderings are relevant. Hence,
a new crispification approach was developed in [44], where the classical concepts
represent orderings between the degrees given to different fuzzy concepts. Build-
ing on this idea, a tableaux-based method, which decomposes complex concepts
into simpler (ordered) concepts, was developed in [46]. From these algorithms,
it was possible to obtain complexity bounds for reasoning in FDLs under Gödel
semantics that mostly match those of reasoning in their classical variants. In
particular, deciding consistency in G-NALC is again ExpTime-complete.

5 �Lukasiewicz and Product Semantics

We now consider the remaining two of the three fundamental continuous t-norms.
Following the formalization of [60], the product semantics is given by the algebra
Π = ([0, 1], ∗Π,⇒Π), with x ∗Π y = x · y and

x ⇒Π y =

{
1 if x ≤ y,
y
x otherwise.

The �Lukasiewicz semantics is given by �L = ([0, 1], ∗�L,⇒�L), where

x ∗�L y = max{x + y − 1, 0} and
x ⇒�L y = min{1 − x + y, 1}.

After t-norm-based semantics were proposed for FDLs in [61], many tableaux algo-
rithms were developed for these logics [17,18,59,87,103,104]. Most of them are
based on a novel combination of traditional tableaux algorithms with mixed inte-
ger programming solvers. The former decompose complex assertions into smaller
ones, while generating a set of constraints; and the latter are then used to find a
solution for these constraints. In a simple example, 〈(C � D)(a) ≥ 0.5〉 is decom-
posed into 〈C(a) ≥ x〉 and 〈D(a) ≥ y〉, and the constraint x · y ≥ 0.5 is added
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to a set of inequations (under product semantics). At the end, an external solver
computes a solution to this inequation, e.g. {x �→ 0.8, y �→ 0.7}. Unfortunately,
as observed in [5,9], these logics also lack the FMP and, consequently, none of
these algorithms can decide consistency in the presence of GCIs. In fact, these
algorithms are correct only for so-called unfoldable TBoxes (similar to acyclic
TBoxes). A detailed discussion of the reasons for restricting the expressivity of the
ontologies can be found in [2]. Different algorithms tailored towards FDLs using
the product and �Lukasiewicz t-norms in the absence of GCIs were used to show
decidability in [1,47,48,61].

Surprisingly, many such FDLs were subsequently shown to have an unde-
cidable consistency problem, first for product semantics [5–7], and then for
�Lukasiewicz semantics [49]. These results are based on reductions from the Post
Correspondence Problem. They were later generalized to cover a variety of com-
binations of t-norms and concept constructors [33,39], including both Π-NALC
and �L-NALC, even if all axioms are restricted to be crisp, i.e. of the form 〈α ≥ 1〉.
At the same time, it was discovered that these results are quite sensitive to the
choice of concept constructors and axioms allowed. For example, consistency
in Π-NALC becomes decidable if the constructor ¬ and assertions of the form
〈α ≤ q〉 are disallowed. Indeed, it was shown that, to decide consistency in this
restricted logic, it suffices to consider classical interpretations, which use only
the truth values 0 and 1; effectively, the logic cannot even be considered to be
fuzzy [30,33]. On the other hand, consistency in �L-NALC remains undecidable
even without ¬ and ∀, and with only crisp axioms [39]. Very recently, it was
discovered that even �L-EL, which extends a logic with polynomial complexity in
the classical case, has an undecidable consistency problem [27,28]; however, no
such result is known for the variant Π-EL with product semantics. For a detailed
discussion of the border between decidability and undecidability in t-norm-based
FDLs, we refer the reader to [33].

6 Related Notions

Much research effort has been devoted to extending FDLs towards even more
expressive languages. For example, more complex assertions like 〈Tall(a) >
Tall(b)〉 allow to compare fuzzy degrees between different individuals a and b.
Usually, such extensions do not affect the complexity of consistency [31,44–46].
Going one step further, one can also allow comparisons inside concepts like
Tall > ∀friend.Tall, representing the set of all people that are taller than all their
friends. These latter extensions have so far been studied only for the Zadeh
semantics [67,72].

The papers [21,70,109] propose aggregation operators that generalize concept
conjunctions, and for example allow to express weighted sums of truth degrees,
like a 1

2Comfortable + 1
2Cheap hotel. Due to their generality, however, one has to

be careful not to obtain an undecidable logic, e.g. by restricting to unfoldable
TBoxes. Similarly, one can replace the quantifiers in FDLs by more general
functions [85], or introduce fuzzy modifiers like very [66,112] that can scale and
transform the interpretations of concepts, e.g. very Tall.
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A different direction for generalization is to allow the truth degrees to be only
partially ordered. In particular, extensions of description logics with lattice-based
semantics have been studied in [24,25,36,41,43,58,100]. If the underlying lattice
is finite, then methods similar to those described in Sects. 3 and 4 can be used
to show tight complexity bounds or provide reductions to classical reasoning.
Other (infinite) semantics remain largely unexplored, but they are expected to
be undecidable in most cases.

The standard approach to integrate datatypes into description logics is to
include concrete domains, which provide access to new concrete predicates whose
interpretation is fixed, e.g. the total order on the natural numbers. In [80],
the classical description logic ALC is extended with the use of fuzzy concrete
domains, which provide built-in fuzzy predicates. In the context of FDLs, fuzzy
concrete domains have also been studied in [18,98], but are usually restricted to
unary concrete predicates.

A different reasoning task often considered in description logics is to answer
conjunctive queries (CQs) over an ontology O. More precisely, one is interested
in retrieving all the individuals that satisfy some given properties in every model
of O. In FDLs this problem becomes more involved, since individuals may sat-
isfy the query to some intermediate truth degree. This has motivated different
approaches and solutions to CQ answering over fuzzy ontologies, for example by
crispification or adaptation of classical CQ answering techniques such as query
rewriting [35,75,78,84,99].

A lot of research has been done also on fuzzy extensions of less expressive
description logics like EL [8,26,42,76,90], FL0 [34], and rule-based languages [77,
94,108]. Since the semantics of the standard Web Ontology Language OWL 2 is
based on classical description logics,1 several proposals have been made for a
fuzzy extension of OWL 2 in order to make FDLs more accessible, and fuzzy
plug-ins for ontology editors have been developed [19,88,91].

We have focused here mainly on the theoretical aspects of FDLs and in
particular on the complexity of reasoning in ontologies built with these lan-
guages. The importance of this study is highlighted by several applications that
have been considered. Some of these applications include medicine [81], informa-
tion retrieval [79,101], recommendation [50,53], and detection [52,54]. Another
important aspect is the problem of constructing such ontologies in the first place.
Approaches for learning FDL axioms from data have been suggested in [71,105].

7 Conclusions

As it can be seen from this survey, FDLs are a very active research topic. Par-
ticularly during the current decade, much effort has been made to understand
the computational properties of this family of logics. As a result, the computa-
tional complexity of deciding consistency of FDL ontologies and other related
reasoning tasks is mostly known. The most notable exceptions are perhaps the

1 https://www.w3.org/TR/owl2-primer/.

https://www.w3.org/TR/owl2-primer/
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cases with restricted expressivity—either by the limiting the concept construc-
tors as in FL0 or DL-Lite, or by constraining the available axioms like for acyclic
TBoxes—with general t-norm semantics.

Apart from the identified undecidable logics, there are several candidates of
languages that can be used to effectively represent and reason about imprecise
knowledge. Interestingly, these cases are still expressive enough for the needs
of some existing applications, and mostly retain the same computational com-
plexity as their underlying classical formalisms. However, the development of
efficient, scalable reasoners is still ongoing. Future work should focus on the
development and implementation of specialized optimizations. These reasoners
can then be used to further promote the use of FDLs in practical applications.
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U.: Fuzzy description logics. In: Handbook of Mathematical Fuzzy Logic, vol. 3,
58, chap. XVI, pp. 1109–1188. College Publications (2016)
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37. Borgwardt, S., Peñaloza, R.: Non-Gödel negation makes unwitnessed consistency
undecidable. In: Proceedings of the 25th International Workshop on Description
Logics (DL 2012), pp. 411–421 (2012) (poster paper)
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43. Borgwardt, S., Peñaloza, R.: Consistency reasoning in lattice-based fuzzy descrip-
tion logics. Int. J. Approximate Reasoning 55(9), 1917–1938 (2014)
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45. Borgwardt, S., Peñaloza, R.: Reasoning in fuzzy description logics using automata.
Fuzzy Sets Syst. 298, 22–43 (2016)
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Abstract. In the field of Fuzzy Set Theory, special attention has been
paid to the problem of determining whether a fuzzy set is a singleton,
by means of the well-known measures of specificity. This has been done,
for example, to be able to measure the level of uncertainty associated
with the fuzzy set or, also, to be able to determine the discriminatory
power of the property associated with the fuzzy set in a given context.
This concept was extended to that of k-specificity in order to determine
the difficulty of choosing k objects in a fuzzy set. In this paper we study
bounding properties for k-specificity measures, and we introduce their
use in flexible querying, analyzing their computation, and comparing the
information provided by these measures with the tightly related fuzzy
cardinality measures.

1 Introduction

One of the recurrent problems in the field of Fuzzy Sets Theory is the calculation
of the cardinality of a fuzzy set [1–7]. The computation of this value can be useful
in many problems, for example, in fields like Flexible Querying or Fuzzy Data
Mining.

The problem is very complex, among other reasons, because the meaning of
the cardinality may respond to very different semantics [1]. For example, it is
not the same to determine the mass of objects that fulfill to some extent the
property represented by the set, than to determine which natural numbers could
be used to describe the number of objects that belongs to the fuzzy set.

In this work we focus on a specific information retrieval problem within Flex-
ible Querying: retrieving those sets within a collection that satisfy the condition
that the number of objects in the set that are compatible with a given fuzzy
constraint is exactly n, being n a natural number or 0.

To address the problem, we employ a special type of measures based on
the notion of specificity. The concept of specificity was introduced by Yager [8]
and aims to determine to what extent a fuzzy set is a singleton. Measures of
specificity have been widely analyzed in the field of Soft Computing [9–13].

As we will see, the concept of specificity can be extended to analyze to what
extent a fuzzy set can be considered to be a crisp set of k elements. This can be
achieved by means of measures of k-specificity [14]. In this paper we consider the
c© Springer International Publishing AG 2017
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use of a slight variation of these measures in flexible querying. For such purpose,
we introduce and study two types of k-specificity measures, namely, predicate-
like and index-like, and their suitability for the proposed problem in terms of
their convergence to 0 as the membership function of the target set evolves.

The work is organized as follows: Sect. 2 presents a description of the prob-
lem, defining a formal framework for the rest of the paper. Section 3 recalls
specificity and k-specificity measures, as well as existing bounding conditions
and families for specificity measures. New results regarding bounding conditions
for k-specificity are introduced in Sect. 4, together with some new proposals of
measures. The relationship between k-specificity and fuzzy cardinality in the
field of fuzzy set theory is studied in Sect. 5. Section 6 discusses some questions
about the calculation of this type of measures and Sect. 7 presents some illus-
trative examples in the context of scene retrieval. Finally, Sect. 8 concludes the
work.

2 Formalization of the Problem

When working in an environment with uncertainty, the subset of objects in a
given set that meet a fuzzy restriction is a fuzzy set. Each object of the origi-
nal set belongs to this fuzzy subset of objects with a degree that indicates the
matching of the object with the given restriction.

Once the fuzzy subset of objects satisfying the restriction is determined, we
might need to compute the number of objects that comply with the constraint.

To cite an example where this problem may arise, consider the case of impos-
ing conditions on a HAVING clause when grouping query results on fuzzy data-
bases, where the tuples belonging to each group accomplish the fuzzy constraint
raised in the WHERE clause to a certain degree. The problem of the aggregate
functions under fuzziness has been widely studied in the field of flexible querying,
although, as indicated in [15,16], the analysis of the functions derived from the
conventional COUNT() is of special complexity, among other reasons, because
the semantics of the count may vary depending on the purpose of the query.

Another case is found in information retrieval systems, when the user wants
to retrieve collections based on the number of objects in the collection that
satisfy a given condition. For example, think of image retrieval systems in which
the user wants to get those images in which a number of objects appear that fits
a given fuzzy pattern.

In this work we will focus on those cases where the count is aimed at deter-
mining whether the number of objects compatible with the imposed restriction
is a certain natural number n. That is, in a collection of sets of objects, we want
to select those sets in which there are exactly n objects that satisfy a certain
fuzzy restriction. Although several non-complex approaches can be made to this
problem (for example by using a simple threshold), in this work this problem is
approached from a broader perspective, defining a new class of operators derived
from the notion of specificity introduced by Yager [8] and connecting with the
tightly related concept of cardinality [1]. Formally, the problem can be defined
as follows.
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Let O be the universe of objects in a given context, and let DB be a collection
of sets {O1, ..., Ot} ⊆ {0, 1}O (i.e. ∀i ∈ {1..t}, Oi ⊆ O).

Let P be a set of properties that can be predicated of objects in O and P
be a restriction built using properties of P.

The problem under study in this paper is to determine those sets O ∈ DB
where the number of objects compatible with P is a given n ∈ N ∪ {0}.

If, ∀o ∈ O, μP (o) stands for the accomplishment degree of object o with
restriction P , then, ∀O ∈ DB, OP stands for the fuzzy subsets of objects com-
patible with P and OP (o) = μP (o).

Next section is devoted to analyze fuzzy measures of the form Spk : [0, 1]O →
[0, 1] that permits to assess the degree to which only k objects compliant with
P can be found in the set of objects O.

3 Specificity

In order to solve the problem described in the previous section, we shall use
measures of k-specificity [14], for any nonnegative integer k.

3.1 Specificity Measures

The idea of k-specificity measure is inspired by the idea of measures of speci-
ficity [8–13]. Given a finite set O, specificity measures are functions of the form
[0, 1]O → [0, 1] assessing the degree to which fuzzy sets in [0, 1]O are close to be
a singleton. For every A ∈ [0, 1]O , let us consider that memberships in A are
ranked in nonincreasing order as a1 ≥ a2 ≥ · · · ≥ am. Let us also consider a0 = 1
and ai = 0 ∀i > m.

Measures of specificity are required to satisfy the following properties [17]:

– S1: Sp(A) = 1 iff A = {o} ⊆ O.
– S2: Sp(∅) = 0.
– S3: Let A,A′ ∈ [0, 1]O such that a1 ≥ a′

1 and ai ≤ a′
i ∀2 ≤ i ≤ m, with ai and

a′
i being the memberships of A and A′, respectively, arranged in nonincreasing

order. Then Sp(A) ≥ Sp(A′).

Specificity measures can be seen as measuring the degree to which the car-
dinality of the set A is 1, since being a singleton and having cardinality 1 are
equivalent.

3.2 Families of Bounded Specificity Measures

In [18], specificity measures were classified into different kinds according to their
behaviour. The following definitions were introduced for that purpose:

Definition 1 ([18]) A specificity measure Sp is ∞-bounded iff Sp(A) ≤ a1 ∀A ∈
[0, 1]O .
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Definition 2 ([18]) Let z ∈ N, z > 1. A specificity measure Sp is z-bounded iff
Sp(A) ≤ a1 − az ∀A ∈ [0, 1]O .

As shown in [18], if Sp is z-bounded then

– Sp is z′-bounded ∀z′ ≥ z > 1, and
– Sp is ∞-bounded.

These properties lead to the following definition:

Definition 3 ([18]) A specificity measure Sp is said to be bounded iff Sp is
z-bounded or ∞-bounded. For every bounded measure Sp, its bound is defined
as:

bound(Sp) =
{

min{z | Sp is z-bounded } ∃z Sp is z-bounded
∞ otherwise (1)

On this basis, specificity measures can be classified into the following three
groups [18]:

– Predicate-like specificity measures are the 2-bounded measures. These mea-
sures are the most restrictive ones, since when a1 = a2 (in the crisp case,
when there are at least two elements with degree 1 in the set), they yield a
value 0.

– Index-like specificity measures are those bounded measures with bound(Sp) =
∞ satisfying Sp(A) > 0 ∀A �= ∅. They never yield a value 0 for nonemtpy
sets.

– Intermediate specificity measures are the rest. These can be seen as a kind
of “index-like measures with a saturation point”, being non-decreasing for an
amount of elements less or equal to a certain value.

As explained in [18], predicate-like specificity measures are useful for rep-
resenting the fulfilment of the predicate “to be a singleton”, whilst the rest of
measures are useful when ranking fuzzy sets in terms of their closeness to be a
singleton. Hence, the most appropriate measures for computing specificity in the
context introduced in Sect. 2 are predicate-like specificity measures, because of
the semantics of the problem.

In [19], predicate-like specificity measures have been employed for solving
the problem introduced in Sect. 2 for the particular case of cardinality being
exactly 1. In the next section we describe the extension to the case of k-specificity.

3.3 k-Specificity Measures

Let A ∈ [0, 1]O with |O| = m. Let us again consider that memberships in A are
ranked in nonincreasing order as a1 ≥ a2 ≥ · · · ≥ am, and also a0 = 1 and ai = 0
∀i > m. A measure of k-specificity for k ∈ N ∪ {0} is a function Spk : [0, 1]O →
[0, 1] satisfying the following properties for every A,A′ ∈ [0, 1]O [14]:

– NC1: Spk(A) = 1 iff A is a crisp set and |A| = k.
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– NC2: Spk(∅) = 0 iff k > 0
– NC3: With respect to ai, Spk(A) is strictly increasing when 1 ≤ i ≤ k, and

strictly decreasing when k + 1 ≤ i ≤ m.

In this paper we shall use slightly different definitions of the abovementioned
properties in order to better accomplish to the properties required for specificity
measures, as the latter are a particular case of k-specificity:

– NC1: Spk(A) = 1 iff ak = 1 and ak+1 = 0 (equivalent to the property NC1
in [14]).

– NC2: If ak = 0 then Spk(A) = 0 (note that as a particular case, a1 = 0
implies A = ∅ and Sp1(∅) = 0).

– NC3: Let A,A′ such that ai ≥ a′
i ∀i ≤ k and ai ≤ a′

i ∀i > k. Then Spk(A) ≥
Spk(A′).

It is easy to show that when k = 1, the previous properties coincide with the
three properties of specificity measures introduced in Sect. 3.

As the two sets of properties are intended to capture the same semantics
that motivates the definitions in [14], in this paper, the measures safisfying the
second set of properties will be also called k-specificity measures.

4 New Results on k-Specificity

4.1 Bounding of k-Specificity Measures

The definition of the different kinds of bounding conditions introduced in previ-
ous sections for specificity measures can be extended to the case of measures of
k-specificity as follows:

Definition 4. Let k ∈ N∪{0}. A measure of k-specificity Spk is ∞-bounded iff
Spk(A) ≤ ak ∀A ∈ [0, 1]O .

Note that since a0 = 1 by definition, all measures of 0-specificity are ∞-
bounded. This is not necessarily the case for k > 0, as it is shown in [18] for
k = 1.

Definition 5. Let k, z ∈ N ∪ {0}, 0 ≤ k < z. A measure of k-specificity Spk is
z-bounded iff Spk(A) ≤ ak − az ∀A ∈ [0, 1]O .

The notion of predicate-like k-specificity measure generalizes that of speci-
ficity measure as follows:

Definition 6. A k-specificity measure is said to be predicate-like iff it is (k+1)-
bounded.

Note that when k = 1, the different bounding conditions and the notion
of predicate-like measure coincide with those of specificity measures. As in the
case of specificity measures, we shall consider that predicate-like k-specificity
measures are the appropriate measures for solving the problem introduced in
Sect. 2.
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4.2 Some New Measures of k-Specificity

Let us introduce some new k-specificity measures.

Definition 7. The fractional measure of k-specificity, Spf
k , is defined as

Spf
k(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k∏

i=0
a2
i

k∏

i=0
ai+

m∑

i=k+1
ai

ak > 0

0 otherwise

(2)

It is easy to show that Spf
k satisfies all the properties of k-specificity measures:

Proof. With regard to the three properties of k-specificity measures:

(NC1) Spf
k(A) = a2

a+b where a =
k∏

i=0

ai and b =
m∑

i=k+1

ai. If Spf
k(A) = 1 then

a > 0 and it is a2

a+b = a
1+ b

a

. Since a ≤ 1 and b
a ≥ 0 it is:

Spf
k = 1 ⇔

⎧⎪⎨
⎪⎩

a = 1 ⇔ ai = 1 ∀i ≤ k

∧
1 + b

a = 1 ⇔ b = 0 ⇔ ai = 0 ∀i > k

(NC2) Immediate by definition.

(NC3) Under the conditions of this property, a increases and b decreases,
and hence Spf

k(A) = a
1+ b

a

increases.

It is easy to show that when k = 1, Spf
k(A) = Spf (A), with Spf (A) being

the fractional specificity measure introduced by Yager in [17] as

Spf (A) =
a2
1∑m

i=1 ai
(3)

for A �= ∅, and 0 otherwise.
In [18] it is shown that this measure is not 2-bounded in the case k = 1.

This can be easily extended to any other value k: consider a crisp set A with
|A| = k + 1, that is, a1 = a2 = · · · = ak+1 = 1. Any predicate-like measure
satisfies Spk(A) ≤ ak − ak+1 = 0, whilst Spf

k(A) = 1/2 > 0. Hence, Spf
k is not

a predicate-like measure for any k. This result can be extended to any other
z-bounded property for any z > k, that is, Spf

k is not z-bounded for any z > k.
It is also easy to show that Spf

k is a ∞-bounded measure.
The example of a crisp set with |A| = k + 1 is useful for illustrating why

predicate-like k-specificity measures are required for solving our problem: for
any measure it is expected that Spk(A) = 0 since there are k + 1 crisp objects
in A, and hence the degree to which we can say that the cardinality of A is exactly
k is expected to be 0. This is only guaranteed when Spk(A) ≤ ak − ak+1 = 0.
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Let us now introduce two predicate-like k-specificity measures:

Definition 8. The expression

SpΛ,k(A) = ak(ak − ak+1) (4)

defines a measure of k-specificity.

It is trivial to show that SpΛ,k satisfies all the properties of k-specificity
measures. It is also immediate that SpΛ,k(A) ≤ ak − ak+1, and hence CΛ,k

is a predicate-like k-specificity measure. As a particular case, when k = 1,
SpΛ,k(A) = SpΛ(A), the specificity measure SpΛ introduced in [20] as

SpΛ(A) = a1(a1 − a2) (5)

Definition 9. The expression

SpL,k(A) = ak − ak+1 (6)

defines a measure of k-specificity.

Again, it is trivial to show that SpL,k satisfies all the properties of k-
specificity measures. It is also trivially SpΛ,k(A) ≤ ak − ak+1, and hence SpL,k

is a predicate-like k-specificity measure. We shall discuss further on SpL,k in the
next section.

5 Relation to Fuzzy Cardinalities

It is obvious that the problem introduced in Sect. 2 has to do with the issue of
cardinality of fuzzy sets. One way to solve the problem, as a direct extension of
the crisp case, is to compute the cardinality of each fuzzy set Oi and to choose
those sets for which cardinality is equal to k.

However, both the definition and calculation of the cardinality of fuzzy sets,
as well as determining the degree to which the cardinality is k, are not trivial
issues. There are many proposals in the literature for computing the cardinality
of a fuzzy set, see [1–7] and references therein.

The existing proposals do not provide a cardinality in the sense of cardinality
of crisp sets, but information about the cardinality of the fuzzy set. One of the
most important approaches is that of fuzzy cardinality as a fuzzy subset of
the nonnegative integers. That is, the information about the cardinality of A is
provided as a fuzzy subset Card(A) where Card(A)(k) is the degree to which k
can be considered as the cardinality of A. The semantics of such degree varies
depending on the way Card is defined.

The relation to the issue of k-specificity measures is obvious: both predicate-
like k-specificity measures and fuzzy cardinalities provide a degree to which the
cardinality is k, for every nonnegative integer k. However, the contribution of
k-specificity measures in this context is that they are required to satisfy certain



56 N. Maŕın et al.

properties, whilst the only property required for fuzzy cardinalities in the litera-
ture is that they provide a crisp singleton as result when the set A is crisp. More
specifically, when A is crisp with |A| = k, it is expected that Card(A)(k) = 1
and Card(A)(k′) = 0 ∀k′ �= k.

The required properties for k-specificity measures, introduced in previous
sections, are reasonable and derive directly from the properties required from
specificity measures. Hence, they open the door to the definition and study of
both new and existing fuzzy cardinality measures satisfying properties similar
to those of specificity.

Let us discuss some existing fuzzy cardinalities from the point of view of
the properties required for k-specificity measures. Probably the first such cardi-
nality proposal is Zadeh’s first fuzzy cardinality, introduced in [3], that can be
formulated as:

Z(A)(k) =

{
0 ak = ak+1

ak otherwise
(7)

The corresponding measure Spk(A) = Z(A)(k) does not satisfy the proper-
ties required for k-specificity measures. For instance, for the fuzzy set A = 1/o1+
0.5/o2 + 0.5/o3, being a1 = 1 and a2 = a3 = 0.5, it is Sp1(A) = Z(A)(1) = 1,
whilst a2 > 0, and hence property NC1 is not satisfied.

As another example we can mention the fuzzy cardinality ED introduced in
[1] as:

ED(A)(k) = ak − ak+1 (8)

It is obvious that ED(A)(k) = SpL,k(A), and hence this fuzzy cardinality is
consistent with the properties required for k-specificity measures.

These last two fuzzy cardinalities share the feature of being nonconvex. For
instance, let again A = 1/o1 + 0.5/o2 + 0.5/o3. Then Z(A) = 0/0 + 1/1 +
0/2 + 0.5/3, and ED(A) = 0/0 + 0.5/1 + 0/2 + 0.5/3. The fact that convexity is
not mandatory for fuzzy cardinalities is discussed in [1] on two basis: first, the
possible nonnegative integers in the support of a fuzzy cardinality are expected
to be the cardinalities of the alpha-cuts of the set A. Second, whilst a concept
like “around 2” has to be represented necessarily by a convex fuzzy set, the
information about the cardinality of a fuzzy set is not mandatorily a concept of
this kind. In the example above, if we are very strict we have only one element
in A (o1), and hence under that restriction, the cardinality of A is 1. If we relax
our criterion and we allow that elements with degree 0.5 to be in A, then we
have also o2 and o3 in A, and the cardinality is 3. But there is no way in which
the cardinality can be 2, since the cardinality is at least 1, and if we admit o2 to
be in A, then we have also to admit o3, and vice versa. Hence, in cases like this,
convexity is counterintuitive.

Convexity turns out to be intuitive for fuzzy cardinalities that are not
intended to measure the degree to which the cardinality is exactly k for every
nonnegative integer k, but at least k. Such fuzzy cardinalities have no relation to
k-specificity measures, since they intend to measure different things. Other fuzzy
cardinalities offer a mixed behaviour. For example, the measure introduced in
[4], that can be formulated as:
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DP (A)(k) =

{
0 ak+1 = 1
ak otherwise

(9)

measures the degree to which the cardinality is exactly k for objects in the core
of A, and the degree to which the cardinality is at least k for the rest of elements.
The same counterexample employed for the fuzzy cardinality Z serves to show
that DP does not satisfy property NC1.

Let us conclude our discussion about the relation between k-specificity mea-
sures and cardinality of fuzzy sets with some brief comments about scalar and
gradual cardinality measures.

Scalar measures yield a single number as cardinality of a fuzzy set. The most
employed measure of cardinality of a fuzzy set is the sigma-count [2], that can
be defined as

SC(A) =
m∑

i=1

ai (10)

The sigma count is in general a real number. However, its semantics is that
of a summary of the available information about the cardinality of the fuzzy set,
in the form of an expected value, and cannot be interpreted as a crisp cardinality
of a fuzzy set. Indeed, taking ak − ak+1 as the probability that the cardinality
of an alpha-cut taken at random is the same as that of the alpha-cut of level
α = ak (which happens for values of α in the real interval (ak+1, ak]), the sigma-
count can be seen as the expected value of the cardinality of an alpha-cut of
A taken at random uniformly. It can be seen as well as a centre of mass of the
fuzzy cardinality ED of Eq. (8) [1]. The sigma-count can also be interpreted as
a measure of the energy, in the sense of amount of membership, of A [2].

Many problems are known since long ago when using sigma-count for mea-
suring cardinality, such as the addition of many small memberships adding to a
significant value, and the fact that the same value is obtained for very different
sets [7]. In our example above, for A = 1/o1+0.5/o2+0.5/o3 we get SC(A) = 2,
and hence one may think that Sp2(A) = 1, when in fact any predicate-like
k-specificity measure yields a value 0 since it is Sp2(A) ≤ a2 − a3 = 0.

A final comment concerns cardinalities measured by means of gradual num-
bers [21]. Gradual numbers are an assignment of numbers to levels. Gradual
cardinality assigns to each level α ∈ (0, 1] the cardinality of the corresponding
alpha-cut of that level. In order to obtain a measure of k-specificity, one should
measure to which degree each possible cardinality is representative, or holds, in
the gradual cardinality. In [22], the proposal for providing fuzzy summaries of
gradual numbers (and gradual sets in general) is to assign to every number k the
addition of those differences ai − ai+1 such that the cardinality of the alpha-cut
of level ai is k. This procedure yields exactly SpL,k as k-specificity measure.

6 Efficient Computation of the Count

One of the advantages of the new class of measures considered in the previous
section is that it allows to propose strategies for the efficient computation of Spk

in big datasets (for a given restriction P).
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Let us consider the case of the measure SpL,k (the discussion below is also
valid for the case of SpΛ,k). The computation of SpL,k according to Eq. (6)
involves the execution of two processes for each set O of the collection DB:

– Obtaining the ranking of ai values or, at least, getting the k + 1 first ones.
– Computing Eq. (6).

Of the two previous processes, it is evident that the one that supposes a
higher computational cost is the first one. In the worst case, it implies to apply
a ranking technique on the degrees of OP , admitting, depending on the particular
count measure, more efficient solutions as k decreases. The second process does
not imply a significant computational cost since it involves the calculation of a
simple arithmetic expression with the ai values.

In any case, once the computation of SpL,k has been solved for a certain
value of k, the computation of any other SpL,k′ , with k′ < k, can reuse the
results of the first process. From a general point of view, having pre-calculated
the ordered set of degrees for each OP , allows the direct computation of SpL,k

whatever the chosen k.
This can be used to develop both special index structures and storage strate-

gies for recent queries, allowing the efficient computations of counts in relation
to a given constraint, especially in problems that involve large amounts of data.

In addition, a simple incremental updating of these structures can be consid-
ered when new objects are incorporated in the considered sets. The update of
the structures after the insertion of a new object o in a given set O, only implies
adding OP (o) in the right place of the ordered list a1, ..., am.

7 An Illustrative Example

Refer4Learning [19] is an application that helps to teach primary visual concepts
such as the size, color, and position of simple geometric objects to children in
the early stages of their education.

To do this, it presents scenes composed of various objects to children and
proposes exercises of recognition in the image of those objects that match a
given textual description.

With this type of applications, the teacher can work on linguistic expressions
built on the properties of objects paying attention to both the semantics of the
visual concepts and the notion of cardinality. One of the exercises that can be
inserted in a tool like this is to locate the n objects of an image that fit with
a certain description: for example, locate the five large green triangles in the
image. As the visual properties that the system handles are inherently fuzzy, the
compliance of the objects with a given description is also a matter of degree.
Therefore, this kind of exercises permits children to get acquainted with the
usual vagueness of natural language.

Refer4Learning uses a repository of training images, each of them composed
by a set of objects. Given a certain expression P, the retrieval of images from
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Fig. 1. Example scene with SpL,4 = 1

the repository can be made by means of the computation of an appropriate
k-specificity measure Spk. We shall use SpL,k in our examples.

For instance, Figs. 1 and 2 show some example scenes with their correspond-
ing value of SpL,4 when the considered expression is: Locate the four dark tri-
angles.

As can be observed, the first scene has SpL,4 = 1 (see Fig. 1). Four objects
clearly match with the proposed expression and the children will have no problem
in locating them. The value of SpL,4 diminishes when either the compatibility
of the four target objects decreases or additional objects match the proposed
description: Figs. 2(a) and 2(b) show example scenes of this, in which triangles
being dark to degree 0.5 are considered.

The lower the value of SpL,4, the higher the difficulty for the children in the
task of locating the objects. If the compatibility of the target objects contin-
ues decreasing (respectively, the compatibility of additional objects increases),
SpL,4 will finally reach the 0 value (Fig. 2(c) and (d) shows example scenes with
SpL,4 = 0).

To conclude our example, Table 1 shows some of the k-specificity measures
introduced in this paper, applied to the images in Figs. 1 and 2 for the fuzzy
restriction dark triangle. Note that for the case k = 4 the different measures
provide rather similar results. However, the fact that Spf

k is not suitable for
solving our problem can be appreciated in the case k = 2, for which the predicate-
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(a) Decreasing the compatibility (less
compatibility in the target objects)
(SpL,4 = 0.5)

(b) Decreasing the compatibility (new
distractor objects) (SpL,4 = 0.5)

(c) Decreasing the compatibility (not
enough target objects) (SpL,4 = 0.0)

(d) Decreasing the compatibility (dis-
tractor becomes a target) (SpL,4 = 0.0)

Fig. 2. Examples scenes with lower values of SpL,4
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Table 1. Different k-specificity measures applied to the images in Figs. 1 and 2 for the
fuzzy restriction dark triangle.

Spf
4 SpΛ,4 SpL,4 Spf

2 SpΛ,2 SpL,2

Figure 1 1 1 1 1/3 0 0

Figure 2a 0.5 0.25 0.5 2/5 0 0

Figure 2b 2/3 0.5 0.5 2/7 0 0

Figure 2c 0 0 0 1/2 0 0

Figure 2d 0 0 0 1/4 0 0

like measures SpΛ,2 and SpL,2 provide 0 as result, as expected since there are at
least three triangles being dark to degree 1 in all the images. On the contrary,
Spf

2 provides degrees greater than 0 for all the images.

8 Conclusions

In this paper we have employed the concept of k-specificity to determine the
extent to which a fuzzy set of objects can be considered to be a crisp set of k
objects. For this purpose, we have formally introduced two types of measures,
predicate-like and index-like, depending on the way that they have to converge
to the value 0 as the membership function of the fuzzy set evolves. We have also
introduced new k-specificity measures.

The context of application that has been considered in this paper is the
selection of those sets within a database that fulfill the condition that, in the set,
there are k objects compatible with a given fuzzy restriction. As we have seen,
the proposed k-specificity measures have the advantage that they are suitable
for defining efficient computational strategies to solve the selection process with
different values of k, or under the incremental addition of new objects to the
sets, which is highly appreciated in the case of large datasets. According to their
properties, predicate-like k-specificity measures seem to be the most appropriate
for the resolution of this type of retrieval problems.

Finally, we have also seen that the concept of k-specificity can be related to
the concept of fuzzy cardinality introduced in [1] for a particular case of measure
of k-specificity.
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14. González Sánchez, J.L., González del Campo, R., Garmendia, L.: Some new mea-
sures of k-specificity. In: Luaces, O., Gámez, J.A., Barrenechea, E., Troncoso, A.,
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20. Maŕın, N., Rivas-Gervilla, G., Sánchez, D., Yager, R.: Specificity measures and
referential success. IEEE Trans. Fuzzy Syst. (in press, 2017). doi:10.1109/TFUZZ.
2017.2694803

http://dx.doi.org/10.1007/978-3-540-36382-8
http://dx.doi.org/10.1007/978-3-319-44636-3_46
http://dx.doi.org/10.1007/978-3-319-08852-5_16
http://dx.doi.org/10.1109/TFUZZ.2017.2694803
http://dx.doi.org/10.1109/TFUZZ.2017.2694803


Using k-Specificity for the Management of Count Restrictions 63

21. Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft. Comput. 12, 165–175
(2008)

22. Sánchez, D., Delgado, M., Vila, M., Chamorro-Mart́ınez, J.: On a non-nested level-
based representation of fuzziness. Fuzzy Sets Syst. 192(1), 159–175 (2012)



Comparing Machine Learning and Information
Retrieval-Based Approaches for Filtering
Documents in a Parliamentary Setting

Luis M. de Campos(B) , Juan M. Fernández-Luna , Juan F. Huete ,
and Luis Redondo-Expósito

Departamento de Ciencias de la Computación e Inteligencia Artificial,
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Abstract. We consider the problem of building a content-based rec-
ommender/filtering system in a parliamentary context which, given a
new document to be recommended, can decide those Members of Par-
liament who should receive it. We propose and compare two different
approaches to tackle this task, namely a machine learning-based method
using automatic document classification and an information retrieval-
based approach that matches documents and legislators’ representations.
The information necessary to build the system is automatically extracted
from the transcriptions of the speeches of the members of parliament
within the parliament debates. Our proposals are experimentally tested
for the case of the regional Andalusian Parliament at Spain.

Keywords: Content-based recommender systems · Information filter-
ing · Information retrieval · Machine learning · Parliamentary documents

1 Introduction

Politicians in general and Members of Parliament (MP) in particular, need to be
concerned about the reality of the territory, region or country where they develop
their activity. This is particularly true in relation to these matters more related
with their specific political interests. For example, an MP who is specialized
in educational issues or the health minister should be specially interested in
receiving information concerning their respective fields of interest. However, at
present, the amount of information that is generated and is available through
the Information and Communication Technologies (ICT) is enormous, so it is
not easy to decide what is interesting and what is not. As Shamin and Neuhold
stated in [21], in the context of the European Parliament, “MPs need to be
selective in their information input”.

Let us consider a stream of documents that may be distributed among the
MPs. These documents can be news releases, technical reports or parliamentary
initiatives, for example. We would like to build an automated system able to
c© Springer International Publishing AG 2017
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recommend those MPs who should receive each document, taking into account
both its own content and the specific interests and preferences of each MP.

Therefore, our research falls in the context of content-based recom-
mender/filtering systems [10,18], which suggest items to users according to
their preferences (represented by a profile or model of some kind), also tak-
ing into account some characteristics of the items (their textual content in our
case). There are a lot of works addressing the recommendation/filtering prob-
lem in many domains and applications (see for example the three survey papers
[3,16,17]). However, we are not aware of any such a system in a parliamentary
context, except our own previous work [7,20]. Content-based recommender sys-
tems can be built using either information retrieval-based (IR) methods, which
generate recommendations heuristically [1,2,9,15], or machine learning-based
(ML) methods, mainly supervised classification algorithms for learning user mod-
els [4,5,12,13,19,22].

The objective of this paper is precisely to study and compare the capabil-
ities of IR-based and ML-based methods in the parliamentary context we are
considering. Therefore we propose two relatively simple approaches to create
the recommender system, both based on first building a training document col-
lection. One approach uses an Information Retrieval System (IRS) to explore
this document collection, whereas the other uses this collection to generate a
set of classifiers, one per MP. The training document collection will be obtained
from the transcriptions of the speeches of the MPs in the parliamentary debates.
The basic assumption is that these documents can provide information about
the interests and preferences of the MPs. In order to compare our proposals,
we shall perform experiments using a collection of MPs interventions from the
regional Parliament of Andalusia at Spain.

The rest of the paper is organized in the following way: Sect. 2 gives details of
the proposed IR-based and ML-based approaches to be compared. Section 3 con-
tains the experimental part of the paper. Finally, Sect. 4 includes the concluding
remarks and some proposals for future work.

2 Approaches for Recommending

The scenario that we consider is the following: we have a set of MPs MP =
{MP1, . . . ,MPn}. To the parliament documents arrive that must be distributed
among the MPs according to their interests and preferences. We want to build a
system that, given a new document, automatically selects those MPs that could
be interested in reading it. Associated to each MPi there is a set of documents
Di = {di1, . . . , dimi

}, each dij representing the transcription of the speech of MPi

when participating in the discussion of a parliamentary initiative. The complete
set of documents is D = ∪n

i=1Di. D is the training document collection that will
be used by both the IR-based and the ML-based approaches.
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2.1 The ML-Based Approach

The idea is simply to use the transcriptions of the speeches of the MPs in the par-
liamentary debates, D, as training data to train a binary classifier (relevant/non-
relevant) for each MP. Then, given a new document to be filtered/recommended,
we use all these classifiers to decide which MPs should receive this document,
namely those MPs whose corresponding classifier predicts the relevant class or,
alternatively, assuming that the classifiers give a numerical output (a score)
instead of a binary value, we could generate a ranking of MPs in decreasing
order of score, thus recommending the document to those MPs whose score is
greater than a given threshold.

In order to build a standard binary classifier for each MP we need training
data (documents in this case), both positive (relevant documents) and negative
(irrelevant documents). We shall consider that the own interventions/speeches of
an MP are positive training data for building the classifier for this MP. Therefore,
for each MPi the set of positive examples is precisely Di. We shall also consider
that all the interventions which are not from an MP are negative training data
for the classifier associated to this MP. Hence the set of negative examples for
each MPi is D \ Di.

2.2 The IR-Based Approach

In this case we are going to use the documents in D in two different ways to feed
an Information Retrieval System (IRS). This IRS will be used to retrieve the
documents that are more similar to the document to be filtered/recommended,
which plays the role of a query to the system. The two ways in which D is
transformed into an indexed document collection, which were originally proposed
in [7], are the following:

The Collection of MP Interventions. The documents to be indexed by the
IRS are just those in D, i.e. all the interventions of all the MPs in the training
set. In this case, what we obtain as the output for a query (which is the document
to be filtered) is a ranking of documents, each one associated with an MP. Then
we replace a document in the ranking by its associated MP. However, this new
ranking of MPs may contain duplicate MPs with different scores (corresponding
to different interventions of the same MP). In order to get a ranking of non
duplicate MPs, we remove all the occurrences of an MP except the one having
the maximum score. We call this approach IR-i.

The Collection of MP Profiles. To avoid the previous problem of having
to remove duplicates from the ranked list retrieved by the IRS, another option
is to group together all the interventions of each MP in only one document,
thus obtaining a document collection with as many documents as MPs. More
precisely, from each set Di we build the single document di = ∪mi

j=1dij and then
use ∪n

i=1di as the document collection to be indexed by the IRS. In this case the
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output of the system as response to a query is directly a ranked list of MPs. We
call this approach IR-p.

In the two cases considered the system obtains a ranked list of MPs in decreas-
ing order of score. Nevertheless, and due to efficiency considerations, an IR sys-
tem does not compute the document-length normalization and as consequence
the output scores vary with the number of terms in the query. Although these
raw scores are valid for obtaining a MP’s ranking (not to compute the length
normalization does not affect the ranking, the final aim of an IR system) this is
not the case for document recommendation purposes. Particularly, in this prob-
lem we are looking for a common threshold that should be used to recommend a
document to those MPs whose score is greater than this value, independently of
the query. In order to be able to determine such threshold, the raw scores are nor-
malized by dividing by the maximum score. Note that in this case the normalized
score represents a similarity percentage with respect to the top ranked MP.

3 Experimental Evaluation

The evaluation of our proposals will be carried out using all the 5,258 parliamen-
tary initiatives discussed in the 8th term of office of the Andalusian Parliament
at Spain1, marked up in XML [8].

Each initiative contains, among other things, the transcriptions of all the
speeches of the MPs who intervene in the debate, together with their names.
There is a total of 12,633 different interventions, but we have only considered
the interventions of those MPs who participate in at least 10 different initiatives,
a total of 132 MPs. All the initiatives were preprocessed by removing stop words
and performing stemming.

Regarding the evaluation methodology, we shall use the repeated holdout
method [14]. Concretely, the set of initiatives is randomly partitioned into a
training and a test set (containing in our case 80% and 20% of the initiatives,
respectively), and the process is repeated (5 times in our case), thus averaging
the results of the different rounds.

From the initiatives in the training set, we extract the interventions of all
the MPs to form our training document collection D. Then we build a classifier
for each MP, following the ML-based approach (described in Sect. 2.1), and also
an IRS (in the two ways described in Sect. 2.2) following the IR-based approach.
In order to train a binary classifier for each MPi from Di and D \ Di, we have
used Support Vector Machines [6], which is considered as the state-of-the-art
technique for document classification (we used the implementations of SVM
available in R2). From the IR perspective, we have used the BM25 information
retrieval model (using the implementation in the search engine library Lucene3),
which is also a state-of-the-art technique in document retrieval [1].

1 http://www.parlamentodeandalucia.es.
2 https://cran.r-project.org.
3 https://lucene.apache.org.

http://www.parlamentodeandalucia.es
https://cran.r-project.org
https://lucene.apache.org
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The initiatives in the test set are used as the documents to be fil-
tered/recommended (using only the transcriptions of all the speeches within
each initiative as the text of the document). We consider that each test initia-
tive is relevant only for those MPs who participate in it. Notice that this is a very
conservative assumption, since this initiative could also be relevant to other MPs
interested in the same topics discussed in it, but it is the only way to establish
a kind of “ground truth”.

The evaluation measures used to assess the quality of the filtering/
recommendation system are those typically used in text classification: we com-
pute the precision, recall and the F-measure of the results associated to each MPi.
Precision is the ratio between the number of truly relevant test initiatives for
MPi which are correctly identified by the system (True Positives, TPi) and the
total number of test initiatives identified as relevant for MPi (TPi +FPi, being
FPi the False Positives), pi = TPi/(TPi +FPi). Recall is the ratio between TPi

and the number of test initiatives which are truly relevant for MPi (TPi +FNi,
being FNi the False Negatives), ri = TPi/(TPi + FNi) (see Table 1). Then
we can compute the F-measure, as the harmonic mean of precision and recall,
Fi = 2piri/(pi + ri). To summarize all the measures, associated to each MPi, we
shall use both macro-averaged (M) and micro-averaged (m) measures [23]:

Mp =
1
n

n∑

i=1

pi Mr =
1
n

n∑

i=1

ri MF =
1
n

n∑

i=1

Fi

mp =
∑n

i=1 TPi∑n
i=1(TPi + FPi)

mr =
∑n

i=1 TPi∑n
i=1(TPi + FNi)

mF =
2mpmr

mp + mr

Table 1. Relations between TPi, FPi and FNi with true relevance of the documents
to be recommended and the scores.

Truly relevant Truly irrelevant

Score ≥ threshold TPi FPi

Score < threshold FNi TNi

All the previous performance measures heavily depend on the selected thresh-
old used to recommend the document to those MPs whose score is greater than
this threshold. We will experiment with different thresholds, ranging from 0.1 to
0.9. It should be noticed that, as the scores obtained by the ML-based and the
IR-based approaches represent different things (probability in one case and sim-
ilarity with the best result in the other), the same happens with the thresholds.

We are going to also use another evaluation measure that does not depend
on any threshold but it measures directly the ranking quality. This measure
is the well-known in the IR field Normalized Discounted Cumulative Gain
(NDCG) [11]. This evaluation metric tries to estimate the cumulative relevance
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gain obtained by examining the first documents (MPs in our case) in a retrieved
list of results. Since users tend to check only the first results, a discounting
factor is used to reduce the document effect over the metric value as its posi-
tion increases within the ranking. The metric value for a given list of MPs, is
calculated as follows:

NDCG@k =
1
N

k∑

i=1

2rel(di) − 1
log(i + 1)

, (1)

where k is the number of results evaluated (10 in our experiments); i is the
ranking position of the MP being evaluated; di is the MP at position i; rel(di)
is the relevance value of di (either 0 or 1 in our case); the normalization factor
N is the DCG for the ideal ranking, where all the relevant results are located
consecutively in the first positions of the ranking. With this normalization, the

Fig. 1. Micro and Macro precision for ML, IR-i and IR-p using different thresholds.
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metric values are always between 0 and 1, making it possible to calculate averages
among different documents. This metric is computed for all the documents in
the test set and then averaged.

3.1 Results

The results of our experiments for (macro and micro) precision, recall and F,
using different thresholds (from 0.1 to 0.9) are displayed in Figs. 1, 2 and 3,
respectively.

We can observe that, in general, the lower the threshold, the easier the sys-
tem assigns the relevant value to documents, which increases the number of false
positives and decreases precision. At the same time the number of false nega-
tives decreases, thus increasing recall. When the threshold is high, the opposite

Fig. 2. Micro and Macro recall for ML, IR-i and IR-p using different thresholds.
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Fig. 3. Micro and Macro F measures for ML, IR-i and IR-p using different thresholds.

situation occurs, increasing precision and decreasing recall. The only anomaly
to this general behaviour is with the ML-based approach and macro precision,
which tends to decrease as the threshold increases. This may be due to a bad
behaviour of this approach with those MPs having a low number of interven-
tions (thus generating a poor training set), where the number of true positives
decreases, even more steeply than the number of false positives, as the thresh-
old increases (remember that with the macro measures all the MPs are equally
important, independently on their number of interventions). More insights about
this question will be given in the next section.

Nevertheless, the behaviour of the two approaches is quite different. The
ML-based approach obtains relatively good precision values, much better than
those of the IR-based approach. However, the recall values of the ML-based
approach are very bad, whereas those of the IR-based approach are quite good.
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Table 2. Best micro and macro F and NDCG@10 values obtained by ML, IR-i and
IR-p.

Approach threshold ML IR-i IR-p

0.1 0.8 0.9

mF 0.2978 0.2896 0.2829

MF 0.2475 0.2423 0.2513

NDCG@10 0.6263 0.6246 0.6776

Fig. 4. Micro and Macro F measures for ML, using different thresholds and varying
the minimum number of interventions.

The two IR-based approaches are quite similar, although IR-p gets more extreme
values than IR-i (better in recall and worse in precision).
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The F measure, which establishes a balance between precision and recall,
clearly indicates that the ML-based approach works better with low thresholds
and the opposite is true for the IR-based approach. However, there is no clear
winner. Table 2 contains the best F values obtained by each approach, as well as
the corresponding values of the NDCG@10 measure.

The values of mF and MF are very similar for the three methods, ML is
slightly better in mF and IR-p is slightly better in MF. In fact a t-test (using
the results of the five random partitions, and a confidence level of 99%) does not
report any statistically significant differences between these methods. Concerning
NDCG, a t-test indicates that IR-p is significantly better than both ML and IR-i,
although there is no significant difference between ML and IR-i.

Fig. 5. Micro and Macro F measures for IR-i, using different thresholds and varying
the minimum number of interventions.
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3.2 Results When Varying the Number of Initiatives

As we said at the beginning of Sect. 3, the MPs being considered in this study are
those who participate in at least 10 initiatives. This includes both MPs scarcely
participating in the debates and other much more active (taking part in hundreds
of initiatives). We want to evaluate the quality of the results depending on the
number of initiatives where the MPs intervene.

To this end we have repeated our previous experiments, but fixing the min-
imum number of interventions of an MP which are necessary to include him in
the study to greater values, concretely to 25, 75, and 150. Our goal is to evalu-
ate whether a greater number of interventions of an MP translates into a better
training set and hence to better results. For space reasons we do not include
all the figures as we did in the previous experiments but only some of them for

Fig. 6. Micro and Macro F measures for IR-p, using different thresholds and varying
the minimum number of interventions.
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illustrative purposes (micro and macro F for ML, IR-i and IR-p, see Figs. 4, 5
and 6, respectively).

As we can observe the trends are the same as in the previous experiments:
in the ML-based approach the F measures decrease as the threshold increases,
whereas the opposite is true for the IR-based approach. Moreover, the results
are consistently better as the number of interventions required increases. There-
fore, the two approaches could potentially reach better results if more training
documents for each MP were available.

In Table 3 we show the best F values obtained for the different numbers of
interventions, as well as the NDCG@10 values. For the F measures, the t-tests
indicate that there are not significant differences between ML and IR-i in any
case, whereas both ML and IR-i are significantly better than IR-p for micro F
with sizes 75 and 150. For NDCG, again the differences between ML and IR-i
are not significant but IR-p is significantly better than ML and IR-i with all the
sizes.

Table 3. Best micro and macro F and NDCG@10 values obtained by ML, IR-i and
IR-p, using different minimum numbers of interventions.

Approach mF MF NDCG@10

ML IR-i IR-p ML IR-i IR-p ML IR-i IR-p

10 0.2978 0.2896 0.2829 0.2475 0.2423 0.2513 0.6263 0.6246 0.6776

25 0.3037 0.2971 0.2939 0.2658 0.2661 0.2829 0.6267 0.6242 0.6806

75 0.3568 0.3509 0.3085 0.3355 0.3288 0.3368 0.6132 0.6192 0.7086

150 0.4408 0.4282 0.3120 0.4039 0.3948 0.3532 0.5622 0.5744 0.6782

4 Concluding Remarks

In this paper we have proposed and compared two different approaches to build
a system able to recommend/filter documents to the Members of Parliament.
One approach is based on machine learning techniques, namely automatic docu-
ment classification, whereas the other is based on information retrieval methods.
The two approaches start from a collection of training documents composed of
the interventions of the MPs in the parliamentary debates, which is assumed
contains information about the interests and preferences of MPs. While the ML-
based approach uses this collection to train a binary classifier for each MP, the
IR-based approach uses an information retrieval system to index this collection
and then retrieves the MPs which are more similar to the document to be rec-
ommended/filtered. In the two cases the output of the system is a ranked list
(in decreasing order of score) of MPs. Then, given a fixed threshold, the sys-
tem recommends the target document to those MPs whose score is above the
threshold.

The two studied approaches behave quite differently in terms of recall and
precision, and their best performance is attached using very different thresholds.
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However, in terms of the F measures, both macro and micro (and to a lesser
extent in terms of NDCG@10), the best results with both approaches are quite
similar. Therefore, there is not a clear reason to prefer one approach to the other.

A possible weakness of the ML-based approach is that all the interventions
which are not from an MP are considered as negative training data for the
classifier associated to this MP. This is questionable: the interventions of other
MPs which are about the same topics considered of interest for a given MP may
be also relevant for him. For example an MP whose main area of interest is health
could find interesting the interventions of other MPs also dealing with health. In
this way the negative training data being used could contain positive data and
this can limit the capacity of the classifier to discriminate between relevant and
irrelevant documents. Therefore, we are interested for future research in using
the so-called positive unlabeled learning techniques [24], which only assume the
existence of a set of positive training data and a (usually larger) set of unlabeled
data, but there is no negative training data.
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parliamentary documents. In: Kő, A., Francesconi, E. (eds.) EGOVIS 2015. LNCS,
vol. 9265, pp. 364–378. Springer, Cham (2015). doi:10.1007/978-3-319-22389-6 26

8. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Martin-Dancausa, C.J.,
Tur-Vigil, C., Tagua, A.: An integrated system for managing the andalusian par-
liament’s digital library. Program Electron. Libr. Inf. Syst. 43, 121–139 (2009)

9. Foltz, P., Dumais, S.: Personalized information delivery: an analysis of information
filtering methods. Commun. ACM 35, 51–60 (1992)

10. Hanani, U., Shapira, B., Shoval, P.: Information filtering: overview of issues,
research and systems. User Model. User Adapt. Interact. 11, 203–259 (2001)

11. Jarvelin, K., Kekalainen, J.: Cumulative gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. 20, 422–446 (2002)

http://dx.doi.org/10.1007/978-3-319-22389-6_26


Comparing Machine Learning and Information Retrieval-Based Approaches 77

12. Kim, J., Lee, B., Shaw, M., Chang, H., Nelson, W.: Application of decision-tree
induction techniques to personalized advertisements on internet storefronts. Int. J.
Electron. Commerce 5, 45–62 (2001)

13. Jennings, A., Higuchi, H.: A user model neural network for a personal news service.
User Model. User Adapt. Interact. 3, 1–25 (1993)

14. Lantz, B.: Machine Learning with R. Packt Publishing Ltd., Birmingham (2013)
15. Loeb, S.: Architecting personal delivery of multimedia information. Commun. ACM

35, 39–48 (1992)
16. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems:

state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.)
Recommender Systems Handbook. Springer, Boston (2011)

17. Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application
developments: a survey. Decis. Support Syst. 74, 12–32 (2015)

18. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In:
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321,
pp. 325–341. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9 10

19. Pazzani, M., Billsus, D.: Learning and revising user profiles: the identification of
interesting web sites. Mach. Learn. 27, 313–331 (1997)

20. Ribadas, F.J., de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: Concept pro-
files for filtering parliamentary documents. In: Proceedings of the 7th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management, vol. 1, pp. 409–416 (2015)

21. Shamin, J., Neuhold, C.: ‘Connecting Europe’: the use of ‘new’ information and
communication technologies within European parliament standing committees. J.
Legislative Stud. 13, 388–402 (2007)

22. Tjoa, A.M., Hofferer, M., Ehrentraut, G., Untersmeyer, P.: Applying evolution-
ary algorithms to the problem of information filtering. In: Proceedings of the 8th
International Workshop on Database and Expert Systems Applications, pp. 450–
458 (1997)

23. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon,
O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer,
Boston (2009)

24. Zhang, B., Zuo, W.: Learning from positive and unlabeled examples: a survey. In:
International Symposiums on Information Processing, pp. 650–654 (2008)

http://dx.doi.org/10.1007/978-3-540-72079-9_10


Eliciting Implicit Evocations Using Word
Embeddings and Knowledge Representation
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Abstract. Automatic elicitation of implicit evocations - i.e. indirect ref-
erences to entities (e.g. objects, persons, locations) - is central for the
development of intelligent agents able of understanding the meaning of
written or spoken natural language. This paper focuses on the definition
and evaluation of models that can be used to summarize a set of words
into a unique unambiguous entity identifier selected from a given ontol-
ogy; the ability to accurately perform this task being a prerequisite for
the detection and elicitation of implicit evocations on spoken and writ-
ten contents. Among the several strategies explored in this contribution,
we propose to compare hybrid approaches taking advantages of knowl-
edge bases (symbolic representations) and word embeddings defined from
large text corpora analysis. The results we obtain highlight the relative
benefits of mixing symbolic representations with classic word embeddings
for this task.

1 Introduction

Developing automatic approaches enabling human spoken and written produc-
tions to be deeply understood is central for the development of artificial agents
capable of complex human-machine interactions and collaborations. This broad
challenge, largely studied by the Artificial Intelligence community1, aims at
developing approaches capable of capturing the meaning conveyed by units of
language (from word utterances to sequences of phrases); this is central for
numerous processes widely studied in the literature: Question Answering, Infor-
mation Extraction and Information Retrieval, among others.

In this paper, we focus on studying aspects tightly related to the development
of approaches for understanding the meaning and semantics of large units of lan-
guages such as sentences or paragraphs. The positioning of our work is, broadly
speaking, closely related to Named-Entity Recognition (NER), i.e. detection of
explicit entity mentions in texts [12]. We are more particularly interested in
fine-grained entity recognition, not only aiming at detecting classes of entities
as it is classically done in NER by detecting references to persons or locations
for instance. We are here rather interested in entity linking, i.e. at linking spe-
cific unambiguous identifiers provided by knowledge bases - such as DBpedia
1 e.g. in the Natural Language Processing and Computational Linguistics domains.

c© Springer International Publishing AG 2017
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and Yago Uniform Resource Identifiers (URIs) or WordNet synset identifiers
[1,11] - to entities mentioned into texts [10]. We study in particular the problem
of eliciting implicit evocations, i.e. references to unambiguous entities that are
not mentioned by lexical forms of those entities. As an example, in the sentence
“I’ve visited the capital of Spain as well as Picasso birthplace city last summer”,
the utterances ‘capital of Spain’ refers to Madrid, ‘Picasso birthplace city ’ to
Málaga. Similarly, telling you that “this morning I’ve eaten a yellow tropical
fruit very much liked by monkeys” should give you a good idea of the kind of
fruit I’ve eaten (i.e. a Banana).

The aim of this paper is to study automatic approaches that are able to
elicit implicit evocations; similarly to the way humans are most often able to
understand them. Developing approaches enabling such a process is important
for capturing the meaning of units of languages; their direct applications for
semantic indexing and information retrieval, as well as their indirect potential
applications to question answering, information extraction, topic identification
or sentiment analysis to cite a few, are numerous. Due to the breadth and com-
plexity of the task, we here focus on eliciting implicit evocations considering
the words mentioning the entity evocation to be given, e.g. considering a bag of
words extracted from the initial sentence {‘yellow’, ‘tropical fruit’, ‘monkeys’}
we expect the approach to identify the entity Banana.2 We also consider that
there is no need to take into consideration contextual information for detecting
the implicit evocation - otherwise stated, the knowledge base that is required to
answer the question is therefore considered to be static and not contextual.

The paper is organized as follows; Sect. 2 presents related works as well as the
fundamental notions on which will be based our contributions. Section 3 intro-
duces the different models that can be used to detect implicit entity evocations
from bags of words. Section 4 presents the evaluation protocol as well as the
results obtained during the empirical evaluation. Section 5 summarizes the main
results and concludes this work.

2 Related Works and Problem Setting

This section introduces related works, formalizes the problem setting and
presents the fundamental notions on which the models that will be introduced
afterwards are based; notations are also defined hereafter.

Eliciting implicit evocations is closely related to well-known problems stud-
ied in Artificial Intelligence, in particular the reversed dictionary task, Topic
Modeling, Language Model and text summarization. In the reversed dictionary
or word access task, a word has to be found considering a given description;
a problem closely related to the one considered in this paper - related recent
work also refer to phrase embedding [6,15]; these approaches consider known
term descriptions which is not considered hereafter. Topic Modeling techniques,
2 We do not consider in this paper the complex problem of detecting implicit evoca-

tions. Note also the special syntax used to refer to the non-ambiguous entity reference
Banana compared to its ambiguous lexical form banana.
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for instance, can be used to analyze large corpora in order to generate top-
ics by detecting frequent word collocations [14]. The aim of these approaches
is slightly different since generated topics have to be extracted from large cor-
pora by analyzing word usage statistics – topics are also per definition always
abstract notions and cannot therefore be used straightforwardly for eliciting
potentially specific entities. Considering our setting, it could be tempting for
example to define a probabilistic model based on a conditional probability esti-
mation enabling to compute p(Banana | ‘yellow’, ‘tropical fruit’, ‘monkeys’ ).
More generally, the problem could be studied by considering an approach based
on language models - i.e. models largely used in machine translation, speech
recognition or text summarization to cite a few. However, this study does not
consider such models due to the curse of dimensionality [9] hampering their use
for eliciting implicit evocations - indeed, despite the use of existing smoothing
techniques [3], computing language models taking into account potentially large
contexts (e.g. 5 to 10 words) is not possible. Other techniques based on neural
probabilistic language models could also be considered to answer this limit [2];
more recent techniques based on sequence learning, e.g. based on Long Short-
Term Memory neural network architectures, could also be worth studying [7].
Such techniques will only be partially and indirectly considered through the use
of word embeddings techniques.

2.1 Explicit and Implicit Evocations

In this contribution we are interested by detecting implicit evocations; we intro-
duce this notion by providing some illustrations as well as elements of definition
– relationships with state-of-the-art notions such as topic identification or NER
have been mentioned above.

First of all, entity evocations are here defined as strongly supported refer-
ences to non-ambiguous notions or entities. As an example, several evocations
could be detected from the following sentences “I went to Paris last week, the
Eiffel Tower is amazing. . . I love France!”. It is relatively easy to detect that it
is highly probable that a reference to Paris, the capital of France called Paris
is made. Note however that due to the ambiguous nature of words, it could
not be the case; the word, i.e. surface form, Paris could indeed refer to other
cities, e.g. Paris (Tennessee), or even other entities that are not locations.
Nevertheless, considering the context which is defined by the sentence mean-
ing, and in particular the utterrances of the words France, and Eiffel Tower,
most people would understand the utterance of the string Paris as a will of
the speaker to explicitly refer to the capital of France; here we consider that an
explicit evocation has been made since a word corresponding to a lexical form
of the entity, despite being ambiguous, explicitly refers to it. It is important to
understand that evocations are here not necessarily understood as the intended
speaker evocation; they are rather considered to be the consensual agreement
towards understood evocations, i.e. the disambiguation most people would con-
sider based on the context of utterance of words - e.g. as an example, nothing
restrict the speaker of aforementioned sentences to say that he is referring to
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Paris (Tennessee); even if most person would agree that discussing with such
a speaker would thus be quite challenging. We therefore consider that, in most
cases, intended evocations correspond to evocations most target recipients of a
spoken/written message would consider. Explicit entity evocations could also be
more refined than single word utterances, e.g. The City of Lights could be used
to mention Paris. All the examples provided so far were referring to the notion
of explicit entity evocations since all of them could have been linked to a unique
lexical/surface form of the entity.

Implicit entity evocations refer to entity evocations that cannot be directly
associated to a word utterance, i.e. a surface form. As an example, the sentence
“Bob bought an expensive red sport car of a famous italian brand” is most likely
to refer to the fact that Bob bought a car from the italian car brand, Ferrari -
otherwise stated, most of us would understand Bob bought a Ferrari. Additional
examples are provided in the introduction section. Note that we could discuss
in details the technical differences that we consider between surface forms of
an entity and implicit references. Indeed, in some cases, judgement aiming at
distinguishing if an evocation is explicit or implicit may depend on subjective
evaluations. As an example, considering that The City of Lights is an explicit
reference to the city Paris could be surprising considering that mentioning the
capital of France would be considered as an implicit reference to the same city.
We therefore stress that we consider explicit references to be lexical/surface
forms of a concept. We thus consider that the utterance ‘The City of Lights’,
contrary to the utterance ‘the capital of France’, is a lexical entry linked to the
concept Paris in an index (e.g. a dictionary). Thus, considering that the lexical
entry ‘the capital of France’ is no linked to Paris in any index - no dictionary
will give you such a lexical form -, more refined techniques have to be used to
elicit the reference to Paris. As an example, this implicit evocation could be
detected by taking advantage of a database or a knowledge base for answering
the question What’s the capital of France? - a process which is highly more
complex than searching for a specific entry into a lookup table index to further
resolve any ambiguity associated to word utterances.

Note that, independently to any context, implicit entity evocations can also
be considered from a set of words (Table 1). In that case, the problem setting is
close to a simplified form of the Pyramid game3 (considering no interaction and
no word ordering): a set of words is provided and a unique implicit evocation has
to be provided by considering semantic relationships between the words. This is
the setting we consider in this paper.

2.2 Problem Setting and Global Strategies Evaluated

Formal Definition. Considering a vocabulary T and a set of entities E partially
ordered into a taxonomy O = (�, E), we are looking for a function:

f : P(T ) → E (1)

3 https://en.wikipedia.org/wiki/Pyramid (game show).

https://en.wikipedia.org/wiki/Pyramid_(game_show)
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Table 1. Examples of evaluation entries

Given words Expected evocation

place, study, teacher School

food, italy, round, tomato Pizza

yellow, fruits, monkeys Banana

city, UK, capital London

The function f therefore aims at reducing a set of terms into a unique entity
reference corresponding to the implicit mentioned entity. More generally, we
are looking for a total order �E among the entities w.r.t. their relevancy for
summarizing a given set of terms T ′ ⊂ T . To this aim we are looking for a
scoring function evaluating the relevancy to associate a specific evocation to a
given set of terms:

s : P(T ) × E → R (2)

We will focus on the definition of the scoring function s in this paper. We
therefore consider the following definitions: f(T ′) := arg maxe∈E s(T ′, e); the
considered total order �E is thus defined such as s(T ′, e′) ≤ s(T ′, e) → e′ �E e.

Evaluated Strategies. Different types of knowledge have to be taken into
account for detecting implicit evocations. Only considering our simplified prob-
lem setting in which a set of words is evaluated, two types of information seems
important for answering the task; (i) abstract restriction and enumerations, as
well as (ii) salient properties definitions. Examples are provided:

– Abstract restriction/enumeration - need for a partial ordering of entities. An
implicit evocation often refers to a general class to which the target implicit
evocation refers to, e.g. Paris refers to a specific Capital, expensive red
sport car refers to a Car. In those cases, it’s important to know what are
the instances of a specific class in order to be able to consider potentially
relevant restrictions - i.e. group of entities in which candidates will be evalu-
ated. In a similar manner, by mentioning Krakatoa, Etna, Mont St. Helens or
Eyjafjallajokull the concept Volcano is clearly implicitly mentioned by pro-
viding explicit references of specific instances of volcano. Detecting such
implicit evocations requires taking advantage of knowledge representations
that will be used to identify a set of evocations referring to an abstract class.

– Salient property : Most of us would link the evocations {green, monster, angry,
muscle} to the concept Hulk; this is because Hulk has a green skin, has a
muscular type, and refers to a famous angry monster. Detecting mentions
of such an implicit evocation requires linking provided evocations to salient
properties of an entity of interest. To this aim an approach enabling to link
properties values to specific entities has to be defined.

In this paper we consider that exhaustive formalized knowledge bases answer-
ing our needs, i.e. defining extensive properties values for a large number of
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entities, are not available.4 Indeed, despite the large efforts made for defining
extensive knowledge bases [1,11], the properties to be analyzed for detecting
implicit evocations are too broad, e.g. despite an URI exists for the concept
Hulk, no property defines its skin color in DBpedia. We however consider that
large text corpora are freely available (as it is the case today - Wikipedia for
instance), and that it could be an interesting strategy to try mixing large scale
text analysis (e.g. for capturing word relatedness enabling to detect a ‘sort of ’
link between the words green and hulk), as well as large taxonomical ordering
of entity provided by existing knowledge bases.

As it has been mentioned in the previous section, implicit entity evocations
are tightly linked to the notion of context. An evocation is indeed often explained
by utterances of words that could be linked to entities that are members of
the same conceptual neighborhood. As an example, the implicit evocation of
Ferrari mentioned earlier could have been explained by its narrow relation-
ships with the concepts car, Italy and brand. Interestingly, the strength of a
relationship between words or entities can therefore be discussed through the
notions of semantic similarities/proximities [5].

In this context, we therefore propose to define and to compare different
strategies taking advantage of (i) terms relationships extracted from large cor-
pora analysis - through term semantic relatedness estimations -, as well as (ii)
conceptual relationships defined by a partial ordering of entities provided by a
knowledge base. The models discussed in this paper consider this postulate. Con-
sidering the type of strategies we will evaluate, two notions are of major impor-
tance: semantic relatedness of terms and semantic similarity of concepts/entities;
both are briefly introduced in the following subsection.

2.3 Estimating Similarities and Relatedness of Words and Entities

Both word relatedness/proximity and entity similarity estimations from text and
knowledge base analysis have been, and are still, extensively studied in partic-
ular by the NLP community. Word relatedness and entity similarity are exten-
sively used in information retrieval, question answering, among others. A short
introduction to these notions is provided hereafter - the reader can refer to the
extensive literature and surveys for additional information, e.g. [5].

Estimating Word Relatedness. Considering a vocabulary T , word related-
ness estimations aim at defining a function σTT : T × T → [0, 1] such as σTT

enables capturing the intuitive (but weakly defined) notion of relatedness – gen-
erally defined as the strength of the semantic link established between units of
language, here a pair of words [5]; once again most people will agree that the two
words (banana, monkey) are more related than the two words (banana, lion).

Among the various approaches defined for comparing a pair of words,
most recent strategies aims at (i) building a vector representation of words

4 and that expecting such bases to exist in the near future is just illusionary.
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(called embeddings) that will further be compared using traditional vector com-
parison metrics, most often the cosine similarity of vector representations. Tech-
nical details of most approaches therefore rely on defining the strategy used
for building embeddings. Those strategies rely on the consideration that word
meaning is defined by its context of use. Embeddings will thus be built by (indi-
rectly) analyzing word collocations. Most recent strategies rely on predictive
approaches, e.g. by building word embeddings by using internal representations
of words that have been built by a neural network trained to predict a word
considering a given context or a context considering given words. Further details
related to word embeddings are out of the scope of this paper.

Estimating Entity Similarity. Considering a partial ordering O = (�, E)
among a set of entities E (individuals and concepts of a knowledge base). The
similarity of two entities is defined by σEE : E × E → [0, 1]. An example of
similarity measure proposed by Lin’s measure is presented [8]:

sim(e, e′) =
2 · IC(MICA(e, e′))

IC(e) × IC(e′)
(3)

with MICA(e, e′) the Most Informative Common Ancestor of entities e and e′

with regards to a function evaluating the information content of an entity, with
IC : E → [0, 1], and x � y → IC(x) ≥ IC(y), i.e. an entity is always considered
to be more informative than its ancestors, e.g. IC(Paris) > IC(Capital).

3 Models for Detecting Implicit Entity Evocations

This section presents the various model proposals that are used to distinguish
a ranked list of entity evocations for a provided set of terms (by defining Eq. 2,
page 4). These models consider that word vector representations, as well as a
labeling function linking terms to entities are provided. The labeling function
defines the sets of labels that refer to a specific entity, i.e. π : E → P(T ), e.g.
π(Person) = {person, human, . . .}.5

Two general types of models are presented:6

1. Vector Aggregation Model (VAM). The aim is to encompass the meaning of
a set of terms by aggregating commonly used word embeddings.

2. Graph-based Model (GM). The aim is to detect implicit entity evocation by
using a pre-built structure mixing both links between entities and terms as
well as relationships between terms.

5 Note the ambiguity at terminological level, a given term can refer to several entity. In
addition, due to the transitivity induced by the relationship defining the considered
partial ordering O, the set of entities that are potentially, implicitly or explicitly,
evocated by a term t ∈ T is defined by the set:

⋃
e∈E,t∈π(e){x|e � x} ⊆ E ; considering

car ≺ vehicule, mentioning car makes you implicitly mention vehicule.
6 Nothing excludes that specific models generated by one approach cannot be

expressed by the other approach.
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Both models are detailed hereafter. They will next be compared by analyzing
their performances w.r.t an empirical evaluation.

3.1 Vector Aggregation Model

The Vector Aggregation Model (VAM) relies on a generic three-step strategy for
analyzing a set of terms T ′ ⊂ T :

1. Computation of a conceptual evocation vector t ∈ R
|E| for each term t ∈ T ′ -

the aim of this representation is to encompass all potential explicit and
implicit entity evocations that are made by t.

2. Aggregation of the entity evocation vector of the terms composing the set of
terms to evaluate. We will evaluate aggregations that generate vector repre-
sentations of T ′ into R

|E|.
3. Analysis of aforementioned aggregation product in order to compute the

ranked list of entity evocations.

These three steps are detailed.

Establishing the Link Between Words and Entities. We consider that
without prior knowledge about context, the degree of evocation of an entity by
a term is defined by the function σTE : T × E → [0, 1], defined such as:

σTE(t, e) = max
t′∈π(e)

σTT (t, t′) (4)

Otherwise stated, the relationship considered between a term and an entity only
depends on the semantic relatedness that can be distinguished at word level.
Note that no prior knowledge about word usage is taken into account in this
approach. Therefore, considering a term t, every entity e ∈ E with t ∈ π(e)
will have the same σTE(t, e) value – which will be maximal if the σTT function
respects the identity of the indiscernible.7

Finally, without applying any preprocessing step excluding potential conflict-
ing entity evocations, we consider the evocation of a term t ∈ T to be defined
by the function ρTE : T → R

n with (|E| = n):

ρTE(t) = [σTE(t, e1), . . . , σTE(t, en)]ᵀ (5)
7 Otherwise stated, by observing the word utterance Paris, all concepts having this

specific string as label, e.g. Paris (France), Paris Tennesse, will have the same evo-
cation degree value. This is obviously not how humans process information. Indeed,
without context, or only considering poor contextual information, people rely most
often on evocation likelihood (considering their body of knowledge). Therefore, to
refine the approach, we could also estimate the probability that a given term refers
to an entity. Several approaches could be explored, e.g. analyzing usage of Word-
Net synsets. This information is however difficult to obtain for entities that are not
mentioned into this structured lexicon, which hampers the general aspect of the app-
roach. We therefore consider that no prior knowledge about word-entity evocation
is provided by excluding the use of statistics about word-entity usage.
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This vector represents the potential entity evocations of a term without distin-
guishing among potentially conflictual evocations. We however consider that it
represents a footprint encompassing all entity evocations a word could refer to.

Aggregation of the Information Provided by Several Words. Several
approaches can be considered for aggregating the degrees of evocation of a set of
terms T ′ ⊂ T . To this purpose we consider a general function PE : P(T ) → R

n.
Two definitions of PE will further be considered; both of them are based on an
element-wise aggregation: (i) Pmin

E (T ′) = ∧t∈T ′ρTE(t) defining the aggregation
to be the minimal evocation value among all terms, and (ii) a less constraining
evaluation summing the evocations P sum

E (T ′) =
∑

t∈T ′ ρTE(t).

Ranking Conceptual Evocations. We consider that, because of the nature of
the function used to build the vector representations, as well as the aggregation
operator, implicitly mentioned entities could be detected by analyzing associated
dimension values in PE . More precisely, it is expected that evocation values asso-
ciated to implicitly mentioned entities will diverge from the values that would be
expected if randomly selected terms were used to build the vector representation.
We therefore consider that the distribution of the value for a given entity and a
given size of set of terms is known. This distribution is estimated by computing
associated PE representations for randomly sampled sets of terms of a specific
size. The distribution stores for each entity the number of time a randomly com-
posed set of terms has obtained a specific evocation value. Using this estimated
distribution we can compute the probability that the observed value for a given
set of terms is an artefact, or indeed seems to refer to an implicit evocation. We
therefore consider that implicitly evocations are those for which observed values
highly diverge from the expected one.

Several approaches have been tested for defining the ranking function; the
raw score (a metric taking on the standard deviation8 σ and the mean μ) is
presented. Considering a given set of term T ′, we denote rsei

the raw score of
T ′ w.r.t ei ∈ E :

rsei
(T ′) =

PE(T ′)i − μei

σei

(6)

μei
and σei

respectively denote the median and the standard deviation of evo-
cation values for the entity ei computed during the sampling process associated
to samplings of size |T ′|.

3.2 Graph-Based Model

The Graph-based Model (GM) approach is based on a graph propagation strat-
egy aiming at distinguishing what are the most relevant entities to be considered
given a set of terms. Defined graph data structure aims at modelling relation-
ships: among the terms, among the entities, as well as among terms and entities.

8 Recall standard deviation: σ =
√

E[X2] − E[X]2.
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We first present the graph structure. Next, the propagation approach used for
distinguishing entity evocations is introduced.

Graph Model. Formally, let’s consider a weighted directed graph G = (V,E)
with V = T ∪ E and E ⊆ V × V . Three types of relationships are distinguished:

1. relationships among terms, i.e. from T × T ; those relationships are weighted
using a σTT measure capturing the relationships among terms. The weight of
a relationship (t, t′) ∈ E is defined by a function wTT : T × T → [0, 1]:

wTT (t, t′) =
σTT (t, t′)

∑
t′′∈T σTT (t, t′′)

(7)

This weighting function definition aims at normalizing the σTT scores con-
sidering that scores distributions may highly differ between terms.

2. relationships among entities, i.e. from E × E ; those relationships are given
by the partial ordering O; the weight of the relationships are provided by a
σEE measure. More precisely, the relationships between entities are defined
as follows: (1) building of a graph G′ = (E , EEE) from O by considering that
(e, e′) ∈ EEE iff e � e′ or e′ � e in O; (2) apply a transitive reduction to G′;
(3) weigh the relationships considering a σEE measure – the weights are here
also defined by normalizing considering all relationships defined in G′.

wEE(e, e′) =
σEE(e, e′)

∑
e′′∈E|(e,e′′)∈EEE σEE(e, e′′)

(8)

3. relationships between terms and entities, i.e. from (T × E) ∪ (E × T ); those
relationships are given by the labeling function π. With e ∈ E , t ∈ T , we
consider that both (t, e) ∈ E and (e, t) ∈ E iff t ∈ π(e), i.e. iff the term t is a
label (refers) to the entity e.9

Propagation Model. Considering a given set of terms T ′ ⊂ T . The propa-
gation model adopted to distinguish relevant entities is defined in Algorithm1;
the propagation procedure is detailed by Algorithm2. The proposed approach is
discussed hereafter. As it is defined in Algorithm 1, the global strategy aims at:

1. Computing the entity evocation degree for each term composing the query
(lines 3–9). This is done by propagating a fixed quantity from each node
composing the query (line 7).

2. Aggregating those results in order to compute, for the full set of terms, the
entity evocation scores for each entity (lines 10–13).

9 Those relationships could have also been weighted by considering word usage fre-
quency. However, as stated before, we consider that no weighting function is defined
here - even if analyzing σTT scores distributions could have been used.
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The details of Algorithm 1 are now provided. At line 1–2, we initialize the map
data structures.10 that will be used to store the (temporary) results. The entity
evocation degrees for each query term is stored into query term evocation map –
for instance, the entity evocation for the term t is stored as a map into
query term evocation map[t]; query term evocation map[t][e] is the evocation
degree of entity e by the term t. From line 3 to 9 we compute the entity evo-
cations for each term defining the query (discussed later). From lines 10 to 13
those results are aggregated using a specific strategy. The sum and the median
will be considered - intuitively, the median is used to express the fact that we
not only want a high score; but we also want the score to be supported by a
shared contribution of the terms composing the query.

Algorithm 1. Propagation algorithm
Data: The graph G structuring terms and entities; a set of terms T ′ ⊂ T ,

with |T ′| � |T |, ε threshold value: stopping criteria.
Result: A data structure storing the relevance of each entity.

1 query term evocation map ← map()
2 concept score ← map() ;
3 for t ∈ T ′ do
4 ev map ← map() ;
5 visited node ← {} ;
6 score ← 1;
7 propagate(t, visited node, 1, ev map) // cf. Algorithm 2;
8 query term evocation map[t] = ev map ;
9 end

10 for e ∈ E do
11 entity scores[e] = aggregate(e, query term evocation map);
12 // The aggregate function can just be a sum, min, average. . . ;
13 end
14 return entity scores;

Details of the propagation are defined by Algorithm2.11 The propagating process
is defined using a recursive procedure aiming at propagating values avoiding
already processed nodes. Depending of the type of node being processed (term
or entity), the propagation aims at extending to other terms or entities. When
a term is processed (line 2 to 13) a quantity is propagated to all entities that
could be referred by the term (without any a priori consideration about term
usage). The evocation is next propagated to those entities if the propagated
quantity is important enough (line 6). The propagation is also performed to the
neighboring terms by taking into account the distance between the terms at
terminological level – line 8 to 10. When an entity node is processed (line 13
to 22) the propagation to the terminological level is performed by considering
the labels associated to the entity. The propagation is also performed at the
entity level, also taking into account the entity similarity that can be computed
by analyzing entities’ topological ordering (cf. weight definition Eq. 8).
10 A map or dictionary stores a value for a specific key.
11 We consider to be known G, T and E the terms and entities, ε the threshold value

defining when to stop the propagation, synDecFactor a decay factor for handling
synonyms while propagating, eSmoothingFactor a smoothing factor for reducing
the impact of excessively considering the taxonomy on the results.
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Algorithm 2. propagate routine
Data: A given node v of the graph, a set of visited node S, score: a score

value (to propagate), qtem (for query term evocation map): a
map for storing entity evocation scores.

Result: None - updated evocation vector
1 S.add(v)
2 if v ∈ T then
3 E ′ = {e ∈ E|v ∈ π(e)}
4 for e ∈ E ′ do
5 qtem[e] = qtem[e] + score
6 if score ≥ ε and e /∈ S then propagate(e, score) ;
7 end
8 for t ∈ T do
9 p value ← wTT (t, v) × score

10 if p value ≥ ε and t /∈ S then
propagate(t, p value × synDecFactor) ;

11 end
12 end
13 else
14 // v ∈ E
15 for t ∈ π(v) do
16 if score ≥ ε and t /∈ S then propagate(t, p value) ;
17 end
18 for e ∈ {e ∈ E|(v, e) ∈ E ∨ (e, v) ∈ E} do
19 p value ← wEE(v, e) × score × eSmoothingFactor
20 if p value ≥ ε and e /∈ S then propagate(e, p value) ;
21 end
22 end
23 S.remove(v)

4 Evaluation and Results

4.1 Evaluation Protocol

The proposed evaluation is based on a set of expected entity evocations for given
sets of words. Table 1 presents some of the 220 entries composing the evaluation
set. Expected implicit evocations for each entry have been linked to WordNet
3.1 [11], a widely used lexical database. WordNet defines an ordering among sets
of synonyms providing both, (i) the set of entities and their partial ordering (O),
as well as (ii) the labeling function - π function.

The performance of the different approaches is evaluated by considering the
number of queries for which the expected answer is provided among the top
k results. For each approach, six evaluation settings have been compared by
evaluating if the expected answer is found among sets composed of 1, 2, 3,
5, 10 or 20 best ranked results. In each setting, the ranked list of entities is
computed by considering a set E ′ ⊂ E corresponding to the expected answers
for all evaluated queries (|E ′| = 198). Implementations of the σEE measure have
been made using SML (Semantic Measures Library) [4]. The σTT function used
in the experiments uses Glove word embeddings [13]. Datasets, tested methods
Java implementations as well as complete technical details about the evaluation
are provided at https://github.com/sharispe/ICE.

https://github.com/sharispe/ICE
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Six models have been evaluated:

– Two Vector-based Aggregation Model definitions: VAM MIN uses an aggre-
gation strategy based on the min, VAM SUM uses the sum.

– Four Graph-based Model (GM) definitions: two strategies using an aggre-
gation approach based on median, using propagations at entity level or not
(GM MEDIAN KB and GM MEDIAN respectively); two strategies using an
aggregation approach based on sum, using propagations at entity level or not
(GM SUM KB and GM SUM respectively).

4.2 Evaluation Results

Results are presented in Table 2. Considering the performance of evaluated sys-
tems setting k to 1 and 2, the results show that the best performance is obtained
using a Vector-based Aggregation Model configuration taking advantage of the
sum aggregation approach (VAM SUM). It is interesting to underline that this
approach does not take into account any information provided by the ordering of
entities - while providing a 0.05 recall improvement over the best results that have
been obtained using an approach taking advantage of taxonomic information
(GM MEDIAN KB). Note also the critical impact of modifying the aggregation
strategy using a VAM approach: by using a min aggregation strategy the per-
formance highly decreases (e.g. a 0.11 difference is observed between VAM MIN
and VAM SUM using k = 1). Considering the graph-based approach, the results
highlight a large benefit of using taxonomical information for eliciting implicit
entity evocations. Indeed, using both median and sum approaches, incorporating
information provided by the taxonomy leads to a significant performance increase
(cf. comparison of the scores between GM MEDIAN/GM MEDIAN KB, as well
as GM SUM/GM SUM KB). It is finally worth noting that by setting k greater
than 2, the best performances are achieved using a graph-based model tak-
ing advantage of taxonomical information. These results stress that using tax-
onomical information helps better identifying the semantic neighborhood of
expected results, e.g. setting k= 20 GM SUM KB achieves a 0.72 recall while
the VAM SUM performance is 0.66.

Table 2. Evaluation results (recall).

Approach k= 1 2 5 10 20 50 100

VAM MIN 0.17 0.25 0.34 0.41 0.51 0.67 0.81

VAM SUM 0.28 0.39 0.51 0.6 0.66 0.8 0.86

GM MEDIAN 0.20 0.29 0.46 0.54 0.59 0.66 0.74

GM SUM 0.18 0.29 0.47 0.59 0.65 0.84 0.88

GM MEDIAN KB 0.24 0.35 0.49 0.58 0.64 0.74 0.81

GM SUM KB 0.23 0.32 0.55 0.63 0.72 0.86 0.9
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5 Conclusion

In this paper, we have introduced the challenge of eliciting implicit entity evo-
cations by stressing (i) its applications for improving automatic approaches
enabling human spoken and written productions to be deeply understood, and
(ii) its link to existing NLP and AI challenges (e.g. NER, Topic Modelling,
Language Model). Several models mixing word embeddings analysis and sym-
bolic representations provided by existing knowledge bases have been proposed.
These models can be used to distinguish relevant implicit entities mentioned
from a set of terms - they can therefore be used as core elements of more com-
plex systems aiming at providing automatic analysis of the semantics of large
units of language. The preliminaries results obtained in the performed experi-
ments highlight the potential benefits of defining an hybrid approach combining
word embeddings with symbolic representations for the task - even if additional
experiments and configuration settings have further to be proposed and evalu-
ated. To this aim, implementation source code, evaluation dataset and details of
the performed experiments are shared to the community (cf. Sect. 4).
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Abstract. This paper studies the problem of providing predictions with
a K-nn approach when data have partial features given in the form of
intervals. To do so, we adopt an optimistic approach to replace the ill-
known values, that requires to compute sets of possible and necessary
neighbours of an instance. We provide an easy way to compute such
sets, as well as the decision rule that follows from them. Our approach
is then compared to a simple imputation method in different scenarios,
in order to identify those ones where it is advantageous.

1 Introduction

The K-nearest neighbor method (K-nn) is a simple but efficient classification
method [1,6,16]. In classical K-nn, each label is assigned a predicted score and
the one with the highest score will be considered as the optimal label of the
target instance [1,6,16]. Such procedures usually assume that all training data
are precisely specified.

In this paper, we are interested in the case where the features of some training
data are imprecisely known, that is are known to lie in an interval. In this case,
the notion of nearest neighbour is no longer well-defined, and the learning process
has to be modified accordingly. Learning from interval-valued or partial data is
not new, but has regained some interest in the last few years [2,13–15]. In prac-
tice, such interval-valued data can come from imprecise measurement devices,
imperfect knowledge of an expert, or can also be the result of the summary of a
huge data set.

In this paper, we intend to apply some generic learning procedures fitted to
partial data [8,9] to the specific case of interval-valued K-nn methods. It should
be noted that while the problem of modelling the uncertainty or the imprecision
of the decision within a K-nn procedure applied to precise data has been well-
treated in the literature (see e.g. [3,7,10]), few works deal with the problem of
applying a K-nn method to interval-valued data [2]. Imputation methods [4]
offer a way to solve this problem by replacing imprecise data by precise values,
but typically do not aim at improving as much as possible the method accuracy.
Instead, maximax or optimistic approaches [8] do intend to improve as much as
possible the resulting accuracy.
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 93–106, 2017.
DOI: 10.1007/978-3-319-67582-4 7
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In order to derive our K-nn method, we will adopt an approach similar to
the one we previously successfully implemented for partially specified labels [11].
This approach was based on the use of two sets, the sets of possible and neces-
sary predicted labels. These sets correspond to the sets of labels that would be
predicted for at least one or all replacement(s) of the partial features, respec-
tively. An important step of our approach will be to determine those sets for the
case of interval-valued data from the sets of necessary and possible neighbours
of an instance. We deal with this issue in Sect. 3, after having introduced our
notations and settings in Sect. 2.

Our adaptation of the K-nn procedure, following the maximax approach put
forward by Hüllermeier [8] to build predictive models from partial data, will then
be derived in Sect. 4. We then provide some experimental results on several data
sets in Sect. 5.

2 Preliminaries

In our setting, we assume that we have an imprecise training set D =
{(Xn, yn)|n = 1, . . . , N}, used to make predictions, with the imprecise features
Xn ⊂ R

P and the precise label yn ∈ Ω = {λ1, . . . , λM}. We assume that Xp
n

contains the precise value xp
n in form of a of closed interval, or in other words,

Xp
n =

[
ap

n, bp
n

]
. We are interested into predicting the class of a target instance t,

whose features are precisely known.
Let us first remind that in case of precise data, the Euclidean distance

between a training instance xn and a target instance t is given by

d(xn, t) =
( P∑

p=1

(
xp

n − tp
)2

)1/2

. (1)

Then for a given target instance t and a number of nearest neighbours K, its
nearest neighbour set in D will be denoted by Nt = {xt

k|k = 1, . . . , K} where
xt

k is its k-th nearest neighbour. In the unweighted version of K-nn, the optimal
prediction of t is

h(t) = arg max
λ∈Ω

∑

xt
k∈Nt

1λ=yt
k
, (2)

with 1A is the indicator function of A (1A = 1 if A is true and 0 otherwise).
The idea of the above method is to allow each nearest neighbour to give a vote
for its label and the one with the highest number of votes is considered as the
optimal prediction.

However, in case of imprecise feature data, there may be some uncertainty
about what is the nearest neighbour set Nt of a target instance t. As a con-
sequence, Eq. (2) is no-longer applicable in order to make a decision on t, the
target instance t is ambiguous, and this ambiguity must be resolved in some way
to make a decision. We will first focus on the problem of determining the ambi-
guity when having to decide the class of t. Denote by L the set of all possible
precise replacements of training set D:
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L =
{
l = {(xn, yn)|xn ∈ Xn, n = 1, . . . , N}

}
. (3)

To each replacement l ∈ L corresponds a well-defined nearest neighbour set Nl
t ,

on which Eq. (2) can be applied to find the optimal prediction(s) as follows

hl(t) = arg max
λ∈Ω

∑

xt
k∈Nl

t

1λ=yt
k
. (4)

The sets of possible and necessary predicted labels are then defined as the sets
of labels predicted for at least one replacement and for all possible replacements,
respectively. Formally, this gives

PLt =
{
λ ∈ Ω|∃l ∈ L s.t λ ∈ hl(t)

}
(5)

and

NLt =
{
λ ∈ Ω|∀l ∈ L s.t λ ∈ hl(t)

}
. (6)

A target instance t is said to be ambiguous if and only if PLt �= NLt . As we
will see in the next section, determining such sets in the case of interval-valued
features requires to compute the sets of necessary and possible neighbours. If the
instance t is non-ambiguous, then the predictive value is clear and nothing needs
to be done. If it is ambiguous, then an additional procedure must be performed to
pick a prediction within PLt . In this paper, we will adopt a maximax approach
presented in Sect. 4.

3 Determining Ambiguous Instances

This section focus on determining whether a given instance is ambiguous, and
what are the resulting possible and necessary label sets. In order to do so, we
will first have to determine the possible and necessary neighbours.

3.1 Determining Interval Ranks

Given an imprecise training data set D and a precise instance t, Groenen et
al. [5] provides simple formulae to determine the imprecise distance d(Xn, t) =[
d(Xn, t), d(Xn, t)

]
of Xn ∈ D with respect to t:

d(Xn, t) =
( P∑

p=1

[|cp
n − tp| + rp

n

]2
)1/2

, (7)

and

d(Xn, t) =
( P∑

p=1

max
[
0, |cp

n − tp| − rp
n

]2
)1/2

, (8)
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where cp
n = (bp

n+ap
n)/2 and rp

n = (bp
n−ap

n)/2, p = 1, . . . , P . Such interval distance
allow us to define a partial order on the set D of training instance as follows

Xi � Xj if d(Xi, t) ≥ d(Xj , t) (9)

where Xi � Xj means that Xi is farther than Xj from t. As demonstrated by
Patil and Taille [12, Sect. 4.1], this partial order then allows us to derive interval
rank values as we have that

Xi � Xj ⇒ r(Xi) ≥ r(Xj),

where r(Xi) is the rank that can be assigned to Xi. Once the relation � is
determined, D is a poset (partially ordered set) and the corresponding relation
matrix, denoted by ζ, is a N × N matrix defined as

ζi,j =

{
1 if Xi � Xj

0 otherwise.
(10)

The results given by Theorems 1 and 2 in [12, Sect. 4.1] imply that each instance
Xn can be associated to an imprecise rank which measures how close it is to the
target instance t i.e. rn = [rn, rn] where

rn =
N∑

j=1

ζn,j and rn = N + 1 −
N∑

j=1

ζj,n. (11)

Example 1. Let us consider an example where |D| = 5 and target instance t as
illustrated in Fig. 1. Using the relation (9), the corresponding ζ matrix is given
in Table 1.

By applying (11), we can easily compute the imprecise ranks of the training
instances.

([r1, r1], [r2, r2], [r3, r3], [r4, r4], [r5, r5]) = ([2, 4], [1, 1], [2, 4], [2, 4], [5, 5]). (12)

X 2

X 1

t
(X1, a)

(X2, b)

(X3, c)

(X4, b)

(X5, a) t = (1, 1)
[d(X1, t), d(X1, t)] = [3, 5]
[d(X2, t), d(X2, t)] = [1, 1.4]
[d(X3, t), d(X3, t)] = [2.8, 4.4]
[d(X4, t), d(X4, t)] = [3, 3.2]
[d(X5, t), d(X5, t)] = [5.6, 7]

Fig. 1. Example with |D| = 5
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Table 1. The corresponding ζ matrix for example in Fig. 1

X1 X2 X3 X4 X5

∑
r

X1 1 1 0 0 0 2

X2 0 1 0 0 0 1

X3 0 1 1 0 0 2

X4 0 1 0 1 0 2

X5 1 1 1 1 1 5
∑

c 2 5 2 2 1

3.2 Determining the Possible Label Set

Let us now focus on the problem of determining whether a given label λ is a
possible prediction for t. Denoting by Rt = {rn = [rn, rn]|n = 1, . . . , N} the
imprecise ranks of the instances in D, we can easily determine the sets of possible
and necessary neighbours as

PNt = {Xn|rn ≤ K} (13)
and

NNt = {Xn|rn ≤ K}. (14)

We have that Xn ∈ NNt if it is in the set of neighbours Xn ∈ Nl
t for any

replacement l, while Xn ∈ PNt if Xn ∈ Nl
t only for some replacement l ∈ L.

For each label λ ∈ Ω, we can then compute its minimum number of votes

ssmall
t (λ) =

∣
∣{Xn|Xn ∈ NNt , yn = λ

}∣
∣, (15)

given by its necessary neighbours. From ssmall can then be deduced the maximal
and minimal number of votes it can receive from K neighbours, according to the
following formulae

smax
t (λ) = min

[
K −

∑

λ′ �=λ

ssmall
t (λ

′
),

∣
∣{Xn|Xn ∈ PNt , yn = λ

}∣
∣
]
, (16)

and

smin
t (λ) = max

[
ssmall
t (λ),K −

∑

λ′ �=λ

smax
t (λ

′
)
]
. (17)

These scores are simply derived from the fact that, among the K neighbours, at
least ssmall(λ) among them must give their votes to label λ. This is proved in the
next Lemma, where it is shown that smin

t (λ) and smax
t (λ) are the minimum and

maximum number of votes that can be given to λ over all replacements l ∈ L.

Lemma 1. Given number of nearest neighbours K, a target instance t, the cor-
responding maximum and minimum score vectors

(
smin
t (λ1), . . . , smin

t (λM )
)
and(

smax
t (λ1), . . . , smax

t (λM )
)
, then for any λ ∈ Ω, we have that
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smin
t (λ) = min

l∈L
slt(λ) and smax

t (λ) = max
l∈L

slt(λ) (18)

and consequently, we have that, for ∀l ∈ L,

smax
t (λ) ≥ slt(λ) ≥ smin

t (λ),∀λ ∈ Ω. (19)

Proof. The relation that smax
t (λ) = maxl∈L slt(λ) can be simply proved by

observing that K − ∑
λ′ �=λ ssmall

t (λ
′
) bounds the number of instance that could

be in the set of nearest neighbours and have λ for label, while the value
|{Xn|Xn ∈ PNt , yn = λ}| simply gives the maximal number of such elements
that are available within the set of possible neighbours, and that may be chosen
freely to be/not be in the neighbour set, as long as they remain lower than the
bound K − ∑

λ′ �=λ ssmall
t (λ

′
). So, maximising this number of elements simply

provides smax
t (λ).

Let us now prove that smin
t (λ) = minl∈L slt(λ), recalling that we just proved

that smax
t (λ) is reachable for some replacement. We are going to focus on two

cases:

1. ssmall
t (λ) ≥ K − ∑

λ′ �=λ smax
t (λ

′
), meaning that smin

t (λ) = ssmall
t (λ), hence

for every replacement there is at least ssmall
t (λ) nearest neighbors of label λ.

Furthermore, ssmall
t (λ) ≥ K−∑

λ′ �=λ smax
t (λ

′
) implies that

∑
λ′ �=λ smax

t (λ
′
)+

ssmall
t (λ) ≥ K, meaning that we can choose the remaining K − ssmall

t (λ)
neighbours so that they vote for other labels. In other words, we can find a
replacement l where ssmall

t (λ) = slt(λ), proving that smin
t (λ) = minl∈L slt(λ)

in the first case.
2. ssmall

t (λ) < K − ∑
λ′ �=λ smax

t (λ
′
), meaning that smin

t (λ) = K −
∑

λ′ �=λ smax
t (λ

′
). First note that for any replacement we cannot have slt(λ) <

K − ∑
λ′ �=λ smax

t (λ
′
), otherwise the set of nearest neighbour would be nec-

essarily lower than K. smin
t (λ) then reaches this lower bound by simply tak-

ing the replacement sl for which we have slt(λ
′
) = smax

t (λ
′
), proving that

smin
t (λ) = minl∈L slt(λ) in the second case.

��
For a label λm ∈ Ω, the relations among scores (19) and the definition of the

possible label set (5) imply that λm is a possible label (λm ∈ PLt) if and only if
there is a replacement l ∈ L with a score vector

(
slt(λ1), . . . , slt(λM )

)
such that

M∑

i=1

slt(λi) = K, (20)

and

min
(
slt(λm), smax

t (λi)
) ≥ slt(λi) ≥ smin

t (λi), i = 1, . . . ,M. (21)

The condition
∑M

i=1 slt(λi) = K simply ensures that l is a legal replacement.
The constraint (21) then ensures that all other labels have a score lower than
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slt(λm) for the replacement l (note that min(slt(λm), smax
t (λm)) = slt(λm)), and

that their scores are bounded by Eq. (19).
The question is now to know whether we can instantiate such a vector

making a winner of λm. To achieve this task, we will first maximise its score,
such that slt(λm) = smax

t (λm). The scores of all other labels λi is also lower-
bounded by smin

t (λi), meaning that among the K neighbours we choose in l,
only K − smax

t (λm) − ∑M
i=1,i �=m smin

t (λi) remain to be fixed in order to specify
the score vector. Then we can focus on the relative difference between smin

t (λi)
and the additional number of chosen neighbours voting for λi. Solving the
problem defined by Eqs. (20) and (21) is equivalent to determine a score vec-
tor (w(λ1), . . . , w(λm−1), w(λm+1), . . . , w(λM )) with w(λi) = slt(λi) − smin

t (λi),
∀λi �= λm, s.t.

