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14.1  Introduction

Adoptive transfer of tumor-specific T cells or T 
cells engineered to express tumor-specific recep-
tors (TCRs, CARs) has provided proof that T 
cells mediate tumor destruction in humans [1–4]. 
Pre-clinical studies [5–7], as well as the adoptive 
transfer of enriched CD8+ T cells into patients 
[8] firmly establish that CD8+ T cells can provide 
robust anti-tumor immunity. CD4+ T cells have 
been shown to support CD8+ T cell responses [9, 
10], possess cytotoxic function [11], and can pro-
mote tumor destruction through multiple mecha-
nisms, including cytokine production and 
recruitment/activation of innate immune cells 
[12–15].

These data confirming the anti-tumor proper-
ties of T cells notwithstanding, tumors emerge 
when they acquire the capacity to evade T cell 
attack. The immunoediting hypothesis argues 

that tumors must develop mechanisms to evade 
host immunity. Indeed, there is considerable evi-
dence from pre-clinical models and clinical 
observations that tumors emerge more readily in 
the absence of an immune response [16]. Further, 
tumors that emerge in immune competent hosts 
often display a wide range of mechanisms to 
bypass the host immune response. The local 
immunosuppression within tumors is typically 
considered in static terms. However, emerging 
data argue that the immunosuppressive tumor 
environment is actually a direct response to ongo-
ing immune attack and, thus, reflects a dynamic 
response that adapts to the nature and magnitude 
of the T cell attack. This ability of the tumor 
microenvironment to adapt to immune attack rep-
resents a significant barrier to the development of 
effective and durable immunotherapies. The fol-
lowing review will discuss the current knowledge 
in this emerging area and potential implications 
for the design of future immunotherapeutic 
strategies.

14.2  Immune Surveillance 
and the Immunoediting 
Hypothesis

The idea that the immune system can effectively 
control the growth of cancer dates back to the 
early 1900s, when Paul Ehrlich proposed the idea 
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of host immune protection from cancer [17, 18]. 
The ‘immune surveillance’ hypothesis, however 
was not officially proposed until 1957 by 
Macfarlane Burnet [19] who proposed that an 
accumulation of tumor cells possessing novel tar-
get antigens could elicit an effective immune 
response, leading to tumor clearance in the 
absence of clinical detection [19]. Studies 
designed to investigate whether immunocompro-
mised mice displayed greater tumor incidence 
were largely inconclusive. The immune surveil-
lance hypothesis was eventually abandoned when 
it was observed that immune deficient athymic 
nude mice developed similar frequencies of 
chemically induced tumors as wild type mice 
[20]. However, subsequent investigation revealed 
that the nude mice used for that research, although 
immune compromised, were not completely 
immune deficient and did have detectable popu-
lations of functional T cells [21].

The concept of immune surveillance returned 
in the early 1990s, when more sophisticated 
mouse models allowed for the direct assessment 
of immune-mediated cancer control. Indeed, the 
increased frequency of chemically induced 
tumors observed in the absence of IFN-γ signal-
ing [22–24], perforin [25], or RAG-2, which is 
required for T and B cell maturation [24], strongly 
supported a role for the immune system in pre-
venting tumor growth. Pivotal studies revealed 
that the immune system cannot only act to elimi-
nate tumors but can also shape their immunoge-
nicity [24], leading to the evolution of the tumor 
immune surveillance hypothesis towards the con-
cept of cancer immunoediting.

The cancer immunoediting theory comprises 
three distinct phases: Elimination, Equilibrium, 
and Escape [18]. In the elimination phase, devel-
oping tumors are destroyed by combined innate 
and adaptive immune responses. Given the 
genomic instability of tumor cells, daughter cells 
may emerge that acquire resistance to the anti- 
tumor immune attack. When such resistant sub-
clones arise, the tumor enters a state of 
equilibrium where the overall size may stabilize 
as the immunogenic tumor cells are eradicated 
while the resistant subclones continue to prolifer-
ate. As such, the tumor is “edited” by the immune 

system to be comprised of cells with resistance to 
immune attack. Ultimately, immunoediting will 
select for tumor cells that are resistant to eradica-
tion by host immune cells, allowing the tumor to 
escapes immune control and grow out uncontrol-
lably [26, 27].