M∑

i=1,i �=m

w(λi) = K−smax
t (λm) −

M∑

i=1,i �=m

smin
t (λi), (22)

min
(
smax
t (λm), smax

t (λi)
) − smin

t (λi) ≥ w(λi) ≥ 0,∀λi �= λm. (23)

Equation (22) again ensures that the replacement is a legal one (the number of
neighbours sums up to K), and Eq. (23) ensures that λm is a winning label. Also
note that if ∃λi ∈ Ω \ {λm} s.t smax

t (λm) < smin
t (λi), then there no chance for

λm to be a possible label.
We will now give a proposition allowing to determine in an easy way if a

label belongs to the set of possible labels.

Proposition 1. Given the number of nearest neighbours K, a target instance t,
its correspondingmaximum andminimum score vectors

(
smin
t (λ1), . . . , smin

t (λM )
)

and
(
smax
t (λ1), . . . , smax

t (λM )
)
. Assuming that smax

t (λm) ≥ smin
t (λi), for ∀λi ∈

Ω \ {λm}, then λm is a possible label if and only if

K ≤ smax
t (λm) +

M∑

i=1,i �=m

min
(
smax
t (λm), smax

t (λi)
)

(24)

Proof. (⇒) Let us prove that λm being a possible label implies (24). First, if
λm ∈ PLt and l is a legitimate replacement, we have that

w(λi) ≤ min
(
smax
t (λm), smax

t (λi)
) − smin

t (λi), ∀i �= m (25)

otherwise λm would not be a winner, or we would give a higher score to λi than
it actually can get (we would have sl(λi) > smax

t (λi)). Since for any replacement
we have that Eq. (22) must be satisfied, we have necessarily

K − smax
t (λm) −

M∑

i=1,i �=m

smin
t (λi) =

M∑

i=1,i �=m

w(λi).
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If we replace w(λi) by its upper bound (25), we get the following inequality

K − smax
t (λm) −

M∑

i=1,i �=m

smin
t (λi) ≤

M∑

i=1,i �=m

min
(
smax
t (λm)), smax

t (λi)
)

−
M∑

i=1,i �=m

smin
t (λi),

that is equivalent to the relation

K ≤ smax
t (λm) +

M∑

i=1,i �=m

min
(
smax
t (λm), smax

t (λi)
)
.

(⇐) Let us now show that if the conditions given by Eqs. (22) and (23) are
satisfied, then λm ∈ PLt . First remark that, once we have assigned the maximal
score to λm and the minimal ones to the other labels, there remain

K − smax
t (λm) −

M∑

i=1,i �=m

smin
t (λi)

neighbours to choose from. We also know from (23) that at most
M∑

i=1,i �=m

[
min

(
smax
t (λm), smax

t (λi)
) − smin

t (λi)
]

neighbours can still be affected to other labels than λm without making it a
loser. Clearly, if

K − smax
t (λm) −

M∑

i=1,i�=m

smin
t (λi) ≤

M∑

i=1,i�=m

[
min
(
smax
t (λm), smax

t (λi)
)− smin

t (λi)
]
,

we can reach the number of K neighbours without making λm a loser, or inversely
letting λm be a winner for the chosen replacement, meaning that λm ∈ PLt . ��
Example 2. Let us continue with the data set in Example 1 with value K = 3.
From Table 1 and the interval ranks (12), we can see that

PNt = {(X1, a), (X2, b), (X3, c), (X4, b)},NNt = {(X2, b)}.

Then the maximum and minimum scores for all the labels are

(smin
t (a), smin

t (b), smin
t (c)) = (0, 1, 0)

(smax
t (a), smax

t (b), smax
t (c)) = (1, 2, 1).

We will now determine whether a given label in Ω = {a, b, c} is a possible label.
For label a, we have that

smax
t (a) + min

(
smax
t (a), smax

t (b)
)

+ min
(
smax
t (a), smax

t (c)
)

= 1 + 1 + 1 = 3 ≥ K,

hence a ∈ PLt . The same procedure applied to b and c gives the result PLt =
{a, b, c}.
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3.3 Determining Necessary Label Set

Let us now focus on characterizing the set NLt . The following propositions gives
a very easy way to determine it, by simply comparing the minimum score of a
given label λ to the maximal scores of the others.

Proposition 2. Given the maximum and minimum scores
(
smin
t (λ1), . . . ,

smin
t (λM )

)
and

(
smax
t (λ1), . . . , smax

t (λM )
)
, then a given label λ is a necessary

label if and only if

smin
t (λ) ≥ smax

t (λ
′
),∀λ

′ �= λ. (26)

Proof. (⇒) We proceed by contradiction. Assuming that ∃ λ ∈ NLt and ∃ λ
′ ∈

Ω where smin
t (λ) < smax

t (λ
′
), we show that we can always find a replacement

l ∈ L s.t slt(λ) < slt(λ
′
), or in other words, ∃ l ∈ L s.t λ �∈ hl(t), and therefore

λ is not necessary. Let us consider the two cases

1. K − ∑
λ′′ �=λ smax

t (λ
′′
) ≥ ssmall

t (λ), then for ∀λ
′′ �= λ, we give its the max-

imum score s.t slt(λ
′′
) = smax

t (λ
′′
) and give λ the score slt(λ) = K −∑

λ′′ �=λ smax
t (λ

′′
). Then it is clear that

slt(λ) = K −
∑

λ′′ �=λ

smax
t (λ

′′
) = smin

t (λ) < smax
t (λ

′
) = slt(λ

′
).

2. K − ∑
λ′′ �=λ smax

t (λ
′′
) < ssmall

t (λ), then we give λ a score slt(λ) = ssmall
t (λ)

and give λ
′
a score slt(λ

′
) = ssmax

t (λ
′
). As we have

K <
∑

λ′′ �={λ,λ′}
smax
t (λ

′′
) + ssmall

t (λ) + smax
t (λ

′
)

by assumption, we can choose K − ssmall
t (λ) − ssmax

t (λ
′
) nearest neighbours

from at most
∑

λ′′ �={λ,λ′} smax
t (λ

′′
) possible nearest neigbhours whose labels

are not λ or λ
′
. In such a replacement we have slt(λ) < slt(λ

′
).

(⇐) We are going to prove that (26) implies that the label λ ∈ NLt is necessary.
Let us first note that

min
l∈L

slt(λ) = smin
t (λ) and max

l∈L
slt(λ

′
) = smax

t (λ
′
),∀λ

′ �= λ,

then (26) ensures that, for any replacement l ∈ L,

slt(λ) ≥ min
l∈L

(slt(λ)) ≥ max
l∈L

(slt(λ
′
)) ≥ slt(λ

′
),∀λ′ �= λ,

which is sufficient to get the proof. ��
Example 3. Consider the data set given in Example 2 with the maximum and
minimum scores of the labels are

(smin
t (a), smin

t (b), smin
t (c)) = (0, 1, 0)

(smax
t (a), smax

t (b), smax
t (c)) = (1, 2, 1).

Then (26) implies that the necessary label set NLt = {b}.
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4 Learning from Interval-Valued Feature Data

We are now going to present a maximax approach that can be used to make
decision on interval-valued feature data. Let us first note that whenever the
data is imprecise, the decision rule (2) is no longer well-defined. In case of set-
valued labels, such a decision rule can be generalized as a maximax rule [9] where
the optimal prediction of t is

h(t) = arg max
λ∈Ω

∑

xt
k∈Nt

1λ∈yt
k
. (27)

The idea of the above method is to assign for each label the highest number of
votes that it could get. Let call such number of votes by optimal score, then the
label with the highest optimal score will be considered as the optimal decision
of t. Note that in case of interval-valued feature data, as point out in Lemma
1, the score smax(λ) defined in (16) is nothing else but the optimal score of λ.
Then the maximax approach can be then generalized for interval-valued feature
data as follows

h(t) = arg max
λ∈Ω

smax
t (λ) (28)

= arg max
λ∈Ω

(
min

[
K −

∑

λ′ �=λ

ssmall
t (λ

′
),

∣
∣
∣
∣
{
Xn|Xn ∈ PNt , yn = λ

}
∣
∣
∣
∣

])
.

The procedure to make predictions is summarized in Algorithm 1. It is then
clear that if λ ∈ h(t), then λ is the winner in at least one replacement l ∈ L.
Of course, unless we have |PLt | = |NLt | = 1, we cannot be sure that λ is
the prediction that fully precise data would have given us. It merely says that
it is the most promising one, in the sense that it is the one with the highest
potential score. We may suspect that the higher is |PLt |, the more likely we
are to commit mistakes, as the ambiguity increases. It would then be interesting
to wonder if we could reduce |PLt | by querying the data and making some of
their feature precise, using techniques similar to active learning. Yet, we leave
the investigation of such an approach to future research.

It may also happen that Eq. (28) returns multiple instances that have the
highest number of votes. We can then follow a different strategy, where we con-
sider the result of the K-nn procedure for a peculiar replacement. Since every
label receives its maximal number of votes by considering the lower distance
d(Xn, t), a quite simple idea is to consider the result obtained by Eq. (27) when
we consider the replacement l giving d(Xn, t) = d(Xn, t) for every Xn.

5 Experiments

We run experiments on a contaminated version of 6 standard benchmark data
sets described in Table 2. By contamination, we mean that we introduce artifi-
cially imprecision in these precise data sets. These data sets have various numbers
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Algorithm 1. Maximax approach for interval-valued training data.
Input: D-imprecise training data, T-test set, K-number of nearest neighbours
Output: {p(t)|t ∈ T}-predictions

1 foreach t ∈ T do
2 compute its zeta matrix ζ through (7)–(10);
3 foreach Xn ∈ D do
4 compute imprecise rank [rn, rn] defined in (11);

5 determine the PNt and NNt defined in (13)–(14);
6 foreach λ ∈ Ω do
7 compute smax

t (λ) through (15)–(16);

8 determine h(t) defined in (28);
9 if |h(t)| = 1 then

10 p(t) = h(t);

11 else
12 replace the imprecise distances by dt = {d(Xn, t)|n = 1, . . . , N};
13 determine p(t) by performing classical K-nn on dt;

of classes and features, but have a relatively small number of instances, for the
reason that handling imprecise data is mainly problematic in such situations:
when a lot of data are present, we can expect that enough sufficiently precise
data will exist to reach an accuracy level similar to the one of fully precise
methods.

Table 2. Data sets used in the experiments

Name # instances # features # labels

Iris 150 4 3

Seeds 210 7 3

Glass 214 9 6

Ecoli 336 7 8

Dermatology 385 34 6

Vehicle 846 18 4

Our experimental setting is as follows: given a data set, we randomly chose a
training set D consisting of 10% of instances and the rest (90%) as a test set T, to
limit the number of training samples. For each training instance xi ∈ D and each
feature xj

i , a biased coin is flipped in order to decide whether or not the feature
xj

i will be contaminated; the probability of contamination is p and we have tested
different values of it ({0.2, 0.4, 0.6, 0.8}). In case xj

i is contaminated, its precise
value is transformed into an interval which can be asymmetric with respect to xj

i .
To do that, a pair of widths {lji , r

j
i } will be generated from two Beta distributions,
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Table 3. Experimental Results: Accuracy of classifiers (%)

Iris Seeds Glass Ecoli Derma Vehicle

p = 0.2, ε = 0.25 Precise 91.55 84.88 49.70 75.21 82.26 53.55

Imputation 88.93 83.79 47.30 74.40 80.20 49.45

Maximax 89.39 83.80 48.37 74.57 81.19 53.21

p = 0.2, ε = 0.5 Precise 91.57 85.15 50.46 74.98 81.76 53.65

Imputation 89.07 84.16 47.41 74.23 77.41 50.35

Maximax 89.43 83.92 48.54 74.13 80.55 53.19

p = 0.2, ε = 1 Precise 91.35 85.39 50.49 75.11 82.13 53.65

Imputation 88.80 84.36 47.48 74.52 75.12 50.76

Maximax 89.08 84.31 48.73 74.35 80.54 53.24

p = 0.4, ε = 0.25 Precise 91.44 85.31 50.34 75.33 82.26 53.54

Imputation 87.70 83.83 46.70 74.49 75.87 49.88

Maximax 88.59 83.88 48.06 74.02 80.32 52.95

p = 0.4, ε = 0.5 Precise 91.14 85.26 50.20 75.47 82.04 53.50

Imputation 87.00 83.77 46.31 74.60 75.14 49.70

Maximax 87.42 83.61 47.69 73.87 79.75 52.79

p = 0.4, ε = 1 Precise 91.11 85.33 50.18 75.36 82.24 53.52

Imputation 86.87 83.80 46.17 74.62 73.10 49.77

Maximax 86.59 83.52 47.58 73.57 79.51 52.70

p = 0.6, ε = 0.25 Precise 92.53 84.59 50.82 74.54 81.10 53.25

Imputation 80.46 80.88 43.56 72.27 75.38 43.41

Maximax 84.86 80.85 45.90 69.48 77.40 50.87

p = 0.6, ε = 0.5 Precise 92.00 85.39 50.97 74.86 81.98 53.38

Imputation 80.06 82.51 44.04 73.13 73.28 45.10

Maximax 82.43 82.06 46.08 70.24 77.29 50.75

p = 0.6, ε = 1 Precise 91.66 85.57 51.01 74.83 81.97 53.46

Imputation 80.22 82.47 44.37 73.45 68.41 46.48

Maximax 80.79 82.16 46.19 70.47 75.84 50.59

p = 0.8, ε = 0.25 Precise 91.62 85.46 50.74 74.97 81.91 53.40

Imputation 79.13 81.92 44.34 73.27 69.42 44.52

Maximax 81.26 81.86 45.88 70.19 76.04 48.88

p = 0.8, ε = 0.5 Precise 91.27 85.29 50.85 74.92 82.08 53.44

Imputation 78.53 81.95 44.33 73.34 69.00 44.18

Maximax 80.92 82.00 45.66 70.17 75.71 48.32

p = 0.8, ε = 1 Precise 91.16 85.35 50.71 75.00 82.18 53.45

Imputation 78.58 82.04 44.25 73.60 66.67 44.71

Maximax 80.38 82.47 45.48 70.46 74.99 47.92

Fixed parameters: K = 3, β = 10



K-Nearest Neighbour Classification for Interval-Valued Data 105

Beta(αl, β) and Beta(αr, β). To control the skewness of the generated data, we
introduce a so called unbalance parameter ε and assign {αl, αr} = {β ∗ ε, β/ε}.
Then the generated interval valued data is Xj

i = [xj
i +lji (D

j−xj
i ), x

j
i +rj

i (D
j−xj

i )]
where Dj = mini(x

j
i ) and D

j
= maxi(x

j
i ). As usual when working with Euclid-

ean distance based K-nn, data is normalized. Then, the proposed method is
used to make predictions on the test set and its accuracy is compared with the
accuracy of two other cases: classical K-nn when fully precise data is given, and
a basic imputation method consisting in replacing an interval-valued data Xj

i

by its middle value, i.e., xj
i = (Xj

i + X
j

i )/2. The disambiguated data is used to
make predictions under the classical K-nn procedure.

Because the training set is randomly chosen and contaminated, the results
maybe affected by random components. Then, for each data set, we repeat the
above procedure 100 times and compute the average results. The experimen-
tal results on the data sets described in Table 2 with several combinations of
parameters (K, p, ε, β) are given in the Table 3, with the best results between
imputation and the presented method put in bold (the precise case only serves
as a reference value of the best accuracy achievable). These first results show that
the difference between the two approaches is generally small. Surprisingly, this is
true for all explored settings, even for skewed imprecision and high uncertainty
(ε = 0.25, p = 0.8). However, on the two data sets dermatology and vehicle, our
approach really provides a significant, consistent increase of accuracy, and this
even for low and balanced imprecision (ε = 1, p = 0.2). In the future, we intend
to do more experiments (varying K, increasing the number of data sets) and
also try to understand the origin of the witnessed difference.

6 Conclusion

In this paper, we have proposed a maximax approach to deal with K-nn pre-
dictions when features are imprecisely specified. Our method mainly relies on
identifying possible neighbours in an efficient manner, using the partial orders
induced by distance intervals to do so. First experiments suggest that a simple
imputation method could often work as well as the presented approach, but for
some data sets our approach can bring a real advantage. Compared to imputation
methods, our approach also provides us with information about how uncertain
our prediction is, by identifying possible and necessary neighbours.

Such information is instrumental in the next step we envision for this work:
determining which sample feature should be queried first to improve the overall
algorithm accuracy, much like what we did for the case of partial labels [11]. Also,
investigating the decision rules and querying procedure when both training and
test data can be imprecise is another future direction though defining the partial
order (9) is still a challenge.

Acknowledgement. This work was carried out in the framework of Labex MS2T and
EVEREST projects, which were funded by the French National Agency for Research
(Reference ANR-11-IDEX-0004-02, ANR-12-JS02-0005).
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Abstract. Estimating probabilities of a multinomial variable condi-
tioned to a large set of variables is an important problem due to the
fact that the number of parameters increases in an exponential way with
the number of conditional variables. Some models, such as noisy-or gates
make assumptions about the relationships between the variables that
assume that the number of parameters is linear. However, there are cases
in which these hypothesis do not make sense. In this paper, we present
a procedure to estimate a large conditional probability distribution by
means of an average of low order conditional probabilities. In this way
the number of necessary parameters can be reduced to a quantity which
can be estimated with available data. Different experiments show that
the quality of the estimations can be improved with respect to a direct
estimation.

Keywords: Bayesian networks · Parametric estimation · Large dimen-
sion conditional probabilities

1 Introduction

Parametric estimation in a Bayesian network consists in the estimation of a con-
ditional probability distribution for each variable given its parents [9]. Maximum
likelihood estimation or Bayesian procedures, such as Laplace correction, are the
most usual procedures. However, there is an important problem when the num-
ber of variables to which we are conditioning is high: for each configuration of
values of the parents we have to estimate a distribution for the variable. As the
number of configurations is exponential as a function of the number of parents
and each element of the sample can be used only for one of these estimation, the
sample used to estimate each of these distributions can be very short or even
null.

In some situations, it is possible to assume a model of interaction between
a variable and its parents which can reduce the number of parameters, as the
case of noisy-or gates [8,12]. Even if in [15], it is reported that noisy-or gates
can provide a reasonable estimation in about 50% of the conditional probability
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 107–118, 2017.
DOI: 10.1007/978-3-319-67582-4 8
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tables of some well known networks, the experimental setting is very limited and
these results can be strongly dependent on the particular case we are considering.
So, in many practical situations we may have large conditional probabilities in
which this model does not provide a reasonable fit.

In this paper, we propose a general estimation procedure that consists in
estimating a set of low dimension conditional distributions for the variable given
different small subsets of the original set of parents. The final estimation is an
average of these smaller conditional probability distributions. This average can
be uniform or weighted by assuming the existence of a hidden variable and using
an EM algorithm to estimate the weights [5].

It is true that some learning procedures do not induce a too complex network
for a given sample size: for example, when using Bayesian scores [11], in general
the complexity of the network depends on the sample size, in such a way that with
small sample sizes we have many missing links with respect to the true network.
But this is only a tendency and there are many other learning procedures such
as the PC algorithm [14] in which this is not always true: we can learn very
complex networks from small datasets. For example, if we have a network with
only one variable Y dependent on a large set of variables and this set of variables
are independent (there are only links from the variables in this set to Y ), then
this structure has a high number of parameters while PC algorithm can identify
it, using only order 0 conditional independence sets which can be quite reliable
with low sample sizes. Furthermore, the presence of links can be known from
experts in the field and non induced by data. In this case, if the network is
complex, then a normal dataset can be insufficient to estimate the parameters
of the network.

This paper is organized as follows: Sect. 2 introduces the problem and the
notation; Sect. 3 describes the proposed estimation procedure; Sect. 4 provides
some insights about the data structures that can be used to efficiently compute
with these conditional distributions; Sect. 5 presents the experimental work and
Sect. 6 is devoted to the conclusions.

2 Notation and Problem Formulation

Assume that we have a variable Y taking values on a finite set UY and a set of
variables X = {X1, . . . , Xn}, where each variable Xi takes values on the set UXi

.
We also have a set D of N vectors of observations for variables (Y,X1, . . . , Xn).
We want to estimate the conditional probability P (Y |X1, . . . , Xn). If UY has r
values and each UXi

has ri values, this implies to estimate r ·∏n
i=1 ri parameters.

A subset of {X1, . . . , Xn} will be denoted in boldface Z. A generic value of set
Z will be denoted as z and called a configuration of Z. The number of possible
configurations of Z is rZ =

∏
Xi∈Z ri.

If x ∈ UX and Z ⊆ X, then the configuration obtained by considering only
the values of the variables in Z, will be denoted as xZ.
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The estimation of maximum likelihood of a conditional probability P (Y |Z)
is computed as,

P (y|z) =
Ny,z

Nz
, (1)

where Nz is the number of occurrences of Z = z in data D and Ny,z is the
number of occurrences of Y = y,Z = z. This estimation is good when Nz is
large, but its behaviour is not so good when Nz is small. In that case, it is better
to use the Laplace correction:

P (y|z) =
Ny,z + 1
Nz + r

. (2)

The Bayesian BDEu score of the variable Y given the set of candidate parents
Z is given by [3]:

Score(Y,Z|D) =
∏

z∈UZ

Γ (α)
Γ (Nz + α)

∏

y∈UY

Γ (α/r + Ny,z)
Γ (α/r)

, (3)

where Γ is the gamma function, α = s/rZ and s is a parameter (the equivalent
sample size). Usually, the logarithm of this score (denoted as LScore(Y,Z|D)) is
used. We can use this score to compute a degree of association between Y and
a variable Xi given the set of variables Z (see [1]) in the following way:

Dep(Y,Xi,Z|D) = LScore(Y,Z ∪ {Xi}|D) − LScore(Y,Z|D). (4)

The degree of association of Y and Xi conditioned to the presence of variables
Z is the increment in the logarithm of the score of Y when Xi is added to Z.

3 The Mixture of Conditional Distributions Model

When computing the conditional distribution P (Y |X), if the number of variables
in X is large, we have that in general Nx is small for most of X’s configurations,
so the maximum likelihood estimation of this probability distribution would be
in general poor and even the Laplace correction would not be very accurate
as for each configuration x, the estimation of P (y|x) will be based on a short
sample (even null in many cases). For these situations we propose the following
procedure:

1. Determine a family Z1, . . . ,Zk of subsets of X, where each Zi is of a moderate
size.

2. Compute a conditional probability distribution Pi(Y |Zi) for each i = 1, . . . , k,
by using maximum likelihood or Laplace correction.

3. Estimate P (Y |X) as a convex combination:

P (Y |x) =
k∑

i=1

αiPi(Y |xZi
) (5)
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where αi ∈ [0, 1] and
∑k

i=1 αi = 1. If each P (Y |Zi) is a true conditional
probability distribution, it is clear that for each configuration x, P (Y |x) is
a probability distribution about Y as Pi(Y |xZi

) is a probability distribution
and we have a convex combination of probability distributions.

Different variants can be obtained depending on the selection of subsets
Z1, . . . ,Zk, the estimation procedure, and the coefficients αi in the convex com-
bination.

Subset Selection
In this paper we have chosen a fixed subset size l, so all the subsets Zi are of
the same size. We have also chosen k equal to n, the number of variables, so
that each variable Xi appears at least in one subset and then its influence is
quantified. On average, each variable will appear l times. Subsets are built in a
sequential way and two basic procedures have been followed:

1. The random selection. We keep a vector counting the number of times that
each variable Xi has been selected for a subset Zj . Each time we are going
to select a variable for subset Zj , we randomly chose a variable among those
with a minimum number of previous selections. In this way, we guarantee
that each variable is selected exactly the same number of times for subsets l,
but apart from this restriction, subsets Zj are random.

2. The association criterion. Each subset Zi is initialized to {Xi}, and then
an iterative procedure is followed for the rest of the l − 1 variables: in each
iteration the variable with maximum value of Dep(Y,Xj ,Zi|D) is selected
among those variables Xj ∈ X \ Zi. That is, we start each subset with a
different variable, but then the variables adding more information about Y
are sequentially added. It is important to remark that it might happen that
two sets Zi and Zj are equal for i �= j, if for example l = 2 and the variable
with maximum degree of dependence with Xi is Xj and the variable with
maximum degree with Xj is Xi.

Small Conditional Probabilities Estimation
Even if the number of variables in Zi is small, it is advisable to use Laplace
correction, as we can not guarantee that the numbers Nzi

are large for all the
configurations. For example, if Ny,z is 0 and the maximum likelihood estimator
is used, then P (y|z) will be estimated as 0.0, which is a too strong assumption.
So, some smoothing of the probabilities should be applied [7].

Small Conditional Probabilities Combination
In this step, formula (5) is applied to compute the global conditional probability
P (Y |X). Two main approaches are considered:

– Uniform Combination. In this case, αi = 1
k , i.e. all the conditional prob-

abilities have the same weights.
– Parameter Optimization. It is assumed the existence of a hidden variable,

H, taking k values, {h1, . . . , hk}. Y depends also on this hidden variable,
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but H is independent of X, and with the hypothesis that if H = hi, then
P (Y |X,H = hi) = P (Y |Zi,H = hi). In this way,

P (Y |X) =
∑

i

P (Y |X,H = hi)P (hi) =
∑

i

P (Y |Zi,H = hi)P (hi) (6)

In this way, weights are the probabilities of this hidden variable. Conditional
probabilities P (Y |Zi,H = hi) and weights P (hi) are computed using the
EM algorithm to obtain a local maximum of the posterior probability (the
estimation of the probabilities is done with Laplace correction) [5]. This algo-
rithm starts with an initial estimation of the probabilities P 0(Y |Zi,H = hi),
P 0(hi). Then an iterative algorithm alternating two steps is applied:

• Expectation. The value N̂y,zi,hi
= E(Ny,zi,hi

|P j(Y |Zi,H = hi),
P j(hi)), where E(Ny,z,hi

) is the expected number of occurrences of
Y = y,Zi = zi,H = hi computed in a Bayesian network with H and Zi as
parents of Y and with P j(Y |Zi,H = hi), P j(hi) as parameters. The prob-
abilities P 0(Xj) are not necessary as these variables are always observed
in the data D. Analogously, N̂hi

= E(Nhi
|P j(Y |Zi,H = hi), P j(hi)) is

also computed.
• Maximization. A new value of the parameters is obtained by

considering:

P j+1(Y |Zi,H = hi) =
N̂y,zi,hi

+ 1
∑

y∈UY
N̂y,zi,hi

+ rY
, (7)

P j+1(H = hi) =
N̂hi

+ 1
∑

i N̂hi
+ k

. (8)

The iteration continues till the changes in probability estimations are below
a given threshold.

It would be easy to adapt this algorithm to the case in which missing data
are also present in the dataset, but this description is given for fully observed
data.

4 Data Structures

After probabilities are estimated they should be introduced in a Bayesian net-
work for posterior computations. If we compute P (Y |X) as in Eq. (5) and store
it as a probability table, if the number of variables in X is large, then the nec-
essary space to store this table is huge, and the computations with these tables
would be unfeasible. Even, the application of the EM algorithm that needs to
compute probabilities given a current estimation of the parameters can have
efficiency problems. But we can represent these conditional probabilities in an
efficient way if we use alternative potential representations, able of taking advan-
tage of the associated asymmetrical independences associated with the model,
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as we have that given H = hi, then Y will be independent of X \ Zi given Zi.
In this paper we have considered the use of probability trees [4], though other
structures such as max-product networks could also be employed [13].

A probability tree T for a set of variables Z is a tree where each internal node
is labeled with a variable X ∈ Z and has a child for each one of the values in UX ,
and each leaf contains a real number. It represents a potential, i.e. a mapping
t : UZ → R. The value t(z) is the number in the leaf that is obtained by starting
in the root node and following for each internal node X ∈ Z the path consistent
with the child corresponding to the value of X in configuration z.

Probability trees can represent probability tables and take advantage of
asymmetrical independence relationships to obtain more compact encodings of
probability potentials. It is also possible to directly compute with these data
structures obtaining posterior conditional probabilities [4].

The representation of the conditional probabilities estimated as in Eq. (5) is
done by introducing an auxiliary variable H with values UH = {h1, . . . , hk}. This
auxiliary variable is independent of variables X and has an associated potential
tH : UH → [0, 1] given by t(hi) = αi. Then, a probability tree is used to represent
the conditional probability. The root will be variable H and for each value hi

it will have a child representing the conditional probability P (Y |Zi). This child
will be a tree that will only be branched by variables in Zi and therefore will be
at most of size r

∏
Xi∈Zi

ri and the full potential tree of size upper bounded by
r
∑k

i=1

∏
Xi∈Zi

ri. This size is not exponential in the number of variables in X
and it is possible to efficiently compute with it, if the size of sets Zi is moderated.

The efficiency of the inference algorithm using this representation on a par-
ticular case will depend of the network structure and the observation set, but
as it has been shown in [4] it is possible to compute in many practical cases
in which a computation with probability tables is impossible. In particular, the
computations associated with the EM algorithm have been possible because we
have used this data structure.

5 Experiments

For the experiments we have used 31 datasets from UCI Machine Learning
Repository [10]. Details can be found in Table 1. Data were preprocessed as
in [2]: continuous variables are discretized and instances with missing or unde-
fined values are removed. The basic idea of the experiments is to estimate a
conditional distribution of the class (variable Y ) given the attributes (variables
X). We assume that the class is dependent on all the attributes. This is usually
true in these datasets as the attributes are considered among variables that are
potentially relevant to the class. It is possible that other graph structure can
provide a better representation of the data (for example assuming that the arcs
are from the class to the attributes as in most of Bayesian classifiers), but this
is not what we are investigating in this paper: we are testing parameter estima-
tion procedures for a given graph. Experiments have been carried out in Elvira
platform [6].
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Table 1. Datasets UCI repository

Database N Attributes Classes

adult-d-nm 45222 14 2

australian-d 690 14 2

breast-no-missing 682 10 2

car 1728 6 4

chess 3196 36 2

cleve-no-missing-d 296 13 2

corral-d 128 6 2

crx-no-missing-d 653 15 2

diabetes-d-nm 768 8 2

DNA-nominal 3186 60 3

flare-d 1066 10 2

german-d 1000 20 2

glass2-d 163 9 2

glass-d 214 9 7

heart-d 270 13 2

hepatitis-no-missing-d 80 19 2

iris-d 150 4 3

letter 20000 16 26

lymphography 148 18 4

mofn-3-7-10-d 1324 10 2

nursery 12960 8 5

mushroom 8124 22 2

pima-d 768 8 2

satimage-d 6435 36 6

segment-d 2310 19 7

shuttle-small-d 5800 9 7

soybean-large-no-missing-d 562 35 19

splice 3190 60 3

vehicle-d-nm 846 18 4

vote 435 16 2

waveform-21-d 5000 21 3

To evaluate the evolution of the quality of the estimation as a function of the
number of attributes, we do not use all the attributes in the dataset, using only a
maximum of n attributes of the total number of attributes of the dataset, m: the
first n attributes are selected and the other m − n attributes are discarded. We
have carried out a 10-fold cross validation procedure. To evaluate a method with
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a new vector of observations (y,x) we compute the logarithm of the conditional
probability estimation: log(P (y|x) (log-likelihood of the conditional probability).

The first experiment evaluates the different procedures against the classical
estimation of the probabilities with Laplace correction (2). Table 2 shows the
averages of the logarithms of the conditional probabilities when the number
of attributes is n = 7 and our procedure is used with 7 subsets Zi of size 3.
Ramdon-EM stands for random selection of subsets Zi and application of
the EM-estimation procedure. Optimal-EM and Optimal-Uniform stand
for using the association degree to compute subsets Zi, with EM algorithm and
uniform weights, respectively.

Friedman non-parametric test shows a high significance with a p-value =
3.849e − 06. A post-hoc analysis using Nemenyi with Holm adjustment provides
significant differences of the best procedure, Optimal-Uniform with all the
other procedures except with Optimal-EM. The classical procedure is signifi-
cantly worse than Optimal-EM and Optimal-Uniform.

The second experiment evaluates the evolution of the classical and Optimal-
Uniform with respect to the size of X by repeating the 10-fold cross valida-
tion for the different datasets by including an increasing number of candidate
attributes. We keep a size of 3 for the sizes of subsets Zi. We only report the aver-
age log-likelihood of the conditional probability in Fig. 1. The classical method is
only evaluated till 7 candidates as the method is very slow and we have memory
problems with more parents. It can be seen that our mixture model takes advan-
tage of having more candidates and the average increases with the inclusion of
more variables. However, the classical method deteriorates with the number of
parents as the probability tables are too large to be estimated with precision
from available data.

Fig. 1. Evolution as a function of the number of parents

Finally, the third experiment compares the Optimal-Uniform and the
Optimal-EM procedures when the size of sets Zi is 1. The reason is that the
performance of the uniform combination was better when the size of Zi was 3.
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Table 2. Results experiment 1

Database Random-EM Optimal-EM Optimal-uniform Classical

adult-d-nm −0.3774 −0.3701 −0.3795 −0.4212

australian-d −0.5853 −0.5753 −0.5763 −0.6300

breast-no-missing −0.3609 −0.3384 −0.2271 −0.4577

car −0.7217 −0.5963 −0.4343 −1.3863

chess −0.6562 −0.6539 −0.6552 −0.6371

cleve-no-missing-d −0.5596 −0.5510 −0.5420 −0.5403

corral-d −0.4890 −0.4556 −0.3747 −0.4131

crx-no-missing-d −0.6121 −0.6299 −0.6285 −0.6473

diabetes-d-nm −0.4985 −0.4842 −0.4829 −0.4920

DNA −1.0212 −1.0228 −1.0230 −1.0215

DNA-nominal −0.9895 −0.9906 −0.9824 −1.0147

flare-d −0.4008 −0.3944 −0.3948 −0.4163

german-d −0.5620 −0.5284 −0.5268 −0.6396

glass2-d −0.5136 −0.4978 −0.4495 −0.4446

glass-d −1.2742 −1.2706 −0.9690 −1.0738

heart-d −0.5327 −0.5243 −0.5139 −0.4937

hepatitis-no-missing-d −0.5084 −0.4520 −0.4050 −0.4864

iris-d −0.4082 −0.3585 −0.1973 −0.2857

letter-d −2.6178 −2.5526 −2.4708 −2.4193

lymphography −0.9744 −0.8648 −0.6804 −0.9352

mofn-3-7-10-d −0.3470 −0.3815 −0.4099 −0.3572

mushroom −0.1722 −0.0595 −0.0303 −0.0386

nursery −1.0298 −0.9554 −0.9210 −1.6174

pima-d −0.4948 −0.4847 −0.4822 −0.4962

segment-d −1.3345 −1.1455 −1.0307 −1.1838

shuttle-small-d −0.3509 −0.2744 −0.1300 −0.3567

soybean-large-no-missing-d −2.3072 −2.1585 −1.8183 −2.4768

splice −0.9901 −0.9891 −0.9812 −1.0161

vehicle-d-nm −0.9402 −0.8775 −0.7426 −0.8249

vote −0.2610 −0.1963 −0.1434 −0.2676

AVERAGE −0.7630 −0.7211 −0.6534 −0.7830

Our initial expectations were the reverse. We think that this can be due to over-
fitting of Optimal-EM when the model is more complex. So we have carried
out an experiment comparing these two procedures in a simpler setting. Results
can be seen in Table 3. We do not differentiate between optimal and uniform
selection, as with size 1, the two criteria are identical. In this case, the use of
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Table 3. Results experiment 3

Database EM estimation Uniform combination

adult-d-nm.dbc −0.4085 −0.4773

australian-d.dbc −0.5850 −0.6332

breast-no-missing.dbc −0.2092 −0.1967

car.dbc −0.6719 −0.7412

chess.dbc −0.6686 −0.6853

cleve-no-missing-d.dbc −0.5889 −0.6365

corral-d.dbc −0.5027 −0.5793

crx-no-missing-d.dbc −0.6214 −0.6515

diabetes-d-nm.dbc −0.5322 −0.5850

DNA.dbc −1.0216 −1.0239

DNA-nominal.dbc −1.0032 −1.0168

flare-d.dbc −0.3969 −0.4161

german-d.dbc −0.5365 −0.5731

glass2-d.dbc −0.5572 −0.5785

glass-d.dbc −1.3131 −1.2299

heart-d.dbc −0.5880 −0.6358

hepatitis-no-missing-d.dbc −0.4675 −0.4405

iris-d.dbc −0.4067 −0.3765

letter-d.dbc −2.8527 −2.9689

lymphography.dbc −0.8610 −0.7895

mofn-3-7-10-d.dbc −0.4196 −0.4795

mushroom.dbc −0.4448 −0.5046

nursery.dbc −1.0642 −1.1369

pima-d.dbc −0.5349 −0.5858

segment-d.dbc −1.5168 −1.6195

shuttle-small-d.dbc −0.3074 −0.3698

soybean-large-no-missing-d.dbc −2.2550 −2.2249

soybean-large-no-missing-d-2.dbc −2.3542 −2.2505

splice.dbc −1.0043 −1.0171

vehicle-d-nm.dbc −1.0772 −1.1621

vote.dbc −0.3450 −0.3938

AVERAGE −0.8425 −0.8703

EM is better than the uniform combination. The differences are significant using
a Wilcoxon signed rank test with p-value equal to 0.006217.

Even if we do not provide associated times, it is clear that the uniform
combination is always faster than the EM algorithm. However, EM algorithm
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finishes in a reasonable time each step of the EM-algorithm is linear in the total
size of the small conditional potentials and in the dataset size (considering a
constant number of small conditioning sets), and the number of iterations is
usually small.

6 Conclusions

We have presented a new procedure for estimating a conditional probability of a
variable given a large number of variables which is based on a mixture of smaller
size conditional probabilities. The procedure outperforms the classical procedure
providing better results in the experiments. Another important advantage is that
it scales well when increasing the number of conditional variables improving the
quality of the predictions when considering more variables. The learned condi-
tional probabilities are of smaller size than the classical probability tables and
can be represented by probability trees. It is also possible to compute conditional
probabilities in an efficient way using these presentations in a generic Bayesian
network.

Future work will include the study of alternative methods to compute the
weights and small conditioning sets Zi and automatic determination of the opti-
mal size of these subsets, considering also the possibility of mixing subsets of
different size. We will try to analyze more in deep the reasons of the differences
between the use of EM algorithm and uniform combination in order to deter-
mine rules for determining the best procedure in each case. We will investigate
whether the use of sets with different sizes, the elimination of duplicate sets,
or an optimal selection of a representative family of sets Zi according to some
global criterion, might have some impact on the performance associated to the
use of EM estimation procedure. We also plan to integrate our estimation pro-
cedure with others requiring a small number of parameters as noisy-or gates
[8], for example by carrying out a preliminary test to decide which method is
more appropriate in each concrete situation. This also could be done by means
of some scoring procedure as the BIC criterion which can balance the likelihood
of observations and the number of parameters of the model.
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Abstract. We present an algorithm that learns acyclic propositional
probabilistic logic programs from complete data, by adapting techniques
from Bayesian network learning. Specifically, we focus on score-based
learning and on exact maximum likelihood computations. Our main con-
tribution is to show that by restricting any rule body to contain at most
two literals, most needed optimization steps can be solved exactly. We
describe experiments indicating that our techniques do produce accurate
models from data with reduced numbers of parameters.

Keywords: Probabilistic logic programming · Score-based structure
learning of bayesian networks

1 Introduction

The goal of this paper is to present techniques that learn probabilistic logic
programs (plps) from complete data. Probabilistic logic programs have been
explored for some time [10,13,14,16,20], and are now the object of significant
literature [18,19]; yet there is much to be developed when it comes to rule learn-
ing. In this paper we wish to examine the extent to which, for some classes of
plps, we can find the exact optimal plp with respect to some score. That is,
we look for classes of plps have some guarantees concerning the optimization of
scores given data.

With this broad goal in mind, here we focus on algorithms that learn, in the
sense of maximization of minimum description length, acyclic sets of proposi-
tional rules with at most two literals in their bodies. This is admitedly a restricted
class of plps, but note that these plps can encode all “noisy” Boolean circuits
and can serve as starting point for more ambitious investigations.

Our main contribution is to show that, by focusing on this restricted class
of plps, we can exactly, in constant time, solve most optimizations involved in
description length minimization.

Because acyclic propositional plps are intimately related to Bayesian net-
works [17], we employ insights from Bayesian network learning, in particular
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 119–133, 2017.
DOI: 10.1007/978-3-319-67582-4 9
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resorting to score-based learning where the score is based on minimum descrip-
tion length [11]. However most of our arguments apply to any decomposable
score that depends on likelihood; for example, analogues of K2 and BDeu scores
[11] could be easily adopted.

We briefly review the main features of relevant plps in Sect. 2. We then intro-
duce the score maximization problem we face (Sect. 3); this follows by direct
adaptation of methods from Bayesian network learning. In Sects. 4 and 5 we
derive an algorithm for score maximization that relies both on exact maxi-
mization of polynomial equations for local optimization and on constraint pro-
gramming for global optimization. Experiments and results indicating that our
method is successful in recovering accurate models are reported in Sect. 6.

2 Probabilistic Logic Programs: A (very) Brief Review

Take a fixed vocabulary consisting of logical variables X,X1, . . . , predicates
r, rr, . . . , and constants a, b, . . . . A term is a constant or a logical variable; an
atom is written as r(t1, . . . , tn), where r is a predicate of arity n and each ti is a
term (a 0-arity atom is written as r). An atom is ground if it does not contain
logical variables. A normal logic program consists of rules

A0 :−A1, . . . , Am,not Am+1, . . . ,not An.,

where the Ai are atoms. The head of this rule is A0; the right-hand side is the
body. A rule without a body, written A0., is a fact. A literal is either A (positive)
or not A (negative), where A is an atom.

In this paper we only consider propositional programs; that is, programs
without logical variables.

The Herbrand base is the set of all ground atoms built from constants and
predicates in a program. We do not consider functions in this paper, hence every
Herbrand base is finite.

The dependency graph of a program is a directed graph where each predicate
is a node, and where there is an edge from a node B to a node A if there is a
rule where A appears in the head and B appears in the body (if B appears right
after not, the edge is negative; otherwise, it is positive). The grounded depen-
dency graph is the dependency graph of the propositional program obtained by
grounding.

An acyclic program is one with an acyclic grounded dependence graph. In
this paper we only consider acyclic programs.

There are several ways to combine logic programming and probabilities;
in this work we adopt a popular combination associated with Sato’s distrib-
ution semantics [16,20]. A probabilistic logic program, abbreviated plp, is a pair
〈P,PF〉 consisting of a normal logic program P and a set of probabilistic facts
PF. A probabilistic fact is a pair consisting of an atom A and a probability value
α, written as α ::A. (here we adopt the syntax of the ProbLog package [8]). Note
that we allow a probabilistic fact to contain logical variables.
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To build the semantics of a plp, we first take its grounding. Suppose we have
a plp with n grounded probabilistic facts (some of them may be given as propo-
sitional probabilistic facts, others are obtained by grounding non-propositional
probabilistic facts). There are then 2n ways to select subsets of these proposi-
tional probabilistic facts. For each such subset, we can construct the normal logic
program consisting of the non-probabilistic part of the plp plus the atoms in
the selected probabilistic facts. That is, for each probabilistic fact α ::A., either
keep fact A. with probability α, or erase A. with probability 1 − α. A total
choice is simply a subset of the set of ground probabilistic facts that is selected
to be kept (other grounded probabilistic facts are discarded). So, for any total
choice θ we obtain a normal logic program, denoted by P ∪ PF↓θ, with proba-
bility

∏
Ai∈θ αi

∏
Ai �∈θ(1 − αi). Hence the distribution over total choices induces

a distribution over logic programs.
Note that if P is acyclic, then for any total choice we have that P ∪ PF↓θ

is acyclic. So the semantics of the whole plp is relatively simple to describe:
the probability distribution over total choices induces a probability distribution
over interpretations, such that for each fixed total choice we obtain the truth
assignment of all atoms by applying the rules in appropriate order (that is, if all
atoms in the body of a rule are true, the head is true, and this is the only way
to render a head true).

A common pattern in plps is a pair rule/probabilistic fact such as

A0 :−A1, . . . , Am,not Am+1, . . . ,not An, F ., α ::F .,

meaning that with probability 1− α the whole rule is not “activated”. We write
such a construct as

α ::A0 :−A1, . . . , Am,not Am+1, . . . ,not An.,

again adopting the syntax of ProbLog [8].

Example 1. Here is an acyclic propositional plp:

0.1 :: burglary. 0.2 :: earthquake.
0.9 :: alarm :−burglary, earthquake.
0.8 :: alarm :−burglary,not earthquake.
0.7 :: alarm :−not burglary, earthquake.
0.1 :: alarm :−not burglary,not earthquake.

The dependency graph is presented at the right. ��

burglary earthquake

alarm

The class of logic programs where each rule has at most k atoms in the body
is denoted LP(k) [5]; we analogously write plp(k) to denote the class of plps
where each rule has at most k literals in the body. And we use ap-plp to refer
to acyclic propositional plps. In this paper we focus on the class ap-plp(2).
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3 Learning by Score Maximization

One may wish to learn, from data, both the rules of a plp and the associated
probabilities; that is, both the structure and the parameters of the plp. A gen-
eral strategy in structure learning is to add probabilistic estimation to Inductive
Logic Programming; usually such a strategy is referred to as Probabilistic Induc-
tive Logic Programming [18,19]. Typically such mix of probabilities and logic
requires a search over the space of rules, under the assumption that some exam-
ples are “positive” and must receive high probability, while other examples are
“negative” and must receive low probability. Search schemes vary and are almost
universally based on heuristic measures, to guarantee that large datasets can be
processed [1,6,7,25].

Another general strategy, when learning a probabilistic model, is to maximize
a score that quantifies the fit between model and data. This is the strategy
most often employed to learn the the structure of Bayesian networks, and the
strategy adopted in this paper. To grasp the main ideas behind score-based
structure learning, we first review the interplay between Bayesian networks and
probabilistic logic programs.

3.1 Bayesian Networks and Probabilistic Logic Programs

As noted in the Introduction, acyclic propositional plps are closely related to
Bayesian networks [17]. Recall that a Bayesian network consists of a directed
acyclic graph where each node is a random variable, and a probability distri-
bution over the same random variables, such that the distribution satisfies the
following Markov condition: a variable X is independent of its nondescendants
nonparents given its parents [15]. For any Bayesian network, its directed acyclic
graph is referred to as its “structure”. The parents of a variable X, denoted
by pa[X], are the nodes/variables that point to X. In this paper every random
variable has finitely many values (indeed all of them are binary). When a condi-
tional probability distribution over random variables with finitely many values
is encoded using a table, the latter table is often referred to as a CPT.

Any Bayesian network over binary variables can be encoded by an acyclic
propositional plp; conversely, any acyclic propositional plp can be viewed as
a Bayesian network. The last statement should be clear from Example 1: the
Bayesian network described by the plp has the structure given by the depen-
dency graph, and the parameters of the network are just the probabilities asso-
ciated with probabilistic facts and rules. The converse is equally simple to show,
and consists of easily translating the probability assignments into rules and prob-
abilistic facts, as argued by Poole [16,17].

The “structure” of an acyclic plp is related to the “structure” of the Bayesian
network associated to the plp. In fact, the dependency graph of the grounded
plp is the structure of the corresponding Bayesian network. However, a plp can
specify significantly more detail about the underlying probability distributions.
Suppose, for instance, that the distribution of a binary variable X, with parents
Y and Z, is given by a NoisyOr gate [15]; that is, X = Y Y ′ + ZZ ′ − Y Y ′ZZ ′,
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with P(Y ′ = 1) = α and P(Z ′ = 1) = β. In this case the conditional probability
distribution of X given (Y,Z) is fully specified by two numbers (α and β), instead
of the four numbers that a complete specification requires. Note that a small set
of probabilistic facts and rules would have no trouble in encoding exactly this
NoisyOr gate with the needed two parameters. This is attractive: if a distribution
can be at all captured by a small number of parameters, a plp may be able to
do so.

Of course, there are other ways to capture conditional distributions with
“local” structure; that is, distributions that require few parameters to yield the
probabilities for some variable given its parents. One notable example in the
literature is the use of trees to represent conditional distributions [9]. The rep-
resentation of a conditional probability distribution using trees is sometimes
referred to as a CPT-tree [2]. Now it should be clear that CPT-trees and proba-
bilistic rules do not have the same expressivity; for instance a CPT-tree requires
three parameters to specify the NoisyOr gate in the previous paragraph (assum-
ing a convention that leaves unspecified branches as zero), while rules can specify
the NoisyOr gate with two parameters. So the question as to whether represen-
tations based on probabilistic rules are more compact than other representation
is meaningful, and this is the sort of abstract question we wish to address with
the current paper.

3.2 Score-Based Structure Learning of Bayesian Networks

Several successful structure learning methods are based on score maximization,
where a score s(B,D) gets a Bayesian network structure B and a dataset D,
and yields a number that indicates the fit between both. We assume that D is
complete (that is, there is no missing data) and consists of N observations of
all random variables of interest. Sensible scores balance the desire to maximize
likelihood against the need to constrain the number of learned parameters. It
is well-known that if the one maximizes only the likelihood, then the densest
networks are always obtained [11]. One particularly popular score is based on
minimum description length guidelines; the score is:

sMDL(B,D) = LLD(B) − |B| log N

2
, (1)

where: |B| is the number of parameters needed to specify the network, and
LLD(B) is the log-likelihood at the maximum likelihood estimates (that is, the
logartithm of p(D,ΘB,D|B) with p denoting the probability density of observa-
tions given a Bayesian network structure B for probability values ΘB,D. The
latter values are obtained again by likelihood maximization; that is, ΘB,D =
arg maxΘ p(Θ,D|B). We adopt the sMDL score throughout this paper.

The MDL score, as other popular scores such as the K2 and BDeu scores, is
decomposable; that is, the score is a sum of local scores, each one a function of
a variable and its parents. We call family a set consisting of a variable and its
parents.
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The current technology on structure learning of Bayesian networks can han-
dle relatively large sets of random variables [3,4,22]. Most existing methods
proceed in two steps: first calculate the local score for every possible family;
then maximize the global score, usually either by integer programming [4] or
by constraint programming [22]. When one deals with structure learning of
Bayesian networks where conditional probability distributions are encoded by
CPTs, then maximum likelihood estimates ΘB,D are obtained in closed form:
they are, in fact, simply relative frequencies. If we denote by θijk the probability
P(Xi = xij |pa[Xi] = πk), where πk is the kth configuration of the parents of Xi,
then the maximum likelihood estimate is Nijk/Nij , where Nijk is the number
of times the configuration {Xi = xij ,pa[Xi] = πk} occurs in D, and Nik is the
number of times the configuration {pa[Xi] = πk} occurs in D. Thus the calcu-
lation of the scores is not really taxing; the real computational effort is spent
running the global optimization step.

4 A Score-Based Learning Algorithm for the Class
Ap-Plp(2)

Our goal is to learn a plp that maximizes the MDL score with respect to the
complete dataset D, with the restriction that resulting plps must belong to the
class ap-plp(2). We do so by following the two-step scheme discussed in the
previous section: first, we must compute the local score for each possible family,
and then we must run a global maximization step to obtain the whole plp.

We must of course translate the language of acyclic propositional plps into
the language of Bayesian networks. Each proposition in our vocabulary is viewed
as a binary random variable (0 is false and 1 is true), and the propositions that
appear in the body of a rule are the parents of the proposition in the head of
the rule. This is clearly consistent with the correspondence between plps and
Bayesian networks. Our dataset D is therefore a collection of N observations of
the propositions/variables of interest.

Because the MDL score is decomposable, we can globally maximize it by first
maximizing each local score separately, and then running a global maximization
step that selects a family for each variable. But there is a difference between
usual Bayesian network learning and plp learning: even within a family, we
must choose the rule set that relates the head of the family with its parents.

Example 2. Suppose we have propositions A1, A2, . . . , An. We must contem-
plate every possible family; for instance, A1 may be a root (no parents), or A1

may be the child of A2, or the child of A3, or the child of A2 and A3, and so
on (we are restricted to at most two parents). Suppose we focus on the family
{A1, A2, A3} for proposition/variable A1; that is, A1 is the head and {A2, A3}
appear in the bodies. How many possible rule sets can we build? Indeed, many.
For instance, we may have a simple rule such as

θ ::A1 :−A2, A3..
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A2 A3 P(A1 = true|A2, A3)

false false 0

false true 0

true false 0

true true θ

This single rule is equivalent to the following CPT:
Or we may have three rules such as

θ1 ::A1. θ2 ::A1 :−A2,not A3. θ3 ::A1 :−not A2,not A3. (2)

These three rules are equivalent to the following CPT:

A2 A3 P(A1 = true|A2, A3)

false false θ1 + θ3 − θ1θ3

false true θ1

true false θ1 + θ2 − θ1θ2

true true θ1

Two lines of this table contain nonlinear functions of the parameters, a fact
that complicates the likelihood maximization step. �

How many different rule sets we must consider? Suppose first that we have a
family containing only the head A. Then there is a single rule, the probabilistic
fact θ::A.. If we instead have a family containing the head A and the body
proposition B, there are six other options to consider:

θ ::A :−B. θ ::A :−not B.
θ1 ::A :−B.

θ2 ::A.

θ1 ::A :−not B.
θ2 ::A.

θ1 ::A :−B.
θ2 ::A :−not B.

θ1 ::A :−B.
θ2 ::A :−not B.

θ3 ::A.

Now suppose we have a head A with parents B and C. First, there are
9 possible rules where A is the head and no proposition other than B or C
appears in the body.1 Each one of the 29 subsets of these rules is a possible rule
set for this family; however, 13 of these subsets do not mention either B or C.
Thus there are 29 − 13 = 499 new rule sets to evaluate.

In any case, for each rule set we consider, we must maximize a likelihood
function that may be nonlinear on the parameters. For instance, take the set of
1 These 9 rules are: θ :: A., θ :: A :−B., θ :: A :−not B., θ :: A :−C., θ :: A :−not C.,

θ::A :−B, C., θ :: A :−B,not C., θ :: A :−not B, C., θ :: A :−not B,not C..
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three rules in Expression (2). Denote by N000 the number of times that {A1 =
false, A2 = false, A3 = false} appear in the dataset; by N001 the number of times
that {A1 = false, A2 = false, A3 = true} appear in the dataset, and likewise each
Nijk stands for the number of times a particular configuration of A1, A2 and
A3 appear in the dataset. Then the local likelihood that must be maximized for
this candidate family is

(θ1;3)N100(1 − θ1;3)N000(θ1;2)N110(1 − θ1;2)N010θN101+N111
1 (1 − θ1)N001+N011 ,

where we use, here and in the remainder of the paper, θi;j to denote θi+θj −θiθj .
Hence, even at the local level, we face a non-trivial optimization problem. We

discuss the solution of this problem in the next section. For now we assume that
the problem has been solved; that is, each family is associated with a local score
(the log-likelihood of that family, with parameters that maximize likelihood,
minus a penalty on the number of parameters). Once the local score are ready,
we resort to the constraint-programming algorithm (CPBayes) by Van Beek and
Hoffmann [22] to run the global optimization step, thus selecting families so as
to have an acyclic plp. Clearly a selection of families leads to a plp, as each
family is associated with the rule set that maximizes the local score.

The CPBayes algorithm defines a set of constraints that must be satisfied in
the Bayesian network learning problem, and seeks for an optimal solution based
on a depth-first BnB search. When trying to expand a node in the search tree,
two conditions are verified: (1) whether constraints are satisfied, and (2) whether
a lower bound estimate of the cost does not exceed the current upper bound.
The constraint model includes dominance constraints, symmetry-breaking con-
straints, cost-based pruning rules, and a global acyclicity constraint. We remark
that other approaches for the global optimization can be used, and our contribu-
tion is certainly not due to our use of CPBayes in the global optimization step.
Thus we do not dwell on this second step.

5 Computing the Local Score

In this section we address the main novel challenge posed by score-based learning
of plps; namely, the computation of local scores. As discussed in the previous
section, this is not a trivial problem for two reasons. First, there are too many
sets of rules to consider. Second, likelihood maximization for each rule set may
have to deal with nonlinear expressions for probability values.

We deal with the first problem by pruning rule sets; that is, by developing
techniques that allow us to quickly eliminate many candidate rule sets.

First of all, we can easily discard rule sets that assign zero probability to some
configuration observed in the dataset (for instance, the first rule in Example 2
can be discarded if we observe {A2 = false, A3 = false}).

Second, and more importantly, suppose that we are learning rules with at
most k literals in the body. With 2k rules we can have a rule for each configura-
tion of the parents: Example 1 illustrates this scenario. Note that for such “dis-
joint” rules, likelihood maximization is simple as it is the same as for usual CPT.
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And because any CPT can be exactly built with such 2k rules, any set of rules
with more than 2k rules cannot have higher likelihood, and thus cannot be opti-
mal (as the penalty for the number of parameters increases). In fact, any other
rule set with 2k rules that are not disjoint can be also discarded; these sets can
only produce the same likelihood, and will pay the same penalty on parameters,
but they will be more complex to handle. Thus we must only deal with rule sets
with at most 2k − 1 rules, plus the one set of 2k “disjoint” rules. Hence:

– If we have a family with k = 1, we only need to look at sets of one rule plus
one set containing two disjoint rules; that is, we only have to consider:

θ ::A :−B. θ ::A :−not B.
θ1 ::A :−B.

θ2 ::A :−not B.

Note that the last of these three rule sets corresponds to a typical CPT,
while the first two rule sets genuinely reduce the number of parameters in the
model. Estimates that maximize likelihood are easily computed in all three
cases.

– Now if we have a family with k = 2, we only need to look at sets of up to three
rules, plus one set containing four disjoint rules. There are 4 sets consisting
each of one rule, 30 sets consisting of two rules each, and 82 sets consisting
of three rules each (we cannot list them all here due to space constraints). In
this case probability values may have nonlinear expressions as discussed in
connection with Expression (2). Thus we still have a challenging optimization
problem, where we must find a rule set out of many.

To address the difficulty mentioned in the previous sentence, we resort to a
third insight: many of the rule sets obtained for k = 2 are actually restricted
versions of a few patterns. As an example, consider Table 1. There we find four
different rule sets, some with two rules, and one with three rules. The form of
their likelihoods is the same, sans some renaming of parameters. Note that the
maximum likelihood of the first three rule sets can always be attained by the
likelihood of the last rule set; consequently, it makes sense only to retain the last
pattern, which consists of disjoint rules.

By doing this additional pruning, we reach 14 distinct rule sets; amongst
them we must find a rule set that maximizes likelihood. The remaining difficulty
is that probability values are nonlinear functions of parameters, as we have
already indicated. However, most of them lead to likelihood expressions that
can be exactly maximized. For instance, consider the following expression, a
likelihood pattern that several rule sets (consisting of two rules) produce:

θN0
1 (1 − θ1)N1(θ1 + θ2 − θ1θ2)M0(1 − (θ1 + θ2 − θ1θ2))M1 ;

this function is maximized by:

θ1 =
N0

N0 + N1
, θ2 =

N1M0 − N0M1

N1M0 + N1M1
.
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Table 1. A probability pattern shared by several rule sets; first column presents the
rule sets, and following columns display the probability values for the configurations
of A1, A2, A3

Rule sets 0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

θ1 :: A1 :−A2.
θ2 :: A1 :−A2, A3.

θ3 :: A1 :−A2,not A3.
1 1 1 − θ1;3 1 − θ1;2 0 0 θ1;3 θ1;2

θ1 :: A1 :−A2.
θ2 :: A1 :−A2, A3.

1 1 1 − θ1 1 − θ1;2 0 0 θ1 θ1;2

θ1 :: A1 :−A2.
θ3 :: A1 :−A2,not A3.

1 1 1 − θ1;2 1 − θ1 0 0 θ1;2 θ1

θ2::A1 :−A2, A3.
θ3 :: A1 :−A2,not A3.

1 1 1 − θ2 1 − θ1 0 0 θ2 θ1

Similarly, consider the following likelihood pattern (produced by rules sets con-
sisting of three rules):

θN0
1 (1 − θ1)N1(θ1 + θ2 − θ1θ2)M0(1 − (θ1 + θ2 − θ1θ2))M1

(θ1 + θ3 − θ1θ2)Q0(1 − (θ1 + θ3 − θ1θ3))Q1 ;

this function is maximized by:

θ1 =
N0

N0 + N1
, θ2 =

N1M0 − N0M1

N1M0 + N1M1
, θ3 =

N1Q0 − N0Q1

N1Q0 + N1Q1
.

Due to space constraints we omit the complete list of likelihood patterns and
their maximizing parameters. There are only four patterns that do not seem to
admit closed form solutions. Here is one example:

θN0
1 (1 − θ1)N1(θ1 + θ2 − θ1θ2)M0(1 − (θ1 + θ2 − θ1θ2))M1

(θ1+θ3−θ1θ3)Q0(1−(θ1+θ3−θ1θ3))Q1(θ1+θ2+θ3−θ1θ2−θ1θ3−θ2θ3+θ1θ2θ3)R0

(1 − (θ1 + θ2 + θ3 − θ1θ2 − θ1θ3 − θ2θ3 + θ1θ2θ3))R1 .

By taking logarithms and derivatives, these maximization problems can then
turned into the solution of systems of polynomial equations. Such systems can
be solved exactly but slowly, or approximately by very fast algorithms (as we
comment in the next section).

The procedure we have developed is summarized by Algorithm 1. We firstly
generate all possible combinations of rules for all possible families, a possible
family consisting of a variable and its parent candidates. Combinations with
ensured lower score or zero likelihood are then pruned and parameters are locally
optimized for each of the combinations left. Each family is then associated with
the combination of rules that gives it the highest score. Finally, a global score
maximization algorithm is used to select the best family candidates.
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Algorithm 1. Learning algorithm for class ap-plp(2).
1: collect variables from dataset
2: for each family of variables in dataset do
3: build all possible rules
4: build all possible combinations of rules
5: gather rule sets into patterns
6: for each pattern do
7: prune combinations with ensured lower score
8: prune combinations with zero likelihood
9: for each combination left do

10: if there is an exact solution to the likelihood maximization problem then
11: calculate parameters
12: else
13: run numeric (exact or approximate) likelihood maximization

14: calculate local scores
15: for each family do
16: associate best rule set with family

17: call CPBayes algorithm to maximize global score

6 Experiments

To validate our methods, we have implemented the learning algorithm described
previously, and tested it with a number of datasets. Our goal was to examine
whether the algorithm actually produces sensible plps with less parameters than
corresponding Bayesian networks based on explicit CPTs.

The algorithm was implemented in Python and experiments were performed
on a Unix Machine with Intel core i5 (2.7 GHz) processor and 8 GB 1867 MHz
DDR3 SDRAM. For local optimization of the likelihood scores, in the few
cases where that was needed, we used, and compared, two different algorithms:
(1) Limited-memory BFGS (L-BFGS) and (2) the Basin-hopping algorithm [23].
Both methods are implemented in the Python library scipy.optimize. The L-
BFGS algorithm approximates the BroydenFletcherGoldfarbShanno (BFGS)
algorithm [24], which is an iterative method for solving unconstrained nonlinear
optimization problems. The L-BFGS algorithm represents with a few vectors an
approximation to the inverse Hessian matrix; this approach leads to a significant
reduction on memory use. Nevertheless, it has a quite strong dependence on the
initial guess. The Basin-hopping is a stochastic algorithm that usually provides a
better approximation of the global maximum. The algorithm iteratively chooses
an initial guess at random, proceeds to the local minimization and finally com-
pares the new coordinates with the best ones found so far. This algorithm is
however much more time-consuming.

To begin, consider a fairly standard dataset that describes diagnoses of car-
diac Single Proton Emission Computed Tomography (SPECT) images [12]. The
training dataset contains 80 instances, while the testing dataset contains 187
instances. Examples have 23 binary attributes and there is no missing data. The
learning algorithm was tested with the same optimization methods and local
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structure learning approaches. We compare results obtained for two different
local structure learning approaches: (1) accepting only combinations of rules
that encode complete probability tables and (2) or any combination of rules.
Results obtained are listed in Table 2.

Table 2. Heart Diagnosis experiments

L-BFGS

Training set Testing set Complete CPT Any combination of rules

# Instances # Instances MDL Log-Likelihood Parameters MDL Log-Likelihood Parameters

80 187 −1341.73 −1281.78 63 −1316.18 −1263.85 55

Basin-hopping

Training set Testing set Complete CPT Any combination of rules

# Instances # Instances MDL Log-Likelihood Parameters MDL Log-Likelihood Parameters

80 187 −1341.73 −1281.78 63 −1316.18 −1263.85 55

We observe the significant reduction of the number of parameters needed for
representation. In addition, results obtained with both optimization algorithms
are the exactly same.

We then present results with data generated from a (simulated) faulty
Boolean circuit. The purpose of this experiment is to investigate whether our
methods can capture nearly-deterministic systems with less parameters than a
typical Bayesian network. We should expect so: rules can encode deterministic
relationships compactly, so they should lead to a reduction in the number of
necessary parameters.

We simulated a digital circuit for addition in the binary numeral system. We
consider the addition of two 4-bit numbers and, therefore, 24 logic gates (XOR,
OR, AND). The circuit is used to generate binary datasets, where attributes

Table 3. Binary Adder experiments

L-BFGS

Training set Testing set Complete CPT Any combination of rules

# Instances # Instances MDL Log-Likelihood Parameters MDL Log-Likelihood Parameters

30 10000 −317635.87 −317590.82 61 −190628.02 −190592.57 48

60 10000 −282916.56 −282860.54 63 −211580.75 −211535.40 51

90 10000 −231156.16 −231096.56 61 −200133.73 −200086.83 48

120 10000 −281634.57 −281571.16 61 −197082.89 −197029.87 51

250 10000 −244964.95517 −244887.02 65 −251550.34 −251489.19 51

500 10000 −228706.11 −228617.04 66 −217679.01 −217608.84 52

1000 10000 −188356.10 −188236.10 80 −177142.65 −177049.65 62

Basin-hopping

Training set Testing set Complete CPT Any combination of rules

# Instances # Instances MDL Log-Likelihood Parameters MDL Log-Likelihood Parameters

30 10000 −344625.96 −344580.91 61 −190687.47 −190652.02 48

1000 10000 −188356.10 −188236.10 80 −177142.52 −177049.52 62
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correspond to the gates outputs. The adder input values are randomly chosen
and each gate is associated with a 1% probability of failure, i.e. the likelihood
that a gate outputs 0 or 1 at random. Training datasets contain 30, 60, 90, 120,
250, 500 and 1000 instances, while testing datasets contain 10000 instances in
all cases. The learning algorithm is tested with both L-BFGS and Basin-hopping
optimization methods. Results obtained are listed in Table 3.

We note L-BFGS and Basin-hopping optimization methods perform fairly
similar. However, as Basin-hopping is much more time consuming, most tests are
run with L-BFGS. For smaller datasets, the algorithm proposed in this paper
scores better and requires fewer parameters. For larger datasets, both approaches
tend to converge in terms of score, but there is still a significant reduction on
the number of parameters.

7 Conclusion

We have described techniques that can learn a plp from a complete dataset by
exact score maximization. Despite the attention that has been paid to plps in
recent years, it does not seem that exact score-based learning has been attempted
so far. This paper offers initial results on such an enterprise; the main contribu-
tion is to present cases where closed-form solutions are viable.

The techniques proposed in this paper apply to a restricted albeit powerful
class of plps. In essence, we have shown that for this class it is possible to
maximize the MDL score using a host of insights that simplify computation.

The class we have focused on is the class of acyclic propositional plps where
rules have at most two literals in their bodies. As acyclic propositional plps
are closely related to Bayesian networks, we were able to bring results produced
for Bayesian network learning into the challenging task of learning probabilistic
programs. However, plps have features of their own; an advantage is that they
can capture conditional distributions with less parameters than usual CPTs; a
disadvantage is that learning requires more complex optimization. Our results
identify a powerful class of plps for which the complexity of optimization can
be kept under control.

We have also implemented and tested our methods. We have shown that
learned plps contain less parameters than the correponding CPT-based Bayesian
networks, as intuitively expected. Whenever the model is nearly deterministic,
the expressive power of rules leads to improved accuracy.

In future work we intend to extend our techniques to relational but still
acyclic programs, and finally to relational and even cyclic programs. For those
cases non-trivial extensions will have to be developed as the direct relationship
with Bayesian network learning will be lost.
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Abstract. Non-impeding noisy-And Trees (NATs) provide a general,
expressive, and efficient causal model for conditional probability tables
(CPTs) in discrete Bayesian networks (BNs). A CPT may be directly
expressed as a NAT model or compressed into a NAT model. Once CPTs
are NAT-modeled, efficiency of BN inference (both space and time) can
be significantly improved. The most important operation in NAT model-
ing CPTs is extracting NAT structures from interaction patterns between
causes. Early method does so through a search tree coupled with a NAT
database. A recent advance allows extraction of NAT structures from full,
valid causal interaction patterns based on bipartition of causes, without
requiring the search tree and the NAT database. In this work, we extend
the method to direct NAT structure extraction from partial and invalid
causal interaction patterns. This contribution enables direct NAT extrac-
tion from all conceivable application scenarios.

Keywords: Graphical models · Probabilistic inference · Machine learn-
ing · Bayesian networks · Causal models · Non-impeding noisy-AND
trees

1 Introduction

Conditional independence encoded in BNs avoids combinatorial explosion in
the number of variables. However, BNs are still subject to exponential growth
of space and inference time in the number of causes per effect variable in
each CPT. A number of space-efficient local models exist, that allow efficient
encoding of dependency between an effect and its causes. They include noisy-
OR [Pea88], noisy-MAX [Hen89,Die93], context-specific independence (CSI)
[BFGK96], recursive noisy-OR [LG04], Non-Impeding Noisy-AND Tree (NIN-
AND Tree or NAT) [XJ06], DeMorgan [MD08], tensor-decomposition [VT12],
and cancellation model [WvdGR15]. These local models not only reduce the
space and time needed to acquire numerical parameters in CPTs, they can also be
exploited to significantly reduce inference time, e.g., by exploiting CSI in arith-
metic circuits (ACs) and sum-product networks (SPNs) [Dar03,PD11,ZMP15],
or by exploiting causal independence in NAT models [XJ16b].

We consider expressing BN CPTs as or compressing them into multi-valued
NAT models [Xia12]. Merits of NAT models include being based on simple causal
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 134–148, 2017.
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interactions (reinforcement and undermining), expressiveness (recursive mixture,
multi-valued), and generality (generalizing noisy-OR, noisy-MAX [XJ16b] and
DeMorgan [Xia12]). In addition, they support much more efficient inference.
As shown in [XJ16b], two orders of magnitude speedup in lazy propagation is
achieved in NAT-modeled BNs. Since causal independence encoded in a NAT
model is orthogonal to CSI, NAT models provide an alternative to CSI for effi-
cient probabilistic inference in BNs.

A NAT model over an effect and n causes consists of a NAT topology and
a set of numerical parameters (whose cardinality is linear in n). It compactly
represents a BN CPT. In a NAT model, each pair of causes either undermines
each other in causing the effect, or reinforcing each other. Hence, the interac-
tion can be specified by one bit with values u (undermining) or r (reinforcing).
The collection of such bits defines a pairwise causal interaction (PCI) pattern
[XLZ09]. A PCI pattern may be full (with one bit for each cause pair) or partial
(with some missing bits). It has been shown that a full PCI pattern uniquely
identifies a NAT [XLZ09,XT14]. This property enables PCI patterns to play an
important role for acquisition of NAT topology both in compressing a BN CPT
into a NAT model and in learning a BN CPT as a NAT model from data. The
corresponding computation takes as input a PCI pattern and returns a compat-
ible (defined below) NAT topology. We term this operation as NAT structure
extraction from PCI.

For instance, in compressing a target BN CPT into a NAT model, the fol-
lowing method has been applied [XL14,XJ16a]. A partial PCI pattern is first
obtained from the target CPT. From the pattern, compatible candidate NATs
are extracted through a search tree coupled with a NAT database. Which candi-
date NAT becomes the final choice is determined by parameterization. For each
n value, a NAT database is needed that stores all alternative NATs for n causes.
Its size grows super-exponentially in n (see below), and hence it is the source of
a computational burden, both offline and online. For instance, it takes 40 h to
generate (offline) the NAT database for n = 9 and its search tree [XL14].

An arbitrary bit pattern (either partial or full) may not have a corresponding
NAT. Such a pattern is invalid (defined below). A recent advance [Xia17] pro-
posed a method for NAT structure extraction from full and valid PCI patterns
without needing a search tree and the NAT database. In this paper, we extend
the method along two directions. First, we relax the requirement of full PCI
patterns so that NAT structures can be extracted from partial PCI patterns.
Second, we relax the requirement of valid PCI patterns so that the input can
be an invalid pattern and a NAT is extracted whose PCI pattern is closest to
the input pattern. These advancements enable NAT structure extraction in all
conceivable application scenarios: valid full PCI patterns, valid partial patterns,
invalid full patterns, and invalid partial patterns. All of them are through direct
extraction, i.e., without need of the search tree and the NAT database.

Section 2 reviews background on NAT models. The task of fault tolerant,
direct NAT structure extraction is specified in Sect. 3. Sections 4 and 5 present
theoretical results that the rest of the paper depends on. Direct extraction from
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full, possibly invalid PCI patterns is covered in Sect. 6 and extraction from par-
tial, possibly invalid patterns is presented in Sect. 7. The experimental results
are reported in Sect. 8.

2 Background

This section briefly reviews background on NAT models. More details can be
found in [Xia12]. A NAT model is defined over an effect e and a set of n causes
C = {c1, ..., cn} that are multi-valued and graded, where e ∈ {e0, ..., eη} (η ≥ 1)
and ci ∈ {c0i , ..., c

mi
i } (mi ≥ 1). C and e form a single family in a BN. Values e0

and c0i are inactive. Other values (may be written as e+ or c+i ) are active and a
higher index means higher intensity (graded).

A causal event is a success or failure depending on if e is active at a given
intensity, is single- or multi-causal depending on the number of active causes,
and is simple or congregate depending on the value range of e. More specifically,

P (ek ← cj
i ) = P (ek|cj

i , c
0
z : ∀z �= i) (j > 0)

is the probability of a simple single-causal success.

P (e ≥ ek ← cj1
1 , ..., cjq

q ) = P (e ≥ ek|cj1
1 , ..., cjq

q , c0z : cz ∈ C \ X),

is the probability of a congregate multi-causal success, where j1, ..., jq > 0, X =
{c1, ..., cq} (q > 1), and it may be denoted as P (e ≥ ek ← x+). Interactions
among causes may be reinforcing or undermining as defined below.

Definition 1. Let ek be an active effect value, R = {W1, ...,Wm} (m ≥ 2) be a
partition of a set X ⊆ C of causes, S ⊂ R, and Y = ∪Wi∈SWi. Sets of causes in
R reinforce each other relative to ek, iff ∀S P (e ≥ ek ← y+) ≤ P (e ≥ ek ← x+).
They undermine each other iff ∀S P (e ≥ ek ← y+) > P (e ≥ ek ← x+).

Fig. 1. A direct NIN-AND gate (a), a dual NIN-AND gate (b), and a NAT (c)

A NAT has multiple NIN-AND gates. A direct gate involves disjoint sets of
causes W1, ...,Wm. Each input event is a success e ≥ ek ← w+

i (i = 1, ...,m), e.g.,
Fig. 1 (a) where each Wi is a singleton. The output event is e ≥ ek ← w+

1 , ..., w+
m.

Its probability is
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P (e ≥ ek ← w+
1 , ..., w+

m) =
m∏

i=1

P (e ≥ ek ← w+
i ),

which encodes undermining causal interaction. Each input event of a dual gate is
a failure e < ek ← w+

i , e.g., Fig. 1 (b). The output event is e < ek ← w+
1 , ..., w+

m.
Its probability is

P (e < ek ← w+
1 , ..., w+

m) =
m∏

i=1

P (e < ek ← w+
i ),

which encodes reinforcement. Figure 1(c) shows a NAT, where causes h1 and h2

reinforce each other, so do b1 and b2, but the two groups undermine each other.
A NAT can be depicted simply by a Root-Labeled-Tree (RLT).

Definition 2. Let T be a NAT. The RLT of T is a directed graph obtained from
T as follows. (1) Delete each gate and direct its inputs to output. (2) Delete each
non-root label. (3) Replace each root label by the corresponding cause.

Fig. 2. A NAT (a) and its RLT (b)

Figure 2 shows a NAT and its RLT. The leaf of RLT corresponds to leaf gate
of the NAT. When the leaf gate is dual (or direct), the leaf of RLT is said to
be dual (or direct). The leaf gate of a NAT is at level-one. A gate that feeds
into the leaf gate is at level-two, and so on. We refer to levels of nodes of a RLT
similarly. All gates in the same level have the same type (dual or direct) and
gates in adjacent levels differ. An RLT and a leaf type uniquely specifies a NAT.

A NAT T has a single leaf z. For n ≥ 2, leaf z has at least two parents. Each
parent v of z is the leaf of a subtree induced by z. If v is a root, then v is a
root parent of z, and the induced subtree is trivial. In Fig. 2(b), there are two
subtrees induced by the leaf. One subtree is trivial, where c2 is a root parent of
the leaf, and the root set of the subtree is {c2}. The root set of the other subtree
is {c1, c3}.

Each NAT uniquely defines pairwise causal interaction between each pair of
causes ci and cj (i �= j), denoted by a PCI bit π(ci, cj) ∈ {u, r}. The value
π(ci, cj) is defined by the common gate of ci and cj at the highest level [XLZ09].
The NAT in Fig. 1(c) has π(h1, h2) = r since g2 is dual and π(h1, b2) = u since
g1 is direct. A collection of PCI bits is a PCI pattern π. If π includes one bit for
each cause pair, it is a full pattern. Otherwise, it is partial.
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3 Fault Tolerant Direct NAT Structure Extraction

It has been shown that a full PCI pattern uniquely identifies a NAT [XLZ09,
XT14]. This enables PCI patterns to play an important role for acquisition of
NAT topology in compressing a BN CPT into a NAT model and in learning a
BN CPT from data as a NAT model. In either case, the input is a PCI pattern
and the output is a NAT. We refer to the task as NAT structure extraction.
Input patterns to the task can be classified as follows. First, we relate two PCI
patterns over the same set of causes.

Definition 3. Let π and ψ be PCI patterns over a set C of causes. If for each
pair of causes ci and cj (i �= j) such that both π(ci, cj) and ψ(ci, cj) are defined,
π(ci, cj) = ψ(ci, cj) holds, then π and ψ are compatible. Otherwise, they are
incompatible.

Either π or ψ may be partial or full. Compatibility is determined by PCI bits
that are defined under both π and ψ. Next, we relate a PCI pattern and a NAT
over the same set of causes.

Definition 4. Let π be a PCI pattern over a set C of causes. Then π is valid if
there exists a NAT over C whose PCI pattern ψ is compatible with π. Otherwise,
π is invalid.

In the definition, π may be either partial or full. A full PCI pattern over
a set of n causes has C(n, 2) bits. A binary pattern of C(n, 2) bits has 2C(n,2)

variations, not all of which are necessarily valid.
For n = 2, there are 2 NATs. A PCI pattern has C(2, 2) = 1 bit. Hence, every

PCI pattern is valid. For n = 3, there are 8 NATs. A PCI pattern has C(3, 2) = 3
bits. Hence, every PCI pattern is valid. For n = 4, there are 52 NATs. There are
2C(4,2) = 26 = 64 binary patterns, of which 64 − 52 = 12 patterns are invalid.
For n = 7, there are 221 = 2, 097, 152 binary patterns and 78,416 NATs [XZL09].
The number of invalid full PCI patterns is 2,018,736.

The extraction task has been performed in the context of compressing BN
CPTs into NAT models, where PCI patterns are obtained from CPTs and then
NATs are extracted [XL14,XJ16a]. The extraction [XL14,XJ16a] relies on a
search tree coupled with a NAT database. For each n value, a NAT database
stores all alternative NATs over n causes, and the search tree retrieves one or
more NATs given a valid PCI pattern [XL14]. We refer to the method as search
tree based extraction.

The size of the database and the search tree grow super-exponentially in n.
Although constructed offline, they are the source of a computational burden.
For n = 9, there are 25,637,824 NATs and it takes 40 h to generate the database
and the search tree [XL14]. Although NAT models are local models (one BN
family per model), and hence n does not grow unbounded due to conditional
independence encoded in BNs, it is costly and difficult to generate databases
and search trees when n grows beyond 9.
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To alleviate these costs, a method is proposed recently [Xia17] for NAT
extraction without need of the NAT databases and the search tree. We refer
to the method as direct extraction. The method requires a full, valid PCI pat-
tern as the input. When a PCI pattern is obtained from a CPT, the pattern is
full if the CPT is a NAT model, and is partial otherwise. In this work, we extend
the direct method to allow partial input patterns.

When a PCI pattern is obtained from a CPT, there is no guarantee that it
is valid. Therefore, the full spectrum of input for NAT extraction includes full
and partial, as well as valid and invalid PCI patterns. We refer to NAT struc-
ture extraction from invalid PCI patterns as being fault tolerant. Existing NAT
extraction [XL14,XJ16a] does not explicitly consider the case when input PCI
patterns are invalid. Fault tolerant NAT elicitation was considered in [Xia10].
However, it does not provide algorithms for detecting invalid PCI patterns and
generating NATs accordingly. In this work, we develop such an algorithm for
fault tolerant and direct NAT extraction.

4 Bipartitions of Causes in NAT Models

The direct method for NAT structure extraction initiated in [Xia17] is based on
bipartitions of causes. Below, we reformulate some relevant concepts and results
from [Xia17] for better clarity and extend them for the purpose of this work.

Definition 5. Let C (|C| ≥ 2) be a set of causes, X and Y be non-empty subsets
of C where X ∩Y = ∅ and X ∪Y = C, and π be a full PCI pattern over C. Then
{X,Y } is a uniform causal bipartition of C under π if one of the following
holds.

1. ∀x ∈ X,∀y ∈ Y, π(x, y) = r
2. ∀x ∈ X,∀y ∈ Y, π(x, y) = u

For C = {x, y}, π has a single bit. Hence, it is trivially true that {{x}, {y}}
forms a uniform causal bipartition. For C = {x, y, z}, every PCI pattern is valid
(see Sect. 3), and has a NAT T . At least one cause, say x, is the parent of the
leaf in T , and {{x}, {y, z}} is a uniform causal bipartition.

Bipartitions in Def. 5 are based on causal interactions. Bipartitions in Def. 6
below are based on NAT topology.

Definition 6. Let T be a NAT over C. Let {X,Y } be a bipartition of C, where
X �= ∅, Y �= ∅, X ∩ Y = ∅, and X ∪ Y = C. If for each leaf-induced subtree of
T and its root set R, either R ⊆ X or R ⊆ Y holds, then {X,Y } is a subtree-
consistent bipartition of C with respect to T .

In Fig. 2, {{c2}, {c1, c3}} is a subtree-consistent bipartition of C =
{c1, c2, c3}, but {{c1}, {c2, c3}} is not.

Theorem 1 below relates the two types of bipartitions defined. It is equivalent
to Theorem 1 in [Xia17] but with better clarity.
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Theorem 1. Let T be a NAT over C and π be the PCI pattern of T . Every
subtree-consistent bipartition of C is a uniform causal bipartition.

Theorem 2 below strengthens Theorem 1 with the existence of subtree-
consistent bipartitions. It will be used later to justify a main result of this work.

Theorem 2. Every NAT over a set C (|C| ≥ 2) of causes has at least one
subtree-consistent bipartition of C.

Proof: Since |C| ≥ 2, the leaf of T has at least two parents. Let x be such a
leaf parent. If x is a root, then {{x}, C \{x}} is a subtree-consistent bipartition.
Otherwise, x is the leaf of a subtree. Let X be the root set of the subtree. Then
{X,C \ X} is a subtree-consistent bipartition. �

5 PCI Core and Invalid PCI Patterns

NAT extraction from invalid PCI patterns necessitates operations different from
extraction from valid patterns. Activation of such operations in turn necessitates
detection of invalid patterns. Below we analyze conditions for such detection.
First, we formalize necessary concepts.

Definition 7. Let π be a full PCI pattern over a set C (|C| ≥ 2) of causes. If
there exists no uniform causal bipartition under π, then π is a PCI core and C
is the domain of the PCI core.

From Sect. 3, there exists no PCI core when n = 2 and 3. Following [Xia17],
we analyze a PCI pattern equivalently through its PCI matrix, and denote both
by π interchangeably. Consider the PCI matrix π in Fig. 3 (left).

Fig. 3. PCI matrix over C = {a, b, c, d} (left) and one over C = {e, a, b, c, d} (right)

Since the row indexed by a is not uniform, {{a}, {b, c, d}} is not a uniform
causal partition. In fact, none of the bipartitions {X,Y } is when |X| = 1. For
X = {a, d} and Y = {b, c}, consider cells at the intersection of rows indexed
by X and columns indexed by Y . The first row (r, u) in the intersection is non-
uniform. Hence, {{a, d}, {b, c}} is not a uniform causal partition. In fact, none
of the bipartitions {X,Y } is when |X| = 2. Hence, π is a PCI core. This shows
that the smallest PCI core (over the least number of causes) occurs when n = 4.
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Definition 8. Let π be a PCI pattern over C. A PCI pattern ψ over X ⊆ C
(|X| ≥ 2) is a sub-pattern of π if, for every x, y ∈ X, ψ(x, y) = π(x, y).

Note that π is a trivial sub-pattern of itself. Consider the PCI matrix π in
Fig. 3 (right). The partition {{e}, {a, b, c, d}} is causally uniform. Hence, π is not
a PCI core. If we delete the row and the column indexed by e, the remainder is
identical to the matrix in the left. Since the sub-pattern over {a, b, c, d} is a PCI
core, no other uniform causal partition of C exists under π.

Theorem 3 below reveals a fundamental condition of invalid PCI patterns.

Theorem 3. A PCI pattern π over C (|C| ≥ 2) is invalid iff π contains a
sub-pattern ψ that is a PCI core.

Proof: [Sufficiency] Assume that π contains a sub-pattern ψ over S ⊆ C that
is a PCI core. Since the smallest PCI core has 4 causes, |S| ≥ 4. We show that
there exists no NAT whose PCI pattern equals to π.

We prove by contradiction. Suppose that a NAT T over C exists with PCI
pattern π. By Theorem 2, T has a subtree-consistent bipartition {X,Y } of C.
Either X and Y split S (possible since |S| ≥ 4) or they don’t. We consider each
case below.

(Case 1). If X and Y split S, denote SX = X ∩ S �= ∅ and SY = Y ∩ S �= ∅,
where SX ∪SY = S. Let ψ be the sub-pattern of π over S. By Theorem 1, {X,Y }
is a uniform casual bipartition of C under π. Hence, {SX , SY } is also a uniform
casual bipartition of S under ψ: a contradiction to the assumption that ψ is a
PCI core.

(Case 2). If X and Y do not split S, then S is contained in one of them,
say X. From |S| ≥ 4, we have |X| ≥ 4. Since {X,Y } is a subtree-consistent
bipartition of C, either Y is the root set of a subtree T ′ induced by the leaf of
T , or Y is made of root sets of multiple such subtrees. In either case, we remove
each subtree induced by the leaf of T whose root set is contained in Y , and refer
to the reduced tree by T ′. If the leaf z of T is left with a single parent z′ due to
the removal, we remove z from T so that z′ becomes the leaf of T ′. The resultant
T ′ is a well-defined NAT over X ⊂ C and |X| ≥ 4.

Since C is finite and the reduction produces a NAT over a proper subset of
causes, by processing a subtree-consistent bipartition in T ′ recursively, Case 1
must be true eventually.

[Necessity] Suppose a PCI pattern π over C does not correspond to any
NAT. We show that π contains a sub-pattern ψ that is a PCI core. We prove
by contraposition. Assume that π does not contain any PCI core. We show by
induction on |C| that a NAT can be constructed with PCI pattern π.

For |C| = 2, say, C = {x, y}, since π is not a PCI core, the only bipartition
{{x}, {y}} is a uniform causal bipartition of C. Hence, a tree T with the leaf z
and root parents x and y is a NAT over C.

Assume that for |C| = k ≥ 2, if PCI pattern π over C does not contain a
PCI core, then a NAT can be constructed with pattern π.

Consider |C| = k + 1 where PCI pattern π over C does not contain a PCI
core. Since π is not a PCI core, there exists a uniform causal bipartition {X,Y }
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of C, where |X| ≤ k and |Y | ≤ k. Since k + 1 ≥ 3, X and Y cannot both be
singletons. Either exactly one of them is a singleton (Case a) or none of them is
a singleton (Case b). We construct a NAT with pattern π in each case below.

(Case a). Suppose that X is a singleton {x}. Since π does not contain a PCI
core, neither the sub-pattern ψ of π over Y does. Since |Y | = k, by inductive
assumption, a NAT TY can be constructed with PCI pattern ψ. Denote the leaf
of TY by z.

If z is direct and the uniform causal interaction relative to bipartition
{{x}, Y } is u, add the root parent x to z in TY . The resultant tree T is a NAT
with PCI pattern π. The processing is similar if z is dual and the interaction
relative to {{x}, Y } is r.

If z is direct and the causal interaction relative to bipartition {{x}, Y } is r,
create a tree T with leaf v whose two parents are x and z. The resultant tree
T is a NAT with PCI pattern π. The processing is similar if z is dual and the
interaction relative to {{x}, Y } is u.

(Case b). Suppose that none of X and Y is singleton. Let πX (πY ) be the
sub-pattern of π over X (Y ). Since π does not contain a PCI core, neither πX

nor πY does. Since |X| ≤ k (|Y | ≤ k), by inductive assumption, a NAT TX (TY )
can be constructed with PCI pattern πX (πY ). Denote the leaf of TX (TY ) by
zX (zY ).

If zX and zY are both direct and the uniform causal interaction relative to
bipartition {X,Y } is u, merge TX and TY by adding all parents of zY as parents
of zX and deleting zY . The resultant tree T is a NAT with PCI pattern π.
The processing is similar if zX and zY are both dual and the uniform causal
interaction relative to bipartition {X,Y } is r.

If zX is direct, zY is dual, and the uniform causal interaction relative to
bipartition {X,Y } is u, merge TX and TY by making zY a parent of zX . The
resultant tree T is a NAT with PCI pattern π. The processing is similar for other
cases where the types of zX and zY differ. �

Theorem 3 establishes that the necessary and sufficient condition of an invalid
PCI pattern π is that either π is a PCI core or a sub-pattern of π is.

6 NAT Extraction with Invalid PCI Pattern Detection

We apply formal results from previous sections to algorithms in [Xia17] to extend
their functionality as well as to improve their semantic clarity.

Algorithm 1 below extends InteractBtwSets [Xia17] by improving its semantic
clarity. As input, it takes a set C of causes, a PCI matrix π over C, and a proper
subset X ⊂ C from which a bipartition {X,Y } (line 1) is defined. It determines
if {X,Y } is a uniform causal bipartition. If so, it returns the NIN-AND gate
type that implements the causal interaction. Otherwise, it returns null.

Algorithm 1. IsUniformCausalBipartition(C, π,X)

1 Y = C \ X;
2 if ∀x ∈ X,∀y ∈ Y , π(x, y) = r holds, gatetype = dual;
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3 else if ∀x ∈ X,∀y ∈ Y , π(x, y) = u holds, gatetype = direct;
4 else gatetype = null;
5 return gatetype;

TestPciSetNat below extends SetNatByPci [Xia17] on both functionality and
semantic clarity. As input, it takes a set C of causes and a full PCI matrix
π over C. Unlike [Xia17] where π is assumed valid, π can be either valid or
invalid. TestPciSetNat calls IsUniformCausalBipartition to evaluate alternative
bipartitions. If π is valid, it returns the respective NAT. Otherwise, invalidity of
π is detected and the domain of a PCI core is returned instead (lines 21, 25, and
27). InNat1 and InNat2 are sets of causes added to the current NAT T . The
Subsets collects subsets X and Y for each uniform causal bipartition {X,Y }.
An example of matrix reduction (lines 8 and 20) is in Fig. 3, where the matrix
in the right over {e, a, b, c, d} is reduced to the matrix in the left over {a, b, c, d}.
Although NAT is used to refer to T , the actual data structure of T is an RLT
(hence, the reference to leaf z).

Algorithm 2. TestPciSetNat(C, π)

1 init NAT T with leaf z only; type(z) = null; init set InNat1 = ∅;
2 for each x ∈ C, do
3 if ∀y ∈ C \ {x}, π(x, y) = r holds,
4 type(z) = dual; add x to T as a parent of z; InNat1 = InNat1 ∪ {x};
5 else if ∀y ∈ C \ {x}, π(x, y) = u holds,
6 type(z) = direct; add x to T as a parent of z; InNat1 = InNat1 ∪ {x};
7 if InNat1 = C, return T ;

8 reduce (C, π) to (C ′, ψ) relative to InNat1;
9 InNat2 = ∅; Subsets = ∅;
10 for i = 2 to |C ′|/2, do
11 for each X ⊂ C ′ where |X| = i, do
12 gatetype = IsUniformCausalBipartition(C ′, ψ,X);
13 if gatetype �= null,
14 if type(z) = null, assign type(z) = gatetype;
15 if gatetype = type(z), Subsets = Subsets ∪ {X,C ′ \ X};

16 if Subsets �= ∅,
17 for each X ∈ Subsets,
18 if ∃ V ∈ Subsets such that X ⊇ V , remove X from Subsets;
19 for each X ∈ Subsets, do
20 reduce π to ψ over X; R = TestPciSetNat(X,ψ);
21 if R = X, return X;
22 add R to T as a subtree induced by z;
23 InNat2 = union of subsets in Subsets;
24 if InNat2 = C ′, return T ;
25 if InNat1 ∪ InNat2 = ∅, return C;
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26 R = TestPciSetNat(C ′, ψ);
27 if R = C ′, return C ′;
28 add R to T as a subtree induced by z;
29 return T ;

TestPciSetNat is sound because whenever π is invalid, TestPciSetNat returns
the domain of a PCI core. By Theorem 3, either π is a PCI core, which is
detected in line 25 with domain C returned, or π contains a PCI core, which is
detected in lines 21 and 27 with the corresponding domains X and C ′ returned.
TestPciSetNat is complete because whenever π is valid, TestPciSetNat returns a
respective NAT. This can be established similarly as Theorem 3 in [Xia17]. We
omit detailed analysis on soundness and completeness due to space.

When π is valid, the time complexity of TestPciSetNat is a function of the
respective NAT T . Let z be the leaf of T . If every cause in C is a parent of z,
only lines 1 to 7 is run, and the complexity is O(n2). If no cause is a parent of z,
lines 1 to 7 are followed by lines 8 to 15. The number of alternative X (line 11)
is 2n−1 − n − 1 and evaluation of each X takes O(n2/4) time. The complexity is
O(n2 2n). This is also the complexity when π is a PCI core.

If π is valid, some causes are the parents of z, the computation time is between
O(n2) and O(n2 2n). The same holds if π is invalid and contains a PCI core over
a proper subset of C. In summary, the time complexity of TestPciSetNat is a
function of π and is between O(n2) and O(n2 2n). Note that since a NAT model
is over a single BN family, n is not unbounded.

7 NAT Extraction from Partial PCI Patterns

The input to TestPciSetNat is a full PCI pattern. The following algorithm allows
the input pattern to be full or partial, and valid or invalid. In particular, input of
SetNat includes a set C of causes, a PCI pattern π over C, and a set B (possibly
empty) of missing PCI bits. Set B is such that if π(x, y) is a missing bit, then
(x, y) ∈ B.

Set Π collects full PCI patterns that are compatible with π. In line 5, the full
PCI pattern ψ is obtained from the partial pattern π by adding the missing bits
according to θ. Variable bsc is a PCI bit switching counter. When π is invalid,
it controls the number of bits in π that will be switched.

Algorithm 3. SetNat(C, π,B)

1 def = set of defined bits in π;
2 Π = ∅;
3 if B = ∅, Π = {π};
4 else for each instantiation θ of missing bits in B,
5 complete π by θ into ψ; Π = Π ∪ {ψ};
6 for each ψ ∈ Π, do
7 R = TestPciSetNat(C,ψ);
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8 if R is a NAT, return R;
9 bsc = 1;
10 do
11 for each ψ ∈ Π, do
12 for each combination of bsc bits in def, do
13 get τ from ψ by switching these bits;
14 R = TestPciSetNat(C, τ);
15 if R is a NAT, return R;
16 bsc++;
17 end do

When π is full, B = ∅ and line 3 is run. Otherwise, lines 4 and 5 are run.
Each full pattern in Π is processed in lines 6 to 8. If π is valid, one ψ will succeed
and the respective NAT will be returned.

Otherwise, π is invalid. Lines 9 to 17 switch some bits in π for each ψ. The
number of bits to be switched starts from 1 and increases as needed. Hence, a
NAT with the minimum number of PCI bits that differ from π (least incompat-
ible) will be returned.

8 Experiment

We evaluated the algorithms by 16 batches of experiments (see Table 1), running
in a ThinkPad X230. Each batch extracts NATs from 100 PCI patterns. In
batches 1 to 4, each input PCI pattern is derived from a randomly generated
NAT with n = 8, 12, 16, 20, respectively. Hence, each pattern is full and valid.

In the remaining batches, each input pattern is derived from a random NAT
and is modified in addition. In batches 5 to 8, the pattern is modified by randomly
selecting a bit and switching its value. Hence, the pattern is full, but may be
invalid. In batches 9 to 12, a randomly selected bit is dropped from each pattern.
Hence, the pattern is partial but valid. In batches 13 to 16, for each pattern,
one bit is dropped and the value of another bit is switched. Hence, the pattern
is partial and may be invalid. The experiment setup includes all combinations
of fullness and validity of input patterns, and spans a wide range of n values.

Being able to conduct the experiment at n = 12, 16, 20 is itself a demon-
stration of the advantage of the proposed algorithms. The number of NATs for
n = 9 is 25,637,824 [XZL09]. Generation of the NAT database and search tree
take about 40 h [XL14]. The number of NATs for n = 10 is 564,275,648. It would
take at least 880 h to generate the NAT database and search tree.

After each NAT is extracted, its PCI pattern is compared with the input
pattern. For batches 1 to 4 and 9 to 12, each NAT pattern is compatible with
the input pattern. For batches 5 to 8 and 13 to 16, the extracted NAT pattern
differs from the input by no more than 1 bit. Hence, our algorithms successfully
extract NATs in all possible types of scenarios. Due to space, we skip a more
elaborative report and analysis of the experimental results.
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Table 1. Summary of experimental batches

Index n Valid Full #Missing switched bits Runtime μ̂ ms σ̂ ms

1 8 Yes Yes 0 0 0.16 1.59

2 12 Yes Yes 0 0 0.82 3.42

3 16 Yes Yes 0 0 21.83 21.93

4 20 Yes Yes 0 0 520.59 437.37

5 8 May not Yes 1 0 0.36 2.27

6 12 May not Yes 1 0 22.19 30.24

7 16 May not Yes 1 0 1117.95 1498.54

8 20 May not Yes 1 0 63439.55 70736.72

9 8 Yes No 0 1 0.19 1.60

10 12 Yes No 0 1 1.32 4.27

11 16 Yes No 0 1 31.60 30.46

12 20 Yes No 0 1 855.87 821.17

13 8 May not No 1 1 0.64 3.09

14 12 May not No 1 1 34.39 47.41

15 16 May not No 1 1 2187.95 2999.55

16 20 May not No 1 1 96184.07 122835.54

9 Conclusion

The main contribution of this paper is a collection of algorithms for direct NAT
extraction from partial or invalid PCI patterns, founded on formal analysis.
They allow NAT structure extraction in all conceivable scenarios, and enable
NAT modeling to be applied more effectively in compressing BN CPTs and in
learning compact BN CPTs from data. Integrating these algorithms with the
existing CPT compression algorithms is an immediate future work.

Our experiments showed that an incorrect PCI bit in the input pattern is
much more costly than a missing PCI bit in NAT extraction. Further research
will be devoted to improve efficiency of extraction from invalid PCI patterns.
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References

[BFGK96] Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific
independence in Bayesian networks. In: Proceeding of 12th Conference on
Uncertainty in Artificial Intelligence, pp. 115–123 (1996)

[Dar03] Darwiche, A.: A differential approach to inference in Bayesian networks.
J. ACM 50(3), 280–305 (2003)



Fault Tolerant Direct NAT Structure Extraction 147

[Die93] Diez, F.J.: Parameter adjustment in Bayes networks: the generalized
noisy OR-gate. In: Heckerman, D., Mamdani, A. (eds.) Proceeding of 9th
Conference on Uncertainty in Artificial Intelligence, pp. 99–105. Morgan
Kaufmann (1993)

[Hen89] Henrion, M.: Some practical issues in constructing belief networks. In:
Kanal, L.N., Levitt, T.S., Lemmer, J.F. (eds.) Uncertainty in Artificial
Intelligence 3, pp. 161–173. Elsevier Science Publishers (1989)

[LG04] Lemmer, J.F., Gossink, D.E.: Recursive noisy OR - a rule for estimating
complex probabilistic interactions. IEEE Trans. Syst. Man Cybern. Part
B 34(6), 2252–2261 (2004)

[MD08] Maaskant, P.P., Druzdzel, M.J.: An independence of causal interactions
model for opposing influences. In: Jaeger, M., Nielsen, T.D. (eds.) Pro-
ceeding 4th European Workshop on Probabilistic Graphical Models, pp.
185–192. Hirtshals, Denmark (2008)

[PD11] Poon, H., Domingos, P.: Sum-product networks: a new deep architecture.
In: Proceeding of 12th Conference on Uncertainty in Artificial Intelligence,
pp. 2551–2558 (2011)

[Pea88] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco (1988)
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Abstract. As autonomous robots expand their application beyond
research labs and production lines, they must work in more flexible and
less well defined environments. To escape the requirement for exhaustive
instruction and stipulated preference ordering, a robot’s operation must
involve choices between alternative actions, guided by goals. We describe
a robot that learns these goals from humans by considering the timeli-
ness and context of instructions and rewards as evidence of the contours
and gradients of an unknown human utility function. In turn, this under-
lies a choice-theory based rational preference relationship. We examine
how the timing of requests, and contexts in which they arise, can lead to
actions that pre-empt requests using methods we term contemporaneous
entropy learning and context sensitive learning. We provide experiments
on these two methods to demonstrate their usefulness in guiding a robot’s
actions.

1 Introduction

A robot must have a mechanism for choosing which actions to carry out, and
this mechanism must learn from experience to avoid needing every action to be
specified from the outset. In a competitive market for robots, we might assume
that market forces would favor the most useful robot, where useful is some blend
of being safe, economic and helpful. This motivates our developing a robot model,
which we term the Altruistic Robot (ar), that learns through optimization how
to choose actions that are useful to humans. The concurrent two processes of
the ar are: first, to learn what is most useful, and second, to optimize the
implementation of activities it determines make it most useful.

This paper largely focuses on the first process, that of learning to be useful,
and we examine mathematically some approaches for accomplishing this using
the frameworks of information theory, machine learning and utility theory.

The basis of our approach is that humans have context dependent desires
[21] that are largely unknown to both humans and robots. If the human
desires are rational, they form a latent context-sensitive human utility func-
tion which indicates the level of satisfaction of the human in any given state.
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 149–162, 2017.
DOI: 10.1007/978-3-319-67582-4 11
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Requests, rewards, criticisms and other utterances provide hints of the human’s
desire to change this state within the prevailing contexts, as each desire occurs
to the human. If the robot can use these utterances to learn the human utility
function, it can then engage in activities that make it most useful. An ar should
therefore not simply do what it is told, but should learn from these utterances
what states the humans likes in each time and context, and should learn to fulfill
the desires before being asked. So the robot must optimize its ability to learning
the human satisfaction function from its gradients, which are indicated by the
human’s utterances.

Our first approach looks at the timing of requests to learn how to be most
useful.

Suppose, for example, every afternoon when Harry comes home, he asks a
robot to warm the room. After a few occasions, the robot’s model of Harry’s
satisfaction should include having a warm room when he comes home. After
developing the habit of warming the room, the lack of ongoing rewards (no more
thank yous) should not deter the robot from assuming that a warm room for
home-coming is an expected part of the routine.

By examining the interval between requests and prior events, we develop a
model we term Contemporaneous Entropy Learning (cel) that predicts how the
human satisfaction function depends on these prior events. We mathematically
compare cel to classical machine learning (cl) and show a 33% reduction in total
number of errors needed to learn the events that lead to the desires.

Our second approach examines the context of requests.
Suppose when Harry comes home, he often (but not always) says I am cold

and then requests close the window or turn up the heat. Clearly there is some
semantic relationship between these utterances relating to the unspoken desire
to be warmer. We examine how using distributed representations [12], like those
used in natural language processing, the robot can learn representations for
utterances that capture their semantic content. In this way the robot can best
predict Harry’s latent desire of being warmer, and take the appropriate actions
without further requests.

The main contribution of this paper is the ar model for robot behavior,
which provides a framework that allows the robot to learn to predict latent
human desires, and act accordingly. As the robot creates a better model of each
human, it becomes a more social robot in that it aims to learn from social cues
the activities it should perform. This framework includes the timing component
cel and the context component we term semantic context learning (scl).

In this way we provide a pathway for developing a social robot that learns
to optimize its usefulness to its master.

2 Altruistic Robot

The activities of a robot are made up of the accomplishments it completes, which
are in turn each made up of atomic actions. To provide for flexibility, the desired
accomplishments may not be stipulated exactly from the outset, but a choice



The Altruistic Robot: Do What I Want, Not Just What I Say 151

may be present in the selection of the next one. This choice must be made on the
basis of the robot’s internal and external state and memory, using a calculation
of preference between the available accomplishments that can be made.

We define the Altruistic Robot (ar) as a robot that is learning to be most
useful. Its accomplishment selection maximizes an internal utility function that
is continually learning to predict the utility functions it perceives humans to
possess.

2.1 Background

If a robot acts rationally under Choice Theory [10], there are a set of utility
values [23] that can be assigned to each available choice. The robot can then act
in a way to maximize its utility by assigning higher probabilities or certainties
to performing the actions with higher utilities.

Learning to order choices using preference information is np-complete [20].
However, there are straightforward methods for learning to compute utilities
from pairwise preferences using linear and logistic regression [9].

Neural networks have also been used to fine tune top-k ranking of utilities [3].
Neural networks (nn) can be trained with back-propagation and provide a flex-
ible approach to learning complex functions and have been shown to be able to
approximate any function with reasonable accuracy [8].

The main focus of this paper is on providing the robot motivation for com-
pleting accomplishments based on evidence of human satisfaction. We use the
words accomplishment and action interchangeably.

Attention module. In the ASMO Attention architecture [19], each of n poten-
tial activities are assigned a real valued variable vi representing the utility of
performing the ith activity. The robot’s processes use these variables to vote
for the best set of compatible actions to be performed at the next time inter-
val. Consequently, activities not performed in a while can be boosted [14], while
activities with urgent need can be prioritized. This allows greater prioritization
and attention to be given to activities that are seen as most beneficial or urgent
in any given circumstance.

2.2 Introducing the Altruistic Robot

When social robots are better able to understand humans, they can tailor their
actions to be more compatible with their master’s wishes. The Altruistic Robot
(ar) follows the two concurrent processes of learning the human’s desires from
utterances and learning how best to satisfy the demands. We will later contrast
this with simply following instructions.

Utility theory provides a framework for representing human preferences
through scalar quantities. The ar assumes that each human possesses their own
utility function v(x, c, t) representing their satisfaction in environment x with
state c at time t. While the environment x is known by the robot, the state vec-
tor c is latent and contains important but not directly measurable information of
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desires of the human. Consequently, the robot can only predict and not measure
values for c when calculating v(x, c, t).

This function v is independent of the actions a of the robot, but the robot’s
actions affect future values of x and c. Even though the robot (and possibly
the human) may not be aware of the exact function v, the human can instruct
the robot by requesting desired actions r that if performed will lead to future
values of x and c in which v is increased. From these instructions, the robot must
continually learn the shape of v(x, c, t) and which actions will maximize it and
when.

The difference between the ar approach and simply following instructions
can be seen when the robot does something in addition to the instruction, like
also fetching warm clothing when asked to turn up the temperature, or making
coffee before being asked to do so. In such cases, the robot has predicted the
humans desires for warmth and drink and works to satisfy these desires.

As the robot learns v(x, t) it must also learn how x is affected by its own
actions x′ = w(a, x, t). For example, if the robot knows the human wants a
tidy house, it must also realize the need to wait until it returns home before it
can accomplish this. In this way it balances its ability to accomplish a with the
resulting increase in v. This may even lead the robot towards preparation actions
that improve w, like recharging its batteries, that have no direct bearing on v.
Likewise, steep priors to the utility function could be established representing
moral values to keep the robot from accidentally learning unacceptable actions.

In the following sections we outline two techniques to begin implementing
the ar model, by considering the timing and environment of requests.

3 Learning from Timing

Under the ar model for a robot, all rewards comes through satisfying human
desires. The ability to learn how to anticipate such desires allows the ar to be
helpful without continual direct instruction.

The usefulness of each activity can vary with time and situation. If you have
just made coffee, being given some sugar might be useful, while if you have just
finished drinking coffee, having your cup cleaned would be nice. The ar must
learn the changing circumstances that make each activity best suited to each
time.

When Harry is given coffee and immediately says ‘bring me sugar’, this is
different from Harry getting coffee, waiting an hour or so and then making the
request. In the former case it is far more likely that being given coffee was a trig-
ger for Harry’s desire for sugar. To accommodate this, we develop a model using
exponentially decaying features that learns preferentially from recent events.

3.1 Timing Background

Novianto et al. (2014) notes that it is helpful for a robot to learn to predict
stimuli. For example, person h entering a room may be considered as stimulus
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X, and if after arriving, they immediately ask for an action r to take place, this
may be called stimulus Y . Predicting Y from stimulus X is beneficial because it
enables the robot to begin action r in advance of it actually being requested.

Classical learning. Under the classical learning (cl) model [22], weights V are
used for predicting unconditioned stimulus Y from the conditioned stimulus X,
where each stimulus has the values 1 when present and 0 when not. V is updated
by the difference equations:

�Vt = βR × αX̄ where R = Ẏt = Yt − Yt−1 (1)

which updates V proportional to R while making R like a derivative of Y, and:

X̄t+1 = δX̄t + (1 − δ)Xt (2)

which makes X̄ a decaying average of X.

Maximum Entropy Learning. In other machine learning tasks [16] a
maximum entropy classifier (mec) is used for learning parameters to make
predictions. When training such classifiers to predict categorical informa-
tion p with empirical distribution y, the Kullback-Leibler divergence E =∑

y(x) log(y(x)/p(x)) [11] is minimized. For binary features x, the classifier
makes predictions p = σ(Wx + b) where W is the weight and b the bias and
σ(x) = (1 + exp(−x))−1.

The gradient between the predictions and actual data y with respect to the
weights is then dE

dW = (y − p) × x where × is the outer product operator. The
expectation maximization algorithm [4] allows stochastic gradient descent [2]
with the weight parameters being updated by:

�Wt = β(y − p) × x (3)

An intuitive view of the effect of the −p term on the gradient �Wt is that
it prevents W from growing without bound whenever y and x remained largely
unchanged. Initially, when w ≈ 0 the prediction p ≈ 0 also, but as the prediction
p gets larger, the update �Wt gets smaller as p approaches y

Noting the similarity of Eq. 3 to that of classical learning Eq. 1, we explore
the way that the benefits of classical learning can be brought to a maximum
entropy framework.

3.2 Introducing Contemporaneous Entropy Learning

Harry’s request is evidence of his desire. The timing of Harry’s request provide
evidence that his desire was triggered by a recent event, since otherwise Harry
would have made the request sooner. Here, we examine the relationship between
a constant probability of delaying a request and using exponential decaying
features.

Suppose the binary valued variable s represents whether a specific event
x which occurred t minutes ago was the stimulus for Harry’s desire c, which
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later led him to make request r for an action. With probability (1 − k), Harry
was preoccupied during each of the t intervening minutes between desire and
request, delaying him from requesting r sooner. So if event x was the trigger,
then probability that Harry will first request r exactly t minutes after the event
x is: P (r|s, t) = (1 − k)t−1kP (r|s)

Likewise, regardless of event x, there is a background probability h that Harry
will request r anyway. The probability that Harry will first request r after exactly
t minutes in any case is given by:

P (r|t) = (1 − h)t−1hP (r)

Using Bayes theorem, the robot can predict P (s) from r and t to see how
likely it was that x was the stimulus for r:

P (s|r, t) =P (r, t|s) P (s)
P (r, t)

= k(1 − k)t−1P (r|s) P (s)
h(1 − h)t−1P (r)

≈(k − h)e−(k−h)tP (r|s)P (s)
P (r)

(4)

The conditional probability of a request at time t given there have been none
earlier is given by kP (r|s). So if a classifier learns to predict P (r|s), we can use
Eq. 4 to predict P (s|r, t).
Gradient weighting. We notice that an error ε in predicting P (r|s) will result
in a proportional error (k −h)e−(k−h)tε when predicting P (s|r, t). This suggests
we should scale the training examples according to their impact in predicting
P (s|r, t).

Consequently, if using sgd to learn the classifier’s weights, to minimize the
loss when predicting s we should multiply each gradient by fT (t) defined by:

fT (t) =

{
t < T : 0
t ≥ T : (k − h)e−(k−h)(t−T )

(5)

where T is the time the event occurred. For neatness, adjust k to remove the h
term.

Multiple events. We now consider learning from repeated experiences. Suppose
Harry’s desire is a binary function c(t) ∈ {0, 1}.

We construct a single time-decaying feature function f(t) of the above form
by summing together the individual time-decaying functions fT (t) from Eq. 5
for each transition of c(t). So:

f(t) =
∑

i

fTi
(t) where c(T−

i ) = 0 ∧ c(T+
i ) = 1.

AppendixA shows: f(t) = c̃(t) = c(t) − c̄(t) where c̄(t) =
∫ t

0
c(s)ke−k(t−s)ds.

A plot for c̄(t) and c̃(t) is shown in Fig. 1 for a square-wave desire c(t).
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Fig. 1. Left: A square input pulse x, Middle: an exponential moving average x̄, Right:
a contemporaneous feature x̃ = x − x̄ showing recent changes in x

Multiple features. We can extend c to an environment with multiple changing
features, each of which could be the cause of the request. If each feature is
represented by the elements of a vector x,we can build a time-decaying feature
function vector

x̃(t) = x(t) − x̄(t) where x̄ =
∫ t

0

x(s)ke−k(t−s)ds

When using a maximum entropy classifier with weights W to predict the
desire c, we use the original features x as follows:P (c|x) = σ(Wi(x)).

Update weighting. Since c is latent and only indicated by the requests, the
weights W of the classifier should be updated using the decaying features
through the equation

�W = λ(r − p) × x̃ (6)

where r is the empirical requests, and p are the predicted requests. This scales
the gradients according to their timeliness of the features.

Once fully trained, the elements of σ(Wi) will represent the probability xi

will cause a later request r, so P (si|r) = σ(Wi). We refer to this logistic model
using time-decaying weight updates as a Contemporaneous Entropy Learning
(cel)

3.3 Comparing CL with CEL

We now compare the cel method with classical learning to show that they
initially perform identical learning.

If we examine a continuous version of the classical learning Eq. 2, we have:
d
dt x̄(t) = k(x(t) − x̄(t)) where k = 1 − δ. and x(t) is the unconditioned stimulus
at time t. AppendixA shows: x̄(t) = r

∫ t

0
e−ksx(t − s)ds

The continuous version of the other classical learning Eq. 1 gives:dV (t)
dt =

β dy(t)
dt ×αx̄(t) where V is the parameter being learned and y(t) is the conditioned

stimulus at time t.
Integrating both sides allows us to calculate V at time t following training

with inputs of x(t) and y(t):

V (t) =
∫ t

0

β
dy(s)

dt
× αx̄(s)ds (7)
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Rearranging Eq. 7 by integrating by parts, where y(0) = 0, we get:

V = [βy × αx̄(s)]t0 −
∫ t

0

βy × α
dx̄

dt
ds (8)

The two components of the reformulated classically learned parameters can
be examined separately by setting: V = U −W where U is the first term of Eq. 8
and W the second.

If y(0) = 0, then U can be computed from the instantaneous values of y(t)
and x̄(t) using: U = βy(t) × αx̄(t)

Since U only needs the current values of y and x̄, and is independent of their
histories, it has no parameters to learn. Meanwhile W can be rearranged as:
W =

∫ t

0
βy(s) × αk (x(s) − x̄(s)) ds

The change in W at time t is given by dW
dt = βy(s) × αk (x(s) − x̄(s))

So the update used to learn the parameter W with classical learning is given
at time t by:

�W = βy × αkx̃ where x̃ = x(t) − x̄(t) (9)

If we compare the reformulated cl update Eq. 9 with the cel update Eq. 6
we see that with the right learning rates λ = αβk, the two equations would be
the same by setting y = (r − p).

This means the cel approach of using a mec with updates augmented by
x̃ = x − x̄ initially performs classical learning when p ≈ 0 to predict the most
useful actions.

The assignment y = (r − p) occurs naturally because as the robot pre-empts
the request with probability p, the human’s opportunity to make the request
declines to r − p. This term allows the robot retains habits without ongoing
rewards.

3.4 Combination Learning

Because cel uses a neural network approach, the model can be extended to deep
learning [1], auto encoders [17] and other unsupervised machine learning methods
such as restricted Boltzmann machines [7]. Such deeper models will allow the
robot to predict requests where a combination of triggers is required to create
the desire. For example, Harry may only ask for sugar with his coffee when he
has not been given sweetener or a cookie. These combinatoric time dependent
features will automatically be learned through the cel learning method.

3.5 CEL Experiments and Results

We compared cel with cl directly, and compared cl with mec using an envi-
ronmental variable detection task.

Following [22] we used rectangular pulses for X the conditioned stimulus and
Y the unconditioned stimulus.
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In our experiments, the pulses for X and Y repeated 5 times at 100 unit
intervals, were 20 units wide. Their onsets were delayed from one another by τ
units which was initially set to 30 units.

Figure 2 shows on the left traces of X and Y , together with the learned value
of V using cl. On the right it shows traces of X and Y together with X̃ and V
using cel.

As can be seen the final values of V are almost identical, but the path is
discontinuous in the case of cl and continuous for cel. The advantage of cel’s
monotonic V in this example means that cel is an any-time function in that its
current value remains close to its most optimal value so far.

The continuous nature of cel is because the calculation involves a smooth
integral of the product of continuous functions. The discontinuous nature of
cl is because its integral includes the product of Ẏ which approximates the
unbounded Dirac delta function when Y makes step changes. This discontinuity
can also be seen because cl can be calculated from V = W − U where U is
the continuous cel function, and W = βY (t) × α(i)X̄(t) which is discontinuous
whenever Y steps.

Fig. 2. On the left, from top to bottom, traces of X, Y , X̄ and V using classical learning.
Note V steps up and down. On the right from top to bottom, traces of X, Y , ˜X and
parameters V using cel. Note with cel, V increases monotonically making the robots
learning continuous at all times.

Figure 3 shows on the left and middle the final values for V for different
values of τ (the delay between X and Y ) varying from 5 to 95 for cel and cl.

As can be seen the outputs are almost identical with only minor variation due
to numerical approximations of computing Ẏ from the difference of two values
of Y . This further shows the relationship between cl and cel.

Environment variable identification task. We compared cel with mec to
identify how cel can accelerate learning above regular logistic regression.

We generated a dataset consisting of 1000 binary Markov random variables
xi(t) to represent the environment. At each time-step, each variable with value
0 had an independent probability of 0.1 to switch to a 1, and would otherwise
remain unchanged. Likewise, each variable with value 1 had an independent
probability 0.2 to switch to a 0, and would otherwise remain unchanged.
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Fig. 3. Left and middle, final values of V (y-axis) for different values of τ (x-axis)
ranging from 0 to 100, using cl and cel. Right, Total errors during learning for
environment variable identification task for mec (dotted) and cel (solid). The mec
made 1342 total errors, while the lower cel trace indicates 908 total errors. Initially
both mec and cel yielded the same error rate but cel learned to stop making errors
sooner

The desire c was assigned to one variable as c = x0 − z where the value z
indicated whether the robot had already satisfied the desire. Whenever a desire
was present, unsatisfied and unrequested, a request was made with probability
0.1 in each time-step. The robot learned to predict the desire using both an mec
and a cel for comparison.

We counted the total number of errors E(t) up to time t, where each error
was either a the robot predicting an absent desire, or waiting too long that a
request was made.

The right hand plot of Fig. 3 shows E(t) for cel and mec. Over 30,000 time-
steps, cel was able to learn to predict the desire with 908 total errors compared
to mec with 1342 errors, a 33.4% reduction. While the slope of the two plots
start out the same, the plot for cel never rises above that of mec and levels
out sooner. This shows that cel was faster at learning to identify the triggers
for the desire with fewer errors.

4 Learning from Context

Just as the timing of requests conveys meaning about desires, so too does the
context.

To illustrate this, we give an example: At the train station, it is likely that you
will do travel related actions, perhaps wait for a train, or leave to go somewhere
else. The semantics of the train station make this likely because this it is where
people board and depart from trains. Because the train station semantics are
shared by most people, most robots accompanying most people would likely
experience the similar waiting or leaving related desires.

Likewise, asking for sugar with coffee may indicate a preference for sweetness
in other hot drinks. As examples may be sparse, the ar must learn to generalize
and identify similarities in situations where possible to help predict the likely
desires that each situation entails. The generalization reduces the dimensionality
of the feature space formed the complexity in the identification task.
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4.1 Context Background

Case based decision making [6] suggests that the best action in any situation can
be learned from other similar situations [5]. If an action had a positive outcome
in a similar situation before, then there is a good chance that action will do well
again. This approach suggests preferences can be identified by first finding the
closest prior experience. This can be compared with the back-propagation [18]
approach where the neural-network’s output for any given input vector will be
guided by training examples with similar features. With this in mind we examine
ways to measure the similarity of situations.

Word vectors. We compare the process a robot can learn from the patterns
of events, situations, requests and rewards with a task in natural language
processing.

Semantic vectors [12] can be learned for nouns, verbs, adjectives and such
from their co-occurrence distribution within small text windows using unsuper-
vised learning. The representations encapsulate semantics that allows algebra to
be performed on the vectors, so Queen = King - Man + Woman.

Each dictionary word is assigned two initial small random vectors v and u.
These are trained with stochastic gradient descent so that the target word v can
be predicted from its context with P (v|u) ∝ ∏

u∈window\v exp(
∑

i viui).
Using the gradient of P (v|u) between the empirical and predicted windows, u

and v are trained to learn the representations. Typically u takes on a hierarchical
representation and is discarded, while semantic similarities are only drawn from
v. We propose to build formulaic sentences that represent the situations that
each request occurs within. Then using distributed learning we can impute into
each of the resulting words a semantic representation that learns the underlying
meaning to the words within each request.

4.2 Introducing Semantic Context Learning

The purpose of Semantic Context Learning (scl) is to develop representations
that contain the semantics of situations of places, people, events and requests
that enables desires to be predicted from similar situations.

We can build sentences like ‘Sam caught train at station’ or ‘Sam was waiting
at station’ and use the distributed learning process to learn ’station’ often leads
to ’waiting’ and ‘caught train’ actions. If Sam repeatedly asks to buy newspapers
while waiting, the robot can learn a semantic representations of ‘Sam wants
newspaper at station’ that may generalize this to include ‘Sam wants book at
airport’ due to the words semantic similarities.

While the word2vec [12] vectors v belong to one space, the vectors u belong
to their dual space and allow the conditional probability p(v|u) to be computed
directly. To identify activities within locations (rather than similar locations to
nouns), requires identifying verbs with high affinity to the location nouns. If we
simply searched for verbs closest to the location, we would identify locations
and actions sharing similar contexts. However, in this case we wanted actions
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directly belonging to the locations’s context, so we compare the original space
vectors u with dual space vectors v.

In the above example, direct labels were provided for Sam, Bob, at station etc.
The robots can also learn vectors directly from their environment. Camera image
pixel intensities can be passed through an auto encoder, or image recognition
software to create compressed features which would then be used when making
prediction for the next action.

This would allow the robot to expect different desires and act differently
indoors from outdoors, at day or night, in crowds or all alone. If the robot was
always asked to keep quiet indoors when surrounded by people, but be louder
when outdoors, alone with Bob, the robot can learn to predict latent desires
given the environment P (s|v) just as with timing.

4.3 Context Experiments and Results

As a labeled dataset of robot experiences was unavailable, we employed a tagged
corpus of predicates [13] consisting of things, events, actions, spacial, goals, func-
tions and generic types.

We removed the triple structure and pre-processed the corpus by removing
its source labels, e.g. [OMCS]:, internal quote marks, brackets and numeric iden-
tifiers, e.g. #2, while preserving the part-of-speech tags. This made sentences
like train.n pass.v car.n.

After generating vectors using word2vec on this corpus, we identified nouns
with the highest cosine similarity thereby identifying similarities with places, as
shown in Table 1

Table 1. Left - Most similar places by cosine similarity, Right - Similar activities to
places by cosine similarity between space and dual space

bus train boat shop
school bus locomotive sailboat store
bus driver passenger car sailboats grocery
bus station track sailer grocery store
bus stop engine skiff walmart

bus train boat shop
exit park dock vend
park drive board sell
board transport sail shop
buckle ride motor stock

To obtain both u and v we adjusted the word2vec to output both tables
generated using 10 draws of negative sampling, training on 10 passes through
the corpus. Table 1 - Right shows the verbs with dual-space vectors u that are
most similar to nouns with vectors v.

Although generated from predicates not robotic experiences, this helps
demonstrate how likely activities can be predicted from locations by learning
through the scl approach.
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5 Conclusion

We have introduced the concept of an Altruistic Robot (ar) that learns to
optimize how to be useful. This is achieved by the ability of the robot to learn how
to represent an external utility function of its human master that is unknown,
but whose gradient and contours are hinted through the timing and context of
requests and rewards. The robot then schedules actions to implement requests
to the greatest satisfaction of its master.

We have developed the cel model that uses timing to help learn to model a
human utility function from requests, and accelerates learning 33% over maxi-
mum entropy classifiers on this type of data. We have compared this model with
classical learning (cl), and shown that initially cel performs a cl in a con-
tinuously improving fashion, and demonstrated how cl can be extended into a
maximum entropy framework providing a bridge to modern deep learning tech-
niques [1].

We have also presented the scl model that learns a semantic representation of
locations, things and actions, and performed qualitative experiments to predict
actions in locations from a predicate corpus.

A Appendix

f(t) = ċ(t)	ke−ks where 	 denotes convolution. Taking Laplace functions: Lf =
(sLc)

(
1

s+k

)
⇒ Lf =

(
1 − k

s+k

)
Lx ⇒ f(t) = c(t) − k

∫ t

0
c(t)e−k(t−s)ds. For

dx̄
dt = k(x− x̄) we see: sLx̄ = k (Lx − Lx̄) ⇒ Lx̄ = Lx

(
k

s+k

)
⇒ x̄ = x	 re−kt =

r
∫ t

0
e−ksx(t − s)ds

References

1. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning.
In: Workshop on Unsupervised and Transfer Learning, ICML (2011)

2. Bottou, L.: Large-scale machine learning with stochastic gradient descent. Comp-
stat 2010, 177–186 (2010)

3. Cao, Z., Qin, T., Liu, T. Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th International Conference
on Machine Learning, pp. 129–136. ACM (2007)

4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 1–38 (1977)

5. Dubois, D., Godo, L., Prade, H., Zapico, A.: On the possibilistic decision model:
from decision under uncertainty to case-based decision. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 7(06), 631–670 (1999)

6. Gilboa, I., Schmeidler, D.: Case-based decision theory. Q. J. Econ. 110(3), 605–639
(1995)

7. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)



162 R. Billingsley et al.

8. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Networks 2(5), 359–366 (1989)
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Abstract. Among several graphical models for preferences, CP-nets are
often used for learning and representation purposes. They rely on a sim-
ple preference independence property known as the ceteris paribus inde-
pendence. Our paper uses a recent symbolic graphical model, based on
possibilistic networks, that induces a preference ordering on configura-
tions consistent with the ordering induced by CP-nets. Ceteris paribus
preferences in the latter can be retrieved by adding suitable constraints
between products of symbolic weights. This connection between possi-
bilistic networks and CP-nets allows for an extension of the expressive
power of the latter while maintaining its qualitative nature. Elicitation
complexity is thus kept stable, while the complexity of dominance and
optimization queries is cut down.

1 Introduction

Various graphical models have been proposed in the literature in order to repre-
sent preferences in an intuitive manner. A survey of such approaches is in [3]. We
may roughly distinguish between (i) quantitative models such as GAI networks
[15] that use numerical utility functions (ii) qualitative models where preferences
are contextually expressed by local comparisons between attribute values. The
latter request less assessment effort from the user.

Among qualitative models, CP-nets [7] are the most popular. They provide a
well-developed compact representation setting for preference modeling. The CP-
net representation consists in a directed graph expressing conditional preference
statements, interpreted under the ceteris paribus assumption. As an effect of the
systematic application of this assumption, it has been observed that priority in
the network is given to parent decision variables over children ones, a feature
not deliberately required.

The more recently introduced π-pref nets [2,4] may be also classified as qual-
itative models. Indeed, similarly to CP-nets, this model represents local prefer-
ences in terms of conditional comparisons between variable assignments. π-pref
nets are inspired by product-based numerical possibilistic networks [14] but they

c© Springer International Publishing AG 2017
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use symbolic (non-instantiated) possibility weights to model conditional prefer-
ence tables. Additional information about the relative strength of preferences
can be taken into account by adding constraints between these weights.

The paper proves that a π-pref net is able to capture ceteris paribus pref-
erences between solutions induced by a CP-net, if suitable constraints between
products of symbolic weights are added. These constraints explicitly express the
higher importance of parent decision variables over their children nodes in the
π-pref net. In [4], it was proved that π-pref nets orderings exactly correspond to
a Pareto ordering over vectors expressing levels of satisfaction for each variable.
We show that this ordering of configurations is refined by the ordering obtained
by comparing sets of satisfied preference tables. These results show that the set-
ting of π-pref nets is closely related to CP-nets since ceteris paribus constraints
can be expressed by specific inequality constraints between products of symbolic
weights.

The paper is organized as follows. Section 2 provides a brief background on
CP-nets, while Sect. 3 introduces π-pref nets based on possibilistic networks
with symbolic weights. Section 4 investigates conditions that enable preferences
expressed by π-pref nets to get closer to CP-nets orderings. Section 5 presents
related work, especially CP-theories [16], and the conclusion briefly compares
the formalisms in terms of expressive power and query complexity.

2 CP-nets

Let V = {A1, . . . , An} be a set of Boolean variables, each taking values denoted,
e.g., by ai or ¬ai. Each variable Ai has a value domain DAi

. Ω denotes the
universe of discourse, which is the Cartesian product of all variable domains in
V. Each element ωi of Ω is called a configuration.

The user is assumed to express preferences under the form of comparisons
between values of each variable, conditioned on some other instantiated variables.
CP-nets deal with strict preference statements. Unconditional statements are of
the form: “I prefer a+ to a−”, where a+, a− ∈ {a,¬a} and a− = ¬a+, and we
denote them by a+ � a−. When A = a+, we say that the quality of the choice
for A is good, and is bad otherwise. If the preference on A depends on other
variables P(A) called the parents of A, and p(A) is an instantiation of P(A),
conditional preference statements are of the form “in the context p(A), I prefer
a+ to a−”, denoted by p(A) : a+ � a−. To each variable we associate a table
representing the local preferences on its domain values in each parent context
(the value of a+, respectively a−, depends on the parents context).

Example 1. Consider a preference specification about a holiday house in terms
of 4 decision variables V = {T, S, P,C} standing for type, size, place and car park
respectively, with values T ∈ {flat (t1), house (t2)}, S ∈ {big (s1), small (s2)},
P ∈ {downtown (p1), outskirt (p2)} and C ∈ {car (c1), nocar (c2)}. Preference
on T is unconditional, while all the other preferences are conditional as follows:
t1 � t2, t1: p1 � p2, t2: p2 � p1, p1: c1 � c2, p2: c2 � c1, t1: s2 � s1, t2: s1 � s2.
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Definition 1. A (conditional) preference network is a directed acyclic graph
with nodes Ai, Aj ∈ V, s.t. each arc from Aj to Ai expresses that the preference
about Ai depends on Aj. Each node Ai is associated with a preference table
CPTi that associates strict preference statements p(Ai) : a+

i � a−
i between the

two values of Ai conditional to each possible instantiation p(Ai) of the parents
P(Ai) of Ai.

The preference statements of Example 1 correspond to the CP-net of Fig. 1.

Fig. 1. Preference network for Example 1

Preference networks can be viewed as a qualitative counterpart of Bayesian
nets. CP-nets [7,8] are preference networks relying on the ceteris paribus prefer-
ential independence assumption. Namely, a CP-net induces a partial order �CP

between configurations, based on this preferential independence assumption: a
value is preferred to another in a given context, everything else being equal.
Given U ⊆ V and ω ∈ Ω, ωU denotes the restriction of ω to variables in U .

Definition 2 (Ceteris Paribus). Each strict preference statement p(Ai) :
a+

i � a−
i , is translated into ω �CP ω′, whenever ω{Ai} = a+

i , ω′
{Ai} = a−

i ,
and ωV\{Ai} = ω′

V\{Ai}, and ωP(Ai) = ω′
P(Ai)

= p(Ai).

Due to the ceteris paribus assumption, configurations compared in the pref-
erence statements differ by a single flip, and switching Ai from a+

i to a−
i is

called a worsening flip. We get a directed acyclic graph of configurations (the
configuration graph) with a unique top corresponding to the best configuration
(Ai = a+

i ,∀i) and a unique bottom corresponding to the worst one (Ai = a−
i ,∀i).

The worsening flip graph for Example 1 is represented in Fig. 2.
The configuration graphs induced by CP-nets are partial in general, and many

configurations remain incomparable, for instance t1p1c1s1 and t1p1c2s2 are not
comparable in the worsening graph of Fig. 2. Moreover, in the CP-nets semantics,
parent preferences look more important than children ones, for example, the
preferences of the node P are more important than C and the preferences of the
root T are more important than all the other nodes.
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Fig. 2. CP-net preferences for Example 1 up to transitive closure (5 bold arrows repre-
sent ceteris paribus preference relations that are not recovered by π-pref net, 8 one-flip
comparisons over 32 can be recovered by transitivity, e.g. from t1p1c1s2 to t2p1c1s2).

3 π-Pref nets

Possibility theory [11] can be used for representing preferences. It relies on the
idea of a possibility distribution π, i.e., a mapping from a universe of discourse
Ω to the unit interval [0, 1]. Possibility degrees π(ω) estimate to what extent
the configuration ω is not unsatisfactory. π-pref nets are based on possibilistic
networks [5], using conditional possibilities of the form π(ai|p(Ai)) = Π(ai∧p(Ai))

Π(p(Ai))
,

where Π(ϕ) = maxω|=ϕ π(ω).

Definition 3 ([2,4]). A possibilistic preference network (π-pref net) is a pref-
erence network in the sense of Definition 1, where each preference statement
p(Ai) : a+

i � a−
i is associated to a conditional possibility distribution such that

π(a+
i |p(Ai)) = 1 > π(a−

i |p(Ai)) = αAi|p(Ai), and αAi|p(Ai) is a non-instantiated
variable on [0, 1) we call symbolic weight.

One may also have indifference statements p(Ai) : ai ∼ ¬ai, expressed by
π(ai|p(Ai)) = π(¬ai|p(Ai)) = 1.

On top of the preferences encoded by a π-pref net, a set C of additional
equality or inequality constraints between symbolic weights or products of sym-
bolic weights can be provided by the user. Such constraints may represent, for
instance, the relative strength of preferences associated to different instantiations
of parent variables of the same variable.
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π-pref nets induce a partial ordering between configurations based on the
comparison of their degrees of possibility in the sense of a joint possibility distri-
bution computed using the product-based chain rule, expressing a satisfaction
erosion effect:

π(Ai, . . . , An) =
∏

i=1,...,n

π(Ai|p(Ai)) (1)

The preferences in the obtained configuration graph are of the form ω �π ω′ if
and only if π(ω) > π(ω′) for all instantiations of the symbolic weights.

Example 2. Consider preference statements in Example 1. Conditional possi-
bility distributions are as follows: π(t1) = 1, π(t2) = α, π(p1|t1) = π(p2|t2) = 1,
π(p2|t1) = β1, π(p1|t2) = β2, π(s1|t1) = γ1, π(s2|t2) = γ2, π(s2|t1) =
π(s1|t2) = 1, π(c1|p1) = π(c2|p2) = 1, π(c2|p1) = δ1 and π(c1|p2) = δ2. Applying
the product-based chain rule, we can compute the joint possibility distribution
relative to T, P, C and S. Figure 3 represents with thin arrows the configuration
graph induced from the joint possibility distribution. Clearly, the configuration
t1p1c1s2 is the root (since it is the unique one with degree π(t1p1c1s2) = 1).

Fig. 3. Configuration graph of Example 1. Thin arrows reflect �π, dotted arrows com-
pare sets S(ωi) of Sect. 4, and bold arrows reflect additional ceteris paribus comparisons
recovered by the constraints, also in bold on Fig. 2. Values under 1st (resp. 2nd) brack-
ets correspond to joint possibility degrees (resp. sets S(ωi))

In the following, we compare configuration graphs induced by both CP-nets
and π-pref nets. Clearly, they are different when no additional constraints
are assumed between symbolic weights. For instance, if we consider the pre-
vious example we can check that in contrast with the CP-net of Fig. 2 where
t1p1c2s1 �CP t1p2c2s1, the π-pref net fails to compare them since there is no
inequality constraint between π(t1p1c2s1) =γ1δ1 and π(t1p2c2s1)=γ1β1.
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4 Main Results

In this section, we show that the configuration graph of any CP-net is consistent
with the configuration graph of the π-pref net without local indifference, based
on the same preference network, provided that some constraints on products
of symbolic weights are added to the π-pref net, in order to restore the ceteris
paribus priorities. Precisely, the added constraints reflect the higher importance
of parent nodes with respect to their children. Under an additional property
whose validity can only be conjectured at this point, π-pref net would capture
CP-nets exactly.

4.1 Consistency Between CP-nets and π-pref nets

In the following, we first recall that the ordering between configurations induced
by a π-pref net corresponds to the Pareto ordering between the vectors ω =
(θ1(ω), . . . , θn(ω)) where θi(ω) = π(ωAi

|ωP(Ai)), i = 1, . . . , n. The Pareto order-
ing is defined by

ω �Pareto ω′ iff ∀ k, θk(ω) ≥ θk(ω′) and θi(ω) > θi(ω′) for some i.

It is easy to see that θi(ω) ∈ {1, αAi|p(Ai)} where αAi|p(Ai) is the symbolic
weight that appears in the preference table for variable Ai in the context ωP(Ai).
It is easy to see that θk(ω) > θk(ω′) if and only if θk(ω) = 1 and θk(ω′) is a
symbolic value. But it may be that θk(ω) and θk(ω′) are distinct symbolic values,
hence making ω and ω′ incomparable. In particular, there are as many different
symbolic weights αA|p(A) pertaining to a boolean variable A as instantiations of
parents of A. As symbolic weights are not comparable across variables, it is easy
to see that the only way to have π(ω) ≥ π(ω′) is to have θk(ω) ≥ θk(ω′) in each
component k of ω and ω′. Otherwise the products will be incomparable due to
the presence of distinct symbolic variables on each side. So,

ω �π ω′ if and only if ω �Pareto ω′

Given the ordinal nature of preference tables of CP-nets, it also makes sense to
characterize the quality of ω using the set S(ω) = {Ai : θi(ω) = 1} of satisfied
preference statements (one per variable). It is then clear that the Pareto ordering
between configurations induced by the preference tables is refined by comparing
these satisfaction sets:

ω �Pareto ω′ ⇒ S(ω′) ⊂ S(ω) (2)

since if two configurations contain variables having bad assignments in the sense
of the preference tables, the corresponding symbolic values may differ if the
contexts for assigning a value to this variable differ.

Example 3. To see that this inclusion-based ordering is stronger than the π-pref
net ordering, consider Fig. 3 where π(t1p2c1s2) = β1δ2 with S(t1p2c1s2) = {T, S}
and π(t2p1c2s1) = αβ2δ1 with S(t2p1c2s1) = {S}. We do have that S(t1p2c1s2) ⊃
S(t2p1c2s1), but β1δ2 is not comparable with αβ2δ1. Dotted and thin arrows of
Fig. 3 represent the configuration graph induced by comparing sets S(ω).
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It is noticeable that if the weights αAi|p(Ai) reflecting the satisfaction level
due to assigning the bad value to Ai in the context p(Ai) do not depend on the
context, then we have an equivalence in Eq. (2):

Proposition 1. If ∀i = 1, . . . , n, αAi|p(Ai) = αi,∀p(Ai) ∈ P(Ai), then

ω �Pareto ω′ ⇐⇒ S(ω′) ⊂ S(ω).

Proof: Suppose S(ω′) ⊂ S(ω) then if A ∈ S(ω′) we have θi(ω) = θi(ω′) = 1; if
A ∈ S(ω)\S(ω′), then θi(ω′) = αi, θi(ω) = 1 and θi(ω′) = αi = θi(ω) otherwise.
This implies ω �Pareto ω′.

The inclusion-based ordering S(ω′) ⊂ S(ω) does not depend on the parent
variables context but only on the fact that a variable has a good or a bad value.
Similarly, when the symbolic weights no longer depend on parents instantia-
tions, there is only one symbolic weight per variable. So, the above result is not
surprising.

Example 4. Using the same nodes as in Example 3, the unique weight assump-
tion enforces β1 = β2 = β and δ1 = δ2 = δ, which yields π(t1p2c1s2) = βδ >
π(t2p1c2s1) = αβδ.

In the following, we assume that the components of vector ω are linearly ordered
in agreement with the partial ordering of variables in the symbolic preference
network, namely, if i < j then Ai is not a descendant of Aj in the preference net
(i.e. topological ordering). For instance in the preference net of Fig. 1, we can
use the ordering (T, P,C, S).

Let us first prove that, in the configuration graphs induced by a CP-net and
the corresponding π-pref net, there cannot be any preference reversals between
configurations. Let Ch(A) denote the children set of A ∈ V.

Lemma 1. Let ω and ω′ be two configurations such that ω �CP ω′ and ω and
ω′ differ by one flip of a variable Ai then S(ω) ⊂ S(ω′) is not possible.

Proof: Compare S(ω) and S(ω′). It is clear that Ai �∈ S(ω′) (otherwise the flip
would not be improving) and S(ω) = (S(ω′)∪{Ai}∪Ch+

−(Ai))\Ch−
+(Ai), where

Ch+
−(Ai) is the set of variables that switch from a bad to a good value when

going from ω′ to ω, and Ch−
+(Ai) is the set of variables that switch from a good

to a bad value when going from ω′ to ω. It is clear that it can never be the case
that S(ω) ⊂ S(ω′), indeed Ai is in S(ω) and not in S(ω′) by construction. But
S(ω′) may contain variables not in S(ω) (those in Ch−

+(Ai) if not empty). So
either S(ω′) ⊂ S(ω) or the two configurations are not Pareto-comparable. ��

In the following, given two configurations ω and ω′, let Dω,ω′
be the set of

variables which bear different values in ω and ω′.

Proposition 2. If ω �CP ω′ then S(ω) ⊂ S(ω′) is not possible.
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Proof: If ω �CP ω′, then there is a chain of improving flips ω0 = ω′ ≺CP

ω1 ≺CP · · · ≺CP ωk = ω. Applying the above Lemma, S(ωi) = (S(ωi−1) ∪
{Vi−1} ∪ Ch+

−(Vi−1)) \ (Ch−
+(Vi−1) for some variable Vi−1 = Aj . By the above

Lemma, we cannot have S(ωi−1) ⊂ S(ωi). Suppose we choose the chain of
improving flips by flipping at each step a top variable Aj in the preference
net, among the ones to be flipped, i.e. j = min{� : A� ∈ Dωi−1,ω}. It means that
when following the chain of improving flips, the status of each flipped variable
will not be questioned by later flips, as no flipped variable will be a child of
variables flipped later on. So S(ω) will contain some variables not in S(ω′), so
S(ω) ⊂ S(ω′) is not possible.

The previous results show that it is impossible to have a preference reversal
between the CP-net ordering and the inclusion ordering, which implies that
no preference reversal is possible between CP-net ordering and the π-pref net
ordering. It suggests that we can try to add ceteris paribus constraints to a
π-pref net and so as to capture the preferences expressed by a CP-net.

As previously noticed, in CP-nets, parent preferences look more important
than children ones. This property is not ensured by π-pref nets where all vio-
lations are considered having the same importance. Indeed, we can check from
Figs. 2 and 3 that the two configuration graphs built from the same preference
statements of Example 1 are different. In the following, we lay bare local con-
straints between each node and its children that enable ceteris paribus to be
simulated. Let DP(A) = ×Ai∈P(A)DAi

denote the Cartesian product of domains
of variables in P(A), αA|p(A) = π(a−|p(A)) and γC|p(C) = π(c−|p(C)).

Proposition 3. Suppose a CP-net and a π-pref net built from the same prefer-
ence statements. Let us add to the latter all constraints induced by the condition:
∀ A ∈ V s.t. Ch(A) �= ∅:

max
p(A)∈DP(A)

αA|p(A) <
∏

C∈Ch(A)

min
p(C)∈DP(C)

γC|p(C) (3)

Let �+
π be the resulting preference ordering built from the preference tables and

applying constraints between symbolic weights of the form of Eq. 3, then, ω �CP

ω′ ⇒ ω �+
π ω′.

Proof: The relation �CP is determined by comparing configurations ω, ω′ of
the form ω = a+ ∧ p(A) ∧ r and ω′ = a− ∧ p(A) ∧ r (where R = V \ (A ∪ P(A))),
that differ by one flip of variable A. So the local preference p(A) : a+ � a−

is equivalent to have ω �CP ω′ under ceteris paribus assumption, and also
equivalent to have π(a−|p(A)) < π(a+|p(A)) = 1 in the corresponding π-pref
net based on the same preference tables.

Now let us show that ∀A ∈ V, ∀p(A) ∈ DP(A) and every instantiation r of
the variables in V \ ({A}∪P(A)), the local preference π(a−|p(A)) < π(a+|p(A))
implies π(a− ∧ p(A) ∧ r) < π(a+ ∧ p(A) ∧ r) under the condition expressed by
Eq. (3). Consider the instantiation ch(A) = ∧C∈Ch(A)ωC , where ωC ∈ {c,¬c},
of the children of A such that ch(A) ∧ o = r (i.e. O = V \ (A ∪ P(A) ∪ Ch(A)).
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The chain rule states (Eq. (1)):
π(ω′) =

∏
B∈V π(ω′

B |ω′
P(B)) =

π(a−|p(A))·∏C∈Ch(A)π(ω′
C |p′(C))·∏B �∈{A}∪Ch(A) π(ω′

B |ω′
P(B)).

Clearly the last term does not depend on A and is thus a constant β. So
π(ω′) = β · αA|p(A) · ∏

C∈Ch(A) π(ω′
C |p′(C)).

Likewise, since ω = a+ ∧ p(A) ∧ ch(A) ∧ o, we have
π(ω) = β · ∏

C∈Ch(A) π(ωC |p(C)), since π(a+|p(A)) = 1. Note that while p′(C)
is of the form a− ∧ p−A(C) where P−A(C) is the set of parents of C but for A,
p(C) is of the form a+ ∧ p−A(C).

So the inequality π(ω) > π(ω′), present in the CP-net, requires:
∏

C∈Ch(A)

π(ωC |p(C)) > αA|p(A) ·
∏

C∈Ch(A)

π(ω′
C |p′(C)).

Condition (3) implies αA|p(A) <
∏

C∈Ch(A) π(ωC |p(C)), which implies the above
inequality. It proves that, under Condition (3), ω �CP ω′ implies ω �+

π ω′. ��
This proposition ensures that the ordering induced by the joint possibility

distribution of a π-pref net enhanced by constraints of the form (3) can refine the
CP-net ordering having the same preference tables, provided that suitable con-
straints are added at each node A ∈ V between the local conditional possibility
distribution at this node and the product of possibility degrees of the children
of A. It comes down to constraints between each symbolic weight and a product
of other ones. Indeed the less preferred value, min(π(a|p(A), π(¬a|p(A)), of A
in the context of the parents p(A) of A is a symbolic weight (non instantiated
possibility degree). In other words, the inequality ensures that the less preferred
value of each A given p(A) is strictly less preferred than the product of the less
preferred values of the children of A. This result is the symbolic counterpart of
the one in [13], using preference networks with numerical ranking functions.

Example 5. In the graph of Fig. 3 induced by the π-pref net of Example 2,
Proposition 3 leads us to add conditions α < min(γ1, γ2) · min(β1, β2) and
max(β1, β2) < min(δ1, δ2). Clearly these conditions are too strong here. First
some of the products like γ1β2 never appear in Fig. 3. Moreover, the reader can
check that adding constraints β1γ1 > α and βi < δi, (i = 1, 2) turns the configu-
ration graph of Fig. 3 into the CP-net-induced configuration graph of Fig. 2.

Instead of imposing priority of parents over children, we can also add the
ceteris paribus constraints to the π-pref net directly, considering only worsening
flips. Let ω, ω′ differ by one flip, and such that none of ω �π ω′, ω′ �π ω
holds, and moreover, ω �CP ω′. We must enforce the condition π(ω) > π(ω′).
Suppose the flipping variable is A. Clearly, A ∈ S(ω), but A �∈ S(ω′). Let α be
the possibility degree of A when it takes the bad value in context ωp(A) (it is
1 when it takes the good value). When flipping A from a good to a bad value,
only the quality of the children variables Ch(A) of A may change. Ch(A) can be
partitioned into at most 4 sets, Ch−

−(A) (resp. Ch−
+(A), Ch+

−(A), Ch+
+(A)), which
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represents the set of children of A whose values remain bad (resp. change from
good to bad, from bad to good, and stay good) when flipping A from a+ to a−.
Strictly speaking these sets depend upon ω. Then it can be easily checked that:

π(ω) = 1 ·
∏

Ci∈Ch+
−(A)

γi ·
∏

Cj∈Ch−
−(A)

γj · β

π(ω′) = α ·
∏

Ck∈Ch−
+(A)

γk ·
∏

Cj∈Ch−
−(A)

γj · β

where β is a product of symbols, pertaining to nodes other than A and its
children, that remain unchanged by the flip of A. Then the constraint π(ω) >
π(ω′) comes down to the inequality:

∏

Ci∈Ch+
−(A)

γi > α ·
∏

Ck∈Ch−
+(A)

γk (4)

where symbols appearing on one side do not appear on the other side. Such
constraints are clearly weaker than Condition (3) but are sufficient to retrieve all
the preferences of the CP-net. Note that the preferences ω �π ω′ and ω �CP ω′

conjointly hold in both approaches whenever A has no child node, and more
generally whenever the worsening flip on A corresponds to no child variable
moving from a bad to a good state, i.e. Ch+

−(A) = ∅. In fact, condition (4) holds
for all preference arcs in the configuration graph of the CP-net, whether this
preference appears in the π-pref net or not. We get the following result.

Proposition 4. Consider a CP-net and the preference relation �+
π on config-

urations built from the same preference tables by adding all constraints of the
form (4) between configurations differing by one flip to the preferences of the
form ω �π ω′. Then:

ω �CP ω′ ⇒ ω �+
π ω′

Proof: Indeed, first the preferences according to �CP and �π do not contradict
each other, per Proposition 2. Then we add constraints to the π-pref net for all
CP-net worsening flips that are not captured by �π, using constraints (4). So
we have then captured the whole preference graph of the CP-net, plus possibly
other preferences between configurations.

In the transformation of a CP-net into a π-pref net, we keep the same graph-
ical structure and the tables are filled directly from the preference statements
of the CP-net. Besides, we must point out that, when mimicking CP-nets, con-
straints are not elicited from the user but computed directly from the graph
structure.

Example 6. The above constraints (4) that must be added to the π-pref config-
uration graph of Fig. 3 are precisely those found to be necessary and sufficient in
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Example 5 to recover the CP-net ordering, i.e., α < β1γ1, β1 < δ1 and β2 < δ2.
Note that the number of additional constraints to be added to capture the CP-net
comparisons missed by the π-pref net is quite small. For instance, the number of
constraints here is 4 against 120 potential comparisons.

So, in the example, we exactly capture the preference graph of a CP-net using
additional constraints between products of symbolic weights. The above con-
siderations thus encourage us to study whether π-pref nets without constraints
are refined by CP-nets, namely if the configuration graph of the former contains
less strict preferences between configurations than the one of the latter, so that
adding the constraints (4) are enough to simulate a CP-net by a π-pref net with
constraints. Note that if it were not the case, it would mean that CP-nets do
not respect Pareto-ordering.

4.2 Towards Exact Representations of CP-nets by π-pref nets

In this subsection, we consider the inclusion-ordering. One may wonder if there
may exist some configurations that can be compared by the inclusion-based
ordering, while they remain incomparable for CP-nets. This is not the case in
our running example.

Example 7. Consider the top configuration ω′ = t1p1c1s2 which inclusion-
dominates ω = t2p2c2s1 in the π-pref net configuration graph in Fig. 3, since the
former has good values for all variables and only the value t2 is bad in the latter,
i.e., S(ω′) = {T, P,C, S} and S(ω) = {P,C, S}. But the two configurations are
far away in terms of flips since Dω,ω′

= {T, P,C, S}. They can, however, be
related by a chain of worsening flips. Namely, as S(ω′) \ S(ω) = {T}, we must
flip T first, and ω1 = t1p2c2s1, with S(ω1) = {T,C} so S(ω′) \ S(ω1) = {P, S}
and Dω1,ω′

= {P,C, S}. We now must flip P and get ω2 = t1p1c2s1 with
S(ω2) = {T, P} = Dω2,ω′

. As S(ω′) \ S(ω2) = {C,S}, we must flip C, and
ω3 = t1p1c1s1, with S(ω3) = {T, P,C} so S(ω′) \ S(ω3) = {S} = Dω3,ω′

. We
now must flip S and get ω4 = t1p1c1s2 = ω′.

The question whether the preference ordering of configurations induced by
CP-nets is consistent with the ordering between the sets of variables that take
good values in agreement with the preference tables seems to have been over-
looked so far in the CP-net literature. The inclusion ordering between sets of
variables with satisfactory values is intuitive in the sense that if a configuration
ω violates all the preference statements violated by another configuration ω′ plus
some other(s), then ω′ should indeed be strictly preferred to ω. The consistency
of CP-nets with inclusion, namely the property

S(ω1) ⊂ S(ω2) ⇒ ω2 �CP ω2 (*)

can be naturally conjectured since the opposite case would cast a doubt on the
rationality of such networks. Proposition 2 proves a weak consistency between
them. However, at this stage providing a formal complete proof looks tricky
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and besides, is not directly related to the expressivity of π-pref nets, the very
topic of this paper. The results in the following are conditioned by the truth of
the conjecture, or are restricted to those CP-nets that agree with the inclusion-
based orderings. Based on this assumption, Proposition 5 indicates that the CP-
net ordering refines, hence is consistent with, the ordering induced by a π-pref
net built from the same preference specification. This is because the inclusion-
ordering refines the Pareto (or π-pref net) ordering.

Proposition 5. Consider a CP-net that refines the inclusion-based ordering and
a π-pref net built from the same preference statements, we have:

ω′ �π ω ⇒ ω′ �CP ω

Let us now prove that, if the conjecture (*) is valid, we are able to exactly
induce the CP-net ordering from the π-pref net ordering by adding suitable con-
straints between symbolic weights or their products. First, we have seen that we
can add to the π-pref net configuration graph all missing preference statements
induced by the CP-net and not already present in the π-pref net configuration
graph. These statements concern all pairs (ω, ω′) that differ by one flip and such
that π(ω) and π(ω′) are not comparable. Note that adding such preference state-
ments to the Pareto configuration graph in case of Pareto-incomparability yields
the CP-net configuration graph (up to transitive closure).

The question remains whether we can express the latter in terms of additional
constraints between symbolic weights or products thereof.

Proposition 6. Consider a CP-net that refines the inclusion-based ordering and
the preference relation �+

π on configurations built from the same preference tables
by enforcing all constraints of the form (4) between configurations differing by
one flip. Then:

ω �CP ω′ ⇔ ω �+
π ω′

Proof: (⇒) This direction is proved by Proposition 4. (⇐) As ω �π ω′ ⇒
ω �CP ω′ by assumption, adding ceteris paribus constraints corresponding to
worsening flips to �π will not produce by transitivity any preference relation
not in �CP . ��

It is clear that, beside ceteris paribus constraints, other constraints could be
added to a π-pref net, that cannot be expressed by a CP-net, and that account
for different types of preference information. This fact suggests that π-pref nets
with constraints have a better expressive power and are more flexible than CP-
nets (known as a powerful qualitative model), and provide a general class of
qualitative graphical models where the ceteris paribus ordering could be further
refined without going numerical (i.e. unlike UCP-nets). It is clear therefore that
the constraints added to refine this order should, in this case, be consistent with
ceteris paribus. Finally, π-pref nets are sometimes able to represent preference
orderings when CP-nets fail to do it, as shown in the example below [1].
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Example 8. Let us consider two binary variables A and B standing respec-
tively for “vacations” and “good weather”. Suppose that we have the follow-
ing preference ordering: ab � ¬a¬b � a¬b � ¬ab. We observe that this com-
plete order cannot be represented by a CP-net. In fact, given two variables
we can define two possible structures: either A depends on B or conversely.
But, none of them are capable to capture this total ordering in the CP-net set-
ting. Indeed, this total order exhibits a violation of the Ceteris Paribus prin-
ciple. However, such preferences can be represented by a joint possibility dis-
tribution such that: π(ab) > π(¬a¬b) > π(a¬b) > π(¬ab). Thus, we have
� : a � ¬a, a : b � ¬b and ¬a : ¬b � b. It corresponds to a network with two
nodes and their corresponding conditional possibility distributions are: π(a) = 1,
π(¬a) = α, π(b|a) = 1, π(b|¬a) = γ, π(¬b|a) = β and π(¬b|¬a) = 1. This yields
π(ab) = 1 > π(¬a¬b) = α > π(a¬b) = β > π(¬ab) = αγ taking α > β and
β = γ.

5 Related Works

Despite the existence of various graphical models for preferences [3], only few
works have been concerned in comparing their expressive power. We can, in
particular, mention two interesting results. The first concerns OCF-nets, which
are preference networks where possibility distributions are replaced by ranking
(ordinal conditional) functions (OCF) valued in the set of integers and the chain
rule is additive. These functions may be transformed into possibility distrib-
utions [12]. [13] proved that OCF-nets can refine CP-net orderings. Precisely,
OCF-nets will always lead to total orderings that are compatible with CP-nets.
To do so they use a set of particular constraints to be imposed on their integer
weights, which basically correspond to our constraints (3), albeit between numer-
ical values. In contrast, the use of symbolic weights in our approach preserves
the partiality of the ordering, and, if the CP-net order does refine the inclusion
ordering, the CP-net configuration graph can be exactly recovered. Moreover the
use of symbolic weights does not commit us to the choice of particular numerical
values.

There were several attempts to represent CP-net orderings using a possi-
bilistic logic base (a logical counterpart of π-pref nets), where the product is
replaced by the minimum. See [10] for a bibliography and a discussion. It was
observed that an exact logical representation of CP-nets was not possible when
variables in the net have several children variables even though good approxi-
mations could be built. This is because additional constraints in this framework
compare individual symbolic weights, not product thereof.

Some extensions of CP-nets can be considered as akin to π-pref nets. TCP-
nets [9] also add priority constraints between variable nodes, that we can render
in π-pref nets by inequalities between symbolic weights pertaining to different
CP-tables. Utility-enhanced CP-nets (UCP-nets) [6] add additive utility func-
tions to CP-nets in order to encode total orderings consistent with the ceteris
paribus assumption. To do so, linear constraints are added on utility values that
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are somewhat similar to constraints (4). They express that for any variable,
given an instantiation of its parents, the utility gain in choosing the good value
rather than the bad one in this context, should be more important than the
maximum value of the sum of the possible utility loss for its children over all
possible instantiations of the other related variables. Up to a log transformation
this is like comparing products.

π-pref nets can also be compared with so-called CP-theories [16]. The lat-
ter interpret conditional preference statements assuming they hold irrespec-
tively of the values of other variables. It means that any configuration ω such
that ωA = a+ and ωP(A) = p(A) is preferred to any configuration ω such
that ωA = a− and ωP(A) = p(A). In terms of possibility functions, it reads
Δ(p(A) ∧ a+) > Π(p(A) ∧ a−), where Δ(ϕ) = minω|=ϕ π(ω). In [16] are studied
hybrid nets where some variables are handled ceteris paribus, while the prefer-
ence holds irrespectively of other variables. In π-pref nets preference statements
are interpreted by π(a+|p(A)) > π(a−|p(A)) which is provably equivalent to
Π(p(A) ∧ a+) > Π(p(A) ∧ a−), i.e. comparing best configurations. It is clear
that if ω �CP ω′ holds, then ω � ω′ holds in a CP-theory, where conditional
preference holds irrespectively of other variables, because the CP-theory gen-
erates more preference constraints between configurations, including the ones
induced by the ceteris paribus assumption. Constraints induced by CP theories
can thus be captured in π-pref nets by adding more constraints between products
of symbolic weights.

6 Conclusion

In this paper, we have explored the expressive power of π-pref nets. First, we
have proved that the CP-net configuration orderings cannot contradict those
of the π-pref nets and we found suitable additional constraints to refine π-pref
net orderings in order to encompass ceteris paribus constraints of CP-nets. CP-
nets would then be exactly captured by π-pref nets with constraints if their
configuration graph did refine the inclusion-based ordering. This indicates that
CP-nets potentially represent a subclass of π-pref nets with constraints. One may
further refine CP-net preferences by adding more constraints between symbolic
weights appearing in π-pref nets. For instance, one may introduce priorities
between two parents nodes or between two child nodes.

Regarding query processing, finding an optimal configuration is straightfor-
ward, for both CP-nets and π-pref nets. In fact, it consists in traversing the net-
work from root to leaves and choose the best value for each variable depending on
its parents configuration. The complexity is linear with the size of the network.
As to comparing two configurations, the dominance query for CP-nets consists
in finding a chain of worsening flips from one configuration to the other. It is NP-
complete to PSPACE-complete depending on the graph structure [8]. For π-pref
nets, without constraints this query comes down to a Pareto-comparison of vec-
tors symbolic weights. If there are constraints, the approach requires a reordering
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of coefficients and the complexity is at most equal to O(n!) [2]. Dominance and
optimization queries on instantiated π-pref nets respecting constraints will have
the same complexities as for UCP-nets.
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Abstract. Čyras and Toni claimed that assumption-based argumenta-
tion equipped with preferences (p ABA) cannot solve two examples pre-
sented by them since the given preferences don’t work in their p ABAs
whose underlying ABAs have a unique extension, and hence they pro-
posed ABA+. However in p ABAs encoded by them, we found that they
mistook hypotheses contained in their example for assumptions, while
Čyras ignored some constrains contained in another example. Hence
against their claim, first this paper shows that p ABAs in which we
expressed the respective knowledge correctly give us solutions of them
without any difficulties. Second we present the technique to represent
hypotheses in ABA as well as a method to incorporate some kind of con-
straints in p ABA. Finally we show a famous non-monotonic reasoning
example with preferences that ABA+ leads to incorrect results.

1 Introduction

Assumption-Based Argumentation (ABA) [1,9] is a general-purpose argumenta-
tion framework whose arguments are structured. It does not have a mechanism
to deal with the given explicit preferences though explicit preferences are often
required to resolve conflicts between arguments in human argumentation.

Recently to overcome difficulties of the existing approaches that map the
explicit preferences into ABA, we proposed an assumption-based argumenta-
tion framework equipped with preferences (p ABA) [22,23], which incorporates
explicit preferences over sentences into ABA. As discussed in [23], our approach
introducing preferences over sentences in the framework is inspired by prior-
itized circumscription [15,16], namely, the most well-established formalization
for commonsense reasoning with preferences that enables us to represent vari-
ous preferences by means of priorities over its minimized predicates. In regard
to the semantics of p ABA, we provide a method to ‘lift’ a sentence ordering
given in p ABA to the argument ordering. Accordingly we can freely give any
semantics to the proposed p ABA based on either an argument ordering or a
sentence ordering. W.r.t. other frameworks (e.g. ASPIC+ [17,18]), the lift from
preferences to argument orderings is also performed. However based on their
argument orderings, the altered argumentation framework with a modified suc-
cessful attacks (i.e. defeat) is constructed, to which Dung’s argument-based
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 178–193, 2017.
DOI: 10.1007/978-3-319-67582-4 13
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semantics is applied. This denotes that the extension of the altered argumenta-
tion framework is not always an extension of the initial argumentation frame-
work without preferences but a modified one, which is in conflict with our phi-
losophy based on the idea to treat preferences in prioritized circumscription
[15,16]. Now recall that, when every model is a Herbrand model, a model of
prioritized circumscription expressed by Circum(T ;P 1 > · · · >P k;Z) is a min-
imal one among Herbrand models of the first order theory T w.r.t. the model
(i.e. structure) ordering ≤P 1>···>Pk;Z lifted from the given predicate ordering
P 1 > · · · > P k. Thus in a similar way, we presented a method to lift a sentence
ordering (resp. an argument ordering) to the extension ordering (�ex). Thanks
to the extension ordering, the semantics of p ABA is given by P-argument
extensions along with P-assumption extensions which are maximal ones w.r.t.
the extension ordering �ex among extensions of its underlying ABA. Thus in
a special case of Circum(T ;P 1 > · · · > P k;Z) where T has a unique model,
Circum(T ;P 1> · · · >P k;Z) has a unique model which coincides with the model
of T since the unique model of T is always minimal w.r.t. ≤P 1>···>Pk;Z regardless
of the given P 1 > · · · > P k. This means that when T has a unique model, any
of other interpretations of T which are inevitably inconsistent is never selected
as a model of Circum(T ;P 1> · · ·>P k;Z) by taking account of priorities. Hence
inheriting the same property, in a special case of p ABA such that its underlying
ABA (which satisfies rationality postulates [10]) has a unique extension, p ABA
〈L,R,A, C,�〉 has a unique P extension which coincides with the extension of its
underlying ABA since the unique argument extension of such ABA is maximal
w.r.t. �ex regardless of the given �.

As for this property, Čyras and Toni claimed that a p ABA framework can-
not solve two examples (i.e. [5, Example 1], [4, Example 1]) since the given
preferences don’t work in p ABAs encoded by them whose underlying ABAs
have a unique extension, and hence they proposed ABA+ [5]. However in their
p ABAs, we found that they mistook hypotheses contained in [5, Example 1] for
assumptions, while Čyras ignored some constrains contained in another one [4,
Example 1]. Hence against their claim, first we show that p ABAs in which we
expressed the respective knowledge correctly give us solutions of them without
any difficulties, and the given preferences work well in the p ABAs where the
underlying ABAs have the multiple extensions. Second we present the technique
to represent hypotheses in ABA as well as a method to incorporate some kind of
constraints in ABA and p ABA. Finally, and perhaps most importantly, we show
a famous non-monotonic reasoning example involving the use of preferences that
ABA+ leads to incorrect results, while p ABA avoids this problem.

This paper is organized as follows. Section 2 gives preliminaries. Section 3
presents how to represent hypotheses in ABA. Section 4 presents an ABA
equipped with preferences and constrains. Section 5 discusses related work.
Section 6 concludes this paper while showing a counterexample to ABA+.
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2 Preliminaries

Definition 1 (ABA). An assumption-based argumentation framework (an
ABA framework, or an ABA, for short) [1,9,13] is a tuple 〈L,R,A, C〉, where

– (L,R) is a deductive system, with L a language consisting of countably many
sentences and R a set of inference rules of the form b0 ← b1, . . . , bm(m ≥ 0),
where b0 (resp. b1, . . . , bm) is called the head (resp. the body) of the rule.

– A ⊆ L, is a (non-empty) set, referred to as assumptions.
– C is a total mapping from A into 2L \ {∅}, where each c ∈ C(α) is a contrary

of α ∈ A.
We enforce that ABA frameworks are flat, namely assumptions do not occur as
the heads of rules. For a special case such that each assumption has the unique
contrary sentence (i.e. |C(α)|=1 for ∀α ∈ A), an ABA framework is usually
defined as 〈L,R,A, ¯̄ 〉, where a total mapping ¯̄ from A into L is used.

In ABA, an argument for (the claim) c ∈ L supported by K ⊆ A (K  c in
short) is a (finite) tree with nodes labelled by sentences in L or by τ , and attacks
against arguments are directed at the assumptions in their supports as follows.

– An argument K  c attacks an assumption α iff c ∈ C(α).
– An argument K1  c1 attacks an argument K2  c2 iff c1 ∈ C(α) for ∃α ∈ K2.

Corresponding to ABA F = 〈L,R,A, C〉, the abstract argumentation framework
AFF = (AR, attacks) is constructed based on arguments and attacks addressed
above, and all argumentation semantics [7] can be applied to AFF . For a set Args
of arguments, let Args+={A| there exists an argument in Args that attacks A}.
Args is conflict-free iff Args ∩ Args+ = ∅. Args defends an argument A iff each
argument that attacks A is attacked by an argument in Args.

Definition 2 [2,7,9,13]. Let 〈L,R,A, C〉 be an ABA framework, and AR the
associated set of arguments. Then Args ⊆ AR is: admissible iff Args is conflict-
free and defends all its elements; a complete argument extension iff Args is
admissible and contains all arguments it defends; a preferred (resp. grounded)
argument extension iff it is a (subset-)maximal (resp. (subset-)minimal) complete
argument extension; a stable argument extension iff it is conflict-free and Args∪
Args+ = AR; an ideal argument extension iff it is a (subset-)maximal complete
argument extension that is contained in each preferred argument extension.

The various ABA semantics [1] is also described in terms of sets of assumptions.
– A set of assumptions Asms attacks an assumption α iff Asms enables the

construction of an argument for the claim ∃c ∈ C(α).
– A set of assumptions Asms1 attacks a set of assumptions Asms2 iff Asms1

attacks some assumption α ∈ Asms2.

For a set of assumptions Asms, let Asms+ = {α ∈ A|Asms attacks α}. Asms
is conflict-free iff Asms ∩ Asms+ = ∅. Asms defends an assumption α iff each
set of assumptions that attacks α is attacked by Asms. Assumption extensions
are defined like argument extensions as follows.
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Definition 3 [2,9,13]. Let 〈L,R,A, C〉 be an ABA framework. Then Asms is:
admissible iff Asms is conflict-free and defends all its elements; a complete
assumption extension iff Asms is admissible and contains all assumptions it
defends; a preferred (resp. grounded) assumption extension iff it is a (subset-)
maximal (resp. (subset-)minimal) complete assumption extension; a stable
assumption extension iff it is is conflict-free and Asms ∪ Asms+ = A; an ideal
assumption extension iff it is a (subset-)maximal complete assumption extension
that is contained in each preferred assumption extension.

Let Sname ∈ {complete, preferred, grounded, stable, ideal}. It is shown that
there is a one-to-one correspondence between assumption extensions and argu-
ment extensions of a given ABA 〈L,R,A, C〉 under the Sname semantics as
follows.

Theorem 1 [2,22,23]. Let 〈L,R,A, C〉 be an ABA framework, AR be the
set of all arguments that can be constructed using this ABA framework, and
Asms2Args :2A → 2AR and Args2Asms :2AR → 2A be functions such that,

Asms2Args(Asms) = {K  c ∈ AR | K ⊆ Asms},

Args2Asms(Args) = {α ∈ A | α ∈ K for an argument K  c ∈ Args}.

Then if Asms ⊆ A is a Sname assumption extension, then Asms2Args(Asms)
is a Sname argument extension, and if Args ⊆ AR is a Sname argument exten-
sion, then Args2Asms(Args) is a Sname assumption extension.
Proof. In [23], proofs for Sname ∈ {complete, preferred, grounded, stable} are
given. For Sname = ideal, it is also easily proved like [2,8]. �
For notational convenience, let claim(Ag) stand for the claim c of an argument
Ag such that K  c, and Concs(E) = {c ∈ L | K  c ∈ E} for an extension E.

Definition 4 (ABA equipped with preferences [22,23]). An assumption-
based argumentation framework equipped with preferences (a p ABA framework,
or p ABA for short) is a tuple 〈L,R,A, C,�〉, where
– 〈L,R,A, C〉 is an ABA framework,
– �⊆ L×L is a sentence ordering called a priority relation, which is a preorder,

that is, reflexive and transitive. As usual, c′ ≺ c iff c′ � c and c �� c′. For any
sentences c, c′ ∈ L, c′ � c (resp. c′ ≺ c) means that c is at least as preferred
as c′ (resp. c is strictly preferred to c′).

For a special case such that each assumption has the unique contrary sen-
tence (i.e. |C(α)|=1 for ∀α ∈ A), a p ABA framework may be represented as
〈L,R,A, ¯̄ ,�〉 instead of 〈L,R,A, C,�〉, where a total mapping ¯̄ from A into
L is used instead of a total mapping C from A into 2L \ {∅} like ABA.

For p ABA 〈L,R,A, C,�〉, let F = 〈L,R,A, C〉 be the associated ABA and
AFF = (AR, attacks). Then ≤⊆ AR × AR is the argument ordering over AR
constructed from � as follows.

For any arguments Ag1, Ag2 ∈ AR such that K1  c1 and K2  c2,

Ag1 ≤ Ag2 iff c1 � c2 for ci=claim(Agi) (1 ≤ i ≤ 2)
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Definition 5 (Preference relations �ex). Given p ABA 〈L,R,A, C,�〉, let
E be the set of Sname argument extensions of the AA framework AFF =
(AR, attacks) corresponding to the ABA framework F = 〈L,R,A, C〉 under
Sname semantics and f : 2AR × 2AR → 2AR be the function s.t. f(U, V ) =
{X| claim(X) = claim(Y ) for X ∈ U, Y ∈ V }. Then �ex over E (i.e.
�ex⊆ E ×E) is defined as follows [22,23]. For any Sname argument extensions,
E1, E2 and E3 from E,

1. E1 �ex E1,
2. E1 �ex E2 if for some argument Ag2 ∈ E2 \ Δ2,

(i) there is an argument Ag1 ∈ E1 \ Δ1 s.t. claim(Ag1) � claim(Ag2) and,
(ii) there is no argument Ag3 ∈ E1 \ Δ1 s.t. claim(Ag2) ≺ claim(Ag3),

where Δ1 = f(E1, E2) and Δ2 = f(E2, E1),
3. if E1 �ex E2 and E2 �ex E3, then E1 �ex E3;

�ex is a preorder. We write E1 �ex E2 if E1 �ex E2 and E2 ��ex E1 as usual.

The preference relation �ex can be also defined by using the argument ordering
≤ in a way that claim(Ag1) � claim(Ag2) and claim(Ag2) ≺ claim(Ag3) is
replaced with Ag1 ≤ Ag2 and Ag2 < Ag3 in item no. 2 of Definition 5 [22,23].

Let Sname ∈ {complete, preferred, grounded, stable, ideal}. The semantics
of p ABA is given by Sname P extensions which are the maximal ones w.r.t.
�ex among Sname extensions as follows.

Definition 6 (P-extensions [22,23]).Givenap ABAframework 〈L,R,A,C,�〉,
let E be the set of Sname argument extensions of AFF = (AR, attacks) correspond-
ing to the ABA framework 〈L,R,A, C〉 under Sname semantics. Then a Sname
argument extension E ∈ E is called a Sname P-argument extension of the p ABA
framework if E �ex E′ implies E′ �ex E (with respect to �) for any E′ ∈ E. In
other words, E is a Sname P-argument extension of a p ABA iff there is no Sname
argument extension E′ ∈ E such that E �ex E′. For a Sname P-argument exten-
sion E, Args2Asms(E) is called a Sname P-assumption extension. Both a Sname
P-argument extension and a P-assumption extension may be called a Sname P
extension for short.

3 Representing Hypotheses in ABA

In logic programming, NAF literals are used to perform non-monotonic and
default reasoning, while hypotheses (i.e. abducibles, abducible facts) are used to
perform abductive reasoning or hypothetical reasoning. In [14,20], it is shown
that an abductive logic program (or an abductive program) can be transformed
into a logic program without abducibles, where for each abducible a, a new atom
a′ is introduced representing the complement of a and a new pair of rules:

a ← not a′, a′ ← not a

is added to the program. Such transformation for hypotheses was also used to
compute abductive argumentation [21].
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In ABA, hypotheses are different from assumptions as abducible literals are
different from NAF literals in logic programming. Hence when hypotheses (or
abducible facts) are contained in the knowledge, each one, say a, can be also
expressed by a new pair of rules in ABA as follows:

a ← δ, a′ ← δ′

where a′ is a newly introduced sentence representing the complement of a, while
δ, δ′ are newly introduced assumptions such that δ = a′, δ′ = a.

Example 1. Consider the example shown in [5, Example 1] as follows:
“Zed wants to go out and two of his friends, Alice and Bob, are available. Best,
Zed would take them both, but as far as he knows, Bob does not like Alice,
although she does not have anything against Bob. If Zed offers to both of them
at the same time, Bob may be in the awkward position to refuse Alice’s company.
Offering separately, Alice is up for all three going, while Bob insists on cutting
Alice out. Zed may opt for the latter option. However, had Zed a preference
between the two, - say Alice were a better friend of his - then he would go out
with her.” �

In what follows, a (resp. b) denotes that Alice (resp. Bob) might go out with
Zed, while ¬a (resp. ¬b) denotes the negation of a (resp. b). Since Alice (resp.
Bob) might go out with Zed or might not, a and b are not assumptions but
hypotheses. Hence the situation about them is expressed by the following rules:

a ← α, ¬a ← α′, b ← β, ¬b ← β′,

where A = {α, α′, β, β′}, α = ¬a, α′ = a, β = ¬b and β′ = b. The opted option
such that Bob insists on cutting Alice out is expressed by ¬a ← b. Preferences
such that best, Zed would take them both, but he prefers Alice to Bob are
expressed by:

{¬a,¬b} � {b} � {a} � {a, b} (1)

According to [23, Definition 25], preferences between conjunctive knowledge
shown above can be encoded in p ABA 〈L,R,A, ¯̄ ,�〉 by introducing new rules:

c1 ← a, b, c2 ← ¬a,¬b,

along with preferences:

c2 � b � a � c1 (a, b, c1, c2 ∈ L \ A) (2)

Then based on p ABA consisting of R= {¬a ← b, a ← α, ¬a ← α′, b ←
β, ¬b ← β′, c1 ← a, b, c2 ← ¬a,¬b}, A = {α, α′, β, β′}, α = ¬a, α′ = a,
β = ¬b, β′ = b and c2 � b � a � c1, arguments and attacks are constructed as
follows:

• A : {α}  a • A′ : {α′}  ¬a • B : {β}  b • B′ : {β′}  ¬b
• X : {β}  ¬a • C1 : {α, β}  c1 • C2 : {α′, β′}  c2 • ξ : {α}  α
• ξ′ : {α′}  α′ • η : {β}  β • η′ : {β′}  β′



184 T. Wakaki

attacks={(A,A′), (A, ξ′), (A,C2), (A′, A), (A′, ξ), (A′, C1), (X,A), (X, ξ), (X,C1),
(B,B′), (B, η′), (B,C2), (B′, B), (B′, η), (B′,X), (B′, C1)}.

The underlying ABA has the preferred (resp. stable) argument extensions Ei

(1 ≤ i ≤ 3) as follows:

E1 = {A′, B,X, ξ′, η}, with Concs(E1) = {¬a, b, α′, β},
E2 = {A,B′, ξ, η′}, with Concs(E2) = {a,¬b, α, β′},
E3 = {A′, B′, C2, ξ

′, η′}, with Concs(E3) = {¬a,¬b, c2, α
′, β′}.

Due to E3 � E1 � E2 derived from (2), E2 is the unique preferred (resp.
stable) P-argument extension in the p ABA. Hence against Čyras and Toni’s
claim [5], E2 gives us the solution that Zed would go out with Alice and without
Bob.

Remark: In [5], Čyras and Toni expressed this example by p ABA consisting of
R = {α ← β}, A = {α, β}, β � α. Then they claimed that regarding arguments
A for Alice and B for Bob, A for Alice cannot be obtained from the extension
of p ABA encoded by them since its underlying ABA has the unique extension
{B}, where attacks = {(B, A)} and B < A. Therefore the reason why they could
not obtain the solution based on p ABA is that they mistook the hypothetical
knowledge a, b for assumptions α, β; and it is not due to the property of p ABA.

4 Assumption-Based Argumentation Equipped with
Preferences and Constraints

4.1 Problematic Knowledge Representation

As addressed in introduction, Čyras [4] claimed that p ABA cannot solve the
example called “Cakes” presented by him, whose scenario is shown as follows.

Example 2 (Cakes [4, Example 1]). There are three pieces of cakes on a table: a
piece of Almond cake, a Brownie, and a piece of Cheesecake. You want to get as
many cakes as possible, and the following are the rules of the game.

1. You can take cakes from the table in two ‘rounds’:
(a) In the first round you can take at most two cakes;
(b) In the second round you can take at most one cake.

2. If you take Almond cake and Cheesecake in the first round, Brownie will not
be available in the second round. (Nothing is known about other possible
combinations.)

3. Finally, very importantly, suppose that you prefer Brownie over Almond cake.
(No other preferences.)

Which pair(s) of cakes would you choose in the first round? �
The solution of Cakes is that “either a pair of Brownie cake and Cheesecake

or a pair of Almond and Brownie cakes is chosen in the first round”.
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In [4], Čyras expressed the knowledge of Cakes in p ABA consisting of infer-
ence rules R= {b ← a, c}, assumptions A = {a, b, c} and preference a < b,
and claimed that p ABA cannot obtain its solution since the given preference
doesn’t work in his p ABA whose underlying ABA has a unique extension. On
the other hand, he expressed the knowledge in ASPIC+ consisting of the strict
rules Rs = {a, c → ¬b, a, b → ¬c, b, c → ¬a}, premises Kp = {a, b, c} and pref-
erence a < b, and concluded that the ASPIC+ cannot obtain the solution since
three extensions exist under the Elitist comparison (resp. the Democratic com-
parison). Now recall the Prakken and Modgil’s result [17,18] that ABA is a
special case of ASPIC+ with only strict inference rules Rs, premises Kp [17] (or
assumptions Ka [18]) and no preferences. However for Cakes, there is no corre-
spondence between his ASPIC+ except preferences (i.e. Rs) and the underlying
ABA of his p ABA (i.e. R). This indicates that Čyras’ knowledge representation
for Cakes is problematic. Thereby for Cakes, let us construct the p ABA from
his ASPIC+ according to Prakken and Modgil’s result. Then we obtain p ABA
〈L,R,A, ¯̄ ,�〉, where R = {¬b ← a, c, ¬c ← a, b, ¬a ← b, c}, A = {a, b, c},
a = ¬a, b = ¬b, c = ¬c and a � b. We can construct arguments A: {a}  a,
B: {b}  b, C: {c}  c, A′: {b, c}  ¬a, B′: {a, c}  ¬b, C′: {a, b}  ¬c, and
obtain attacks = {(C′, C), (C′, A′), (C′, B′), (B′, B), (B′, A′), (B′, C′), (A′, A), (A′, B′),
(A′, C′)}. Its associated ABA has three extensions: E1 = {C, A, B′}, E2 = {B, C, A′},
E3 = {A, B, C′}. Since E1 �ex E2 is derived due to a � b, both E2 and E3
(resp. Args2Asms(E2) = {b, c}, Args2Asms(E3) = {a, b}) is obtained as the pre-
ferred and stable P-argument extensions (resp. P-assumption extensions). This
means that the solution is obtained based on the p ABA reconstructed from his
ASPIC+.

However it should be noted that the constraints no. 2 and no. 1 (b) in Cakes
are not expressed in Rs of his ASPIC+, while constraints no. 1 (a) and no. 1 (b)
are not expressed in R of his p ABA. In the following, we show that the solution
of Cakes can be obtained from each of three different p ABAs respectively where
the knowledge of Cakes is expressed in three different ways.

4.2 Solving Cakes Example Based on the Semantics of P ABA

p ABA with the contrary function C gives us the solution of Cakes as follows.

Example 3 (Cont. Example 2). Suppose that a, b, c stand for a piece of Almond
cake, a piece of Brownie, and a piece of Cheesecake respectively, while ai

(resp. bi, ci) (1 ≤ i ≤ 2) stands for the solution of the problem such that
Almond cake (resp. Brownie cake, Cheesecake) is taken at i-th round, where
A = {a1, b1, c1, a2, b2, c2}. Moreover the symbol t x1 (resp. t x2) denotes the
operation such that x ∈ {a, b, c} is taken in the first (resp. second) round, and the
symbol t xy1 denotes the operation such that both x ∈ {a, b, c} and y ∈ {a, b, c}
where x �= y are taken in the first round according to the rules of the game.
Then the cake example is modeled in p ABA FpABA = 〈L,R,A, C,�〉, where

– R= {t ab1 ← a1, b1, t bc1 ← b1, c1, t ca1 ← c1, a1, t a1 ← a1,
t b1 ← b1, t c1 ← c1, t a2 ← a2, t b2 ← b2, t c2 ← c2}
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– A = {a1, b1, c1, a2, b2, c2},
– C(a1) = {t a2, t bc1}, C(b1) = {t b2, t ca1}, C(c1) = {t c2, t ab1},

C(a2) = {t a1, t b2, t c2}, C(b2) = {t b1, t a2, t c2, t ca1},
C(c2) = {t c1, t a2, t b2} and ai � bj , ai � ai, bj � bj (1 ≤ i, j ≤ 2).

15 arguments are constructed in FpABA as follows.
• A1 : {a1}  t a1 • A2 : {a2}  t a2 • B1 : {b1}  t b1
• B2 : {b2}  t b2 • C1 : {c1}  t c1 • C2 : {c2}  t c2
• AB : {a1, b1}  t ab1 • BC : {b1, c1}  t bc1 • CA : {c1, a1}  t ca1
• α1 : {a1}  a1 • α2 : {a2}  a2 • β1 : {b1}  b1 • β2 : {b2}  b2
• γ1 : {c1}  c1 • γ2 : {c2}  c2

Then the associated ABA of FpABA has preferred and stable extensions as follows:
E1 = {A1, C1, α1, γ1, CA}, with Args2Asms(E1) = {a1, c1}
E2 = {A2, B1, C1, α2, β1, γ1, BC}, with Args2Asms(E2) = {a2, b1, c1}
E3 = {A1, B1, C2, α1, β1, γ2, AB}, with Args2Asms(E3) = {a1, b1, c2}

Since E1 �ex E2 is derived due to αi ≤ βj or ai � bj (1 ≤ i, j ≤ 2), both E2

and E3 (resp. {a2, b1, c1} and {a1, b1, c2}) are obtained as preferred and stable
P-argument extensions (resp. P-assumption extensions) in FpABA. Hence E2 and
E3 give us solution of Cakes that either a pair of Brownie cake and Cheesecake
or a pair of Almond and Brownie cakes is chosen in the first round.

4.3 Assumption-Based Argumentation Equipped with Preferences
and Constraints

In this subsection, we present a general method to express some kind of con-
straints in ABA 〈L,R,A, ¯̄ 〉 as well as p ABA 〈L,R,A, ¯̄ ,�〉. Moreover we show
that the solution of Cakes is also obtained by applying the method to p ABA.

Definition 7 (Constraints). Given an ABA framework 〈L,R,A, ¯̄ 〉, a rule
without head of the form:

← a1, . . . , am (or equivalently ← {a1, . . . , am})

is called a constraint, where ai ∈ A (1 ≤ i ≤ m).
In general, let bi∈L such that there exists an argument Bi  bi where Bi �= ∅.

Then ←b1, . . . , bm, or equivalently ← ⋃m
i=1{bi} stands for a set of the constraints

← ⋃m
i=1 Bi obtained by replacing {bi} with Bi⊆A in every possible way.

Satisfaction of constraints is defined as follows.

Definition 8 (Satisfaction).

– A set of assumptions Asms ⊆ A satisfies a constraint ← a1, . . . , am iff
{a1, . . . , am} �⊆ Asms holds.

– A set of assumptions Asms ⊆ A satisfies a set of constraints C
iff {a1, . . . , am} �⊆ Asms holds for ∀ ← a1, . . . , am ∈ C.



Assumption-Based Argumentation with Preferences and Constraints 187

Definition 9 (ABA equipped with constraints). Given an ABA framework
F = 〈L,R,A, ¯̄ 〉 and a set of constraints C, an ABA framework FC equipped with
constraints is defined as

FC = 〈L,R ∪ RC,A, ¯̄ 〉, where

RC = {¬ai ← a1, . . . , ai−1, ai+1, . . . , am| ← a1, . . . , am ∈ C, āi = ¬ai,
1 ≤ i ≤ m}.

Constrains defined in Definition 7 help users in expressing knowledge. And
furthermore they are useful to eliminate undesirable Sname extensions in ABA
just as integrity constraints are used to eliminate undesirable answer sets in
answer set programming [19,20]. (Details are omitted due to limitations of
space.)

The following properties hold for Fc.

Theorem 2. Asms ⊆ A is conflict-free in FC = 〈L,R ∪ RC,A, ¯̄ 〉 if and only
if Asms is conflict-free in F = 〈L,R,A, ¯̄ 〉 and satisfies a set of constraints C,
namely {a1, . . . , am} �⊆ Asms for ∀ ← a1, . . . , am ∈ C.

Proof. See Appendix. �

Theorem 3. A conflict-free set Asms in FC = 〈L,R ∪ RC,A, ¯̄ 〉 satisfies a set
of constraints C.

Proof. See Appendix. �

Proposition 1. In FC = 〈L,R∪RC,A, ¯̄ 〉, every Sname assumption extension
Asms ⊆ A satisfies a set of constraints C.

Proof. This is obviously proved based on Theorem 3. �

Example 4 (Cont. Example 2). Let us express the knowledge of Cakes except
preferences (i.e. the game rule no. 3) in ABA. Suppose that ai (resp. bi, ci)
(1 ≤ i ≤ 2) stands for the solution of the problem such that Almond cake (resp.
Brownie cake, Cheesecake) is taken at i-th round. Let A = {a1, b1, c1, a2, b2, c2}
and āi = ¬ai, b̄i = ¬bi, c̄i = ¬ci, where ¬ai (resp. ¬bi, ¬ci) denotes the negation
of ai (resp. bi, ci). Then

– the game rule no. 1 (a) is expressed by four constraints as follows:
← a1, b1, c1 ← a1, a2 ← b1, b2 ← c1, c2

– The game rule no. 1 (b) is expressed by three constraints as follows:
← a2, b2 ← b2, c2 ← c2, a2

– The game rule no. 2 is expressed by the rule as follows:
¬b2 ← c1, a1
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Cakes except preferences is modeled in ABA FC=〈L,R ∪ RC,A, ¯̄ 〉, where

– R = {¬b2 ← c1, a1}
– RC = {¬c1 ← a1, b1, ¬a1 ← b1, c1, ¬b1 ← c1, a1, ¬a2 ← a1,

¬a1 ← a2, ¬b2 ← b1, ¬b1 ← b2, ¬c2 ← c1, ¬c1 ← c2,
¬b2 ← a2, ¬a2 ← b2, ¬c2 ← b2, ¬b2 ← c2, ¬a2 ← c2, ¬c2 ← a2}

– A = {a1, b1, c1, a2, b2, c2}, and āi = ¬ai, b̄i = ¬bi, c̄i = ¬ci (i = 1, 2).

22 arguments are constructed in FC as follows.
• A1 : {a1}  ¬a2 • A2 : {a2}  ¬a1 • B1 : {b1}  ¬b2
• B2 : {b2}  ¬b1 • C1 : {c1}  ¬c2 • C2 : {c2}  ¬c1
• AB : {a1, b1}  ¬c1 • BC : {b1, c1}  ¬a1 • CA : {c1, a1}  ¬b1
• α1 : {a1}  a1 • α2 : {a2}  a2 • β1 : {b1}  b1 • β2 : {b2}  b2
• γ1 : {c1}  c1 • γ2 : {c2}  c2 • CA2 : {c1, a1}  ¬b2
• P1 : {a2}  ¬b2 • P2 : {a2}  ¬c2 • Q1 : {b2}  ¬a2

• Q2 : {b2}  ¬c2 • R1 : {c2}  ¬b2 • R2 : {c2}  ¬a2

Thus FC has three preferred and stable argument extensions Ei (resp. assumption
extensions asmsi = Args2Asms(Ei) satisfying constraints) (1 ≤ i ≤ 3) as follows:

E1 = {A1, C1, α1, γ1, CA,CA2}, with asms1 = {a1, c1}
E2 = {A2, B1, C1, α2, β1, γ1, BC, P1, P2}, with asms2 = {a2, b1, c1}
E3 = {A1, B1, C2, α1, β1, γ2, AB,R1, R2}, with asms3 = {a1, b1, c2}

Note that E1 (resp. E2, E3) as well as asms1 (resp. asms2, asms3) denote
that a pair of Almond and Cheesecake cakes (resp. a pair of Brownie cake and
Cheesecake, a pair of Almond and Brownie cakes) is chosen in the first round.

Definition 10 (ABA equipped with preferences and constraints). Given
an ABA framework F = 〈L,R,A, ¯̄ 〉, a set of constraints C and a sentence
ordering �⊆ L × L, an ABA framework FPC equipped with preferences � and
constraints C is defined as

FPC = 〈L,R ∪ RC,A, ¯̄ ,�〉, where

RC = {¬ai ← a1, . . . , ai−1, ai+1, . . . , am| ← a1, . . . , am ∈ C, āi = ¬ai,
1 ≤ i ≤ m}.

Example 5 (Cont. Example 4). By incorporating the preferences given in Cakes,
i.e. ai � bj (1 ≤ i, j ≤ 2) into the ABA FC shown in Example 4, we obtain
p ABA FPC = 〈L,R ∪ RC,A, ¯̄ ,�〉, where FC = 〈L,R ∪ RC,A, ¯̄ 〉 has three
preferred (resp. stable) argument extensions E1, E2, E3 as shown in Example 4.

Since E1 �ex E2 is derived due to αi ≤ βj or ai � bj (1 ≤ i, j ≤ 2), both E2

and E3 (resp. {a2, b1, c1} and {a1, b1, c2}) are obtained as preferred and stable
P-argument extensions (resp. P-assumption extensions) in FPC. Accordingly we
again obtain the solution of Cakes.



Assumption-Based Argumentation with Preferences and Constraints 189

4.4 Prioritized Logic Programming As Argumentation Equipped
with Preferences

In [23], we showed that p ABA can capture Sakama and Inoue’s preferred answer
sets of a prioritized logic program (PLP) [19]. Hence we show that the PLP
expressing the knowledge of Cakes as well as the p ABA instantiated with the
PLP enable us to obtain its solution based on the respective semantics as follows.

Example 6 (Cont. Example 2). Let ai (resp. bi, ci) (1 ≤ i ≤ 2) be a propositional
atom which means that Almond cake (resp. Brownie cake, Cheesecake) is taken
at i-th round. Then

• The game rule no. 1 (a) is expressed by rules of a normal logic program as
follows:
b1 ← not a1, c1 ← not a1, c1 ← not b1, a1 ← not b1, a1 ← not c1,
b1 ← not c1

• The game rules no. 1 (b) and no. 2 are expressed by rules as follows:
a2 ← not a1, b2 ← not a1, not c1, c2 ← not c1

• The game rule no. 3 is expressed by ai � bj (1 ≤ i, j ≤ 2).

These lead to PLP (P,Φ) as follows:
P = {b1 ← not a1, c1 ← not a1, c1 ← not b1, a1 ← not b1, a1 ← not c1,

b1 ← not c1, a2 ← not a1, b2 ← not a1, not c1, c2 ← not c1}
Φ = {(ai, bj)|1 ≤ i, j ≤ 2)}.

P has three answer sets (i.e. stable models) Si (1 ≤ i ≤ 3) as follows:
S1 = {a1, c1}, S2 = {b1, c1, a2}, S3 = {a1, b1, c2}.

S1 �as S2 is derived due to Φ∗ [19]. Hence S2 and S3 corresponding to asms2
and asms3 in Example 5 are obtained as preferred answer sets of the PLP (P ,Φ).

On the other hand, according to [23, Corollary 2] (i.e. [22, Theorem 2]), we
can construct the p ABA FPLP = 〈LP , P,A, ¯̄ , Φ∗〉 instantiated with this PLP,
where A = HBnot = {not p | p ∈ HBP } for HBP = {a1, b1, c1, a2, b2, c2},
LP = HBP ∪ HBnot, not p = p for p ∈ HBP and Φ∗ is the reflexive
and transitive closure of Φ = {(ai, bj)|1 ≤ i, j ≤ 2)}. Then as indicated by
[23, Corollary 2], we can obtain two stable P-argument extensions E2 and E3 of
FPLP with

Concs(E2) = {b1, c1, a2, not a1, not b2, not c2},
Concs(E3) = {a1, b1, c2, not c1, not a2, not b2}

corresponding to S2 and S3. As a result, we again obtain the solution of Cakes.

5 Related Work

Čyras and Toni [5] proposed an ABA+ framework: 〈L,R,A, ¯̄ ,�〉, where 〈L,R,
A, ¯̄ 〉 is an ABA framework and � is a preorder on A. They newly introduced
<-attacks ⊆ P(A)×P(A) consisting of two types depending on �. Its semantics
is given by a <-Sname extension E ⊆ A as defined by replacing the notion of
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attacks with <-attacks in standard ABA. Compared ABA+ with p ABA, the
form of ABA+ is a special case of p ABA 〈L,R,A, C,�〉 as far as its underlying
ABA is flat because �⊆ A × A is a subset of �⊆ L × L and ¯̄ is a special
case of C s.t. |C(α)|=1 for ∀α ∈ A. Hence none of preferences over hypotheses
(e.g. (1), (2)), preferences over goals G ⊆ L \ A which are often required in
decision-making and practical reasoning, and preferences on (defeasible) rules
for epistemic reasoning can be expressed in ABA+. In contrast, p ABA has a
mechanism to represent and reason with all of these preferences in its framework
[22,23]. Therefore p ABA has far much more expressive power than ABA+.

Prakken proposed ASPIC+ for structured argumentation with preferences
[17,18]. Comparison between ASPIC+ and p ABA is discussed in detail in [23].

Dung [11,12] proposed a new approach of structured argumentation with
priorities for ASPIC+-type argumentation formalisms. A novel attack relation
(assignment) called regular [12] (resp. normal [11]) which takes account of pri-
orities over defeasible rules is defined without constructing argument orderings.

Coste-Marquis et al. proposed constrained argumentation frameworks [3]
where constraints on admissible arguments in abstract argumentation are con-
sidered. Instead in our approach, constraints on assumptions expressed by rules
without head can be treated in ABA and p ABA as shown in Subsect. 4.3.

6 Discussion and Conclusion

Čyras andToni claimed that p ABAcannot solve two examples (i.e. [5, Example 1],
[4, Example 1]) since the given preferences do not work in their p As whose under-
lying ABAs have a unique extension, and proposed ABA+. Against their claim, it
is shown in Sects. 3 and 4 that p ABAs in which we encoded the respective knowl-
edge give us solutions of them without any difficulties. In conclusion, they could
not obtain the solutions of these examples not due to the property of p ABA but
due to their incorrect knowledge encodings in p ABA.

In what follows, we show that the semantics of ABA+ has a serious problem
as to treating preferences. As addressed in Example 1, Čyras and Toni presented
ABA+ consisting of R = {α ← β}, A = {α, β}, β � α. Based on its seman-
tics, {α} is selected as a unique <-complete extension due to β � α though
〈L,R,A, ¯̄ 〉 has a unique extension {β} [5]. Now consider a real world problem
as follows.

Example 7. Usually the famous legal principle: “innocent until proven guilty” is
applied to the suspect under no evidence.

It is expressed by ABA F consisting of R = {innocent ← not guilty}, A =
{not innocent, not guilty}, not innocent = innocent, not guilty =guilty.

Hereupon suppose that someone prefers “not innocent” to “not guilty” (since
he prefers “guilty” to “innocent”) though there is no evidence proving the sus-
pect is guilty. Obviously under this situation, the human legal reasoning result
in court is “innocent” regardless of any preference for innocence or guilt because
there is no evidence of “guilty”. On the other hand, given the preference s.t.
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“not guilty � not innocent” along with F , ABA+ has {not innocent} as its
unique extension, whereas p ABA has the unique P-argument extension E with
Concs(E) = {innocent, not guilty} regardless of preferences since the underlying
ABA has the unique extension E. Thus p ABA yields “innocent”, while ABA+

yields “not innocent”. Hence thanks to the property discussed in the introduc-
tion, p ABA gives us the human legal reasoning result, i.e. “innocent, whereas
ABA+ cannot perform such typical non-monotonic reasoning with preferences.

In contrast, according to the correspondence between ASPIC+ and ABA
[17,18], this ABA+ can be faithfully mapped to ASPIC+ consisting of Rs =
{β → ¬α}, Kp = {α, β} (or Ka = {α, β}), α = ¬α and β ≤′

α. As for the case
Kp = {α, β}, defeat = ∅ is derived. Then the mapped ASPIC+ has a unique
complete extension E+ with concs(E+) = {α, β,¬α}, which is not directly
consistent [17,18]. Similarly this ABA+ may be also mapped to Dung’s rule-
based system [11,12], say Rdung, which consists of d0: ⇒ β d1: ⇒ α r : β → ¬α
and d0 ≺ d1. Surprisingly when we replace the symbol β (resp. α) with a (resp. b),
Rdung coincides with the rule-based system shown in [12, Example 7] in which
no regular attack relation assignment exists as discussed by Dung [12].