While many of the observations regarding can-
cer immunoediting have come from studies using 
laboratory mice, increasing evidence suggests 
that the same principles apply to human cancers. 
The elimination phase is exemplified by the 
increased risk of developing both virally and non-
virally induced malignancies among those with 
immune deficiencies [16, 26], as in the case of 
individuals with AIDS or those receiving immu-
nosuppressants following organ transplant [16, 
28]. Tumor equilibrium may help to explain the 
improved prognosis for patients exhibiting strong 
T cell infiltrate and local production of cytokines, 
such as IFN-γ and TNF-α [16, 26]. Tumor equi-
librium is also consistent with reports of cancer  
patients entering phases of progression free sur-
vival or stable disease following treatment with 
cancer vaccines, [29–32], checkpoint blockade 
antibodies [33–36], or adoptive T cell transfer-
based therapies [4]. Additionally, the report of 
two kidney transplant recipients developing 
malignant melanoma after both receiving organ 
transplants from a woman who had been success-
fully treated for melanoma 16 years previously 
[37], suggests that the melanoma metastases had 
been held in equilibrium within the kidneys for a 
prolonged period prior to transplant and only 
emerged in the transplant recipients because they 
received immunosuppressive drugs. Lastly, clini-
cally detectable tumors are poorly immunogenic 
and possess intrinsic mechanisms of circumvent-
ing or suppressing host immune  responses (as 
will be discussed), suggesting these tumors have 
effectively escaped immune control.

14.3  Mechanisms of Immune 
Escape by Tumors

In accordance with the immune editing theory, 
growing tumors develop an immune refractory 
microenvironment that limits attack by infiltrat-
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ing immune cells, presenting a major hurdle to 
successful cancer immunotherapy. This section 
will focus on underlying mechanisms of immune 
evasion and immune suppression within the local 
tumor environment, which contribute to limited 
anti-tumor immunity against growing tumors.

14.3.1  Defects in Tumor Antigen 
Presentation

Abnormalities in MHC I antigen presentation 
have been documented in a diverse set of solid 
and hematological tumors [38], representing an 
important mechanism through which tumors can 
escape recognition by CD8+ T cells. Loss of 
MHC Class I expression has been reported in 
both murine and human tumors [39, 40], ranging 
from down regulation to complete absence of 
protein expression [41–43] and has been associ-
ated with poor survival prognosis and disease 
progression [43, 44]. Indeed, MHC class I 
expression has been observed to correlate with 
tumor regression or progression within individ-
ual metastatic lesions [45], suggesting that 
restoring antigen presentation is likely an impor-
tant determinant in the success of immunother-
apy. Defective antigen presentation by tumor 
cells often results from impaired expression of 
proteins associated with antigen processing. In 
some cases, the defect in antigen presentation is 
irreversible due to genetic alterations. As exam-
ples, reports have described mutations in 
β2-microglobulin [46] or components of the 
antigen processing machinery [42], as well as 
loss of heterozygosity at MHC I loci [42, 47–
49]. In other cases, the impairment in antigen 
presentation is reversible as epigenetic altera-
tions have been shown to result in diminished 
gene transcription and MHC Class I presenta-
tion. Such reversible impairments may be thera-
peutic targets as MHC expression and 
immunogenicity may be restored in tumor cells 
through the use of DNA de-methylating agents 
[50], HDAC inhibitors [51], or through treat-
ment with immunostimulatory cytokines, such 
as IFN-γ [40, 50, 52].