We are the first to show prioritized logic programming as argumentation
equipped with preferences (cf. Subsect. 4.4) [23] as Dung showed logic program-
ming as argumentation [7]. Nevertheless our future work is to explore the other
types of the semantics for p ABA so that it can capture the other types of pri-
oritized logic programming such as Brewka and Eiter’s preferred answer sets,
Delgrande, Schaub and Tompits’ preferred answer sets and so on [6].

Acknowledgments. This work was supported by KAKENHI (Grant-in-Aid for Sci-
entific Research(S)17H06103).

Appendix

Proof of Theorem 2 ( ⇐=). Let Asms be conflict-free in F and satisfies
{a1, . . . , am} �⊆ Asms for ∀ ← a1, . . . , am ∈ C. Since Asms is conflict-
free in F , ∀α ∈ Asms is not attacked by arguments constructed by using
only rules from R in FC. Now suppose that Asms is not conflict-free in FC.
Then for some {a1, . . . , ak−1, ak+1, . . . , am} ⊆ Asms, there exists an argu-
ment {a1, . . . , ak−1, ak+1, . . . , am}  ¬ak constructed by the rule from RC
that attacks Asms, which denotes that ak (1 ≤ k ≤ m) is in Asms. Thus
{a1, . . . , ak−1, ak, ak+1, . . . , am} ⊆ Asms is derived. This contradicts that Asms
satisfies {a1, . . . , am} �⊆ Asms for ∀ ← a1, . . . , am ∈ C. Thus it is derived that
Asms is conflict-free in FC.

(=⇒) Let Asms be conflict-free in FC= 〈L,R ∪ RC,A, ¯̄ 〉. Then Asms is also
conflict-free in F = 〈L,R,A, ¯̄ 〉 due to R ⊆ (R ∪ RC). Now suppose that for this
Asms which is conflict-free in F , there exists some constraint ∃ ← a1, . . . , am ∈ C
which satisfies {a1, . . . , am} ⊆ Asms. Then in FC, there exists some argument
{a1, . . . , ak−1, ak+1, . . . , am}  ¬ak built from RC that attacks Asms. This con-
tradicts that Asms is conflict-free in FC. Hence it holds {a1, . . . , am} �⊆ Asms
for ∀←a1, . . . , am ∈ C w.r.t. Asms which is the conflict-free in F . �
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Proof of Theorem 3. Suppose that in FC, there is some conflict-free set Asms ⊆
A which does not satisfy some constraint in C, that is, {a1, . . . , am} ⊆ Asms
holds for ∃ ← a1, . . . , am ∈ C. Then using rules from RC, it is possible to construct
the argument {a1, . . . , ak−1, ak+1, . . . , am}  ¬ak that attacks ak ∈ Asms (1 ≤
k ≤ m). This contradicts that Asms is conflict-free. �
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2 LIPADE, Université Paris Descartes, Paris, France
jean-guy.mailly@parisdescartes.fr

Abstract. Change in argumentation frameworks has been widely stud-
ied in the recent years. Most of the existing works on this topic are con-
cerned with change of the structure of the argumentation graph (addition
or removal of arguments and attacks), or change of the outcome of the
framework (acceptance statuses of arguments). Change on the accept-
ability semantics that is used in the framework has not received much
attention so far. Such a change can be motivated by different reasons,
especially it is a way to change the outcome of the framework. In this
paper, it is shown how semantic change can be used as a way to reach a
goal about acceptance statuses in a situation of extension enforcement.

1 Introduction

Recently, the dynamics of argumentation frameworks (AFs) has received much
attention [5–7,10–12,15–17,19,25]. Essentially, we can distinguish between two
kinds of approaches for change in AFs: some of them deal with the structure
of the AF (the set of arguments and the attack relation), while the other ones
deal with the statuses of arguments (extensions, labellings, skeptically accepted
arguments,. . . ). However, a third component of the argumentation process has
received almost no attention: the semantics which links the structure of the
AF and the arguments statuses. Even if some approaches allow to change the
semantics during the process (see for instance [6]), it is not explained why the
semantics has to change, nor how the new semantics is selected. In this paper, we
study these questions by focusing on extension-based semantics, that is, seman-
tics that, when applied to an AF, produce a set of acceptable sets of arguments
called extensions.

Two main reasons may motivate a change of the semantics. First, it may be
required by some practical considerations. Indeed, an issue with some argumen-
tation semantics is their high complexity. This theoretical complexity is not a
practical problem if we consider some particular classes of AFs, or if the size of
the AF is not too large. However, if at some point, for an agent, using some high
complexity semantics is the best choice for some reason – for instance, because
it guarantees the existence of at least one extension, or a number of extensions
smaller than with another potential semantics –, the evolution of the AF may
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 194–207, 2017.
DOI: 10.1007/978-3-319-67582-4 14
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justify a change of the semantics. If the agent interacts with other agents in the
context of a debate for instance, arguments and attacks may be added to the
AF. Such additions increase the size of the AF, and they may cause the AF to
leave the structural class it belongs to; this may make the computation of the
extensions, and of related decision problems, not efficient anymore. A change of
semantics may then be suitable.

A second reason that may motivate a change of the semantics, is as an alter-
native way to enforce some constraint on the acceptance statuses of arguments,
or on sets of arguments. Actually, there may be limitations in given applications,
which prevent to modify the attack relation and to modify the set of arguments
(e.g. the debate the arguments and the attacks come from has ended; nothing
can be added any longer). Then, if the agent has to enforce a constraint about
acceptance statuses, the only component which may be modified is the semantics
(that is, the way to reason about the AF). In fact, whether or not a change of
the structure of the AF is possible, we show that a change of semantics can be
a way to reach this goal with less change on the structure of the AF.

Main Contributions

1. We give a unified abstract framework to describe change of AFs, which encom-
passes all existing approaches for modifying AFs. This allows to use the same
tools to analyze and extend these different approaches.

2. We extend existing work on the characteristics of extension enforcement [5],
i.e. we provide new results about the minimal change to make on an AF to
ensure that a set of arguments is (included in) an extension, w.r.t. a specific
semantics.

3. We study the success rate of semantic change for extension enforcement, i.e.
the percentage of AFs for which the result is better (w.r.t. minimal change on
the AF structure) when semantic change is used. This contribution relies on
the abstract framework defined in 1., and benefits from the new characteristics
given in 2.

Organization of the Paper. Section 2 presents background notions about abstract
argumentation. Section 3 proposes a very general way to define change in argu-
mentation frameworks, which encompasses all existing approaches. In Sect. 4,
we show how semantic change can be used to enforce an acceptability constraint
in an argumentation framework. Section 5 describes our experimental analysis
of the semantic change success rate. The last section concludes the paper and
describes some research tracks for future work.

2 Background Notions

[22] considers argumentation as the study of relations between arguments, with-
out taking into account the origin of arguments or their internal structure. In this
context, an argumentation framework (AF) is a directed graph 〈A,R〉 where the
nodes in A are the arguments and the edges in R represent attacks between argu-
ments. We consider only finite AFs, i.e. the set of arguments A is finite. (ai, aj) ∈
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R means that ai attacks aj ; ai is called an attacker of aj . An argument ai (resp. a
set of arguments S) defends an argument aj against its attacker ak if ai (resp. some
argument in S) attacks ak. The range of a set of arguments S w.r.t. R, denoted
S+

R , is the subset of A which contains S and the arguments attacked by S; formally
S+

R = S ∪ {aj | ∃ai ∈ S s.t. (ai, aj) ∈ R}. Different methods allow to evaluate
the arguments. A common approach is to compute extensions, which are sets of
jointly acceptable arguments. Different semantics have been defined, which yield
different kinds of extensions [2,22].

Definition 1. Let F = 〈A,R〉 be an AF. A set S ⊆ A is

– conflict-free w.r.t. F if �ai, aj ∈ S s.t. (ai, aj) ∈ R;
– admissible w.r.t. F if S is conflict-free and S defends each ai ∈ S;
– a naive extension of F if S is a maximal conflict-free set (w.r.t. ⊆);
– a complete extension of F if S is admissible and S contains all the arguments

that it defends;
– a preferred extension of F if S is a maximal complete extension (w.r.t. ⊆);
– a stable extension of F if S is conflict-free and S+

R = A;
– a grounded extension of F if S is a minimal complete extension (w.r.t. ⊆);

As shortcuts, we write respectively cf, ad, na, co, pr, st, gr for these semantics.
For each semantics σ, the σ-extensions of F are denoted Extσ(F ).

We introduce the notion of defense function1 of a set of arguments in an AF.

Definition 2. Given an AF F = 〈A,R〉 and a set of arguments E ⊆ A, the
defense function of E in F is the mapping from E and F to the set of arguments
f(E,F ) defined by:

f(E,F ) = {a ∈ A | E defends a against all its attackers}

Example 1. Let us consider the argumentation framework F1 given at Fig. 1,
and let us illustrate some of the semantics.
Extad = {∅, {a1}, {a4}, {a4, a6}, {a1, a3}, {a1, a4}, {a1, a4, a6}}, Extst(F ) =
{{a1, a4, a6}}, Extpr(F ) = {{a1, a3}, {a1, a4, a6}}, Extco(F ) = {{a1}, {a1, a3},
{a1, a4, a6}}, Extgr(F ) = {{a1}}.

a1 a2 a3 a4 a5

a6

a7

Fig. 1. The AF F1

1 This function is called characteristic function by [22]. We call it defense function to
avoid confusion with the characteristics from [5].
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Let us introduce a way to measure the difference between argumentation
semantics. This distance between semantics has been proposed by [20]. It relies
upon the relationships between the sets of extensions that the semantics produce.

Definition 3. Let Σ = {σ1, . . . , σn} be a set of semantics, the extension inclu-
sion graph of Σ is defined by Inc(Σ) = 〈Σ,D〉 with D ⊆ Σ × Σ such that
(σi, σj) ∈ D if and only if

– for each AF F , Extσi
(F ) ⊆ Extσj

(F );
– there is no σk ∈ Σ (k 	= i, k 	= j) such that Extσi

(F ) ⊆ Extσk
(F ) and

Extσk
(F ) ⊆ Extσj

(F ).

Given σi, σj ∈ Σ, the Σ-inclusion difference measure between semantics is the
length of the shortest non-oriented path between σi and σj in Inc(Σ), denoted
δInc,Σ(σi, σj).

Example 2. Figure 2 describes the extension inclusion graph of Σ =
{cf, ad, na, st, pr, co, gr}. We observe, for instance, that δInc,Σ(st, ad) = 3,
δInc,Σ(pr, gr) = 2, and δInc,Σ(co, pr) = 1.

cf

na

adcopr

st gr

Fig. 2. Extension inclusion graph Inc(Σ)

3 Abstracting Change in Argumentation

We propose here an abstract definition which encompasses all methods for change
in argumentation into a global family.

Definition 4. A change operator is a mapping χ from a multiset of AFs F =
{{F1, . . . , Fn}}, a formula ϕ from a logical language and a semantics σ, to a
multiset F ′ = {{F ′

1, . . . , F
′
k}} and a semantics σ′. Formally,

χ(F , ϕ, σ) = (F ′, σ′)

Most of existing operations on change in argumentation consider a single
AF in the input and the output, which are obviously special cases of multiset.
It is similar for approaches which consider a set as the outcome. [18] considers
a profile of AFs as the input, which can be equivalently defined as a multiset
since the order of the AFs in the tuple is not considered. Except [6], existing
works do not consider semantic change, which means that σ′ = σ for these
approaches. The formula represents a piece of information which is at the origin
of the change (for instance in a context of belief revision [15,16] or update
[19,25]). More generally, it is a constraint which has to be satisfied by the result
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of the operation, like an integrity constraint in a belief merging context [18]. The
language of the formula is not the same depending the approach (e.g. each of
[15,16,19,25] has its own language). Some approaches also do not use directly
a formula from a logical language, but can be mapped to a formula from a
given language. For instance, adding or removing attacks and arguments [10,12]
are equivalent to formulae from the language defined in [16]. Similarly, sets of
arguments considered for extension enforcement [5,6,17] are special cases of the
formulae defined in [15,18].

Among these approaches, some of them consider some notion of minimality,
like minimal change on the attack relation [5,16,19,25], minimal change on the
acceptance statuses of arguments [15,16,18], or minimal cardinality [15,18]. We
can give a general definition of minimality in the change process.

Definition 5. A minimality criterion is a mapping from a tuple 〈F , ϕ, σ,F ′, σ′〉
to a tuple of positive real numbers d(〈F , ϕ, σ,F ′, σ′〉).
Given two such tuples t1, t2, we define t1 < t2 if the ith element of t1 is smaller
than the ith element of t2, when i is the smallest index such that t1 and t2 are
different.

Given a multiset of AFs F = {{F1, . . . , Fn}}, a formula ϕ and a semantics σ,
a change operator χ satisfies the minimality criterion d iff χ(F , ϕ, σ) = (F ′, σ′)
and d(〈F , ϕ, σ,F ′, σ′〉) is minimal.

Obviously, the simplest minimality criteria can be defined with a single num-
ber, so d(〈F , ϕ, σ,F ′, σ′〉) is a tuple of length 1. For instance, we instantiate this
definition with extension enforcement operators [5,6,17].

Definition 6. Given an AF F = 〈A,R〉 and a set of arguments E ⊆ A, a
strict (resp. non-strict) enforcement operator is a change operator which maps
F = {{F}}, a formula ϕE =

∧
ai∈E ai and a semantics σ to F ′ = {{F ′}} and σ′

such that E ∈ Extσ′(F ′) (resp. ∃ε ∈ Extσ′(F ′) with E ⊆ ε).
An enforcement is minimal iff if satisfies the minimality criterion

d(〈F , ϕ, σ,F ′, σ′〉) = 〈dH(F ,F ′)〉
where dH is the Hamming distance between graphs2 3.

We say that F ′ is an enforcement of E in F . We use ϕE =
∧

ai∈E ai to specify
that the set E is the enforcement request; this is reminiscent of the logical
encodings used in [17,26].

Some change operators use more complex minimality criteria, which combine
m simple criteria. In this case, we can represent it with a m-length tuple; this is
the case of e.g. [15,16,18].
2 The Hamming distance between two graphs F1 = 〈A1, R1〉 and F2 = 〈A2, R2〉 is the

cardinality of the symmetric difference between R1 and R2; in other words, in the
present case, it is the number of attacks that it is necessary to add/remove from one
graph to get the other.

3 Since here F , F ′ are singletons, the Hamming distance between graphs can be
directly used. For other kinds of change operators, it should be generalized to mul-
tisets.
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4 Extension Enforcement and Semantic Change

In this section, we study how semantic change can be useful for extension enforce-
ment. We first recall the definition of the five existing enforcement approaches.
Then we show on intuitive examples that changing the semantics can permit
to enforce an extension with fewer change on the structure (or even without
any structural change). Finally, we extend Baumann’s study on minimal change
depending on the semantics, and we define a more general class of enforcement
operators which reach our goal: perform extension enforcement with minimal
structural change by semantic change.

4.1 Extension Enforcement Operators

In the first work on extension enforcement [6], it is considered that everything
which appears in the current AF cannot be changed. The authorized changes
are the addition of arguments, and possibly of attacks concerning at least one
new argument. This kind of change is called a normal expansion. Special cases
of normal expansion are called strong expansion and weak expansion. A strong
expansion (resp. weak expansion) is an expansion which adds only strong argu-
ments (resp. weak arguments), which are arguments that cannot be attacked by
(resp. cannot attack) the previous arguments.

Definition 7. Let F, F ′ be two AFs such that F ′ is a strict (resp. non-strict)
enforcement of a set of arguments E in F .

– If F ′ is a normal expansion of F , then the change from F to F ′ is a strict
(resp. non-strict) normal enforcement.

– If F ′ is a strong expansion of F , then the change from F to F ′ is a strict
(resp. non-strict) strong enforcement.

– If F ′ is a weak expansion of F , then the change from F to F ′ is a strict (resp.
non-strict) weak enforcement.

Then, [17] considers new approaches which, on the opposite, question the
attack relation between existing arguments. Two operators are proposed.

Definition 8. Let F = 〈A,R〉, F ′ = 〈A′, R′〉 be two AFs such that F ′ is a strict
(resp. non-strict) enforcement of the set of arguments E in F .

– If A = A′ and R 	= R′, then the change from F to F ′ is a strict (resp.
non-strict) argument-fixed enforcement.

– If A ⊆ A′, then the change from F to F ′ is a strict (resp. non-strict) general
enforcement.

In all these approaches, it is considered that

– either the semantics does not change in the enforcement;
– or the new semantics is given as a parameter of the operator: it is not specified

why the semantics should change, nor why this particular semantics should
be the new one.

We use Norx, Strx,Weakx, F ixx and Genx to denote these enforcement
methods, with x ∈ {s, ns} corresponding to strict and non-strict.
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4.2 Minimal Structural Change Through Semantic Change

Example 3. Let us consider again the AF F1 given at Fig. 1. We want to enforce
the set E = {a1, a3} as an extension. We consider that the agent is currently
using the stable semantics. Obviously, structural change is required if the agent
does not change the semantics. But we have seen previously that E is already
an extension of F if we consider, for instance, the preferred or the complete
semantics. So if the agent considers a change of semantics, the enforcement can
be realized without any change on the structure.

Of course, in some situations, only switching the semantics may not be suffi-
cient to reach the goal, if none of the possible semantics leads to build extensions
which are consistent with this goal. In this case, and even if structural change is
permitted, then the semantic change can still be a means to minimize the struc-
tural change required to reach the goal. Indeed, even if structural changes are
permitted (or required), it can be costly for the agents to perform such changes.
Such modifications of the set of arguments and of the set of attacks may then
have to be limited.

The minimal change problem for extension enforcement has already been
studied in [5], for a subset of the possible enforcement approaches. First, it only
considers some particular target semantics (stable, preferred, complete, admissi-
ble). Also, the argument-fixed enforcement operators is not considered. Finally,
only non-strict enforcement is characterized. For each pair of these semantics and
enforcement operators, the minimal number of changes (addition or removal of
attacks) to reach an enforcement is called the characteristic. This characteris-
tic is a natural number when the enforcement is possible; +∞ means that the
enforcement is impossible under the given semantics.

We continue this study of characteristics and we give here some results for
argument-fixed enforcement. We first need to introduce some notations.

Definition 9. Given an AF F = 〈A,R〉, and X ⊆ A,

– R↓(F,X) = R ∩ (X × X) for any X ⊆ A;
– na(F,X) = {ai ∈ A \ X | ∀aj ∈ X, (ai, aj) 	∈ R and (aj , aj) 	∈ R}
– ad(F,X) = {ai ∈ A \ X | ∃aj ∈ X, (ai, aj) ∈ R and ∀aj ∈ X, (aj , ai) /∈ R}
– st(F,X) = {ai ∈ A \ X | ∀aj ∈ X, (aj , ai) /∈ R}.

Proposition 1. Let F = 〈A,R〉 be an AF, and E ⊆ A. The characteristic of
strict argument-fixed enforcement for σ ∈ {cf, ad, st, co, pr, na} is defined by the
function V F

σ,Fixs
(E):

V F
cf,F ixs

(E) = |R↓(F,E)|
V F

na,F ixs
(E) = |R↓(F,E)| + |na(F,E)|

V F
ad,F ixs

(E) = |R↓(F,E)| + |ad(F,E)|
V F

st,F ixs
(E) = |R↓(F,E)| + |st(F,E)|

V F
co,F ixs

(E) = min{|R′ΔR| + |R↓(F ′, E)| | f(E,F ′) = E,F ′ = 〈A,R′〉}
V F

pr,F ixs
(E) = min{|R′ΔR| + |R↓(F ′, E)| | E ⊆ f(E,F ′),∀E ⊂ E′ ⊆ A,

E′ 	⊆ f(E′, F ′), F ′ = 〈A,R′〉}
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We observe that these results are in line with the complexity results from
[26]. Indeed, these characteristics suggest polynomial-time algorithm to compute
the minimal enforcement of E under cf, na, ad and st semantics. Obtaining a
better formulation for the other characteristics is still challenging.

Proposition 2. Let F = 〈A,R〉 be an AF, and E ⊆ A. The characteristic of
non-strict argument-fixed enforcement for σ ∈ {cf, ad, st, co, pr, na} is defined
by the function V F

σ,Fixns
(E):

V F
na,F ixns

(E) = V F
cf,F ixns

(E) = |R↓(F,E)|
V F

ad,F ixns
(E) = min({|R↓(F,E′)| + |ad(F,E′)| | E ⊆ E′ ⊆ A})

V F
st,F ixns

(E) = min({|R↓(F,E′)| + |st(F,E′)| | E ⊆ E′ ⊆ A})
V F

pr,F ixns
(E) = V F

co,F ixns
(E) = V F

ad,F ixns
(E)

We notice that these results are reminiscent of the characteristics for general
enforcement [5].

Observation 1. For Op ∈ {Nor, Str,Weak}, the characteristic is trivial for
conflict-free and naive semantics: either the set E is conflict-free, then the char-
acteristic is 0; or E is not conflict-free, then the characteristic is +∞.

Now, we generalize the definition of enforcement operators to take into
account semantic change.

Definition 10. Let F = 〈A,R〉 be an AF, σ a semantics, Σ be a set of semantics,
and E ⊆ A. Given Op ∈ {Nor, Str,Weak, F ix,Gen} and x = s (resp. x = ns),
theminimal change enforcement ofE inF w.r.t.Opx is defined asχ({{F}}, ϕE , σ) =
({{F ′}}, σ′)withσ′ ∈ Σ, such thatE ∈ Extσ′(F ′) (resp.∃ε ∈ Extσ′(F ′) s.t.E ⊆ ε),
and the criterion 〈V F

σ,Opx
(E), δInc,Σ(σ, σ′)〉 is satisfied.

This means that contrary to previous works on extension enforcement, the
target semantics is not a parameter of the enforcement operator. It is chosen to
guarantee that:

– the characteristic (i.e. the structural change) is minimal;
– in the case when several semantics have the same characteristic, the chosen

one should minimize the semantic change.

Example 4. Let us come back to the AF F1 described at Fig. 1. We want to
enforce the set E = {a1, a3} as an extension, with σ = st the semantics currently
used by the agent. E is not a stable extension, neither the grounded extension or
a naive extension. However, it is a preferred, complete, admissible and conflict-
free extension. This means that

– for every σ′ ∈ {pr, co, ad, cf}, V F
σ,Opx

(E) = 0 for every Opx;
– for every σ′ ∈ {st, gr, na}, V F

σ,Opx
(E) > 0 for every Opx.

This guarantees that the result of the enforcement (whatever the operator Opx)
is the AF F1 itself, with one of the semantics {pr, co, ad, cf}. We observe that
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δInc,Σ(st, pr) = 1, δInc,Σ(st, co) = 2, δInc,Σ(st, ad) = 3 and δInc,Σ(st, cf) = 4,
so the new semantics is the preferred semantics. Formally, the result of enforcing
E in F1 is

Opx({{F1}},
∧

ai∈E

ai, st) = ({{F1}}, pr)

We use here δInc,Σ to illustrate our approach, but other difference measures
between semantics could be used to define minimal semantic change. The inclu-
sion graph that we use here is a particular case of relation graph as defined in
[20]. Some other interesting notions of relation graphs could be used to define
distances between semantics, like intertranslatability graphs [23] or skepticism
relations [3]. [20] also mentions other approaches, based on the properties satis-
fied by the semantics, or based on the actual set of extensions of an AF w.r.t.
the different semantics. This offers a wide range of possibilities to define minimal
semantic change.

Observation 2. Our approach cannot give a worse result, w.r.t. structural
change, than the classical enforcement approaches (by “classical”, we mean
approaches without semantic change, or with a given target semantics). More-
over, we can identify some basic cases for which our approach is sure to give a
better result than classical approaches. For instance, as illustrated by Example 4,
when the set E to be enforced is not a σ-extension of the considered AF F (with
σ the current semantics), but E is known to be a σ′-extension of F , with σ′

one of the possible alternative semantics. In this situation, it is guaranteed that
enforcing E in F with our semantic change-based approach is possible without
any structural change, while classical approaches do not permit this.

5 Empirical Study

In this section, we present an empirical study of the success of semantic change
for extension enforcement. We have computed the result of some enforcement
requests for a large set of AFs (using the strict argument-fixed enforcement
approach), w.r.t. different semantics (Σ = {ad, st, co, na}), and for each pair
(σ1, σ2) ∈ Σ × Σ, we have compared V F

σ1,F ixs
and V F

σ2,F ixs
. When V F

σ1,F ixs
is

significantly higher than V F
σ2,F ixs

for a given AF F , this means that semantic
change is relevant for this AF, w.r.t. this pair of semantics and enforcement
operator. Indeed, in this case, changing the semantics from σ1 to σ2 allows
to reach one’s goal (enforcing a set of arguments E) with a lower cost (w.r.t.
change of the graph). In the following subsections, we first present in detail our
experimental protocol, then we provide an analysis of our results.

5.1 Protocol

We have used the AFs and enforcement requests from [26], which are available
online. They provide AFs with different size of arguments |A| ∈ {50, 100, 150,
200, 250, 300}. The AFs are generated following the Erdös-Rényi model [24].
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For p ∈ {0.05, 0.1, 0.2, 0.3}, each pair (ai, aj) ∈ A × A has a probability p to
belong to the attack relation R. For each |A| and each p, five AFs have been
generated. Finally, for each AF, five sets of arguments E ⊂ A have been ran-
domly generated for each |E|/|A| ∈ {0.05, 0.1, 0.2, 0.3}. This means that for
each |A|, 400 enforcement problem instances (F = 〈A,R〉, E ⊂ A) have been
generated.

For all these enforcement requests, we have computed the result of the
argument-fixed strict enforcement for σ ∈ {na, ad, stb, co}. Enforcement under
the naive semantics has been done through a software that we have developed
in Java. For the other semantics, we have used Pakota, the enforcement solver
provided by [26].4

The experiments have been done on a 64 bits Ubuntu 16.04 system, equipped
with 8 Gio of RAM and a CPU Intel Core i5 with 3.20 GHz. The time limit was
set to 10 min.

5.2 Analysis of the Results

Figure 3 presents our results for a subset of the instances, namely the AFs with
|A| = 50 and the associated enforcement requests E ⊂ A. We only present
the results for this class of AFs for a matter of readability. Indeed, for the
other values of |A|, the results appear to be remarkably similar. Also, we only
present 3 of the 6 possible combinations of semantics: (ad, st) (represented by �),
(ad, na) (represented by ×) and (co, st) (represented by �). For each of these
combinations (σ1, σ2), each point represents an instance (i.e. a pair (F =
〈A,R〉, E ⊆ A)), such that the point abscissa is the minimal change to enforce E
in F w.r.t. σ1, and its ordinate is the value for the enforcement w.r.t. σ2. So, a
point situated under the diagonal represents an instance for which the minimal
change to perform the enforcement w.r.t. σ1 is higher than the minimal change
to perform the enforcement w.r.t. σ2 (and vice-versa for the points above the
diagonal). We observe that semantic change actually brings something to exten-
sion enforcement. Indeed for most of the instances, the points are situated far
from the diagonal, which means that they can benefit from semantic change. On
the opposite, the points situated on the diagonal represent instances for which
semantic change does not improve the “quality” of enforcement.

Let us mention the fact that we have similar results for the pairs of semantics
(st, na) and (co, na). Only the pair (ad, co) results in points close to the diag-
onal for a high proportion of the instances. For |A| ∈ {100, 150, 200, 250, 300},
we observe similar results. Let us still mention that the higher the value of |A|,
the higher the proportion of instances with a ratio close to 1. But even for
|A| = 300, there is still a significant amount of instances which benefit from
semantic change (i.e. instance with a significative difference between V F

σ1,F ixs

4 Pakota also provides the possibility to execute enforcement under the preferred
semantics. Because of the higher complexity of the enforcement problem under the
preferred semantics, our experiment has encountered a high number of timeouts. For
this reason, we exclude preferred semantics of our empirical analysis for now.
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Fig. 3. Comparing minimal change depending on the semantics, for AFs with 50 argu-
ments

Fig. 4. Success percentage for different semantic change situations
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and V F
σ2,F ixs

).5 Figure 4 presents, for each |A| and each pair of semantics, the
percentage of instances for which the ratio V F

σ1,F ixs
/V F

σ2,F ixs
is smaller than 0.9

or greater than 1.1, i.e. the percentage of instance for which semantic change is
successful.

6 Conclusion

This paper addresses particular aspects of the dynamics of argumentation frame-
works. Most of the existing approaches in this domain concern either a change
of the structure of an AF, or a change on the acceptance statuses of arguments
(both being related). We argue that it makes sense in some applications to
permit the agent to change her reasoning process, which is represented by the
acceptance semantics. This change can be motivated by a need of computational
efficiency (requirement of a lower complexity), or by properties to be enforced
on the set of extensions (e.g. requirement of some arguments to be accepted),
with a minimal change of the graph structure.

Such a change in the reasoning process is related to what is discussed in [8,9].
Roughly speaking, the idea is that an agent can be able to use different reasoning
processes, such as one which is harder to compute and probably more rational,
and another one which is easier to compute and based on some less rational
concepts (for instance, there can be some bias due to the agent’s perception of
the source of information). Semantic change in argumentation can be conducted
by similar ideas.

In this paper, we have first defined a very abstract framework to describe
change in argumentation. This framework is useful to describe and analyze the
different approaches for argumentation dynamics with the same tools. Then
we have instantiated this framework for a specific (and well-studied) family of
change operators for AFs: extension enforcement. We show that allowing an
agent to change the semantics when performing an extension enforcement is
useful in some situations, since this semantic change cannot provide a worse
result (w.r.t. the number of modifications of the graph) than “classical” enforce-
ment, and can even provide better results. This claim is grounded on the new
study of characteristics. We have conducted an experimental study which shows
the impact of semantic change on a large set of instances.

Several interesting questions have arisen from this work. Naturally, we want
to complete our study of characteristics and our experiments with more seman-
tics. The ideal semantics [21], the prudent semantics [14] or the SCC-recursive
semantics [4] are good candidates. Determining the missing characteristics
(for instance, the characteristics of the strict versions of operators studied by
Baumann in [5]) is also an important future work. Since the difference between
semantics is here evaluated in the setting of the well-known extension-based
semantics, the extension of our approach to labelling-based semantics seems to
5 A complete description and analysis of our experiments, including the instances, the

enforcement system, and the curves for every value of |A| and every pair (σ1, σ2) is
available online: http://www.math-info.univ-paris5.fr/∼jmailly/expSemChange.

http://www.math-info.univ-paris5.fr/~jmailly/expSemChange
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be quite immediate. On the contrary, semantic change for ranking-based seman-
tics [1] requires a deeper investigation. Regarding our experimental study, we
want to explore more in depth the impact of the different parameters on the
semantic change, for instance the size of the AF, the size of the set of arguments
to be enforced, and the probability of attacks. We have considered here the
Erdös-Rényi model, which captures an interesting graph structure, and which
has already been the object of other studies [26]. We plan to conduct similar
studies with other families of graphs [13] to determine whether the impact of
semantic change is different for these families. Also, we want to extend extension
enforcement systems to benefit from the study of characteristics: computing the
characteristics for a list of enforcement operators and a list of semantics, we can
choose the best operator and semantics to enforce a set with minimal change of
the graph.

Finally, we want to study the impact of semantic change on some operations
which return a set [15,18]. In these papers, the outcome of the operation repre-
sents some uncertain result (intuitively, the set is interpreted as a “disjunction”
of AFs). Our goal is to determine whether semantic change can help to reduce
the cardinality of the set (i.e. reduce the uncertainty of the result).
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Abstract. The aim of this paper is to evaluate to what extent an argu-
mentation graph (a set of arguments and attacks between them) is con-
flicting. For that purpose, we introduce the novel notion of disagreement
measure as well as a set of principles that such a measure should satisfy.
We propose some intuitive measures and show that they fail to satisfy
some of the principles. Then, we come up with a more discriminating
measure which satisfies them all. Finally, we relate some measures to
those quantifying inconsistency in knowledge bases.

1 Introduction

An argumentation framework is a graph whose nodes are arguments and edges
are attacks between pairs of arguments. The graph may be extracted from a
knowledge base (e.g., in [1]), or from a dialogue between agents (e.g., [2]), etc.
Whatever the source of the graph, the presence of attacks means existence of
disagreements and three questions raise quite naturally: (1) how to model dis-
agreements? (2) what is their amount? and how to solve them? Works in com-
putational argumentation focused mainly on questions (1) and (3). They assume
that disagreements in an argumentation graph are nothing more than the attacks
of the graph, and represent them either as abstract relations between pairs of
arguments (e.g., in [3]), or as logical relations between arguments (e.g., undercut
[4], rebuttal [5]). An impressive amount of work has also been done on solving
disagreements using the so-called acceptability semantics, of which extension
semantics [3] are some examples.

The question of measuring the amount of disagreements in an argumentation
graph has never been studied. Consider the six argumentation graphs below.
There is no method in the literature that evaluates the amount of disagreement
in each of them.

a0 a3 a2 a3 a2 a1

(A0) (A1) (A2)

a1 a1 a1

a3 a2 a3 a2 a3 a2

(A3) (A4) (A5)

c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 208–222, 2017.
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Existing semantics solve disagreements without bothering about their
amount. Nevertheless, quantifying disagreement is relevant for various purposes.
Namely, in the context of inconsistency handling, an argumentation graph is
extracted from a (inconsistent) knowledge base (KB). Quantifying disagreements
in the graph allows evaluating at what extent the knowledge base is inconsis-
tent. Motivated by important applications like software specifications, quantify-
ing inconsistency in a KB has become a hot topic the last six years (e.g. [6–11]).
Since the number of applications of argumentation grows steadily, it is important
that the approach has its own tools for answering various needs of the applica-
tions including measuring inconsistency. Hence, argumentation not only handles
inconsistency in KBs, but it will also be used for measuring inconsistency in
those KBs.

The contribution of this paper is fourfold: First, we introduce the novel notion
of disagreement measure, that is a real-valued function that assigns to each argu-
mentation framework a value representing its amount of disagreements. Second,
we propose principles that a disagreement measure should satisfy. These princi-
ples serve as theoretical criteria for judging and comparing disagreement mea-
sures. Third, we define five intuitive disagreement measures, one of which satisfies
all the principles. Finally, we make a first bridge with works on inconsistency
measures by showing that some of our measures return the same result as an
existing inconsistency measure.

The paper is structured as follows: Sect. 2 recalls basic concepts. Section 3
defines disagreement measures and proposes principles they should satisfy.
Section 4 introduces six measures and discusses their properties. Section 5 shows
how some measures evaluate inconsistency in KBs.

2 Basic Concepts

An argumentation framework (or argumentation graph) A is a graph consisting
of a non-empty set A of nodes representing arguments, and a set R of links
(or edges). A link r ∈ R is an ordered pair (a1, a2) representing a direct attack
from argument a1 to argument a2 (a1, a2 ∈ A). Throughout the paper, we write
A = 〈A,R〉. A graph is finite iff its set of arguments is finite.

– A path from argument a to argument b in A is a sequence 〈a0, . . . , an〉 of
arguments of A such that a0 = a, an = b, for any 0 ≤ i < n, (ai, ai+1) ∈ R,
and for all i �= j, ai �= aj . We say that b is reachable from a when there is
a path from a to b. If n = 2m + 1 and m > 0, then the pair (a0, an) is an
indirect attack on an.

– A cycle is a path 〈a0, . . . , an〉 such that (an, a0) ∈ R. It is elementary iff there
does not exist a cycle 〈b0, . . . , bm〉 such that {b0, . . . , bm} ⊂ {a0, . . . , an}. A
graph is acyclic if it does not contain any cycle.

– An argumentation graph A = 〈{a0, . . . , an},R〉 is a cycle iff
R = {(ai, ai+1) | 0 ≤ i < n} ∪ {(an, a0)}. The graph A = 〈{a0, . . . , an},R〉 is
a simple path iff R = {(ai, ai+1) | 0 ≤ i < n}.
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– The length of a path (resp. cycle) 〈a0, . . . , an〉 is n (resp. n + 1).
– An isomorphism from A = 〈A,R〉 to A′ = 〈A′,R′〉 is a bijective function f

from A to A′ such that ∀ a, b ∈ A, (a, b) ∈ R iff (f(a), f(b)) ∈ R′.

Notations: We denote by Args an infinite set of all possible arguments, and by
U the universe of finite argumentation graphs built from Args. For any argu-
mentation graph A = 〈A,R〉, Arg(A) = A, Att(A) = R, and SelfAtt(A) =
{a ∈ A | (a, a) ∈ R}.

3 Principles for Disagreement Measures

Our aim is to evaluate the amount of disagreements contained in an argumenta-
tion graph. This is done by a disagreement measure, that is a real-valued function
that assigns a disagreement value to every argumentation graph.

Definition 1 (Disagreement Measure). A disagreement measure is a func-
tion K : U → [0,+∞). For an argumentation graph A = 〈A,R〉 ∈ U , K(A) is
called the disagreement value of A.

For two argumentation graphs A and A′, we say that A is more conflicting
than A′ if K(A) > K(A′). The value 0 stands for absence of disagreements.

We propose next a set of principles that any disagreement measure should
satisfy. The first principle states that the disagreement value of an argumentation
graph does not depend on the identity of its arguments. Note that this axiom is
used in most axiomatic approaches including game theory (e.g., Shapley value
[12]).

Principle 1 (Anonymity). For all argumentation graphs A = 〈A,R〉 and
A′ = 〈A′,R′〉 in U , if A and A′ are isomorphic, then K(A) = K(A′).

The second principle states that attacks are the only source of disagreements.
Thus, any argumentation graph that has an empty attack relation receives the
value 0. This axiom is somehow similar to the consistency axiom proposed in [6]
for measuring inconsistency in knowledge bases.

Principle 2 (Agreement). For any argumentation graph A = 〈A,R〉 ∈ U , if
R = ∅, then K(A) = 0.

The third principle concerns “harmless” arguments (i.e., arguments which
neither attack nor are attacked by other arguments). The principle states that
adding such arguments to an argumentation graph will not modify its disagree-
ment value. This axiom is also in the same spirit as the “free formula indepen-
dence” axiom proposed in [6].

Principle 3 (Dummy). For any argumentation graph A = 〈A,R〉 ∈ U , for
any a ∈ Args \ A, K(A) = K(A′), where A′ = 〈A ∪ {a},R〉.
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The next principle states that if new attacks are added to an argumentation
graph, its disagreement value increases. This axiom is in the spirit of monotony
axiom in [6] which states that if a knowledge base is extended by formulas, its
inconsistency degree cannot decrease.

Principle 4 (Monotony). For any argumentation graph A = 〈A,R〉 ∈ U , for
any r ∈ (A × A) \ R, K(A) < K(A′), where A′ = 〈A,R ∪ {r}〉.

So far, we have seen that disagreements contained in an argumentation graph
are due to direct attacks (i.e., elements of R). It is also well-known that the role
of such attacks is to weaken their targets (see the weakening property in [13]).
Indeed, whatever the semantics that is used for evaluating arguments, it should
satisfy the weakening property since it defines the essence of attacks. However,
the effect of weakening may propagate in the graph, giving birth to indirect
attacks. Consider the following graph.

a0 a1 a2 a3

Under stable semantics [3], the graph has one extension {a0, a2}, and the argu-
ment a3 is rejected. If we remove the attack from a0 to a1, the new graph has
{a0, a1, a3} as stable extension, and a3 becomes accepted. Thus, the attack (a0, a1)
has a negative effect on a3. The same phenomenon occurs under the h-categorizer
semantics proposed by Besnard and Hunter [1]. The argument a3 has an accept-
ability degree 0.60 in the initial graph and 0.66 in the modified one. Thus, a3 looses
weight in presence of the attack (a0, a1). The argument a0 is then considered as
an indirect attacker of a3. This shows that indirect attacks are also source of dis-
agreement in argumentation graphs since they are not only harmful for their direct
targets (a1 in the example), but also to the indirect ones (a3).

The next principle states that an acyclic graph containing indirect attacks is
more conflicting than an acyclic graph containing only direct ones. This holds
for graphs that have the same number of arguments and the same number of
attacks.

Principle 5 (Reinforcement) For argumentation graphs A = 〈A,R〉 and
A′ = 〈A′,R′〉 in U such that:

– A = A′ = {a0, . . . , an, b0, . . . , bn} with n ≥ 3,
– R = {(ai, bi) | i ∈ {0, . . . , n − 1}},
– R′ = {(ai, ai+1) | i ∈ {0, . . . , n − 1}},
it holds that K(A′) > K(A).

The two graphs A and A′ have n−1 direct attacks. In addition, A′ contains
at least one indirect attack (e.g. (a0, an) when n = 3). So, A is less conflicting
than A′. Note that due to the Anonymity principle, Reinforcement holds also
for argumentation graphs that contain different sets of arguments.

The two argumentation graphs of Reinforcement are acyclic. Assume now
an acyclic graph with 100 direct attacks and a 10-length elementary cycle.
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The latter contains thus 10 attacks and several indirect attacks. Which of the two
graphs is more conflicting? There are two possible (but incompatible) answers
to this question: (i) to give more weight to disagreements generated by direct
attacks, (ii) to give an overwhelming weight to cycle since it represents a dead-
lock situation while conflicts are open in an acyclic graph. This second choice is
captured by the following optional principle.

Principle 6 (Cycle Precedence) For all graphs A = 〈A,R〉 and A′ =
〈A′,R′〉 in U , if A is acyclic and A′ is an elementary cycle, then K(A) < K(A′).

The last and optional principle says that a disagreement measure could take
the size of cycles into account. The idea is that the larger the size of a cycle is, the
less severe the disagreement; said differently, the less arguments are needed to
produce a cycle, the more “obvious” and strong the disagreement. For instance,
a cycle of length 2 is more conflicting than a cycle of length 1000. The latter is
less visible than the former.

Principle 7 (Size Sensitivity). For all elementary cycles A = 〈A,R〉, A′ =
〈A′,R′〉 in U , if |A′| < |A|, then K(A) < K(A′).

The seven principles are independent (none of them follows from the others).
They are also compatible (they can be satisfied all together by a disagreement
measure).

Theorem 1. The principles are independent and compatible.

4 Five Disagreement Measures

This section introduces disagreement measures and analytically evaluates them
against the proposed principles, especially the five mandatory ones. We introduce
them from the most naive to the most elaborated one.

4.1 Connectance Measure

The first measure that comes in mind for evaluating disagreements in an argu-
mentation graph is the one that counts the number of attacks in a graph. Such
a measure is very natural since disagreements come from attacks.

Definition 2 (Connectance measure). Let A = 〈A, R〉 be an argumentation
graph. Kc(A) = |R|.

Let us illustrate the measure with a running example.

Example 1. Consider the six argumentation graphs from the introduction. It
can be checked that Kc(A0) = 0, Kc(A1) = 1, Kc(A2) = 2, Kc(A3) = 3,
Kc(A4) = 5, and Kc(A5) = 9.

The measure Kc satisfies four out of seven principles.
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Theorem 2. Connectance measure satisfies Anonymity, Agreement, Dummy,
and Monotony. It violates Reinforcement, Size sensitivity and Cycle Precedence.

The fact that Kc violates Reinforcement means that it does not take into
account indirect attacks, which is a real weakness of a disagreement measure.
This shows also that the amount of disagreement is not the simple number of
attacks.

4.2 In-Degree Measure

The second candidate measure counts the number of arguments that are attacked
in an argumentation graph.

Definition 3 (In-degree measure). Let A = 〈A,R〉 be an argumentation
graph. Ki(A) = |{a ∈ A | ∃(x, a) ∈ R}|.

Let us illustrate the measure with the six graphs given in the introduction.

Example 1 (cont): According to the In-degree measure, Ki(A0) = 0,
Ki(A1) = 1, Ki(A2) = 2, and Ki(A3) = Ki(A4) = Ki(A5) = 3. Thus, A3

is more conflicting than A2 which is more conflicting than A1.

This measure satisfies only three out of seven principles.

Theorem 3. In-degree measure satisfies Anonymity, Agreement, and Dummy.
It violates Monotony, Reinforcement, Cycle Precedence, and Size Sensitivity.

This measure has two weaknesses: it does not distinguish an elementary cycle
from a complete graph (see graphs A3 and A5 in Example 1). Moreover, like
Connectance measure, it does not take into account indirect attacks.

Remark: In-degree measure focuses on attacked arguments. One may define
another measure which rather evaluates the number of “aggressive” arguments,
that is, arguments which attack other arguments. Such a measure satisfies
(respectively violates) exactly the same principles as In-degree measure. Thus,
it is not a good candidate for assessing disagreement in an argumentation graph.

4.3 Extension-Based Measures

We now define two measures that are based on acceptability semantics, namely
on extension-based semantics proposed in [3]. Those semantics were introduced
for solving disagreements in an argumentation graph. Before introducing the
measures, let us first recall the semantics we will consider. Let A = 〈A,R〉 be
an argumentation graph and E ⊆ A.

– E is conflict-free iff �a, b ∈ E such that (a, b) ∈ R.
– E defends an argument a ∈ A iff ∀b ∈ A, if (b, a) ∈ R, then ∃c ∈ E such that

(c, b) ∈ R.
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Definition 4 (Acceptability semantics). Let A = 〈A,R〉 be an argumen-
tation graph, and E ⊆ A be conflict-free.

– E is a naive extension iff it is a maximal (w.r.t. set ⊆) conflict-free set.
– E is a preferred extension iff it is a maximal (w.r.t. set ⊆) set that defends

all its elements.

Notations: Extx(A) denotes the set of all extensions of A under semantics x
where x ∈ {n, p} and n (respectively p) stands for naive (respectively preferred).

The basic idea behind extension-based measures is that the existence of mul-
tiple extensions means presence of disagreements in the graph. Furthermore,
the greater the number of extensions of an argumentation graph, the greater
the amount of disagreements in the graph. However, a disagreement measure
which counts only the number of extensions (under a given semantics) may miss
disagreements. Consider the following argumentation graph:

a0 a1 a2

This graph has two naive extensions ({a0} and {a1}), which are mainly due
to the conflict between a0 and a1 neglecting thus the self-attack. Similarly, the
graph has a single preferred extension {a0} and the self-attack is again neglected.
In what follows, we propose two measures (one for each of the two semantics
recalled above) which take into account both the number of extensions and the
number of self-attacking arguments in an argumentation graph.

Definition 5. (Extension-based measure) Let A = 〈A,R〉 be an argumen-
tation graph and x ∈ {n, p}.

Kx
e (A) = |Extx(A)| + |SelfAtt(A)| − 1.

The subtraction of 1 in the above equation is required in order to ensure
agreement in case of empty attack relations.

Example 1 (cont): Under naive semantics, Kn
e (A0) = 0, Kn

e (A1) = Kn
e (A2) =

1, Kn
e (A3) = Kn

e (A4) = 2, and Kn
e (A5) = 3.

Under preferred semantics, Kp
e(A0) = Kp

e(A1) = Kp
e(A2) = Kp

e(A3) = 0,
Kp

e(A4) = 1, Kp
e(A5) = 3.

These two measures are clearly not powerful since they are not discriminating
as shown in Example 1. For instance, under preferred semantics, the correspond-
ing measure does not make any difference between graphs with empty attack
relations (A0) and those that have one preferred (resp. stable) extension (A1

and A2). The measure is also unable to make a difference between a graph which
has one non-empty extension and a graph which has a single empty extension
(A2 and A3). The following result confirms these observations. Indeed, the two
measures satisfy only three principles out of seven.
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Theorem 4. Extension-based measures satisfy Anonymity, Agreement and
Dummy. They violate Monotony, Reinforcement, Cycle Precedence, and Size
Sensitivity.

Despite the fact that these measures satisfy (respectively violate) the same
principles as Ki, they may return different results. Indeed, Ki assigns the same
value to A3 and A4 while Kp

e assigns to them different values. Similarly, Ki

assigns different values to A1 and A2 while naive measure assigns to both graphs
the same value 1.

Remark: It is worth mentioning that it is possible to define other measures
using other extension semantics like complete, stable, semi-stable, etc. However,
they will all satisfy the same set of principles as the two discussed above.

4.4 Distance-Based Measure

The previous disagreement measures are unable to take into account indirect
attacks. Our last measure escapes this limitation. It satisfies thus reinforcement
as well as all the other principles. The basic idea for capturing indirect attacks
(and of course direct attacks) is to check the existence of a path between any pair
of arguments of an argumentation graph. Since two arguments may be related by
several paths, we consider the shortest one. Then, we compute a global distance
for the graph which is the sum of the lengths of those paths. Before defining
formally the new measure, let us first recall the notion of distance in graphs.

Table 1. Satisfaction of principles by the measures (the symbol • stands for satisfaction
and ◦ for violation.)

Kx
e Kc Ki Kd

Anonymity • • • •
Agreement • • • •
Dummy • • • •
Monotony ◦ • ◦ •
Reinforcement ◦ ◦ ◦ •
Cycle precedence ◦ ◦ ◦ •
Size sensitivity ◦ ◦ ◦ •

Definition 6 (Distance). Let A = 〈A,R〉 be an argumentation graph and
a, b ∈ A. If a �= b, then the distance between a and b in A, d(a, b), is the length
of the shortest path from a to b if b is reachable from a, and d(a, b) = k if b is not
reachable from a. If a = b, d(a, b) is the length of the shortest elementary cycle
in which a is involved, and d(a, b) = k if a is not involved in cycles. Throughout
the paper, we assume that k = |A| + 1.
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Note that k is set to |A| + 1 because the longest path in an argumentation
graph is |A| − 1 and the length of the longest cycle is |A|.
Example 1 (cont): In argumentation graph A3, d(a1, a1) = 3, d(a1, a2) = 2
and d(a1, a3) = 1. In graph A2, d(a1, a1) = 4 and d(a1, a3) = 4 (here k = 4).

The domain of the distance function is delimited as follows.

Proposition 1. Let A = 〈A,R〉 be an argumentation graph. For all a, b ∈ A,
d(a, b) ∈ [1, k].

The global distance of an argumentation graph is the sum of lengths of the
shortest paths between any pair of arguments.

Definition 7 (Global distance). For any argumentation graph A = 〈A,R〉,

D(A) =
∑

ai∈A

∑

aj∈A
d(ai, aj)

Example 1 (cont): D(A0) = 2, D(A1) = 10, D(A2) = 28, D(A3) = 18,
D(A4) = 13 and D(A5) = 9.

Let us now delimit the upper and lower bounds of the global distance of an
argumentation graph.

Proposition 2. For any argumentation graph A = 〈A,R〉,
min ≤ D(A) ≤ max

where max = n2 × (n + 1), min = n2 and n = |A|.
We show next that the upper bound is reached by an argumentation graph

in case its attack relation is empty, while the lower bound is reached when the
graph is complete.

Proposition 3. For any argumentation graph A = 〈A,R〉,
– D(A) = max iff R = ∅
– D(A) = min iff R = A × A

Distance-based measure evaluates to what extent the global distance of an
argumentation graph is close to the upper bound. The more it is close to max,
the less disagreements are in the graph. The closer the global distance is to min,
the more the graph contains a lot of conflicts.

Definition 8 (Distance-based measure). For any argumentation graph A =
〈A,R〉,

Kd(A) =
max − D(A)
max − min

where max = n2 × (n + 1), min = n2 and n = |A|.
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Let us illustrate this measure with the running example.

Example 1 (cont): Kd(A0) = 0, Kd(A1) = 0.25, Kd(A2) = 0.29, Kd(A3) =
0.66, Kd(A4) = 0.88, and Kd(A5) = 1.

This measure computes somehow the degree of connectivity of an argumen-
tation graph. Indeed, a high disagreement value means that the graph is highly
connected, and small disagreement value means that the graph is not very con-
nected. It makes thus fine grained comparisons of argumentation graphs, namely
of various forms of cyclic graphs. In Example 1, A5 is more conflicting than A4

which is itself more conflicting than A3.
In what follows, we introduce the notion of connectivity degree of an argu-

mentation graph. It is the proportion of pairs of arguments which are related by
at least one path.

Definition 9 (Connectivity degree). The connectivity degree of an argu-
mentation graph A = 〈A,R〉 is

Co(A) =
|{(a, b) ∈ A2 | d(a, b) < k}|

|A|2 .

The next result shows that the upper bound of the disagreement value of an
argumentation graph is exactly the connectivity degree of the graph.

Theorem 5. For any argumentation graph A = 〈A,R〉, Kd(A) ∈ [0, Co(A)].

Proof. Let A = 〈A,R〉 be an argumentation graph such that |A| = n. Let
B = {(ai, aj) ∈ A × A | d(ai, aj) < k}. From Proposition 4, Kd(A) =

Co(A) + Co(A)
n −

∑
(ai,aj)∈B d(ai,aj)

n3 = Co(A)(n+1)
n −

∑
(ai,aj)∈B d(ai,aj)

n3 .
It holds that

∑
(ai,aj)∈B d(ai, aj) ≥ n2Co(A) (since |B| = n2Co(A and

d(a, b) ∈ [1, k]). Thus,
∑

(ai,aj)∈B d(ai,aj)

n3 ≥ n2Co(A)
n3 . Consequently, Co(A)

n −
∑

(ai,aj)∈B d(ai,aj)

n3 ≤ 0.

So, Co(A) + Co(A)
n −

∑
(ai,aj)∈B d(ai,aj)

n3 ≤ Co(A). Thus, Kd(A) ≤ Co(A).

Let us now characterize the disagreement values of elementary cycles. The
shorter an elementary cycle, the more conflicting it is. The maximal value (1)
is given to cycles of length 1, that is graphs that contain only one argument,
moreover it is self-attacking. This value decreases when the length of cycles
increases. However, we show that it cannot be less than 0.5. This means that
the distance-based measure considers cycles as very conflicting even when they
are very long, which is very natural.

Proposition 4. For any elementary cycle A = 〈A,R〉, Kd(A) ∈ (12 , 1].

Proof. Let A = 〈A,R〉 be an elementary cycle, and let n = |A|. For any a ∈
A,

∑
bi∈A d(a, bi) = 1 + 2 + 3 + . . . + n = n×(n+1)

2 . Thus, D(A) = n2×(n+1)
2 .

Kd(A) = n2×(n+1)−D(A)
n2×(n+1)−n2 , thus Kd(A) = n2×(n+1)

2n3 = n+1
2n = 1

2 + 1
2n . Kd(A) = 1

in case n = 1, i.e., A is made of a self attacking argument. Since A is finite,
then A is finite. Consequently, Kd(A) > 1

2 .
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The next result delimits the disagreement values of acyclic argumentation graphs.

Proposition 5. For any acyclic argumentation graph A = 〈A,R〉, Kd(A) ∈
[0, 1

2 ).

Proof. Let A = 〈A,R〉 be an acyclic argumentation graph such that |A| = n.
Since A is acyclic, then ∀a ∈ A, d(a, a) = k. Moreover, ∀a, b ∈ A, if
d(a, b) < k then d(b, a) = k (since there is no cycle in the graph). Thus,
|{(a, b) ∈ A2 | d(a, b) < k}| ≤ n2−n

2 . Consequently, |{(a,b)∈A2 | d(a,b)<k}|
n2 ≤ n2−n

2n2 .
We get Co(A) ≤ 1

2 − 1
2n . Since A is finite, then Co(A) < 1

2 . From Theorem 5,
Kd(A) ≤ Co(A). So, Kd(A) < 1

2 .

The two previous results show that the measure Kd considers any acyclic
graph as strictly less conflicting than any elementary cycle. Moreover, the ratio
of disagreement in an acyclic graph is always not very high and can never reach
the maximal value 1. On the contrary, the ratio of disagreement in an elementary
cycle is always high.

Proposition 6. Let A = 〈A,R〉 and A′ = 〈A′,R′〉 be simple paths. If |A| <
|A′|, then Kd(A) < Kd(A′).

Proof. Let A = 〈A,R〉 and A′ = 〈A′,R′〉 be two simple paths. Let n = |A| and
n′ = |A′|. Assume that n < n′. Thus, n2 < n′2 and 1

n2 > 1
n′2 . Consequently,

1 − 1
n2 < 1 − 1

n′2 and then Kd(A) < Kd(A′).

The distance-based measure satisfies all our principles.

Theorem 6. Kd satisfies all the seven principles.

Proof. Let A = 〈A,R〉 be an argumentation graph. Anonymity is obviously
satisfied. From Proposition 3, if R = ∅, D(A) = max, thus Kd(A) = 0 which
ensures Agreement.

Let A = 〈A,R〉 and A′ = 〈A′,R′〉 be two elementary cycles such that
|A| = n, |A′| = m and m > n. D(A) = n2(n+1)

2 , thus Kd(A) = n+1
2n , and

D(A′) = m2(m+1)
2 and Kd(A′) = m+1

2m = 1
2 + 1

2m . Since m > n then 2m > 2n
and 1

2m < 1
2n . Consequently, Kd(A′) < Kd(A). This shows that Size Sensitivity

is satisfied. Let us now show that Kd satisfies Dummy principle. Assume that
|A| = n Let a ∈ Args \ A and A′ = 〈A ∪ {a},R〉. We denote by k the maximal
distance in graph A and by k′ the maximal distance in graph A′. From definition,
k′ = n + 2 since |Arg(A′)| = n + 1. Since the new arguments does not attack
and is not attacked by other arguments, then the original distances in graph A
will not change except those that got value k which will be incremented by 1
each. Thus, D(A′) = D(A) + (2n + 1)k′ + x where x ≥ 0 is the number of pairs
(ai, aj) of arguments for which the length of the shortest path from ai to aj is
equal to k in graph A. We get D(A′) = D(A) + 2n2 + 5n + 2 + x. Moreover,
Kd(A) = 1 + 1

n − D(A)
n3 and Kd(A′) = 1 + 1

n+1 − D(A)
(n+1)3 − x+2n2+5n+2

(n+1)3 . Thus,
Kd(A′) < Kd(A).
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Let us now show that monotony is also satisfied. Let R′ ⊆ (A × A) \ R and
A′ = 〈A,R ∪ R′〉. Both A and A′ have the same min and max distances since
they have the same number of arguments. Consequently, Kd(A) = 1+ 1

n − D(A)
n3

and Kd(A′) = 1 + 1
n − D(A′)

n3 , with n = |A|. Assume that D(A′) > D(A). This
means that there exists a, b ∈ A such d(a, b) = x in graph A, d(a, b) = y in
graph A′ and y > x. This is impossible since the shortest path in A between a
and b still exists in A′. Thus, in A′, the shortest path between a and b is either
the same as in A or a path with y < x because of the additional attacks of R′.

Cycle Precedence follows from Propositions 4 and 5.
Reinforcement is also satisfied. Since the two graphs in the principle are

assumed to have the same number of arguments, then both graphs have the same
max and min values. It is thus sufficient to compare the global distances of the
graphs. We can easily compute the following values: D(A) = 8n3 +26n2 +32n+
14, and D(A′) = 20

3 n3 + 25n2 + 91
3 n + 12. D(A) > D(A′), thus K(A) < K(A′).

Distance-based measure satisfies all the principles. Thus, it takes into account
both the direct attacks in an argumentation graph as well as the indirect ones.
All these features make it the best candidate for measuring disagreement in
argumentation graphs. Table 1 recalls for each measure, the principles it satisfies
and those it violates.

5 Links Between Disagreement Measures and
Inconsistency Measures

In this section, we consider argumentation graphs 〈A,R〉 that are generated from
a propositional knowledge base Σ. The arguments of A are defined as follows:

Definition 10 (Argument). Let Σ be a propositional knowledge base. An
argument is a pair (X,x) s.t. X ⊆ Σ, X is consistent, X � x1, and �X ′ ⊂ X
such that X ′ � x.

Regarding the attack relation R, we consider assumption-attack defined in [5].

Definition 11 (Assumption-Attack). An argument (X,x) attacks (Y, y)
(((X,x), (Y, y)) ∈ R) iff ∃y′ ∈ Y such that x ≡ ¬y′2.

In [14], the authors proposed a measure (I) that quantifies the amount of
inconsistency in a propositional knowledge base Σ. That amount is equal to the
number of maximal (for set inclusion) consistent subsets of Σ and the number
of inconsistent formulas in Σ minus 1.

1 The symbol � stands for propositional inference relation.
2 The symbol ≡ stands for logical equivalence.
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Definition 12 (Inconsistency Measure). For any propositional knowledge
base Σ,

I(Σ) = |Max(Σ)| + |Inc(Σ)| − 1

Max(Σ) is the set of maximal (for set ⊆) consistent subsets of Σ, and Inc(Σ) is
the set of inconsistent formulae in Σ. I(Σ) is called the inconsistency value of
Σ.

Given a knowledge base Σ, we show that its inconsistency value (as computed
by measure I) is equal to the disagreement values of the corresponding argu-
mentation graph using the three extension-based measures Kx

e with x ∈ {n, p}.

Theorem 7. Let Σ be a propositional knowledge base such that Inc(Σ) = ∅.
Let A = 〈A,R〉 be the argumentation graph built over Σ. The following holds:

Kn
e (A) = Kp

e(A) = I(Σ)

Proof. Let Σ be a propositional knowledge base such that Inc(Σ) = ∅. Let
A = 〈A,R〉 be the argumentation graph built over Σ. From Theorem 8 in [15],
Extn(A) = Extp(A). Furthermore, there is a full correspondence between the
naive extensions of A and the maximal (for set inclusion) consistent subsets of
Σ. Hence, |Extn(A)| = |max(Σ)|. Since Inc(Σ) = ∅, then I(Σ) = |max(Σ)|−1.
Since by definition of arguments, SelfAtt(A) = ∅, then Kx

e (A) = |Extx(A)|−1.
Thus, Kx

e (A) = I(Σ).

This result shows that not only the two extension-based measures return the
same result in case of propositional knowledge bases, but also they are equivalent
to the inconsistency measure proposed in [14].

6 Related Work

Despite the great amount of work on argumentation, there is no work on comput-
ing the amount of disagreements in argumentation graphs. Our paper presented
the first attempt in this direction. In [16], the authors studied to what extent the
extensions (under a given semantics) of an argumentation graph are different.
The problem they addressed is thus completely different from the purpose of our
paper.

Several measures were proposed in the literature for quantifying inconsistency
in propositional knowledge bases (e.g., [6–8]). Our extension-based measures are
equivalent to one of them, namely the one proposed in [14].

7 Conclusion

This paper studied for the first time how to quantify disagreements in an argu-
mentation graph. It showed that disagreements is more than direct attacks. It
proposed principles which serve as theoretical criteria for validating and com-
paring disagreement measures. It defined six intuitive measures and investigated
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their properties. The distance-based measure is the most powerful one. It not
only satisfies all the proposed principles, but it is also very discriminating, that
is, it provides a fine grained evaluation of argumentation graphs. Moreover, it
captures very well the two sources of disagreement: direct and indirect attacks.
Furthermore, the paper made a first bridge with works on inconsistency mea-
sures. It showed that extension-based measures return the same amount of con-
flict as one proposed in [14].

This work can be extended in several ways. First, we plan to investigate
more deeply the relationship between the disagreement value of an argumenta-
tion graph and existing inconsistency degree of the knowledge base over which
the graph is built. A particular focus will be put on distance-based measure
since it captures well indirect attacks in an argumentation graph. Another line
of research consists of evaluating the contribution of each argument to the dis-
agreement value of a graph. Such information may be useful in a dialogues for
identifying the culprit that should be attacked.

Acknowledgments. This work was supported by ANR-13-BS02-0004 and ANR-11-
LABX-0040-CIMI.
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Abstract. The epistemic approach to probabilistic argumentation
assigns belief to arguments. This is valuable in dialogical argumenta-
tion where one agent can model the beliefs another agent has in the
arguments and this can be harnessed to make strategic choices of argu-
ments to present. In this paper, we extend this epistemic approach by
also representing the belief in attacks. We investigate properties of this
proposal and compare it to the constellations approach showing neither
subsumes the other.

Keywords: Abstract argumentation · Probabilistic argumentation ·
Epistemic argumentation

1 Introduction

Abstract argumentation as proposed by Dung [8] provides an important formal-
ism for representing and evaluating arguments and counterarguments. Proposals
for probabilistic argumentation extend this to address aspects of uncertainty aris-
ing in argumentation. The two main approaches to probabilistic argumentation
are the constellations and the epistemic approaches [14]. In the constellations
approach, the uncertainty is in the topology of the graph. This approach is
useful when one agent is not sure what arguments and attacks another agent
is aware of, and so this can be captured by a probability distribution over the
space of possible argument graphs. In the epistemic approach, the topology
of the argument graph is fixed, but there is uncertainty as to the degree to which
each argument is believed.

In this paper, we extend the epistemic approach with a probability distrib-
ution over the power set of attacks which we use to represent the uncertainty
in each attack. To illustrate, we consider a listener to a political discussion on
the radio. This is a situation where the listener acquires all the arguments and
attacks that are presented, but does not add or delete arguments or attacks.
The argument graph is given in Fig. 1. Often the listener would evaluate the
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tational Persuasion”.
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arguments and attacks. For instance, she may have a low belief in A3 because
she has found World Bank predictions to be unreliable in the past, and she may
have a high belief in argument A2, but a low belief in the attack by A2 on A1. As
a result, she may have a high belief in A1. Note, in the constellations approach,
it is not possible to represent all the arguments and attacks in one graph, and
then assign belief to them.

A1 = The economy is not doing well, and
the rich are not paying enough tax, there-
fore we should increase taxes on the rich.

A2 = Government statistics
show that the rich are in-
creasingly moving abroad.

A3 = World Bank data sug-
gests that the economy of
the country is improving.

Fig. 1. Example of an argument graph acquired by a listener to a debate

Often uncertainty in attacks arises because “real-world” arguments are nor-
mally enthymemes (i. e. some or all of the premises and/or the claim are implicit).
When an agent posits an enthymeme, the recipient decodes it to recover the
intended argument. This creates a risk that the recipient decodes it differently
to the way intended (as illustrated by the attack of A2 on A1 in Fig. 1).

A potentially valuable role for the extended epistemic approach is in sup-
porting an agent (X) when arguing with another agent (Y). Agent X can model
agent Y to reflect the arguments and attacks that X thinks Y believes. This
extends proposals for using the epistemic approach for user modelling in persua-
sion dialogues [15,16].

The contributions of this paper are: (1) a set of constraints on prob-
ability distributions that take into account uncertainty of arguments and
attacks; (2) results on the constraints showing inter-relationships between them;
(3) results showing how with certain combinations of constraints recover and
generalize Dung’s dialectical semantics; and (4) a comparison with the constella-
tions approach showing how neither subsumes the other. All proofs are available
online1.

2 Preliminaries

We start with a brief review of abstract argumentation as proposed by [8]. An
argument graph (or a framework) is a directed graph G = (A,R), where A is
the set of arguments and R ⊆ A × A is the set of attacks. The way we decide
which arguments can be accepted or rejected (or neither) is called a semantics.

1 http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/extended epistemic full.pdf

http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/extended_epistemic_full.pdf
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We focus on the argument-based approach [1,5] and the adaptation of the attack-
based approach from [2].

An argument labeling is a total function L : A → {in, out, und} [1,5]. By
in(L), out(L) and und(L) we denote the arguments mapped respectively to in, out
and und(ecided) by L. We will often write a labeling as a triple (I,O, U), where
I, O and U are sets of arguments mapped to in, out and und. We say that a set
of elements attacks another element if it contains an appropriate attacker. We
can now introduce the notion of legality, on which our semantics are based.

Definition 1. An argument A ∈ A is an attacker of B ∈ A iff (A,B) ∈ R.
Let L : A → {in, out, und} be a labeling:

– X ∈ in(L) is legally in iff all its attackers are in out(L).
– X ∈ out(L) is legally out iff it has an attacker in in(L).
– X ∈ und(L) is legally und iff not all of its attackers are in out(L) and it

does not have an attacker in in(L).

Definition 2. Let L : A → {in, out, und} be a labeling:

(cf) L is conflict-free iff it holds that if A ∈ in(L), then none of its attackers
is in in(L), and every A ∈ out(L) is legally out

(ad) L is admissible iff every A ∈ in(L) is legally in and every A ∈ out(L) is
legally out.

(co) L is complete if it is admissible and every A ∈ und(L) is legally und.

Additionally, a complete labeling is stable (st) if und(L) = ∅, it is preferred (pr)
if in(L) is maximal wrt. ⊆, and it is grounded (gr) if in(L) is minimal wrt. ⊆.

In Dung’s semantics, attacks are seen as secondary to arguments. For exam-
ple, ensuring that no attack on a given argument is accepted is equivalent to
making sure that no argument carrying out an attack is accepted. However, this
correspondence does not always hold for various generalizations of Dung’s graph,
in which a given conflict may not be successful due to preferences, probabilities,
or when it is a target of an attack as well [4]. Therefore, the status assigned
to a given attack is not necessarily the same as assigned to its source. We will
now adapt the approach from [2] and focus on the extended labelings, which
are total functions L� : A ∪ R → {in, out, und}. We introduce the notion of an
extended attacker (attacker�), which is now a conflict, not an argument, and the
attackee can be both an argument and a relation.

Definition 3. For an attack α = (A,B) ∈ R, the source of α is src(α) = A
and the target of α is trg(α) = B. An attack α ∈ R is an attacker � (1) of
B ∈ A iff B = trg(α), and (2) of β ∈ R iff trg(α) = src(β).

By replacing attacker with attacker� in the previous definitions and max-
imizing/minimizing attacks as well as arguments, we obtain the attack-based
semantics, further distinguished with �. We have the following correspondence
between these two families of semantics [2]. Please observe that that extended
labelings can, in general, only be projected to their corresponding ordinary label-
ings if they are at least complete.
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Proposition 1. If L = (I,O, U) is a σ–labeling, where σ ∈ {cf, ad, co, pr, gr,
st}, then L� = (I ∪{α | src(α) ∈ I}, O∪{α | src(α) ∈ O}, U ∪{α | src(α) ∈ U})
is a σ�–labeling. If L� = (I�, O�, U�) is a δ�–labeling, where δ ∈ {co, pr, gr, st},
then L = (I� ∩ A, O� ∩ A, U� ∩ A) is a δ–labeling.

We use σ(G) to denote the set of labelings of G according to the semantics
σ ∈ {cf, ad, co, pr, gr, st, cf�, ad�, co�, pr�, gr�, st�}. We will say that a set of
arguments S is a σ–extension iff there exists a σ–labeling L s. t. in(L) = S.

Example 1. Consider the graph G1 below. The admissible labelings are L1 = (∅,
∅, {A,B,C}), L2 = ({A}, {B}, {C}), L3 = ({B}, {A}, {C}) and L4 = ({B},
{A,C}, ∅). Apart from L3, all of them are complete. L1 is grounded, L2 and L4

are preferred, and L4 is stable.

Now consider the graph G2 above. The admissible labelings are L1 = (∅, ∅,
{A,B,C}), L2 = ({A}, ∅, {B,C}), L3 = ({A}, {B}, {C}), and L4 = ({A,C},
{B}, ∅). L4 is the single complete, preferred, stable and grounded labeling. The
admissible� labelings of G2 are L�

1 = (∅, ∅, {A,B,C, r1, r2}), L�
2 = ({A}, ∅,

{B,C, r1, r2}), L�
3 = ({r1}, ∅, {A,B,C, r2}), L�

4 = ({r1}, {B}, {A,C, r2}),
L�
5 = ({r1}, {r2}, {A,B,C}), L�

6 = ({r1}, {B, r2}, {A,C}), L�
7 = ({A, r1},

∅, {B,C, r2}), L�
8 = ({A, r1}, {B}, {C, r2}), L�

9 = ({A, r1}, {r2}, {B,C}),
L�
10 = ({A, r1}, {B, r2}, {A,C}), L�

11 = ({r1, C}, {r2}, {A,B}), L�
12 = ({r1, C},

{B, r2}, {A}), L�
13 = ({A, r1, C}, {r2}, {B}) and L�

14 = ({A, r1, C}, {B, r2}, ∅).
L�
14 is the single complete�, preferred�, stable� and grounded� labeling.

We can observe that even though every argument-based labeling has a corre-
sponding extended one, the removal of attacks from the extended labeling does
not necessarily give us a standard one (e. g. L�

11 and L�
12).

3 Constellations Approach

We review the constellations approach [13] which extends [7,19]. It allows rep-
resentation of the uncertainty over the topology of the graph: Each subgraph of
the original graph is assigned a probability to represent the chances of it being
the actual argument graph of the agent. It can be used to model what arguments
and attacks an agent is aware of.

Definition 4. For G = (A,R) and G′ = (A′,R′), the subgraph relation, denoted
�, is defined as G′ � G iff A′ ⊆ A and R′ ⊆ (A′ ×A′)∩R. The set of subgraphs
of G is Sub(G) = {G′ | G′ � G}. A subgraph (A′,R′) is full iff A′ ⊆ A and
R′ = (A′ × A′) ∩ R. A subgraph (A′,R′) is spanning iff A′ = A and R′ ⊆ R.

If our uncertainty is about which arguments appear in the graph, then only
the full (induced) subgraphs of the argument graph have non-zero probability.
If we are only uncertain about which attacks appear, then it is the spanning
subgraphs of the argument graph that can have non-zero probability.
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Definition 5. A subgraph distribution is a function P c : Sub(G) → [0, 1]
with

∑
G′∈Sub(G) P c(G′) = 1. A subgraph distribution P c is a full subgraph

distribution iff if (A′,R′) is not a full subgraph, then P c((A′,R′)) = 0. A sub-
graph distribution P c is a spanning subgraph distribution iff iff if (A′,R′)
is not a spanning subgraph, P c((A′,R′)) = 0.

Determining the probability that a set of arguments is an extension (labeling)
of a particular type (e. g. grounded, preferred, etc.) is is done by collecting the
probabilities of the subgraphs producing the desired labelings. In a similar fash-
ion, we can derive the probability of an argument being accepted in a labeling
of a given type.

Definition 6. For S ⊆ A and σ ∈ {cf, ad, co, pr, gr, st}, the probability that
L : S → {in, out, und} is a σ–labeling is:

Pσ(L) =
∑

G′∈Sub(G) s.t. L∈σ(G′)

P c(G′)

Definition 7. Given a semantics σ ∈ {ad, co, pr, gr, st}, the probability that A ∈
A is in in a σ–labeling is

Pσ(A) =
∑

G′∈Sub(G) s.t. L∈σ(G′) and A∈in(L)

P (G′)

Example 2. Consider the graph G = ({A,B}, {(A,B)}. Its subgraphs are G1 =
({A,B}, {(A,B)}, G2 = ({A,B}, ∅), G3 = ({A}, ∅), G4 = ({B}, ∅) and G5 =
(∅, ∅). Out of them, G1, G3, G4 and G5 are full, and G1 and G2 are spanning.
Consider the following subgraph distribution P c: P c(G1) = 0.09, P c(G2) = 0.81,
P c(G3) = 0.01 and P c(G4) = 0.09 and P c(G5) = 0. The probability of a given
set being a grounded extension is as follows: Pgr({A,B}) = P c(G2) = 0.81;
Pgr({A}) = P c(G1) + P c(G3) = 0.1; Pgr({B}) = P c(G4) = 0.09; and Pgr({}) =
P c(G5) = 0. Therefore Pgr(A) = 0.91 and Pgr(B) = 0.9.

4 Extended Epistemic Approach

In the original version of the epistemic approach [3,14,17,18,22], an argument
graph has an associated probability distribution over the sets of arguments. From
this, we derive the probability of a single argument and interpret it as the belief
that an agent has in it (i. e. the degree to which the agent believes the premises
and the conclusion drawn from those premises). We say that an agent believes
an argument A to some degree when P (A) > 0.5, disbelieves an argument to
some degree when P (A) < 0.5, and neither believes nor disbelieves an argument
when P (A) = 0.5. Here we extend the approach with uncertainty over attacks.
For this, we introduce the probability of attack (i.e. the degree of belief that the
attacker does indeed attack the attackee). We use two functions in the definition
because we want to investigate the interplay between them.
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Definition 8. An epistemic bidistribution is a pair (P a, P r) where

– P a is a function P a : 2A → [0, 1] with
∑

S⊆A P a(S) = 1 (argument belief
distribution).

– P r is a function P r : 2R → [0, 1] with
∑

S⊆R P r(S) = 1 (attack belief
distribution).

The probability of an argument A is P a(A) =
∑

S⊆A s.t. A∈S P a(S).
The probability of an attack α is P r(α) =

∑
S⊆R s.t. α∈S P r(S). Finally,

let P b(X) denote P a(X) (resp. P r(X)) when X ∈ A (resp. X ∈ R).

In order to simplify the notation, we drop the brackets for representing the
probability of an attack relation, i. e., for (A,B) ∈ R, instead of P r((A,B)) we
write P r(A,B).

The epistemic probability distributions can be constrained by imposing ratio-
nality postulates. In what follows we will build up on some of the postulates from
[18] and introduce some new ones. The previous results can be retrieved by con-
sidering bidistributions in which all attacks are believed. We separate our new
approaches into two families of postulates.

We start with the independent family of postulates in Definition 9 and give
results on inter-relationships in Fig. 2 where Pμ is the set of bidistributions
satisfying postulate μ in G. The family is called independent because there is
no dependence imposed between belief in attacks and belief in attackers, i.e. the
probabilities assigned to an attack α and to src(α) are not necessarily related.
RAT�, TER�, COH�, and OPT� require that both the attacker and the attack
itself need to be believed in order to affect the attackee, or that either of them
can be disbelieved in order for belief in the target. For RAT� (resp. STC�), if
an attacker and its attack are believed, then the attackee is not believed (resp.
disbelieved). As a dual for STC�, PRO� ensures that if an attack and attackee are
believed, the attacker is not believed. TRU� requires that an argument is believed
when there is no evidence to the contrary. By DIS�, an argument can only be
disbelieved for a reason. TER� simply limits beliefs to three values corresponding
precisely to the in, out and und statuses from the standard semantics. The ABIN�

postulate prohibits being undecided about beliefs. Finally, while all the previous
properties consider belief and disbelief, the COH� and OPT� properties give
margins for probability assignments—one focuses on the upper, the other on the
lower bound. By varying the use of also undecided attacks, we can specialize our
axioms further, as seen in the case of RPRO� and RCOH�.

Definition 9. (The independent family of postulates). An epistemic bidis-
tribution (P a, P r) is:

(RAT�) rational� if for all A,B ∈ A s.t. (A,B) ∈ R and P r(A,B) > 0.5,
P a(A) > 0.5 implies P a(B) ≤ 0.5.

(STC�) strict� if for all A,B ∈ A, s.t. (A,B) ∈ R and P r(A,B) > 0.5,
P a(A) > 0.5 implies P a(B) < 0.5.

(PRO�) protective� if for all A,B ∈ A s.t. (A,B) ∈ R and P r(A,B) > 0.5,
P a(B) > 0.5 implies P a(A) < 0.5.
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(RPRO�) restricted protective� if for all A,B ∈ A s.t. (A,B) ∈ R and
P r(A,B) ≥ 0.5, P a(B) > 0.5 implies P a(A) < 0.5.

(TRU�) trusting� if for every B ∈ A, it holds that if for all C ∈ A s.t.
(C,B) ∈ R, either P a(C) < 0.5, or P r(C,B) < 0.5, then P a(B) >
0.5.

(DIS�) discharging� if for every B ∈ A, if P a(B) < 0.5, then there exists
C ∈ A s.t. (C,B) ∈ R, P r(C,B) > 0.5 and P a(C) > 0.5.

(TER�) ternary� if for all X ∈ A ∪ R, P b(X) ∈ {0, 0.5, 1}.
(ABIN�) attack binary� if for all X ∈ R, P r(X) �= 0.5.
(COH�) coherent� if for all A,B ∈ A s.t. (A,B) ∈ R and P r(A,B) > 0.5,

P a(A) ≤ 1 − P a(B).
(RCOH�) restricted coherent� if for all A,B ∈ A, s.t. (A,B) ∈ R and

P r(A,B) ≥ 0.5, P a(A) ≤ 1 − P a(B).
(OPT�) optimistic� if for every A ∈ A, it holds that

P a(A) ≥ 1 − ∑
B s.t. (B,A)∈R,P r(B,A)>0.5 and P a(B)>0.5 P a(B).

In the independent family, the belief we have in an attacker does not constrain
the belief we may have in its attack. We consider it an intuitive modeling, as we
do not have to believe two arguments in order to acknowledge a conflict between
them. Imagine two people witnessing a robbery, one claiming that the criminal
ran away in a car, the other that he used a bike. The statements are clearly
conflicting and we can believe the attacks between them independently of the
belief we have in the witnesses. Similarly, we do not need to believe a given
attack even if we believe the arguments participating in it, as exemplified in the
introduction.

P
PRAT� PSTC�

PPRO�

PRPRO�

PCOH�

PRCOH�

∅

PTER�

PCOH� ∩ PTER� =

PPRO� ∩ PSTC� ∩ PTER�

Fig. 2. Relationships for the independent family of postulates where Pµ1 → Pµ2

denotes Pµ1(G) ⊆ Pµ2(G)

We present a second family of postulates in Definition 10, called the depen-
dent family, and give results on inter-relationships in Fig. 3. This second family
is motivated by the observation that in some situations (e. g. when argument
graphs are obtained from logical knowledge bases), it is natural to expect that
there is a dependence between belief in an attacker and its attack. Moreover, in
many approaches that explicitly include the attacks in extensions and labelings,
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P
PASTC�

PACOH�

PARAT�

PAPRO�

PASCOH�

PWUN�

PSUN�

PUNI�

∅

PTER�

PASCOH� ∩ PTER� =
PAPRO� ∩ PASTC� ∩ PTER�

Fig. 3. Relationships for the dependent family of postulates where Pµ1 → Pµ2 denotes
Pµ1(G) ⊆ Pµ2(G)

the conflicts need to conform to the same semantics as the arguments. Conse-
quently, we can demand that the belief in an argument affects the belief in its
attacks and vice versa. For this, we introduce the UNI�, SUN� and WUN� postu-
lates below. Similarly, we also present the attack postulates, which constrain the
belief both in the attacked argument and the conflict whose source is attacked,
thus implicitly acknowledging the dependency between the two. Moreover, while
in the independent family the beliefs in the attack and the attacker had to
be mentioned explicitly due to their independence, in this family we consider
just the attack itself. This also reflects the intuition behind the attack–based
approach.

Definition 10. (The dependent family of postulates). An epistemic bidistri-
bution (P a, P r) is:

(UNI�) unified� if for all (A,B) ∈ R, P r(A,B) = P a(A)
(SUN�) semi–unified� if for all (A,B) ∈ R, P a(A) > 0.5 iff P r(A,B) >

0.5 and P a(A) < 0.5 iff P r(A,B) < 0.5
(WUN�) weakly unified� if for all (A,B) ∈ R, either both P r(A,B) ≥ 0.5

and P a(A) ≥ 0.5 or both P r(A,B) ≤ 0.5 and P a(A) ≤ 0.5.
(ARAT�) attack rational� iff for every α ∈ R, if P r(α) > 0.5 and α is an

attacker� of X ∈ A ∪ R, then P b(X) ≤ 0.5.
(ASTC�) attack strict� iff for every α ∈ R, if P r(α) > 0.5 and α is an

attacker� of X ∈ A ∪ R, then P b(X) < 0.5.
(APRO�) attack protective� iff for every X ∈ A ∪ R and α ∈ R s.t. α is

an attacker� of X, if P b(X) > 0.5, then P r(α) < 0.5.
(ATRU�) attack trusting� iff for every X ∈ A ∪ R, it holds that if for

every attacker� β ∈ R of X it is the case that P r(β) < 0.5, then
P b(X) > 0.5.

(ADIS�) attack discharging� iff for every X ∈ A ∪ R, if P b(X) < 0.5,
then there exists an attacker� β ∈ R of X s.t. P r(β) > 0.5.

(ACOH�) attack coherent� iff for every X ∈ A ∪ R and α ∈ R s.t. α is an
attacker� of X, if P r(α) > 0.5, then P r(α) ≤ 1 − P b(X).

(ASCOH�) attack strongly coherent� iff for every X ∈ A∪R and α ∈ R s.t.
α is an attacker� of X, if P r(α) ≥ 0.5, then P r(α) ≤ 1 − P b(X).
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∅

Fig. 4. Classes of probability functions where Pµ1 → Pµ2 denotes Pµ1(G) ⊆ Pµ2(G)

Some relationships between the two postulate families are given in Fig. 4.
Although the independent family is more argument-driven, while the depen-

dent family is more attack-driven, there is a meeting point between them. In
particular, by the use of postulates that tie the belief we have in a conflict to
the belief we have in its source, we can up to a certain degree replace one family
with the other.

Example 3. Consider again G2 from Example 1 and an epistemic bidistribution
(P a, P r) (partially) defined through the following constraints:

P a(A) = 0.9 P a(B) = 0.5 P a(C) = 0.6
P r(r1) = 0.7 P r(r2) = 0.6

Then (P a, P r) is (among others) rational�, weakly unified�, and (trivially) attack
trusting�. It is, for example, not strict�, not protective�, and not attack strongly
coherent�.

5 Relationship with Classical Semantics

In order to compare the extended epistemic approach with Dung’s classical app-
roach, we introduce the notions of epistemic and extended epistemic labelings.
Elements that are believed (disbelieved or neither) are simply assigned in (respec-
tively, out and und). We will show which postulates need to be satisfied in order
for the (extended) epistemic labelings to conform to the desired classical seman-
tics and vice versa.

Definition 11. Let (P a, P r) be an epistemic bidistribution. The epistemic
labeling is LP a = (I,O, U), where I = {A ∈ A | P a(A) > 0.5}, O = {A ∈
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A | P a(A) < 0.5}, and U = {A ∈ A | P a(A) = 0.5}. The extended epis-
temic labeling is L�

P a,P r = (I,O, U), where I = {X ∈ A ∪ R | P b(X) > 0.5},
O = {X ∈ A ∪ R | P b(X) < 0.5}, and U = {X ∈ A ∪ R | P b(X) = 0.5}.

We will first show how our independent family of postulates (i. e. Definition 9)
relates to the classical notions. We can draw a connection between the epistemic
bidistributions and the labelings of a subgraph of the original graph, which is
obtained by considering only those attacks that are believed:

Definition 12. Let (P a, P r) be an epistemic bidistribution. The set of believed
attacks is BAtts(P r) = {(A,B) ∈ R | P r(A,B) > 0.5}. The subgraph of G
induced by P r is G′ = (A,BAtts(P r)).

Proposition 2. Let (P a, P r) be an epistemic bidistribution and G′ =
(A,BAtts(P r)) the subgraph of G induced by P r.

– (P a, P r) ∈ PRAT �(G) ∩ PDIS�(G) iff LP a ∈ cf(G′).
– (P a, P r) ∈ PPRO�(G) ∩ PDIS�(G) iff LP a ∈ ad(G′).
– (P a, P r) ∈ PPRO�(G)∩PSTC�(G)∩PDIS�(G)∩PTRU�(G) iff LP a ∈ co(G′).

We can observe that although one attack distribution induces only one sub-
graph, a single subgraph can be induced by multiple distributions. This is due
to the fact that the removal of the attacks depends on whether an attack is
believed at all, not on the degree of this belief. Moreover, there can be infinitely
many argument distributions associated with a single complete labeling due to
the fact that any of the values from [0, 0.5) (or (0.5, 1]) can lead to an out (or
in) assignment of a given labeling. Although this is to be expected taking into
account the fact that probabilistic semantics carry more information than the
classical ones, we would also like to distinguish those probability functions that
can be uniquely associated with a given subgraph and its complete labelings.
We thus propose the definition of complete probability bidistributions; a given
subgraph can be induced only by a single ternary and attack binary distribution,
while ternary, trusting, disapproving and coherent postulates lead to a tighter
relation with the labelings:

Definition 13. An epistemic bidistribution (P a, P r) is complete iff
(P a, P r) ∈ PCOH�(G) ∩ PDIS�(G) ∩ PTRU�(G) ∩ PTER�(G) ∩ PABIN�(G).

From this, we can further define the preferred, complete and stable bidistrib-
utions that lead to appropriate labelings in the associated subgraph by maximiz-
ing or minimizing particular assignments, similarly as in the classical semantics.
In this case, instead of focusing on in, out and und assignments, we look for
probabilities 1, 0 and 0.5.

Although the extended epistemic approach is quite general, the epistemic
labelings without any constraints on the attack distributions are connected to the
labellings of the subgraphs of a given framework, not necessarily the framework
itself. However, if we apply the dependency postulates from the dependent family
(Definition 10)— in particular, the semi-unified one—we can observe that we can
focus on the original graph again. The only difference wrt. the previous results
is the use of the restricted, not standard protectiveness.
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Proposition 3. The following holds:

– If L ∈ cf(G), then there exists (P a, P r) ∈ PRAT �(G)∩PDIS�(G)∩PSUN�(G)
s.t. L = LP a .

– If L ∈ ad(G), then there exists (P a, P r) ∈ PRPRO�(G) ∩ PDIS�(G) ∩
PSUN�(G) s.t. L = LP a .

– If L ∈ co(G), then there exists (P a, P r) ∈ PRPRO�(G) ∩ PSTC�(G) ∩
PDIS�(G) ∩ PTRU�(G) ∩ PSUN�(G) s.t. L = LP a .

– If (P a, P r) ∈ PRAT �(G) ∩ PDIS�(G) ∩ PSUN�(G), then LP a ∈ cf(G).
– If (P a, P r) ∈ PRPRO�(G) ∩ PDIS�(G) ∩ PSUN�(G), then LP a ∈ ad(G).
– If (P a, P r) ∈ PRPRO�(G) ∩ PSTC�(G) ∩ PDIS�(G) ∩ PTRU�(G) ∩ PSUN�(G),

then LP a ∈ co(G).

This leads to the following complete probability bidistribution, which can
uniquely describe the complete labelings of the underlying framework. Using
this, we can also retrieve the preferred, grounded and stable labellings as for the
classical case (as discussed in Sect. 2).

Definition 14. An epistemic bidistribution (P a, P r) is jointly complete iff
(P a, P r) ∈ PSUN�(G) ∩ PRCOH�(G) ∩ PDIS�(G) ∩ PTRU�(G) ∩ PTER�(G).

Let us now focus on the extended classical semantics. As we could have
already observed in Example 1, the admissible� labelings were not necessarily
corresponding to the admissible ones. However, we can easily grasp it with our
attack epistemic postulates.

Proposition 4. The following holds:

– (P a, P r) ∈ PWUN�(G) ∩ PARAT �(G) ∩ PADIS�(G) iff L�
P a,P r ∈ cf�(G).

– (P a, P r) ∈ PWUN�(G) ∩ PAPRO�(G) ∩ PADIS�(G) iff L�
P a,P r ∈ ad�(G).

– (P a, P r) ∈ PSUN�(G)∩PAPRO�(G)∩PASTC�(G)∩PADIS�(G)∩PATRU�(G)
iff L�

P a,P r ∈ co�(G).

The fact that the complete� labelings correspond to bidistributions satisfying
the SUN� postulate gives us one more important result. In particular, under the
SUN� postulate we can replace the other postulates from the dependent family
with their counterparts from the independent family. This also means that we
can use the jointly complete bidistributions in order to uniquely retrieve the
extended labelings of G that are at least complete�.

Theorem 1. Let (P a, P r) be an epistemic bidistribution. Then L�
P a,P r ∈ co�(G)

iff (P a, P r) ∈ PSUN�(G) ∩ PRPRO�(G) ∩ PSTC�(G) ∩ PDIS�(G) ∩ PTRU�(G).

These results show that our new proposal for epistemic probabilities can
generalize a wider range of argumentation semantics than the original one [18].
Moreover, what we have presented can be easily extended to handle the attack-
based semantics from [24] and recursive attacks from [2].
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6 Comparison with Constellations Approach

The reasoning behind the epistemic and constellations approaches is different,
with the former intended to reflect the belief in arguments and attacks, and the
latter expressing the uncertainty concerning the topology of the graph, e. g., as to
which arguments and attacks are known about or what elements should appear
in the graph. Nevertheless, we can still draw some connections between them.
We can observe that in a subgraph distribution assigning non-zero probability
only to subgraphs without attacks, the grounded extension of each subgraph
would consist of all of its arguments. These extensions and their probabilities
produce an argument distribution. Thus, the constellations approach can up to
some extent mimic the epistemic approach:

Proposition 5. For each argument-belief distribution P a over G, there is a
constellations distribution P c over Sub(G) s.t. for all arguments A in A, P a(A)
= P c

gr(A).

In turn, a spanning or full subgraph distribution can be simulated with the
attack or argument belief distribution due to the fact that part of a subgraph
becomes “fixed” and not directly subject to any uncertainty.

Proposition 6. For each spanning subgraph distribution P c over G, there is an
attack belief distribution P r s.t. for all subgraphs G′ � G, and for all sets of
attacks S ⊆ R, if R′ = S, then P c(G′) = P r(S).

Proposition 7. For each full subgraph distribution P c over G, there is an argu-
ment belief distribution P a s.t. for all subgraphs G′ � G, and for all sets of
arguments S ⊆ A, if A′ = S, then P c(G′) = P a(S).

However, we can observe that if a subgraph distribution is neither a full
subgraph distribution nor a spanning subgraph distribution, then the constel-
lations approach cannot be captured by the epistemic approach. Moreover, in
the constellations approach, the marginal value of a given argument (i. e. the
total probability of subgraphs containing this argument) is never less than the
marginal for any attack involving that argument. In contrast, the belief in an
attacker can be greater than then belief in the attack or attackee. This shows
that, in general, the epistemic approach cannot be captured by the constellations
method.

Definition 15. Let P c be a subgraph distribution. The argument marginal
function is Pm(A) =

∑
G′∈Sub(G) s.t. A∈A′ P (G′). The attack marginal func-

tion is Pm(A,B) =
∑

G′∈Sub(G) s.t. (A,B)∈R′ P (G′).

Proposition 8. Let P c be a subgraph distribution. For all (A,B) ∈ R, P c(A) ≥
P c(A,B).

Example 4. Consider the graph G1 = ({A,B,C}, {(A,B), (B,A), (C,B)}) and
its subgraphs G2 = ({A,B,C}, {(A,B), (B,A))}) and G3 = ({A,B}, {(A,B)}).
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For this graph, we consider the subgraph distribution P c(G1) = 0.3, P c(G2) =
0.5 and P c(G3) = 0.2, which is neither a full subgraph nor a spanning subgraph
distribution. We cannot use P a or P r to represent P c.

We can now consider an epistemic bidistribution (P a, P r) s.t. P r({A,B}) = 1
and for every set S ⊆ A s.t. A ∈ S, P a(S) = 0 (the remaining assign-
ments are arbitrary as long as we obtain a distribution). Therefore, P a(A) <
P a((A,B)). But there cannot be any subgraph distribution P c for G1 s.t.
Pm(A) < Pm((A,B)).

These results show that extended epistemic and constellations approach,
although related, do not subsume each other.

7 Conclusions

In this paper, we extend the epistemic approach to account for belief in attacks
as well as arguments. We do this by introducing the notion of an epistemic
bidistribution. We then provide two families of postulates that offer a variety of
ways of constraining the bidistributions according to different notions of rational
behaviour, give some relationships between these two families, and show how
these postulates relate to classical semantics for abstract argumentation, and we
show how the extended epistemic and constellations approaches do not subsume
each other.

Important dimensions for probabilistic argumentation include the constel-
lations approach to abstract argumentation (e.g. [6,7,9,19,20]), the equational
approach to abstract argumentation [10], and probabilistic structured argumen-
tation (e.g. [7,21,23]). The extended epistemic approach is complementary to
these existing approaches (see Sect. 6, for differences with the constellations
approach, and see [10], for differences between the epistemic and equational
approaches).

The epistemic approach is a promising approach to user modelling in per-
suasion where a persuader can model the beliefs in arguments of the persuadee
and update the model during a dialogue [11,15,16], and the user model can be
harnessed to make strategic choices of move in a dialogue using decision theory
[12]. The extended epistemic approach offers richer user models, and pontentially
more effective decisions about moves (as indicated by our example in Sect. 1).
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Abstract. In this paper we question the ability of the existant ranking
semantics for argumentation to capture persuasion settings, emphasizing
in particular the phenomena of protocatalepsis (the fact that it is often
efficient to anticipate the counter-arguments of the audience), and of
fading (the fact that long lines of argumentation become ineffective). It
turns out that some widely accepted principles of ranking-based seman-
tics are incompatible with a faithful treatment of these phenomena. We
thus propose a parametrized semantics based on propagation of values,
which allows to control the scope of arguments to be considered for eval-
uation. We investigate its properties (identifying in particular threshold
values guaranteeing that some properties hold), and report experimental
results showing that the family of rankings that may be returned have a
high coherence rate.

Keywords: Argumentation · Persuasion · Ranking semantics

1 Introduction

Recently, the quest for a principled method to analyse networks of contradic-
tory arguments has stimulated a number of work. Taken in their abstract form,
such networks are argumentation frameworks, as defined by Dung [10]. Sharing
the view that identifying sets of mutually acceptable arguments (extensions)
is sometimes not sufficient, many “gradual” (returning a value) [3,9,16,17] or
“ranking” (returning an order) semantics have been proposed [1,2,6,7,13,19,20].
Each of these proposals has some merit, and nicely designed examples convince
indeed that, in some situations at least, they should be the method of choice.
When it comes to comparing these approaches (beyond their formal properties
like convergence or uniqueness of solution), things become difficult. This is so
because the basis of comparison is not so clear in the first place, different pro-
posals emphasizing different properties. In [5], many existing semantics were
c© Springer International Publishing AG 2017
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compared on the basis on all the axioms mentioned in the literature. However,
even the relevance of some axioms may be very much dependent on the context
of application. What is often missing to compare these approaches is thus a clear
indication of the applications they target.

In this paper, we aim at defining a good ranking semantics for persuasion.
In this context, what constitutes an efficient argumentation has been rather
extensively studied, and may constitute an interesting basis for comparaison.
We shall concentrate on two well documented phenomena:

• Procatalepsis: anticipating the counter-arguments of an audience [22] is often
a way to strengthen his own arguments, and many phenomena are well doc-
umented. To illustrate this, we extend an example from Besnard and Hunter
[4, p. 85]: a (made-up) sales pitch intended to persuade to buy a specific car.
(a1) The car x is a high performance family car with a diesel engine and a

price of 32000
(a2) In general, diesel engines have inferior performance compared with gazo-

line engines
(a3) But, with these new engines, the difference in performance [...] is negli-

gible.
(a4) You may find that the price is high
(a5) But it will be amortized because Diesel engines last longer than other

engines.

a1a2a3

a4a5

Apart from the fact that the example predates recent diesel scandals, what
is striking is that it blatantly contradicts an axiom “Void Precedence” satis-
fied (to the best of our knowledge) by all gradual semantics and which consid-
ers non-attacked arguments as the most acceptable arguments. In this kind of
persuasion contexts, it is clearly more convincing to state the more plausible
counter-argument to (a1) in order to provide some convincing defenses against
them, that simply state (a1) alone.

• Fading : Long lines of argumentation become ineffective in practice, because
the audience easily looses track of the relation between the arguments. This
is supported by recent evidence [21] which shows (in the context of their
study, an extensive analysis of debates which took place on the subreddit
“ChangeMyView”), that the arguments located at a distance of 10 from an
other argument is about the limit. While some ranking semantics incorporate
features which can be used to discount the strength of arguments relatively
to their distance, this is not the case of all semantics.

We conclude that current ranking semantics are poorly equipped to be used
in a context of persuasion. Our research question is thus to design a ranking-
based semantics suited for persuasion, catering in particular for the fading effect
and the fact void precedence might not be satisfied.
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Our contribution is a gradual semantics which permits to account for these
phenomena. Most importantly, some parameter allows to regulate how these
principles are respected. Our vision is that, equipped with our ranking semantics,
a seller facing different sales pitch might decide which is more likely to make
the case. In general, this contribution could thus be used as an ingredient for
developing strategies for computation persuasion techniques [14].

The remainder of this paper is as follows. In Sect. 2 we recall the necessary
background in formal argumentation. Section 3.1 presents the basic principle of
propagation on which our proposal, detailed in Sect. 3.2, is built. This semantics
takes a parameter, the attenuation factor δ, which allows to control the conver-
gence speed and the obtained rankings. More importantly, we study in detail the
relation between this factor and the “Void Precedence” axiom. In order to allow
proper comparison with other proposals in the literature, the paper concludes
with a study of the axiomatic properties of our semantics, as well as an extended
example.

2 Preliminaries

Following Dung, we define an argumentation framework (AF) as a binary attack-
relation over a (finite) set of abstracts arguments.

Definition 1 ([10]). An argumentation framework (AF) is a pair F =
〈A,R〉 where A is a set of arguments, and R ⊆ A × A is a binary relation
called the attack relation. Notation (a, b) ∈ R means that a attacks b. Let
Arg(F ) = A.

One of the main goals of argumentation theory is to identify which arguments
are rationally acceptable according to different notions of acceptability. In [10],
the acceptability of an argument depends on its membership to some extensions,
whereas ranking-based semantics aim to rank arguments from the most to the
least acceptable ones.

Definition 2. A ranking semantics σ associates to any argumentation frame-
work F = 〈A,R〉 a ranking �σ

F on A, where �σ
F is a preorder (a reflexive and

transitive relation) on A. a �σ
F b means that a is at least as acceptable as b

(a �σ
F b is a shortcut for a �σ

F b and b �σ
F a, and a �σ

F b is a shortcut for
a �σ

F b and b �σ
F a).

When the ranking semantics σ and the graph F is clear from the context, we
will use � instead of �σ

F .
Let us introduce some notations that help us to define our ranking semantics

in the next section.

Notation 1. Let F = 〈A,R〉 and a, b ∈ A. A path from a to b, denoted by
p(a, b), is a sequence of nodes s = 〈a0, . . . , an〉 such that from each node there is
an edge to the next node in the sequence: a0 = a, an = b and ∀i < n, (ai, ai+1) ∈
R. Its length is denoted by |p(a, b)| and is equal to the number of edges it is
composed of.
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Notation 2. Let Δn(a) = {b | ∃p(b, a), with |p(b, a)| = n} be the set of argu-
ments that are bound by a path of length n to the argument a. An argument
b ∈ Δn(a) is a defender (resp. attacker) of a if n is even (resp. odd). A path
from b to a is a branch if b is not attacked, i.e. if Δ1(b) = ∅. It is a defense
branch (resp. attack branch) if b is a defender (resp. attacker) of a. ΔB+

(a)
(resp. ΔB−

(a)) denotes the set of all the defense (resp. attack) branches of a.

While our method is general, in the context of this paper we shall also
pay special attention to tree shaped argumentation frameworks where an argu-
ment a, called root argument, has only defense branches (i.e. ΔB−

(a) = ∅ and
ΔB+

(a) �= ∅). Such frameworks will be called persuasion pitches. The AF in
the introduction is an example of persuasion pitch with a1 as root argument.

Table 1. Computation of the valuation P of each argument from F1 when ε = 0.5
and δ = 0.4

P 0.5,0.4
i a b c d e f

0 0.5 1 0.5 0.5 0.5 0.5
1 -0.1 1 0.1 0.1 0.3 0.3
2 -0.02 1 0.1 0.34 0.38 0.46
3 -0.052 1 0.1 0.308 0.316 0.364
...

...
...

...
...

...
...

14 -0.0402 1 0.1 0.3161 0.3506 0.3736

3 Variable-Depth Propagation

3.1 The Propagation Principle

The semantics we propose in this paper follows the principle of propagation
already used by some ranking semantics [6,20]. In short, the idea is to assign
a positive initial value to each argument in the AF (arguments may start with
the same initial value [20] or start with distinct values like in [6], where non-
attacked arguments have greater value than attacked ones). Then each argument
propagates its value into the argumentation framework, alternating the polarity
according to the considered path (negatively if it is an attack path, positively if
it is a defense one).

Inspired by these definitions, we formally define this propagation principle,
including in addition a damping factor δ which allows to decrease the impact
of attackers situated further away along a path (the longer the path length i,
the smaller the δi). Among other things, such a damping factor will allow to
guarantee the convergence of the computation of the arguments’ values, as also
proposed in [18,20].
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Definition 3. Let 〈A,R〉 be an argumentation framework. The valuation P of
a ∈ A, at step i, is given by:

P ε,δ
i (a) =

⎧
⎨

⎩

vε(a) if i = 0
P ε,δ

i−1(a) + (−1)iδi
∑

b∈Δi (a)

vε(b) otherwise

with δ ∈ ]0, 1[ be an attenuation factor and vε : A → R+ a valuation function
that assigns an initial weight to each argument, with ε ∈ [0, 1] such that ∀b ∈ A,
vε(b) = 1 if Δ1(b) = ∅; vε(b) = ε otherwise.

a b

cd

e

f

Fig. 1. The argumentation framework F1

Example 1. Let us compute the valuation P of each argument in F1 (see Fig. 1)
when ε = 0.5 and δ = 0.4 and give the results in the Table 1.
In focusing on the argument f , we can see that it begins with an initial weight of
0.5 (P 0.5,0.4

0 (f) = 0.5) because it is attacked. Then, it receives negatively the value
sent by its direct attacker d which is also attacked: P 0.5,0.4

1 (f) = P 0.5,0.4
0 (f) −

0.4 × v0.5(d) = 0.3. Then, during the second step (i = 2), it receives positively
the weights from a and c attenuated by δ2: P 0.5,0.4

2 (f) = P 0.5,0.4
1 (f) + 0.42 ×

(v0.5(a)+ v0.5(c)) = 0.46. When i = 3, it receives negatively the weight of 1 from
b and the weight of 0.5 from e attenuated by δ3: P 0.5,0.4

3 (f) = P 0.5,0.4
2 (f)−0.43×

(v0.5(b) + v0.5(e)) = 0.364. And so on and so forth.

The following proposition answers to the question of convergence of the val-
uation P for each argument for every AF.

Proposition 1. Let 〈A,R〉 be an argumentation framework and δ ∈ ]0, 1[. For
all a ∈ A, the sequence {P ε,δ

i (a)}+∞
i=0 converges.

The propagation number of an argument a the value P ε,δ(a) = lim
i→+∞

P ε,δ
i (a).

Example 1. (cont.) The propagation number of each argument from F1 (see
Fig. 1) is represented in the shaded cell in the Table 1.

3.2 The Two-Phase Propagation Method

The non-attacked arguments play a key role for assessing the acceptability of
arguments in Dung’s classical semantics. Although, as explained before, we do
not necessarily want them ranked above any other, these arguments must keep
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a specific role, at least to distinguish attack and defense branches (as also sug-
gested in the global valuation approach of Cayrol and Lagasquie-Schiex [7]). Our
solution is a two-phase process. In the first phase, non-attacked arguments prop-
agate their weights (=1) in the argumentation graph, while attacked arguments
have weight 0. Any pairwise strict comparison (based on propagation number)
resulting from this process is fixed. In the second phase (that is, to break ties
among arguments equally valued in the first phase), we re-run the propagation
phase, this time setting an initial weight ε �= 0. Formally:

Definition 4. Let ε ∈ ]0, 1] and δ ∈ ]0, 1[. The ranking-based semantics
Variable-Depth Propagation vdpε,δ associates to any argumentation framework
〈A,R〉 a ranking � on A such that ∀a, b ∈ A:

a � b iff P 0,δ(a) > P 0,δ(b) or (P 0,δ(a) = P 0,δ(b) and P ε,δ(a) ≥ P ε,δ(b))

Example 1 (cont.) According to the previous definition, we need first to com-
pute the propagation number of each argument with ε = 0. We obtain the follow-
ing propagation numbers: P 0,0.4(a) = −0.4105, P 0,0.4(b) = 1, P 0,0.4(c) = −0.4,
P 0,0.4(d) = 0.1642, P 0,0.4(e) = 0.0263 and P 0,0.4(f) = −0.0656. Thus, we can
already obtain the following ranking:

b � d � e � f � c � a

Note that no arguments are equally acceptable here, so it is not necessary to
perform the second phase.

A concern might be that the value of ε used in the second phase might change
the ranking obtained. We show that this is not the case:

Proposition 2. Let F = 〈A,R〉 be an argumentation framework and δ ∈ ]0, 1[.
∀ε, ε′ ∈ ]0, 1],

vdpε,δ = vdpε′,δ

Please note that even if different values of ε do not change the preorder, it is nec-
essary to keep it in the process in order to make a distinction between non-attacked
and attacked arguments (see Definition 3 about the valuation function vε).
However, this is a purely internal artefact without any effect on the outcome of the
method. To make this clear, we note vdpδ instead of vdpε,δ to describe our parame-
trized ranking semantics in general.

Now regarding δ, two different values can produce different preorders. Indeed,
this parameter allows to choose the scope of influence of the arguments in the
system in addition to allow the convergence of the valuation P . For instance, with
a value of δ close to 0, only the nearest arguments (so a little part of the AF) are
taken into consideration to compute the different propagation numbers whereas
with a value of δ close to 1, (almost) all the AF will be inspected. Following the
principle of the fading effect, it is natural to assume that arguments located at
a long distance from another argument become ineffective. In terms of design,
it seems very interesting to have the ability to control this parameter so as to
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specify a maximal depth after which arguments see their influence on the value
of others vanish.

To better understand how to take this principle into account, let us inspect
the algorithm used to compute the propagation numbers. First, a positive num-
ber is assigned to each argument (∀a ∈ A, P ε,δ

0 (a) = 1 if a is non-attacked or
P ε,δ
0 (a) = ε otherwise). Then at step i ∈ N, we add (or remove) the accumulated

score until the previous step (P ε,δ
i−1(a)) and the attenuated weights (vε and δi)

received from arguments at the beginning of a path with a length of i (Δi):
P ε,δ

i (a) = P ε,δ
i−1(a)+(-1)iδi

∑

b∈Δi (a)

vε(b). We stop the process when, between two

steps, the difference with the previous step for all the valuations P is smaller
than a fixed precision threshold μ, i.e. ∀a ∈ A, |P ε,δ

i (a) − P ε,δ
i−1(a)| < μ. Thus,

given a precision, one can choose δ according to the maximal expected depth.

Proposition 3. Let F be an argumentation framework, i ∈ N\{0} be the max-
imal depth and μ be the precision threshold. If δ <

i

√
μ

max
a∈Arg(F )

(
|Δi (a)|

) then the

sequence {P ε,δ
i (a)}+∞

i=0 converges before step i + 1.

Example 1 (cont.) Suppose that one considers that the maximal depth should
be 5. In using the previous formula with a precision μ = 0.0001, then δ should

be smaller than 5

√
0.0001

3 � 0.127. Thus, a value close to this limit, for instance
δ = 0.12, ensures that only the arguments until a depth of 5 (included) are
considered.

We can also find a computational advantage to represent the fading effect.
Indeed, as the number of steps needed to find the propagation number of each
argument is smaller as if we need to browse all the AF, the ranking is computed
faster.

4 Ranking-Based Properties

We now investigate the properties satisfied by vdp. We start by inspecting the
case of Void Precedence, before checking other properties discussed in the lit-
erature. These results give us some invariants, i.e. constraints on the resulting
rankings. As we have seen, by tuning the parameter δ, different rankings can still
be returned, it is why we report experimental results showing that the diversity
of rankings remains small.

4.1 Void Precedence

One of the very distinctive feature of vdp is that an attacked argument can have
a better score (and so a better rank) than a non-attacked argument. Indeed,
when a given argument has many defense branches and few attack branches, it
receives many positive weights. Thus, according to the choice of δ, this argument
can obtain a greater score than the score of non-attacked arguments.
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Void Precedence (VP). A non-attacked argument is ranked strictly higher
than any attacked argument: Δ1(a) = ∅ and Δ1(b) �= ∅ ⇒ a � b

Let us illustrate that with the persuasion pitch used by the salesman in the
introduction.

Example 2. Consider the AF illustrated in the introduction, where the argu-
ment a1 has two defense branches. In computing the propagation number of
each argument, with δ = 0.95 and ε = 0, we obtain P 0,0.95(a1) = 1.805,
P 0,0.95(a2) = P 0,0.95(a4) = −0.95 and P 0,0.95(a3) = P 0,0.95(a5) = 1. With a
non-zero ε = 0.5, P 0.5,0.95(a1) = 1.36, P 0.5,0.95(a2) = P 0.5,0.95(a4) = −0.45 and
P 0.5,0.95(a3) = P 0.5,0.95(a5) = 1. So, one can infer the following preorder where
a1 is better ranked than non-attacked arguments:

a1 � a3 � a5 � a2 � a4

In fact, there exists a threshold for the parameter δ below which VP is sat-
isfied.

Proposition 4. Let 〈A,R〉 be an argumentation framework and δM =√
1

maxa∈A(|Δ2 (a)|) .

If δ < δM then vdpδ satisfies VP

Let us check which values of δ are needed to satisfy VP for the argumentation
framework in the introduction:

Example 2 (cont.) The argument a1 has the highest number of direct defenders
with |Δ2(a1)| = 2. The value of δ should be now: δ < δM =

√
1/2 � 0.7071.

So if δ = 0.7, we obtain P 0,0.7(a1) = 0.98, P 0,0.7(a2) = P 0,0.7(a4) = −0.7 and
P 0,0.7(a3) = P 0,0.7(a5) = 1 when ε = 0 and P 0.5,0.7(a1) = 0.78, P 0.5,0.7(a2) =
P 0.5,0.7(a4) = −0.2 and P 0.5,0.7(a3) = P 0.5,0.7(a5) = 1 when ε = 0.5. These
results allow to obtain the following preorder: a3 � a5 � a1 � a2 � a4.

The question to know if VP should hold or not relates to the status of the
missing information in argumentation systems. If all the information are avail-
able, then “really unattacked” arguments should be better that any attacked
argument, as it is the case with the other semantics. But there are cases where
the argumentation systems encode the information currently available, and that
is susceptible to be completed. This is this case that we attack in this paper
with procatalepsis. Non-attacked argument can be seen as an argument which
has not yet been debated whereas it is more difficult to find counter-arguments
to an argument already attacked but defended thereafter.

Thus, our method departs from other approaches in its treatment of the VP
property, but to a certain extent only. For instance, in a persuasion pitch a
single line of defense is not enough to be more convincing than a non-attacked
argument. On the other hand, when this condition is met a simple condition for
the violation of VP in persuasion pitches can be stated:



A Parametrized Ranking-Based Semantics for Persuasion 245

Proposition 5 Let PP = 〈A,R〉 be a persuasion pitch with a ∈ A as the root
argument. Then,
(i) if |ΔB+

(a)| < 2 then vdpδ satisfies VP;
(ii) if |ΔB+

(a)| ≥ 2 and δ > m

√
1

|ΔB+(a)| with m the length of the longest defense

branch of a then vdpδ violates VP.

Let us discuss about the link between the two principles concerning δ. Indeed,
the value of δ should not be too small in order to take into account enough
arguments (and not only the direct attackers for example) to obtain a significant
result. But, in the same way, it also should not be too high if one wants to capture
the procatalepsis principle. Understanding this interplay can provide valuable
information, in particular in the persuasion context. Suppose for instance that
the persuader knows that a given δ value is expected, corresponding to the
profile of a specific audience. Then, this value being fixed, it is possible to infer
that a certain number of defense branches will be required. Hence, instead of
developing, say, two long lines of persuasion, the persuader will instead favor the
deployment of a number of alternative lines in her persuasion pitch.

Interestingly, it turns out that in the context of our method, the property
VP is related with another property studied in the literature, namely defense
precedence:

Defense Precedence (DP). For two arguments with the same number of direct
attackers, a defended argument is ranked higher than a non-defended argument:

|Δ1(a)| = |Δ1(b)|,Δ2(a) �= ∅ and Δ2(b) = ∅ ⇒ a � b

Proposition 6. If vdpδ satisfies VP then it satisfies DP.

Note that this is not the case in general (some semantics satisfyVPbut notDP).

4.2 Other Properties

Several other properties have been proposed, and studied in the literature (see
[5] for an overview). Below we study how our method stands with respect to
these properties. We give their informal definition and point the reader to [5] for
the complete versions. Basic general properties are the fact that a ranking on a
set of arguments should only depend on the attack relation (Abstraction, Abs);
that the ranking between two arguments should be independent of arguments
that are not connected to either of them (Independence, In); that all arguments
can be compared (Total, Tot); and that all non-attacked arguments should be
equally acceptable (Non-attacked Equivalence, NaE).

Local properties (like the already introduced DP) confine themselves to the
level of direct attackers: (Counter-Transitivity, CT) states that if the direct
attackers of b are (i) at least as numerous and (ii) acceptable as those of a, then
a should be at least as acceptable as b, while in its strict version (SCT) either
(i) or (ii) must be strict, implying a strict comparison between a and b.
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Global properties specify how the ranking should be affected on the basis
of the comparison of attack and defense branches. More precisely: adding a
defense branch to an attacked argument should increase its acceptability (Addi-
tion of Defense Branch, +DB); increasing the length of an attack branch of an
argument should increase its acceptability (Increase of Attack Branch, ↑AB);
adding an attack branch to an argument should decrease its acceptability (Addi-
tion of Attack Branch, +AB); and increasing the length of a defense branch
of an argument should decrease its acceptability (Increase of Defense Branch,
↑DB). Note that +DB is indeed restricted to attacked arguments, otherwise its
incompatibility with VP is obvious. In the same spirit, (Attack vs Full Defense,
AvsFD), i.e. the fact that an argument with only defense branches and no
attack branch should be strictly more acceptable than an argument attacked
once by a non-attacked argument. For persuasion pitches, this property can be
simply reformulated as “a persuasion pitch for x should make it more accept-
able than stating x with an attacking argument”. This seems compelling in our
context, thus providing further evidence of the inability of many of the existing
semantics to properly capture persuasion settings.

Let us now check which properties are satisfied by vdp:

Proposition 7. Let δ ∈ ]0, 1[. vdpδ satisfies Abs, In, Tot, NaE, +AB and
AvsFD.

Some global properties like +DB, ↑DB and ↑AB are not satisfied because of
the fading effect. Indeed, when the branch, which is added or extended, is too
long, the arguments at the end of this branch have no impact on the targeted
argument. It is why, we propose to define the corresponding properties (+DBi,
↑DBi and ↑ABi) which capture the same idea but with the additional condition
that the maximal length of the branch is i.

Proposition 8. With δ ∈ ]δm, 1[ s.t. δm =
i

√
μ

max
a∈Arg(F )

(
|Δi (a)|

) where i repre-

sents the length of the branch which is added or extended then vdpδ satisfies also
+DBi, ↑DBi and ↑ABi.

These results are reported in Table 2. For comparison purpose, we also include
in this table the results of some semantics from the literature where the same
set [5] of properties has been already checked. Namely, these semantics are: the
semantics based on Social Argumentation Frameworks SAF [8,11,16] restricted
to Dung’s argumentation framework, the semantics Categoriser Cat [3,19], the
Discussion-based semantics Dbs and the Burden-based semantics Bbs [1], the
global semantics based on tuple values Tuples∗ [7], and the semantics M&T [17].

We first remark that vdp satisfy the “basic” properties according to [5] (Abs,
In, +AB, NaE and Tot), at the exception of VP as intended by design and
discussed earlier.

We can also note that vdp always satisfies property AvsFD, and for a specific
δ the property +DB. Indeed, the possibility to rank arguments with various
different defenders higher than arguments which are defended only once seems
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Table 2. Summary of the properties satisfied by vdp (∀δ, and with δm < δ′ < δM ) and
some existing ranking semantics from the literature where the same set of properties
has been already checked. A cross ×means that the property is not satisfied, symbol
�means that the property is satisfied and �i means that the i-version of the property
(cf Proposition 8) is satisfied. Shaded cells are results proved in this paper.

Properties SAF Cat Dbs Bbs Tuples∗ M&T vdpδ vdpδ′

Abs � � � � � � � �
In � � � � � � � �
Tot � � � � × � � �
NaE � � � � � � � �
+AB � � � � � � � �
AvsFD × × × × � � � �
+DB × × × × � × × �i

↑AB � � � � � × × �i

↑DB � � � � � × × �i

VP � � � � � � × �
DP � � � � × × × �

CT / SCT � � � � × × × ×

very interesting. For instance, in persuasion scenarios, a claim defended with
various different arguments may be more credible than a claim only defended
once.

In the end, the only properties which are never satisfied are CT and SCT. In
fact, it is easy to show that these properties are incompatible with +DB. Intu-
itively, whereas +DB considers that adding a defense is positive for an argument,
SCT says that adding any branch (so including defense branch) to an argument
should decrease its acceptability.

4.3 On the Diversity of Rankings

A nice feature of our semantics is thus that the designer can choose whether
VP holds or not, giving rise to different rankings. However, one may be wor-
ried that the diversity of rankings is so high that the semantics becomes
too sensitive to small modifications of the parameter δ. To check this, we
applied our semantics on 1000 randomly generated AFs1 for different values
of δ ∈ {0.001, 0.2, 0.4, 0.6, 0.8, 0.9}. Then, we computed the similarity degree
between two rankings from two different values of δ in using the Kendall tau
distance [15] which returns a value between 0 and 1.

1 The generation algorithms are based on the three algorithms used for producing the
benchmarks of the competition ICCMA’15 (see http://argumentationcompetition.
org/2015/results.html).

http://argumentationcompetition.org/2015/results.html
http://argumentationcompetition.org/2015/results.html
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Definition 5. Let 〈A,R〉 and τσ1 , τσ2 the orders returned by the ranking seman-
tics σ1 and σ2 respectively. The Kendall tau distance between τσ1 and τσ2 is
calculated as follow:

K(τσ1 , τσ2) =

∑
{i,j}∈A Ki,j(τσ1 , τσ2)

0.5 × |A| × (|A| − 1)

with:

– Ki,j(τσ1 , τσ2) = 1 if i �σ1 j and i �σ2 j, or i ≺σ1 j and i ≺σ2 j, or i �σ1 j
and i �σ2 j,

– Ki,j(τσ1 , τσ2) = 0 if i �σ1 j and i ≺σ2 j or vice versa,
– Ki,j(τσ1 , τσ2) = 0.5 if i �σ1 j or i ≺σ1 j and i �σ2 j or vice versa.

Thus, two rankings with a Kendall tau distance of 1 are fully similar whereas
a score of 0 means that they are totally reversed. The Table 3 contains, for each
pair of semantics, the average Kendall tau distance (×100) computed on the
1000 generated AFs. The results show that the obtained rankings stay pretty
close because the smallest observed similarity between the smallest and largest
value of δ is 86.26%. This similarity remains overall very high, showing that the
semantics remains quite stable as the parameter varies.

Table 3. Average Kendall tau distance on 1000 randomly generated AFs for different
values of δ

P 0.5,0.4
i a b c d e f

0 0.5 1 0.5 0.5 0.5 0.5
1 -0.1 1 0.1 0.1 0.3 0.3
2 -0.02 1 0.1 0.34 0.38 0.46
3 -0.052 1 0.1 0.308 0.316 0.364
...

...
...

...
...

...
...

14 -0.0402 1 0.1 0.3161 0.3506 0.3736

5 Comparison with Related Work

Now, let us show that, in general, the different semantics proposed in the lit-
erature may return a large variety of rankings. To show this, we will use the
example of Fig. 1.

The range of semantics considered here is more important than the previous
section because we include recent semantics for which the axiomatic properties
have not (to the best of our knowledge) been yet studied. Two kinds of existing
semantics are excluded from this study, because of specificities which make the
comparison difficult. The first ones are the semantics which return a partial pre-
order between arguments (i.e. some arguments could be incomparable) like the
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global semantics based on tuple values [7] and the semantics proposed in [13]. The
second category is the semantics that return a set of rankings for a same AF, like
[12]. Thus, we consider the semantics Cat, M&T, SAF, Dbs and Bbs that have
already been mentioned on Sect. 4.2. We will also consider the semantics using
the fuzzy label FL [9], the α-Burden-based semantics α-BBS [2], the counting
semantics CS [20] and the propagation semantics Propaε, P ropa1+ε, P ropa1→ε

from [6]. All these rankings are represented in Fig. 2.

Fig. 2. Orders obtained with the different ranking semantics applied to F1

The particularity of our ranking semantics is clearly visible in this table
because only vdp with δ ≥

√
2
2 consider d as strictly more acceptable than b.

All the other semantics satisfy VP, so consider b, which is non-attacked, as the
best argument in this AF. Indeed, thanks to the even cycle, d receives only pos-
itive weights from the only non-attacked argument b and is also defended by e.
However, d is not always among the best arguments as it is the case with the
semantics which consider that a new defense branch can reinforce an argument
(i.e. the semantics that satisfy +DB and AvsFD). Indeed, the semantics which
consider a defense as a weak attack (i.e. the semantics that satisfy SCT) judge
that even if d is defended, it is still directly attacked once more than c, e and f .
The reverse reasoning hold with the argument f which is one of the best argu-
ments for the semantics that satisfy SCT whereas is stay quite acceptable for
the semantics that satisfy +DB and AvsFD. The worst arguments is always a
which is attacked twice including once by b which is non-attacked. It is why it
is almost always worst than c which is directly attacked by b only.

Finally, it is important to note that even if our proposal is related to Pu et al.
[20] and Bonzon et al. [6] concerning the propagation method, it is substantially
different, and has clearly different properties and behaviors (see Fig. 2).
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6 Conclusion

Many ranking-based semantics have been proposed recently in the literature.
Despite detailed studies of their properties, it remains hard to see which is more
appropriate for a given application context. In this paper, we took the prob-
lem the other way and challenged these semantics in the context of persuasion,
emphasizing in particular two well-documented phenomena occurring in prac-
tice: protocatalepsis and fading. It turns out that none of the proposed semantics
is really appropriate – all of them commit for instance to the “Void Precedence”
property which is incompatible with the procatalepsis principle. This motivated
us to introduce a new parametrized ranking semantics based on the notion of
propagation. An attenuation factor is used to allow the convergence but also to
decrease the impact of further arguments. We show that, thanks to this attenu-
ation factor, fading can be captured by selecting a maximal influence depth. For
some values of this parameter VP is not satisfied, which allows to represent pro-
tocatalepsis in persuasion pitches. We also study other properties of our method,
and we experimentally study how diverse can the rankings be depending of the
value of the parameter. Future work include testing this semantics on currently
developed computation persuasion tools.

Our methodology may also prove inspiring in other settings: by questioning
the relevance of the existing semantics in other application contexts (e.g. negoti-
ation), we may find out that some specific phenomena are not properly captured,
and that other adjustments are required.

Acknowledgements. This work benefited from the support of the project AMANDE
ANR-13-BS02-0004 of the French National Research Agency (ANR).
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Abstract. Probabilistic Programming (PP) extends the expressiveness
and scalability of Bayesian networks via programmability. Influence Dia-
grams (IDs) extend Bayesian Networks with decision variables and utility
functions, allowing them to model sequential decision problems. Limited-
Memory IDs (LIMIDs) further allow some earlier events to be ignored or
forgotten. We propose a generalisation of PP and LIMIDs called IDLP,
implemented in Logic Programming and with a solver based on Rein-
forcement Learning and sampling. We show that IDLP can model and
solve LIMIDs, and perform PP tasks including inference, finding most
probable explanations, and maximum likelihood estimation.

1 Introduction

Probabilistic Programming (PP) [5,11] is a tool for statistical modelling that
facilitates the modeling of large Bayesian networks, and typical tasks include
the computation of posterior probability distributions, finding most probable
explanations, and maximum likelihood estimation. It allows a user to define
complex models with few lines of code and has a growing list of applications.
A recent DARPA project in the USA (Probabilistic Programming for Advancing
Machine Learning) explores new applications to machine learning.

PP has greatly extended the expressiveness and flexibility of traditional
graphical approaches, by unifying Turing complete programming languages with
probabilistic modeling. There are many PP languages (PPLs), some based on
existing programming languages and others self-contained: we refer the reader to
[12] for publications, systems and PP news. Using a PPL users can completely
specify large, complex probabilistic models to which inference can be applied
automatically.

All PPLs allow the user to define random variables but very few also provide
decision variables. Allowing both random and decision variables could extend
the advantages of PP to many more applications of a type encountered in fields
such as Reinforcement Learning, Approximate Dynamic Programming, Stochas-
tic Programming, Stochastic Dynamic Programming and Simulation Optimisa-
tion: sequential decision problems under uncertainty . However, we know of no PP
system able to tackle such problems. Only the DTProbLog language [2] provides
decision variables, in a limited way (see Sect. 6).
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 252–265, 2017.
DOI: 10.1007/978-3-319-67582-4 18
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In this paper we propose an extension of PP to sequential decision problems.
Our modelling approach is based on Influence Diagrams (IDs) [7], a graphical
model that generalises Bayesian networks by adding decision variables and utility
functions. Hence, our approach combines the advantages of two others: the fea-
tures of IDs that enable them to model decision problems, and the expressiveness
and pragmatism of PP (see Fig. 1). We present a language called IDLP based on
logic programming, but we are also developing a Python-based implementation
for wider useability. To solve the models we combine Reinforcement Learning
algorithms with sampling to find optimal policies to some well-known IDs. We
also show that our IDLP can tackle other PP problems besides inference.

Probabilistic Programming IDLP

Bayesian Networks Influence Diagrams

decision variables

decision variables

utilities

programmabilityexpressiveness programmability expressiveness

utilities

Fig. 1. Relationship of IDLP to other approaches

The paper is organised as follows: Sect. 2 describes our new PPL and shows
its use for inference; Sect. 3 introduces decision variables and utilities, and shows
the connection with IDs; Sect. 4 considers other PP tasks; Sect. 5 describes our
solution method; and Sect. 6 discusses related work and concludes the paper.

2 The IDLP Language

We call our language IDLP (see Sect. 3 for an explanation of the name). Some
PPLs are newly created languages, while others are existing programming lan-
guages plus a few primitives for common operations such as declaring a variable
with a specified probability distribution. IDLP is of the latter type and is based
on Prolog.

There already exist several Prolog-based PPLs which are surveyed in [13].
Most follow Sato’s distribution semantics [16], but we find the representation of
non-binary choices slightly unnatural in these languages (via multi-valued anno-
tated disjunctions in the ProbLog language [14]) so we do not use the distribution
semantics. Instead we simply use Prolog as a convenient symbolic programming
language. (Readers unfamiliar with Prolog might find some details obscure, but
unfortunately space is too limited to provide a Prolog introduction.)

To introduce IDLP’s primitives we apply it to an example of a central PP
task: probabilistic inference, that is inferring a conditional probability from a
probabilistic program, and as an example we use Pearl’s alarm example [10].
The IDLP model is shown in Fig. 2. The primitives are:
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– Predicate variables/11 specifies a list of IDLP variables in a strict order,
with their discrete domain values contained in a list [...]. In this example all
variables are random (denoted by r) but later we shall add decision variables
(denoted by d). Unlike Prolog variables whose names start with an uppercase
letter, IDLP variables are ground terms and may have arguments.

– An infix operator = ∼ is used to specify IDLP variable assignments:
alarm = ∼yes means that variable alarm takes value yes.

– Predicate p/2 describes discrete probability distributions for each IDLP vari-
able assignment. No Prolog cuts (!) are needed to make this predicate deter-
ministic, as the first successful p-clause fixes the probability (following stan-
dard Prolog operational semantics). IDLP requires probabilities to be pro-
vided for all random variable domain values, and these must sum to 1. To
catch cases in which no earlier p-clause succeeds, for convenience the user
may specify a final probability by default, which is automatically replaced
by the remaining probability value.

– Predicate utility/1 specifies a utility value and the conditions under which it
occurs. Again no Prolog cuts are required to make this deterministic, and if no
utility-clause succeeds then a default utility of 0 is assumed. IDLP computes
conditional expected utilities which generalise conditional probabilities: in this
example a utility value of 1 occurs when earthquake is assigned to yes,
otherwise the default value of 0 occurs. This conditional expected utility is
equal to the conditional probability

p(earthquake=~yes|alarm=~yes)

– Predicate evidence/0 specifies the condition used in the conditional expected
utility. In this example the evidence is true if alarm=∼yes. (It is of course
possible to specify evidence that is always false.)

– Finally, to take (say) 1 million samples we call the goal ?-samples(1000000).

The user need only provide Prolog code for these predicates, and any Prolog tech-
niques can be used to do this: this is the advantage of a PPL over a graphical
approach. Given these predicates and the samples goal, IDLP computes con-
ditional expected utilities by repeated simulation and rejection sampling (see
Sect. 5). The conditional probability in this example is correctly computed by
IDLP to be approximately 0.23.

As described so far, IDLP is a Prolog-based PPL with discrete (binary or non-
binary) random variables, slightly generalised to compute conditional expected
utilities instead of conditional probabilities. It uses simulation and rejection sam-
pling to compute conditional expectations. Next we introduce decision variables.

3 Decision Variables

We now add decision variables to IDLP to enable it to model IDs, hence the
name IDLP: Influence Diagrams in Logic Programming . In fact IDLP can model
a slight generalisation of IDs, which do not typically contain evidence.
1 In standard Prolog notation a predicate P/A has name P and arity A.
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Fig. 2. IDLP model for Pearl’s alarm example

Fig. 3. Oil wildcatter ID
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3.1 Influence Diagrams

IDLP’s decision variables also have discrete (binary or non-binary) domains and
can occur anywhere in the ordered variables list. Decision variables are auto-
matically assigned values that maximise the expected utility. For example con-
sider the well-known Oil Wildcatter problem [15] shown in Fig. 3. We use the
following list of variables:

variables([ r(oil,[dry,wet,soak]), d(test,[yes,no]),
r(seismic,[closed,open,diffuse,notest]),
d(drill,[yes,no])]).

which conforms to the chronological order of events:

– because of ancient geological events the oil state is either dry, wet or soak
– we decide whether or not to test for oil
– the result of the test is either closed, open or diffuse, or the special value
notest if a test was not performed.

– if we applied the test, then based on the result (but not on the unobservable
variable oil) we decide whether or not to drill

The oil probability distribution is:

p(oil=~dry,0.5). p(oil=~wet,0.3). p(oil=~soak,0.2).

while the seismic distribution is:

p(seismic=~closed, 0.01) :- oil=~dry, test=~yes.
p(seismic=~open, 0.03) :- oil=~dry, test=~yes.
p(seismic=~diffuse,0.96) :- oil=~dry, test=~yes.
p(seismic=~closed, 0.03) :- oil=~wet, test=~yes.
p(seismic=~open, 0.94) :- oil=~wet, test=~yes.
p(seismic=~diffuse,0.03) :- oil=~wet, test=~yes.
p(seismic=~closed, 0.95) :- oil=~soak, test=~yes.
p(seismic=~open, 0.04) :- oil=~soak, test=~yes.
p(seismic=~diffuse,0.01) :- oil=~soak, test=~yes.
p(seismic=~notest,default).

Note that the above code corresponds closely to the conditional probability tables
in Fig. 3. Following the two payoff tables, the utility function has two compo-
nents:

utility(R) :- drill_payoff(R1), test_payoff(R2), R is R1+R2.

drill_payoff(-10) :- test=~yes.
drill_payoff(0).

test_payoff(-70) :- oil=~dry, drill=~yes.
test_payoff(50) :- oil=~wet, drill=~yes.
test_payoff(200) :- oil=~soak, drill=~yes.
test_payoff(0).
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There is no evidence so we simply write:

evidence.

For this problem the test decision does not depend on any other variable, but
the drill decision depends on whether a test was made, and if so on its result.
To model this aspect of IDs we introduce a new primitive predicate depends/2,
whose first argument is a decision variable, and whose second argument is a list
of the decision and/or random variables on which it depends (the ordering of
this list is arbitrary as it represents a set). In this example the decision test
does not depend on anything, while the decision drill depends on the test
decision and on the random seismic result:

depends(test,[]).
depends(drill,[test,seismic]).

The oil variable is unobservable so no decision depends on it. Solving this model
by simulation (see Sect. 5) we get an expected utility of 42.73 which is close to
the known optimal expected utility of 42.75. The policy it finds is correct: apply
the seismic test, and drill if the test result is open or closed.

3.2 LIMIDs

Limited-Memory IDs (LIMIDs) [9] model situations in which some events may
be forgotten or ignored, and might not be strictly ordered. We still list variables
in a total order, choosing any that is consistent with the actual partial order.
Forgotten or ignored variables are treated in the same way as the unobservable
variable in the wildcatter example: decisions do not depend on them.

Fig. 4. Pig breeding ID

We take another well-known example: the pig breeding problem [9]. The
details of the problem are not given via tables but in a verbal description, which
we paraphrase from [9]:
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A pig breeder grows pigs for four months then sells them. During this period
the pig may or may not develop a disease. If it has the disease when it must
be sold, then it must be sold for slaughtering and its expected market price
is 300 (Danish kroner). If it is disease-free its expected market price is
1000. Once a month, a veterinary surgeon test the pig for the disease. If it
is ill then the test indicates this with probability 0.80, and if it is healthy
then the test indicates this with probability 0.90. At each monthly visit the
surgeon may or may not treat the pig, and the treatment costs 100. A pig
has the disease in month 1 with probability 0.10. A healthy pig develops the
disease in the next month with probability 0.20 without treatment and 0.10
with treatment. An unhealthy pig remains unhealthy in the next month with
probability 0.90 without treatment, and 0.50 with treatment.

Further details come in two versions, modelled by an ID and a LIMID respectively.

ID Version. Here the pig breeder knows which pigs have been treated each
month and their test results, and bases treatment decisions on this information.
The ID is shown in Fig. 4. The IDLP variables are:

variables([
r(h(1),[healthy,unhealthy]), r(t(1),[pos,neg]),
d(d(1),[treat,leave]), r(h(2),[healthy,unhealthy]),
r(t(2),[pos,neg]), d(d(2),[treat,leave]),
r(h(3),[healthy,unhealthy]), r(t(3),[pos,neg]),
d(d(3),[treat,leave]), r(h(4),[healthy,unhealthy]) ]).

Note that we parameterise the t-, d- and h-variables using an argument denot-
ing time: we can use arbitrary Prolog ground terms to represent variables and
domain values. The h distributions are:2

p(h(1)=~healthy,0.9).
p(h(I)=~healthy,0.8) :-

I>1, J is I-1, h(J)=~healthy, d(J)=~leave.
p(h(I)=~healthy,0.9) :-

I>1, J is I-1, h(J)=~healthy, d(J)=~treat.
p(h(I)=~healthy,0.1) :-

I>1, J is I-1, h(J)=~unhealthy, d(J)=~leave.
p(h(I)=~healthy,0.5) :-

I>1, J is I-1, h(J)=~unhealthy, d(J)=~treat.
p(h(_)=~unhealthy,default).

and the t distributions are:

p(t(I)=~pos,0.8) :- h(I)=~unhealthy.
p(t(I)=~pos,0.1) :- h(I)=~healthy.
p(t(_)=~neg,default).

2 The underscore character is a Prolog anonymous variable that matches any term
and indicates a “don’t care” value.
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We have exploited the fact that variables at different times have similar dis-
tributions, to obtain a more compact description. The utility function has 4
components: profit u(4) from the sale, and possible payments u(1), u(2) and
u(3) for treatment:

utility(R) :- u(1,T1), u(2,T2), u(3,T3), u4(S),
R is S+T1+T2+T3.

u(4,300) :- h(4)=~unhealthy.
u(4,1000) :- h(4)=~healthy.

u(I,-100) :- d(I)=~treat.
u(I,0) :- d(I)=~leave.

There is no evidence:

evidence.

Using the incoming arcs to each decision in the ID (the h are unobservable so
they do not appear in any list):

depends(d(1),[t(1)]).
depends(d(2),[t(1),t(2),d(1)]).
depends(d(3),[t(1),t(2),t(3),d(1),d(2)]).

LIMID Version. Here the pig breeder does not keep detailed records and bases
treatment decisions only on the previous test result for each pig. The LIMID is
shown in Fig. 5. The IDLP model is as above except for the depends predicate:

depends(d(I),[t(I)]).

The optimal policy is not to treat in month 1 whatever the first test result, treat in
month 2 if tests 1 and 2 are positive, and treat in month 3 if tests 2 or 3 are positive,
with expected utility 729.255.3 Solving the LIMID model we almost always find
the optimal policy with expected utility of approximately 727: ignore the first test
(do not treat) and follow the other two (treat if the test was positive). On the few
occasions that we do not find the optimal policy, we find other policies with near-
optimal expected utility (less than 1% optimality gap).

4 Probabilistic Programming Revisited

We now show that as well as computing conditional probabilities, IDLP can
perform other PP tasks.
3 A different policy is given in [9]: treat in month 3 if tests 1 and 2, or 3, are positive. We

find that their policy has expected utility 725.884 while ours is optimal. They cite our
expected utility so we believe this was simply a typographical error. To compute the
expected value of a policy we use the variable elimination algorithm where, instead
of maximising over the decision variables, we set their values according to the policy.



260 S.D. Prestwich et al.

Fig. 5. Pig breeding LIMID

4.1 Most Probable Explanations

IDLP can be used to solve another PP problem via its decision variables: finding
most probable explanations (MPE). In particular: find the assignment to a set of
variables that maximises a conditional probability. For example suppose we wish
to find the MPE of an alarm in Pearl’s alarm example. The possible explanations
and their probabilities are given in the model:

burglary=~yes earthquake=~yes 0.90
burglary=~no earthquake=~yes 0.10
burglary=~yes earthquake=~no 0.80
burglary=~no earthquake=~no 0.00

so we should get the explanation burglary=∼yes and earthquake=∼yes. But
we really want only one most probable cause: if we forbid the case in which both
are true then we should get burglary=∼yes and earthquake=∼no.

We can solve this type of problem by introducing decision variables b and e
which respectively indicate the truth or falsity of burglary and earthquake in
the MPE:

variables([ d(b,[yes,no]), d(e,[yes,no]),
r(burglary,[yes,no]), r(earthquake,[yes,no]),
r(alarm,[yes,no]) ]).

and making evidence true if

(b ⊕ e) ∧ (b ↔ burglary) ∧ (e ↔ earthquake)

(where ⊕ denotes exclusive-or) as follows:

evidence :-
reify(b=~yes,B), reify(e=~yes,E),
reify(burglary=~yes,Bu), reify(earthquake=~yes,Ea),
B+E=:=1, B==Bu, E==Ea.
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where reify(G,B) assigns 1 to B if goal G succeeds, otherwise 0; this additional
primitive predicate is useful for constructing logical combinations of assignments
as in this example. The utility is:

utility(1) :- true(alarm=~yes).

so we are maximising p(alarm=∼yes|evidence). Again no decision variable
depends on another:

depends(_,[]).

We get expected utility 0.8 with decisions b=∼yes and e=∼no, indicating that a
burglary (and no earthquake) is a more probable explanation of the alarm than
an earthquake (and no burglary).

4.2 Maximum Likelihood Estimation

Another PP task is maximum likelihood estimation (MLE) in which we must
estimate probability distributions: see for example [6] which solves the problem
in the ProbLog PPL via a BDD. Suppose we want to choose random variable dis-
tributions to maximise a conditional probability. As an example we modify the
Alarm example so that the probability of an alarm occurring, given both a bur-
glary and an earthquake, is unknown. Suppose that we must choose probability
P to maximise p(alarm=∼yes|burglary=∼yes).

To model this problem we approximate the continuous P by a discrete variable
q with 5 possible values, the largest being the original probability 0.8. The model
is shown in Fig. 6. We correctly find expected utility 0.8 with decision q=∼0.8.

Fig. 6. The alarm example with an unknown probability
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4.3 Hybrid Problems

Most probable explanations and maximum likelihood estimations can both be
computed efficiently by specialised PP algorithms, and our prototype rejection
sampling approach is probably not competitive. However, an advantage of being
able to solve different types of problem with a single algorithm is that we can
also solve hybrid problems combining their features. For example we can tackle
problems containing elements of both MPE and MLE. Suppose we modify the
MPE Alarm ID in Sect. 4.1 by replacing the probability

p(alarm=~yes,0.8) :- burglary=~yes, earthquake=~yes.

by the one from the MLE Alarm ID in Sect. 4.2:

p(alarm=~yes,P) :- burglary=~yes, earthquake=~yes, q=~P.

Then we obtain a problem that is neither pure MPE nor MLE but has features of
both. In this hybrid problem we must choose a probability P and an explanation
e that together maximise the conditional expected utility p(alarm=∼yes|e).
Solving the problem we find burglary=∼yes, earthquake=∼no and q=∼0.8,
giving conditional expected utility 0.8.

5 Solution by Reinforcement Learning

We learn optimal policies by combining techniques from Reinforcement Learning
(RL) and sampling. RL is a fundamental machine learning problem, distinct from
supervised and unsupervised learning. It tackles the problem of how a software
agent should choose actions in an environment in order to maximise an expected
reward. Temporal Difference (TD) Learning is a class of algorithms for solving
such problems, and can be viewed as a hybrid of Monte Carlo and Dynamic
Programming methods with roots in Behavioural Psychology [18].

We implemented a Monte Carlo RL algorithm from [18] with a variety of
ε-greedy action selection methods. In this algorithm an episode (a simulation)
proceeds from an initial state to a terminal state by taking actions. The state
values V (s) for states s are stored in a table (assuming a finite number of pos-
sible states) and initialised arbitrarily (for example by setting them to 0), and
eventually converge to the expected total reward assuming we follow an optimal
policy from s, via bootstrapping . To achieve convergence, the learning rate α
and the ε parameter decay from 1 to 0 as the number of simulations performed
increases. Any action may incur a reward r, but in our application the only
rewards occur at the end of an episode. Updating a state value is referred to as
backup. The discount rate parameter γ is set to 1 as we do not consider infinite
horizon problems.

During a simulation or episode, we assign random and decision variables
to domain values in the specified order: random variables are assigned values
according to their distributions as specified by the Bayesian network expressed
by the p predicate, as before; decision variables are assigned by our algorithm
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using ε-greedy action selection. The subset of assignments that are observable
at any state is specified by the depends predicate. The only rewards occur at
the end of a simulation (if the evidence is true in that simulation), and may be
any function of the variable assignments as specified by the utility predicate.
The RL algorithms are slightly modified here to handle evidence via rejection
sampling: backup only occurs at the end of each episode if evidence is true.
Though rejection sampling is also used in some other PPLs it can be costly, and
we are developing another version of our language using Gibbs sampling.

If all information is available at any state then some RL algorithms are
guaranteed to converge to an optimum policy because the problem is a Markov
Decision Problem (MDP). Our adaptation has the same guarantee for simula-
tions in which the evidence is true, if all previous variables are observable to each
decision variable. However, if some information is invisible then the problem is
a Partially Observable MDP (POMDP) and there is no such guarantee. So far
we have obtained optimal policies but more sophisticated RL methods might be
required for other IDs.

Note that applying our RL-based solver to pure PP problems (without deci-
sion variables) is equivalent to using simple rejection sampling for learning condi-
tional probabilities, as long as the learning rate α decays appropriately (inversely
with time). This close connection shows that IDLP is a strict generalisation of
a simple PP approach, and makes RL algorithms a natural choice for extending
PP with decision variables.

6 Conclusion and Related Work

We described a Prolog-based PPL called IDLP, extended to include decision
variables and utilities. It can model multistage decision problems represented
by IDs and (more generally) LIMIDs. IDLP solves these problems using a sim-
ple Reinforcement Learning algorithm combined with rejection sampling, and
we showed that it can also perform PP tasks including inference, finding most
probable explanations, and maximum likelihood estimation, as well as hybrids
of these tasks. IDLP allows a user to model complex IDs with few lines of code,
and to find approximate solutions for large IDs that are intractable for exact
algorithms. Note that our Monte-Carlo sampling is based on an epsilon-greedy
action selection that avoids wasting samples on policies with low rewards. This
enables it to find a good solution without computing a precise expected utility
for all possible policies.

Monte Carlo methods have been used before to solve IDs. [4] solve IDs by
decision and random variable reduction, using Monte Carlo methods to sample
the state of each random variable in a subset of relevant variables. The relevant
variables are those random and decision variables whose values are required to
take a particular decision. The aim is to determine a decision function for each
decision variable, one by one, based on the relative estimated maximum con-
ditional expected utility. So, as in our method, they do not compute posterior
distributions explicitly, unlike exact methods such as [17] in which posterior
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distributions are computed by arc reversal. [3] use Monte Carlo sampling and
approximation functions to handle large IDs, breaking them down into several
single-stage decision problems. Our approach is different to these, as we apply
Monte Carlo Reinforcement Learning and sampling to all the random variables
of the ID, and take decisions according to epsilon-greedy action selection. Rein-
forcement Learning methods have of course been applied to many ID-like prob-
lems modelled as MDPs and POMDPs [18], but to the best of our knowledge
this has not previously been proposed in the context of a PPL.

IDLP is not the only PPL with decision variables and utilities: DTProbLog
(Decision-Theoretic ProbLog) [2], another Prolog-based PPL, also supports
them. However, DTProbLog is not designed to solve sequential or multistage
decision problems: in Stochastic Programming terminology it solves only single-
stage problems in which all decisions are made before any random events occur
[1]. IDLP allows decision and random variables to occur in any order in the
variable list, enabling it to model multistage problems whose solution is not a
fixed decision variable assignment but a policy tree.

We see the main contribution of this work as the convergence of tools and
ideas from three areas: Probabilistic Programming, Influence Diagrams and
Reinforcement Learning. We have used only simple techniques and examples
from each of these fields, but our approach can potentially benefit from advances
in each. This is a work in progress and we intend to improve it in several ways.
Firstly, we are developing a Python-based system that should be easier for non-
Prolog programmers to use. Secondly, a performance bottleneck is caused by our
use of rejection sampling, which prevents us from tackling PP problems in which
the evidence occurs in a vanishingly small proportion of scenarios. Though sev-
eral PP systems also provide rejection sampling, the most powerful systems rely
on Monte Carlo Markov Chain (MCMC) sampling algorithms. In future work we
shall combine MCMC with Reinforcement Learning, perhaps using techniques
such as those in [8]. Thirdly, another potential performance bottleneck is the
occurrence of an exponential number of states in some IDs. This can be allevi-
ated by discarding information to obtain simpler policies as in LIMIDs, but for
some problems we will need more sophisticated state aggregation techniques such
as tile coding or neural networks [18]. These choices may affect convergence so
a great deal of work remains to be done, drawing on the literature from several
research areas.
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Abstract. First-order typed model counting extends first-order model
counting by the ability to distinguish between different types of mod-
els. In this paper, we exploit this benefit in order to calculate weighted
conditional impacts (WCIs) which play a central role in nonmonotonic
reasoning based on conditionals. More precisely, WCIs store information
about the verification and the falsification of conditionals with respect
to a possible worlds semantics, and therefore serve as sufficient statistics
for maximum entropy (ME) distributions as models of probabilistic con-
ditional knowledge bases. Formally, we annotate formulas with algebraic
types that encode concisely all structural information needed to compute
WCIs, while allowing for a systematic and efficient counting of models.
In this way, our approach to typed model counting for ME-reasoning
integrates both structural and counting aspects in the same framework.

1 Introduction

In recent years, relational probabilistic logics [6,9,10,15] became the focus of
attention as they provide a strong means to model uncertain knowledge about
interactions between individual objects. Reasoning in these logics, however,
requires elaborate strategies to deal with large numbers of objects in order to
tractably draw inferences, such as exploiting symmetries and making use of the
indistinguishability of certain objects. Some encouraging results in this research
field of lifted probabilistic inference were presented in [1,2,14]. These works basi-
cally capitalize on their efficient first-order model counting techniques that build
a firm basis for further investigations; the core idea is to compile first-order sen-
tences into sd-DNNF-circuits which allow for recursive model counting.

In this paper, we lift the abovementioned techniques to a conditional rela-
tional probabilistic logic based on conditionals of the form (B|A)[p], stating that
“if A holds, then B follows with probability p”. To this end, we introduce a struc-
tural enhancement of sd-DNNF-circuits which we call sd-DNNFS -circuits. These
circuits allow one to label the edges of the circuit with elements of a commutative
monoid S. By choosing generators of conditional structures [8] as these elements,
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 266–279, 2017.
DOI: 10.1007/978-3-319-67582-4 19
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which encode the trivalent evaluation of conditionals, sd-DNNFS -circuits are able
to capture the whole logical information provided by a conditional knowledge
base in a very comprised way. This information can be utilized by (first-order)
typed model counting on sd-DNNFS -circuits, which is the equivalent to ordinary
model counting on sd-DNNF-circuits. More precisely, the typed model counting
task (TMC) extends model counting by simultaneously group models into dif-
ferent types that are determined by the elements of the commutative monoid
associated to the satisfied parts of the sd-DNNFS -circuit (see also our previ-
ous work on propositional typed model counting in [17]). The main result of
this paper eventually is that typed model counting is expedient for determining
the weighted conditional impacts (WCIs; cf. [4]) relevant to a knowledge base
R. Basically, WCIs are conditional structures together with their frequencies
of occurrence. Once these WCIs are known, the maximum entropy distribution
(ME-distribution) as a preferable model of R (cf. [8,12]) can be computed effi-
ciently using a highly optimized variant of generalized iterative scaling (GIS; cf.
[4]), which principally allows for lifted inferences. However, until now, comput-
ing the WCIs forms a bottle-neck of ME-reasoning since no efficient algorithms
for these computations are known except for very limited problem classes. In
this regard, typed model counting provides a promising framework for efficient
WCI-computations.

After recalling some basics of reasoning at maximum entropy, we discuss a
GIS-algorithm that calculates ME-distributions based on WCIs, present typed
model counting for structured first-order sentences, especially on sd-DNNFS -
circuits, exploit it for WCI-calculations, discuss related work and conclude.

2 Preliminaries

We consider a first-order language FOL over a signature Σ = (Pred,Const) con-
sisting of a finite set of predicate symbols Pred and a finite set of constants Const
without functions of arity greater than zero. An atom P (t1, . . . , tn) is a predicate
P of arity n followed by terms ti, i = 1, . . . , n, where a term is either a variable
or a constant. A literal is an atom or its negation, and a variable is called free iff
it is not bound by a quantifier. A formula without variables is grounded. Every
formula A ∈ FOL can be grounded by substituting every free variable in A with
a constant and by carrying out all quantifications. With Gr(A) we denote the
set of all ground instances of A built this way. Further, Gr(Atoms) denotes the
set of all ground instances of all atoms (= ground atoms). To shorten formulas,
we abbreviate A ∧ B as AB, ¬A as A, and A ∨ A as �.

A (probabilistic) conditional (B|A)[p] with A,B ∈ FOL and p ∈ [0, 1] is a
formal representation of the statement “if A holds, then B follows with proba-
bility p”, albeit we have to clarify its meaning if A or B contains free variables.
With Gr((B|A)[p]) we denote the set of all ground instances of (B|A)[p] (e.g.,
(R(a, b)|Q(a))[p] and (R(a, a)|Q(a))[p] are ground instances of (R(x, y)|Q(x))[p]
if a, b ∈ Const, but (R(a, b)|Q(b))[p] is not). Further, var(r) denotes the set of all
free variables in r, where r is a conditional or a formula.
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The semantics of conditionals is given by probability distributions over possi-
ble worlds. Here, a possible world is simply a Herbrand interpretation and thus a
subset of Gr(Atoms). We denote the set of all possible worlds with Ω. A possible
world ω entails a ground atom A ∈ Gr(Atoms), written ω |= A, iff A ∈ ω. We
extend the entailment relation |= to arbitrary grounded formulas in the usual
way. The aggregating semantics [10] now allows us to define the concept of mod-
els for conditionals even if they contain free variables. It is inspired by statistical
approaches, but sums up probabilities instead of just counting instances.

Definition 1 (Aggregating Semantics). Let P : Ω → [0, 1] be a probability
distribution, and let r = (B|A)[p] be a conditional. P is a model of r, written

P |= r, iff

∑
(B′|A′)[p]∈Gr(r) P(A′B′)

∑
(B′|A′)[p]∈Gr(r) P(A′)

= p,

where P(A) =
∑

ω∈Ω:ω|=A P(ω) for grounded formulas A.

A knowledge base R is a finite set of conditionals1, and a probability distrib-
ution P is a model of R, written P |= R, iff it is a model of every conditional
in R. A knowledge base is consistent iff it has at least one model. Among all
models of a consistent knowledge base R, the ME-distribution PME(R) shows
especially good properties from a logical point of view [7], and complies with
commonsense reasoning in an optimal way [13]. As PME(R) follows the principle
of maximum entropy (ME-principle) [12,16], it is the unique distribution with
maximal entropy that models R.

Definition 2 (ME-Distribution). Let R be a consistent knowledge base. The
ME-distribution of R is defined by

PME(R) = arg max
P|=R

−
∑

ω∈Ω

P(ω) log P(ω).

As a central prerequisite for our further investigations, we observe that pos-
sible worlds with the same conditional structure [8] also have the same ME-
probability, which is a gratifying property of the ME-distribution. The condi-
tional structure basically states how often a possible world ω verifies (ω |= A′

iB
′
i)

and falsifies (ω |= A′
iB

′
i) the (ground instances of the) conditionals in R.

Definition 3 (Conditional Structure). Let R = {r1, . . . , rn} be a consistent
knowledge base with ri = (Bi|Ai)[pi], i = 1, . . . , n, and let ω ∈ Ω. The condi-
tional structure of ω with respect to R is defined by

σR(ω) =
∏

i=1,...,n

∏

(B′
i|A′

i)[pi]∈Gr(ri)

⎧
⎪⎨

⎪⎩

a+i iff ω |= A′
iB

′
i

a−
i iff ω |= A′

iB
′
i

1 iff ω |= A′
i

,

1 Non-conditional statements of the form “A ∈ FOL holds with probability p” can be
accommodated into R by adding the conditional (A|�)[p] to R.
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where a+i and a−
i for i = 1, . . . , n are the generators of a free commutative

monoid (GR, ·,1).2 Using the functions

veri(ω) = |{(B′
i|A′

i)[pi] ∈ Gr(ri) | ω |= A′
iB

′
i}|,

fali(ω) = |{(B′
i|A′

i)[pi] ∈ Gr(ri) | ω |= A′
iB

′
i}|,

the conditional structure can also be written as σR(ω) =
n∏

i=1

(a+i )veri(ω)(a−
i )fali(ω).

As possible worlds with the same conditional structure verify and falsify
the same conditionals equally often, they are indifferent from the knowledge
base’s perspective and the notion of conditional structure induces an equivalence
relation on Ω: Two possible worlds ω and ω′ are equivalent with respect to
R, written ω ∼R ω′, iff σR(ω) = σR(ω′), i.e., iff for all i = 1, . . . , n both
veri(ω) = veri(ω′) and fali(ω) = fali(ω′) hold. The following proposition holds.

Proposition 1. Let R be a consistent knowledge base, and let ω ∼R ω′. Then,
PME(ω) = PME(ω′).

As a consequence, it is sufficient to calculate the equivalence classes [ω]∼R
and the ME-probability PME(ω) for only one representative per equivalence class
in order to determine PME(R), as we will discuss in the next section.

3 Computing the ME-Distribution

Our algorithm GISWCI computes the ME-distribution PME(R) for a consistent
R. It is based on the well-known generalized iterative scaling approach [3], but
avoids iterations over possible worlds. Instead, it works on the so-called weighted
conditional impacts (WCIs) that comprise, in a computer processible way, all the
information about the equivalence classes [ω]∼R which is necessary to calculate
PME(R). Hence, WCIs serve as sufficient statistics for ME-distributions.

Definition 4 (Weighted Conditional Impact). Let R be a consistent knowl-
edge base consisting of the conditionals ri = (Bi|Ai)[pi], i = 1, . . . , n. The con-
ditional impact is a mapping γR : Ω/∼R → (N0 × N0)n defined by

γR([ω∼R ]) = 〈γ1, . . . , γn〉 with γi = 〈veri(ω), fali(ω)〉, i = 1, . . . , n.

The weighted conditional impact (WCI) maps each equivalence class [ω]∼R to
the tuple consisting of its conditional impact and its cardinality and is given by

WCI([ω∼R ]) = 〈γR([ω]∼R), |[ω]∼R |〉.
The weighted conditional impact matrix WCI(R) ∈ (N0)d×2n+1 of R is given by

WCI(R)j,k =

⎧
⎪⎨

⎪⎩

((WCI([ωj ]∼R)1)i)1 iff k = 2i − 1
((WCI([ωj ]∼R)1)i)2 iff k = 2i

WCI([ωj ]∼R)2 iff k = 2n + 1
,

where {[ω1]∼R , . . . , [ωd]∼R} = Ω/∼R, thus d = |Ω/∼R|.
2 We usually omit the operation symbol “·”.
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Table 1. Parameters describing the logical aspects of R from Ex. 1

[ω]∼R σR(ω) |[ω]∼R | WCI([ω]∼R)

[ω1]∼R a+
1

2
a+
2 1 〈〈〈2, 0〉, 〈1, 0〉〉, 1〉

[ω2]∼R a+
1 a−

1 a+
2 2 〈〈〈1, 1〉, 〈1, 0〉〉, 2〉

[ω3]∼R a+
1 a+

2 2 〈〈〈1, 0〉, 〈1, 0〉〉, 2〉
[ω4]∼R a+

1 a−
2 2 〈〈〈1, 0〉, 〈0, 1〉〉, 2〉

[ω5]∼R a−
1

2
a+
2 1 〈〈〈0, 2〉, 〈1, 0〉〉, 1〉

[ω6]∼R a−
1 a+

2 2 〈〈〈0, 1〉, 〈1, 0〉〉, 2〉
[ω7]∼R a−

1 a−
2 2 〈〈〈0, 1〉, 〈0, 1〉〉, 2〉

[ω8]∼R a−
2 4 〈〈〈0, 0〉, 〈0, 1〉〉, 4〉

Our definition of the weighted conditional impact based on the equivalence
classes of possible worlds is in coincidence with the definition presented in [4],
where WCIs are defined for possible worlds. The weighted conditional impact
matrix WCI(R) is an even more comprised representation of all weighted condi-
tionals impacts with respect to R and will simplify notations in Proposition 2.

Example 1. We consider the knowledge base R = {r1, r2} with

r1 = (Famous(x)|Millionaire(x))[0.7], r2 = (Millionaire(alice)|�)[0.9].

The equivalence classes of the possible worlds with respect to ∼R (and the set
of constants Const = {alice, bob}) are

[ω1]∼R = { {F (a), F (b),M(a),M(b)} },

[ω2]∼R = { {F (a),M(a),M(b)}, {F (b),M(a),M(b)} },

[ω3]∼R = { {F (a),M(a)}, {F (a), F (b),M(a)} },

[ω4]∼R = { {F (b),M(b)}, {F (a), F (b),M(b)} },

[ω5]∼R = { {M(a),M(b)} },

[ω6]∼R = { {M(a)}, {F (b),M(a)} },

[ω7]∼R = { {M(b)}, {F (a),M(b)} },

[ω8]∼R = { ∅, {F (a)}, {F (b)}, {F (a), F (b)} }.

Their cardinalities, conditional structures, and weighted conditional impacts are
shown in Table 1. The weighted conditional impact matrix is

WCI(R) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 1 0 1
1 1 1 0 2
1 0 1 0 2
1 0 0 1 2
0 2 1 0 1
0 1 1 0 2
0 1 0 1 2
0 0 0 1 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Once WCI(R) is given, the algorithm GISWCI proceeds to calculate the ME-
distribution PME(R) as shown in Fig. 1. The algorithm was presented in [4] first
and is recalled in a more informal way here. Calculating the required input
WCI(R) is a difficult task, at least if one wants to avoid iterations over Ω, which
is necessary when having lifted inference in mind. Until now, efficient strategies
to compute WCI(R) are known for very restricted classes of knowledge bases
only [5]. In the rest of the paper, we present (first-order) typed model counting
which proves to be a fruitful framework for further investigations on calculating
WCI(R). In the course of this, the knowledge base R is compiled into a so-
called structured formula φ(R) whose models are counted and classified into
different types by the typed model counting task. The outcome of this approach
is isomorphic to WCI(R). The whole process of calculating the ME-distribution
of a probabilistic knowledge base R by exploiting WCIs is illustrated in Fig. 2.

Input WCI(R) and probabilities p1, . . . , pn of the n conditionals in R
Output Values α0, α1, . . . , αn determining PME(R) via

PME(R)(ω) = α0

∏n
i=1 α

veri(ω)(1−pi)−fali(ω)pi
i

1. Initialize iteration counter k = 0 and uniform probabilities P(k)([ω]∼R) for
equivalence classes in Ω/∼R

2. Repeatedly calculate an approximation to α1, . . . , αn until an abortion condi-
tion holds based on the quality of the approximation
(a) Increase iteration counter k
(b) Update scaling factors β(k),i based on probabilities P(k−1)([ω]∼R)

by employing WCI(R) and pi

(c) Scale probabilities P(k)([ω]∼R) and values α(k),i by updated β(k),i

(d) Normalize scaled probabilities P(k)([ω]∼R)
� End loop
3. Set values αi to α(k),i

4. Determine normalization value α0 wrt. αi and pi

Fig. 1. Algorithm GISWCI to compute PME(R) from WCI(R) without iterating over Ω

R WCI(R) PME(R)

φ(R)
Def. (10) TMC(φ(R))

iterate over Ω GISWCI

First-Order Typed Model Counting

Fig. 2. First-order typed model counting and its relevance for calculating PME(R)
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4 First-Order Typed Model Counting (TMC)

(First-order) typed model counting (TMC) extends first-order model counting
by the ability to classify models into different types (see also [17] for a defin-
ition in the propositional case). These types are represented by elements of a
commutative monoid (S,⊗,1S) that are directly incorporated into the formu-
las. Therewith, TMC allows for a more fine-grained evaluation of the formula.
When using typed model counting to calculate WCIs in Sect. 5, we will instan-
tiate (S,⊗,1S) with (GR, ·,1) such that the different model types represent
conditional structures.

As a formal basis for TMC, we define the structured language FOLS which
consists of all formulas in FOL and additionally allows to concatenate elements
from S to the left of any part of a formula as long as they are not in the scope
of negations (e.g., ∀X.(s ◦ ¬A(X)∨B(X)) is in FOLS if s ∈ S and A,B ∈ Pred,
but ∀X.(¬(s ◦ A(X))∨B(X)) is not).

Definition 5 (Structured Language). Let FOL be defined as before (see
Sect. 2), and let (S,⊗,1S) be a commutative monoid. The structured language
FOLS is the smallest set such that

A, B ∧ C, B ∨ C, ∃X.B, ∀X.B, (s ◦ B) ∈ FOLS ,

where A ∈ FOL, B,C ∈ FOLS , X ∈ var(B), s ∈ S, and ◦ : S × FOLS → FOLS

is an outer operation between S and FOLS .3 Further, we claim that formulas in
FOLS have no free variables, i.e., they are sentences.

In order to be able to interpret and count the typed models of formulas in
FOLS , we enrich (S,⊗,1S) with a second binary operation ⊕. More precisely, we
add an additional element 0S to S which will serve as the identity element with
respect to ⊕. Then, we build the closure S⊕ of S ∪ {0S} under application of
⊕ while ensuring that ⊗ and ⊕ behave distributively. Eventually, we obtain the
commutative semiring (S⊕,⊕,⊗,0S ,1S). We further abbreviate n · s =

⊕n
i=1 s

and sn =
⊗n

i=1 s for s ∈ S and n ∈ N. Note that the differentiation between the
monoid S and the semiring S⊕ is necessary, as we want to allow one to insert
only elements from S into formulas. Inserting elements from the whole semiring
S⊕, that might be sums of elements from S themselves, would undermine the
idea of counting models.

Definition 6 (Structured Interpretation). A structured interpretation is a
mapping IS : FOLS → S ∪ {0S} that maps every ground atom to either 0S or
1S and is further inductively defined by

1. IS(¬A) =

{
1S iff IS(A) = 0S
0S iff IS(A) = 1S

,

2. IS(B ∧C) = IS(B) ⊗ IS(C),

3 The operation ◦ shall be the one that binds weakest.
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3. IS(B ∨C) =

⎧
⎪⎨

⎪⎩

IS(B) iff IS(C) = 0S
IS(C) iff IS(B) = 0S
IS(B) ⊗ IS(C) otherwise

,

4. IS(s ◦ B) = s ⊗ IS(B),
5. IS(∃X.B) = IS(

∨
c∈Const B[X/c]),

6. IS(∀X.B) = IS(
∧

c∈Const B[X/c]),

where A ∈ FOL, B,C ∈ FOLS , s ∈ S, X ∈ var(B), and B[X/c] is B after
substituting every occurrence of X by the constant c.

Note that the structured interpretation of a formula A ∈ FOL (i.e., A is free
of elements from S) is exactly the same as the ordinary interpretation of A when
mapping 1S to 1 (true) and 0S to 0 (false).

Example 2. Let s ∈ S, and let IS be a structured interpretation such that
IS(M(c)) = 1S for all c ∈ Const. Then,

IS(s ◦ ∀X.M(X)) = s and IS(∀X.s ◦ M(X)) = sn where n = |Const|.
This difference is caused by the fact that elements in S do not need to be
idempotent, which is in contrast to ordinary interpretations of formulas in FOL.

There is a one-to-one correspondence between structured interpretations and
possible worlds obtained by the structured interpretation induced by ω ∈ Ω:

IS
ω (A) =

{
1S iff A ∈ ω

0S iff A �∈ ω
, A ∈ Gr(Atoms).

The set of all structured interpretations then is {IS
ω | ω ∈ Ω}, and we may build

our further investigations upon those structured interpretations that are induced
by possible worlds.

Definition 7 (Typed Model Counting). The structured interpretation IS
ω

is a typed model of A ∈ FOLS , written IS
ω |= A, iff IS

ω (A) ∈ S, i.e., iff
IS

ω (A) �= 0S . It is a model of type s iff IS
ω (A) = s. The typed model counting

task is calculating
TMC(A) =

⊕

IS
ω |=A

IS
ω (A).

Example 3. Let Const = {a, b, c} and s1, s2 ∈ S. The structured formula

A = (s1 ◦ M(a)) ∨ (s2 ◦ M(b)M(c))

has five typed models (when M is the only predicate): Three of type s1 (where
M(a) is true, i.e., IS

ω (M(a)) = 1S , but not both M(b) and M(c) are true), one
of type s2 (where M(b) and M(c) are true, but M(a) is not), and one of type
s1 ⊗ s2 (where M(a),M(b), and M(c) are true). Hence,

TMC(A) = 3 · s1 ⊕ s2 ⊕ (s1 ⊗ s2).
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In order to perform typed model counting, we seize on and extend the approach
to first-order model counting presented in [1,2] that compiles clausal theories into
so-called sd-DNNF-circuits on which first-order model counting can be performed
in time polynomial in the size of the circuit. Here, we compile structured formulas
into sd-DNNFS -circuits for which we have to define when structured formulas
are semantically equivalent.

Definition 8 (S-Equivalence). Let A,B ∈ FOLS be structured formulas. A
is S-equivalent to B, written A ≡S B, iff IS

ω (A) = IS
ω (B) for every structured

interpretation IS
ω .

The definition of S-equivalence is more restrictive than the ordinary equiva-
lence of formulas in FOL since S-equivalent formulas not only need to have the
same models, but the models also have to be of the same type.

Definition 9 (sd-DNNFS-Circuit). An sd-DNNFS-circuit is a rooted directed
acyclic graph whose edges are labeled with elements of S4, whose leaf nodes rep-
resent ground literals, and whose inner nodes represent one of the following oper-
ators:5

1. decomposable conjunction A ∧ B: representing the formula A ∧ B in
FOLS with the constraint that A and B do not share any ground atoms,

2. smooth deterministic disjunction A ∨ B: representing the formula A∨B
in FOLS with the constraints that A and B contain the same ground atoms
and are mutually exclusive, i.e., IS

ω (A) ⊗ IS
ω (B) = 0S for every structured

interpretation IS
ω ,

3. set conjunction ∧ C: representing a decomposable conjunction over iso-
morphic operands, i.e., operands that are S-equivalent up to a permutation of
constants,

4. set disjunction ∨ C: representing a smooth deterministic disjunction over
isomorphic operands.

Every structured formula in FOLS can be compiled into an S-equivalent
sd-DNNFS -circuit, which can be proved as follows: As we consider a finite sig-
nature, every quantification in a formula A ∈ FOLS can be executed until there
is no more variable in A. As a consequence, A is S-equivalent to a propositional
structured formula. In [17], we have proved that every propositional structured
formula is equivalent to a formula in sd-DNNFS which is a normal form that
is in one-to-one correspondence to sd-DNNFS -circuits. The great advantage of
sd-DNNFS -circuits is that counting their typed models can be performed recur-
sively by interpreting them as algebraic circuits (here, A and B are subgraphs):6

4 We write edge labels in dashed frames and omit the label “1S”.
5 Note that sd-DNNFS-circuits principally represent grounded formulas, and so are

A, B, C ∈ FOLS in the following definitions. The power of sd-DNNFS-circuits lies in
the capability of consolidating isomorphic formulas via set conjunction respectively
set disjunction.

6 In TMC(A) resp. TMC(B), those structured interpretations are considered that are
restricted to the ground atoms in A resp. B.
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Example 4. Let |Const| ≥ 2 and s ∈ S. We consider the structured formula

ψ = ∃X.s ◦ Millionaire(X).

The single instances of the existential quantification are not mutually exclusive
as there may exist distinct ground atoms M(a) and M(b) which both are mapped
to 1S by the same structured interpretation (i.e., there may exist more than one
millionaire within a possible world). In order to compile ψ into an sd-DNNFS -
circuit, it is expedient to distinguish structured interpretations by the number
of ground instances of M(X) they map to 1S . This can be achieved via set
disjunction and set conjunction as shown in Fig. 3.

Now, one possible application of TMC is as follows: For a fixed size of Const,
typed model counting of ψ not only tells us how many possible worlds exist
with at least one millionaire, but we can read out of TMC(ψ) how many possible
worlds exist with exactly k millionaires: Let |Const| = 3. Then,

TMC(ψ) = 3 · s ⊕ 3 · s2 ⊕ s3,

and, e.g., 3 · s2 says that there are three possible worlds with exactly two mil-
lionaires.

5 Typed Model Counting for ME-Reasoning

We now apply typed model counting (TMC) to ME-reasoning, in particular to
calculating WCIs. To this end, we convert knowledge bases into structured for-
mulas that are interpreted as the conditional structures of exactly those possible
worlds which induced the respective structured interpretations. Thus, condi-
tional structures will serve as the semantics of the formulas in this section.

Definition 10 (Knowledge Base Compilation). Let R be a consistent
knowledge base consisting of the conditionals ri = (Bi|Ai)[pi], i = 1, . . . , n. Fur-
ther, let FOLGR be the structured language FOLS after instantiating (S,⊗,1S)

∨

Mil⊆Const,|Mil|≥1
TMC(ψ) =

∑|Const|
|Mil|=1

|Const|
|Mil|

)
s|Mil|

∧ s|Mil|

∧
x∈Mil s|Mil| ∧

x∈Const\Mil 1S

M(x) 1S M(x) 1S

s

Fig. 3. sd-DNNFS -circuit for ψ from Ex. 4. Annotated typed model counts are under-
lined and can be obtained by instantiating the leave nodes with 1S and incrementally
counting the typed models of the parent nodes until one reaches the root node
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with the free commutative monoid (GR, ·,1). We define7

φ(R) =
∧n

i=1∀X∈var(ri)
X.φi(ri) with

φi(ri) = (a+i ◦ AiBi) ∨ (a−
i ◦ AiBi) ∨ Ai, i = 1, . . . , n.

The formula φ(R) is a conjunction over all ground instances of all conditionals
in R, and every conjunct consists of three mutually exclusive disjuncts: every
ground instantiation of (a+i ◦ AiBi) refers to the verification of the respective
ground instance of the i-th conditional, (a−

i ◦ AiBi) refers to the conditional’s
falsification, and Ai covers the case in which the conditional is not applicable. In
total, φ(R) comprises all the information about the logical part of the knowledge
base R within a single structured formula.

The following proposition states how the weighted conditional impact matrix
WCI(R) of R can be read out of the typed models of φ(R). Hence, it bridges the
gap between R and WCI(R) as illustrated in Fig. 2 using typed model counting,
and therefore it constitutes the central result of this paper.

Proposition 2. Let R = {r1, . . . , rn} be a consistent knowledge base, and let
W = WCI(R) ∈ (N0)d×2n+1 be the weighted conditional impact matrix of R.
Further let ω ∈ Ω. Then,

1. IGR
ω (φ(R)) = σR(ω),

2. TMC(φ(R)) =
⊕

[ω]∼R∈Ω/∼R |[ω]∼R | · σR(ω)

=
d⊕

j=1

Wj,2n+1

n∏

i=1

a+i
Wj,2i−1 a−

i

Wj,2i .

Proof. We prove the first statement of the proposition:

IGR
ω (φ(R)) = IGR

ω (
n∧

i=1
∀X∈var(ri)

X.φi(ri)) =
n∏

i=1

IGR
ω (∀X∈var(ri)

X.φi(ri))

=
n∏

i=1

∏

(B′
i|A′

i)[pi]∈Gr(ri)

IGR
ω ((a+i ◦ A′

iB
′
i) ∨ (a−

i ◦ A′
iB

′
i) ∨ A′

i)

=
n∏

i=1

∏

(B′
i|A′

i)[pi]∈Gr(ri)

⎧
⎪⎨

⎪⎩

a+i iff ω |= A′
iB

′
i

a−
i iff ω |= A′

iB
′
i

1 iff ω |= A′
i

= σR(ω).

As a consequence, the second statement holds:

TMC(φ(R)) =
⊕

IGR
ω |=φ(R)

IGR
ω (φ(R)) =

⊕

IGR
ω |=φ(R)

σR(ω)
(�)
=

⊕

ω∈Ω

σR(ω)

=
⊕

[ω]∼R∈Ω/∼R

|[ω]∼R | · σR(ω)
(†)
=

d⊕

j=1

Wj,2n+1

n∏

i=1

a+i
Wj,2i−1 a−

i

Wj,2i
.

7 Here, ∀X∈var(ri)X.φi(ri) = ∀X1.(. . . ∀Xm.φi(ri)) where var(ri) = {X1, . . . , Xm}.
Note that var(ri) = var(φi(ri)) for i = 1, . . . , n, which can be proved easily.
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The Equation (	) holds, since IGR
ω (φ(R)) ∈ GR for every ω ∈ Ω due to the

definition of φ(R), and (†) follows from Definition 4.

∧
TMC(φ(R)) = (a+

2 (a+
1 + a−

1 ) + 2a−
2 ) (a+

1 + a−
1 + 2 · 1)|Const|−1

∧

x∈Const\{a} (a+
1 + a−

1 + 2 · 1)|Const|−1

∨ a+
1 + a−

1 + 2 · 1∨ a+
2 (a+

1 + a−
1 ) + 2a−

2

∧ a+
2 (a+

1 + a−
1 ) ∧ 2a−

2

M(a) 1
∨ a+

1 + a−
1 ∨ 2 · 1

M(a) 1

F (a) 1F (a) 1 F (a) 1 F (a) 1

∧ a+
1 + a−

1 ∧ 2 · 1

M(x) 1
∨ a+

1 + a−
1 ∨ 2 · 1

M(x) 1

F (x) 1F (x) 1 F (x) 1 F (x) 1

a+
2

a+
1

a−
2

a−
1

a+
1 a−

1

Fig. 4. sd-DNNFS -circuit wrt. Ex. 5. Annotated typed model counts are underlined

Example 5. We recall the knowledge base from Example 1. Its compilation as
per Definition 10 results in

φ(R) = [∀X.(a+1 ◦ M(X)F (X)) ∨ (a−
1 ◦ M(X)F (X))

∨ (M(X))] ∧ [(a+2 ◦ M(a)) ∨ (a−
1 ◦ M(a))].

An sd-DNNFS -circuit for φ(R) is shown in Fig. 4. The annotated counts are given
with respect to an arbitrary number of constants |Const| ≥ 1. When setting
|Const| = 2, the outcome of the typed model counting task is

TMC(φ(R)) = (a+2 (a+1 + a−
1 ) + 2a−

2 ) (a+1 + a−
1 + 2 · 1)

=a+1
2
a+2 + 2a+1 a

−
1 a

+
2 + 2a+1 a

+
2 + 2a+1 a

−
2

+ a−
1

2
a+2 + 2a−

1 a
+
2 + 2a−

1 a
−
2 + 4a−

2

which is in accordance with the data given in Table 1. When TMC(φ(R)) is
calculated with respect to a parameterized number of constants |Const| as in
this example, it is an easy task to determine WCI(R) for an arbitrary number
of constants. Note that this is not possible when, for instance, iterating over
all possible worlds in Ω in order to calculate WCI(R), as the size of Ω heavily
depends on |Const|.
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6 Related Work

There is a strong connection between typed model counting (TMC) and algebraic
model counting (AMC) [11] as both approaches combine the task of counting the
models of a formula with algebraic aspects. Whereas in AMC it is allowed to map
literals to arbitrary elements of a commutative semiring and not just to elements
of a commutative monoid as in TMC, it is not possible to insert elements from
the algebraic structure directly into formulas, which is an essential feature in
TMC. To some extent, this lack of expressivity of AMC can be overcome: Instead
of inserting an element s of the algebraic structure directly into the formula, one
can introduce a novel ground atom which is interpreted as the certain element s
during the algebraic model counting task. However, this workaround has several
disadvantages:

1. The novel ground atoms increase the number of interpretations that have to
be checked whether they model a formula unnecessarily.

2. Additional constraints have to be made, in order to ensure that certain com-
binations of the novel ground atoms do not hold in the same model (e.g.,
think about the case that a novel ground atom V indicates that a conditional
is verified, and another ground atom F indicates that it is falsified. One has
to ensure that V and F do not hold at the same time, for example by adding
the constraint V ⇔ F .),

3. While conjunctions and disjunctions are idempotent operations, elements in
algebraic structures do not have to be idempotent. As a consequence, it might
happen that several distinct novel ground atoms for the same element of
the algebraic structure have to be introduced (e.g., for every single ground
instance of a conditional the novel ground atoms indicating the verification,
falsification respectively the non-applicability of the conditional have to be
distinct).

As a consequence, TMC constitutes a framework that fits better than AMC to
the requirements that WCI-calculations impose.

7 Conclusion and Future Work

We extended the concept of typed model counting (TMC), which was primarily
defined for propositional logics in [17], to a first-order setting. To this end, we
introduced the language of structured formulas which are classical first-order
formulas equipped with elements of a commutative monoid. Structured formulas
allow for a more fine-grained evaluation than classical formulas do, which results
in the ability to distinguish between different types of models. We utilized this
ability for calculating weighted conditional impacts (WCIs) that play a central
role in nonmonotonic reasoning with conditionals. These WCIs we made use
of in our algorithm GISWCI that efficiently computes the ME-distribution as a
model of a probabilistic conditional knowledge base. In future work, we aim to
develop an algorithm that capitalizes on both TMC an GISWCI and allows for



First-Order Typed Model Counting 279

lifted inferences at maximum entropy. For this purpose, we want to build on the
results presented in [1] by formulating rules for compiling structured formulas
into sd-DNNFS -circuits and by investigating their complexity.

Acknowledgements. This research was supported by the German National Science
Foundation (DFG) Research Unit FOR 1513 on Hybrid Reasoning for Intelligent
Systems.
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Abstract. We present a probabilistic extension of the description logic
ALC for reasoning about statistical knowledge. We consider conditional
statements over proportions of the domain and are interested in the
probabilistic-logical consequences of these proportions. After introduc-
ing some general reasoning problems and analyzing their properties, we
present first algorithms and complexity results for reasoning in some
fragments of Statistical ALC.

1 Introduction

Probabilistic logics enrich classical logics with probabilities in order to incor-
porate uncertainty. In [5], probabilistic logics have been classified into three
types that differ in the way how they handle probabilities. Type 1 logics enrich
classical interpretations with probability distributions over the domain and are
well suited for reasoning about statistical probabilities. This includes propor-
tional statements like “2% of the population suffer from a particular disease.”
Type 2 logics consider probability distributions over possible worlds and are bet-
ter suited for expressing subjective probabilities or degrees of belief. For instance,
a medical doctor might say that she is 90% sure about her diagnosis. Type 3
logics combine type 1 and type 2 logics allow to reason about both kinds of
uncertainty.

One basic desiderata of probabilistic logics is that they generalize a clas-
sical logic. That is, the probabilistic interpretation of formulas with probabil-
ity 1 should agree with the classical interpretation. However, given that first-
order logic is undecidable, a probabilistic first-order logic that satisfies our basic
desiderata will necessarily be undecidable. In order to overcome the problem,
we can, for instance, restrict to Herbrand interpretations over a fixed domain
[2,9,13] or consider decidable fragments like description logics [3,8,10].

Probabilistic type 2 extensions of description logics have been previously
studied in [11]. In the unpublished appendix of this work, a type 1 extension
of ALC is presented along with a proof sketch for ExpTime-completeness of
the corresponding satisfiability problem. This type 1 extension enriches classical
interpretations with probability distributions over the domain as suggested in [5].
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We consider a similar, but more restrictive setting here. We are interested in an
ALC extension that allows statistical reasoning. However, we do not impose
a probability distribution over the domain. Instead, we are only interested in
reasoning about the proportions of a population satisfying some given properties.
For instance, given statistical information about the relative frequency of certain
symptoms, diseases and the relative frequency of symptoms given diseases, one
can ask the relative frequency of a disease given a particular combination of
symptoms. Therefore, we consider only classical ALC interpretations with finite
domains and are interested in the relative proportions that are true in these
interpretations.

Hence, interpretations in our framework can be regarded as a subset of the
interpretations in [11], namely those with finite domains and a uniform probabil-
ity distribution over the domain. These interpretations are indeed sufficient for
our purpose. In particular, by considering strictly less interpretations, we may
be able to derive tighter answer intervals for some queries. Our approach bears
some resemblance to the random world approach from [4]. However, the authors
in [4] consider possible worlds with a fixed domain size N and are interested in
the limit of proportions as N goes to infinity. We are interested in all finite pos-
sible worlds that satisfy certain proportions and ask what statistical statements
must be true in all these worlds.

We begin by introducing Statistical ALC in Sect. 2 together with three rel-
evant reasoning problems. Namely, the Satisfiability Problem, the l-Entailment
problem and the p-Entailment problem. In Sect. 3, we will then discuss some
logical properties of Statistical ALC. In Sects. 4 and 5, we present first compu-
tational results for fragments of Statistical ALC. We had to omit several proofs
in order to meet space restrictions. All proofs can be found in the full version of
the paper [16].

2 Statistical ALC
We start by revisiting the classical description logic ALC. Given two disjoint
sets NC of concept names and NR of role names, ALC concepts are built using
the grammar rule C ::= � | A | ¬C | C � C | ∃r.C, where A ∈ NC and r ∈ NR.
One can express disjunction, universal quantification and subsumption through
the usual logical equivalences like C1 � C2 ≡ ¬(¬C1 � ¬C2). For the semantics,
we focus on finite interpretations. An ALC interpretation I = (ΔI , ·I) consist
of a non-empty, finite domain ΔI and an interpretation function ·I that maps
concept names A ∈ NC to sets AI ⊆ ΔI and roles names r ∈ NR to binary
relations rI ⊆ ΔI × ΔI . Two ALC concepts C1, C2 are equivalent (C1 ≡ C2) iff
CI

1 = CI
2 for all interpretations I.

Here, we consider a probabilistic extension of ALC. Statistical ALC knowl-
edge bases consist of probabilistic conditionals that are built up over ALC
concepts.

Definition 1 (Conditionals, Statistical KB). A probabilistic ALC condi-
tional is an expression of the form (C | D)[�, u], where C,D are ALC concepts
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and �, u ∈ Q are rational numbers such that 0 ≤ � ≤ u ≤ 1. A statistical ALC
knowledge base (KB) is a set K of probabilistic ALC conditionals.

For brevity, we usually call probabilistic ALC conditionals simply conditionals.

Example 2. Let Kflu = {(∃has.fever | ∃has.flu)[0.9, 0.95], (∃has.flu | �)[0.01, 0.03]}.
Kflu states that 90 to 95 percent of patients who have the flu have fever, and
that only 1 to 3 percent of patients have the flu.

Intuitively, a conditional (C | D)[�, u] expresses that the relative proportion of
elements of D that also belong to C is between � and u. In order to make this
more precise, consider a finite ALC interpretation I, and an ALC concept X. We
denote the cardinality of XI by [X]I , that is, [X]I := |XI |. The interpretation
I satisfies (C | D)[�, u], written as I |= (C | D)[�, u], iff either [D]I = 0 or

[C � D]I

[D]I
∈ [�, u]. (1)

I satisfies a statistical ALC knowledge base K iff it satisfies all conditionals
in K. In this case, we call I a model of K and write I |= K. We denote the
set of all models of K by Mod(K). As usual, K is consistent if Mod(K) 
= ∅ and
inconsistent otherwise. We call two knowledge bases K1,K2 equivalent and write
K1 ≡ K2 iff Mod(K1) = Mod(K2).

Example 3. Consider again the KB Kflu from Example 2. Let I be an interpre-
tation with 1000 individuals. 10 of these have the flu and 9 have both the flu
and fever. Then I ∈ Mod(Kflu).

In classical ALC, knowledge bases are defined by a set of general concept
inclusions (GCIs) C � D that express that C is a subconcept of D. An inter-
pretation I satisfies C � D iff CI ⊆ DI . As shown next, GCIs can be seen as a
special kind of conditionals, and hence statistical ALC KBs are a generalization
of classical ALC KBs.

Proposition 4. For all statistical ALC interpretations I, we have I |= C � D
iff I |= (D | C)[1, 1].

Proof. If I |= C � D then CI ⊆ DI and CI ∩ DI = CI . If CI = ∅, we have
[C]I = 0. Otherwise [C�D]I

[C]I = 1. Hence, I |= (D | C)[1, 1].
Conversely, assume I |= (D | C)[1, 1]. If [C]I = 0, then CI = ∅ and

I |= C � D. Otherwise, [C�D]I

[C]I = 1, that is, [C � D]I = [C]I . If there
was a d ∈ CI \ DI , we had [C � D]I < [C]I , hence, we have CI ⊆ DI and
I |= C � D. �

Given a statistical ALC knowledge base K, the first problem that we are inter-
ested in is deciding consistency of K. We define the satisfiability problem for
statistical ALC knowledge bases as usual.

Satisfiability Problem: Given a knowledge base K, decide whether
Mod(K) 
= ∅.
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Example 5. Consider again the knowledge base Kflu from Example 2. The con-
ditional (∃has.flu | �)[0.01, 0.03] implies that [∃has.flu]I ≥ 0.01 for all models
I ∈ Mod(Kflu). (∃has.fever | ∃has.flu)[0.9, 0.95] implies [∃has.fever � ∃has.flu]I ≥
0.9[∃has.flu]I . Therefore, [∃has.fever]I ≥ [∃has.fever � ∃has.flu]I ≥ 0.9[∃has.flu]I ≥
0.009. Hence, adding the conditional (∃has.fever | �)[0, 0.005]} renders Kflu

inconsistent.

If K is consistent, we are interested in deriving (implicit) probabilistic con-
clusions. We can think of different reasoning problems in this context. First,
we can define an entailment relation analogously to logical entailment. Then,
the probabilistic conditional (C | D)[�, u] is an l-consequence of the KB K iff
Mod(K) ⊆ Mod({(C | D)[�, u]}). In this case, we write K |=l (C | D)[�, u]. In
the context of type 2 probabilistic conditionals, this entailment relation has also
been called just logical consequence [9].

l-Entailment Problem: Given a knowledge base K and a conditional (C | D)
[�, u], decide whether K |=l (C | D)[�, u].

Example 6. Consider again the KB Kflu from Example 2. As explained in Exam-
ple 5, [∃has.fever]I ≥ 0.009 holds for all models I ∈ Mod(K). Therefore, it follows
that Kflu |=l (∃has.fever | �)[0.009, 1]. That is, our statistical information sug-
gests that at least 9 out of 1, 000 of our patients have fever.

Example 7. Consider a domain with birds (B), penguins (P) and flying animals
(F). We let Kbirds = {(B | �)[0.5, 0.6], (F | B)[0.85, 0.9], (F | P )[0, 0]}. Note that
the conditional (F | B)[0.85, 0.9] is actually equivalent to (¬F | B)[0.1, 0.15].
Furthermore, for all I ∈ Mod(Kbirds), (F | P )[0, 0] implies [P � F ]I = 0. There-
fore, we have [P �B]I = [B�P �F ]I +[B�P �¬F ]I ≤ 0+[B�¬F ]I ≤ 0.15[B]I .
Hence, Kbirds |=l (P | B)[0, 0.15]. That is, our statistical information suggests
that at most 15 out of 100 birds in our population are penguins.

As usual, the satisfiability problem can be reduced to the l-entailment problem.

Proposition 8. K is inconsistent iff K |=l (� | �)[0, 0].

Proof. If K is inconsistent, then Mod(K) = ∅ and so K |=l (� | �)[0, 0].
Conversely, assume K |=l (� | �)[0, 0]. We have [�]I > 0 and [���]I

[�]I = 1 for
all interpretations I. Hence, Mod({(� | �)[0, 0]}) = ∅ and since K |=l (� | �)
[0, 0], we must have Mod(K) = ∅ as well. �

Often, we do not want to check whether a specific conditional is entailed, but
rather deduce tight probabilistic bounds for a statement. This problem is often
referred to as the probabilistic entailment problem in other probabilistic logics,
see [6,9,13] for instance. Consider a query of the form (C | D), where C,D are
ALC concepts. We define the p-Entailment problem similar to the probabilistic
entailment problem for type 2 probabilistic logics.
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p-Entailment Problem: Given knowledge base K and a query (C | D), find
minimal and maximal solutions of the optimization problems

inf
I∈Mod(K)

/ sup
I∈Mod(K)

[C�D]I

[D]I

subject to [D]I > 0

Since the objective function [C�D]I

[D]I is bounded from below by 0 and from above
by 1, the infimum m and the maximum M are well-defined whenever there
is a model I ∈ Mod(K) such that [D]I > 0. In this case, we say that K p-
entails (C | D)[m,M ] and write K |=p (C | D)[m,M ]. In the context of type
2 probabilistic conditionals, this entailment relation has also been called tight
logical consequence [9]. If [D]I = 0 for all I ∈ Mod(K), the p-Entailment problem
is infeasible, that is, there exists no solution.

Example 9. In Example 7, we found that Kbirds |=l (P | B)[0, 0.15]. This bound
is actually tight. Since 0 is always a lower bound and we showed that 0.15 is
an upper bound, it suffices to give examples of interpretations that take these
bounds. For the lower bound, let I0 be an interpretation with 200 individuals.
100 of these individuals are birds and 85 are birds that can fly. There are no
penguins. Then I0 is a model of Kbirds with [B]I0 > 0 that satisfies (P | B)[0, 0].
Construct I1 from I0 by letting the 15 non-flying birds be penguins. Then I1 is
another model of Kbirds and I1 satisfies (P | B)[0.15, 0.15]. Hence, we also have
Kbirds |=p (P | B)[0, 0.15].

If K |=p (C | D)[m,M ], one might ask whether the values between m and
M are actually taken by some model of K or whether there can be large gaps
in between. For the probabilistic entailment problem for type 2 logics, we can
show that the models of K do indeed yield a dense interval by noting that each
convex combination of models is a model and applying the Intermediate Value
Theorem from Real Analysis. However, in our framework, we do not consider
probability distributions over possible worlds, but the worlds themselves, which
are discrete in nature. We therefore cannot apply the same tools here. However,
for each two models that yield different probabilities for a query, we can find
another model that takes the probability in the middle of these probabilities.

Lemma 10 (Bisection Lemma). Let C,D be two arbitrary ALC concepts. If
there exist I0, I1 ∈ Mod(K) such that r0 = [C�D]I0

[D]I0 < [C�D]I1

[D]I1 = r1, then there

is an I0.5 ∈ Mod(K) such that [C�D]I0.5

[D]I0.5 = r0+r1
2 .

We can now show that for each value between the lower and upper bound
given by p-entailment, we can find a model that gives a probability arbitrarily
close to this value.

Proposition 11 (Intermediate Values). Let K |=p (C | D)[m,M ]. Then
for every x ∈ (m,M) (where (m,M) denotes the open interval between m and
M) and for all ε > 0, there is a Ix,ε ∈ Mod(K) such that | [C�D]Ix,ε

[D]Ix,ε
− x| < ε.
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3 Logical Properties

We now discuss some logical properties of Statistical ALC. We already noted
that Statistical ALC generalizes classical ALC in Proposition 4. Furthermore,
p-entailment yields a tight and dense (Proposition 11) answer interval for all
queries whose condition can be satisfied by models of the knowledge base. Let
us also note that statistical ALC is language invariant. That is, increasing the
language by adding new concept or role names does not change the semantics
of ALC. This can be seen immediately by observing that the interpretation of
conditionals in (1) depends only on the concept and role names that appear in
the conditional.

Statistical ALC is also representation invariant in the sense that for all con-
cepts C1,D1 and C2,D2, if C1 ≡ C2 and D1 ≡ D2 then (C1 | D1)[l, u] ≡ (C2 |
D2)[l, u]. Hence, changing the syntactic representation of conditionals does not
change their semantics. In particular, entailment results are independent of such
changes.

Both l- and p-entailment satisfy the following independence property:
whether or not K |=l (C | D)[�, u] (K |=p (C | D)[m,M ]) depends
only on the conditionals in K that are connected with the query. This may
simplify answering the query by reducing the size of the KB. In order to
make this more precise, we need some additional definitions. For an arbi-
trary ALC concept C, Sig(C) denotes the set of all concept and role names
appearing in C. The conditionals (C1 | D1)[�1, u1] and (C2 | D2)[�2, u2] are
directly connected (written (C1 | D1)[�1, u1] � (C2 | D2)[�2, u2]) if and only if
(Sig(C1) ∪ Sig(D1)) ∩ (Sig(C2) ∪ Sig(D2)) 
= ∅. That is, two conditionals are
directly connected iff they share concept or role names. Let �∗ denote the tran-
sitive closure of �. We say that (C1 | D1)[�1, u1] and (C2 | D2)[�2, u2] are
connected iff (C1 | D1)[�1, u1] �∗ (C2 | D2)[�2, u2]. The restriction of K to
conditionals connected to (C | D)[�, u] is the set {κ ∈ K | κ �∗ (C | D)[�, u]}.
Using an analogous definition for queries (qualitative conditionals) (C1 | D1)
and (C2 | D2), we get the following result.

Proposition 12 (Independence). If K is consistent, we have

1. K |=l (C | D)[�, u] iff {κ ∈ K | κ �∗ (C | D)[�, u]} |=l (C | D)[�, u].
2. K |=p (C | D)[m,M ] iff {κ ∈ K | κ �∗ (C | D)} |=p (C | D)[m,M ].

Another interesting property of probabilistic logics is continuity. Intuitively,
continuity states that minor changes in the knowledge base do not yield major
changes in the derived probabilities. However, as demonstrated by Courtney and
Paris, this condition is too strong when reasoning with the maximum entropy
model of the knowledge base [14, p. 90]. The same problem arises for the prob-
abilistic entailment problem [17, Example 4]. While these logics considered sub-
jective probabilities, the same problem occurs in our setting for statistical prob-
abilities as we demonstrate now.
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Example 13. Consider the knowledge base

K = {(B | A)[0.4, 0.5], (C | A)[0.5, 0.6], (B | C)[1, 1], (C | B)[1, 1]}.

The interpretation I = ({a, b}, ·I) with AI = {a, b}, BI = CI = {b} is a model
of K, i.e., K is consistent. In particular, since A is interpreted by the whole
domain of I we know that

K |=p (A | �)[m, 1]

for some m ∈ [0, 1]. As explained in Proposition 4, deterministic conditionals
correspond to concept inclusions and so (B | C)[1, 1] and (C | B)[1, 1] imply

that BI′
= CI′

for all models I ′ of K. Therefore, [B�A]I
′

[A]I′ = [C�A]I
′

[A]I′ . Let K′

denote the knowledge base that is obtained from K by decreasing the upper
bound of the first conditional in K by an arbitrarily small ε > 0. That is,

K′ = {(B | A)[0.4, 0.5 − ε], (C | A)[0.5, 0.6], (B | C)[1, 1], (C | B)[1, 1]}.

Then the only way to satisfy the first two conditionals in K′ is by interpreting A
by the empty set. Indeed, the interpretation I∅ that interprets all concept names
by the empty set is a model of K′. So K′ is consistent and

K′ |=p (A | �)[0, 0].

Hence, a minor change in the probabilities in the knowledge base can yield a
severe change in the entailed probabilities. This means that the p-entailment
relation that we consider here is not continuous in this way either.

As an alternative to this strong notion of continuity, Paris proposed to mea-
sure the difference between KBs by the Blaschke distance between their models.
Blaschke continuity says that if KBs are close with respect to the Blaschke dis-
tance, the entailed probabilities are close. Blaschke continuity is satisfied by some
probabilistic logics under maximum entropy and probabilistic entailment [14,17].
In [14,17], probabilistic interpretations are probability distributions over a finite
number of classical interpretations and the distance between two interpretations
is the distance between the corresponding probability vectors. We cannot apply
this definition here because we interpret conditionals by means of classical inter-
pretations. It is not at all clear what a reasonable definition for the distance
between two classical interpretations is. We leave the search for a reasonable
topology on the space of classical interpretations for future work.

4 Statistical EL
Proposition 4 and the fact that reasoning in ALC is ExpTime-complete, show
that our reasoning problems are ExpTime-hard. However, we did not find any
upper bounds on the complexity of reasoning in ALC so far. We will therefore
focus on some fragments of ALC now.
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To begin with, we will focus on the sublogic EL [1] of ALC that does not allow
for negation and universal quantification. Formally, EL concepts are constructed
by the grammar rule C ::= A | � | C � C | ∃r.C, where A ∈ NC and r ∈ NR.
A statistical EL KB is a statistical ALC KB where conditionals are restricted to
EL concepts. Notice that, due to the upper bounds in conditionals, statistical EL
KBs are capable of expressing some weak variants of negations. For instance, a
statement (C | �)[�, u] with u < 1 restricts every model I = (ΔI , ·I) to contain
at least one element δ ∈ ΔI \ CI . Thus, contrary to classical EL, statistical EL
KBs may be inconsistent.

Example 14. Consider the KB K1 = (∅, C1), where

C1 = {(A | �)[0, 0.2], (A | �)[0.3, 1]}.

Since �I = ΔI 
= ∅, every model I = (ΔI , ·I) of K1 must satisfy

[A]I ≤ 0.2[�]I < 0.3[�]I ≤ [A]I ,

which is clearly a contradiction. Thus, K1 is inconsistent.

More interestingly, though, it is possible to simulate valuations over a finite
set of propositional formulas wit the help of conditional statements. Thus, the
satisfiability problem is at least NP-hard even for Statistical EL.

Theorem 15. The satisfiability problem for Statistical EL is NP-hard.

On the other hand, consistency can be decided in non-deterministic expo-
nential time, through a reduction to integer programming. Before describing the
reduction in detail, we introduce a few simplifications.

Recall from Proposition 4 that a conditionals of the form (D | C)[1, 1] is
equivalent to the classical GCI C � D. Thus, in the following we will often
express statistical EL KBs as pairs K = (T , C), where T is a classical TBox
(i.e., a finite set of GCIs), and C is a set of conditionals. A statistical EL KB
K = (T , C) is said to be in normal form if all the GCIs in T are of the form

A1 � A2 � B, A � ∃r.B, ∃r.A � B

and all its conditionals are of the form

(A | B)[�, u]

where A,B ∈ NC ∪ {�}, and r ∈ NR. Informally, a KB is in normal form if
at most one constructor is used in any GCI, and all conditionals are atomic
(i.e., between concept names). Every KB can be transformed to an equivalent
one (w.r.t. the original signature) in linear time using the normalization rules
from [1], and introducing new concept names for complex concepts appearing in
conditionals. More precisely, we replace any conditional of the form (C | D)[�, u]
with the statement (A | B)[�, u], where A,B are two fresh concept names, and
extend the TBox with the axioms A ≡ C, and B ≡ D.
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The main idea behind our consistency algorithm is to partition the finite
domain of a model into the different types that they define, and use integer pro-
gramming to verify that all the logical and conditional constraints are satisfied.
Let NC(K) denote the set of all concept names appearing in the KB K. We call
any subset θ ⊆ NC(K) a type for K. Intuitively, such a type θ represents all
the elements of the domain that are interpreted to belong to all concept names
A ∈ θ and no concept name A /∈ θ. We denote as Θ(K) the set of all types of
K. To simplify the presentation, in the following we treat � as a concept name
that belongs to all types.

Given a statistical EL KB K = (T , C) in normal form, we consider an integer
variable xθ for every type θ ∈ Θ(K). These variables will express the number
of domain elements that belong to the corresponding type. In addition, x� will
be used to represent the total size of the domain. We build a system of linear
inequalities over these variables as follows. First, we require that all variables
have a value at least 0, and that the sizes of all types add exactly the size of the
domain.

∑

θ∈Θ(K)

xθ = x� (2)

0 ≤ xθ for all θ ∈ Θ(K) (3)

Then, we ensure that all the conditional statements from the KB are satisfied
by adding, for each statement (A | B)[�, u] ∈ C the constraint

� ·
∑

B∈θ

xθ ≤
∑

A,B∈θ

xθ ≤ u ·
∑

B∈θ

xθ, (4)

Finally, we must ensure that the types satisfy all the logical constraints intro-
duced by the TBox. The GCI A1 � A2 � B states that every element that
belongs to both A1 and A2 must also belong to B. This means that types con-
taining A1, A2 but excluding B should not be populated. We thus introduce the
inequality

xθ = 0 if A1 � A2 � B ∈ T , A1, A2 ∈ θ, and B /∈ θ (5)

Dealing with existential restrictions requires checking different alternatives,
which we solve by creating different linear programs. The GCI A � ∃r.B implies
that, whenever there exists an element in A, there must also exist at least
one element in B. Thus, to satisfy this axiom, either A should be empty (i.e.,∑

A∈θ xθ = 0), or
∑

B∈θ xθ ≥ 1. Hence, for every existential restriction of the
form A � ∃r.B, we define the set

EA,B : = {
∑

A∈θ

xθ = 0,
∑

B∈θ

xθ ≥ 1}

To deal with GCIs of the form ∃r.A � B, we follow a similar approach, together
with the ideas of the completion algorithm for classical EL. For every pair of
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existential restrictions A � ∃r.B,∃r.C � D, we define the set

FA,B,C,D := {
∑

A∈θ,D/∈θ

xθ = 0,
∑

B∈θ,C /∈θ

xθ ≥ 1}

Intuitively,
∑

A∈θ,D/∈θ xθ ≥ 1 whenever there exists an element that belongs to
A but not to D. If this is the case, and the GCIs A � ∃r.B,∃r.C � D belong
to the TBox T , then there must exist some element that belongs to B but not
to C.

We call the hitting sets of

{EA,B | A � ∃r.B ∈ T } ∪ {FA,B,C,D | A � ∃r.B,∃r.C � D ∈ T }

choices for T . A program for K is an integer program containing all the inequal-
ities (2)–(5) and a choice for T . Then we get the following result.

Lemma 16. K is consistent iff there exists a program for K that is satisfiable.

Proof. The “only if” direction is straight-forward since the inequalities are sound
w.r.t. the semantics of statistical KBs. We focus on the “if” direction only.

Given a solution of the integer program, we construct an interpretation
I = (Δ, ·I) as follows. We create a domain Δ with x� elements, and partition
it such that for every type θ ∈ Θ(K), there is a class [[θ]] containing exactly xθ

elements. For every non-empty class, select a representative element δθ ∈ [[θ]].
The interpretation function ·I maps every concept name A to the set

AI :=
⋃

A∈θ

[[θ]].

Given a non-empty class [[θ]] such that A ∈ θ and A � ∃r.B ∈ T , let τ be a type
such that B ∈ τ , xτ > 0, and for every ∃r.C � D ∈ T , if D /∈ θ, then C /∈ τ .
Notice that such a τ must exist because the solution must satisfy at least one
restriction in each FA,B,C,D. We define rθ

A,B := θ × {δτ} and set

rI :=
⋃

A∈θ,A	∃r.B∈T
rθ
A,B .

It remains to be shown that I is a model of K.
Notice that for two concept names A,B, it holds that (A�B)I =

⋃
A,B∈θ[[θ]]

and hence [A�B]I | =
∑

A,B∈θ xθ. Given a conditional statement (A | B)[�, u] ∈
C, since the solution must satisfy the inequality (4), it holds that

� · [B]I ≤ [A � B]I ≤ u · [B]I .

For a GCI A1 � A2 � B ∈ T , by the inequality (5) it follows that for every type
θ containing both A1, A2, but not B, [[θ]] = ∅. Hence AI

1 ∩ AI
2 ⊆ BI . For every

A � ∃r.B ∈ T , and every γ ∈ Δ, if γ ∈ AI then by construction there is an
element γ′ such that (γ, γ′) ∈ rI .
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Finally, if (γ, γ′) ∈ rI , then by construction there exists a type θ and an
axiom A � ∃r.B ∈ T such that γ ∈ [[θ]] and γ′ = δτ . Then, for every GCI
∃r.C � D ∈ T , γ′ ∈ CI implies C ∈ τ and hence D ∈ θ which means that
γ ∈ DI . �

Notice that the construction produces exponentially many integer programs,
each of which uses exponentially many variables, measured on the size of the KB.
Since satisfiability of integer linear programs is decidable in non-deterministic
polynomial time on the size of the program, we obtain a non-deterministic expo-
nential time upper bound for deciding consistency of statistical EL KBs.

Theorem 17. Consistency of statistical EL KBs is in NExpTime.

5 Reasoning with Open Minded KBs

In order to regain tractability, we now further restrict statistical EL KBs by
disallowing upper bounds in the conditional statements. We call such knowledge
bases open minded.

Definition 18 (Open Minded KBs). A statistical EL KB K = (T , C) is open
minded iff all the conditional statements (C | D)[�, u] ∈ C are such that u = 1.

For the scope of this section, we consider only open minded KBs. The first
obvious consequence of restricting to this class of KBs is that negations cannot
be simulated. In fact, every open minded KB is consistent and, as in classical
EL, can be satisfied in a simple universal model.

Theorem 19. Every open minded KB is consistent.

Proof. Consider the interpretation I = ({δ}, ·I) where the interpretation func-
tion maps every concept name A to AI := {δ} and every role name r to
rI := {(δ, δ)}. It is easy to see that this interpretation is such that CI = {δ}
holds for every EL concept C. Hence, I satisfies all EL GCIs and in addition
[C � D]I = [C]I = 1 which implies that all conditionals are also satisfied. �

Recall that, intuitively, conditionals specify that a proportion of the population
satisfies some given properties. One interesting special case of p-entailment is
the question how likely it is to observe an individual that belongs to a given
concept.

Definition 20. Let K be an open minded KB, C a concept, and m ∈ [0, 1]. C
is m-necessary in K if K p-entails (C | �)[m, 1]. The problem of m-necessity
consists in deciding whether C is m-necessary in K.

We show that this problem can be solved in polynomial time. As in the previous
section, we assume that the KB is in normal form and additionally, that all con-
ditional statements (A | B)[�, 1] ∈ C are such that � < 1. This latter assumption
is made w.l.o.g. since the conditional statement (A | B)[1, 1] can be equivalently
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replaced by the GCI B � A (see Proposition 4). Moreover, checking m-necessity
of a complex concept C w.r.t. the KB (T , C) is equivalent to deciding m-necessity
of a new concept name A w.r.t. the KB (T ∪{A ≡ C}, C). Thus, in the following
we consider w.l.o.g. only the problem of deciding m-necessity of a concept name
w.r.t. to a KB in normal form.

Our algorithm extends the completion algorithm for classification of EL
TBoxes to in addition keep track of the lower bounds of necessity for all rel-
evant concept names. The algorithm keeps as data structure a set S of tuples
of the form (A,B) and (A, r,B) for A,B ∈ NC ∪ {�}. These intuitively express
that the TBox T entails the subsumptions A � B and A � ∃r.B, respectively.
Additionally, we keep a function L that maps every element A ∈ NC ∪ {�}
to a number L(A) ∈ [0, 1]. Intuitively, L(A) = n expresses that K p-entails
(A | �)[n, 1].

The algorithm initializes the structures S and L as

S :={(A,A), (A,�) | A ∈ NC(K) ∪ {�}}

L(A) :=

{
0 if A ∈ NC(K)
1 if A = �.

These structures are then updated using the rules from Table 1. In each case, a rule
is only applied if its execution extends the available knowledge; that is, if either S
is extended to include one more tuple, or a lower bound in L is increased. In the
latter case, only the larger value is kept through the function L.

Table 1. Rules for deciding m-necessity

C1 if {(X, A1), (X, A2)} ⊆ S and A1 � A2 � B ∈ T then add (X, B) to S
C2 if (X, A) ∈ S and A � ∃r.B ∈ T then add (A, r, B) to S
C3 if {(X, r, Y ), (Y, A)} ⊆ S and ∃r.A � B ∈ T then add (X, B) to S
L1 if (A | B)[�, 1] ∈ C then L(A) ← � · L(B)

L2 if A1 � A2 � B ∈ T then L(B) ← L(A1) + L(A2) − 1

L3 if (B, A) ∈ S then L(A) ← L(B)

The first three rules in Table 1 are the standard completion rules for classi-
cal EL. The remaining rules update the lower bounds for the likelihood of all rel-
evant concept names, taking into account their logical relationship, as explained
next.

Rule L1 applies the obvious inference associated to conditional statements:
from all the individuals that belong to B, (A | B)[�, 1] states that at least 100�%
belong also to A. Thus, assuming that L(B) is the lowest proportion of elements
in B possible, the proportion of elements in A must be at least � · L(B). L3

expresses that if every element of B must also belong to A, then there must be
at least as many elements in A as there are in B. Finally, L2 deals with the
fact that two concepts that are proportionally large must necessarily overlap.
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For example, if 60% of all individuals belong to A and 50% belong to B, then at
least 10% must belong to both A and B; otherwise, together they would cover
more than the whole domain.

The algorithm executes all the rules until saturation; that is, until no rule
is applicable. Once it is saturated, we can decide m-necessity from the function
L as follows: A is m-necessary iff m ≤ L(A). Before showing the correctness of
this algorithm, we show an important property.

Notice that the likelihood information from L is never transferred through
roles. The reason for this is that an existential restriction ∃r.B only guarantee
the existence of one element belonging to the concept B. Proportionally, the
number of elements that belong to B tends to 0.

Example 21. Consider the KB ({� � ∃r.A}, ∅). For any n ∈ N, construct the
interpretation In := ({0, . . . , n}, ·In), where AIn = {0} and rIn = {(k, 0) | 0 ≤
k ≤ n}. It is easy to see that In is a model of the KB and [A]In/[�]In < 1/n.
Thus, the best lower bound for m-necessity of A is 0, as correctly given by the
algorithm.

Theorem 22 (correctness). Let L be the function obtained by the application
of the rules until saturation and A0 ∈ NC . Then A0 is m-necessary iff m ≤ L(A).

Proof (sketch). It is easy to see that all the rules are sound, which proves the
“if” direction. For the converse direction, we consider a finite domain Δ and an
interpretation ·I of the concept names such that [A]I/|Δ| = L(A) and the post-
conditions of the rules L1–L3 are satisfied. Such interpretation can be obtained
recursively by considering the last rule application that updated L(A). Assume
w.l.o.g. that the domain is large enough so that c/|Δ| < m − L(A0), where
c is the number of concept names appearing in K. It is easy to see that this
interpretation satisfies all conditional statements and the GCIs A1�A2 � B ∈ T .
For every concept name A, create a new domain element δA and extend the
interpretation I such that δA ∈ B iff (A,B) ∈ S. Given a role name r, we define
rI := {(γ, δB) | A � ∃r.B, γ ∈ AI}. Then, this interpretation satisfies the KB
K, and [A0]I/|Δ| ≤ L(A0) + c/|Δ| < m. �
Thus, the algorithm can correctly decide m-necessity of a given concept name.
It remains only to be shown that the process terminates after polynomially
many rule applications. To guarantee this, we impose an ordering in the rule
applications. First, we apply all the classical rules C1–C3, and only when no
such rules are applicable, we update the function L through the rules L1–L3.
In this case, the rule that will update to the largest possible value is applied
first. It is known that only polynomially many classical rules (on the size of T )
can be applied [1]. Deciding which bound rule to apply next requires polynomial
time on the number of concept names in K. Moreover, since the largest update
is applied first, the value of L(A) is changed at most once for every concept
name A. Hence, only linearly many rules are applied. Overall, this means that
the algorithm terminates after polynomially many rule applications, which yields
the following result.

Theorem 23. Deciding m-necessity is in P.
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6 Related Work

Over the years, various probabilistic extensions of description logics have been
investigated, see, for instance, [3,7,8,10,12,15,18]. The one that is closest to
our approach is the type 1 extension of ALC proposed in the appendix of [11].
Briefly, [11] introduces probabilistic constraints of the form P (C | D) ≤ p,
P (C | D) = p, P (C | D) ≥ p for ALC concepts C,D. These correspond to the
conditionals (C | D)[0, p], (C | D)[p, p], (C | D)[p, 1], respectively. Conversely,
each conditional can be rewritten as such a probabilistic constraint. However,
there is a subtle but fundamental difference in the semantics. While the defin-
ition in [11] allows for probability distributions over arbitrary domains, we do
not consider uncertainty over the domain. This comes down to allowing only
finite domains and only the uniform distribution over this domain; that is, our
approach further restricts the class of models of a KB. One fundamental differ-
ence between the two approaches is that Proposition 4 does not hold in [11]: the
reason is that the conditional (C | D)[1, 1] can be satisfied by an interpretation
I that contains an element x ∈ (C � ¬D)I , where x has probability 0.

This difference is the main reason why the ExpTime algorithm proposed
by Lutz and Schröder cannot be transferred to our setting. It does not suffice
to consider the satisfiable types independently, but other implicit subsumption
relations may depend on the conditionals only.

Example 24. Consider the statistical EL KB K = (T , C) with

T := {� � ∃r.A, ∃r.B � C}
C := {(B | �)[0.5, 1], (A | B)[0.5, 1], (A | �)[0, 0.25]}

From C it follows that every element of A must also belong to B, and hence every
domain element must be an element of C. However, ¬C defines a satisfiable type
(w.r.t. T ) which will be interpreted as non-empty in the model generated by the
approach in [11].

7 Conclusions

We have introduced Statistical ALC, a new probabilistic extension of the descrip-
tion logic ALC for statistical reasoning. We analyzed the basic properties of this
logic and introduced some reasoning problems that we are interested in. As a
first step towards effective reasoning in Statistical ALC, we focused on EL, a
well-known sublogic of ALC that, in its classical form, allows for polynomial-
time reasoning. We showed that upper bounds in conditional constraints make
the satisfiability problem in statistical EL NP-hard and gave an NExpTime
algorithm to decide satisfiability. We showed that tractability can be regained
by disallowing strict upper bounds in the conditional statements.

We are going to provide more algorithms and a more complete picture of the
complexity of reasoning for Statistical ALC and its fragments in future work. A
combination of integer programming and the inclusion-exclusion principle may
be fruitful to design first algorithms for reasoning in full Statistical ALC.
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Abstract. There has been increasing interest in risk scoring and bank-
ruptcy prediction in recent years. Most of the current proposals analyse
a set of parameters to classify companies as either active or default.
What banks really need, however, is to be able to predict the probabil-
ity of bankruptcy occurring in the future. Current approaches do not
enable a deeper analysis to estimate the direction of a company as the
parameters under study evolve. This article proposes a system for the
Bankruptcy Scenario Query (B-SQ) which is based on association rules
to allow users to conduct “What if...?” queries, and obtain as a response
what usually happens under similar scenarios with the corresponding
probability of it occurring.

1 Introduction

The development of accurate bankruptcy prediction models has received a major
boost in recent years [1,4,16,22] thanks to the introduction of the Basel II guide-
lines [3] which require banks to implement credit risk prediction models to prop-
erly adjust their risk assumptions to the current economic situation.

Current approaches analyse a set of variables to classify companies as either
active or default. Most of these approaches can be divided into two categories:
statistical methods [14,20], with a solid mathematical basis and efficient cal-
culation, but mainly suitable for simple classification cases with single rela-
tions between the variables; and artificial intelligence and data mining proposals
[10,15,19] that can gather the complexity of greater problems but find it diffi-
cult to work with large data sets and unbalanced problems. This second group
includes tree-based methods [5,22] which are interpretable but sensitive to noise
and over-fitting; genetic algorithms [4,6] which are accurate but can only work
on small problems and this makes them inconsistent between executions due to
the pre-selection of the required variables; support vector machine approaches
[16,21] which may encounter difficulties in unbalanced problems due to their
search for an overall solution; and neural network proposals [1,8] which are suit-
able for large amounts of data and unbalanced problems but are too complex
for the user to understand.
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Although these approaches are useful for classification purposes, most
have three disadvantages. Firstly, they return a binary response (such as
active or default) for the current situation but they do not give the proba-
bility of the new case being in one of these classes in the future, and this is what
banks really need to know [7]. Secondly, companies are studied from a static
perspective, without taking into account the fact that business evolve and that
this evolution conditions their future. Tools are therefore necessary to study
how changing conditions (variables) can influence or modify this future [9]. A
model based on the use of scenarios would enable this type of analysis to answer
“What if...?” queries. Finally, although these methods are applied to support
decision-making, they mainly focus on improving classification accuracy and
ignore understandability, which is a growing concern [12]. In more understand-
able approaches, the results must follow long paths through decision trees or
look through very large sets of rules in order to understand the line of reasoning
followed by the system. It is for this reason that in this article we examine the
problem of designing an understandable approach to analyze corporate evolution
and predict the probability of a business remaining active according to various
different possible situations or scenarios.

For this purpose, we present the Bankruptcy Scenario Query (B-SQ), which is
an association rule-based system directed towards supporting financial decision-
making based on scenarios. The main idea consists in creating a set of association
rules and building a knowledge base on this for an inference system. This system
enables the user to make a query about a given scenario with queries of the type
“What if..?”, and then returns the facts or situations that usually occur under
similar conditions.

Section 2 describes the structure of the B-SQ approach; Sect. 3 presents a
brief to illustrate the system; and finally, Sect. 4 outlines our conclusions.

2 Scenario Query System

The Bankruptcy Scenario Query system that we propose in this article has three
modules and these are shown in Fig. 1 and described in the following subsections.

2.1 Knowledge Base

Our proposal is based on a fuzzy multidimensional model which is described in
detail in [13]. By way of summary, this model organizes the data into dimensions
(e.g. “time”) which can then be analyzed through a kinship relation according
to different detail levels (day, week, month, etc.). It also contains the measures
or variables to be analysed (e.g. sales or profits). In this section, we describe how
to build this model by using, for example, the data obtained from the database
built by the company Axesor1 with 88534 companies from three sectors using
the National Classification of Economic Activities (CNAE). We will now explain

1 URL: https://www.axesor.com.

https://www.axesor.com
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Fig. 1. B-SQ system structure

how to apply an association rule extraction algorithm on this in order to obtain
the knowledge base which will be used as input for the inference system.

CFinancial Datacube construction. In order to build the datacube, we differ-
entiate between failed and successful companies (from the service, commercial
and industrial sectors) according to Spanish Law. We have considered three
economic-financial variables: return on assets, working capital, and indebted-
ness cost in the period 2014–2016. The structure of the datacube is shown in
Fig. 2. The following section describes the dimensions used for the analysis.

Fig. 2. Business datacube

Dimensions. We have defined five dimensions using the minimum and maxi-
mum operators as t-norm and t-conorm when calculating the extended kinship
relationship as follows:
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– Time: this is defined at a detail level of years and its structure is: Time =
( {Y ear,All},≤Time,Year,All).

– Failure: this indicates if the companies have failed or not, so the basic level
(Fail) has only two values (Yes) or (No).

– Company : this dimension models company information. We have used the
INFOTEL code2 as the base level and define the CNAE codes3 on this to
group the companies according to a detailed sector classification. We then
define the sector level that groups the CNAE codes into service, commercial
or industrial companies. The other levels represent the number of control
systems used, the number of social address changes, the number of trademarks
obtained by the company and the company type.

– Age: the base level of this dimension is the number of years that a company
has been in operation. On this level, we define another to classify the com-
panies as very young, young, mature or very mature. This kind of concept is
normally defined using crisp intervals, which is not how they are normally
used. Fuzzy logic enables these concepts to be characterized more intuitively,
as illustrated in Fig. 3.

– Return on assets, Cost of debt and Working capital : for these three dimensions
defined on the economic-financial variables, we define the base level using the
values observed in the data set. Since numeric values (e.g. a 6.51 return on
assets) are less intuitive, we have defined the next level, Range, by grouping
the values into five categories (very low, low, average, high and very high)
according to the distance between the value and the variable mean and by
fuzzifying the intervals associated to each category. This is shown in Fig. 4.

Fig. 3. Definition of level Group in dimension Age for CFinancial

Measures. We have used the return on assets and working capital. Both variables
are considered to be measures and dimensions because we want to analyse the
relation between both (e.g. return on assets in terms of the working capital, and
vice versa). Since all the data have been obtained from a reliable source, we
assign the maximum confidence value to each fact.

2 Axesor assigns a code to each company in the database.
3 URL: http://www.cnae.com.es/.

http://www.cnae.com.es/
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Fig. 4. Definition of ranges over the economic-financial variables for CFinancial

Association Rule Extraction: COGIARE. In this system, we use the
COGIARE algorithm [17] shown in Algorithm 1. This method is based on the
extraction of association rules on multidimensional models for classification pur-
poses. The approach uses hierarchies on the dimensions to reduce rule complex-
ity by considering a trade-off between the precision and understandability of the
rule set.

It applies an iterative process (Fig. 5): it first builds a set of rules with a
single antecedent; it then generates rules with two antecedents and compares
the quality of the rules. If better results are obtained, then the process continues
to rules with three items in the antecedent. The iterative process stops when
the new rule set is not better than the previous one. More details can be found
in [17].

Fig. 5. COGIARE algorithm
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Algorithm 1. COGIARE Algorithm
N = Number of variables
FI2 = Generate frequent item sets of size 2
R2 = Generate rules from FI2
R′ = Sort R2 rules in terms of quality (Certainty Factor) in descending order
Ra = Selected rules from R′

FI2 = reduceSpace(FI2,Ra)
for i = 3 to N do

FIi = Generate frequent item sets of size i from FIi−1

Ri = Generate rules from FIi
R = ∪i

j=2Ri

R′ = Sort R rules in terms of quality in descending order
Rc = Selected rule from R′

if Quality(Rc) > Quality(Ra) then
Ra = Rc

FIi=reduceSpace(FIi,Ra)
else
return Ra

end if
end for
return Ra

The function reduceSpace that appears in the algorithm reduces the number
of itemsets to generate on each iteration. This is implemented by ignoring any
itemset that has generated rules with a quality equal to 1 as a candidate for the
next iteration. This is an application of a well-known property of rule systems:
if rule R1 has the highest quality (1 in the case of CF) and R2 is another rule
built using R1 with the addition of an element to the antecedent, if R2 is fired
then R1 is also fired since R1 subsumes R2 so R2 cannot be poorer quality than
R1. Rule R2 is therefore redundant in the knowledge base.

2.2 Inference System

There is one problem of using association rules in an inference system: the prop-
agation of the quality measure values (support and confidence) when applying
the rules [2]. However, this issue can be solved with the CF measure, first used
in MYCIN [18] to enable inexact reasoning. The authors also proposed an infer-
ence system in order to deal with the certainty factor (CF ) and propagate the
values.

Since the rules obtained with the algorithm described in Sect. 2.1 have been
calculated with this factor, they can be used directly in this inference system.
In this article, we therefore propose that the rules obtained with the COGIARE
process be incorporated as the knowledge base for the MYCIN inference system
in an interactive interface. With this approach, the rules are hidden from the
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user so there is no need to interpret them. The user simply has to establish
the known values that define the scenario of interest (i.e. the elements in the
datacube dimensions) and the system will apply the obtained rules to infer other
values that are related to these.

2.3 User Interaction

We propose an interactive process to answer the user’s scenario queries:

1. The user chooses the values that define the scenario for one or several dat-
acube dimensions.

2. The inference process is applied and the elements related to those selected
are shown to the user.

3. The user may interact with the system by adding new values or deleting some
of the previously selected values to establish a new scenario.

4. After each change, the system again applies the inference process and shows
the new results to the user.

This scheme enables the user to “play” with conditions and identify the com-
pany’s future evolution as parameters or overall conditions change, and to redi-
rect the business in the desired direction.

3 Example

There are two parts to this example: firstly, we show the operation of the OLAM
system; and secondly, the scenario query is exemplified.

3.1 OLAM Process

In order to extract the rules, we use the COGIARE algorithm on the CFinancial

datacube. The following main parameters are used:

– Support : 0.01.
– CF : 0.4 (minimum value of CF to consider a rule).
– Abstraction function: we use Generality as the abstraction function defined

as the number of elements grouped by an item compared to the total number
of elements at the most detailed dimension level (the base level) (see [11] for
more details).

– Complexity due to the number of rules: in this case, we use the function N ,
defined as the relation between the number of rules and the number of possible
items in the datacube (see [17] for details).

From this process we obtain 764 association rules. These rules will be used
in the following step to enable the user to request possible scenarios.
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Quality: In order to measure the quality of the rule set, we have applied a
10-fold cross validation with the same parameters and the results of this was an
average precision of 89.2%.

3.2 What-if... Process

Figure 6 shows the initial system screen. Let us suppose we are analysing the
default probability for aYoung CompanywithCompanyType Limited (in Spanish:
SociedadAnonima),where theCost of debt is considered to beHigh, and theReturn
on assets is considered Low. The system then applies the inference process and
responds (Fig. 7) that the default probability is very high (value 0.986). The sys-
temexplains the result by showing the applied rules.This example has the following
rules:

– Return on assets is Low AND Cost of debt is High AND The company is
Young THEN Default is Yes with Support 0.015 and CF : 0.9664

– Company Type is Limited and Return on assets is Low AND Cost of debt is
High THEN Default is Yes with Support 0.045 and CF: 0.584

By looking at the rules, the user can see that the combination of values for
indebtedness cost and return on assets is presented in both so these factors are
important. If we want to know what effect the age of the company has, we
can change the value to Mature instead of Young. In this case, the probability

Fig. 6. Initial screen
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Fig. 7. Initial scenario

Fig. 8. Change Age to mature
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decreases to 0.584, only the second rule is applied and no rule that considers age
is used. Another important factor, therefore, is the time the company has been
active (Fig. 8).

We can further refine the scenario and study the impact of the return on
assets by changing the value to very low. In this case (Fig. 9), there is a slight
increase in probability (value 0.6028) and the following rule is used:

– Return on assets is Very Low AND Indebtedness cost is High AND Company
Type is Limited THEN Default is Yes with Support 0.011 and CF : 0.603

Fig. 9. Change return on assets from Low to Very low

4 Conclusions

This article proposes an intuitive query system called the Bankruptcy Scenario
Query (B-SQ) which is based on association rules. The user requests different
scenarios and obtains an easy-to-understand answer that indicates what usually
happens in similar scenarios according to the knowledge base and the inference
process.

The use of hierarchies enhances the system, enables the use of terms that
are easier for the end user to understand, and hides the complexity of the rule
system complexity with an understandable response. This enables the user to
pose “What if..?” queries and to “play” with company parameters. It brings rule-
based decision support systems closer to non-expert users to enable them to
foresee the evolution of the company in order to guide it in the desired direction.
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Abstract. In this paper we analyze the novel constructive definition of
f -index of inclusion with respect to four of the most common axiomatic
definitions of inclusion measure, namely Sinha-Dougherty, Kitainik,
Young and Fan-Xie-Pei. There exist an important difference between
the f -index and these axiomatic definitions of inclusion measure: the f -
index represents the inclusion in terms of a mapping in unit interval,
whereas the inclusion measure represents such an inclusion as a value in
the unit interval.

1 Introduction

Extending crisp operations and relations to the fuzzy case has taken the attention
of researchers since Zadeh introduced the notion of fuzzy sets [21]. However,
there is not consensus about how to extend some of them and, due to intrinsic
features of fuzzy sets, it looks that all those different ways are acceptable; the
choice depends on the task or the context where fuzzy sets are defined. One
example of this fact is the fuzzy extension of the relation of inclusion, for which
there are two different kind of approaches, the constructive ones (which provide
a formula to represent the inclusion relation) and the axiomatic ones (which
present some basic properties that must be satisfied by any inclusion measure).
In the former case, we can distinguish those based on fuzzy implications [1,12],
probability [17] and overlapping [7,8,14]. In the latter class, we can distinguish
also between other two subclasses, those allowing a non-null degree of inclusion
of some fuzzy sets into the empty set [13,18] and those that not, which are
also related to entropy measures and overlapping [11,20]. In the literature, one
can find many theoretical and practical studies on such families of axiomatic
definitions [4–6,9,10,12,19].

Most of the generalizations in the literature about fuzzy inclusion have a
common feature; namely, they are relations that assign a value in the unit interval
to each pair of fuzzy sets, A and B, that determines the degree of inclusion of
A in B. One exception is [16], where the notion of inclusion is represented by
assigning to each pair of fuzzy sets a mapping between the unit interval. Despite
this differential feature, in this paper we analize the f -index of inclusion under
the view of the four most common axiomatic definitions of measure of inclusion
namely, Sinha-Dougherty [18], Kitainik [13], Young [20] and Fan-Xie-Pei [11].
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 307–318, 2017.
DOI: 10.1007/978-3-319-67582-4 22
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Actually, we show that the f -index of inclusion satisfies, somehow, the axioms of
Sinha-Dougherty with the exception of the relationship with the complementary,
which needs to be rewritten in terms of Galois connections.

The structure of this paper is the following. In Sect. 2 we present the pre-
liminaries which includes the four respective axiomatic definitions of inclusion
measures and the notion of the f -index of inclusion. Subsequently, in Sect. 3,
we check each axiom in the context of f -indexes of inclusion, by showing which
axioms hold and under which circumstances. Finally, in Sect. 4 we present con-
clusions and prospects for future work.

2 Preliminaries

A fuzzy set A is a pair (U , μA) where U is a non empty set (called the universe
of A) and μA is a mapping from U to [0, 1] (called membership function of A). In
general, the universe is a fixed set for all the fuzzy sets considered and therefore,
each fuzzy sets is determined by its membership function. Hence, for the sake of
clarity, we identify fuzzy sets with membership functions (i.e., A(u) = μA(u)).

On the set of fuzzy sets defined on the universe U , denoted F(U), we can
extend the usual crisp operations of union, intersection and complement as fol-
lows. Given two fuzzy sets A and B, we define

– (union) A ∪ B(u) = max{A(u), B(u)}
– (intersection) A ∩ B(u) = min{A(u), B(u)}
– (complement) Ac(u) = n(A(u))

where n : [0, 1] → [0, 1] is a negation operator; i.e., n is a decreasing mapping such
that n(0) = 1 and n(1) = 0. In a considerable number of papers, the negation
considered is involutive (strong negation in fuzzy settings) which adds to n the
condition n(n(x)) = x for all x ∈ [0, 1]. This condition is crucial to have in fuzzy
sets the equality (Ac)c = A. In this paper we assume that the complement of a
fuzzy set is always defined in terms of an involutive negation.

An implication I : [0, 1] × [0, 1] is any mapping decreasing in its first com-
ponent, increasing in the second component and such that I(0, 0) = I(0, 1) =
I(1, 1) = 1 and I(0, 1) = 0.

Any transformation in the universe T : U → U can be extended to F(U) by
defining for each A ∈ F(U) the fuzzy set T (A)(x) = A(T (x)).

In the rest of this section we deal with different approaches to the notion of
inclusion between fuzzy sets which can be found in the literature. We recall below
some of them which will be alter considered in the framework of our f -indexes
of inclusion in Sect. 3.

2.1 Sinha-Dougherty Axioms

One of the most common measures of inclusion was originally proposed by Sinha-
Dougherty in [18].
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Definition 1. A mapping I : F(U) × F(U) → [0, 1] is called an SD-inclusion
relation if it satisfies the following axioms for all fuzzy sets A,B and C:

(SD1) I(A,B) = 1 if and only if A(u) ≤ B(u) for all u ∈ U .
(SD2) I(A,B) = 0 if and only if there exists u ∈ U such tat A(u) = 1 and

B(u) = 0.
(SD3) If B(u) ≤ C(u) for all u ∈ U then I(A,B) ≤ I(A,C).
(SD4) If B(u) ≤ C(u) for all u ∈ U then I(C,A) ≤ I(B,A).
(SD5) If T : U → U is a bijective transformation on the universe, then I(A,B) =

I(T (A), T (B)).
(SD6) I(A,B) = I(Bc, Ac).
(SD7) I(A ∪ B,C) = min{I(A,C), I(B,C)}.
(SD8) I(A,B ∩ C) = min{I(A,B), I(A,C)}.
Sinha and dougherty included also that I(A,B ∪ C) ≥ max{I(A,B), I(A,C)}
for all fuzzy sets A,B and C. However, we do not consider it here since it is a
direct consequence of Axiom (SD3) [2,6].

2.2 Kitainik Axioms

In 1987, Kitainik [13] proposed an axiomatic definition of fuzzy subsethood which
captures the essential of inclusion measures based on implications. One of the
main differences with respect to the axiomatic definition of fuzzy inclusion is the
independence with respect to Zadeh’s definition, i.e. (SD1).

Definition 2. A mapping I : F(U)×F(U) → [0, 1] is called K-inclusion relation
if it satisfies the following axioms for all fuzzy sets A,B and C:

(K1) I(A,B) = I(Bc, Ac).
(K2) I(A,B ∩ C) = min{I(A,B), I(A,C)}.
(K3) If T : U → U is a bijective transformation on the universe, then I(A,B) =

I(T (A), T (B)).
(K4) If A and B are crisp then I(A,B) = 1 if and only if A ⊆ B.
(K5) If A and B are crisp then I(A,B) = 0 if and only if A � B.

It is not difficult to check that every Kitainik inclusion measure is also a Sinha-
Dougherty measure.

Moreover, Fodor and Yager showed [12], by using a representation result
already published by Kitianik, that for every K-measure of inclusion I there
exists an implication I such that, for all fuzzy sets A and B, it holds

I(A,B) = inf{I(A(u), B(u)) | u ∈ U}.
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2.3 Young Axioms

The axioms proposed by Young [20] for a measure of inclusion are based on
measures of entropy [15]. Specifically, the following relationship between both
measures is proposed: if I is a measure of inclusion, then E(A) = I(A∪Ac, A∩Ac)
defines a measure of entropy. Based on such an idea, the following axiomatic
definition was given:

Definition 3. A mapping I : F(U)×F(U) → [0, 1] is called Y-inclusion relation
if it satisfies the following axioms for all fuzzy sets A,B and C:

(Y1) I(A,B) = 1 if and only if A(u) ≤ B(u) for all u ∈ U .
(Y2) If A(u) ≥ 0.5 for all u ∈ U , then I(A,Ac) = 0 if and only if A = U ; i.e.,

A(u) = 1 for all u ∈ U .
(Y3) If A(u) ≤ B(u) ≤ C(u) for all u ∈ U then I(C,A) ≤ I(B,A) for all

fuzzy set A ∈ F(U).
(Y4) If B(u) ≤ C(u) for all u ∈ U then I(A,B) ≤ I(A,C) for all fuzzy set

A ∈ F(U).

In the original definition [20] axioms (Y3) and (Y4) are written jointly as
one axiom.

2.4 Fan-Xie-Pei Axioms

The definition of Young was analyized and modified slightly by Fan, Xie and
Pie [11]. Firstly they criticize the axiom (Y4) and propose to change it by

(FX4) If A(u) ≤ B(u) ≤ C(u) for all u ∈ U then I(A,B) ≤ I(A,C) for all
fuzzy set A ∈ F(U).

Subsequently, they propose two other different definitions of measure of inclu-
sion, called weak and strong respectively, by modifying the axioms in Young’s
definition.

Definition 4. A mapping I : F(U) × F(U) → [0, 1] is said to be a strong FX-
inclusion relation if it satisfies the following axioms for all fuzzy sets A,B and C:

(sFX1) I(A,B) = 1 if and only if A(u) ≤ B(u) for all u ∈ U .
(sFX2) If A 	= ∅ and A ∩ B = ∅ then, I(A,B) = 0.
(sFX3) If A(u) ≤ B(u) ≤ C(u) for all u ∈ U then I(C,A) ≤ I(B,A) and

I(A,B) ≤ I(A,C) for all fuzzy set A ∈ F(U).

Definition 5. A mapping I : F(U) × F(U) → [0, 1] is said to be weak FX-
inclusion relation if it satisfies the following axioms for all fuzzy sets A,B and C:

(wFX1) I(∅, ∅) = I(∅,U) = I(U ,U) = 1; where U(u) = 1 for all u ∈ U .
(wFX2) I(A, ∅) = 0
(wFX3) If A(u) ≤ B(u) ≤ C(u) for all u ∈ U then I(C,A) ≤ I(B,A) and

I(A,B) ≤ I(A,C) for all fuzzy set A ∈ F(U).

In the original paper of Fan, Xie and Pie [11] the reader can find relationships
between these measures and fuzzy implications.
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2.5 f-indexes of Inclusion

Although most of the approaches for extending the relation of inclusion between
fuzzy sets consider mappings of the type I : F(U) × F(U) → [0, 1], as done
by Sinha and Dougherty, there are also other approaches that differ from such
idea. One example is [16] which assigns to each pair of fuzzy sets a mapping
f : [0, 1] → [0, 1] to represent their degree of inclusion. This approach is based
on the definition of f -inclusion given at following.

Definition 6. Let A and B be two fuzzy sets and let f : [0, 1] → [0, 1] be a
mapping such that f(x) ≤ x for all x ∈ [0, 1]. We say that A is f-included in B
if the inequality f(A(u)) ≤ B(u) holds for all u ∈ U .

Note that the f -inclusion is a crisp relationship in the sense that A is either
f -included in B or not. Thus, it somehow reminds the original definition of fuzzy
inclusion given by Zadeh. The fuzziness in the definition above is that each f
should be considered a degree of inclusion. Let us try to clarify this point. For
the sake of presentation, let us define Ω as the set of functions f : [0, 1] → [0, 1]
such that f(x) ≤ x for all x ∈ [0, 1]; i.e., Ω is our set of inclusion degrees. Note
that Ω has the structure of a complete lattice, where id (i.e. id(x) = x for all
x ∈ [0, 1]) and 0 (i.e. 0(x) = 0 for all x ∈ [0, 1]) are the top and least element,
respectively.

Given two functions f, g ∈ Ω such that f ≤ g then, A ⊆f B implies A ⊆g B
(see Proposition 7 in Sect. 3). As a result, the greater the mapping f , the stronger
the restriction imposed by the f -inclusion. So, each mapping f in Ω represents a
degree of inclusion between fuzzy sets according to the strength of the restriction
imposed by the respective f -inclusion relation. In such a way, the mapping 0
represents the null degree of inclusion (actually all pairs of fuzzy sets A and B
satisfy A ⊆0 B) whereas id represents the highest degree (actually if a pair of
fuzzy sets A and B satisfy A ⊆id B then A ⊆f B for all f ∈ Ω). The reader is
also referred to [16] for deeper motivational aspects of this set of f -indexes of
inclusions.

In order to assign a convenient f -index of inclusion to a pair of fuzzy sets, it
can be proved that given two fuzzy sets A and B, the following set

{f ∈ Ω | A ⊆f B}
is closed under suprema. Therefore, its greatest element (denoted hereafter by
fAB) seems to be the most appropriated f -index of inclusion for the relation
A ⊆ B. Moreover, such a mapping is determined by the following theorem.

Theorem 1 ([16]). Let A and B be two fuzzy sets. Then, the greatest element
of {f ∈ Ω | A ⊆f B} is

fAB(x) = min{x, inf
u∈U

{B(u) | x ≤ A(u)}} (1)

Now, in order to provide evidences about why fAB is an appropriated f -index
for the relation A ⊆ B, in the next section we show that almost all the axioms
given by Sinha and Dougherty hold for such an index under a convenient and
natural rewriting.
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3 Checking Axioms for the f-index of Inclusion

In the previous section, we have recalled the definition of the f -index of inclusion
together with several axiomatic definitions of inclusion measure. To begin with, it
is worth to note that the usual notion of an inclusion measure is that of a mapping
F(U) × F(U) → [0, 1], whereas the f -index is a mapping F(U) × F(U) → Ω,
where Ω is the set of functions in the unit interval which are smaller than the
identity. Fortunately, thanks to the lattice structure of Ω, the translation of all
the axioms is straightforward.

It is also remarkable that many of the axioms in different axiomatic systems
are identical or very related. For that reason and for the sake of the presentation,
these axioms are grouped together in this section under a common feature, and
the relationship with the f -index of inclusion is analyzed jointly.

3.1 Relationship with Zadeh’s Definition

The original definition of fuzzy inclusion introduced by Zadeh [21] states that,
for any two fuzzy sets A,B ∈ F(U),

A ⊆ B if and only if A(u) ≤ B(u) for all u ∈ U .

Note that axioms (SD1), (Y1) and (sFX1) are almost identical to that defi-
nition. Actually, those axioms can be rewritten as “the degree of inclusion of A
in B is 1 if and only if A is contained in B in Zadeh’s sense”. The following
result, already proved in [16, Corollary 2], shows that the f -index of inclusion
satisfies exactly this condition.

Proposition 1. Let A and B be two fuzzy sets. Then, fAB = id if and only if
A(u) ≤ B(u) for all u ∈ U .

It is convenient to mention that axioms (K4) and (wFX1) are weaker assump-
tions than Zadeh’s inclusion, and therefore, they are also satisfied by f -indexes.

3.2 The Case of Null Inclusion

Different axiomatic systems treat differently the particular case of the null inclu-
sion, some of them introduce a characterization (if and only if) of the situations
in which the degree of inclusion is zero, whereas others simply state a condi-
tion (if . . . then) that it should satisfy. The axioms related to null inclusion are
(SD2), (K5), (Y2), (sFX2) and (wFX2).

It is worth to mention here that, these axioms are slightly controversial. In
fact, Sinha and Dougherty stated in [18]:

“[...] Axiom 2 may seem unnatural to many readers. In particular, this
axiom causes ‘problems’ if we wish to model the entropy of a set via Kosko’s
method [...]” and also
“ [...] one may want to add another requirement that I(A, ∅) = 0. This is
not consistent with Axiom 2.”
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The importance of not assuming I(A, ∅) = 0 (note that this equality does not
hold in our approach either) is that

“I(A, ∅) denotes the degree to which A can be classified as the empty set”.

In other words, (SD2) is contradictory with axioms (Y2), (sFX2) and (wFX2).
Sinha and Dougherty also propose in [18] the following weak version of Axiom
(SD2): for every pair of fuzzy sets A and B

(SD2∗)
(∃u ∈ U such that A(u) = 1 and B(u) = 0

)
implies I(A,B) = 0.

This weaker version of the axiom (SD2) holds in the context of f -indexes.

Proposition 2 ([16]). Let A and B be two fuzzy sets. If there exists u ∈ U such
that A(u) = 1 and B(u) = 0, then fAB = 0.

Note that the previous result implies, in general, that the f -index of inclusion
does not satisfy either axiom (Y2) or (sFX2) or (wFX2), as the following example
shows.

Example 1. Consider U = {a, b} and let A be the fuzzy set defined by A(a) = 0.6
and A(b) = 0.8. Then, by Eq. (1), we have that:

fA∅(x) =
{

0 if x ≤ 0.8
x otherwise

which is obviously different from the function 0. This fact contradicts (sFX2)
and (wFX2), since for any measure of inclusion I holding such axioms we have
I(A, ∅) = 0. Moreover, by Eq. (1) again, we have

fA,Ac(x) =
{

0.2 if 0.2 ≤ x ≤ 0.8
x otherwise

Note that fA,Ac 	= 0 and that for any measure of inclusion I holding (Y2), we
have I(A,Ac) = 0.

We study now, more in depth, the relationship of f -indexes with the axioms
(SD2) and (K4). For this, let us recall the following characterization for the index
f = 0.

Proposition 3 ([16]). Let A and B be two fuzzy sets. fAB = 0 if and only if
there exists a sequence {un}n∈N ⊆ U such that A(un) = 1 and lim B(un) = 0.

As a result, we have that axiom (K4) holds for the f -index of inclusion.

Corollary 1. Let A and B be two crisp sets then, fAB = 0 if and only if A ⊆ B.

Finally, note that Proposition 3 is very close but not equal to axiom (SD2).
The difference is that the for the f -index to be 0 there should not exist an
element fully in A that is not fully in B but, instead, it is sufficient that for each
ε < 0 there exists an element fully in A which is in B in degree smaller than ε.
Obviously, if the underlying universe U is finite, we get exactly axiom (SD2).

Corollary 2. Let A and B be two fuzzy sets on a finite universe U . fAB = 0 if
and only if there exists u ∈ U such that A(u) = 1 and B(u) = 0.
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3.3 About Monotonicity

The axioms related to the monotonicity of measures of inclusion are (SD3),
(SD4), (Y3),(Y4), (FX4), (sFX3) and (wFX3).

We show that (SD3) and (SD4) hold for the f -indexes of inclusion as a
consequence of the following result which establishes some monotonic properties
for the f -index

Proposition 4 ([16]). Let A,B,C, and D be four fuzzy sets such that A(u) ≤
B(u) and C(u) ≤ D(u) for all u ∈ U then, B ⊆f C implies A ⊆f D.

As a direct consequence, the axioms (SD3) and (SD4) hold in the context of
f -indexes as well.

Corollary 3. Let A,B and C be three fuzzy sets:

– if B(u) ≤ C(u) for all u ∈ U then, fAB ≤ fAC ;
– if B(u) ≤ C(u) for all u ∈ U then, fCA ≤ fBA.

The rest of axioms, namely (Y3),(Y4), (FX4), (sFX3) and (wFX3) also hold
for the f -indexes since are weaker forms of (SD3) and (SD4).

3.4 Transformation Invariance

The only two axioms related to transformations on the universe U are (SD5) and
(K3), and are identical. Let us recall that the axiom (SD5) states that for any
fuzzy inclusion I, if T : U → U is a transformation (i.e. a one-to-one mapping)
on the universe, then

I(A,B) = I(T (A), T (B))

for all fuzzy sets A and B. This axiom comes from the crisp environment, where
the inclusion relationship is not modified if it is applied any kind of transfor-
mation; as reflexion, translations, etc. Let us see that it is also satisfied in the
context of f -indexes.

Proposition 5. Let A and B be two fuzzy sets and let T : U → U be a trans-
formation on U , then fAB = fT (A)T (B).

Proof. Since fAB and fT (A)T (B) are, by definition, the suprema of the sets {f ∈
Ω | A ⊆f B} and {f ∈ Ω | T (A) ⊆f T (B)}, respectively, we prove the result
by showing that both sets are the same. Consider f ∈ Ω such that A ⊆f B;
then, for all u ∈ U we have f(A(u)) ≤ B(u) which, by the bijectivity of T , is
equivalent to say that for all u ∈ U we have f(A(T (u))) ≤ B(T (u)), which is
equivalent to T (A) ⊆f T (B).
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3.5 Relationship with the Complement

The complement appears in axioms (Y2), (SD6) and (K1). The case of (Y2) is
more related with the null degree of inclusion than with the relation between
inclusion and complement, and for such a reason, it was studied in Sect. 3.2;
the other two axioms (SD6) and (K1) are identical, and state that that for any
fuzzy inclusion I and every pair of fuzzy sets A and B, the equality I(A,B) =
I(Bc, Ac) holds.

In general, neither the equality fAB = fBcAc nor the relation A ⊆f B implies
Bc ⊆f Ac holds for f ∈ Ω. However, it is possible to establish some relation-
ships between both f -indexes via adjoint pairs. Let us recall that two mappings
f, g : [0, 1] → [0, 1] form an adjoint pair if

f(x) ≤ y ⇐⇒ x ≤ g(y) for all x ∈ [0, 1] (2)

The first result connects the f -indexes of inclusion of A in B with those
related to the inclusion of B in A via the negation n used to define the comple-
ment and adjoint pairs.

Proposition 6. Let A and B be two fuzzy sets and let (f, g) be an adjoint pair.
Then A ⊆f B if and only if Bc ⊆n◦g◦n Ac.

Proof. Let us begin by proving that f ∈ Ω if and only if n ◦ g ◦ n ∈ Ω.
On the one hand, since (f, g) forms an adjoint pair, both mappings f and g

are monotonic. This is a straightforward consequence of the definition: by Eq. (2)
and from f(x) ≤ f(x) we get x ≤ g ◦ f(x) for all x ∈ [0, 1]. Now, monotonicity
comes from adjointness, since

x1 ≤ x2 ≤ g ◦ f(x2) ⇐⇒ f(x1) ≤ f(x2) for all x1, x2 ∈ [0, 1]

The monotonicity of g is proved similarly.
On the other hand, let us assume f ∈ Ω, that is, f(x) ≤ x for all x ∈ [0, 1].

Then by the adjoint property we have the following chain of equivalences for all
x ∈ [0, 1].

f(x) ≤ x ⇐⇒ f(n(x)) ≤ n(x) ⇐⇒ n(x) ≤ g(n(x)) ⇐⇒ x ≥ n(g(n(x)))

So, f ∈ Ω if and only if n ◦ g ◦ n ∈ Ω.
Let us assume now that A ⊆f B. Then, for any u ∈ U we have:

f(A(u)) ≤ B(u) ⇐⇒ A(u) ≤ g(B(u)) ⇐⇒ n(A(u)) ≥ n(g(B(u))).

Finally, by using that n ◦ n = id, we have that

f(A(u)) ≤ B(u) ⇐⇒ n(A(u)) ≥ n(g(n(n(B(u))))),

or equivalently, Bc ⊆n◦g◦n Ac.

The following theorem shows that the f -index of A included in B and Bc

included in Ac are related by adjointness in the case of a finite universe.
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Theorem 2. Let A and B be two fuzzy sets on a finite universe U . Then,
(fAB , n ◦ fBcAc ◦ n) forms an adjoint pair.

Proof. Let us begin by noticing that fAB is always the left adjoint of an
isotone Galois connection. This is equivalent to prove that fAB (supi∈I

xi) =
supi∈I

fAB(xi) and that equality comes from the structure of fAB

fAB(x) = min{x, inf
u∈U

{B(u) | x ≤ A(u)}}

given by Eq. (1) and the fact that the universe is finite.
To prove now that (fAB , n ◦ fBcAc ◦ n) forms an adjoint pair we use a result

that states that if (fAB , g) is an isotone Galois connection, then g(y) = sup{x ∈
[0, 1] | fAB(x) ≤ y}. So let us check that g(y) = n ◦ fBcAc ◦n(y) for all y ∈ [0, 1]:

g(y) = sup{x ∈ [0, 1] | fAB(x) ≤ y}
(By definition of fAB)

= sup{x ∈ [0, 1] | min{x,min
u∈U

{B(u) | x ≤ A(u)} ≤ y}

(By associativity of min)

= sup
u∈U

{x ∈ [0, 1] | x ≤ y,B(u) ≤ y, x ≤ A(u)}

(By n involutive)

= sup
u∈U

{n(n(x)) ∈ [0, 1] | x ≤ n(n(y)), B(u) ≤ n(n(y)), n(n(x)) ≤ A(u)}

(By n decreasing and involutive)

= n

(
inf
u∈U

{n(x) ∈ [0, 1] | n(y) ≤ n(x), n(y) ≤ n (B(u)) , n(A(u)) ≤ n(x)}
)

(By associativity of min)

= n

(
inf{n(x) ∈ [0, 1] | min{n(y),min

u∈U
{n(A(u)) | n(y) ≤ n(B(u))} ≤ n(x)}

)

= n

(
min{n(y),min

u∈U
{n(A(u)) | n(y) ≤ n(B(u))}

)
= n(fBcAc(n(y)))

3.6 Relationship with Union and Intersection

The axioms related with union and intersection are (SD7), (SD8) and (K8). Note
that (SD8) coincides with (K8). They state that for any fuzzy inclusion I and
three fuzzy sets A,B and C we have the following equalities:

– I(A ∪ B,C) = min{I(A,C), I(B,C)}
– I(A,B ∩ C) = min{I(A,B), I(A,C)}

Once again, let us recall a result concerning ordering between f -indexes.

Proposition 7 ([16]). Let A and B be two fuzzy sets and let f, g ∈ Ω such that
f ≥ g. Then, A ⊆f B implies A ⊆g B.

As a consequence of Propositions 1 and 7, we obtain:
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Corollary 4. Let A,B and C be three fuzzy sets and let f, g ∈ Ω.

– If A ⊆f C and B ⊆g C, then A ∪ B ⊆f∧g C.
– If A ⊆f B and A ⊆g C, then A ⊆f∧g B ∩ C.

But we can go further and prove the following theorem.

Theorem 3. Let A,B and C be three fuzzy sets then,

fA∪B,C = min{fAC , fBC} and fA,B∩C = min{fAB , fAC}.

Proof. Let us prove the first equality fA∪B,C = min{fAC , fBC}. By Theorem 1
and definition of A ∪ B, we know that

fA∪B,C = min{x, inf
u∈U

{C(u) | x ≤ max{A(u), B(u)}}}

and by properties of infimum and maximum we have:

fA∪B,C = min{x, inf
u∈U

{C(u) | x ≤ A(u)}, inf
u∈U

{C(u) | x ≤ B(u)}}

which is equivalent to say fA∪B,C = min{fAC , fBC}.
The second equality, i.e., fA∪B,C = min{fAC , fBC}, is proved similarly. By

Theorem 1 and definition of B ∩ C, we have that

fA,B∩C = min{x, inf{min
u∈U

{B(u), C(u)} | x ≤ A(u)}}

and by properties of infimum and maximum we have:

fA∪B,C = min{x, inf
u∈U

{B(u) | x ≤ A(u)}, inf
u∈U

{C(u) | x ≤ A(u)}}

which is equivalent to say fA,B∩C = min{fAB , fAC}.

4 Conclusions and Future Work

We have studied the relationships between the f -index of inclusion presented
in [16] and some axiomatic inclusion measures used commonly in the literature,
namely, Sinha-Dougherty [18], Kitainik [13], Young [20] and Fan-Xie-Pei [11].
Despite the f -index cannot be considered, by definition, any of those inclusion
measures, we show that it is very close to the Sinha-Dougherty axioms. Actu-
ally we show that for a finite universe all the axioms of Sinha-Dougherty (and
therefore also those of Kitainik) hold except the one related to the complement
(SD6). With respect to the complements, there is a natural relationship between
the f -index of A in B and the one of Bc in Ac by means of Galois connections.

As future work it would be interesting to continue the motivation of the
f -index of inclusion as a convenient representation of the relationship A ⊆ B.
Moreover, it would be interesting also to establish relationships with the n-weak
contradiction [3] and to define an f -index of similarity.
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Abstract. This paper considers the problem of computing inconsistency
degree of uncertain knowledge bases expressed in product-based possi-
bilistic DL-Lite, which is an extension of DL-Lite to deal with uncertainty
in the product-based possibility theory framework. Indeed, computing
the inconsistency degree is at the heart of any query answering process
in such knowledge bases. Unlike previous work where uncertainty is only
considered at the ABox level, in the present work both ABox and TBox
may be uncertain. We discuss the new form of conflicts and how to obtain
them by a generalized negative closure procedure. Then, we model the
inconsistency degree computation as an integer 0-1 linear programming
problem and we show the efficiency of this choice by a comparison with
two other solutions, using the weighted Max-SAT and the approximate
greedy algorithm for the weighted set cover problem, respectively.

Keywords: DL-Lite · Product-based possibility theory · Integer 0-1
linear programming · Inconsistency degree · Instance checking

1 Introduction

Ontologies play an important role in the success of the semantic web as they pro-
vide shared vocabularies for different resources and applications. Among the rep-
resentation languages for ontologies, description logics (DLs) [3,16] are proven to
be a successful formalism for representing and reasoning about knowledge thanks
to their clear semantics and formal properties. Besides, despite its syntactical
restrictions, the DL-Lite family [1,2,18] enjoys good computational properties
while still offering interesting capabilities in representing terminological knowl-
edge. That is why many works have been recently dedicated to this family and
this paper is a contribution to this general research line.

In many practical applications, DL knowledge bases (KBs) may be inconsis-
tent and/or uncertain. Handling inconsistency in DL is an active research topic
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which led to several works on the notions of repairs (finding maximal consistent
subontologies), axiom pinpointing (finding minimal inconsistent subontologies),
and inconsistency-tolerant query answering (see [7,10,12]).

The problem of handling uncertainty in DLs has increasingly received atten-
tion during the last years. Many approaches have been proposed to extend DLs.
Some of these extensions have been done in a probability theory framework
(e.g., [11,15]). Other extensions of description logics use fuzzy set theory (e.g.,
[8,17]). Besides, the extensions based on a possibility theory framework have also
received a lot of attention. These different extensions are adapted to different
situations according to the nature of uncertainty present in data.

Possibility theory offers two major incomparable definitions [9]: min-based
and product-based possibility theories. At the semantic level, these two theories
share several basic definitions, including the concepts of possibility distribu-
tions and the necessity and possibility measures. However, they differ in the way
they define conditioning and also in the way possibility degrees are defined over
interpretations. Min-based possibility theory is appropriate when the uncertainty
scale only encodes a plausibility ordering (a total pre-order) over interpretations.
In min-based theory, the certainty degree of an interpretation only depends on
the maximal certainty degree over the formulas falsified by this interpretation.
Product-based possibility theory is appropriate when uncertainty degrees rep-
resent degrees of surprise (in the sense of Spohn ordinal conditional functions)
or reflect the result of transforming a probability distribution into a possibility
distribution. In these cases, the certainty degrees of all formulas falsified by an
interpretation contribute to the determination of its possibility degree.

Most of existing works on possibilistic DL are based on the min-based pos-
sibility theory. For example, [13,14] study min-based possibilistic extensions of
general DLs and [4] focuses on min-based possibilistic DL-Lite and shows that it
is done without extra computational cost. The product-based extension of DL-
Lite has been recently considered in [5,6]. However, these last works suppose that
only ABox assertions may be uncertain while TBox axioms are considered stable
and should not be questioned in the presence of inconsistencies. The contribution
of this paper is to propose a product-based extension of DL-Lite where both the
TBox and the ABox are uncertain. Moreover, the paper studies a new approach
based on integer 0-1 linear programming to compute the inconsistency degree and
to answer instance checking queries on product-based possibilistic DL-Lite KBs.
To achieve our objective, the following problems will be considered: (1) defining
the new notion of supported conflict which contains the relevant elements of a
minimal conflict in the new setting; (2) extending the standard rules used to com-
pute the negative closure of a DL-Lite KB [2] in order to compute the supported
conflicts and (3) using integer 0-1 linear programming for computing the incon-
sistency degree of a KB and answering instance checking queries.

Section 2 introduces the syntax and the semantics of product-based possi-
bilistic DL-Lite with uncertain ABox and TBox. In Sect. 3, we introduce the
notion of supported conflict and we explain how to obtain them by extending
the standard rules of negative closure. We also present in this section a new
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modeling of the inconsistency degree computation problem by an integer 0-1
linear program. Section 4 compares our approach with two other algorithms pro-
posed in previous works. Finally, Sect. 5 concludes the paper.

2 Extended Framework: Product-Based Possibilistic
DL-Lite with Uncertain ABox and TBox

Let us first briefly recall that DL-Lite is a family of description logics that aims to
capture some of the most popular conceptual modeling formalisms. The syntax
of the DL-Litecore language is defined as follows:

B → A|∃R C → B|¬B
R → P |P− E → R|¬R

(1)

where A denotes an atomic concept, P an atomic role, P− the inverse of the
atomic role P . B (resp. C) are called basic (resp. complex) concepts and R (resp.
E) are called basic (resp. complex) roles.

The DL-LiteR language extends DL-Litecore with the ability of specifying in
the TBox inclusion axioms between roles of the form: R � E while the DL-LiteF

language extends DL-Litecore with the ability of specifying functionality on roles
or on their inverses using axioms of the form: (funct R).

A DL KB K = 〈T ,A〉 consists of a finite set T (called TBox) of inclusion
axioms of the form: B � C and a finite set A (called ABox) of membership
assertions of the form: A(a) or P (a, b) where a, b are individual names.

2.1 Syntax and Semantics of Product-Based Possibilistic DL-Lite

A product-based possibilistic DL-Lite KB (Pb-π-DL-Lite KB) K = 〈T ,A〉 con-
sists of a product-based possibilistic TBox T and a product-based possibilistic
ABox A. A product-based possibilistic TBox (resp. ABox) is a finite set of pos-
sibilistic axioms of the form 〈φi, αi〉, where φi is a DL-Lite TBox axiom (resp. a
DL-Lite ABox assertion) and αi ∈ [0, 1] represents the certainty degree.

In the rest of the paper, for a set of weighted TBox axioms T ′ (resp. weighted
ABox assertions A′), we denote by T ′

u (resp. A′
u) the set of the corresponding

unweighted axioms (resp. unweighted assertions).

Example 1. Consider the following Pb-π-DL-Lite KB K = 〈T ,A〉 where:

T = { 〈∃teachesTo � Professor, 0.79〉, 〈∃hasTutor � Student, 0.77〉,
〈∃teachesTo− � Student, 0.75〉, 〈∃hasTutor− � Professor, 0.9〉,
〈Professor � ¬Student, 1.0〉}.

A = { 〈Professor(b), 0.95〉, 〈Student(a), 0.9〉,
〈teachesTo(a, b), 0.87〉, 〈hasTutor(b, a), 0.65〉}.

Student and Professor are two concepts while teachesTo and hasTutor are
roles. For instance the assertional fact 〈Professor(b), 0.95〉 states that the indi-
vidual b is a professor with the certainty degree of 0.95.
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The semantics of a Pb-π-DL-Lite KB is given as usual by the concept of a
possibility distribution πK over the set of all interpretations Ω of the underlying
DL-Lite language: πK : Ω → [0, 1]. A possibility distribution π is said to be
normalized if there exists at least one totally possible interpretation. Namely,
∃I ∈ Ω such that π(I) = 1. Otherwise, we say that π is sub-normalized. In this
case, the expression: h(π) = maxI∈Ω π(I) is called the consistency degree of π.
If an interpretation I is a model of each axiom of T and each assertion of A then
its possibility degree is equal to 1. This reflects the fact that I is fully compatible
with 〈T ,A〉. It also obviously means that 〈T ,A〉 is consistent. More generally, if
an interpretation I falsifies some assertions of the ABox or axiom of the TBOX
or both, then its possibility degree is inversely proportional to the product of
the weights of the assertions and axioms that it falsifies. More formally:

Definition 1. For all I ∈ Ω,

πK(I) =
{

1 if ∀〈φi, αi〉 ∈ K, I |= φi∏
〈φi,αi〉∈K,I�φi

(1 − αi) otherwise (2)

s.t. |= is the satisfaction relation between DL-Lite interpretations and formulas.

The possibility distribution defined by Eq. 2 represents the least specific pos-
sibility distribution satisfying K.

Example 1 (Cont). Consider again Example 1. Here are the possibility degrees,
obtained by Definition 1, for three interpretations over the domain 	 = {a, b}.

I .I πK(I)

I1 ProfessorI = {a}, StudentI = {b}, hasTutorI = {(a, b)}
teachesToI = {(b, a)}

0.001

I2 ProfessorI = {a}, StudentI = {b}, hasTutorI = {(b, a)}
teachesToI = {(a, b)}

0.007

I3 ProfessorI = {b, a}, StudentI = {a, b}, hasTutorI = {(a, b)}
teachesToI = {(b, a)}

0

For instance, the interpretation I1 falsifies the assertions 〈teachesTo(a, b), 0.87〉
and 〈hasTutor(b, a), 0.65〉. Thus, its possibility degree is πK(I1) = (1 − 0.87) ×
(1 − 0.65) = 0.001. Note that πK(I3) = 0 since it falsifies the certain axiom
〈Professor � ¬Student, 1.0〉. None of the three interpretations is a model of K.

2.2 Inconsistency Degree

Inconsistency in DL-Lite (as well as in most logical languages) corresponds to the
absence of an interpretation satisfying all formulas of the KB. A Pb-π-DL-Lite
KB K is said to be fully consistent if there exists an interpretation I such that
πK(I) = 1. Otherwise, K is said to be somewhat inconsistent. More formally:
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Definition 2 Let Ω be the set of all possible interpretations. Let K be a Pb-π-
DL-Lite KB and πK be the possibility distribution induced by K and obtained by
Definition 1. The inconsistency degree of K, denoted by Inc(K), is semantically
defined as follows:

Inc(K) = 1 − max
I∈Ω

(πK(I)). (3)

The inconsistency degree Inc(K) is the dual of the normalized degree. The dual-
ity between Inc(K) and h(π) is expressed by: Inc(K) = 1 − h(π). Namely, the
inconsistency degree of a DL-Lite KB is given by the inverse of the normalisation
degree of the possibility distribution π associated with K.

Example 1 (Cont). One can show that the inconsistency degree of the KB K,
presented in Example 1 is: Inc(K) = 1 − maxI∈Ω(πK(I)) = 0.983.

The problem of standard query answering is closely related to the ontology-based
data access problem which takes as input a set of assertions, an ontology and a
conjunctive query q and aims to find all answers to q over the set of data. As
pointed out in [6], the inconsistency degree plays a central role in answering such
queries in Pb-π-DL-Lite. We focus here on a very basic case in query answering
which is instance checking. The instance checking problem, in standard DL-Lite
consists in deciding, given an individual a (resp. a pair of individuals (a, b)) a
concept B (resp. a role R) and a DL-Lite KB K = 〈T ,A〉, whether B(a) (resp.
R(a, b)) follows from 〈T ,A〉. For an instance checking query q, let us recall that
its necessity degree denoted by NK(q) is given by:

NK(q) = 1 − max
I∈Ω,I�q

(πK(I)) (4)

and the satisfaction of the query q by the KB K is defined by:

K |=π q if and only if NK(q) > Inc(K) (5)

The following result shown in [6] for Pb-π-DL-Lite KBs with certain TBox con-
tinues to hold in our case where the TBox may be uncertain. This result states
that answering an instance checking query q from a Pb-π-DL-Lite KB K comes
down to compare the inconsistency degrees of two Pb-π-DL-Lite KBs: K itself
and a new KB K1 which results from K by adding to it the fact that q is surely
false. Notice that we limit ourselves here to answer only unweighted queries, i.e.,
we determine if a query q is a plausible conclusion of a KB without determining
to what extent q follows from this KB. This issue is left for future work.

Proposition 1. Let K = 〈T ,A〉 be a Pb-π-DL-Lite KB, πK be the possibility
distribution associated to K and NK the corresponding necessity distribution. Let
B be a concept (resp. R be a role) and a, b be two individuals. Let DB (resp. DR)
be an atomic concept (resp. an atomic role) not appearing in T . Then:

1. NK(B(a)) = Inc(K1) (resp. NK(R(a, b)) = Inc(K1)) where K1 = 〈T1,A1〉
with T1 = T ∪ {(DB � ¬B, 1)} (resp. T1 = T ∪ {(DR � ¬R, 1)}) and
A1 = A ∪ {(DB(a), 1)} (resp. A1 = A ∪ {(DR(a, b), 1)}).
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2. K |=π B(a) (resp. K |=π R(a, b)) if Inc(K1) > Inc(K).

Example 1 (Cont). Take again the KB of Example 1. Consider the query:
q ← Professor(a). We introduce a new concept DProf and we construct the
new knowledge base K1 = 〈T1,A1〉 with T1 = T ∪ {〈DProf � ¬Professor, 1.0〉}
and A1 = A ∪ {〈DProf (a), 1.0〉}.

We have already shown that Inc(K) = 0.983. Now, one can check, by using
Definition 2, that the inconsistency degree of the augmented base K1 is Inc(K1) =
Inc(K) = 0.983. Hence, q is not a consequence of K.

3 Computing the Inconsistency Degree

3.1 Supported Conflicts and Pb-based Negative Closure

In a Pb-π DL-Lite setting, computing the inconsistency degree of a KB comes
down to determine a subset of the axioms and assertions of the KB such that:
(i) removing this subset allows one to restore the consistency of the KB and (ii)
the possibility degree of the corresponding interpretation that falsifies exactly
the removed formulas (in the sense of Eq. 3) is maximal. In [5,6], the TBox
axioms are considered certain, i.e., every TBox axiom has a certainty degree
equal to 1. Hence, breaking the conflicts of a KB may only be done by removing
ABox assertions. Consequently, to compute the inconsistency degree, one only
needs to compute the binary assertional conflicts that can be obtained by simply
applying the standard negated closure defined for standard DL-Lite KBs [2]. In
the present paper, both ABox assertions and TBox axioms may be uncertain.
So, in addition to removing ABox assertions, breaking the conflicts of a KB may
also be done by removing TBox axioms that are not fully certain. Notice that
every negative axiom C � ¬D of Cln(T ) may be derived by applying at least one
sequence of standard rules which involve a set of TBox axioms containing exactly
one negative axiom and a subset (possibly empty if C � ¬D ∈ T ) of positive
axioms. Therefore, for every binary conflict based on a negative axiom C � ¬D
of Cln(T ), we need to explicit all the different supports in T of this negative
axiom, i.e., the subsets of T that allow us to derive this negative axiom. This
leads to the introduction of the notion of supported conflict defined as follows:

Definition 3. Let K = 〈T ,A〉 be a Pb-π-DL-Lite KB. Let 〈C(−→a ), α1〉1 and
〈D(−→a ), α2〉 be two ABox assertions such that each of C and D is either a concept
or a role. Let T ′ ⊆ T be a subset of TBox axioms containing exactly one negative
axiom. C = {〈C(−→a ), α1〉, 〈D(−→a ), α2〉}∪T ′ is a supported conflict in K if and only
if: (1) 〈T ′

u, {C(−→a ),D(−→a )}〉 is inconsistent and (2) for every subsets T ′′
u of T ′

u

and A′
u of {C(−→a ),D(−→a )} such that T ′′

u ⊂ T ′
u or A′

u ⊂ {C(−→a ),D(−→a )}, 〈T ′′
u ,A′

u〉
is consistent. We call T ′ the support of C and we write: T ′ = support(C).

1 When we write C(−→a ), −→a is an individual if C is a concept and a pair of individuals
if C is a role.



An Integer 0-1 Linear Programming Approach 325

Notice that supported conflicts are minimal conflicts and since inconsistency
is due to negative axioms, a supported conflict contains only one negative axiom.
In standard DL-Lite, conflicts are obtained by computing the negative closure
Cln(T ) of the Tbox T containing all the negative axioms that follow from T [2].
In our setting, the Pb-based negative closure of T , denoted Pb Cln(T ), consists
of a set of pairs of the form [Axiom, Support] where: Axiom is an unweighted
negative axiom such that Axiom ∈ Cln(Tu) and Support ⊆ T is a minimal
(w.r.t. set inclusion) subset of (weighted) axioms allowing one to derive Axiom.
More precisely, the set of adapted rules used to generate the product based
possibilistic negative closure Pb Cln(T ) of the product based possibilistic TBox
T are given as follows:

1. For every negative axiom 〈Φ,α〉 in T , add [Φ, {〈Φ,α〉}] to Pb Cln(T ).
2. If 〈B1 � B2, α〉 is in T then,

for every [B2 � ¬B3, Support] or [B3 � ¬B2, Support] in Pb Cln(T ), add
[B1 � ¬B3, Support ∪ {〈B1 � B2, α〉}] to Pb Cln(T ).

3. If 〈R1 � R2, α〉 is in T then,
for every [∃R2 � ¬B,Support] or [B � ¬∃R2, Support] in Pb Cln(T ), add
[∃R1 � ¬B,Support ∪ {〈R1 � R2, α〉}] to Pb Cln(T ).

4. If 〈R1 � R2, α〉 is in T then,
for every [∃R−

2 � ¬B,Support] or [B � ¬∃R−
2 , Support] in Pb Cln(T ), add

[∃R−
1 � ¬B,Support ∪ {〈R1 � R2, α〉}] to Pb Cln(T ).

5. If 〈R1 � R2, α〉 is in T then,
for every [R2 � ¬R3, Support] or [R3 � ¬R2, Support] in Pb Cln(T ), add
[R1 � ¬R3, Support ∪ {〈R1 � R2, α〉}] to Pb Cln(T ).

6. For every functionality axiom 〈funct R, α〉 in T , add
[funct R, {〈funct R, α〉}] to Pb Cln(T ).

7. (a) For DL-LiteR: If one of the expressions [∃R � ¬∃R,Support], [∃R− �
¬∃R−, Support] or [R � ¬R,Support] is in Pb Cln(T ), then add all these
three expressions to Pb Cln(T ).
(b) For DL-LiteF : if one of the expressions [∃R � ¬∃R,Support] or
[∃R− � ¬∃R−, Support] is in Pb Cln(T ), then add these two expressions
to Pb Cln(T ).

Then, an expression [Axiom, Support] may give size to a conflict: {〈C(−→a ), α〉,
〈D(−→a ), β〉} ∪ Support where 〈C(−→a ), α〉, 〈D(−→a ), β〉 ∈ A and C(−→a ),D(−→a ) are
extracted from Au based on Axiom as in the standard case (see e.g. [2,4]).
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Example 1 (Cont). Consider again our KB K, Pb Cln(T ) is the following:

Pb Cln(T ) = { [Professor � ¬Student, {〈Professor � ¬Student, 1.0〉}]

[∃TeachesTo � ¬Student, {〈∃TeachesTo � Professor, 0.89〉,
〈Professor � ¬Student, 1.0〉}]

[∃HasTutor− � ¬Student, {〈∃HasTutor− � Professor, 0.9〉,
〈Professor � ¬Student, 1.0〉}]

[∃TeachesTo− � ¬Professor, {〈∃teachesTo− � Student, 0.85〉,
〈Professor � ¬Student, 1.0〉}]

[∃HasTutor � ¬Professor, {〈∃HasTutor � Student, 0.95〉
〈Professor � ¬Student, 1.0〉}]}.

The set of supported conflicts is ζ = {C1, C2, C3, C4} such that:

C1 = {〈Professor(b), 0.95〉, 〈teachesTo(a, b), 0.98〉, 〈∃teachesTo− � Student, 0.77〉,
〈Professor � ¬Student, 1.0〉}
C2 = {〈Professor(b), 0.95〉, 〈HasTutor(b, a), 0.65〉, 〈∃HasTutor � Student, 0.75〉,
〈Professor � ¬Student, 1.0〉}
C3 = {〈Student(a), 0.9〉, 〈teachesTo(a, b), 0.98〉, 〈∃TeachesTo � Professor, 0.79〉,
〈Professor � ¬Student, 1.0〉}
C4 = {〈Student(a), 0.9〉, 〈HasTutor(b, a), 0.65〉, 〈∃HasTutor− � Professor, 0.9〉,
〈Professor � ¬Student, 1.0〉}

A subset to remove in order to break all the conflicts while ensuring a maximal
possibility degree of the corresponding interpretation is: {〈HasTutor(b, a), 0.65〉,
〈∃teachesTo− � Student, 0.77〉, 〈∃TeachesTo � Professor, 0.79〉}. The incon-
sistency degree of K is then: Inc(K) = 1− (1−0.65)(1−0.77)(1−0.79) = 0.983.

3.2 Inconsistency Degree Computation as an Integer 0-1 Linear
Program

As explained above, the computation of the inconsistency degree of a Pb-π-DL-
Lite KB is done by determining a subset of assertions and axioms such that:
(i) removing this subset from the KB breaks all the supported conflicts present
in it and hence restores its consistency and (ii) this subset ensures a maximal
value of the possibility degree of the corresponding interpretation (which falsifies
exactly the removed formulas). In this subsection, we provide an encoding of the
problem of computing the inconsistency degree of a Pb-π-DL-Lite KB as an
integer linear program (ILP). Notice that this approach is not specific to the
DL-Lite setting and can be used in any possibilistic KB by considering minimal
inconsistent subsets instead of supported conflicts. Integer linear programming



An Integer 0-1 Linear Programming Approach 327

is like linear programming, with the additional constraint that all variables must
take integer values.

Definition 4 Let K be a Pb-π-DL-Lite KB, ζ = {C1, . . . , Cm} be the set of
all supported conflicts present in K, Γ = {〈Φ1, α1〉, . . . , 〈Φn, αn〉} be all the non
fully certain weighted formulas (axioms and assertions) involved in ζ. Let F be a
scale changing function defined by2: F (y) = −(ln(1−y)). If there is no supported
conflict C ∈ ζ such that Γ ∩ C = ∅, then the computation of the inconsistency
degree of K is modeled by the integer linear program LPK defined by:

– Each formula 〈Φi, αi〉 ∈ Γ is represented by a binary variable xi such that in
the solution, xi = 1 if 〈Φi, αi〉 should be removed and xi = 0 otherwise.

– The aim is to minimize the following objective function, expressing the total
weight of removed formulas:

n∑
i=1

F (αi).xi

– Each supported conflict Cj gives rise to a constraint Cj which says that this
supported conflict should be broken by removing at least one of the formulas it
contains, i.e., at least one formula 〈Φi, αi〉 ∈ Cj is such that its representative
variable xi equals 1:

Cj :
∑

〈Φi,αi〉∈Cj

xi ≥ 1

Remark 1 The construction of LPK is conditioned in Definition 4 by the fact
that there is no supported conflict C ∈ ζ such that Γ ∩ C = ∅ because in this
case Inc(K) can be computed without constructing LPK. Indeed, in this case
the supported conflict C contains only certain formulas, i.e., C cannot be broken
since certain formulas can’t be removed. So, every interpretation falsifies at least
a formula from C. This simply means that Inc(K) = 1.

Let us show how the ILP is obtained from our running example.

Example 1 (Cont). The ILP obtained by Definition 4 for our KB K is as
follows:

Minimize: F (0.8).x1 + F (0.7).x2 + F (0.85).x3 + F (0.5).x4+
F (0.95).x5 + F (0.9).x6 + F (0.89).x7 + F (0.9).x8

subject to: C1 : x1 + x2 + x3 ≥ 1
C2 : x1 + x4 + x5 ≥ 1
C3 : x6 + x2 + x7 ≥ 1
C4 : x6 + x4 + x8 ≥ 1
xi ∈ {0, 1} (1 ≤ i ≤ 9)

2 Here, ln denotes the natural logarithm function.
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where: x1 corresponds to 〈Professor(b), 0.8〉, x2 to 〈teachesTo(a, b), 0.7〉,
x3 to 〈∃teachesTo− � Student, 0.85〉, x4 to 〈HasTutor(b, a), 0.5〉, x5 to
〈∃HasTutor � Student, 0.95〉, x6 to 〈Student(a), 0.9〉, x7 to 〈∃TeachesTo �
Professor, 0.89〉 and x8 to 〈∃HasTutor− � Professor, 0.9〉.
In this work, we have used the commercial linear programming tool Cplex (IBM)
which is an optimization software developed and sold by ILOG, Inc.
The solution of our ILP consists in putting x3, x4 and x7 to 1 and all the other
variables to 0. We obtain Inc(K) = F−1(F (αx3) + F (αx4) + F (αx7)) = 0.983.

Now, the following proposition states the soundness and completeness of the
previous encoding.

Proposition 2. Let K be a Pb-π-DL-Lite KB and LPK be the corresponding
integer linear program given by Definition 4. It holds that Inc(K) = λ if and
only if F (λ) is the value of the objective function of an optimal solution of LPK.

Based on Definition 4 and Proposition 2, Inc(K) is computed as follows: Given a
Pb-π-DL-Lite KB K as input, to compute Inc(K). Firstly, the set ζ of supported
conflicts present in this KB is computed. Then, this set of supported conflicts is
transformed into an ILP by using Definition 4. Lastly, the inconsistency degree
is computed by a call to a linear programming solver.

4 Experimental Results

The aim of this section is to evaluate the performance of our algorithm based
on integer linear programming and using the Cplex (IBM) tool3 for computing
the inconsistency degrees of Pb-π-DL-Lite KBs. For that purpose, we compare
this algorithm with two other algorithms proposed in previous work, namely:

– the first algorithm is an exact one which generalizes the encoding used in [6]
to represent the set of supported conflicts as a weighted-Max-SAT base;

– the second algorithm is approximate. It is based on an encoding of our prob-
lem as a weighted set cover problem (W-SCP) in a similar way as that used
in [5] for the particular case where only the ABox may be uncertain. The
well-known polynomial greedy algorithm is adapted to our general case and
can be used to compute an approximate value of the inconsistency degree.

We have conducted two experiments. The first one aims at assessing the qual-
ity of the results obtained by the approximate greedy algorithm for W-SCP in
computing the inconsistency degree and answering instance checking queries.

– we have randomly generated 400 Pb-π-DL-Lite KBs. For each KB K, we com-
puted the gap between the exact value of Inc(K) and its approximate value
found by the greedy algorithm. The average error of the greedy algorithm
equals to 0.0023 which confirms the very good quality of the approximate
inconsistency degrees computed by this algorithm;

3 ILOG. Cplex 10.0.: http://www.ilog.com/products/cplex/.

http://www.ilog.com/products/cplex/
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– we have randomly generated 400 pairs (K, query), where K is a Pb-π-DL-
Lite KB and query is an instance checking query. For each pairs (K, query)
the augmented KB K1 is constructed as in Proposition 1. Then the answer
is obtained by comparing the approximate values of Inc(K) and Inc(K1)
obtained by using the greedy algorithm of W-SCP. The percentage of cases
where the found answer coincides with the exact one is 81,26%.

In the second experiment, we have compared the three algorithms in terms of
execution time necessary to compute the inconsistency degree. More precisely:

– we generated 588 random instances of Pb-π-DL-Lite KBs. We found that the
number of conflicts in the generated KBs varies between 1 and 2365;

– for each KB K, we have considered the time needed to compute Inc(K) using
Clpex, W-Max-SAT and the greedy approximate algorithm.

The obtained results are given in Fig. 1. The X-axis represents the number of
conflicts in the input KBs. For a given x, the corresponding y in the Y -axis is
the execution time in seconds.

The experimental results are very encouraging: We can observe that the
approximate greedy algorithm for W-SCP is faster than the exact algorithm
using W-Max-SAT which is not surprising. We observe that Cplex also performs
better than W-Max-SAT. Finally, it is clear that Cplex and the approximate
greedy algorithm are very competitive and their performance are very close:
The average execution time for the whole set of generated KBs is 0.119 s for

Fig. 1. Comparison between Clpex, W-Max-Sat and Greedy algorithm
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Cplex and 0.117 for the approximate greedy algorithm. This is very interesting
since it shows that, in addition to the fact that Cplex gives exact values, it
achieves in practice a performance comparable to a polynomial algorithm even
if its theoretical complexity in the worst case remains exponential. This makes
Cplex a very good choice for computing inconsistency degrees of Pb-π-DL-Lite
KBs and hence to query-answering in such KBs.

5 Conclusions and Future Work

This paper proposes an approach to represent uncertain lightweight ontologies
encoded in Pb-π-DL-Lite, an extension of DL-Lite to represent uncertainty in
product-based possibilistic theory. In particular, unlike previous work where only
ABox assertions may be uncertain, this paper studies the case where both ABox
and TBox may be uncertain. After the presentation of the syntax and semantics
of the proposed language, the paper focuses on the notion of inconsistency degree
since it is at the heart of the query answering process in Pb-π-DL-Lite setting.
We propose the modeling of inconsistency degree computation as an integer
linear program and the use of Cplex solver as a practical tool for computing
inconsistency degree. To validate this choice, we show experimentally that in
terms of execution time, Cplex outperforms W-Max-Sat solver and is very close
to the polynomial greedy algorithm of weighted set cover problem which only
gives approximate solutions. These results show clearly that Cplex is a good
candidate solver for query answering in Pb-π-DL-Lite.

We plan in a near future to implement a complete system for answering
arbitrary conjunctive queries on Pb-π-DL-Lite KBs. Then, since data on the
web evolves continuously and may be provided by several sources of information
with different priority levels, it would be interesting to explore the fusion and
the revision processes in the context Pb-π DL-Lite.
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Appendix: Proofs

Proof. of Proposition 1.
In Proposition 1, K1 represents a Pb-π-DL-Lite KB obtained from K by

adding the assumption that B(a) (resp. R(a, b)) is surely false. Note that item 2.
follows immediately from item 1. of Proposition 1 and Eq. 5. Hence, it is enough
to show that item 1. of Proposition 1 holds. So, let us show that Inc(K1) =
NK(B(a)) (a similar reasoning is valid for Inc(K1) = NK(R(a, b))).

Let I be a DL-lite interpretation. Since K1 is composed of K ∪ {(D �
¬B, 1), (D(a), 1)}, we have two cases:
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– If I |= D(a) and I |= D � ¬B (Hence I � B(a)) then πK1(I) = πK(I).
– If I � D(a) or I � D � ¬B then πK1(I) = 0.

Hence, we have: maxI∈Ω(πK1(I)) = maxI∈Ω,I�B(a)(πK(I)). It follows from
Eqs. 3 and 4 that Inc(K1) = 1 − maxI∈Ω,I�B(a)(πK(I)) = NK(B(a)) �

Proof. of Proposition 2.
Let K be a Pb-π-DL-Lite KB, LPK be the corresponding integer linear pro-

gram defined as in Definition 4. We consider that the formulas (axioms and
assertions) of K are indexed from 1 to n = |T ∪ A|. The formula 〈Φi, αi〉 in K
corresponds to the variable of index i in LPK.
⇒) Suppose that Inc(K) = λ. Then by Definition 3, λ = 1 − maxI∈Ω(πK(I)).
Let I1 be an interpretation such that πK(I1) = maxI∈Ω(πK(I)).

Let J be the set of indices of formulas falsified by I1, i.e., J = {i | I1 �|=
〈Φi, αi〉}. By Definition 2, πK(I1) =

∏
i∈J(1 − αi) and hence λ = 1 − πK(I1).

Let Y = (y1, . . . , yn) be a binary vector such that yi = 1 if i ∈ J and yi = 0
otherwise. Let us show that Y is an optimal solution of LPK whose objective
function is F (λ).

Since for all i /∈ J , I1 |= 〈Φi, αi〉, it is clear that the set S = {〈Φi, αi〉 ∈
T ∪ A | i /∈ J} is consistent and hence does not contain any supported conflict.
This means that for every supported conflict Cj there is a formula 〈Φi, αi〉 ∈ Cj

such that i ∈ J , i.e., yi = 1. It follows that the corresponding constraint Cj is
satisfied by Y .

The objective function of Y is:
∑n

i=1 F (αi).yi =
∑

i∈J F (αi) =
∑

i∈J −ln(1−
αi) = −ln(

∏
i∈J(1 − αi)) = F (1 −

∏
i∈J(1 − αi)) = F (1 − πK(I1)) = F (λ).

Now, to show that Y is an optimal solution, suppose for the sake of
contradiction that there is a solution Z = (z1, . . . , zn) of LPK such that∑n

i=1 F (αi).zi <
∑n

i=1 F (αi).yi. Let J ′ be the set of indices of variables put
to 1 in Z: J ′ = {i | zi = 1} and let I2 be an interpretation that satisfies all the
formulas 〈Φi, αi〉 where i /∈ J ′. Such an interpretation exists because the set of
formulas H = {〈Φi, αi〉 | i /∈ J ′} is consistent. Indeed if we suppose that this
is not the case, it follows that there is a supported conflict Cj ⊆ H i.e., for all
〈Φi, αi〉 ∈ Cj we have zi = 0. This means that the constraint Cj is not satisfied
by Z which contradicts the fact that Z is a solution of LPK. The possibility
degree of I2 is given by: πK(I2) =

∏
i∈J ′(1 − αi). Now, it holds that:∑n

i=1 F (αi).zi <
∑n

i=1 F (αi).yi ⇔
∑

i∈J ′ F (αi) <
∑

i∈J F (αi)
⇔

∑
i∈J ′ −ln(1 − αi) <

∑
i∈J −ln(1 − αi)

⇔ −ln(
∏

i∈J ′(1 − αi)) < −ln(
∏

i∈J(1 − αi))
⇔ ln(

∏
i∈J ′(1 − αi)) > ln(

∏
i∈J(1 − αi))

⇔
∏

i∈J ′(1 − αi) >
∏

i∈J(1 − αi) ⇔ πK(I2) > πK(I1).
This contradicts the fact that λ is the inconsistency degree of K.

⇐) Let Y = (y1, . . . , yn) be an optimal solution of LPK whose objective function
value is F (λ) =

∑n
i=1 F (αi).yi. Let J = {i | yi = 1}. It is easy to check that:

λ = 1 −
∏

i∈J(1 − αi).
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Let I1 be an interpretation that satisfies all the formulas 〈Φi, αi〉 where i /∈ J .
Such an interpretation exists because the set of formulas H = {〈Φi, αi〉 | i /∈ J}
is consistent. Indeed if we suppose that this is not the case, it follows that there is
a supported conflict Cj ⊆ H i.e., for all 〈Φi, αi〉 ∈ Cj we have yi = 0. This means
that the constraint Cj is not satisfied by Y which contradicts the fact that Y is
a solution of LPK. The possibility degree of I1 is given by πK(I1) =

∏
i∈J(1−αi)

and hence, λ = 1 − πK(I1). To show that λ is the inconsistency degree of K it
suffices to show that πK(I1) = maxI∈Ω(πK(I)).

Suppose for the sake of contradiction that there is an interpretation I2 such
that πK(I2) > πK(I1). Let J ′ be the set of indices of formulas falsified by I2:
J ′ = {i | I2 �|= 〈Φi, αi〉} and let Z = (z1, . . . , zn) be a binary vector such that
zi = 1 if i ∈ J ′ and zi = 0 otherwise.

Let us show that Z satisfies all the constraints of LPK. Since for all i /∈ J ′,
I2 |= 〈Φi, αi〉, it is clear that the set S = {〈Φi, αi〉 ∈ T ∪A | i /∈ J ′} is consistent,
i.e., does not contain any supported conflict. This means that for every supported
conflict Cj there is a formula 〈Φi, αi〉 ∈ Cj such that i ∈ J , i.e., zi = 1. It follows
that the corresponding constraint Cj is satisfied by Y . Now, it holds that:

πK(I2) > πK(I1) ⇔
∏

i∈J ′(1 − αi) >
∏

i∈J(1 − αi)
⇔ ln(

∏
i∈J ′(1−αi)) > ln(

∏
i∈J(1−αi)) ⇔

∑
i∈J ′ ln(1−αi) >

∑
i∈J ln(1−αi)

⇔ −
∑

i∈J ′ ln(1 − αi) < −
∑

i∈J ln(1 − αi)
⇔

∑
i∈J ′ −ln(1 − αi) <

∑
i∈J −ln(1 − αi)

⇔
∑

i∈J ′ F (αi) <
∑

i∈J F (αi) ⇔
∑n

i=1 F (αi).zi <
∑n

i=1 F (αi).yi.
But this contradicts the fact that Y is an optimal solution of LPK �
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Hryniewicz, O. (eds.) Soft Methods for Data Science. AISC, vol. 456, pp. 45–52.
Springer, Cham (2017). doi:10.1007/978-3-319-42972-4 6

7. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: 23rd International Joint Conference on
Artificial Intelligence, pp. 775–781 (2013)

http://dx.doi.org/10.1007/978-3-319-42007-3_31
http://dx.doi.org/10.1007/978-3-319-42972-4_6


An Integer 0-1 Linear Programming Approach 333
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Abstract. The paper deals with base revision for Answer Set Program-
ming (ASP). Base revision in classical logic is done by the removal of
formulas. Exploiting the non-monotonicity of ASP allows one to propose
other revision strategies, namely addition strategy or removal and/or
addition strategy. These strategies allow one to define families of rule-
based revision operators. The paper presents a semantic characterization
of these families of revision operators in terms of answer sets. This char-
acterization allows one to equivalently consider the evolution of syntactic
logic programs and the evolution of their semantic content.

Keywords: Answer set programming · Base revision · Belief revision ·
Belief change · Non-monotonic reasoning

1 Introduction

Answer Set Programming (ASP) is an efficient unified formalism for both knowl-
edge representation and reasoning in Artificial Intelligence (AI). It has its roots
in non-monotonic reasoning and logic programming and gave rise to intensive
research since Gelfond & Lifschitz’s seminal paper [12]. ASP has an elegant and
conceptually simple theoretical foundation and has been proved useful for solving
a wide range of problems in various domains [26]. Beyond its ability to formalize
various problems from AI and to encode combinatorial problems [3,22], ASP
provides also an interesting way to practically solve such problems since some
efficient solvers are available [11,21]. But in most domains, information is sub-
ject to change, and so ASP logic programs are subject to change by the addition
and/or withdrawal of rules.

Belief change in a classical logic setting, in particular belief revision, has
been extensively studied for decades. It applies to situations where an agent
faces incomplete or uncertain information and where new and more reliable
information may be contradictory with its initial beliefs. Belief revision consists
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in modifying the initial agent’s beliefs while taking into account new information
and ensuring the consistency of the result. Belief revision relies on three main
principles: (i) Success: Change must succeed, new information has to be accepted,
(ii) Consistency: The result of the revision operation must be a consistent set of
beliefs, and (iii) Minimal change: The initial beliefs have to be changed as little
as possible. Two main frameworks became standards according to the nature
of the involved representation of beliefs: AGM paradigm [1] for belief set revi-
sion, rephrased by Katsuno and Mendelzon [18] for model-based revision and
Hansson’s approach [14] for formula-based revision (or base revision). Several
concrete base revision operators have been proposed. Most approaches focus on
the construction of consistent subbases maximal w.r.t. several criteria [5,20].
From a dual point of view, others stem from the minimal withdrawal of formulas
in order to restore consistency with new information like Kernel revision [13] or
like Removed Sets Revision (RSR) [4,23,30] that focuses on subsets of formulas
minimal w.r.t. cardinality to remove. All these approaches require selection func-
tions that encode the revision strategies for selecting among subbases or among
subsets of formulas to remove.

This paper aims at studying base revision when beliefs are represented by
ASP logic programs. Due to the non-monotonic nature of logic programs under
answer set semantics, the problem of change in ASP is different and more difficult
than in classical logic.

The first approaches dealing with logic programs in a dynamic setting
focused on the problem of logic program update [2,10,25,31]. The first work
bridging ASP in a dynamic setting and belief change has been proposed by
Delgrande et al. [7–9]. Their approach uses a semantic of logic programs in terms
of SE-models [29]. Model-based revision and merging stemming from a distance
between interpretations have been extended to logic programs. However, they
noted that this approach has the drawback that arbitrary sets of SE-models
may not necessarily be expressed via a logic program. Recently this drawback
has been avoided for classes of logic programs satisfying an AGM-compliance
condition on SE-models and a new postulate [6]. Model-based update has been
addressed in the same spirit by Slota and Leite [27,28].

From a syntactic point of view, formula-based belief merging and revision
have been extented to ASP. The “removed sets” approach for fusion and revi-
sion (RSF) [15] and (RSR) [4] respectively, proposed in propositional logic have
been extended to ASP [16,17]. The “remainder sets” approach for screened con-
solidation in a classical setting has been extended to ASP [19]. The strategy of
these two approaches stems from the removal of some rules in order to restore
consistency. More recently, a new approach for extending belief base revision to
ASP has been proposed with additional strategies stemming from the addition
and the addition and/or removal of some rules [33].

This paper focuses on three different families of ASP base revision operators.
It first reviews the RSR family, it then introduces the notions of “added Sets”
and “modified Sets” and proposes the Added Set Revision (ASR) and the Mod-
ified Set Revision (MSR). Note that these families of operators differ from the



336 L. Garcia et al.

ones provided in [33] since the minimality criterion for the removed, added or
modified sets is cardinality and not set inclusion. For each family of ASP base
revision operators the paper provides a semantic counter-part that characterizes
the operators in terms of answer sets.

The main contribution of the paper is the characterization of ASP base revision
operators which also covers the family of SLP operators proposed in [33]. This
is an important result since it provides a new semantic characterization of logic
program revision in terms of answer sets and allows one to change the focus from
the evolution of a syntactic logic program to the evolution of its semantic content.

The paper is organized as follows. Section 2 gives a refresher on ASP and on
belief base revision. Section 3 recalls RSR revision and provides a semantic char-
acterization of removed sets. Section 4 introduces the notions of added set and
ASR revision, it then gives a semantic characterization of added sets. Section 5
introduces the notions of modified set and MSR revision, it then provides a
semantic characterization of modified sets. Finally Sect. 6 concludes the paper.

Due to space limitations, the complete proofs of the theorems are not
included, they can be found on http://aspiq.lsis.org/aspiq/pdf/proofs-2017.pdf.

2 Preliminaries

In this paper we only consider normal logic programs. Let A be a set of propo-
sitional atoms, a logic program is a finite set of rules of the form:

(c ← a1, . . . , an, not b1, . . . , not bm.) n ≥ 0,m ≥ 0 where c, a1, . . . , an,
b1, . . . bm ∈ A. The set of all logic programs is denoted by P. The symbol “not”
represents default negation and such a program may be seen as a sub-case of
the default theory of Reiter [24]. A negation-free program is a definite program.
For each rule r, let head(r) = c, body+(r) = {a1, . . . , an} and body−(r) =
{b1, . . . , bm}. If body+(r) = ∅ and body−(r) = ∅ then the rule is simply written
(c.) and is called a fact. For a set of rules R, Head(R) = {head(r) | r ∈ R}.

Let X be a set of atoms. A rule r is applicable in X if body+(r) ⊆ X.
App(P,X) denotes the set of applicable rules of P in X. The least Herbrand
model of a definite program P , denoted Cn(P ), is the smallest set of atoms
closed under P and can be computed as the least fix-point of the following
consequence operator: TP : 2A → 2A such that TP (X) = Head(App(P,X)).

The Gelfond-Lifschitz reduct of a program P by a set of atoms X [12] is
the program PX = {head(r) ← body+(r) | r ∈ P, body−(r) ∩ X = ∅}. Since
it has no default negation, such a program is definite and then it has a unique
minimal Herbrand model. By definition, an answer set (or stable model) of P
is a set of atoms X ⊆ A such that X = Cn(PX). The set of answer sets of a
logic program P is denoted by AS(P ) and if AS(P ) 	= ∅ the program is said
consistent otherwise it is said inconsistent.

GR(P,X) = {r ∈ P | body+(r) ⊆ X and body−(r) ∩ X = ∅} denotes the set
of the generating rules of a logic program P w.r.t. a set of atoms X. A set of
rules R ⊆ P is grounded if there exists some enumeration 〈ri〉ni=1 of the rules of
R such that ∀i > 0, body+(ri) ⊆ {head(rj) | j < i}. With those definitions the

http://aspiq.lsis.org/aspiq/pdf/proofs-2017.pdf
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following result holds: X ∈ AS(P ) if and only if X = Cn(GR(P,X)+) if and
only if X = Head(GR(P,X)) and GR(P,X) is grounded.

A constraint is a rule without head (← a1, . . . , an, not b1, . . . , not bm.)
that should be read as (h ← a1, . . . , an, not b1, . . . , not bm, not h.) where h
is a new atom symbol appearing nowhere else in the program.

We now consider a rule (c ← a1, . . . , an, not b1, . . . , not bm.) as a classical
implication (a1∧· · ·∧an∧¬b1∧· · ·∧¬bm → c) which is equivalent to (¬a1∨· · ·∨
¬an ∨ b1 ∨ · · · ∨ bm ∨ c). Hence, an interpretation of P is a set of atoms m ⊆ A.
An interpretation m satisfies a rule r if body+(r) 	⊆ m or body−(r) ∩ m 	= ∅
or head(r) ∈ m. An interpretation m is a model of a program P if m satisfies
all rules from P . Mod(P ) denotes the set of all the models of a logic program
P . Conversely, an interpretation m falsifies a rule r if m does not satisfy r:
body+(r) ⊆ m and body−(r) ∩ m = ∅ and head(r) 	∈ m. Fal(P,m) = {r ∈ P :
body+(r) ⊆ m, body−(r) ∩ m = ∅, head(r) 	∈ m} denotes the set of the rules of
a logic program P that are falsified w.r.t. an interpretation m.

The set m\Cn(GR(P,m)+) denotes the atoms of an interpretation m not
deduced from this interpretation for a logic program P and Nded(m,P ) =
fact(m\Cn(GR(P,m)+)) denotes the previous set of atoms considered as a set
of facts.

We review some notions and notations useful in subsequent sections.
A preorder on a set A is a reflexive and transitive binary relation. A total

preorder, denoted by ≤, is a preorder such that ∀x, y ∈ A either x ≤ y or y ≤ x
holds. Equivalence is defined by x � y if and only if x ≤ y and y ≤ x. The
corresponding strict total preorder, denoted by <, is the relation defined by
x < y if and only if x ≤ y holds but x � y does not hold. Let M be a subset of
A, the set of minimal elements of M with respect to ≤, denoted by Min(M,≤),
is defined as: Min(M,≤) = {x ∈ M, �y ∈ M : y < x}.

Let X and Y be two sets, |X| (resp. |Y |) denotes the cardinality of X (resp.
of Y ) and X ≤ Y if |X| ≤ |Y |. X ≤ Y means that X is preferred to Y .

Let A be a finite set, a selection function denoted by f is a function from 2A\∅
to A which for any set X ∈ 2A returns an element f(X) such that f(X) ∈ X.

3 ASP Base Revision by Removal

Let P and Q be logic programs, revising P by Q is providing a new consistent
logic program containing Q and differing as little as possible from P ∪ Q. This
section is dedicated to ASP base revision by removal. This revision strategy stems
from the suppression of rules of P when P ∪Q is inconsistent. This strategy is a
direct application of the one used for revising belief bases in a classical setting,
however it differs from it due to the non-monotonicity of logic programs. For
instance, in ASP, P and Q can be inconsistent while P ∪Q is consistent. This is
the reason why, we allow both P and Q to be inconsistent (note that, in a classical
setting, both P and Q must be consistent, only P ∪ Q may be inconsistent).
However, this means that revision is not always possible (for example, when Q
does not admit any classical model since the revision strategy only removes rules
from P ). Throughout the paper Q is the program used to revise the program P .
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3.1 Rule-Based Revision by Removal

We review Removed Sets Revision (RSR) extended to ASP [17]. This strategy
focuses on the minimal number of rules needed to remove in order to restore the
consistency. We first review the notion of potential removed set.

Definition 1 (potential removed set [17]). Let P and Q be two logic pro-
grams, let X be a set of rules. A potential removed set X is such that: (i) X ⊆ P .
(ii) (P \X)∪Q is consistent. (iii) For each X ′ ⊂ X, (P \X ′)∪Q is inconsistent.

PR(P,Q) denotes the set of potential removed sets for P and Q. According to the
definition, if P ∪ Q is consistent then PR(P,Q) = {∅}. Since potential removed
sets are built by removing only rules from P in order to restore consistency of
P ∪Q, it may be possible that the set of potential removed sets for an inconsistent
set Q is empty.

Example 1. Let P and Q be two logic programs such that P = {r1 : a ← b., r2 :
a., r3 : b., r4 : c ← not a., r5 : d., r6 : d ← not b.} and Q = {← a, b.,← not c, d.}.
These two logic programs are consistent since AS(P ) = {{a, b, d}} and AS(Q) =
{∅} but P ∪ Q is inconsistent. PR(P,Q) = {{r3, r5, r6}, {r2, r3}, {r1, r2}}.

For RSR, the minimality criterion is cardinality, we review the notion of
removed set by selecting the potential removed sets minimal w.r.t. cardinality.

Definition 2 (removed set [17]). Let P and Q be two logic programs, let X
be a set of rules. A removed set X is such that: (i) X is a potential removed set.
(ii) There is no potential removed set Y such that Y < X.

R(P,Q) denotes the set of removed sets for P and Q. According to the definition
R(P,Q) = Min(PR(P,Q),≤) and if P ∪ Q is consistent then R(P,Q) = {∅}.

Example 2 (Example 1 continued). R(P,Q) = {{r2, r3}, {r1, r2}}.

We now review the Removed Set Revision (RSR) family of operators.

Definition 3 (RSR operators [17]). Let P and Q be two logic programs,
R(P,Q) the set of removed sets and f a selection function. The revision operator
denoted by �RSR(f) is a function from P × P to P such that P�RSR(f)Q =
(P \ f(R(P,Q))) ∪ Q.

Note that if R(P,Q) = ∅, f(R(P,Q)) is not defined. This means that the pro-
gram P cannot be revised by Q.

3.2 Semantic Characterization of ASP Base Revision by Removal

We now present the semantical counterparts of the potential removed set and
removed set notions. We first introduce the notion of canonical removed set.
Intuitively, given P and Q two logic programs, a canonical removed set is a set
of rules of P falsified by a model of Q.
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Definition 4 (canonical removed set). Let P and Q be two logic programs
and m a model of Q. A canonical removed set X is such that: (i) X = Fal(P,m).
(ii) m ∈ AS((P \ X) ∪ Q).

CR(P,Q,m) = {X | X = Fal(P,m) and m ∈ AS((P \X)∪Q)} denotes the set
of all canonical removed sets for m and CR(P,Q) =

⋃
m∈Mod(Q) CR(P,Q,m)

denotes the union set of all canonical removed sets for the models of a program
Q w.r.t. a program P . Note that for one given interpretation m, there is zero or
one canonical removed set and if Q has no model then CR(P,Q) = ∅.

Example 3 (Example 1 continued). P = {r1 : a ← b., r2 : a., r3 : b., r4 : c ←
not a., r5 : d., r6 : d ← not b.} and Q = {← a, b.,← not c, d.}.

m ∈ Mod(Q) X = Fal(P,m) AS((P \ X) ∪ Q) CR(P,Q,m)
∅ {r2, r3, r4, r5, r6} {∅} {Fal(P, ∅)}

{a} {r3, r5, r6} {{a}} {Fal(P, {a})}
{b} {r1, r2, r4, r5} {{b}} {Fal(P, {b})}

{c, d} {r2, r3} {{c, d}} {Fal(P, {c, d})}
{a, c, d} {r3} ∅ ∅
{b, c, d} {r1, r2} {{b, c, d}} {Fal(P, {b, c, d})}
{a, c} {r3, r5, r6} {{a}} ∅
{b, c} {r1, r2, r5} {{b, c}} {Fal(P, {b, c})}
{c} {r2, r3, r5, r6} {{c}} {Fal(P, {c})}

The last column of the table gives the set of canonical removed sets corresponding
to a classical model of Q given in the first column of the table. Hence, if we
restrict our attention to minimal canonical removed sets w.r.t. inclusion, we
have Min(CR(P,Q),⊆) = {{r2, r3}, {r1, r2}, {r3, r5, r6}} and, if we consider
minimality w.r.t. cardinality, we have Min(CR(P,Q),≤) = {{r2, r3}, {r1, r2}}.

The following theorems give the equivalence between synatactic (potential)
removed sets and semantic canonical removed sets.

Theorem 1. Let P and Q be logic programs. PR(P,Q) = Min(CR(P,Q),⊆).

Proof (sketch). The proof is based on the fact that the rules of a potential
removed set X are exactly the rules of P falsified by the answer sets of (P \X)∪Q.

The following theorem is a direct consequence of Definition 2 and Theorem 1.

Theorem 2. Let P and Q be logic programs. R(P,Q) = Min(CR(P,Q),≤).

We introduce a preference relation between interpretations, denoted by <R(P )

as follows. Let m and m′ be two interpretations, m<R(P )m
′ means that

|Fal(P,m)| < |Fal(P,m′)|.
The following result directly follows from Theorem 2 and Definition 3. It pro-

vides a semantic characterization of ASR revision operators for logic programs.
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Theorem 3. Let P and Q be two logic programs.
Let M= {m ∈ Mod(Q) s.t. CA(P,Q,m) 	= ∅}. (i) For each selec-

tion function f , if m ∈ AS(P�RSR(f)Q) then m ∈ Min(M,≤R(P )). (ii)
If m ∈ Min(M,≤R(P )) then there exists a selection function f s.t. m ∈
AS(P�RSR(f)Q).

Example 4 (Example 1 continued). P = {r1 : a ← b., r2 : a., r3 : b., r4 :
c ← not a., r5 : d., r6 : d ← not b.} and Q = {← a, b.,← not c, d.}. From
the table in Example 3 we have PR(P,Q) = Min(CR(P,Q),⊆), R(P,Q) =
Min(CR(P,Q),≤) and Min(M,≤R(P )) = {{c, d}, {b, c, d}}. Let f1 and f2 be
the functions that select respectively {r2, r3} and {r1, r2} the respective revised
logic programs are P�RSR(f1)Q = P \{r2, r3}∪Q and P�RSR(f2)Q = P \{r1, r2}∪
Q with AS(P�RSR(f1)Q) = {{c, d}} and AS(P�RSR(f2)Q) = {{b, c, d}}.

4 ASP Base Revision by Addition

This section is dedicated to ASP base revision by addition. Let P and Q be logic
programs, this revision strategy stems from the addition of rules to P when P∪Q is
inconsistent. This strategy relies on the non-monotonicity of the ASP framework.
Indeed, adding a new rule may block a rule which contributes to inconsistency.
We allow P and Q to be inconsistent. Note that, with this strategy, revision is
not always possible, even if P and Q are consistent. Moreover, since the addition
must block an existing rule, we restrict the addition to the vocabulary of P and
Q. Revising by addition allows for adding any kind of rules but adding rules is
equivalent to adding a set of facts which makes the revision process easier.

4.1 Rule-Based Revision by Addition

The strategy of Added Set Revision (ASR) focuses on the minimal number of
new rules to add in order to restore consistency. We first introduce the notion
of potential added set.

Definition 5 (potential added set). Let P and Q be two logic programs, let
Y be a set of rules made from the vocabulary of P and Q. A potential added set
Y is such that: (i) (P ∪Y )∪Q is consistent. (ii) For each Y ′ ⊂ Y , (P ∪Y ′)∪Q
is inconsistent.

PA(P,Q) denotes the set of potential added sets for P and Q. Note that rules
from a potential added set Y cannot already belong to P∪Q. Indeed, if (P∪Y )∪Q
is consistent and some rule r from Y already belongs to P ∪Q, then there exists
some Y ′ = Y \{r} such that Y ′ ⊆ Y and (P ∪Y ′)∪Q = (P ∪Y )∪Q is consistent.
According to the definition if P ∪ Q is consistent then PA(P,Q) = {∅}.

Example 5. Let P and Q be two logic programs such that P = {a ← not b.}
and Q = {← a, not c.,← a, not d.}. If we restrict ourselves to the addition of
facts, we have PA(P,Q) = {{c., d.}, {b.}}.
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Note that revision by addition is not always feasible, even if P and Q are consistent.

Example 6. Let P and Q be two logic programs such that P = {a.} and Q =
{← a.}. We have PA(P,Q) = ∅. This is because, even if the constraint ← a. can
be read as h ← a, not h., we do not allow using the implicit atom h for adding
rules and thus the constraint ← a. cannot be blocked by addition.

For ASR, the minimality criterion is cardinality, we introduce the notion of added
set by selecting the potential added sets minimal w.r.t. cardinality.

Definition 6 (added set). Let P and Q be two logic programs, let Y be a set
of rules. An added set Y is such that: (i) Y is a potential added set. (ii) There
is no potential added set Z such that Z < Y .

A(P,Q) denotes the set of added sets for P and Q. According to the definition
A(P,Q) = Min(PA(P,Q),≤) and if P ∪ Q is consistent then A(P,Q) = {∅}.

Example 7 (Example 5 continued). For these programs, A(P,Q) = {{b.}} is
reduced to only one added set.

Example 8. Let P and Q be two logic programs such that P = {a ← b., b ←
a., c.} and Q = {← c, not a.}. We have PA(P,Q) = A(P,Q) = {{a.}, {b.}}.

We now define the Added Set Revision family of operators.

Definition 7 (ASR operators). LetP andQ be two logic programs,A(P,Q) the
set of added sets and f a selection function.The revisionoperator denoted by�ASR(f)

is a function from P × P to P such that P �ASR(f) Q = (P ∪ f(A(P,Q))) ∪ Q.

Note that if A(P,Q) = ∅, f(A(P,Q)) is not defined. That means that the pro-
gram cannot be revised by addition.

4.2 Semantic Characterization of ASP Base Revision by Addition

We now present the semantic counterparts of the potential added set and added
set notions. We first introduce the notion of canonical added set. Given P and
Q two logic programs, a canonical added set is a set of facts corresponding to
the least subset (w.r.t. inclusion) of atoms to add to P ∪ Q so that a model of
P ∪ Q becomes an answer set.

Definition 8 (canonical added set). Let P and Q be two logic programs and
m a model of P ∪Q. A canonical added set Y is such that: (i) Y ⊆ Nded(m,P ∪Q).
(ii) m ∈ AS(P ∪ Q ∪ Y ). (iii) ∀Y ′ ⊂ Y , m /∈ AS(P ∪ Q ∪ Y ′).

CA(P,Q,m) denotes the set of all canonical added sets for m and CA(P,Q) =⋃
m∈Mod(P∪Q) CA(P,Q,m). Note that CA(P,Q,m) = Min({Y | Y ⊆

Nded(m,P ∪ Q) and m ∈ AS(P ∪ Q ∪ Y )},⊆).



342 L. Garcia et al.

Example 9. Let P = {r1 : a ← b, not c., r2 : c ← d, e, not a., r3 : b ← d., r4 :
d ← b., r5 : e.} and Q = {r6 :← not a, not c., r7 :← a, not b, not c., r8 :←
c, not d, not a.}.

m ∈
Mod(P ∪ Q) GR(P ∪ Q,m) Nded(m,P ∪ Q) Y AS(P ∪ Q ∪ Y ) CA(P,Q,m)

{a, c, e} {r5} {a., c.} {a., c.} {{a, c, e}} {{a., c.}}
{a, b, d, e} {r1, r3, r4, r5} {a., b., d.} {b.} {{a, b, d, e},

{b, c, d, e}}
{d.} {{a, b, d, e}, {{b.}, {d.}}

{b, c, d, e}}
{b, c, d, e} {r2, r3, r4, r5} {b., c., d.} {b.} {{a, b, d, e},

{b, c, d, e}}
{d.} {{a, b, d, e}, {{b.}, {d.}}

{b, c, d, e}}
{a, b, c, d, e} {r3, r4, r5} {a., b., c., d.} {a., b., c.} {{a, b, c, d, e}} {{a., b., c.},

{a., c., d.} {{a, b, c, d, e}} {a., c., d.}}

The last column of the table gives the set of canonical added sets correspond-
ing to a classical model of P ∪ Q given in the first column of the table.
Hence Min(CA(P,Q),⊆) = {{a., c.}, {b.}, {d.}} and Min(CA(P,Q),≤) =
{{b.}, {d.}}.

Note that canonical added sets only consist of facts. Thus the semantic charac-
terization of ASR operators is limited to ASR operators that require the addition
of facts (not the addition of general rules).

Theorem 4. Let P and Q be logic programs. PA(P,Q) = Min(CA(P,Q),⊆).

Proof (sketch). The proof is based on the fact that the rules (facts) of a potential
added set Y are a subset of the (facts corresponding to the) atoms from the
answer sets of P ∪ Y ∪ Q that can not be deduced from P ∪ Q.

The following theorem is a direct consequence of Theorem 4 and Definition 6.

Theorem 5. Let P and Q be logic programs. A(P,Q) = Min(CA(P,Q),≤).

We introduce a preference relation between interpretations, denoted by <A(P,Q)

as follows. Let m and m′ be two interpretations, m<A(P,Q)m
′ means that

Min(CA(P,Q,m),≤) < Min(CA(P,Q,m′),≤).
The following result directly follows from Theorem 2 and Definition 7. It pro-

vides a semantic characterization of ASR revision operators for logic programs.

Theorem 6. Let P and Q be two logic programs.
Let M= {m ∈ Mod(Q) s.t. CA(P,Q,m) 	= ∅}. (i) For each f , if m ∈

AS(P �ASR(f) Q) then m ∈ Min(M,≤A(P,Q)). (ii) If m ∈ Min(M,≤A(P,Q))
then there exists f s.t. m ∈ AS(P �ASR(f) Q).

Example 10 (Example 9 continued). Let P = {a ← b , not c., c ←
d , e , not a., b ← d., d ← b., e.} and Q = {← not a , not c.,←
a, not b , not c.,← c, not d , not a.}. From the table in Example 9 we have
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PA(P,Q) = Min(CA(P,Q),⊆), A(P,Q) = Min(CA(P,Q),≤) = {{b.}, {d.}}.
Min(M,≤A(P,Q)) = {{a, b, d, e}, {b, c, d, e}}. Let f1 and f2 be the functions
that select respectively {b.} and {d.} the respective revised logic programs
are P �ASR(f1) Q = P ∪ Q ∪ {b.} and P �ASR(f2) Q = P ∪ Q ∪ {d.} with
AS(P �ASR(f1) Q) = AS(P �ASR(f2) Q) = {{a, b, d, e}, {b, c, d, e}}.

5 ASP Base Revision by Modification

This section now focuses on ASP base revision by modification. Modification
strategy means combining the removal strategy and the addition one. Let P
and Q be logic programs, removing some rules from P and in the same time
adding some new rules to P allows one to construct a new logic program which
is consistent with Q and differs the least from P . Indeed, revision by removal and
revision by addition can be viewed as particular cases of revision by modification.

5.1 Rule-Based Revision by Modification

The strategy of Modified Set Revision (MSR) focuses on the minimal number
of rules to remove and/or to add in order to restore consistency. A (potential)
modified set is a pair of sets of rules, where the first component is the set of
rules to remove and the second one is the set of new rules to add. We first define
preference relations between pairs of sets of rules w.r.t. set inclusion and w.r.t.
cardinality as follows.

Definition 9. Let X, Y , X ′, Y ′ be sets of rules. (X ′, Y ′) ⊂ (X,Y ) if X ′ ⊂ X
and Y ′ ⊆ Y , or X ′ ⊆ X and Y ′ ⊂ Y . (X ′, Y ′) ≤ (X,Y ) if |X ′ ∪ Y ′| ≤ |X ∪ Y |.

We now introduce the notion of potential modified set.

Definition 10 (potential modified set). Let P and Q be two logic programs,
let (X,Y ) be a pair of sets of rules. A potential modified set (X,Y ) is such that:
(i) X ⊆ P . (ii) (P\X) ∪ Y ∪ Q is consistent. (iii) For each (X ′, Y ′) such that
(X ′, Y ′) ⊂ (X,Y ), (P\X ′) ∪ Y ′ ∪ Q is inconsistent.

PM(P,Q) denotes the set of potential modified sets for P and Q. According to
the definition if P ∪ Q is consistent then PM(P,Q) = {(∅, ∅)}.

Example 11. Let P = {r1 : a ← not b., r2 : c ← not b., r3 :← f.} and Q = {←
a., ← c., f ← not g., f ← not h.}. PM(P,Q) = {({r1, r2, r3}, ∅), (∅, {b., g., h.}),
({r3}, {b.}), ({r1, r2}, {g., h.})}.

As for RSR and ASR, the minimality criterion for MSR is cardinality, we
introduce the notion of modified set by selecting the potential modified sets
minimal w.r.t. cardinality.

Definition 11 (modified set). Let P and Q be two logic programs, let X
and Y be two sets of rules. A modified set (X,Y ) is such that: (i) (X,Y ) is a
potential modified set. (ii) There is no potential modified set (X ′, Y ′) such that
(X ′, Y ′) < (X,Y ).
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We denote by M(P,Q) the set of modified sets. According to the definition
M(P,Q) = Min(PM(P,Q),≤) and if P ∪ Q is consistent then M(P,Q) =
{(∅, ∅)}.

Example 12 (Example 11 continued). M(P,Q) = {({r3}, {b.})}.

We now define the Modified Set Revision family of operators.

Definition 12 (MSR operators). Let P and Q be two logic programs,
M(P,Q) the set of modified sets and f a selection function. The revision opera-
tor denoted by �MSR(f) is a function from P × P to P such that P �MSR(f) Q =
(P \ X) ∪ Y ∪ Q where (X,Y ) = f(M(P,Q)).

5.2 Semantic Characterization of ASP Base Revision by
Modification

We now present the semantic counterpart of potential modified set and modified
set notions. We first introduce the notion of canonical modified set. Given P
and Q two logic programs, a canonical modified set is a pair of sets (X,Y )
where X is the set of rules from P falsified by a model of Q and Y is the set of
facts corresponding to least subsets of atoms of a model of Q not deduced from
(P\X) ∪ Q.

Definition 13 (canonical modified set). Let P and Q be two logic programs
and m be a model of Q. A canonical modified set (X,Y ) is such that: (i) X =
Fal(P,m) (ii) Y ⊆ Nded(m, (P \ X) ∪ Q) (iii) m ∈ AS((P \ X) ∪ Q ∪ Y ) (iv)
∀(X ′, Y ′) ⊂ (X,Y ), m 	∈ AS((P \ X ′) ∪ Q ∪ Y ′).

CM(P,Q,m) = Min({(X,Y ) | X = Fal(P,m), Y ⊆ Nded(m, (P \ X) ∪
Q) and m ∈ AS((P \ X) ∪ Q ∪ Y )},⊆) denotes the set of all canonical mod-
ified sets for m and CM(P,Q) =

⋃
m∈Mod(Q) CM(P,Q,m).

Example 13 (Example 11 continued). P = {r1 : a ← not b., r2 : c ←
not b., r3 :← f.} and Q = {← a., ← c., f ← not g., f ← not h.}.

m ∈ X = Y ⊆
Mod(Q) Fal(P,m) Nded((P \ X) ∪ Q,m) AS((P \ X) ∪ Q ∪ Y )

{f} {r1, r2, r3} ∅ {{f}}
{b, f} {r3} {b.} {{b, f}}
{f, g} {r1, r2, r3} {g.} {{f, g}}
{f, h} {r1, r2, r3} {h.} {{f, h}}

{b, f, g} {r3} {b., g.} {{b, f, g}}
{b, f, h} {r3} {b., h.} {{b, f, h}}
{g, h} {r1, r2} {g., h.} {{g, h}}

{f, g, h} {r1, r2, r3} {f., g., h.} {{f, g, h}}
{b, g, h} ∅ {b., g., h.} {{b, g, h}}

{b, f, g, h} ∅ {b., f., g., h.} {{b, f, g, h}}
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The second and the third column of the table give the first and the second com-
ponent respectively of the canonical modified set corresponding to a classical
model of Q given in the first column of the table. Hence Min(CM(P,Q),⊆) =
{({r1, r2, r3}, ∅), ({r3}, {b.}), ({r1, r2}, {g., h.}), (∅, {b., g., h.})} and
Min(CM(P,Q),≤) = {({r3}, {b.})}.

Theorem 7. Let P and Q be programs. PM(P,Q) = Min(CM(P,Q),⊆).

Proof (sketch). The proof is based on the fact that if (X,Y ) is a potential mod-
ified set of P and Q, then X is a potential removed set of P and Q ∪ Y , and Y
is a potential added set of P \ X and Q.

The following theorem is a direct consequence of Theorem 7 and Definition 11.

Theorem 8. Let P and Q be logic programs. M(P,Q) = Min(CM(P,Q),≤).

We introduce a preference relation between interpretations, denoted by <M (P,Q).
Let m and m′ be interpretations, m<M (P,Q)m

′ means that Min(CM(P,Q,m),≤)
< Min(CM(P,Q,m′),≤). The following result directly follows from Theorem 8
and Definition 12. It provides a semantic characterization of MSR revision
operators.

Theorem 9. Let P and Q be logic programs.
Let M= {m ∈ Mod(Q) s.t. CM(P,Q,m) 	= ∅}. (i) For each f , if m ∈

AS(P �MSR(f) P ) then m ∈ Min(M,≤M (P,Q)). (ii) If m ∈ Min(M,≤M (P,Q))
then there exists f s.t. m ∈ AS(P �MSR(f) P ).

Example 14 (Example 11 continued). P = {r1 : a ← not b., r2 : c ←
not b., r3 :← f.} and Q = {← a., ← c., f ← not g., f ← not h.}. From
the table in Example 13 we have PM(P,Q) = Min(CM(P,Q),⊆), M(P,Q) =
Min(CM(P,Q),≤) = {({r3}, {b.})} and M = {{b, f}}. There is only one mod-
ified set thus f selects ({r3}, {b.}) and P �MSR(f) Q = {r1, r2} ∪ {b.} ∪ Q and
AS(P �MSR(f) Q) = {{b, f}}.

6 Concluding Discussion

Belief base revision has first been extended to ASP in [19] with the “remainder
Sets” approach and in [16,17] with the “removed Sets” approach. These two
approaches rely on the removal of rules. More recently, another approach called
SLP revision [32,33] has been proposed. The strategy stems from the removal or
the addition and/or removal of rules. Let P be the initial logic program and Q be
the new one. The removal (respectively addition and addition and/or removal)
strategies stem from the construction of “s-removal” (respectively “s-expansion”
and “s-compatible”) logic programs which are subsets of P consistent with Q
maximal w.r.t. set inclusion (respectively sets of rules containing P consistent
with Q and minimal w.r.t. set inclusion, and a combination of both for the third
strategy). They are the dual sets of potential removed sets, potential added sets
and potential modified sets respectively.
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Note that the families of revision operators proposed in this paper differ from
SLP revision operators since the maximality criterion is set inclusion for SLP
whereas the minimality criterion for the RSR, ASR and MSR revision operators
is cardinality.

Moreover, in this paper we go a step further since we provide a semantic
characterization in terms of answer sets for the RSR, ASR and MSR revision
families of operators. This is an important contribution since it allows one to go
from the evolution of a syntactic rule-based revision operator to the evolution
of its semantic content.

Future work will be dedicated to the study of logical properties of the pro-
posed revision operators in terms of the satisfaction of Hansson’s postulates for
base revision adapted to the ASP framework. We also plan to implement the
proposed families of revision operators and to conduct an experimental study.
Another issue is the study of their computational complexity.
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Abstract. In this paper we study iterated contraction in the epistemic
state framework, offering a counterpart of the work of Darwiche and
Pearl for iterated revision. We provide pure syntactical postulates for
iterated contraction, that is, the postulates are expressed only in terms
of the contraction operator. We establish a representation theorem for
these operators. Our results allow to highlight the relationships between
iterated contraction and iterated revision. In particular we show that
iterated revision operators form a larger class than that of iterated con-
traction operators. As a consequence of this, in the epistemic state frame-
work, the Levi identity has limitations; namely, it doesn’t allow to define
all iterated revision operators.

1 Introduction

Belief change theory [1,7–9,11,12] aims at modelling the evolution of the logical
beliefs of an agent according to new inputs the agent receives.

The two main classes of operators are revision operators, which allow to
correct some wrong beliefs of the agent, and contraction operators, which allow
to remove some pieces of beliefs from the beliefs of the agent.

Contraction and revision, though being different processes, are closely linked.
Two identities allow to define contraction from revision and vice-versa. One can
define a revision operator from a contraction operator by the Levi identity, which
states that, in order to define a revision by α, one can first perform a contraction
by ¬α and then an expansion1 by α [15]. Conversely, one can define a contraction
operator from a revision operator by using the Harper identity : what is true
after contraction by α is what is true in the current state and in the result of
the revision by ¬α [10]. To give the formal definition of these identities, let us
denote by K a theory (a deductively closed set of logical sentences), and let α
be a formula. Let us denote � a revision operator, ÷ a contraction operator, and
⊕ the expansion:
1 See [8] for exact definition, but one can safely identify expansion with conjunc-

tion/union in most cases.
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Levi identity K � α = (K ÷ ¬α) ⊕ α
Harper identity K ÷ α = K ∩ (K � ¬α)

The connection obtained through these identities is very strong, since one obtains
in fact a bijection between the set of revision operators and the set of contraction
operators [8]. So, in the AGM framework these two classes of operators are
two sides of the same coin, and one can study either revision or contraction,
depending on which operator is chosen as more basic/natural.

Although intrinsically a dynamic process, initial works on belief change only
address the (static) one-step change [1,8,11], and were not able to cope with
iterated change.

After many unsuccessful attempts, a solution for modelling iterated revision
was provided by Darwiche and Pearl [6]. They provide additional postulates
to govern iterated change. These additional constraints for iteration cannot use
simple logical theories for belief representation, as used in the one-step case. One
has to shift to a more powerful representation, epistemic states, which allow to
encode the revision strategy of the agent, and allow to ensure dynamic coherence
of changes.

It is interesting to note that the work of Darwiche and Pearl was dedicated to
iterated revision. One could expect that a characterization of iterated contraction
could be obtained safely from generalizations of the identities. In fact this is not
the case. First, until now there is no proposal for postulates nor representation
theorem for iterated contraction. There were some works on iterated contraction
that we will discuss in the related work section, but no real counterpart of the
work of Darwiche and Pearl for contraction existed so far. This is what we
propose in this paper.

The class of iterated contraction operators obtained is very interesting in
different respects. It allows to obtain a better understanding of belief change
theory. Actually, some of the consequences of our representation theorem are
quite surprising.

First, when comparing the two representation theorems (the one for iterated
contraction and the one for iterated revision), it is clear that they share the same
class of (faithful) assignments. This means that the difference between iterated
contraction and iterated revision is not a matter of nature, but a matter of degree
(revision being a bigger change than contraction, not a different kind of change).
This also means that there is a deep relationship between iterated contraction
and iterated revision via the representation theorems and the assignments. One
could think that the generalization of the Levi and Harper identities could be
easily attained thanks to these theorems. Nevertheless, it is not the case.

More surprisingly, we prove that there are more iterated revision operators
than contraction operators (oppositely to the bijection obtained in the classical -
AGM - framework). As a consequence, one can not expect to have generalizations
of the Levi identity for the iterated case: some iterated revision operators are
out of reach from iterated contraction ones. This seems to suggest that iterated
belief revision operators are more basic than iterated belief contraction ones.
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In the next Section we will provide the formal preliminaries for this paper.
In Sect. 3 we give the logical postulates for modelling iterated contraction. In
Sect. 4 we provide a representation theorem for these contractions. In Sect. 5 we
study the links between iterated contraction and iterated revision. In Sect. 6 we
discuss some related works and we conclude in Sect. 7.

2 Preliminaries

We consider a propositional language L defined from a finite set of propositional
variables P and the standard connectives. Let L∗ denote the set of consistent
formulae of L.

An interpretation ω is a total function from P to {0, 1}. The set of all inter-
pretations is denoted by W. An interpretation ω is a model of a formula φ ∈ L
if and only if it makes it true in the usual truth functional way. [[α]] denotes
the set of models of the formula α, i.e., [[α]] = {ω ∈ W | ω |= α}. � denotes
implication between formulae, i.e. α � β means [[α]] ⊆ [[β]].

≤ denotes a pre-order on W (i.e., a reflexive and transitive relation), and <
denotes the associated strict order defined by ω < ω′ if and only if ω ≤ ω′ and
ω′ �≤ ω. A pre-order is total if for all ω, ω′ ∈ W, ω ≤ ω′ or ω′ ≤ ω. If A ⊆ W, then
the set of minimal elements of A with respect to a total pre-order ≤, denoted
by min(A,≤), is defined by min(A,≤) = {ω ∈ A | �ω′ ∈ A such that ω′ < ω}.

We will use epistemic states to represent the beliefs of the agent, as usual in
iterated belief revision [6]. An epistemic state Ψ represents the current beliefs
of the agent, but also additional conditional information guiding the revision
process (usually represented by a pre-order on interpretations, a set of condi-
tionals, a sequence of formulae, etc.). Let E denote the set of all epistemic states.
A projection function B : E −→ L∗ associates to each epistemic state Ψ a con-
sistent formula B(Ψ), that represents the current beliefs of the agent in the
epistemic state Ψ . We will call models of the epistemic state the models of its
beliefs, i.e. [[Ψ ]] = [[B(Ψ)]].

A concrete and very useful representation of epistemic states are total pre-
orders over interpretations. In this representation, if Ψ =≤, B(Ψ) is a proposi-
tional formula which satisfies [[B(Ψ)]] = min(W,≤). We call this concrete repre-
sentation of epistemic states the canonical representation.

For simplicity purpose we will only consider in this paper consistent epistemic
states and consistent new information. Thus, we consider change operators as
functions ◦ mapping an epistemic state and a consistent formula into a new
epistemic state, i.e. in symbols, ◦ : E × L∗ −→ E . The image of a pair (Ψ, α)
under ◦ will be denoted by Ψ ◦ α.

Let us now recall Darwiche and Pearl proposal for iterated revision [6]. Dar-
wiche and Pearl modified the list of KM postulates [11] to work in the more
general framework of epistemic states:

(R*1) B(Ψ � α) � α
(R*2) If B(Ψ) ∧ α � ⊥ then B(Ψ � α) ≡ ϕ ∧ α
(R*3) If α � ⊥ then B(Ψ � α) � ⊥
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(R*4) If Ψ1 = Ψ2 and α1 ≡ α2 then B(Ψ1 � α1) ≡ B(Ψ2 � α2)
(R*5) B(Ψ � α) ∧ ψ � B(Ψ � (α ∧ ψ))
(R*6) If B(Ψ � α) ∧ ψ � ⊥ then B(Ψ � (α ∧ ψ)) � B(Ψ � α) ∧ ψ

For the most part, the DP list is obtained from the KM list by replacing each
ϕ by B(Ψ) and each ϕ � α by B(Ψ � α). The only exception to this is (R*4),
which is stronger than its simple translation.

In addition to this set of basic postulates, Darwiche and Pearl proposed a
set of postulates devoted to iteration:

(DP1) If α � μ then B((Ψ � μ) � α) ≡ B(Ψ � α)
(DP2) If α � ¬μ then B((Ψ � μ) � α) ≡ B(Ψ � α)
(DP3) If B((Ψ � α) � μ then B((Ψ � μ) � α) � μ
(DP4) If B((Ψ � α) � ¬μ then B((Ψ � μ) � α) � ¬μ

And then they give a representation theorem in terms of pre-orders on inter-
pretations:

Definition 1. A faithful assignment is a mapping that associates to any epis-
temic state Ψ a total pre-order ≤Ψ on interpretations such that:

1. If ω |= B(Ψ) and ω′ |= B(Ψ), then ω �Ψ ω′

2. If ω |= B(Ψ) and ω′ �|= B(Ψ), then ω <Ψ ω′

3. If Ψ1 = Ψ2, then ≤Ψ1=≤Ψ2

Theorem 1 ([6]). An operator � satisfies (R*1)–(R*6) if and only if there is
a faithful assignment that maps each epistemic state Ψ to a total pre-order on
interpretations ≤Ψ such that:

[[Ψ � μ]] = min([[μ]],≤Ψ )

Theorem 2 ([6]). Let � be a revision operator that satisfies (R*1)–(R*6). This
operator satisfies (DP1)–(DP4) if and only if this operator and its faithful assign-
ment satisfies:

(CR1) If ω |= μ and ω′ |= μ, then ω ≤Ψ ω′ ⇔ ω ≤Ψ�μ ω′

(CR2) If ω |= ¬μ and ω′ |= ¬μ, then ω ≤Ψ ω′ ⇔ ω ≤Ψ�μ ω′

(CR3) If ω |= μ and ω′ |= ¬μ, then ω <Ψ ω′ ⇒ ω <Ψ�μ ω′

(CR4) If ω |= μ and ω′ |= ¬μ, then ω ≤Ψ ω′ ⇒ ω ≤Ψ�μ ω′

The first aim of this paper is to provide a similar direct characterization of
iterated contraction. Then we will study the links between iterated revision and
iterated contraction operators.
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3 Iterated Contraction

Let us first give the basic postulates for contraction of epistemic states. We use
the contraction postulates given for propositional logic formulas in [4], that are
equivalent to the original AGM ones [1], that we only adapt for epistemic states:

(C1) B(Ψ) � B(Ψ − α)
(C2) If B(Ψ) � α, then B(Ψ − α) � B(Ψ)
(C3) If B(Ψ − α) � α, then � α
(C4) B(Ψ − α) ∧ α � B(Ψ)
(C5) If α1 ≡ α2 then B(Ψ − α1) ≡ B(Ψ − α2)
(C6) B(Ψ − (α ∧ β)) � B(Ψ − α) ∨ B(Ψ − β)
(C7) If B(Ψ − (α ∧ β)) � α, then B(Ψ − α) � B(Ψ − (α ∧ β))

(C1) states that contraction can just remove some information, so the beliefs
of the posterior epistemic state are weaker than the beliefs of the prior one. (C2)
says that if the epistemic state does not imply the formula by which one wants to
contract, then the posterior epistemic state will have the same beliefs as the prior
one. (C3) is the success postulate, it states that the only case where contraction
fails to remove a formula from the beliefs of the agent is when this formula is a
tautology. (C4) is the recovery postulate, it states that if we do the contraction
by a formula followed by a conjunction by this formula, then we will recover the
initial beliefs. This ensures that no unnecessary information is discarded during
the contraction. (C5) is the irrelevance of syntax postulate, that says that the
syntax does not have any impact on the result of the contraction. (C6) says that
the contraction by a conjunction implies the disjunction of the contractions by
the conjuncts. (C7) says that if α is not removed during the contraction by the
conjunction by α ∧ β, then the contraction by α implies the contraction by the
conjunction.

Now let us introduce the postulates for iterated contraction:

(C8) If ¬α � γ then B(Ψ − (α ∨ β)) � B(Ψ − α) ⇔ B(Ψ − γ − (α ∨ β)) � B(Ψ − γ − α)

(C9) If γ � α then B(Ψ − (α ∨ β)) � B(Ψ − α) ⇔ B(Ψ − γ − (α ∨ β)) � B(Ψ − γ − α)

(C10) If ¬β � γ then B(Ψ −γ − (α∨β)) � B(Ψ −γ −α) ⇒ B(Ψ − (α∨β)) � B(Ψ −α)

(C11) If γ � β then B(Ψ − γ − (α ∨ β)) � B(Ψ − γ − α) ⇒ B(Ψ − (α ∨ β)) � B(Ψ − α)

(C8) expresses the fact that if a contraction by a disjunction implies the
contraction by one of the disjuncts, then it will be the same if we first contract
by a formula that is a consequence of the negation of that disjunct. (C9) captures
the fact that if a contraction by a disjunction implies the contraction by one of the
disjuncts, then it will be the same if we first contract by a formula that implies
this disjunct. (C10) expresses the fact that if a contraction by a disjunction
implies the contraction by one of the disjunct after a contraction by a formula
that is a consequence of the negation of the other disjunct, then it was already
the case before this contraction. (C11) captures the fact that if a contraction by
a disjunction implies the contraction by one of the disjunct after a contraction



On Iterated Contraction: Syntactic Characterization 353

by a formula that implies the other disjunct, then it was already the case before
this contraction.

The operators satisfying (C1)–(C7) will be called contraction operators. The
operators satisfying (C1)–(C11) will be called iterated contraction operators.

4 Representation Theorem

Let us now provide a representation theorem for iterated contraction operators
in terms of faithful assignments. These assignments associate to each epistemic
state a total pre-order on interpretations, this total pre-order representing the
relative plausibility of each interpretation, and the current beliefs of the agent
being the most plausible ones.

And let us now state the basic theorem for contraction postulates in the
epistemic state framework.

Theorem 3. An operator − satisfies the postulates (C1)–(C7) if and only if
there exists a faithful assignment that associates to each epistemic state Ψ a total
pre-order ≤Ψ on interpretations such that

[[Ψ − α]] = [[Ψ ]] ∪ min([[¬α]],≤Ψ )

We will say that the faithful assignment given by the previous theorem repre-
sents the operator −. The proof of this theorem follows the same lines as the proof
for the representation theorem in the propositional case [4]. For space reason it
will not be included here. We concentrate our effort in proving a representation
theorem for iterated contraction operators.

Let us now state the representation theorem for iterated contraction.

Theorem 4. Let − be a contraction operator that satisfies (C1)–(C7). This
operator satisfies (C8)–(C11) if and only if this operator and its faithful assign-
ment satisfies:

4. If ω, ω′ ∈ [[γ]] then ω ≤Ψ ω′ ⇔ ω ≤Ψ−γ ω′

5. If ω, ω′ ∈ [[¬γ]] then ω ≤Ψ ω′ ⇔ ω ≤Ψ−γ ω′

6. If ω ∈ [[¬γ]] and ω′ ∈ [[γ]] then ω <Ψ ω′ ⇒ ω <Ψ−γ ω′

7. If ω ∈ [[¬γ]] and ω′ ∈ [[γ]] then ω ≤Ψ ω′ ⇒ ω ≤Ψ−γ ω′

We will call a faithful assignment that satisfies properties 4 to 7 an iterated
faithful assignment.

Condition 4 captures the fact that the plausibility between the models of γ is
exactly the same before the contraction and after the contraction by γ. Condition
5 captures the fact that the plausibility between the models of ¬γ is exactly the
same before the contraction and after the contraction by γ. Conditions 4 and
5 will be called rigidity conditions (called also ordered preservation conditions
in [18]). Condition 6 captures the fact that if a model of ¬γ is strictly more
plausible than a model of γ before the contraction by γ then it will be the case



354 S. Konieczny and R.P. Pérez

after the contraction by γ. Condition 7 captures the fact that the plausibility of
the models of ¬γ does not decrease with respect the models of γ after contraction
by γ. More precisely, if a model of ¬γ is at least as plausible as a model of γ
before the contraction it will be the case after the contraction by γ. Conditions
6 and 7 will be called non-worsening conditions.

Please note that the iterated faithful assignments are directly related to the
ones for iterated revision (cf. Theorem 2), there are only some inversions in
conditions 6 and 7 (compared to CR3 and CR4), that are due to the fact that
one can see a contraction by ¬α as a softer change (improvement [14]) than a
revision by α (see discussion at the beginning of Sect. 6).

For space reasons we only give a sketch of the proof of Theorem 4. An iter-
ated contraction operator is indeed a contraction operator. Thus, we know by
Theorem 3 that there is a faithful assignment representing it. Thus the proof of
Theorem 4 will consist in proving that under the assumption of the basic con-
traction postulates, the iteration postulates entail conditions 4–7 for the faith-
ful assignment representing the operator. And reciprocally, that if the iterated
faithful assignment represents the operator the postulates of the iteration are
satisfied. Thus, from now on, in this section we suppose that − is a contrac-
tion operator and Ψ �→≤Ψ is the faithful assignment representing it, that is the
equation in Theorem 3 holds. Actually, we prove the following facts which are
enough to conclude:

(i) The assignment satisfies condition 4 if and only if postulate (C8) holds.
(ii) The assignment satisfies condition 5 if and only if postulate (C9) holds.
(iii) Suppose the contraction operator satisfies (C8). Then the assignment sat-

isfies condition 6 if and only if postulate (C10) holds.
(iv) The assignment satisfies condition 7 if and only if postulate (C11) holds.

In order to give a flavor of the whole proof we give the proof of the Fact (iii)
(which is perhaps a little more complicated than the other three facts). First we
have the following observations:

Observation 1. Suppose that the assignment satisfies condition 4, then for any
μ such that μ � γ we have min([[μ]],≤Ψ ) = min([[μ]],≤Ψ−γ).

Observation 2. Condition 6 is equivalent to the following condition:

6’. If ω ∈ [[¬γ]] and ω′ ∈ [[γ]] then ω′ ≤Ψ−γ ω ⇒ ω′ ≤Ψ ω

Now we proceed to prove (iii). Note that, since α, β and γ are any formulas,
using (C5), the postulate (C10) can be rewritten as follows:

If β � γ then B((Ψ −γ)−¬(α∧β)) � B((Ψ −γ)−¬α) ⇒ B(Ψ −¬(α∧β)) �
B(Ψ − ¬α)

First we prove that postulate (C10) entails condition 6 of an iterated assign-
ment. By Observation 2, it is enough to prove that (C10) entails 6’. Thus, assume
(C10) holds. Suppose ω ∈ [[¬γ]], ω′ ∈ [[γ]] and ω′ ≤Ψ−γ ω. We want to show that
ω′ ≤Ψ ω.
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Let α and β be formulas such that [[α]] = {ω, ω′} and [[β]] = {ω′}. Note
that {ω′} ⊆ min([[α]],≤Ψ−γ) because ω′ ≤Ψ−γ ω. We have also min([[α ∧ β]],
≤Ψ−γ) = {ω′}.

Then, we have [[(Ψ − γ) − ¬(α ∧ β)]] = [[Ψ − γ]] ∪ min([[α ∧ β]],≤Ψ−γ);
the last expression is equal to [[Ψ − γ]] ∪ {ω′} which is a subset of
[[Ψ − γ]] ∪ min([[α]],≤Ψ−γ). But this last expression is [[(Ψ − γ) − ¬α]]. So,
[[(Ψ − γ) − ¬(α ∧ β)]] ⊆ [[(Ψ − γ) − ¬α]], that is B((Ψ − γ) − ¬(α ∧ β)) �
B((Ψ − γ) − ¬α). Then, by (C10), we have B(Ψ − ¬(α ∧ β)) � B(Ψ − ¬α),
that is [[Ψ ]] ∪ {ω′} ⊆ [[Ψ ]] ∪ min({ω, ω′},≤Ψ ). Therefore, ω′ ∈ [[Ψ ]] or ω′ ∈
min({ω, ω′},≤Ψ ). In both cases we get ω′ ≤Ψ ω (In the first case we use the fact
that ≤Ψ is a faithful assignment, in particular [[Ψ ]] = min(W,≤Ψ )).

Now we prove that Condition 6 entails Postulate (C10). Assume that β � γ.
We suppose that α ∧ β �� ⊥ (the other case is trivial because the contraction
by a tautology doesn’t change the beliefs). Suppose B((Ψ − γ) − ¬(α ∧ β)) �
B((Ψ − γ) − ¬α), that is

[[(Ψ − γ) − ¬(α ∧ β)]] ⊆ [[(Ψ − γ) − ¬α]] (1)

We want to show that B(Ψ − ¬(α ∧ β)) � B(Ψ − ¬α), that is to say

[[Ψ − ¬(α ∧ β)]] ⊆ [[Ψ − ¬α]] (2)

By Theorem 3, Eqs. (1) and (2) can be rewritten, respectively, as

[[Ψ − γ]] ∪ min([[α ∧ β]],≤Ψ−γ) ⊆ [[Ψ − γ]] ∪ min([[α]],≤Ψ−γ) (3)

and
[[Ψ ]] ∪ min([[α ∧ β]],≤Ψ ) ⊆ [[Ψ ]] ∪ min([[α]],≤Ψ ) (4)

First we are going to prove that (3) entails

min([[α ∧ β]],≤Ψ−γ) ⊆ min([[α]],≤Ψ−γ) (5)

In order to see that, take ω ∈ min([[α ∧ β]],≤Ψ−γ). Then, by Eq. (3), we have
either ω ∈ [[Ψ − γ]] or ω ∈ min([[α]],≤Ψ−γ). In the first case, by the fact of having
a faithful assignment, ω ∈ min(W,≤Ψ−γ) and therefore ω ∈ min([[α]],≤Ψ−γ). In
the second case is trivial. Thus, in any case we have 5.

Now, towards a contradiction, suppose that (4) doesn’t hold. Thus, there
exists ω ∈ min([[α ∧ β]],≤Ψ ) such that ω �∈ min([[α]],≤Ψ ). So there is ω′ ∈
min([[α]],≤Ψ ) such that

ω′ <Ψ ω (6)
Note that ω |= β, and, by hypothesis, β � γ, thus ω |= γ. We are going to
consider the following two cases: ω′ |= γ and ω′ |= ¬γ

Suppose we are in the first case, i.e. ω′ |= γ. Then, by Condition 4 (equiv-
alent to our assumption of Postulate (C8)), ω′ <Ψ−γ ω. Now, suppose we are in
the second case, i.e. ω′ |= ¬γ. Then, because ω |= γ and (6), by Condition 6,
ω′ <Ψ−γ ω. Thus in any case we have

ω′ <Ψ−γ ω (7)

Since α ∧ β � γ, by Observation 1, ω ∈ min([[α ∧ β]],≤Ψ−γ). Then, by (5),
ω ∈ min([[α]],≤Ψ−γ). But this is a contradiction with (7).
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5 Iterated Contraction Vs Iterated Revision

We would like to investigate now the relationship between iterated contraction
and iterated revision.

A natural tendency would be to try to generalize Levi and Harper Identity
to the iterated case. In fact some related works followed this path [2,5,17].

In the following we will first argue and show that it is not so simple. We will
also show that there are some problems when one follows this way for connecting
iterated contraction and iterated revision. Actually, we will show that in the
iterated case, they are not two sides of a same coin (i.e. two classes of operators
linked by a bijection), but that they rather are two instances of a same kind of
change operators, and that the link and difference is just a matter of degree of
change.

5.1 Identities in the General Case

Let us first recall the Levy and Harper Identities:

Levi identity Ψ � α = (Ψ ÷ ¬α) ⊕ α
Harper identity Ψ ÷ α = Ψ � (Ψ � ¬α)

Let us note the problems of using these identities for iterated contraction and
revision in the epistemic state framework. First, in the AGM case, these two
identities are definitional, that means that, for instance, using Levi identity one
can obtain the revision operator � that defines the theory Ψ � α from the right
side of the identity using the contraction and expansion operators. But in our
general framework, epistemic states are abstract objects, which can only be
apprehended at the logical level from the projection function B. Thus, in this
general framework, we do not fully know what Ψ ÷¬α is, and so we can not use it
to define what should be Ψ � α. So using a definitional equality here is difficult.
The only way to proceed seems to be choosing a particular representation of
epistemic states to work with (such as total preorders over the interpretations),
but then the results are given on this representation and not in the general case.
Second, whereas ⊕ and � have a clear meaning in the AGM framework, one has
to figure out a definition in the epistemic state framework. That is by itself a
non-trivial task (studying the possible definitions of � is one of the main aims
of [2]).

A possibility would be to restrict these identities to the beliefs of the epistemic
states, as:

Belief Levi equivalence B(Ψ � α) ≡ B(Ψ ÷ ¬α) ⊕ α
Belief Harper equivalence B(Ψ ÷ α) ≡ B(Ψ) ∨ B(Ψ � ¬α)

But we do not have identities anymore, but only equivalences that are not defi-
nitional. So one has to first identify two operators � and ÷ and check that they
are linked through these equivalences.
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5.2 Identities Under the Canonical Representation

So to go further we have to commit to a particular representation of epistemic
states. The canonical one, using total preorders (described in Sect. 2), can be
used together with the faithful assignment, to define completely the new epis-
temic state after contraction (or revision). Thus, suppose that we have a faithful
assignment Ψ �→≤Ψ . We identify Ψ with ≤Ψ , and we define ≤Ψ−γ satisfying the
properties (4–7) of Theorem 4. Then, by Theorem 4, the operator defined by
Ψ −γ =≤Ψ−γ is an iterated contraction operator. In such a case we say that the
operator − is given by the assignment. We can proceed, in the same way when
the assignment satisfies the requirements of an iterated assignment (for revi-
sion [6]) and then the operator defined by Ψ � α =≤Ψ�α is an iterated revision
operator.

Thus, one can restate the identities on the total pre-orders associated to the
epistemic states by the operators2:

Tpo Levi identity ≤Ψ�α = ≤Ψ÷¬α ⊕α
Tpo Harper identity ≤Ψ÷α = ≤Ψ � ≤Ψ�¬α

So now we can define these pre-orders using the identities and check that we
correctly obtain operators with the expected properties. The only remaining
problem is to define the operators ⊕ and � in this setting.

Fig. 1. From contraction to revision

As for ⊕ let us show that using Boutilier natural revision operator �N [3]
is a correct option, in the sense that using this operator as ⊕ we obtain a DP
(Darwiche and Pearl [6]) revision operator (see Proposition 1).

Let us recall the definition of this operator on total pre-orders, that amounts
to look at the most plausible models of the new piece of information and define
them as the new most plausible interpretations while nothing else changes: Let
≤Ψ be the pre-order associated to the epistemic state Ψ by the faithful assign-
ment, and let α be the new piece of information, then ≤Ψ�Nα (we will also use
the equivalent notation ≤Ψ �Nα) is defined as:
2 Tpo means Total pre-order.
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– If ω |= min([[α]],≤Ψ ) and ω′ �|= min([[α]],≤Ψ ), then ω <Ψ�Nα ω′

– In all the other cases ω ≤Ψ�Nα ω′ iff ω ≤Ψ ω′

Then one can show that the Tpo Levi identity holds for the iterated case:

Proposition 1. Let ÷ be an iterated contraction operator given by its assign-
ment Ψ �→≤Ψ . Then the assignment defined by ≤Ψ�α=≤Ψ÷¬α �Nα satisfies prop-
erties (CR1)–(CR4), and can be used to define a Darwiche and Pearl iterated
revision operator in the framework of the canonical representation of epistemic
states.

This proposition implies in particular that to each iterated contraction oper-
ator one can associate a corresponding iterated revision operator. So, this means
that the cardinality of the class of iterated revision operators obtained via the
Tpo Levi identity is at least equal to the cardinality of the class of iterated
contraction operators. Note that this observation does not depend on the inter-
pretation of the symbol ⊕ utilized.

The following example illustrates the use of our concrete Tpo Levi identity.

Example 1. Let us consider the total pre-order ≤Ψ represented in Fig. 1. So in
that figure [[≤Ψ ]] = {ω1, ω2} and [[α]] = {ω5, ω6, ω7, ω8}. In this Figure the lower
an interpretation is, the more plausible it is. For instance in ≤Ψ we have that
ω1 <Ψ ω3. An iterated contraction by ¬α is a change that increases (improves)
the plausibility of the models of α, with the condition that the most plausible
models of α in ≤Ψ joins (become as plausible as) the most plausible models of
≤Ψ (We give on such possibility for ≤Ψ÷¬α). The relation between the models of
α doesn’t change after contraction and nor does the relation between the models
of ¬α. From this, to define a revision, one can just select these most plausible
models of α and take them as the most plausible models using Boutilier’s natural
revision (≤Ψ÷¬α �Nα).

The converse process, that is, defining iterated contraction operators starting
from iterated revision operators using the Tpo Harper identity, requires in par-
ticular to find a correct definition for �. This problem is investigated by Booth
and Chandler [2], where they show that there is not a single, canonical way to
proceed.

One can see this as an additional richness of the iterated framework. However,
this richness of the epistemic state representation has its counterparts. In fact in
the iterated case there are more revision operators than contraction ones. More
precisely we have the following result:

Theorem 5. There are more iterated revision operators than iterated contrac-
tion operators. In particular, this entails that it is impossible to find an inter-
pretation of the expansion ⊕ in the Tpo Levi identity in order to obtain all the
iterated revision operators via this identity.
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Fig. 2. All possible contractions by ¬α and revisions by α from ≤Ψ

Proof. Let ≤Ψ and α be as illustrated in Fig. 2. Due to rigidity conditions for the
iterated contraction, there are only three possible different outputs as results of
contraction of ≤Ψ by ¬α (≤Ψ÷1¬α, ≤Ψ÷2¬α and ≤Ψ÷3¬α). Contrastingly there
are five different possible output for revision. That is due to the rigidity pos-
tulates for iterated revision. Three of these possible revision outputs can be
obtained from contraction outputs using natural revision as in the previous
example (≤Ψ�1α, ≤Ψ�2α, ≤Ψ�3α). The other two ones are ≤Ψ�4α and ≤Ψ�5α,
that are not related to any contraction result using the identity.

The previous theorem is important because it tells us that in the iterated case
the Levy identity has limitations. This theorem is also important since it gives
us a true distinction between classical AGM framework and the iterated frame-
work. In the classical AGM framework there is a bijection between revision and
contraction operators. Contraction is often considered as a more fundamental
operator since a revision can be defined, through Levi identity, as a contraction
followed by a conjunction (expansion). In the iterated case there are more iter-
ated revision than iterated contraction operators, so the more general change
operator seems to be revision.

One can object that ≤Ψ�4α and ≤Ψ�5α could maybe be obtained through
Levi identity by using another definition of ⊕ than Boutilier’s natural revision
operator, as we used here. But this does not change the fact that there is only
three possible contraction results versus five possible revision results, and then
with any alternative, there is still no way to define a bijection. We can just define



360 S. Konieczny and R.P. Pérez

a relation between ÷ and a couple (�,⊕), that is far from AGM original idea of
this identity, and that does not contradicts our cardinality argument.

As a matter of fact there is a generalization of iterated revision operators,
called improvement operators from which one can obtain iterated revision oper-
ators and at the same time iterated contraction operators. We make some brief
comments about this in the next section.

6 Related Works

In a previous work [13,14] improvement operators are defined as a general class
of iterative change operators, that contains Darwiche and Pearl iterated revision
operators as special case. Actually, there is a more general class of improvement
operators called basic improvement operators [16]. The postulates characterizing
these operators say that at least a part of the new piece of information improves
and the whole new piece of information does not worsen (this corresponds to
postulates C3 and C4 of DP [6]).

Improvement operators are defined semantically on faithful assignments as an
increase of plausibility of models of the new piece of information. This increase
of plausibility can be more or less restricted, which leads to different families
of operators [13]. But clearly the increase of plausibility of iterated contraction
operators is limited due to the fact that the most plausible models of the new
piece of information can not become more plausible than the models of the
previous beliefs of the agent. Whereas for revision there is no such constraint,
and so much more freedom is granted for improvement.

The following proposition says that our iterated contraction operators are
also weak improvement operators (by the negation of the input).

Proposition 2. Let ÷ be an iterated contraction operator, then the operator ÷̂
defined as Ψ ÷̂α = Ψ ÷ ¬α is a weak improvement operator [14], moreover it is
a basic improvement operator.

Thus, the previous proposition and the fact that iterated revision operators
are also basic improvement operators seems to mean that this class of operator
as the most primitive operators in iterated belief change.

Chopra et al. [5] also give postulates for iterated contraction, but they did it
using iterated revision operators in their postulates, so the iterated contraction
operators are not defined independently, but as a byproduct of iterated revision
ones. Actually their starting point is a couple of given operators ∗ and − that sat-
isfy the Levi and Harper equivalences. Then, they characterize the four iterated
semantic properties of Definition 4 in terms of syntactical postulates mixing the
operators ∗ and −. In this work we propose a direct characterization of iterated
contraction operators (not depending of any iterated revision operator).

Booth and Chandler [2] investigate the problem of the definition of iterated
contraction through the Harper Identity for the concrete case of pre-orders on
interpretations. The paper shows the richness of the question. In this paper we
explain this richness by the fact that there are much more iterated revision
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operators than iterated contraction operators, so this means that several differ-
ent iterated revision operators correspond, via the Harper identity, to the same
iterated contraction operator.

The work of Ramachadran et al. [18] is very interesting. It concerns the
characterization of three iterated contraction operator in the framework of the
canonical representation of epistemic states. They give a pure syntactical char-
acterization of these three operators. However they don’t characterize the full
class of iterated contraction operators.

7 Conclusion

To sum up, in this paper we proposed the first direct logical characterization of
the class of iterated contraction operators having an iterated behavior similar
to the one proposed by Darwiche and Pearl for iterated revision operators. We
stated a representation theorem in terms of total pre-orders on interpretations.
We discussed the fact that there is no easy way to generalize the Levi and
Harper identity in the iterated case, but more importantly, that this is not a
primordial issue, since, conversely to the classical (AGM) case, these two classes
of operators are not linked by a bijection in the iterated case. There are more
iterated revision operators than iterated contraction operators, and both are
special cases of the more general class of improvement operators, where iterated
contractions produce a smaller change than iterated revision operators. So, these
two classes of change operators are not different in nature, but in degree of
change.

Acknowledgments. The authors would like to thank the reviewers for their helpful
comments.
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Abstract. We study the problem of aggregating metadata about the
validity and/or completeness, with respect to given topics, of informa-
tion provided by multiple sources. For a given topic, the validity level
reflects the certainty that the information stored is true. The complete-
ness level of a source on a given topic reflects the certainty that a piece
of information that is not stored is false. We propose a modeling based
on possibility theory which allows the fusion of such multi-source infor-
mation into a graded belief base.

1 Introduction and Related Work

The relation between beliefs and knowledge plays a central role in epistemol-
ogy. Much of epistemology revolves around questions about when and how our
beliefs are justified or qualify as knowledge [19]. Without taking a position in
this debate, in this paper, we will use the term knowledge when referring to
information provided by an information source, but we will use the term beliefs
to refer to a (possibly partial, incomplete, or uncertain) representation of real-
ity obtained by combining information provided by one or more sources with
metadata about its validity and completeness.

The problem of representing validity and completeness of information stored
in databases has started drawing attention many years ago. For example, we can
consider the model of database integrity proposed by Motro [17] and the work
by Demolombe [8] who used modal logic for representing information stored
in relational databases. Our aim is to consider validity and completeness in
more general knowledge bases (KBs) in which the closed world assumption is
not made. Therefore, a mechanism for representing uncertainty in the beliefs
induced by KBs fed by sources which can provide invalid and/or incomplete
pieces of information is needed.

Cholvy [6] uses the theory of evidence for proposing an interesting way to
compute the extent to which an agent should believe a new piece of information
c© Springer International Publishing AG 2017
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provided by an imperfect information source. A difference with respect to our
work is that we explicitly associate these metadata concerning validity and com-
pleteness to topics and this allows us to describe these metadata for a source at
a finer grain.

Bacchus et al. [3] proposed the “random worlds” method, an approach for
inducing degrees of belief from KBs fed with different types of information like
statistical correlations, physical laws, default rules, etc. They apply the principle
of indifference and, therefore, all the possible worlds derived from the agent’s KB
are equally probable. The uncertainty about information is directly represented
in the KB (as statistical information, defeasible information and so on), not as
metadata.

We consider a possibilistic representation of beliefs to take uncertainty into
account. We assume the beliefs of an agent come from various information
sources, which may be more or less reliable (this has to do with information
validity) and more or less exhaustive (this has to do with completeness). The
validity level reflects the certainty that the information an agent stores on a
given topic is true, while the completeness level reflects the certainty that, on a
given topic, a missing piece of information is false.

The goal of our model is to support inferences, thus to answer queries, by
providing a weighted summary of the different (and possibly conflicting) opinions
of the available sources. An important point in our framework is that we provide
the user (requestor) with the different answers that can be obtained from the
information system in case of conflict. The user must then be aware of which
sources give which answer to his/her query, and with which certainty degree.

We adapt and extend the formalism by Dubois and Prade [12] for complete-
ness and validity of databases, to reason about the beliefs (opinions) of a source.
We give a possibilistic reasoning algorithm for those beliefs, whose complexity is
in the same class as reasoning on a crisp KB and less expensive than reasoning
on a general possibilistic belief base. Furthermore, we combine this solution with
a multi-source generalization of possibilistic logic [9] to summarize and reason
about the different (and possibly conflicting) beliefs of the sources.

The paper is organized as follows: the next section states the problem
we study; Sect. 3 gives then some background about the formal tools we use.
Section 4 explains how a gradual set of beliefs can be constructed from validity
and completeness metadata. Section 5 exploits multi-source possibilistic logic to
merge beliefs from multiple sources. Section 7 concludes the paper.

2 Problem Statement

The problem we study can be schematically depicted as in Fig. 1. We are given n
KBs K1, . . . ,Kn, fed by n imperfect, independent information sources s1, . . . , sn,
about which two kinds of metadata are known: for each topic, on the one hand,
we know to what degree a source si provides valid information. On the other
hand, we know to what degree information provided by source si is complete.
Here, we use the term knowledge base to mean a (possibly noisy and incomplete)
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Fig. 1. A schematic illustration of an abstract information system, consisting of n
knowledge bases Ki fed by n independent information sources si, with metadata about
their validity and completeness, whence a possibility distribution πi and a correspond-
ing possibilistic belief base Bi are constructed and used to answer queries

collection of facts, for which the open world assumption (OWA) holds. We answer
two important questions:

1. How can the facts contained in each KB Ki be combined with metadata about
the validity and completeness of its source si to construct a gradual belief base
Bi taking the uncertainty of Ki (due to its imperfection) into account?

2. How can the n belief bases be used to answer queries while merging (possibly
conflicting) information coming from the n sources?

The former is a problem of metadata aggregation, whereas the latter is a problem
of information (or, more properly, belief) fusion. We argue that possibility theory
provides suitable tools to solve both problems.

To illustrate our proposal, we will use simple examples inspired, much like
in [8], by an air travel planning application. One might suppose that some of the
KBs in the system would be fed with flight information directly by an airline
and some by an airport, each source being more authoritative about information
which falls directly under its control and less for other information.

3 Background

3.1 Knowledge Representation Language

For the sake of simplicity, we base our treatment on a decidable fragment of pure
(i.e., without function symbols and identity) first-order predicate logic, namely
the Schönfinkel-Bernays class of first-order formulas [5].

Definition 1 (Language L). Let LQF be the set of quantifier-free formulas
inductively defined as follows:
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– a term is either a variable or a constant (including literals denoting numbers,
times, character strings, etc.);

– if P is an n-ary predicate symbol and t1, . . . , tn are terms, then P (t1, . . . , tn)
is an (atomic) formula and P (t1, . . . , tn) ∈ LQF ;

– ⊥,� ∈ LQF

– if φ ∈ LQF , then ¬φ ∈ LQF ;
– if φ, ψ ∈ LQF then φ ∧ ψ ∈ LQF and φ ∨ ψ ∈ LQF .

L is the smallest language such that LQF ⊆ L and, if φ ∈ LQF and x1, . . . , xm,
y1, . . . , yn are variables, then

∃x1 . . . ∃xm∀y1 . . . ∀ynφ ∈ L.

A variable x is free in formula φ if it is not quantified; otherwise it is bound. A
formula without free variables is closed. A formula with free variables is open.
A formula not containing variables is ground.

The semantics of L can be defined as follows:

Definition 2. The Herbrand base of L is the set HL of all ground atoms in L.
An interpretation (or model) is a function I : HL → {0, 1}, which can also be
viewed as a subset of the Herbrand base, I ⊆ HL (the set of all atoms φ such
that φI = 1). We denote Ω = 2HL the set of all interpretations.

We observe that HL is finite, because there are no function symbols in L.

Definition 3 (Satisfaction). Let P be an n-ary predicate, φ, ψ ∈ L closed
formulas and I an interpretation of HL:

– |=I � and �|=I ⊥;
– |=I P (t1, . . . , tn) if and only if P (t1, . . . , tn) ∈ I;
– |=I ¬φ if and only if �|=I φ;
– |=I φ ∧ ψ if and only if |=I φ and |=I ψ;
– |=I φ ∨ ψ if and only if |=I φ or |=I ψ;
– |=I ∀xφ(x) if and only if |=I φ(c) for all constant c;
– |=I ∃xφ(x) if and only if |=I φ(c) for some constant c.

An open formula φ(x1, . . . , xn) is satisfied by I iff |=I ∀x1 . . . ∀xnφ(x1, . . . , xn).

It is a well-known result that the satisfiability of the formulas of L, besides
being decidable, is in the nexptime-complete complexity class [15].

We impose the restriction that only ground formulas of LQF without negation
and disjunction (which we shall call facts) can be stored in a KB (one does not
usually say, when stating facts, things like “Tom is not from NY” or “Tom is
from NY or LA”). We denote such restricted language Lfact.

Notice that, by Definition 2, the three languages Lfact ⊂ LQF ⊂ L share the
same identical Herbrand base HL.

Definition 4. Let φ, ψ ∈ L: φ |= ψ if and only if, for all I ⊆ HL, if |=I φ, then
also |=I ψ.
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L may be viewed as an abstraction of popular ways to encode information
used in state-of-the-art technologies, such as relational databases, datalog, and
RDF + OWL.

Example 1. The set of facts S ⊂ Lfact,

S = { Flight(AF1680),Origin(AF1680,CDG),Dest(AF1680, LHR),
Depart(AF1680, 07:25),Arrival(AF1680, 07:45),Airline(AF1680,AF) }

describes a morning flight connecting Paris Charles de Gaulle to London
Heathrow. Formula φ = ∃x(Flight(x) ∧ Origin(x,CDG) ∧ Dest(x, LHR)) states
that there is a flight connecting those two airports.

3.2 Possibility Theory and Possibilistic Logic

Possibility theory [11] is a mathematical theory of uncertainty that relies upon
fuzzy set theory [20], in that the (fuzzy) set of possible values for a variable of
interest is used to describe the uncertainty as to its precise value. At the semantic
level, the membership function of such set, π, is called a possibility distribution
and its range is [0, 1]. By convention, π(I) = 1 means that it is totally possible
for I to be the real world, 0 < π(I) < 1 means that I is only somehow possible,
while π(I) = 0 means that I is ruled out. A possibility distribution π is said to
be normalized if there exists at least one interpretation I0 such that π(I0) = 1.

Definition 5. (Possibility and Necessity Measures) A possibility distribution π
induces a possibility measure and its dual necessity measure, denoted by Π and
N respectively. Both measures apply to a classical set of interpretation S ⊆ Ω
and are defined as follows:

Π(S) = max
I∈S

π(I); (1)

N(S) = 1 − Π(S̄) = min
I∈S̄

{1 − π(I)}. (2)

In words, Π(S) expresses to what extent S is consistent with the available
knowledge. Conversely, N(S) expresses to what extent S is entailed by the avail-
able knowledge. Among the properties of Π and N induced by a normalized
possibility distribution on a finite universe of discourse Ω, we can mention, for
all subsets S ⊆ Ω:

1. Π(S) = 1 − N(S̄) (duality);
2. N(S) > 0 ⇒ Π(S) = 1; Π(S) < 1 ⇒ N(S) = 0.

Possibilistic logic [10] has been originally motivated by the need to manipu-
late syntactic expressions of the form (φ, α), where φ is a classical logic formula,
and α is a certainty level, with the intended semantics that N(φ) ≥ α, where N
is a necessity measure.

A possibilistic belief base B is a set {(φi, αi)}i=1,...,m of possibilistic logic
formulas. Clearly, B can be layered into a set of nested classical bases Bα = {φi |
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(φi, αi) ∈ B and αi ≥ α} such that Bα ⊆ Bβ if α ≥ β. Proving syntactically
B � (φ, α) amounts to proceeding by refutation and proving B ∪ {(¬φ, 1)} �
(⊥, α) by repeated application of the resolution rule (¬φ∨ψ, α), (φ∨ν, β) � (ψ∨
ν,min(α, β)). Moreover, B � (φ, α) if and only if Bα � φ and α > inc(B), where
inc(B) is the inconsistency level of B defined as inc(B) = max{α | B � (⊥, α)}.
It can be shown that inc(B) = 0 iff B0 is consistent, with B0 = {φi | (φi, αi) ∈
B}. Thus reasoning from a possibilistic base just amounts to reasoning classically
with subparts of the base whose formulas are strictly above the certainty level.

A possibilistic belief base B = {(φi, αi)}i=1,...,m encodes the constraints
N(φi) ≥ αi. B is thus semantically associated with a possibility distribution [10]

πB(I) = min
i=1,...,m

max(φI
i , 1 − αi),

where φI
i = 1 if I is a model of φi, and φI

i = 0 otherwise; πB is the largest
possibility distribution, i.e., the least specific distribution assigning the largest
possibility levels in agreement with the constraints N(φi) ≥ αi for i = 1, . . . , m.
The distribution πB rank-orders the interpretations I of the language induced
by the φi’s according to their plausibility on the basis of the strength of the
pieces of information in B. If the set of formulas B0 is consistent, then the
distribution πB is normalized. The semantic entailment is defined by B |= (φ, α)
iff ∀I, πB(I) ≤ π{(φ,α)}(I). Reasoning by refutation in propositional possibilistic
logic is sound and complete, applying the syntactic resolution rule. Namely, it
can be shown that B |= (φ, α) iff B � (φ, α) and inc(B) = 1 − maxI πB(I).

Algorithms for reasoning in possibilistic logic and an analysis of their com-
plexity, which is similar to the one of classical logic, multiplied by the logarithm
of the number of levels used in the necessity scale, can be found in [14].

4 Representing and Reasoning with Validity
and Completeness

When dealing with relational databases, only the statements explicitly present
in the database are considered as true (valid). The others are considered as
false—the closed world assumption (CWA). When dealing with more general
knowledge bases, i.e., sets of logical formulas, from which other formulas can be
deduced, the true statements are those explicitly represented in the KB, plus
those which can be inferred thanks to a reasoner. However, due to the OWA,
we cannot suppose that statements that cannot be inferred are false—the truth
status of some statements may be unknown in case of incomplete knowledge. In
fact, insofar as for any formula φ we have a tool to decide if φ can be inferred and
if ¬φ can be inferred, CWA makes no sense since when neither φ nor ¬φ can be
inferred, CWA would lead to a contradiction, unless we put syntatic restrictions
on φ, e.g., ¬φ cannot be expressed in the language.

In this section, we recall the notions of validity and completeness for dealing
with relational databases [8,12] and adapt them to the more general case of a
KB. We treat validity and completeness of information at the fine grain of a
topic, defined as follows.
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Definition 6. (Topic) Given a formula φ ∈ LQF without negation, the topic
T (φ) is the set of all the ground formulas that can be obtained by substituting all
the free variables in φ with all possible constants.

Example 2. The topic of “all flights departing from Heathrow” may be described
by the open formula Origin(x, LHR).

Let T be the set of topics and let K be a KB of formulas in Lfact. In practice,
K is a conjunction of ground atoms in HL.

Unlike for databases, in the case of a general KB, the OWA holds and log-
ical inferences can be performed. Therefore, we must think in terms of logical
entailment of formulas.

Example 3. Assume the following KB is given:
K = {Flight(AF1680),Origin(AF1680,CDG),Dest(AF1680, LHR),Airline

(AF1680,AF)} then K |= ∃x(Flight(x)∧Airline(x,AF)) (there is a flight operated
by AF), but K �|= ∃x∀y(¬Flight(y)∨Airline(y, x)) (all flights are operated by one
airline), because one cannot logically rule out other facts not contained in K (K
is not complete), such as, for instance, Flight(BA303) and Airline(BA303,BA).

In absolute terms, the notions of validity and completeness of a KB K with
respect to a topic may be defined as follows:

– K is valid with respect to a topic iff, for every formula φ in that topic, K |= φ
implies that φ is indeed true;

– K is complete with respect to a topic iff, for every formula ψ in that topic,
K �|= ψ implies that ψ is false.

A formula may be believed to different degrees. We suppose that these degrees
depend on both the degree of completeness of the set of facts contained in K and on
their validity, which depends on the reliability (or trustworthiness) or even safety
[7] of their information source. For example, information related to an Air France
flight should be complete if the source is the Air France carrier itself. However, the
completeness could be lesser if the source is a private travel agency with a partial
coverage about the current flights from the different companies including those
of Air France. Similarly, the degree of trust to be associated with information fed
by a clerk should be less than the one to be associated with information fed by a
supervisor. Still, we would like to emphasize that the way in which such degrees
are obtained is out of the scope of this paper. A good source in the literature about
trust can be, for example, [16], for a computational view of trust.

We assume that metadata about validity and completeness of information
stored in K is given in the form of two functions, Val and Comp, which associate
a degree of validity and completenes, respectively, to each topic.

Definition 7. Let Val : T → [0, 1] be such that, for all T ∈ T , Val(T ) is the
degree to which K contains valid information about topic T , which means, for
all formulas φ such that K |= φ and φ ∈ T , N(φ) ≥ Val(T ).

Definition 8. Let Comp : T → [0, 1] be such that, for all T ∈ T , Comp(T )
is the degree to which K contains complete information about topic T , which
means, for all formulas ψ such that K �|= ψ and ψ ∈ T , Π(ψ) ≤ 1 − Comp(T ).
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In practice, the Val and Comp functions may be implemented efficiently
by a hash table having the formulas representing the topics as keys; a missing
key would imply a degree of zero. Now, K plus the metadata provided by Val
and Comp allow us to compute the degree of possibility and necessity for any
arbitrary formulas φ and ψ as follows:

Π−(φ) = min
T :φ∈T

1 − Comp(T ), if K �|= φ; (3)

N+(ψ) = max
T :ψ∈T

Val(T ), if K |= ψ. (4)

Notice that Π− and N+ are associated to two distinct possibility distributions π+

(the least specific distribution induced by the necessity measure of Eq. 4) and π−

(the least specific distribution induced by the possibility measure of Eq. 3). We
now show that if K is consistent, intersecting π+ and π− yields a normalized pos-
sibility distribution π, for all models I, of the form π(I) = min{π+(I), π−(I)},
such that there is a single model I∗ with π(I∗) = 1. We recall that normalization
is the equivalent, within possibilistic logic, of consistency in crisp logic.

Let B a hypothetical possibilistic belief base corresponding to it. We now
prove that such a possibility distribution exists and is normalized.

Let HL be the Herbrand base constructed over L and Ω = 2HL be the set of all
interpretations. A possibilistic data base K+ will be a collection of pairs (gi, νi)
made of ground atoms gi ∈ HK ⊂ HL, and necessity levels obtained from validity
degrees as per Eq. 4. The uncertain completeness assumptions comes down to
the assumption of another (virtual) data base K− containing a collection of
pairs (¬gj , κj) made of all ground atoms gj ∈ H that do not appear in K+, and
necessity levels obtained from completeness degrees as per Eq. 3.

Theorem 1. There exists a normalized possibility distribution π : Ω → [0, 1] of
the form π(I) = min{π+(I), π−(I)}, such that there is a single model I∗ with
π(I∗) = 1, inducing the possibility and necessity measures of Eqs. 3 and 4.

Proof. As K+ contains only positive ground atoms gi ∈ HK , it is consistent. So
the possibility distribution π+ induced by K+ is normalised. Let K+

α be a cut of
K+. Its set of models is rectangular in the sense that it is of the form ∧νi≥αgi.
The set of models of possibility 1 corresponds to the largest conjunction. Likewise
we can consider K− that contains only negative ground atoms ¬gj , gj �∈ HK , and
is thus consistent as well. Let K−

α be a cut of K−. Its set of models is rectangular
in the sense that it is of the form ∧κj≥α¬gj . It is clear that everything behaves
as if the actual base were K+ ∪ K−. As it contains all literals in the negative
or positive form only once, there is a model with positive necessity, namely,
∧gi∈K+gi

∧ ∧gj∈K−¬gj with necessity at least min(mingi∈K+ νi mingj∈K− ¬κj .
Hence the possibility of this model is 1, and is unique since there can be at
most one model with positive necessity. The least specific possibility distribution
induced by K+ ∪ K− obviously enforces the original necessity degrees as all
formulas in K+ ∪ K− are logically independent from one another.

Given that such π exists, it is not important to know it or to represent one of
its corresponding possibilistic bases B explicitly, since K, its associated metadata
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Val and Comp, together with a classical reasoner are enough to compute any
possibilistic inference, as shown by the following algorithm:
Algorithm 1 (Inference from B).
Input: K ⊂ Lfact: a KB; φ ∈ L: a formula;
Output: N(φ).

1: α ← 0
2: if K |= φ then
3: for T ∈ T do
4: if φ ∈ T and α < Val(T ) then
5: α ← Val(T )
6: else if K �|= ¬φ then
7: for T ∈ T do
8: if ¬φ ∈ T and α < Comp(T ) then
9: α ← Comp(T )

10: return α.

Property 1. Algorithm 1 is correct (i.e., it computes N(φ)).

Proof. If K |= φ, Eq. 4 is applied; otherwise, Eq. 3 together with duality: N(φ) =
1 − Π(¬φ).

Property 2. The cost of Algorithm 1 is two classical inferences.

Proof. Algorithm 1 needs to execute at most two classical inferences: the one
in Line 2 and, in case K �|= φ, the one in Line 6. Checking whether a formula
belongs in a topic can be done in a purely syntactic fashion (linear in the length
of φ) and its cost is thus negligible.

Example 4. Let K be the same as in the previous example, with the following
metadata:

T Val(T ) Comp(T )

Origin(x, y) α β

Airline(x,AF) γ δ

There are four constants in K (AF, AF1680, CDG, and LHR) and four pred-
icates: Flight(·), Airline(·, ·), Dest(·, ·), and Origin(·, ·). Since there is no typing
of the constants in L, we thus construct the Herbrand base

HK = { Flight(AF), . . . , Flight(LHR),
Airline(AF,AF), . . . , Airline(LHR, LHR),
Dest(AF,AF), . . . , Dest(LHR, LHR),

Origin(AF,AF), . . . , Origin(LHR, LHR) },

with ‖HK‖ = 52, which gives ‖Ω‖ = ‖2HK‖ = 252 ≈ 4.5 · 1015 interpretations.
However, we do not need to explicitly construct π over such an impossibly huge
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domain. By applying Algorithm 1, we can easily compute, for instance:

N(Origin(AF1680,CDG)) = α,
N(¬Origin(AF1680,CDG)) = 0,

N(Airline(AF1680,AF)) = γ,
N(¬Airline(AF1680,AF)) = 0,

N(∃x(Flight(x) ∧ Origin(x, LHR))) = 0,
N(∀x(¬Flight(x) ∨ ¬Origin(x, LHR))) = β.

5 Merging Beliefs from Multiple Sources

Information is provided by different sources. So we need not only to keep track
of the certainty levels of the pieces of information, but also of their sources [9].
Keeping track of sources is especially important, in case of conflicting informa-
tion, to be able to report which sources support what opinions and thus give
the user the elements required for a choice. This is why we need a multi-source
generalization of possibilistic logic, like the one proposed in [9] and further devel-
oped in [4], to combine and reason about the belief bases obtained, as explained
in the previous section, by taking the validity and completeness metadata of the
source into account.

We shall denote the set of all the sources in the system by S.
A multi-source possibilistic logic formula is a pair (φ, F ), where φ is a logical

formula, and F ⊆ S is a fuzzy subset of the set of the sources in the system,
i.e., F belongs to the complete distributive lattice L = [0, 1]S, equipped with the
max-based union ∪, min-based intersection ∩, and, if we consider another fuzzy
set G ⊆ S, the inclusion F ⊆ G ⇔ ∀a ∈ S, F (a) ≤ G(a).

The intended meaning of a formula (φ, F ) is that formula φ is believed by
a source a at least to degree F (a). Each source believing φ somehow belongs
to the fuzzy set F . The certainty of φ, say C(φ), is then given by the maximal
degree of belief in φ associated to the sources in F , which believe φ to some
extent, and, for any source a ∈ S, we have that C(φ) ≥ F (a) (a believes that φ
is true at least at degree F (a)). Formulas of the form (φ, ∅) are not written (the
system only considers the formulas which are somehow believed by at least one
source).

Example 5. Assume there are three sources, S = {a, b, c}, where a is Air France,
b is British Airways, and c is the Charles de Gaulle airport. Now, let their belief
bases be:

φ F (a) F (b) F (c)

Dest(AF1680, LHR) 1 0 0.8

Depart(AF1680, 06:25) 0 0.5 0

Depart(AF1680, 07:25) 1 0 1

Arrival(AF1680, 07:45) 1 0.5 0
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Let us consider the particular fuzzy sets of sources of the form F = α/A,
defined as

(α/A)(a) =
{

α ∈ (0, 1], if a ∈ A;
0, if a ∈ A.

They correspond to a subset A of sources having the same lower bound α on
the certainty level of some considered formula. The following equivalence holds
between possibilistic logic bases:

{(φ, α/A), (φ, β/B)} ≡ {(φ, (α/A) ∪ (β/B))}. (5)

Example 6. We will thus have:

(Dest(AF1680, LHR), (1/{a}) ∪ (0.8/{c})), Depart(AF1680, 06:25), 0.5/{b}),
Depart(AF1680, 07:25), 1/{a, c}), Arrival(AF1680, 07:45), (1/{a})∪ (0.5/{b})),
Arrival(AF1680, 08:45), 0.8/{c})
A multi-source possibilistic base (which, in the context of this paper, repre-

sents a summary of the opinions of multiple sources) is defined as a finite set
(i.e., a conjunction) of multi-source possibilistic formulas.

Inference in multi-source possibilistic logic proceeds by refutation, as in
standard possibilistic logic: given a base B = {(φi, αi/Ai)}i=1,...,m, proving
B � (φ, F ) amounts to proving B ∪ {(¬φ,S)} � (⊥, F ) by repeated applica-
tion of the equivalence of Eq. 5 and of the resolution rule

(¬P ∨ Q,α/A), (P ∨ R, β/B)
(Q ∨ R,min(α, β)/(A ∩ B))

. (6)

The semantics of the multi-source possibilistic logic may be given in terms
of a generalization of possibility theory based on a fuzzy-set-valued possibility
distribution π : Ω → [0, 1]S. In the context of this work, Ω = 2HL . The fuzzy-
set-valued possibility distribution π associates to every interpretation I a fuzzy
set of sources for which I is possible; (π(I)) (a) is the degree to which source
a deems I possible. Distribution π is normalized if ∃I0 ∈ Ω : π(I0) = S. This
means that the sources are collectively consistent since there exists at least one
interpretation that all sources find fully possible. There exists another, weaker
form of normalization for such a distribution, which only expresses that the
sources are individually consistent, namely:

⋃
I∈Ω π(I) = S. For instance, the

multi-source possibilistic base B = {(φ, 1/A), (¬φ, 1/A)}, where A = S \ A, is
clearly not collectively consistent, but it is individually consistent. Indeed here
there is partition of the sources into two subsets, those in A that support φ and
those in A that support ¬φ.

The relevant possibility and necessity measures may be defined as follows:
for all formulas φ,

Π(φ) =
⋃

I∈Ω
I|=φ

π(I), N(φ) =
⋂

I∈Ω
I �|=φ

π(I). (7)
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The distribution associated with base B = {(φi, αi/Ai)}i=1,...,m is

πB(I) =

⎧
⎨

⎩

S, if I |= φ1 ∧ . . . ∧ φm;⋂

i:I �|=φi

(1 − αi)/Ai ∪ Ai, otherwise.

This reflects the fact that if a source in Ai believes with certainty αi that φi is
true, such a source can find possible an interpretation that violates φi only at a
level that is upper bounded by 1−αi. Multiple source possibilistic logic is sound
and complete for refutation, with respect to the above semantics [9].

We have now all the formal tools needed to solve the belief fusion problem
of providing a coherent answer to queries in presence of possibly conflicting
beliefs. The model we propose can process queries which take the form of a
formula φ ∈ L. If φ is closed, then the expected answer is just the fuzzy set of
sources according to which φ holds. If φ is open, the expected answer is a list
of substitutions of its free variables, annotated with the fuzzy set of the sources
that support it.

To answer a query, the answers provided by the n belief bases are aggregated
in a multi-source possibilistic base B = {(φi, αi/Ai)}i=1,...,m, which is then used
to compile the answer.

Example 7. Continuing the previous example, the result of query Dest(x, LHR)∧
Depart(x, y)∧Arrival(x, z) requesting all flights with destination London Heath-
row, together with their departure and arrival times, would be

x y z F (a) F (b) F (c)

AF1680 7:25 7:45 1 0 0

AF1680 7:25 8:45 0 0 0.8

or, in a more synthetic form,

x y z F

AF1680 7:25 7:45 1/{a}
AF1680 7:25 8:45 0.8/{c}

The result of query ∃xDest(x, LHR)∧Arrival(x, 8:45) asking whether a flight
exists with destination London Heathrow arriving at 8:45, would be, in synthetic
form, 0.8/{c}.

6 Related Work

Our proposal fills a gap at the intersection of two fields of in- vestigation, namely
distributed information systems and possibilistic logic.

The problem of reasoning about validity and complete- ness in relational
databases was first addressed by Demolombe [8] in the setting of modal logic.
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Recent work on collaborative access control in distributed datalog [1] shares
some common intuitions and concerns with our model. However, this app-
roach, which is based on provenance calculus [13], does not handle uncertainty
(although probabibistic c-tables are also encompassed by provenance calculus).
The approach proposed in the present paper is anyway more in the spirit of
possibilistic c-tables, which have been recently introduced in [18].

Finally, the idea of associating subsets of sources as supporting arguments to
answers has been suggested in [2] in the context of numerical information fusion.

7 Conclusion

We have presented a solution to construct a possibilistic belief base from a crisp
knowledge base using topical validity and completeness metadata. The main
result is that possibilistic inferences from such belief base can be performed at
the cost of two classical inferences, which is less than the cost of inference on
a general possibilistic belief base. Furthermore, our solution can be straightfor-
wardly adapted to KB representation standards like datalog and RDF + OWL.

We have also shown how to exploit the expressive power of multi-source
possibilistic logic to provide the user with a comprehensive logical summary of
the different opinions held by the sources. Nevertheless, it is likely that a user
might be happier with receiving less detailed information in response to her
queries. We see basically two directions that might be followed to alleviate the
cognitive load for the end user:

– give the user the option of specifying a maximum number k of answers, to be
used to select only the k most certain answers according to their supporting
sources, so that each answer be simply annotated with a crisp set of sources
that support it;

– if a taxonomy of sources is available (e.g., based on their sector, geographical
location, etc.), the sets of sources supporting an answer could be “linguisti-
cally synthesized” (in the sense of Zadeh’s [21]) by categorical labels, like “all
the airlines based in the UK” or “most airport operators”, which are certainly
easier to understand and process than extensive lists of sources.
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Abstract. We are interested in the aggregation of preference information
provided by several decision makers regarding the relative importance of
criteria. When a large number of decision makers are involved, they have
specific areas of expertise and express their preferences on possibly differ-
ent subsets of criteria. The standard aggregation methods do not apply
to this situation where the preference information of the decision makers
have different support. We consider four possible types of preference infor-
mation provided by the decision makers: binary preference relations com-
paring the relative importance of criteria, quaternary relations comparing
differences of relative importance between pairs of criteria, classification of
the difference of importance between any two criteria in predefined cate-
gories, and numerical values of the criteria weights. In the three first cases,
we use an extension of the relational analysis.

1 Introduction

Group Decision Making arises in many domains such as public policy making,
crisis management or complex system engineering. Each Decision Maker (DM)
expresses his preference on multiple criteria. We are in this context interested
in constructing a unique multi-criteria model representing a good compromise
among the individual preferences of all stakeholders. Let us consider the following
example.

Example 1. In crisis management, the assessment of the impact of mitigation
actions is complex as they have a potential impact on many sectors of activity.
At short term, evacuation and rescue efficiencies are critical. At mid-term, the
satisfaction of vital needs of citizens, efficiency of public services, and working
status of transport and telecom infrastructures are crutial. At long term, con-
sequences on economy and environment are important. The impact assessment
of mitigation actions depends thus on multiple criteria. The elicitation of such
multi-criteria model naturally involves several Decision Makers (DMs), such as
the Regional Operational Leader (DM1) in charge of crisis mitigation, the first
responder ambulance (DM2) and the road infrastructure operator (DM3). The
DMs do not have the same role. They have specific areas of expertise and express
their preferences on possibly different subsets of criteria, as illustrated in Table 1.
For instance, DM2 does not say anything on criteria c3, c4.
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 377–388, 2017.
DOI: 10.1007/978-3-319-67582-4 27
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Table 1. In this table, crosses are criteria on which a DM is not familiar with. DM2
(resp. DM3) provides preference information only on criteria c1 and c2 (resp. c2, c3, c4).
The numerical values are the values of the weights for the three DMs

c1: victim
dispatch
centre

c2: health
care
efficiency

c3: road
transport
efficiency

c4:
recovery
costs at
long term

DM1: Regional Operational
Leader

1

6

2

6

2

6

1

6

DM2: First responder
ambulance

1

3

2

3
× ×

DM3: Road infrastructure
operator

× 2

5

2

5

1

5

When numerical weights are available, we denote by wk
i the weight alloted

by DM k on criterion i. It is not easy to combine these weights wk to provide a
weight vector w representing a good consensus among DMs’ preferences. As these
weight vectors have different support, their aggregation through, for example,
an arithmetic or geometric mean does not make sense.

Weights wk and w are used in a quantitative multi-criteria model, such as a
weighted sum. Hence the weights shall correspond to an interval scale and even

a ratio scale. This means that the following quantities wk
i −wk

j

wk
l −wk

h

and wk
i

wk
j

shall be
well-defined. This allows for instance DM k to say that criterion c2 is twice as
more important than criterion c1 when wk

2
wk

1
= 2. We propose to construct the

consensual weights w given the wk’s, not by comparing or aggregating directly
the values of the weights wk, but by comparing the previous ratios (Sect. 6). In
Example 1, DM 2 says that criterion 2 is twice as more important than criterion 1,
which is what DM 1 also tells us. Moreover DMs 1 and 3 both say that criteria
2 and 3 are twice more important than criterion 4. Hence, the weights provided
by DM 1 are completely consistent with the preference information of DMs 2
and 3, so that weights w1 can be taken as the consensual weights w.

We have presented so far a situation in which the input information is directly
the criteria weights of the DMs. In practice, these numerical weights can be
constructed thanks to several techniques. The weakest assumption is that the
DMs provide a binary preference relation that simply compares the relative
importance of criteria. One looks then for a consensual binary relation (Sect. 3).
Numerical weights are obtained from an interval scale, which can be classically
constructed from a quaternary relation, saying that the difference of importance
between two criteria is at least as large as that for two other criteria. One can thus
assume that all DMs provide a quaternary relation, and we look for a consen-
sual quaternary relation (Sect. 4). A convenient way to derive these quaternary
relations, is to ask each DM to classify the difference of importance between
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any two criteria in predefined categories, as in the MACBETH approach [3]. We
look for a consensual assignment of pairs of criteria to categories (Sect. 5). In
these three cases, we use an extension of the relational analysis [21,22]. It aims
at minimizing the distance between the consensual relation and that provided
by the DMs.

The novelty of the paper lies in the aggregation of partial preference infor-
mation regarding the relative importance of criteria, where these partial prefer-
ences are expressed in ways that often used in multi-criteria decision making -
namely assignment of pairs of criteria to categories and numerical values. The
MACBETH approach is a very efficient and widely used approach to construct
numerical weights from decision makers [3]. It has been applied to many real
applications. The second case, where we assume we have directly the numerical
values of criteria, typically arises when each DM has used his preferred elicitation
method to construct his weights (MACBETH, AHP,. . .). In this case, we directly
consider the numerical weights. The two other preference models (namely binary
relation over criteria, and a quaternary relation) can be seen as intermediate
steps. We start with the simplest and most classical situation, where each DM
provides only a binary relation over criteria. The relational analysis is already
known in this context [21,22]. The only novelty here is to rewrite the problem
allowing incomplete binary relations. The extension of the relational analysis to
the quaternary relation, and to assignment of pairs of criteria to categories is
new. Our work is mostly based on the relational analysis as it is based in the
Condorcet criteria. Finally, when DMs provide numerical weights, we cannot
use anymore the relational analysis as we do not explicitly have (binary, qua-
ternary or categorization) relations. We propose a novel approach based on the
comparison of ratios.

2 Notation

The set of DMs and criteria are denoted by M = {1, . . . , m} and N = {1, . . . , n}
respectively. The preferences of the DMs are given over the parameters P =
{1, . . . , p} of a multi-criteria model on N . The values of the parameters are
described by a vector w = (w1, . . . , wp) satisfying some normalization and
monotonicity constraints. The parameters can be classically weights alloted to
the criteria, where P = N . In this latter case, the set of parameters fulfilling the
constraints is:

W(P ) =
{

w ∈ R
P : ∀i ∈ P wi ≥ 0 and

∑
i∈P

wi = 1
}

.

We will not explore in this paper situations where P contains more parameters –
as for instance for capacities.

As we have seen in Example 1, each DM has his own expertise and does not
express his preferences on all parameters. DM k provides his preferences only
on the subset P k ⊆ P of parameters. In Example 1, P 1 = {1, 2, 3, 4} = N ,
P 2 = {1, 2} and P 3 = {2, 3, 4}. The numbers in the table are the values of
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w1, w2, w3. The opinion of DM k is represented by a weight vector wk ∈ W(P k),
and the consensual weights are w ∈ W(P ).

3 Case of Binary Preference Relations

The simplest situation arises when the DMs providea binary relation on the
parameters in P . Each DM k ∈ M expresses his preferences only on the subset
P k of parameters, by a binary relation �k on P k, where i �k j (for i, j ∈ P k)
means that DM k find i at least as important as j. We wish to aggregate these
binary relations in order to produce an order relation � on P .

The problem of aggregating binary relations is very classical in social choice.
The well-known Arrow theorem shows that there is no ideal voting proce-
dure. This explains the diversity of existing voting procedures: Condorcet
method, Borda count, Smith set, Copeland tournament, plurality with a runoff,
KemenyYoung, . . . Each of them satisfies a different set of properties.

The fact that each DM provides a binary relation only on a subset of P , makes
the application of the voting procedures not possible or not relevant. There
is a recent literature in social choice and AI interested in voting procedures
with partial information. One is in particular interested in knowing whether
a given candidate is a necessary/possible winner or loser despite the missing
information from the voters [17]. A candidate is a necessary winner if he is
a winner according to the chosen voting rule, whatever the completion of the
incomplete voters’ preferences. If there is no necessary winner, one can wonder
what is the minimal number of queries to be asked to the voters in order to know
for sure the winner [8].

These concepts are not relevant in our case, as we cannot interpret the fact
that each DM expresses his preferences only on a subset of P as some miss-
ing information. In Example 1, the fact that DM2 does not express preference
information for criteria c2 and c3 is not a missing information, and we do not
look for some completion of DM2’ preferences on criteria c2 and c3. DM2 has no
legitimacy on these two criteria and we do not expect any preferences on them.
Hence we are not looking for a necessary winner. It does not make sense to try
all completions of �k given on P k extended to P .

The binary preference relations are described as Boolean relations:

∀i, j ∈ P, Rij =
{

1 if i � j
0 otherwise ∀i, j ∈ P k, Rk

ij =
{

1 if i �k j
0 otherwise

We will use a method based on the Condorcet principle (i.e. counting the number
of candidates beaten by candidate i minus the number of candidates beating i),
but without the possibility of having cycles (as in the Condorcet method). The
relational analysis realizes such a compromise [21,22]. It looks for a median weak
order � on P [16] which is the nearest to the partial preferences �k in the sense
of the L1 distance:

∑
k∈M

∑
i,j∈Pk

∣∣Rij − Rk
ij

∣∣. As the relations are Boolean, it
is equivalent to minimizing the sum of the squares of the errors:
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∑
k∈M

∑
i,j∈Pk

(
Rij − Rk

ij

)2
=

∑
k∈M

∑
i,j∈Pk

(
(Rij)2 − 2RijR

k
ij + (Rk

ij)
2
)

=
∑
k∈M

∑
i,j∈Pk

(
Rij − 2RijR

k
ij + Rk

ij

)

where the unknowns are terms Rij . Hence minimizing the previous functional
is equivalent to minimizing

∑
k∈M

∑
i,j∈Pk

(
1 − 2Rk

ij

)
Rij . We look for a weak

order R, and thus R satisfies reflexivity, completeness and transitivity. These
three conditions can be written as linear constraints [21,22]:

Rii = 1 ∀i ∈ P (Reflexivity) (1)
Rij + Rji ≥ 1 ∀i, j ∈ P (Completeness) (2)
Rih ≥ Rij + Rjh − 1 ∀i, j, h ∈ N (transitivity) (3)

The binary relation R over P is thus solution to the following Mixed Integer
Programming (MIP) [21,22]:

Minimize
∑
k∈M

∑
i,j∈Pk

(
1 − 2Rk

ij

)
Rij

under ∀i, j ∈ P Rij ∈ {0, 1}
(1), (2), (3)

(4)

There exists a heuristics to solve problem (4) [22]. It can be noted that min-
imizing the functional in (4) is equivalent to minimizing the Condorcet crite-
rion. Indeed, the complement of relations R and Rk are Rij = 1 − Rij and
R

k

ij = 1 − Rk
ij . We note that Rk

ij Rij + R
k

ij Rij = (2Rk
ij − 1)Rij − Rk

ij + 1. Hence

minimizing (4) is equivalent to maximizing
∑

k∈M

∑
i,j∈Pk

(
Rk

ij Rij + R
k

ij Rij

)
.

One looks thus at maximizing the similarity between R and the Rk’s, and that
between the complement of R and the complements of the Rk’s. This corresponds
to the Condorcet principle.

Constructing � from the �k’s is not sufficient to identify numerical weights w.
In this case, the DMs have to provide more preference information, e.g. quater-
nary relations (see next section).

4 Case of Quaternary Preference Relations

As already said, the parameters in P are typically numerical weights wi (i ∈ P )
used in a weighted sum. Hence the weights correspond to interval scales. Such a
scale is typically constructed given a binary relation and a quaternary relation.
For DM k ∈ M , a quaternary relation is relation ��,k on P k × P k such that
i, j ��,k l, h (for i, j, l, h ∈ P k) means that the difference of importance between
i and j is at least as large as that between l and h, i.e. wk

i −wk
j ≥ wk

l −wk
h. Each

DM k ∈ M is supposed to provide a binary relation �k on P k and a quaternary
relation ��,k on P k × P k.
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We wish to find a binary relation � on P , and a quaternary relation �� on
P × P . We first aggregate the �k’s to construct �, as in Sect. 3. We thus need
to determine �� given � and the ��,k’s.

Let us write the quaternary relations as Boolean relations: R�
ijlh = 1 (for

i, j, l, h ∈ P ) if i, j �� l, h and R�
ijlh = 0 otherwise; R�,k

ijlh = 1 (for i, j, l, h ∈ P k)
if i, j ��,k l, h and R�,k

ijlh = 0 otherwise. Following Sect. 3, we extend the relational
analysis to quaternary relations. To this end, let us consider:

∑
k∈M

∑
i,j,l,h∈Pk

(
R�

ijlh − R�,k
ijlh

)2

=
∑
k∈M

∑
i,j,l,h∈Pk

(
R�

ijlh − 2R�
ijlhR�,k

ijlh + R�,k
ijlh

)

Hence minimizing this functional is equivalent to minimizing
∑

k∈M

∑
i,j,l,h∈Pk(

1−2R�,k
ijlh

)
R�

ijlh. A quaternary relation R� is representable by an interval scale
when there exist a weight vector w such that

R�
ijlh = 1 ⇐⇒ wi − wj ≥ wl − wh. (5)

According to [18, Theorem 2, Sect. 4.4], relation (5) holds when 〈N × N,R�〉 is
an algebraic-difference structure, i.e. it satisfies the following relations:

〈N × N,R�〉 is a weak order (6)
If R�

ijlh = 1, then R�
hlji = 1 (7)

If R�
iji′j′ = 1 and R�

jhj′h′ = 1 then R�
ihi′h′ = 1 (8)

and two last technical (archimidean) conditions that are not relevant in the case
of discrete scales. Relation (6) means that R� is reflexive (R�

ijij = 1 for all
i, j ∈ N), complete (for all i, j, l, h ∈ N , we have R�

ijlh = 1 or R�
lhij = 1 [or

both]) and transitive (if R�
iji′j′ = 1 and R�

i′j′i′′j′′ = 1 then R�
iji′′j′′ = 1). These

three conditions can be written as linear constraints:

R�
ijij = 1 ∀i, j ∈ N (Reflexive) (9)

R�
ijlh + R�

lhij ≥ 1 ∀i, j, l, h ∈ N (Complete) (10)

R�
iji′′j′′ ≥ R�

iji′j′ + R�
i′j′i′′j′′ − 1 ∀i, j, i′, j′, i′′, j′′ ∈ N (transitive) (11)

Relation (7) can be written in the linear form

R�
hlji ≥ R�

ijlh ∀i, j, l, h ∈ N (12)

Moreover, (8) can be put in the form

R�
ihi′h′ ≥ R�

iji′j′ + R�
jhj′h′ − 1 ∀i, j, h, i′, j′, h′ ∈ N (13)

Finally R� shall be consistent with R (i.e. �). These conditions are given in [18,
Definition 1 and Theorem 1, Sect. 4.4]:

[
i � j and j � h

]
=⇒

[
R�

ihij = 1 and R�
ihjh = 1

]
(14)

[
i � j, j � h, i′ � j′, j′ � h′, R�

iji′j′ = 1 and R�
jhj′h′ = 1

]
=⇒ R�

ihi′h′ = 1

(15)

Relation (15) is already included in (8).
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We introduce the following linear optimization problem:

Minimize
∑
k∈M

∑
i,j,l,h∈Pk

(
1 − 2R�,k

ijlh

)
R�

ijlh

under ∀i, j, l, h R�
ijlh ∈ {0, 1}

(9), (10), (11), (12), (13), (14)

(16)

5 Case of Quaternary Preference Relations Expressed
by Categories

A convenient way to express a quaternary relation is to use categories, such as
in the MACBETH method [3]. We assume that we have t categories {1, . . . , t}
of intensity of preferences ranging from category 1 (very small preference) to t
(extreme preference). Each DM k ∈ M is supposed to provide Boolean relations
Ck,≥s and Ck,≤s such that Ck,≥s

ij = 1 (resp. Ck,≤s
ij = 1) if DM k finds that the

difference between the importance of i and j belongs to a category greater or
equal (resp. lower or equal) to s.

We assume that each DM k provides the binary relations �k, Ck,≥s and Ck,≤s

(s ∈ {1, . . . , t}) on P k. We use the approach of Sect. 3 to construct � from the
�k’s. We now wish to construct at the same time the consensual quaternary
relation ��, and the category binary relations C≥s and C≤s, given �, Ck,≥s

and Ck,≤s. We need to enforce some conditions on C≥s and C≤s.
We have first some monotonicity conditions. If C≥s

ij = 1, then C≥s−1
ij = 1. If

C≤s
ij = 1, then C≤s+1

ij = 1. Then

∀i, j ∈ P ∀s ∈ {2, . . . , t} C≥s
ij ≤ C≥s−1

ij (17)

∀i, j ∈ P ∀s ∈ {1, . . . , t − 1} C≤s
ij ≤ C≤s+1

ij (18)

We have the interval consistency condition saying that if C≥s
ij = 1 and s > s′

then C≤s
ij = 0. Hence

∀i, j ∈ P ∀s, s′ ∈ {1, . . . , t} with s > s′ C≥s
ij + C≤s′

ij ≤ 1 (19)

If C≥s
ij = 1 and C≤s−1

lh = 1, then R�
ijlh = 1. Hence

∀i, j, l, h ∈ P ∀s ∈ {2, . . . , t} R�
ijlh ≥ C≥s

ij + C≤s−1
lh − 1 (20)

We wish to minimize the following functional

∑
k∈M

∑
i,j∈P

∑
s∈{1...,t}

[(
C≥s

ij − Ck,≥s
ij

)2

+
(
C≤s

ij − Ck,≤s
ij

)2
]
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Hence we need to solve the MIP (where the unknowns are Ck,≥s
ij , C≥s

ij and R�
ijlh)

Minimize
∑
k∈M

∑
i,j∈P

∑
s∈{1,...,t}

[(
1 − 2Ck,≥s

ij

)
C≥s

ij +
(
1 − 2Ck,≤s

ij

)
C≤s

ij

]

under ∀i, j, l, h R�
ijlh ∈ {0, 1}

∀i, j ∀s ∈ {1 . . . , t} C≥s
ij , C≤s

ij ∈ {0, 1}
Conditions on R� : (9), (10), (11), (12), (13), (14)
Conditions on C≥s and C≤s : (17), (18), (19), (20)

(21)

6 Case of Numerical Weights

6.1 Consistency Among Expert Opinions

We assume in this section that the DMs directly provide weights wk, that need
to be aggregated to obtain a synthetic weight vector w on P . One could think of
using an aggregation function, such as a simple arithmetic mean or an Ordered
Weighted Average [26], to deduce wi from the wk

i ’s. The main difficulty we face
is that the support P k of the expert weights wk are different from one DM to
another one. As the weights sum-up to one (

∑
i∈Pk wk

i = 1), their average value
for DM k is 1

|Pk| . Thus the weights wk
i and wk′

i of two different DMs k and k′

at a same parameter i are not necessarily directly comparable. This makes the
aggregation of weights wk not trivial. For instance, taking for wi the average

value
∑

k∈M : i∈Pk wk
i

|{k∈M : i∈Pk}| of the weights wk
i over all DMs k such that i ∈ P k is not

adequate.
Weights wk and w are used in a quantitative multi-criteria model, such as

a weighted sum. In order to make sense, the weights shall correspond to an

interval scale and even a ratio scale. Hence the following quantities wk
i −wk

j

wk
l −wk

h

and
wk

i

wk
j

shall be well-defined and shall make sense. This allows for instance to say

that a parameter is twice as more important than another one, when wk
i

wk
j

= 2.

We note that ratio wk
i

wk
j

can be seen as a special case of ratio wk
i −wk

j

wk
l −wk

h

with

j = h = 0, by adding a fictitious parameter wk
0 := 0. We thus set P = P ∪ {0},

P
k

= P k ∪ {0}. We also set

W(P ) = {w ∈ R
P : w0 = 0 and wP ∈ W(P )},

where wP is the restriction of w on P .

Definition 1 (Consistency). We say that the DMs’ opinions (wk)k∈M (with
wk ∈ W(P

k
) for every k ∈ M) are consistent if

∀i, j, l, h ∈ P ∀k, k′ ∈ M with i, j, l, h ∈ P
k ∩ P

k′ wk
i − wk

j

wk
l − wk

h

=
wk′

i − wk′
j

wk′
l − wk′

h

(22)
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In Example 1, the opinions of experts are consistent as

w1
2

w1
1

= 2 =
w2

2

w2
1

,
w1

2

w1
3

= 1 =
w3

2

w3
3

,

w1
2

w1
4

= 2 =
w3

2

w3
4

,
w1

2 − w1
4

w1
3 − w1

4

= 1 =
w3

2 − w3
4

w3
3 − w3

4

.

Definition 1 implies the existence of w ∈ W(P ) such that

∀k ∈ M, ∀i, j, l, h ∈ P
k wi − wj

wl − wh
=

wk
i − wk

j

wk
l − wk

h

. (23)

In Example 1, w1 is the resulting weight vector.

6.2 Construction of the Parameters’ Value

The consistency condition is very strong and unlikely to be fulfilled. We wish to
identify how to relax equality (23) when the DMs are not consistent. The first
idea is to minimize quantities

∣∣∣∣∣
wi − wj

wl − wh
− wk

i − wk
j

wk
l − wk

h

∣∣∣∣∣ , (24)

where the unknowns are the components of vector w. In order to have a linear
relation in w, we can rather use quantity

∣∣∣∣∣wi − wj − wk
i − wk

j

wk
l − wk

h

(wl − wh)

∣∣∣∣∣ , (25)

or even ∣∣(wi − wj) (wk
l − wk

h) − (wl − wh) (wk
i − wk

j )
∣∣ , (26)

in order to avoid having a denominator. Terms (25) and (26) are two different
normalizations of (24). We will keep (26) as there is no problem with potential
null denominators. We wish thus to minimize the following functional:

∑
k∈M

∑

i,j,l,h∈P
k

∣∣(wi − wj) (wk
l − wk

h) − (wl − wh) (wk
i − wk

j )
∣∣b

where b is the power parameter. In the case of binary relations, we saw that the
results are the same for any power b. In general, the minimization of sum of L1

distances (b = 1) corresponds to the geometric median problem. This problem
does not have an analytical solution, but can be approximated by a fixed point
algorithm. In our case, we obtain a Linear Problem (LP):
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Minimize
∑
k∈M

∑

i,j,l,h∈P
k

εk
i,j,l,h

under w ∈ W(P )
∀k ∈ M, ∀i, j, l, h ∈ P

k

−εk
i,j,l,h ≤ (wi − wj) (wk

l − wk
h) − (wl − wh) (wk

i − wk
j ) ≤ εk

i,j,l,h

∀k ∈ M, ∀i, j, l, h ∈ P
k

εk
i,j,l,h ≥ 0

(27)
In general, the minimization of sum of L2 distances (b = 2) has an analytical

solution, which is the centroid. In our case, the weights w are thus solutions to
the convex optimization problem:

Minimize
∑
k∈M

∑

i,j,l,h∈P
k

(
(wi − wj) (wk

l − wk
h) − (wl − wh) (wk

i − wk
j )

)2

under w ∈ W(P )
(28)

7 Related Works and Future Works

7.1 Related Works

There are several works supporting Group Decision Making based a Multi-
Criteria Decision Aid [24]. There are two classes of such approaches. The first
one consists directly in supporting the GDM activity, by helping to find the best
compromise option given a set of alternatives [13]. The alternatives are evaluated
thanks to the DMs’ preference models. Voting processes can be applied when no
interaction is required [1]. In the opposite situation, negotiation protocols can be
recommended [14]. A clustering approach can allow to form coalitions of DMs
having relatively similar preferences [19].

The second kind of approaches aims first at synthesizing all DMs’ preference
models into one unique preference model that will be considered as representative
of the whole group. The alternatives are then evaluated by this group model.
The group weight can be obtained by simple aggregation functions, such as
the geometric mean [4,20], or a centroid function [23]. A compromise weight
minimizing the conflict among the DMs’ preferences is computed thanks to linear
programming in [25]. The case of ELECTRE-TRI model for sorting problems is
analysed in [5]. Some works consider the imprecision of the individual preferences
to identify the common model. The aggregation of partial rankings provided by
the DMs is proposed in [11]. The common model can also be obtained by a
robust approach [7]. This allows comparing the individual models to the group
opinion [7].

7.2 Future Works

We have focused in this paper the elicitation process of some parameter vector P
by a group of decision makers. We have intrepreted the vector of parameters P as
weights of criteria, such as in the weighted sum. It would be interesting to extend
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our approach to other Multi-Criteria Decision Making models. One can think of
a utility function associated to an attribute [3]. One can also think of an additive
utility model [15]. Another possibility is to give weights not only to single criteria
but to any subset of criteria, which corresponds to the concept of capacity [6].
Capacities are used in the Choquet integral [6,12]. A last model we can mention
is the Generalized Additive Independence (GAI) model [2,9,10]. How could our
approach be extended to these models? These models are characterized by a
vector of parameters P ′. The set W(P ′) of admissible parameters’ vectors is
a convex polytope. Compared to W(P ), we need to add some monotonicity
conditions – saying for instance that the capacity is monotone or that the utility
function is additive. The linear program (4) (Sect. 3) can be extended, by adding
monotonicity conditions on R relation. The same can be done with quaternary
relation – see (16) (Sect. 4) –, or with quaternary preference relations expressed
by categories – see (21) (Sect. 5). The case where we are given the numerical
values of parameters P ′ is relatively straightforward extension of (28) (Sect. 6),
as we basically just need to replace W(P ) by W(P ′).

The proposed method to find a consensus among preferences expressed by
several DMs is basically an optimization approach, where we are looking for a
model minimizing some distance with the provided information. An alternative
approach to find a consensus is the so-called axiomatic characterization of the
consensus rules (see e.g. [1]). For future works, we will explore which axioms are
satisfied by our proposal. This is not an easy task. The relational analysis is the
solution that is the median points among the DMs’ preferences.

For future works, we will also implement the proposed methods and study
their relevance by simulations. There is no current existing proposal addressing
points raised in Sects. 4, 5 and 6. The problem is to assess the quality of the
aggregation returned by the algorithms. We will start with some prototypical
examples where an intuition can be provided on what should be the consensual
result.
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Abstract. Link prediction is the problem of inferring future or miss-
ing relationships between nodes in a given network. This problem has
attracted great attention since it has a large number of applications. In
this problem, there is always some degree of uncertainty because the
absence of a link between a pair of nodes may be the result of the non-
existence of the link or the result of it not being observed but actually
existing. In this paper, we propose a local link prediction technique that
aggregates the observed evidence to estimate the probability of each
possible non-observed link. We also show how our scalable link predic-
tion technique achieves higher precision than other well-established local
techniques in several networks from very different domains.

Keywords: Link prediction · Uncertainty · Evidence aggregation

1 Introduction

A problem that commonly appears in a large number of domains is, given a set
of observed relationships or interactions between entities, predicting the most
likely non-observed links. This task is known as the link prediction problem [1].
It has been applied with great success to a large number of tasks, including the
prediction of interactions among proteins [2], the prediction of future author
collaborations [3], the suggestion of people we may know in social networks [1],
or the recommendation of commercial products [4].

Very different approaches have been proposed to deal with the link predic-
tion problem [5]. In this work, we focus our attention on local techniques, which
take into account only local information, leading to highly scalable algorithms.
Efficiency is paramount because link prediction is commonly applied to massive
networks, where scalability is a crucial requirement. Almost all local techniques
consider the shared neighbors between nodes to estimate the likelihood of the
existence of a link, weighting the contribution of each shared neighbor accord-
ing to certain feature (such as the degree of the shared node). However, different
networks may require different weightings for each shared neighbor contribution,
instead of the fixed weighting most local techniques use. To estimate the contri-
bution of each shared neighbor, we must take into account the uncertainty that
c© Springer International Publishing AG 2017
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is present due to the fact that an unobserved link may indicate the non-existence
or the actual existence of the link.

We propose a novel local link prediction technique that takes the features
of the current network into account and weighs the contribution of each node
according to the expected contribution for nodes of its degree. Despite our tech-
nique requiring sampling the whole network to estimate the required parameters,
this process can be done efficiently and changes in the network can be handled
locally. We propose a probabilistic framework where the degree of belief on the
existence of a link is increased as more evidence is accumulated in terms of
shared neighbors.

This paper is organized as follows. Our proposal is described in full detail
in Sect. 2. An empirical evaluation and the results we obtained are discussed in
Sect. 3. Finally, conclusions extracted from our work are presented in Sect. 4.

2 Method

Let us assume that we have access to a snapshot of a complex network, observing
links between nodes. Lxy denotes the event corresponding to the existence of a
link between nodes x and y. Γx denotes the set of neighbors of a node x and
Γx∩y denotes the set of shared neighbors of a pair of nodes x and y.

According to Bayes’ theorem, we can express the complementary probability
of a link between nodes x and y given the set of shared neighbors Γxy as

P (Lxy|Γx∩y) =
P (Γx∩y|Lxy)P (Lxy)

P (Γx∩y)
.

Like most local link prediction techniques, we assume independence among
shared neighbors, thus we can rewrite the previous expression as

P (Lxy|Γx∩y) =
∏

z∈Γx∩y

P (z|Lxy)
P (z)

P (Lxy).

According to Bayes’ theorem, the term P (z|Lxy)
P (z) is equal to the term P (Lxy|z)

P (Lxy)

and, after applying this substitution, we obtain the expression

P (Lxy|Γx∩y) =
∏

z∈Γx∩y

P (Lxy|z)
P (Lxy)

P (Lxy).

According to basic probability axioms, the probabilities of an event and of its
complementary event always total 1; thus, we can express the previous equation
in terms of the probability of the existence of links as

P (Lxy|Γx∩y) = 1 −
∏

z∈Γx∩y

1 − P (Lxy|z)
1 − P (Lxy)

(1 − P (Lxy)),
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where P (Lxy|z) is the probability of the existence of a link between x and y given
the shared neighbor z. This value can be estimated using different methods. In
this work, we propose the estimation of this value as the probability of the
existence of a link given a shared neighbor of the same degree than z in the
network, which is computed as

P (Lxy|z) =
1

|N|Γz||
∑

k∈N|Γz|

∑
i�=j,i,j∈Γk

P (Lij)
|Γk|(|Γk| − 1)

,

where N|Γz| is the set of nodes with the same degree than z. It is important to
note that this value has to be computed only once for each node degree value,
rather than once for each shared neighbor.

For each pair of nodes x and y, we assume P (Lxy) = 1 if a link is currently
observed. Since we are only interested in ranking links, the value of P (Lxy) when
no link is observed is irrelevant for us provided that we keep it smaller than 1.
Applications requiring a true probability estimation may need to estimate the
prior probabilities of unobserved links.

In order to analyze the computational complexity of the proposed approach,
we divide the analysis in two phases. In the first phase, the average probability
of a link given a shared neighbor of a particular degree is computed. This phase
has a computational complexity O(vd2), where v refers to the number of nodes
in the network and d refers to the degree of these nodes. Once these values
are computed, the computational complexity of the second phase, regarding the
estimation of the likelihood of a link, is just O(2d), since shared neighbors can
be efficiently computed using hash sets. As we can see, our method is highly
scalable, since the range of node degrees tends to be much smaller than the
number of nodes in a complex network.

3 Evaluation and Results

In order to measure the performance of our proposal, we performed a battery
of tests by applying our technique to networks gathered from very different
domains. We considered the following networks: a social network from a web-
site called Advogato (ADV, [6]), a protein-protein interaction network in bud-
ding yeast (YST, [7]), a network of e-mail exchanges between university mem-
bers (EML, [8]), the metabolic network of Caenorhabditis elegans (CEG, [9]), a
human protein-protein interaction network (HPD, [10]), four citation networks
(CGS, LDG, SMG, ZWL, [11]), and a power distribution network (UPG, [12]).

Our experimentation consisted of a 5-fold cross-validation where links in each
network were randomly divided into five sets of the same size n. Considering each
set as the test set, we used the four remaining sets as the training network to
predict the most probable n links. As performance score, we used precision,
which is computed as

precision =
true positives

true positives + false positives
=

true positives

n
,
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where a link instance is classified as positive if it is ranked within the top n links,
and negative otherwise. Results from each run were averaged to obtain a single
performance score for each method and network combination.

We compared our approach to some well-known similarity-based local link
prediction techniques. Despite their simplicity, these techniques have shown to
obtain good results in practice and they are usually considered to be reasonable
choices for link prediction. The techniques included in our comparison are the
following ones:

– Common neighbors (CN): In this method, the likelihood of the existence
of a link between two nodes is proportional to the number of shared neigh-
bors between both nodes [1]. This method was proposed after observing a
correlation between the number of shared neighbors of two nodes and the
probability that they will collaborate in the future in scientific collaboration
networks. It is computed as

P (Lxy) ∝ |Γx ∩ Γy|.
– The Adamic-Adar index (AA): This method measures the likelihood of

the link between two entities based on the logarithmically-penalized degree of
each shared neighbor. This index weighs nodes with low degree much heavier
than nodes with high degree, assuming that nodes with few neighbors are
more likely to contribute to the formation of a link between a pair of nodes
of their neighborhood [13]. It is computed as

P (Lxy) ∝
∑

z∈Γx∩Γy

1
log |Γz| .

– The Resource Allocation index (RA): This method is similar to the
Adamic-Adar index, yet considering the degree of each shared neighbor with-
out a logarithmic penalization [14]. RA models the resource allocation process
that takes place in complex networks, where two unconnected nodes exchange
units of resources by equally distributing them among their neighbor nodes.
The amount of exchanged resources between a pair of nodes can be viewed
as a measure of similarity. It is defined as

P (Lxy) ∝
∑

z∈Γx∩Γy

1
|Γz| .

– Local Näıve Bayes (LNB): This method estimates the role or degree of
influence of each shared neighbor using probability theory [15], computing
the probability of the existence of a link between a pair of nodes as

P (Lxy) ∝
∑

z∈Γx∩Γy

f(z) log (oRz)

where o is a constant for the network computed as

o =
punconnected

pconnected
=

1
2 |V |(|V | − 1)

|E| − 1
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and Rz is the role or influence of the node computed as

Rz =
2|{ex,y : x, y ∈ Γz, ex,y ∈ E}| + 1
2|{ex,y : x, y ∈ Γz, ex,y /∈ E}| + 1

.

The function f(z) measures the influence of the shared neighbor. The authors
suggest f(z) = 1 from common neighbors, f(z) = 1

log |Γz| from the Adamic-
Adar index, or f(z) = 1

|Γz| from the resource allocation method.

The results we obtained using each technique for each dataset are shown
in Table 1. Our technique is listed as PLLP, an acronym for probabilistic local
link prediction. It can be observed that our technique achieves a higher average
precision than previous techniques for all the complex networks considered in
our experimentation.

Table 1. Precision obtained by each method (rows) for each dataset (columns). The
best results are highlighted in bold

ADV YST EML CEG CGS HPD LDG SMG UPG ZWL Average

CN 0.1489 0.0876 0.1304 0.1119 0.1810 0.0627 0.1113 0.1357 0.0296 0.1516 0.11507

AA 0.1783 0.1080 0.1923 0.1532 0.3985 0.0828 0.1662 0.1581 0.0165 0.2110 0.16649

RA 0.1821 0.0876 0.1800 0.1448 0.4178 0.0669 0.1633 0.1407 0.0132 0.2075 0.16039

LNB-CN 0.1717 0.1189 0.1912 0.1569 0.2507 0.0850 0.1529 0.1583 0.0425 0.2005 0.15286

LNB-AA 0.1906 0.1190 0.1972 0.1555 0.4068 0.0867 0.1723 0.1597 0.0176 0.2158 0.17212

LNB-RA 0.1874 0.0954 0.1778 0.1462 0.4186 0.0658 0.1615 0.1471 0.0150 0.2067 0.16215

PLLP 0.1875 0.1141 0.1982 0.1536 0.4273 0.0874 0.1729 0.1593 0.0347 0.2167 0.17517

4 Conclusions

In this paper, we have proposed a novel technique for link prediction. Our method
aggregates local evidence to estimate the probability of an uncertain event such
as the existence of a link. It works by increasing the degree of belief for each
potential link by aggregating the evidence provided by each shared neighbor.
Our proposal achieves better average precision results than some well-established
local link prediction techniques for several networks from very different domains.
Local Näıve Bayes outperforms our technique for certain networks under specific
configurations. However, our method performs better in average without the
need of testing parameters. Instead of including ad hoc parameters, our method
achieves better results reasoning from first principles.

In future work, we will explore and evaluate alternative approaches to the
estimation of the probability of a link given a shared neighbor. Models to esti-
mate the prior probability of links will also be studied, since they can be useful
for those applications requiring true probability estimations.

Acknowledgments. This work is partially supported by the Spanish Ministry of
Economy and the European Regional Development Fund (FEDER), under grant
TIN2012-36951 and the program “Ayudas para contratos predoctorales para la for-
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Abstract. Gait recognition involves the automatic classification of
human people from sequences of data about their movement patterns.
This paper describes our ongoing work in the development of a gait recog-
nition system using Microsoft Kinect data and based on fuzzy ontologies
to manage the imprecision of the data and to improve the system scala-
bility.

Keywords: Gait recognition · Fuzzy ontologies · Kinect sensor

1 Introduction

The problem of gait recognition consists of automatically classifying human peo-
ple by analyzing data about their movement patterns. Gait recognition has many
applications, including security (e.g. authentication and surveillance) and medi-
cine (e.g. automatic support for the diagnosis of neurological diseases). Fur-
thermore, it has several advantages with respect to other biometrical measures
for human recognition. For example, it is non-intrusive, does not require any
collaboration from the subject, and involves less confidential data than other
techniques, such as face recognition.

In the last years we have witnessed an increase in the number of low cost
sensors to capture pose sequences to compute biometrical measures related to
the human gait. An example is Microsoft Kinect, a motion sensing input device
originally conceived as a peripheral for video game consoles.

Although there is a notable effort in the gait recognition using Microsoft
Kinect (see Sect. 2 for a discussion), existing approaches generate big amounts
of data which are difficult to understand by a non-expert or to reuse between dif-
ferent applications. For this reason, we advocate for the combination of Semantic
Web technologies to represent human Microsoft Kinect data and the biometri-
cal features for human gait motion analysis computed using them. Due to the
intrinsic imprecision of the original data, we propose to use fuzzy ontologies to
use fuzzy sets rather than precise crisp values at production stage.

This paper describes our ongoing work. The main objectives of our research
and the main contributions so far can be summarized as follows:
c© Springer International Publishing AG 2017
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– Our system uses fuzzy ontologies to represent Microsoft Kinect data and
biometrical features for human gait motion analysis.

– Our data segmentation is based on steps rather than on full sequences.
– We reduce the number of variables with respect to previous works.
– At production stage, data corresponding to a new recording can be compared

only with a customizable number of candidates from our database.
– We plan to provide a public database with data obtained using Kinect V2.

The remainder is organized as follows. Section 2 overviews some related work.
Then, Sect. 3 details the architecture of our system and summarizes some pre-
liminary results. Section 4 ends with conclusions and ideas for future research.

2 Related Work

This section summarizes most of the previous work on gait recognition using the
Kinect sensor or on the use of ontologies to represent Kinect data.

Gait recognition and Kinect. After the commercial launch of Kinect in 2011, sev-
eral research papers have approached the gait analysis for human recognition.
One of the first approaches is [9], where the authors observed promising results
concerning person recognition using a Naive Bayes classifier and a simple set of
features obtained from nine people with a Kinect sensor. A real time approach
for Kinect based recognition is presented in [6]. In that case the features are
characterized as static (height, length of bones) or dynamic (angles of joints).
Several distances where used between these features and finally a nearest neigh-
bor classifier obtained around 80% accuracy for ten people. In [8] a framework for
gait-based recognition is proposed, based on a publicly available Kinect dataset
with 30 people. The authors extract 16 dimensional vectors from the dataset and
use several dissimilarity tests and achieve 93.29% identification rate and 99.11%
gender recognition rate. Some steps further are taken in [7] with a new method
for fusing information from Riemannian and Euclidean features representation
that achieves 95.67% accuracy. Moreover, the authors mention a new dataset for
gait recognition captured from 30 people using the more recent Kinect V2 but,
unfortunately, it is not currently publicly available.

Ontologies and Kinect. There have also been some previous approaches to rep-
resent Kinect-related data using classical ontologies [4] and fuzzy ones [3]. The
authors even developed the so-called Kinect ontology. However, despite this
generic name, their approach is strongly focused on a different application, recog-
nition of human activity, and cannot be reused in our scenario. For example,
Kinect ontology was not designed to encode directly the information directly
obtained from the sensors, and its fuzzy extension does not discuss a fuzzy rep-
resentation of the relevant features for gait recognition.



A Fuzzy Ontology-Based System for Gait Recognition Using Kinect Sensor 399

3 Architecture of the System

The proposed system has four main components: a data capture phase, a pre-
processing phase, an ontology and a decision phase, as shown in Fig. 1.

Fig. 1. Architecture of the system

Data Capture. The Data Capture module interacts directly with the sensor
and collects raw data from a Kinect sensor. The Kinect sensor actually integrates
several sensors (e.g., RGB camera, depth sensor, or infrared sensor) from which
several joint points of the human skeleton are obtained. These joint points are
retrieved as points in a 3D-space where the coordinate origin is located at the
center of the Kinect sensor. As an example, Fig. 1(Data Capture) shows both
the feet and the spine base values in the depth axis (z-axis) of a person walking
two steps. Due to inaccuracy of the sensor, the coordinates for each joint point
are not precise, so it is needed to prune the data that can be incorrectly taken by
the sensor. The module explained in the next section is entrusted of such task.
This inaccuracy will be also managed by the fuzzy ontology.

Data Preprocessing. Next, the data captured in the previous phase are pre-
processed. The data preprocessing module contains several algorithms for steps
segmentation, noise reduction, and feature extraction.

Our system uses a step-based identification approach rather than using entire
sequences. Sequence means in this context a Kinect register of a person walking
towards the camera. Usually, sequences contain 3–4 steps. In order to detect
the steps in a sequence, a strategy based on local maximums of the distance
between the feet time series is used. For training purpose we used the UPCVGait
dataset [8], a publicly available dataset acquired using Kinect V1. Figure 1(Data
Preprocessing) shows an example of the segmentation done for a person walking
two steps (both feet and the spine base data are shown). Some strategies based on
length of the bones, height of a person, and variation of the movement direction
in a step have been used for noise reduction purposes.

Then, the feature extraction is performed for each of the steps identified
previously. We identified three kind of features:

– Anthropological features: height, humerus length, forearm length, thigh length
and shin length. As these measures may slightly vary from frame to frame,
we compute mean, max, min, and standard deviation for each detected step.
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– Step related features: step length, step width. Since the walking direction of
a person may vary and is not always straight to the location of the camera,
an angular rotation over the y-axis (vertical axis) has been applied firstly in
order to align the direction of walking of each person with the position of the
Kinect sensor.

– Angle related features: angles of the projections on the xz and yz plane of each
of the previously mentioned bones, both left and right ones. Inspired by [8]
and before computing these angles, a new angular rotation has been applied
in order to align the vertical axis with the inclination of the torso (the line
connecting the center of the hips with the center of the shoulders) of each
person. As these angles are different from frame to frame, mean, max, min
and standard deviation values are computed for each step.

We have used WEKA (namely the WrapperSubsetEval method, that evaluates
attribute sets by using a learning scheme) to obtain a selection of the most
representative attributes, which in our case were 12 [10]. This way, our system
uses a smaller number of attributes than previous works.

Fuzzy Ontology for Gait Recognition. The benefits of using a fuzzy ontology
are two-fold: firstly, data representation is more appropriate for human under-
standing and machine reuse; secondly, we can provide a reduced number of can-
didates to the Decision Module.

Our fuzzy ontology is able to represent raw Kinect data about the movement
of a person but also biometric features computed from them. Fuzzy ontologies
extend classical ontologies with ideas of fuzzy logic [11]. While in classical set
theory elements either belong to a set or not, in fuzzy set theory elements can
belong to some degree, usually ranging in [0, 1]. As in the classical case, 0 means
no-membership and 1 full membership, but now a value between 0 and 1 rep-
resents the extent to which x can be considered as an element of the fuzzy set.
When applying these ideas to fuzzy ontologies, it is possible to define fuzzy
extensions of the concepts, properties, axioms, and datatypes. In our case, our
fuzzy ontology includes fuzzy datatypes, replacing crisp values with a more gen-
eral fuzzy membership function. For example, assume that we want to recognize
an individual human001 using some biometrical metrics, such as its maximal
height. Rather than representing that the value of the data property maxHeight
for human001 is 190 cm, we can take into account the imprecision of the sensor
by considering instead a triangular function (see Fig. 2(a)) such that ±d cm is
considered as acceptable. While one could consider using a better sensor, we aim
at using low cost devices and thus must deal with such imprecision.

Our ontology has been developed using Protégé [5] ontology editor. Classes,
properties, individuals, and most of the axioms are represented as usual. To
represent the fuzzy datatypes, we have used Protégé plug-in called Fuzzy OWL
2 that can be used to create and edit fuzzy ontologies [1]. The idea is to use a
classical OWL 2 ontology with OWL 2 annotations to add the fuzzy information
that OWL 2 cannot directly encode, the plug-in makes the annotations syntax
transparent to the users.
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As discussed in Sect. 2, we needed to develop it from scratch. To represent the
Kinect data, we consider 4 mutually disjoint classes. For each instance of Human,
there are several recordings. Every video obtained using Kinect is represented
as an instance of Sequence and each sequence is composed of several instances
of Frame. After some preprocessing, we can also divide a sequence in several
instance of Step, so that each step is related to a unique sequence. Each step
contains several frames, but each frame is associated at most to one step (if
the human stops walking at some point of the video, there might be frames
not associated to any step). We also have object and data properties with their
corresponding some domain, range, and functionality restrictions.

Fig. 2. (a) A triangular membership function; (b) An excerpt of our ontology.

Relationships between classes are modeled using object properties person-
IsInRecording, recordingHasFrame, recordingHasStep, and stepIsInFrame, together
with their inverses recordingHasPerson, frameIsInRecording, stepIsInRecording, and
frameHasStep, respectively. Figure 2(b) shows the classes and their relationships.
We use subproperty chains to infer missing information. For example, the chain
frameIsInRecording ◦ recordingHasStep is a subproperty of frameHasStep.

Each frame has 25 datatype properties linking it with each of the 25 joints
identified by the Kinect V2 sensor. For example, sensor0 related a frame with
a xsd:double number. The names of these datatype properties use the common
numeration of the joints, buth we also added 25 equivalent datatype properties
with more readable names. For example, spineBase is equivalent to sensor0.

Regarding the biometric features, each step has several datatype properties,
such as maxHeight (of the person), or meanThighRightXZ (average value of the
angles formed by the right thigh). We not only represent those attributes selected
by WEKA, but also other ones such as that stepLength, or leg (left or right)
that could be interesting for other people. Similarly, our ontology also allows
representing biometric features of a sequence (although our Decision Module do
not use them) such as the cadence (number of steps per unit of time).

Reasoning with a fuzzy ontology requires using a fuzzy reasoner. There are
several implementations, one of them being fuzzyDL [2], accessible from the
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Protégé plug-in. Firstly, it is possible to check the consistency of a fuzzy ontology.
Secondly, it is possible to solve the instance retrieval problem, that is, obtaining
the individuals that belong to a fuzzy concept together with their membership
degrees, so we can order them and retrieve only the top-k candidates. For exam-
ple, at production stage we can obtain data from a person using Kinect and then,
before trying to identify him/her, retrieve the top-k individuals belonging to the
fuzzy concept of people having some particular values of the attributes (e.g.,
a given height and a given right thigh angle) represented by means of fuzzy
datatypes. Only the retrieved individuals will be transferred to the Decision
Module for further processing.

Let us add some statistical information. The current schema of our fuzzy
ontology has 4 classes, 8 object properties, 79 datatype properties, and 228 logical
axioms. The fuzzy ontology is also populated with individuals and class/property
assertions. Our ontology is not expressed in any of the tractable OWL 2 pro-
files: its expressivity is that of the ontology that of the Description Logic
ALCRIF(D).

Decision Module. As a final step, our system contains a Decision Module
that uses the response provided by the fuzzy ontology on which a classifier is
applied. Several machine learning algorithms have been tested. So far, the best
classification method turn out to be the k-nearest neighbor algorithm using 1
nearest neighbour and the Euclidean distance as distance for the search method
for this machine learning algorithm. We used only 12 of the aggregate features
computed in Sect. 3 for each step (392 steps detected in the UPCVGait in the
preprocessing phase) and we obtained 89.03% correctly classified instances using
this algorithm and 10-fold cross-validation. This result is slightly lower than
93.29%, obtained in [8] for the same dataset. However, our system can be more
scalable; in [8], the search space is much bigger since they use all individuals
and the entire gait sequence to classify new recordings (we use the candidates
given by the fuzzy ontology and we analyze steps). Moreover, we believe that an
improvement to our approach would be to introduce a voting-based scheme for
the steps of a new sequence, that is, given the steps of a gait sequence, we will
use the classification algorithm to classify each step, and so, each step will be a
vote for one individual. The individual with more votes will be the final result
of the classification.

4 Conclusions and Future Work

In this work we have summarized our ongoing research project about the combi-
nation of a gait recognition system based on Microsoft Kinect and fuzzy ontolo-
gies. We have designed an architecture for our system, developed a fuzzy ontology
that makes it possible to represent Microsoft Kinect V1 and V2 data in a better
way (easier to understand by humans and to reuse by intelligent applications),
and discussed how to populate it with biometric features. Interestingly, for the
sake of scalability, our fuzzy ontology makes it possible to reduce the number
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of candidates for the recognition algorithm. So far, we have only performed pre-
liminary experiments with Microsoft Kinect V1 data, with the main differences
that we use a smaller number of variables (obtained after an attribute selection
to compute the most discriminant ones) and step segmentation rather than a
sequence-based approach, showing promising results.

Future work will include the recording of a significant number of video
sequences to develop a complete benchmark with Microsoft Kinect V2 data,
making both our ontology and dataset publicly available. More experiments are
also needed to evaluate (i) the scalability, (ii) the interpretability of the knowl-
edge by humans, (iii) the performance of different machine learning algorithms
in the framework of gait recognition systems, and (iv) tuning some parame-
ters such as the width of the fuzzy triangular functions or the number of top-k
candidates retrieved by the fuzzy ontology.
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Abstract. In a context of multiple classifiers, a calibration step based
on logistic regression is usually used to independently transform each
classifier output into a probability distribution, to be then able to com-
bine them. This calibration has been recently refined, using the evidence
theory, to better handle uncertainties. In this paper, we propose to use
this logistic-based calibration in a multivariable scenario, i.e., to consider
jointly all the outputs returned by the classifiers, and to extend this app-
roach to the evidential framework. Our evidential approach was tested
on generated and real datasets and presents several advantages over the
probabilistic version.

Keywords: Belief functions · Information fusion · Evidential calibration

1 Introduction

Using several classifiers to obtain different information on a given object and
combining their outputs is a means to obtain better classification performance.
These classifiers may be trained with different data or may not rely on the
same training models. Thus, their outputs may not be of the same type or
not scaled with each other. To be able to combine them, they first have to be
made comparable: a technique called calibration is usually applied, enabling to
transform a classifier output into a probability. One of the most commonly used
calibration is based on logistic regression [8].

Recently, Xu et al. [11] proposed a refinement of this calibration within a
framework for reasoning under uncertainty called evidence theory [9,10]. This
theory models more precisely the uncertainties inherent to such calibration
process and thus enables to prevent an over-fitting issue that may appear,
especially when few training data are available. Thus, given a single classifier
returning a confidence score after observing a given object, Xu et al.’s approach
transforms this score into a belief function.
c© Springer International Publishing AG 2017
S. Moral et al. (Eds.): SUM 2017, LNAI 10564, pp. 405–411, 2017.
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There exists a multivariable version of the logistic regression, called the mul-
tiple logistic regression [5], where the technique is defined with more than one
input. If we apply this approach to the vector of scores returned by the classifiers
for a given object, we can obtain a joint calibration, which returns a probabil-
ity. Yet, this technique is also prone to the uncertainty problem. Within this
scope, we propose to use the evidential extension of calibration proposed by Xu
et al., and to apply it to the calibration based on the multiple logistic regression.
Thus, for a given object, our proposed approach transforms the vector of scores
returned by the classifiers into a belief function.

This paper is organized as follows. First, Sect. 2 recalls the necessary back-
ground on evidence theory. Then, Sect. 3 exposes the probabilistic calibration
based on the multiple logistic regression and the extension to the evidential
framework that we propose. In Sect. 4, the proposed approach and its proba-
bilistic version are compared. Finally, conclusion and perspectives are given in
Sect. 5.

2 Evidence Theory

In this section, basic notions of the evidence theory are first exposed in Sect. 2.1.
Applications of this theory to inference and prediction, which are useful to define
calibration in the evidential framework, are addressed in Sect. 2.2.

2.1 Basic Notions

The theory of evidence is a framework for reasoning under uncertainty. Let Ω
be a finite set called the frame of discernment, which contains all the possible
answers to a given question of interest Q. In this theory, uncertainty with respect
to the answer to Q is represented using a Mass Function (MF) defined as a
mapping mΩ : 2Ω → [0, 1] that satisfies

∑
A⊆Ω mΩ (A) = 1 and mΩ(∅) = 0. The

quantity mΩ(A) corresponds to the share of belief that supports the claim that
the answer is contained in A ⊆ Ω and nothing more specific. Any subset A of Ω
such that mΩ(A) > 0 is called a focal set of mΩ . When the focal sets are nested,
mΩ is said to be consonant. A mass function can be equivalently represented by
the belief and plausibility functions, respectively defined by

BelΩ(A) =
∑

B⊆A

mΩ(B), P lΩ(A) =
∑

B∩A �=∅
mΩ(B), ∀A ⊆ Ω. (1)

The plausibility function restricted to singletons is called the contour function,
denoted plΩ and defined by plΩ(ω) = PlΩ({ω}),∀ω ∈ Ω. When a mass function
is consonant, the plausibility function can be recovered from its contour function
with PlΩ(A) = sup

ω∈A
plΩ(ω), ∀A ⊆ Ω.

Different decision strategies exist to make a decision about the true answer
to Q, given a MF mΩ on this answer [4]. In particular, the answer having the
smallest so-called upper or lower expected costs may be selected. When the set
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of focal elements is reduced to singletons and Ω, and when the costs are taken
equal to 0 if the answer is correct and 1 otherwise, the upper and lower expected
costs of some answer ω ∈ Ω are respectively defined as R∗(ω) = 1 − mΩ({ω})
and R∗(ω) = 1−mΩ({ω})−mΩ(Ω). Choosing the answer minimizing the lower
(resp. upper) expected costs is called the optimistic (resp. pessimistic) strategy.
To avoid making risky decisions, when the expected costs are high, a reject
decision can be introduced: we define Rrej ∈ [0, 1], and the reject decision is
made when Rrej is lower than the other expected costs.

2.2 Statistical Inference and Forecasting

The evidence theory can be used for inference and forecasting. Consider θ ∈ Θ an
unknown parameter, x ∈ X some observed data and fθ(x) the density function
generating the data. Statistical inference consists in making statements about
θ after observing the data x. Shafer [9] proposed to represent the knowledge
about θ by a consonant belief function BelΘx based on the likelihood function
Lx : θ → fθ(x), whose contour function is the normalized likelihood function:

plΘx (θ) =
Lx(θ)

sup
θ′∈Θ

Lx(θ′)
, ∀θ ∈ Θ. (2)

Suppose now that we have some knowledge about θ after observing some
data x, in the form of a contour function plΘx . The aim of forecasting is to make
statements about a not yet observed data Y ∈ Y, whose conditional distribution
given X = x depends on θ. A solution consists in using the sampling model
of Dempster [3] to deduce a belief function on Y [6,7]. This model proposes to
express Y as a function of the parameter θ and some unobserved variable, whose
distribution is independent of θ.

Let us consider an important particular case. Assume that Y ∈ Y = {0, 1}
is a random variable with a Bernoulli distribution. In that case, Xu et al. [11]
showed, by applying inference and forecasting, that we have

BelYx ({1}) = θ̂ −
∫ θ̂

0

plΘx (u)du, P lYx ({1}) = θ̂ +
∫ 1

θ̂

plΘx (u)du, (3)

where θ̂ maximizes plΘx .

3 An Evidential Joint Calibration Approach

Assume that after observing an object which belongs either to class 0 or 1,
a SVM classifier returns a confidence score s ∈ R. To learn how to interpret
what this score represents with respect to the true label y ∈ Y = {0, 1} of the
object, a step called calibration may be performed. In particular, the one based
on logistic regression is commonly used [8]. It aims to estimate the probability
distribution pY(·|s) and relies on a training set. Yet, the less training samples are
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available, the more the estimated probabilities are uncertain. To manage these
uncertainties, Xu et al. proposed to refine this calibration using the theory of
evidence [11].

We propose to use the multiple version of the logistic regression [5] and to
apply it to the outputs of multiple classifiers, i.e., to perform a joint calibration
of the scores provided by J binary SVM classifiers. It relies on a training set
defined by X = {(S11, ..., SJ1, Y1), ..., (S1n, ..., SJn, Yn)}, where Sji corresponds
to the score given by the jth classifier for the ith test sample, and Yi its true
label. Given a vector of scores s = (s1, ..., sJ ), with sj the score returned by
the jth classifier, the calibration based on the multiple logistic regression can be
defined by

PY(y = 1|s) ≈ hs(σ) =
1

1 + exp(σ0 + σ1s1 + σ2s2 + ... + σJsJ)
, (4)

where the parameter σ={σ0, ..., σJ} ∈ R
J+1 is obtained by maximizing the

likelihood function L, defined by

L(σ) =
n∏

i=1

pYi
i (1 − pi)1−Yi , with pi =

1
1 + exp(σ0 + σ1S1 + ... + σJSJ)

. (5)

To better handle the uncertainties, we propose to extend this approach to
the evidential framework by following the same likelihood-based reasoning as in
[11]. Calibration of a given vector of scores s based on logistic regression can be
seen as a prediction problem of a Bernoulli variable Y with parameter θ, where
θ = hs(σ). A belief function BelY(·|s) can be derived from the contour function
plΘX (·|s) using Eq. (3). Following Xu et al. [11], this contour function can be
computed from PlΣX , which is the plausibility function of plΣX defined by

plΣX (σ) =
L(σ)
L(σ̂)

, ∀σ ∈ Σ, (6)

with σ̂ = (σ̂0, ..., σ̂J ) the Maximum Likelihood Estimate (MLE) of σ and L the
likelihood defined in Eq. (5). As θ = hs(σ), we have

plΘX (θ|s) =
{

0 if θ ∈ {0, 1},
P lΣX (h−1

s (θ)) otherwise, (7)

with

h−1
s (θ) =

{

(σ0, σ1, ..., σJ ) ∈ Σ| 1
1 + exp(σ0 + σ1s1 + ... + σJsJ )

= θ

}

, (8)

=
{
(σ0, σ1, ..., σJ ) ∈ Σ|σ0 = ln(θ−1 − 1) − σ1s1 − ... − σJsJ

}
. (9)

Thus, Eqs. (7) and (9) yield the following contour function

plΘX (θ|s) = sup
σ1,...,σJ∈R

plΣX ′(ln(θ−1 −1)−σ1s1 −σ2s2 − ...−σJsJ , σ1, ..., σJ ), (10)

for all θ ∈ [0, 1]. The vector of parameters (σ1, σ2, ..., σJ ) which maximizes plΣX
can be approximated using an iterative maximization algorithm. The computa-
tional complexity of such algorithm is O(nJ) per iteration.
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4 Experiments

We simulated a binary dataset composed of randomly generated instance vectors
from a multivariate normal distribution, composed of two features, with means
μ0 = (−1, 0) in class 0 and μ1 = (1, 1) in class 1, and with a covariance matrix

equals to
[

1 0.5
0.5 1

]

for both classes. The possibility of deciding to reject a test

sample was introduced, and we used both pessimistic and optimistic strategies for
the evidential approach. We generated a set of 290 training samples: three SVM
classifiers were trained, using the LIBSVM library [2], with three non-overlapping
subset of 30 training samples of this set, and our evidential joint calibration
was trained with the remaining 200 samples. Then, the same experiment was
performed but with 15 examples to train the approach. The decision frontiers in
both cases are illustrated in Fig. 1, for Rrej = 0.2. As it can be seen, the approach
based on the optimistic strategy tends to decide more, hence to reject less, the
test samples than the two others and it is the exact opposite for the pessimistic
strategy. Furthermore, the frontiers are a lot more distant from each other when
there are less examples to train the approach (Fig. 1b), i.e., when there are more
uncertainties. The probabilistic calibration only yields one frontier so the impact
of the uncertainties is not visible. Thus, evidential joint approaches better reflect
the uncertainties than the probabilistic one, and using an evidential approach
enables to choose between a strategy which decide more often and reject less
test samples, or the opposite.

(a) Approach trained with 200 examples (b) Approach trained with 15 examples

Fig. 1. Decision frontiers in feature space of the joint calibration trained with 200 (1a)
and 15 (1b) training examples, for Rrej = 0.2.

With the same set repartition, we calculated the error rate and accuracy rates
for 100 test samples and Rrej = 0.2. Accuracy rate corresponds to the number
of correctly classified objects over the number of classified objects, i.e., not over
the total number of test samples as some of them are rejected. The process
was repeated for 100 rounds of random partitioning. The obtained points are
more distant from each other when few training examples are available (Fig. 2).
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(a) Approach trained with 200 examples (b) Approach trained with 15 examples

Fig. 2. Error and accuracy rates for Rrej = 0.2 and with 200 (2a) and 15 (2b) training
examples.

This interval reflects the uncertainties as it is larger when they are more impor-
tant. This information cannot be obtained with the probabilistic approach, which
is represented by only one point.

Furthermore, we performed the same experiment with Rrej varying from 0 to
1, on four datasets (Australian, Diabetes, Heart, Ionosphere) of UCI repository [1]
and on the simulated dataset. The classifiers were still trained on non-overlapping
subsets of 30 examples, either for simulated or real data. Our joint calibration
was trained with 45 then 15 samples. Figure 3 shows the results obtained for the
simulated dataset; those obtained for the real datasets are similar. For a given
error rate, the results obtained with the pessimistic strategy has a higher (or
equal) accuracy rate than the probabilistic one when few training examples are
available (right column). We may notice that these two points are obtained with
different Rrej , as seen in the previous experiment. Furthermore, when there are
more training examples (left column), the obtained results become similar for
the probabilistic and evidential approaches.

(a) Simulated data – 45 training examples (b) Simulated data – 15 training examples

Fig. 3. Error and accuracy rates with 45 (left) and 15 training examples (right).
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Finally, we compared our evidential joint approach to Xu et al.’s approach
[11], which independently calibrate the scores given by single classifier and com-
bine them with Dempster’s rule [9]. We performed the same experiment as the
first one detailed in [11], where the training set size for the third classifier was
varying. The training of our joint calibration was performed by concatenating the
calibration training subsets of the three classifiers. The joint proposed approach
presents lower error rates than Xu et al.’s approach on the simulated dataset as
well as on the real data (results cannot be shown due to space limitations).

5 Conclusion

In this paper, an evidential joint calibration based on logistic regression was
proposed. Logistic regression is commonly used to calibrate the scores of a single
classifier and we used its multiple version to take into account together the scores
returned by multiple classifiers for an object. The application of evidence theory
enables to better handle the process uncertainties than the probabilistic version.

We only studied the calibration using logistic regression but the same rea-
soning can be applied to other calibration techniques. Finally, an extension of
our approach to multiclass problem could also be considered in future works.
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Abstract. Correspondence analysis is a very common and renowned
statistical technique, with applications in data summarization, classi-
fication, regression, etc. One particular approach is that of comparing
different partitions over the same set of objects. Moreover, it can be
interesting to analyze correspondences at different detail levels, not only
between partitions, but between classes in these partitions. In addition,
the case of fuzzy partitions over data is still a researching milestone in
development. In this work we propose a novel measure following a previ-
ous definition of an alternate methodology in terms of data mining tools,
in order to overcome some limitations of the former one for the case of
considering partial and global correspondences between fuzzy partitions.

Keywords: Fuzzy correspondence analysis · Fuzzy partitions compari-
son · Ad hoc metrics

1 Introduction

Correspondence analysis [3] is a well-known statistical technique that can be
commonly applied to obtain and describe existing relations between two cat-
egorical variables. It is a helpful tool for data dimensionality reduction, as an
initial step before more complex processes such as classification, regression, dis-
criminant analysis, etc. Further extensions and applications of this technique
can be found throughout the literature [9,12].

Nevertheless, since it is based on distances and graphical representations, the
interpretation can be subjective and sometimes confusing. As a way to overcome
this, an alternative to classical correspondence analysis based on data mining
techniques was introduced in [19]. This approach allows to obtain local, partial,
and global correspondences, according to the required detail level. In contrast
to the usual graphical interpretation of distances, correspondences are expressed
in terms of data mining tools such as association rules and approximate depen-
dencies, and as a consequence, we can apply the same metrics to interpret and
measure the original correspondences.
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Furthermore, it must be taken into account the fact that in most of real
world problems, unclear boundaries between partitions can be found, as some
particular elements, due to their nature, may belong to more than one class, with
different degrees, inside a same partition. Fuzzy logic allows us to extend existing
techniques such as classification, clustering, etc., in order to cope with this issue.
As a result, techniques for comparing sets of partitions have been extended in
the same way. Renowned metrics as the Rand [17] or Jaccard indices [14] meet
their counterparts in fuzzy contexts as, for example, approaches as those of
Campello [8], Frigui et al. [11], Brouwer [6], Hüllermeier and Rifqi [13] and
Anderson et al. [2]. In [1] the reader may find a more extensive comparison of
the cited indices.

Similarly, in [7] the mentioned methodology for correspondence analysis in
terms of data mining tools is extended to the fuzzy case, and in [16] an initial
comparison with some of the previous measures is discussed. Nevertheless, as it is
discussed in [7], some restrictions apply in the original definition of fuzzy partial
and global correspondences, as non-atomic values (i.e., elements belonging to
more than one partition) are not fully allowed. This paper is intended to continue
this research line, introducing an ad hoc measure, in order to overcome the cited
drawback. The document is structured as follows. After this introduction, the
original proposal for (fuzzy) correspondence analysis in terms of data mining
tools is recalled. Following this, we define our new index, and some examples of
use are discussed. Concluding remarks as well as future works proposals end the
paper.

2 Correspondences as Data Mining Tools

Correspondence analysis is usually applied as an early stage for integration or
fusion of different classifications over a same set of objects. In classical correspon-
dence analysis, partitions are displayed by means of a contingency table. Instead,
we represent partitions by means of a relational table. For sake of brevity, we
will refer directly to the fuzzy case, since the crisp case is easy to particularize
from the former one.

Let O be a finite set of objects, and ˜P = { ˜P1, . . . , ˜Pp} and ˜Q = { ˜Q1, . . . , ˜Qq}
be two fuzzy partitions over O. Let ˜T

˜P ˜Q be the fuzzy transactional table asso-
ciated to O, where each transaction represents an object, that is, | ˜T

˜P ˜Q| = |O|.
Table 1 shows an example of representation (let us remark that, in this partic-
ular example, partitions are not in Ruspini form). Given o ∈ O, ˜Pi ∈ ˜P and
˜Qj ∈ ˜Q, we noted for ˜Pi(o) (respectively, ˜Qj(o)) the membership degree of o

in ˜Pi (respectively, ˜Qj). Each object must belong to at least one class of each
partition, that is, ∀o ∈ O,∃ ˜Pi ∈ ˜P/ ˜Pi(o) > 0, and each class must contain at
least one object, that is, ˜Pi, ˜Qj �= ∅. Let us note that, for sake of simplicity,
each class in ˜P (resp. ˜Q) can be associated to a single column. Without loss of
generality, we can say that columns ˜P1 . . . ˜Pp (resp. ˜Q1 . . . ˜Qq) represent the set
of possible classes in ˜P (resp. ˜Q).
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Table 1. Example of fuzzy transactional table ˜T
˜P ˜Q

O ˜P ˜Q
˜P1

˜P2
˜P3

˜Q1
˜Q2

˜Q3

o1 0.81 0 0 0.47 0.63 0

o2 0.72 0.35 0 0 0.93 0

o3 0.41 0.65 0 0 1.0 0

o4 0.09 0.9 0 0 1.0 0.02

o5 0 0.69 0.1 0 0.78 0.51

o6 0 0 0.7 0 0.52 0.89

o7 0 0 0.89 0 0.02 0.63

Let us remark that this approach allows us to consider not only perfect cor-
respondences, but also those with possible exceptions. Hence, we are concerned
with measuring the accuracy of correspondences between partitions.

2.1 Local, Partial, and Global Correspondences

Due to space restriction issues, we will recall only the definitions regarding the
fuzzy case. A complete discussion about crisp correspondence analysis by means
of data mining tools can be found in [19]. One of the advantages of this approach
is that correspondences can be measured with the same metrics as those of
data mining tools. In particular, certainty factor [20] returns a value between -1
(perfect, negative correspondence) and 1 (perfect, positive correspondence).

This methodology was later extended in order to manage correspondences
between fuzzy partitions in [7]. Representing fuzzy partitions as in Table 1, the
following types of fuzzy correspondences can be defined.

Definition 1 ([7]) Fuzzy local correspondence. Let ˜Pi ∈ ˜P and ˜Qj ∈ ˜Q.
There exists a fuzzy local correspondence from ˜Pi to ˜Qj, noted ˜Pi ⇒ ˜Qj, if
˜Pi ⊆ ˜Qj, that is, ∀o ∈ O, ˜Pi(o) ≤ ˜Qj(o).

Fuzzy local correspondences can be obtained in terms of fuzzy association
rules (e.g., following the formal model proposed in [10]). Fuzzy partial and global
correspondences were defined as well, following the model for fuzzy approximate
dependencies introduced in [5]. But, as it is addressed in [7], in these cases,
we must manage not classes, but partitions. It would be necessary to define
an overall membership degree of an object regarding a whole partition, that is,
˜A(o). This issue introduced a multidimensionality problem and, hence, objects
were limited to belong to only one class in every partition, for example, that one
with the highest membership degree.

Definition 2 ([7]) Fuzzy partial correspondence. There exists a fuzzy par-
tial correspondence from ˜P to ˜Q, noted ˜P � ˜Q, when ∀ ˜Pi ∈ ˜P ∃ ˜Qj ∈ ˜Q such
that ˜Pi ⊆ ˜Qj, that is, ∀o ∈ O/to[ ˜P] = ˜Pi implies to[ ˜Q] = ˜Qj and ˜P(o)≤̇ ˜Q(o).
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≤̇ defines a vectorial order relation that, for this particular case, corresponds
to a classic order relation. Finally, the step from fuzzy partial correspondences
to fuzzy global correspondences is straightforward.

Definition 3 ([7]) Fuzzy global correspondence. There exists a fuzzy global
correspondence between ˜P and ˜Q, noted ˜P ≡ ˜Q, when ˜P � ˜Q and ˜Q � ˜P.

In order to continue and complete this approach, in the following section
we propose a new index, specifically intended for measuring fuzzy partial (and
global) correspondences between fuzzy partitions.

3 Ad Hoc Index for Fuzzy Partial Correspondences

According to Definition 2, there is a fuzzy partial correspondence between two
partitions, when we find that classes from the first partition are included, to some
extent, in classes from the second partition. Hence, if we are capable of measure
these inclusions for each pair of classes and aggregate the obtained values into
a general index, we could measure a partial (and later, global) correspondence
between these two partitions. With this idea in mind, we define our index as
follows:

Definition 4. Let O = {o1, . . . , on}, be again a set of objects, with ˜P =
{ ˜P1, . . . , ˜Pp} and ˜Q = { ˜Q1, . . . , ˜Qq}, two fuzzy partitions over O. There is a par-
tial correspondence from ˜P to ˜Q when all classes from partition ˜P are included
in classes from ˜P, to some extent, which we measure by means of the following
index:

adhoc( ˜P, ˜Q) = AGGRp
i=1

⎛

⎝

q
⊕

j=1

(

AV Gn
k=1

(

˜Pi(ok) ⊗ ˜Qj(ok)
))

⎞

⎠ (1)

where ⊗ is a t-norm, ⊕ a t-conorm, AGGR is an aggregation operator, and
AV G is an averaging operator.

The reasoning behind this definition is that, for each pair ˜Pi ∈ ˜P, ˜Qj ∈ ˜Q,
we check to what extent is the former one included in the latter one according
to all objects in O, by means of the t-norm ⊗. In our experiments we have
considered a ⊗ b = min(a, b). Next, by means of an averaging operator (in our
case, an average mean), we aggregate all these values for each ˜Qj ∈ ˜Q in order
to obtain an estimated inclusion degree. Among all these degrees, we select
the most representative one for each ˜Pi ∈ ˜P (we took ⊕ = max). Finally, we
obtain our index as an aggregation (AGGR = sum, in our case) of the previous
values. The closer the value to 1, the more similar the partitions are. In fact,
adhoc( ˜P, ˜Q) = 1, if ˜P = ˜Q. Algorithm 1 describes the process in a more formal
way.

It must be remarked that, reviewing the literature, a similar index has been
already proposed by Beringer and Hüllermeier in [4], where similarities between
classes within partitions, instead of objects, are taken into account.
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4 Experiments

As an initial but illustrative example, let us remember the example shown in
Table 1. Following the original approach for fuzzy partial correspondences intro-
duced in [7], a certainty factor CF = 0.80 (resp., 0.20) was returned for the fuzzy
partial correspondence ˜P � ˜Q (resp., ˜Q � ˜P). Our index returned a value of
0.839 (resp., 0.641). Apart from this, we have compared different set of partitions.
Starting from randomly generated values, we compare a 5-classes fuzzy parti-
tion with a 7-classes one over an hypothetical set of 400 objects. Let ˜A5 be the
former one, and ˜A7, the latter one. We measured fuzzy partial correspondence
˜A5 � ˜A7 (resp. ˜A7 � ˜A5) with a value of our index of adhoc(˜A5, ˜A7) = 0.571
(resp. 0.787). This first experimental instance was mainly intended to test the
behavior of the metric.

Table 2. Fuzzy partitions computed over wiki4HE dataset

˜W1
˜W2

˜W3
˜W4

Distance Euclidean Manhattan

Clusters 19 11 19 11

Error 1.3715 3.2144 0.4853 0.8590

In second place, we took wiki4HE Dataset [15] from UCI Machine Learning
Repository, and applied different FCM (R package e1071 ) executions in order
to generate different partitions (Table 2). Two different metrics (Euclidean and
Manhattan) were applied, and for each one, two possible partitions were com-
puted, with different number of classes. It is expected that, since both metrics
are relatively similar, our index should reflect this with a high value. Moreover,
high values for fuzzy partial correspondences are expected from more detailed
(higher number of classes) partitions to more general (lower number of classes)
ones, and vice versa.

Our index, together with the proposed one in [4], were computed between
those partitions, in order to measure the fuzzy partial correspondences between
them. The results are summarized in Table 3, the first value being that of our
index, and the second one, Beringer and Hüllermeier’s.

Table 3. Fuzzy partial correspondences between partitions (row � column)

˜W1
˜W2

˜W3
˜W4

˜W1 1.000/1.000 0.998/0.974 0.819/0.974 0.988/0.974

˜W2 0.468/0.943 1.000/1.000 0.476/0.943 0.763/0.943

˜W3 0.853/0.971 0.955/0.971 1.000/1.000 0.955/0.971

˜W4 0.483/0.947 0.903/0.947 0.521/0.947 1.000/1.000
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It must be noticed how fuzzy partial correspondences ˜W1 � ˜W2 and
˜W3 � ˜W4 are strong (index value close to 1), since the latter ones are sum-
marizations of the former ones. That is, a reduction in the number of clusters
induces that the former clusters are included, to some degree, in the latter ones.
The opposite correspondences have a lower index value, which, according to the
previous reasoning, seems logical. Since this issue is not detected in Beringer
and Hüllermeier’s proposal, whose index shows similar values for each pair of
partitions, a deeper study should be conducted in order to explain it.

Finally, we also computed our index over the same partitions considered
in [7], and found an interesting issue; our ad hoc index returned a value higher
than 1. This could be due to the fact that one of the partitions was not in
Ruspini [18] form. This situation may suggest that fuzzy operators in Eq. 1 needs
to be properly adjusted.

Algorithm 1. Algorithm AdHoc

Input : O = {o1, . . . , on}, a set of objects, ˜P = { ˜P1, . . . , ˜Pp} and
˜Q = { ˜Q1, . . . , ˜Qq}, two fuzzy partitions over O.

Output: adhoc( ˜P, ˜Q), measure of the fuzzy partial correspondence from ˜P to
˜Q, ˜P � ˜Q.

1 VP ← ∅
2 foreach ˜Pi ∈ ˜P do
3 VQ ← ∅
4 foreach ˜Qj ∈ ˜Q do

/* Consider how ˜Pi is included in every ˜Qj according to O */

5 VQ[j] ← AV Go∈O

((

˜Pi(o) ⊗ ˜Qj(o)
))

6 end

/* For each ˜Pi, select the most representative value in Vq */

7 VP [i] ←⊕q
1 (VQ[j])

8 end
/* Finally, aggregate all values in VP */

9 adhoc( ˜P, ˜Q) ← AGGRp
i=1 (VP [i])

5 Concluding Remarks and Further Works

In this work our intention has been to continue a previous methodology for
fuzzy correspondence analysis. To this purpose, we have proposed a new ad
hoc index (in absence of a better name) to measure fuzzy partial, and global,
correspondences between two fuzzy partitions, based on the extent to which
the classes of a partition are included in the classes of the second partition,
according to every object in a collection. First experiments suggest that the
obtained results seem reasonable (values close to 1 where expected, and vice
versa), although a deeper analysis, interesting properties study, and comparison
with existing indices is still pending in order to validate and refine our proposal.
They will be properly addressed in a future extension of this paper.
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Abstract. The unfolding transformation has been widely used in many
declarative frameworks for improving the efficiency and scalability of pro-
grams after applying computational steps on their rules. Inspired by our
previous experiences in fuzzy logic languages not dealing with similarity
relations, in this work we adapt such operation to the so-called FASILL
language (acronym of “Fuzzy Aggregators and Similarity Into a Logic
Language”) which has been recently designed and implemented in our
research group for coping with implicit/explicit truth degree annotations,
a great variety of connectives and unification by similarity.

Keywords: Fuzzy logic programming · Similarity relations · Unfolding

1 Introduction

The challenging research area of Fuzzy Logic Programming is devoted to intro-
duce fuzzy logic concepts into logic programming in order to explicitly deal with
vagueness and uncertainty in a natural way. It has provided an extensive vari-
ety of Prolog dialects along the last three decades. Fuzzy logic languages can be
classified (among other criteria) according to the emphasis they assign to fuzzi-
fying the original unification/resolution mechanisms of Prolog. Whereas some
approaches are able to cope with similarity/proximity relations at unification
time [5,9], other ones extend their operational principles (maintaining syntactic
unification) for managing a wide variety of fuzzy connectives and truth degrees
on rules/goals beyond the simpler case of true or false [6,7]. As in many other
fuzzy languages, in this paper we use the lattice of real numbers ([0, 1],≤) for
modeling truth degrees and, in particular, we also assume the presence of fuzzy
connectives such as the arithmetical average whose truth function is defined as
@aver(x, y) = x+y

2 , and the unary connective @very(x) = x2, as well as the clas-
sical Gödel’s conjunction defined as x ∧ y = min(x, y). Our unifying approach,
where lattices of truth degrees cohabit with similarity relations, is represented
by the design of the FASILL language [3,4], for which we have developed the
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Agency (AEI) and the Spanish Ministerio de Economı́a y Competitividad under
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FLOPER system that has been used for coding real-word applications (see [1])
and can be also executed on-line via http://dectau.uclm.es/floper/?q=sim.

Definition 1 (Similarity relation). Given a domain U and a lattice L with
a fixed t-norm ∧ (usually the Gödel’s conjunction), a similarity relation R is a
fuzzy binary relation on U , that is, a fuzzy subset on U × U (namely, a mapping
R : U × U → L), fulfilling the reflexive, symmetric and transitive (that is,
R(x, z) ≥ R(x, y) ∧ R(y, z),∀x, y, z ∈ U) properties.

Definition 2 (Rule and Program). A rule has the form A ← B, where A
is an atomic formula called head and B, called body, is a well-formed formula
(ultimately built from atomic formulas B1, . . . , Bn, truth values of L and con-
nectives). A FASILL program (or simply program) is a tuple 〈Π,R, L〉 where Π
is a set of rules, R is a similarity relation between the elements of the signature
Σ of Π, and L is a complete lattice.

Example 1. In this paper we will deal with the following program P = 〈Π,R, L〉
based on lattice L = ([0, 1],≤) and the set of rules Π, and similarity relation R
(expressed as a matrix on U = {vanguardist, elegant,metro, taxi,bus}) below:

Π =

⎧
⎪⎪⎨

⎪⎪⎩

R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4 : good hotel(x) ← @aver(elegant(x), @very(close(x, metro)))

R vanguardist elegant metro taxi bus

vanguardist 1 0.6 0 0 0

elegant 0.6 1 0 0 0

metro 0 0 1 0.4 0.5

taxi 0 0 0.4 1 0.4

bus 0 0 0.5 0.4 1

It is easy to check that
R fulfills the reflexive, sym-
metric and transitive proper-
ties. Particularly, we have that:
R(taxi,metro) ≥ R(metro, bus)
∧R(bus, taxi) = min(0.5, 0.4) =
0.4.

Furthermore, the natural extension of R from symbols to terms, denoted as
R̂, determines that elegant(taxi) and vanguardist(metro) are similar terms,
since: R̂(elegant(taxi), vanguardist(metro)) = R(elegant, vanguardist)∧
R̂(taxi,metro) = 0.6 ∧ R(taxi,metro) = 0.6 ∧ 0.4 = min(0.6, 0.4) = 0.4.

Instead of syntactic unification, and similarly to other fuzzy languages,
FASILL uses weak unification for coping with similarity relations [5,9].
In essence, the weak most general unifier of two terms t and s, say
wmgu(t, s) = 〈σ, r〉, is the simplest substitution σ together with value r ∈
L verifying r = R̂(tσ, sσ). So, w.r.t. the previous example we have that
wmgu(elegant(taxi), vanguardist(metro)) = 〈id, 0.4〉, being id the empty sub-
stitution, whereas wmgu(vanguardist(x), elegant(taxi)) = 〈{x/taxi}, 0.6〉.

In order to describe the procedural semantics of the FASILL language, in the
following we denote by C[A] a formula where A is a sub-expression (usually an
atom) which occurs in the –possibly empty– context C[] whereas C[A/A′] means
the replacement of A by A′ in the context C[]. Moreover, Var(s) denotes the set

http://dectau.uclm.es/floper/?q=sim
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of distinct variables occurring in the syntactic object s and θ[Var(s)] refers to
the substitution obtained from θ by restricting its domain to Var(s). In the next
definition, we always consider that A is the selected atom in a goal Q and L is
the complete lattice associated to Π.

Definition 3 (Computational Step). Let Q be a goal and let σ be a substi-
tution. The pair 〈Q;σ〉 is a state. Given a program 〈Π,R, L〉 and a t-norm ∧
in L, a computation is formalized as a state transition system, whose transition
relation � is the smallest relation satisfying these rules:
(1) Successful step (denoted asSS�) :

〈Q[A], σ〉 A′ ← B ∈ Π wmgu(A,A′) = 〈θ, r〉
〈Q[A/B ∧ r]θ, σθ〉 SS

(2) Failure step (denoted asFS�) :

〈Q[A], σ〉 �A′ ← B ∈ Π : wmgu(A,A′) = 〈θ, r〉, r > ⊥
〈Q[A/⊥], σ〉 FS

(3) Interpretive step (denoted as IS�) :

〈Q[@(r1, . . . , rn)];σ〉 @̇(r1, . . . , rn) = rn+1

〈Q[@(r1, . . . , rn)/rn+1];σ〉 IS

A derivation is a sequence of arbitrary length 〈Q; id〉�∗〈Q′;σ〉. As usual, rules
are renamed apart. When Q′ = r ∈ L, the state 〈r;σ〉 is called a fuzzy computed
answer (f.c.a.) for that derivation.

Example 2. Let P = 〈Π,R, L〉 be the program from Example 1. It is possible to
perform this derivation with fuzzy computed answer 〈0, 4, {x/ritz}〉 for P and
goal Q = good hotel(x):

D1 : 〈good hotel(x), id〉 SS�
R4

〈@aver(elegant(x),@very(close(x,metro))), {x1/x}〉 SS�
R2

〈@aver(0.8,@very(close(ritz,metro))), {x1/ritz, x/ritz}〉 FS�
〈@aver(0.8,@very(0)), {x1/ritz, x/ritz}〉 IS�
〈@aver(0.8, 0), {x1/ritz, x/ritz}〉 IS�
〈0.4, {x1/ritz, x/ritz}〉

Apart from this derivation, there exists a second one ending with the alternative
f.c.a. 〈0.38, {x/hydropolis}〉 associated to the same goal.

As we will see in the following section, the application of computational steps
according Definition 3 on the body of FASILL program rules, is the basis of our
similarity-based unfolding transformation.
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2 Unfolding FASILL programs

Unfolding is a well-known, widely used, semantics-preserving program transfor-
mation rule which is able to improve programs, generating more efficient code.
The unfolding transformation traditionally considered in pure logic program-
ming consists in the replacement of a program clause C by the set of clauses
obtained after applying a symbolic computation step in all its possible forms
on the body of C [8,10]. Although in [2] we successfully adapted such opera-
tion to fuzzy logic programs dealing with lattices of truth degrees, there are not
precedents coping with similarity relations, which motivates the present work.

Definition 4 (Similarity-based Unfolding). Let P = 〈Π,R, L〉 be a FASILL
program and let R : A ← B ∈ Π be a program rule with no empty body.
Then, the similarity-based unfolding of rule R in program P is the new program
P ′ = (P − {R}) ∪ U where U = {Aσ ← B′ | 〈B; id〉�〈B′;σ〉}.
From now on we consider that the selection function (also called “computation
rule”) used when applying computational steps on a given goal, only applies IS�
steps (always from left to right) whenever there are no atoms to exploit (again
from left to right) with SS� and/or FS� steps.

Example 3. Let us built a transformation sequence where each FASILL program
in the sequence is obtained from the immediately preceding one by applying fuzzy
unfolding, except the initial one P0, which in our case is the one illustrated in
Example 1, that is:

R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4 : good hotel(x) ← @aver(elegant(x),@very(close(x,metro)))

Program P1 is obtained after unfolding rule R4 (with selected atom elegant(x))
by applying a SS� step with rules R1 and R2:

R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4−1 : good hotel(hydropolis) ← @aver(0.9 ∧ 0.6,

@very(close(hydropolis,metro)))
R4−2 : good hotel(ritz) ← @aver(0.8 ∧ 1,

@very(close(ritz,metro)))
After unfolding rule R4−1 (with selected atom close(hydropolis,metro)) by
applying a SS� step with rule R3, we obtain program P2:

R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4−1−3 : good hotel(hydropolis) ← @aver(0.9 ∧ 0.6,

@very(0.7 ∧ 0.4))
R4−2 : good hotel(ritz) ← @aver(0.8 ∧ 1,

@very(close(ritz,metro)))
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Program P3 is obtained by unfolding rule R4−1−3 (with selected expression
0.9 ∧ 0.6) after applying a IS� step:

R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4−1−3I : good hotel(hydropolis) ← @aver(0.6,@very(0.7 ∧ 0.4))
R4−2 : good hotel(ritz) ← @aver(0.8 ∧ 1,

@very(close(ritz,metro)))
When unfolding rule R4−1−3I (with selected expression 0.7 ∧ 0.4) by applying
a IS� step we reach program P4:

R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4−1−3II : good hotel(hydropolis) ← @aver(0.6,@very(0.4))
R4−2 : good hotel(ritz) ← @aver(0.8 ∧ 1,

@very(close(ritz,metro)))
Program P5 is obtained by unfolding rule R4−1−3II (with selected expression
@very(0.4)) after applying a IS� step:

R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4−1−3III : good hotel(hydropolis) ← @aver(0.6, 0.16)
R4−2 : good hotel(ritz) ← @aver(0.8 ∧ 1,

@very(close(ritz,metro)))
Now, by unfolding rule R4−1−3III (with selected expression @aver(0.6, 0.16))
after applying a IS� step, we obtain program P6:

R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4−1−3IIII : good hotel(hydropolis) ← 0.38
R4−2 : good hotel(ritz) ← @aver(0.8 ∧ 1,

@very(close(ritz,metro)))
Next, after unfolding rule R4−2 (with selected atom close(ritz,metro)) by apply-
ing a FS� step, we reach program P7:

R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4−1−3IIII : good hotel(hydropolis) ← 0.38
R4−2F : good hotel(ritz) ← @aver(0.8 ∧ 1,@very(0))

Finally, after 3 unfolding (based on IS�) steps on rule R4−2F , we reach the final
program P10:
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R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4−1−3IIII : good hotel(hydropolis) ← 0.38
R4−2FIII : good hotel(ritz) ← 0.4

In the previous example it is easy to see that each program in the sequence pro-
duces the same set of f.c.a.’s for a given goal but reducing the length of deriva-
tions. For instance, the derivation performed w.r.t. the original program P0 illus-
trated in Example 2 can be emulated in the final program P10 with just one com-

putational step (instead of five) as: 〈good hotel(x), id〉SS�
R4−2FIII 〈0.4, {x/ritz}〉.

However, we have found out that some constraints must be imposed when unfold-
ing FASILL programs since the transformation is not safe in general, as we are
going to illustrate in the following couple of examples.

Example 4. Consider that the similarity degree between the predicate symbols
q and r is R(q, r) = 0.8 in the following original and unfolded programs:

P =
{

R1 : p(x) ← @aver(q(x), 1)
R2 : r(a) ← 0.6 P ′ =

{
R1−2 : p(a) ← @aver(0.6 ∧ 0.8, 1)
R2 : r(a) ← 0.6

And now observe that the following derivations developed with each program
return different f.c.a.’s for the same goal, thus indicating that, in general, unfold-
ing does not preserve those f.c.a.’s produced on derivations using FS� steps.

D1 : 〈p(b); id〉 SS�
R1

〈@aver(q(b), 1); {x1/b}〉 FS�
〈@aver(0, 1); {x1/b}〉 IS�
〈0.5; {x1/b}〉

D′
1 : 〈p(b); id〉 FS�

〈0; id〉

Example 5. In the following programs and derivations we consider now a simi-
larity relation establishing that R(a, b) = 0.4 and R(q, r) = 0.5:

P =
{

R1 : p(x) ← @very(q(x))
R2 : r(b) P ′ =

{
R1−2 : p(b) ← @very(0.5)
R2 : r(b)

D2 : 〈p(a); id〉 SS�
R1

〈@very(q(a)); {x1/a}〉 SS�
R2

〈@very(0.4 ∧ 0.5); {x1/a}〉 IS�
〈@very(0.4); {x1/a}〉 IS�
〈0.16; {x1/a}〉

D′
2 : 〈p(a); id〉 SS�

R1−2

〈0.4 ∧ @very(0.5); id〉 IS�
〈0.4 ∧ 0.25; id〉 IS�
〈0.25; id〉

Which once again shows that the correctness of the unfolding transformation
does not hold because, in this particular case, we have that @very(0.4 ∧ 0.5) =
0.4 ∧ @very(0.5). We are nowadays trying to formalize a condition to be required
on any connective @ used on the body of unfolded rules which could look as
@(t1, ..., (ti ∧ ti+1), ..., tn) = ti ∧ @(t1, ..., ti+1, ..., tn), ∀ i, n ∈ N, i ≤ n, being
∧ the t-norm fixed in Definitions 1 and 3 for propagating similarities.
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3 Conclusions and Future Work

FASILL is a fuzzy logic programming language with implicit/explicit truth degree
annotations, a great variety of connectives and unification by similarity. In [3,4]
we have recently provided the syntax, operational/declarative semantics, and
implementation issues of this language which properly manages similarity and
truth degrees in a single framework. In this work we have focused on a pre-
liminary formulation of an unfolding transformation for optimizing FASILL pro-
grams. We have pointed out that, in contrast with other precedent languages, the
treatment of similarities introduces several risks for preserving the correctness
of the transformation, for which we are nowadays identifying a set of sufficient
conditions allowing us to prove its soundness and completeness properties.
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The Causality/Repair Connection in Databases:
Causality-Programs
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Abstract. In this work, answer-set programs that specify repairs of
databases are used as a basis for solving computational and reasoning
problems about causes for query answers from databases.

1 Introduction

Causality appears at the foundations of many scientific disciplines. In data and
knowledge management, the need to represent and compute causes may be
related to some form of uncertainty about the information at hand. More specifi-
cally in data management, we need to understand why certain results, e.g. query
answers, are obtained or not. Or why certain natural semantic conditions are not
satisfied. These tasks become more prominent and difficult when dealing with
large volumes of data. One would expect the database to provide explanations,
to understand, explore and make sense of the data, or to reconsider queries and
integrity constraints (ICs). Causes for data phenomena can be seen as a kind of
explanations.

Seminal work on causality in DBs introduced in [17], and building on work
on causality as found in artificial intelligence, appeals to the notions of counter-
factuals, interventions and structural models [15]. Actually, [17] introduces the
notions of: (a) a DB tuple as an actual cause for a query result, (b) a contingency
set for a cause, as a set of tuples that must accompany the cause for it to be
such, and (c) the responsibility of a cause as a numerical measure of its strength
(building on [11]).

Most of our research on causality in DBs has been motivated by an attempt to
understand causality from different angles of data and knowledge management.
In [6], precise reductions between causality in DBs, DB repairs, and consistency-
based diagnosis were established; and the relationships where investigated and
exploited. In [7], causality in DBs was related to view-based DB updates and
abductive diagnosis. These are all interesting and fruitful connections among
several forms of non-monotonic reasoning; each of them reflecting some form of
uncertainty about the information at hand. In the case of DB repairs [3], it is
about the uncertainty due the non-satisfaction of given ICs, which is represented
by presence of possibly multiple intended repairs of the inconsistent DB.
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DB repairs can be specified by means of answer-set programs (or disjunctive
logic programs with stable model semantics) [14], the so-called repair-programs.
Cf. [3,10] for repair-programs and additional references. In this work we exploit
the reduction of DB causality to DB repairs established in [6], by taking advan-
tage of repair programs for specifying and computing causes, their contingency
sets, and their responsibility degrees. We show that the resulting causality-
programs have the necessary and sufficient expressive power to capture and com-
pute not only causes, which can be done with less expressive programs [17], but
specially minimal contingency sets and responsibilities (which can not). Causal-
ity programs can also be used for reasoning about causes. Finally, we briefly
show how causality-programs can be adapted to give an account of other forms
of causality in DBs.

2 Background

Relational DBs. A relational schema R contains a domain, C, of constants and
a set, P, of predicates of finite arities. R gives rise to a language L(R) of first-
order (FO) predicate logic with built-in equality, =. Variables are usually denoted
by x, y, z, ..., and sequences thereof by x̄, ...; and constants with a, b, c, ..., etc.
An atom is of the form P (t1, . . . , tn), with n-ary P ∈ P and t1, . . . , tn terms,
i.e. constants, or variables. An atom is ground (aka. a tuple) if it contains no
variables. A DB instance, D, for R is a finite set of ground atoms; and it serves
as an interpretation structure for L(R).

A conjunctive query (CQ) is a FO formula, Q(x̄), of the form ∃ȳ (P1(x̄1)∧· · ·∧
Pm(x̄m)), with Pi ∈ P, and (distinct) free variables x̄ := (

⋃
x̄i) � ȳ. If Q has n

(free) variables, c̄ ∈ Cn is an answer to Q from D if D |= Q[c̄], i.e. Q[c̄] is true in
D when the variables in x̄ are componentwise replaced by the values in c̄. Q(D)
denotes the set of answers to Q from D D. Q is a boolean conjunctive query (BCQ)
when x̄ is empty; and when true in D, Q(D) := {true}. Otherwise, it is false, and
Q(D) := ∅.

In this work we consider integrity constraints (ICs), i.e. sentences of L(R),
that are: (a) denial constraints (DCs), i.e. of the form κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧
Pm(x̄m)), where Pi ∈ P, and x̄ =

⋃
x̄i; and (b) functional dependencies (FDs),

i.e. of the form ϕ : ¬∃x̄(P (v̄, ȳ1, z1)∧P (v̄, ȳ2, z2)∧z1 �= z2). Here, x̄ = ȳ1∪ ȳ2∪ v̄∪
{z1, z2}, and z1 �= z2 is an abbreviation for ¬z1 = z2.1 A key constraint (KC) is a
conjunction of FDs:

∧k
j=1 ¬∃x̄(P (v̄, ȳ1)∧P (v̄, ȳ2)∧yj

1 �= yj
2), with k = |ȳ1| = |ȳ2|.

A given schema may come with its set of ICs, and its instances are expected to
satisfy them. If this is not the case, we say the instance is inconsistent.

Causality in DBs. A notion of cause as an explanation for a query result was
introduced in [17], as follows. For a relational instance D = Dn ∪ Dx, where Dn

and Dx denote the mutually exclusive sets of endogenous and exogenous tuples,
a tuple τ ∈ Dn is called a counterfactual cause for a BCQ Q, if D |= Q and

1 The variables in the atoms do not have to occur in the indicated order, but their
positions should be in correspondence in the two atoms.
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D � {τ} �|= Q. Now, τ ∈ Dn is an actual cause for Q if there exists Γ ⊆ Dn,
called a contingency set for τ , such that τ is a counterfactual cause for Q in
D � Γ . This definition is based on [15].

The notion of responsibility reflects the relative degree of causality of a tuple
for a query result [17] (based on [11]). The responsibility of an actual cause τ for
Q, is ρ(τ) := 1

|Γ |+1 , where |Γ | is the size of a smallest contingency set for τ . If
τ is not an actual cause, ρ(τ) := 0. Tuples with higher responsibility are stronger
explanations.

In the following we will assume all the tuples in a DB instance are endoge-
nous. (Cf. [6] for the general case.) The notion of cause as defined above can be
applied to monotonic queries, i.e. whose sets of answers may only grow when the
DB grows [6].2 In this work we concentrate only on conjunctive queries, possibly
with �=.

Example 1. Consider the relational DB D = {R(a4, a3), R(a2, a1), R(a3, a3),
S(a4), S(a2), S(a3)}, and the query Q : ∃x∃y(S(x) ∧ R(x, y) ∧ S(y)). It holds,
D |= Q.

S(a3) is a counterfactual cause for Q: if S(a3) is removed from D, Q is no
longer true. Its responsibility is 1. So, it is an actual cause with empty contin-
gency set. R(a4, a3) is an actual cause for Q with contingency set {R(a3, a3)}:
if R(a3, a3) is removed from D, Q is still true, but further removing R(a4, a3)
makes Q false. The responsibility of R(a4, a3) is 1

2 . R(a3, a3) and S(a4) are actual
causes, with responsibility 1

2 . �

Database repairs. Cf. [3] for a survey on DB repairs and consistent query answer-
ing in DBs. We introduce the main ideas by means of an example. The ICs we
consider in this work can be enforced only by deleting tuples from the DB (as
opposed to inserting tuples). Repairing the DB by changing attribute values is
also possible [3–5], [6, sec. 7.4], but until further notice we will not consider this
kind of repairs.

Example 2. The DB D = {P (a), P (e), Q(a, b), R(a, c)} is inconsistent with
respect to the (set of) denial constraints (DCs) κ1 : ¬∃x∃y(P (x) ∧ Q(x, y)),
and κ2 : ¬∃x∃y(P (x) ∧ R(x, y)). It holds D �|= {κ1, κ2}.

A subset-repair, in short an S-repair, of D wrt. the set of DCs is a ⊆-
maximal subset of D that is consistent, i.e. no proper superset is consistent. The
following are S-repairs: D1 = {P (e), Q(a, b), R(a, b)} and D2 = {P (e), P (a)}.
A cardinality-repair, in short a C-repair, of D wrt. the set of DCs is a maximum-
cardinality, consistent subset of D, i.e. no subset of D with larger cardinality is
consistent. D1 is the only C-repair. �

For an instance D and a set Σ of DCs, the sets of S-repairs and C-repairs
are denoted with Srep(D,Σ) and Crep(D,Σ), resp.

2 E.g. CQs, unions of CQs (UCQs), Datalog queries are monotonic.
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3 Causality Answer Set Programs

Causes from repairs. In [6] it was shown that causes for queries can be obtained
from DB repairs. Consider the BCQ Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) that is (pos-
sibly unexpectedly) true in D: D |= Q. Actual causes for Q, their contingency
sets, and responsibilities can be obtained from DB repairs. First, ¬Q is logically
equivalent to the DC:

κ(Q): ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)). (1)

So, if Q is true in D, D is inconsistent wrt. κ(Q), giving rise to repairs of D
wrt. κ(Q).

Next, we build differences, containing a tuple τ , between D and S- or C-
repairs:

(a) Difs(D,κ(Q), τ) = {D � D′ | D′ ∈ Srep(D,κ(Q)), τ ∈ (D � D′)}, (2)
(b) Difc(D,κ(Q), τ) = {D � D′ | D′ ∈ Crep(D,κ(Q)), τ ∈ (D � D′)}. (3)

It holds [6]: τ ∈ D is an actual cause for Q iff Difs(D,κ(Q), τ) �= ∅.
Furthermore, each S-repair D′ for which (D � D′) ∈ Difs(D,κ(Q), τ) gives us
(D � (D′ ∪ {τ})) as a subset-minimal contingency set for τ . Also, if Difs(D
κ(Q), τ) = ∅, then ρ(τ) = 0. Otherwise, ρ(τ) = 1

|s| , where s ∈ Difs(D, κ(Q), τ)
and there is no s′ ∈ Difs(D,κ(Q), τ) with |s′| < |s|. As a consequence we
obtain that τ is a most responsible actual cause for Q iff Difc(D,κ(Q), τ) �= ∅.

Example 3. (ex. 1 cont.) With the same instance D and query Q, we consider
the DC κ(Q): ¬∃x∃y(S(x) ∧ R(x, y) ∧ S(y)), which is not satisfied by D.
Here, Srep(D,κ(Q)) = {D1,D2,D3} and Crep(D,κ(Q)) = {D1}, with D1 =
{R(a4, a3), R(a2, a1), R(a3, a3), S(a4), S(a2)}, D2 = {R(a2, a1), S(a4), S(a2),
S(a3)}, D3 = {R(a4, a3), R(a2, a1), S(a2), S(a3)}.

For tuple R(a4, a3), Difs(D,κ(Q), R(a4, a3)) = {D � D2} = {{R(a4, a3),
R(a3, a3)}}. So, R(a4, a3) is an actual cause, with responsibility 1

2 . Simi-
larly, R(a3, a3) is an actual cause, with responsibility 1

2 . For tuple S(a3),
Difc(D,κ(Q), S(a3)) = {D � D1} = {S(a3)}. So, S(a3) is an actual cause,
with responsibility 1, i.e. a most responsible cause. �

It is also possible, the other way around, to characterize repairs in terms
of causes and their contingency sets. Actually this connection can be used to
obtain complexity results for causality problems from repair-related computa-
tional problems [6]. Most computational problems related to repairs, specially
C-repairs, which are related to most responsible causes, are provably hard. This
is reflected in a high complexity for responsibility [6] (see below for some more
details).

Answer-set programs for repairs. Given a DB D and a set of ICs, Σ, it is possible
to specify the repairs of D wrt. Σ by means of an answer-set program (ASP)
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Π(D,Σ), in the sense that the set, Mod(Π(D,Σ)), of its stable models is in one-
to-one correspondence with Srep(D,Σ) [2,10] (cf. [3] for more references). In the
following we consider a single denial constraint κ : ¬∃x̄(P1(x̄1)∧ · · · ∧Pm(x̄m)).3

Although not necessary for repair purposes, it may be useful on the causality
side having global unique tuple identifiers (tids), i.e. every tuple R(c̄) in D is
represented as R(t, c̄) for some integer t that is not used by any other tuple
in D. For the repair program we introduce a nickname predicate R′ for every
predicate R ∈ R that has an extra, final attribute to hold an annotation from
the set {d, s}, for “delete” and “stays”, resp. Nickname predicates are used to
represent and compute repairs.

The repair-ASP, Π(D,κ), for D and κ contains all the tuples in D as facts
(with tids), plus the following rules:

P ′
1(t1, x̄1, d) ∨ · · · ∨ P ′

m(tn, x̄m, d) ← P1(t1, x̄1), . . . , Pm(tm, x̄m),
P ′

i (ti, x̄i, s) ← Pi(ti, x̄i), not P ′
i (ti, x̄i, d), i = 1, · · · ,m.

A stable model M of the program determines a repair D′ of D: D′ := {P (c̄) |
P ′(t, c̄, s) ∈ M}, and every repair can be obtained in this way [10]. For an FD, say
ϕ : ¬∃xyz1z2vw(R(x, y, z1, v) ∧ R(x, y, z2, w) ∧ z1 �= z2), which makes the third
attribute functionally depend upon the first two, the repair program contains
the rules:

R′(t1, x, y, z1, v, d) ∨ R′(t2, x, y, z2, w, d) ← R(t1, x, y, z1, v), R(t2, x, y, z2, w), z1 �= z2.

R′(t, x, y, z, v, s) ← R(t, x, y, z, v), not R′(t, x, y, z, v, d).

For DCs and FDs, the repair program can be made non-disjunctive by moving
all the disjuncts but one, in turns, in negated form to the body of the rule [2,10].
For example, the rule P (a) ∨ R(b) ← Body, can be written as the two rules
P (a) ← Body, notR(b) and R(b) ← Body, notP (a). Still the resulting program
can be non-stratified if there is recursion via negation [14], as in the case of FDs
and DCs with self-joins.

Example 4. (ex. 3 cont.) For the DC κ(Q) : ¬∃x∃y(S(x) ∧ R(x, y) ∧ S(y)), the
repair-ASP contains the facts (with tids) R(1, a4, a3), R(2, a2, a1), R(3, a3, a3),
S(4, a4), S(5, a2), S(6, a3), and the rules:

S′(t1, x, d) ∨ R′(t2, x, y, d) ∨ S′(t3, y, d) ← S(t1, x), R(t2, x, y), S(t3, y),
S′(t, x, s) ← S(t, x), not S′(t, x, d). etc.

Repair D1 is represented by the stable model M1 containing R′(1, a4, a3, s),
R′(2, a2, a1, s), R′(3, a3, a3, s), S′(4, a4, s), S′(5, a2, s), and S′(6, a3, d). �

Specifying causes with repair-ASPs.According to (2), we concentrate on the differ-
ences between the D and its repairs, now represented by {P (c̄) | P (t, c̄, d) ∈ M},

3 It is possible to consider a combination of several DCs and FDs, corresponding to
UCQs (possibly with �=), on the causality side [6].
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for M a stable model of the repair-program. They are used to compute actual
causes and their ⊆-minimal contingency sets, both identified by tids. So, given
the repair-ASP for a DC κ(Q), a binary predicate Cause(·, ·) will contain a tid
for cause in its first argument, and a tid for a tuple belonging to its contingency
set. Intuitively, Cause(t, t′) says that t is an actual cause, and t′ accompanies t as
a member of the former’s contingency set (as captured by the repair at hand or,
equivalently, by the corresponding stable model). More precisely, for each pair of
predicates Pi, Pj in the DC κ(Q) as in (1) (they could be the same if it has self-
joins), introduce the rule Cause(t, t′) ← P ′

i (t, x̄i, d), P ′
j(t

′, x̄j , d), t �= t′, with the
inequality condition only when Pi and Pj are the same.

Example 5. (ex. 3 and 4 cont.) The causes for the query, represented by their
tids, can be obtained by posing simple queries to the program under the uncer-
tain or brave semantics that makes true what is true in some model of the
repair-ASP.4 In this case, Π(D,κ(Q)) |=brave Ans(t), where the auxiliary pred-
icate is defined on top of Π(D, κ(Q)) by the rules: Ans(t) ← R′(t, x, y, d) and
Ans(t) ← S′(t, x, d).

The repair-ASP can be extended with the following rules to compute causes
with contingency sets:
Cause(t, t′) ← S′(t, x, d), R′(t′, u, v, d),
Cause(t, t′) ← S′(t, x, d), S′(t′, u, d), t �= t′,
Cause(t, t′) ← R′(t, x, y, d), S′(t′, u, d).

For the stable model M2 corresponding to repair D2, we obtain Cause(1, 3)
and Cause(3, 1), from the repair difference D � D2 = {R(a4, a3), R(a3, a3)}. �

We can use the DLV system [16] to build the contingency set associated to a
cause, by means of its extension, DLV-Complex [9], that supports set building,
membership and union, as built-ins. For every atom Cause(t, t′), we introduce
the atom Con(t, {t′}), and the rule that computes the union of (partial) contin-
gency sets as long as they differ by some element:

Con(T,#union(C1, C2)) ← Con(T,C1), Con(T,C2),#member(M,C1),

not #member(M,C2).

The responsibility for an actual cause τ , with tid t, as associated to a given
repair D′ (with τ /∈ D′), and then to a given model M ′ of the extended repair-
ASP, can be computed by counting the number of t′s for which Cause(t, t′) ∈ M ′.
This responsibility will be maximum within a repair (or model): ρ(t,M ′) :=
1/(1 + |d(t,M ′)|), where d(t,M ′) := {Cause(t , t ′) ∈ M ′}. This value can be
computed by means of the count function, supported by DLV [13], as follows:
pre-rho(T,N) ← #count{T ′ : Con(T, T ′)} = N , followed by the rule computing
the responsibility: rho(T,M) ← M ∗ (pre-rho(T,M) + 1) = 1. Or equivalently,
via 1/|d(M)|, with d(M ′) := {P (t′, c̄, d) | P (t′, c̄, d) ∈ M ′}.

4 As opposed to the skeptical or cautious semantics that sanctions as true what is true
in all models. Both semantics as supported by the DLV system [16], to which we
refer below.
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Each model M of the program so far will return, for a given tuple (id) that is
an actual cause, a maximal-responsibility contingency set within that model: no
proper subset is a contingency set for the given cause. However, its cardinality
may not correspond to the (global) maximum responsibility for that tuple. For
that we need to compute only maximum-cardinality repairs, i.e. C-repairs.

C-repairs can be specified by means of repair-ASPs [1] that contain weak-
program constraints [8,13]. In this case, we want repairs that minimize the
number of deleted tuples. For each DB predicate P , we introduce the weak-
constraint5 ⇐ P (t, x̄), P ′(t, x̄, d). In a model M the body can be satisfied, and
then the program constraint violated, but the number of violations is kept to a
minimum (among the models of the program without the weak-constraints). A
repair-ASP with these weak constraints specifies repairs that minimize the num-
ber of deleted tuples; and minimum-cardinality contingency sets and maximum
responsibilities can be computed, as above.

Complexity. Computing causes for CQs can be done in polynomial time in data
[17], which was extended to UCQs in [6]. As has been established in [6,17], the
computational problems associated to contingency sets and responsibility are
in the second level of the polynomial hierarchy (PH), in data complexity [12].
On the other side, our causality-ASPs can be transformed into non-disjunctive,
unstratified programs, whose reasoning tasks are also in the second level of the
PH (in data). It is worth mentioning that the ASP approach to causality via
repairs programs could be extended to deal with queries that are more complex
than CQs or UCQs. (In [18] causality for queries that are conjunctions of literals
was investigated; and in [7] it was established that cause computation for Datalog
queries can be in the second level of the PH.)

Causality programs and ICs The original causality setting in [17] does not
consider ICs. An extension of causality under ICs was proposed in [7]. Under it,
the ICs have to be satisfied by the DBs involved, i.e. the initial one and those
obtained by cause- and contingency-set deletions. When the query at hand is
monotonic6, monotonic ICs (e.g. denial constraints and FDs) are not much of an
issue since they stay satisfied under deletions associated to causes. So, the most
relevant ICs are non-monotonic, such as referential ICs, e.g. ∀xy(R(x, y) → S(x))
in our running example. These ICs can be represented in a causality-program by
means of (strong) program constraints. In the running example, we would have,
for example, the constraint: ← R′(t, x, y, s), not S′(t′, x, s).7

Preferred causes and repairs. In [6], generalized causes were introduced on the
basis of arbitrary repair semantics (i.e. classes of preferred consistent subin-
stances, commonly under some maximality criterion), basically starting from
the characterization in (2) and (3), but using repairs of D wrt. κ(Q) in a class,

5 Hard program-constraints, of the form ← Body, eliminate the models where they
are violated.

6 I.e. the set of answers may only grow when the instance grows.
7 Or better, to make it safe, by a rule and a constraint: aux(x) ← S′(t′, x, s) and

← R′(t, x, y, s), not aux(x).
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Rep(D,κ(Q)), possibly different from Srep(D,κ(Q)) or Crep(D,κ(Q)). As a
particular case in [6], causes based on changes of attribute values (as opposed
to tuple deletions) were defined. In that case, admissible updates are replace-
ments of data values by null values, to break joins, in a minimal or minimum way.
Those underlying DB repairs were used in [4] to hide sensitive data that could be
exposed through CQ answering; and corresponding repair programs were intro-
duced. They could be used, as done earlier in this paper, as a basis to reason
about- and compute the new resulting causes (at the tuple or attribute-value
level) and their contingency sets.8
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