14.3.2  Immunosuppression 
Within the Tumor 
Environment

Growing tumors secrete chemokines that promote 
tumor infiltration by cell populations that sup-
press T cell immunity, including regulatory T 
cells (Tregs; recruited by CCL22) and tumor asso-
ciated macrophages (recruited by CCL2, CCL5, 
CCL7, CCL8, CXCL12) [53, 54]. Both of these 
immune cell subsets play important roles in pro-
moting tumor growth and suppressing anti- tumor 
immune responses in situ. In this regard, both 
tumor cells and tumor infiltrating immune cells 
can secrete a range of factors that suppress the 
anti-tumor activity of infiltrating immune effector 
cells including T cells [55]. Specifically, IL-10 
and TGF-β are often found within the tumor envi-
ronment [56] and act to suppress T cell immunity 
by preventing T cell proliferation, cytotoxicity, 
and cytokine release, promoting Tregs function, 
and inhibiting the pro- inflammatory function of 
APCs [57–59]. PGE2 is also often present at high 
levels in tumor tissue [60] and acts to inhibit DC 
maturation, limit T cell proliferation and function, 
increase immunosupression by myeloid cells, and 
enhance the suppressive effects of Tregs [56, 61]. 
VEGF, an important angiogenic factor required 
for tumor growth, has been reported to promote 
recruitment of myeloid derived suppressor cells 
(MDSCs) and M2 (healer) macrophages to the 
tumor [56] and prevents immunostimulatory 
function of APCs [62]. Adenosine, a purine 
nucleoside derived through the catabolism of ade-
nine nucleotides by the enzymatic activity of 
CD39 and CD73, is often present at high levels 
within the tumor [63]. Produced through the 
activity of both the tumor [64] and Tregs [65], ade-
nosine has both pro- angiogenic as well as immu-
nosuppressive functions and limits the function of 
T cells [63, 65]. Lastly, local production of reac-
tive oxygen  species (ROS) and reactive nitrogen 
species (RNS) within the tumor can contribute to 
T cell suppression and tolerance by preventing 
TCR/MHC interactions, impairing T cell respon-
siveness [66–68], and limiting tumor infiltration 
by T cells [69].
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The availability of essential amino acids are 
often reduced by local catabolism within the 
tumor, consequently reducing the proliferative 
and functional capacity of the infiltrating immune 
cells. L-arginine is catabolized by arginase and 
NOS, enzymes often implicated in tumor-induced 
immune suppression and expressed at high levels 
within the tumor [56, 67]. Lack of L-arginine 
results in downregulation of the TCR ζ chain and 
inhibits the activity of T cells [70, 71]. Similarly, 
the enzyme IDO, which is also expressed at high 
levels by tumor cells, stromal cells, and infiltrat-
ing immune cells [56], acts to degrade the essen-
tial amino acid tryptophan, thereby limiting local 
immune activity. Additionally, kynurenine and 
other metabolites resulting from tryptophan 
breakdown have been shown to have suppres-
sive/toxic effects on T cells, as well as additional 
immune cell populations including B cells and 
NK cells [72].

Together, the localized activity mediated by 
these factors acts to impair local anti-tumor 
immune responses. While effective inhibitors for 
many of these factors have been identified and 
observed to correlate with improved treatment 
outcome in pre-clinical cancer studies [56], the 
breadth of immunosuppressive processes within 
the tumor represents a major hurdle to the pro-
duction of effective and prolonged anti-tumor 
immunity.

14.3.3  Immunosuppressive Ligands 
and Receptors in the Tumor 
Environment

In addition to locally produced immunosuppres-
sive factors within the tumor, numerous receptor/
ligand interactions can also act to promote 
immune evasion and tumor progression. The find-
ing that apoptosis-inducing FasL and TRAIL are 
expressed in tumors [73–75] suggests a mecha-
nism by which the tumor can eliminate infiltrating 
immune cells expressing cognate receptors and 
underscores active measures by the tumor to 
evade host immune attack. Similarly, while 
ICOS-L is expressed on tumor cells [76] and 
could provide a source of co-stimulation for acti-

vated tumor-specific T cells, stimulation of ICOS-
expressing regulatory T cells results in increased 
expansion of IL-10-producing Tregs [76], which 
may suppress local immune activity within the 
tumor. While CD80 and CD86 are often consid-
ered to promote T cell function, binding of CD80 
or CD86 to CTLA-4, a T cell suppressive receptor 
(commonly known as a checkpoint receptor) that 
is upregulated following T cell activation [77], 
leads to suppression of T cell function. CTLA-4 
has a higher affinity for CD80 and CD86 than 
CD28. As a result, the negative signal from the 
CTLA-4 receptor on activated T cells will super-
cede any positive signals from CD28 [78]. 
Moreover, ligation of CTLA-4 by Tregs can pro-
mote upregulation of IDO by APCs [79, 80], 
which produces indirect T cell inhibition by Tregs 
[81]. PD-1, another member of the CD28 receptor 
family, is upregulated following T cell activation. 
Similar to CTLA-4, ligation of the PD-1 check-
point receptor via the ligands PD-L1 and PD-L2, 
impairs TCR signaling, cytokine production, and 
cell survival [82]. Unlike the ligands for CTLA-4, 
PD-L1 and PD-L2 are often expressed on tumor 
cells providing a direct mechanism by which 
tumors can suppress T cell function [83–86]. 
PD-1 expression has been shown to correlate with 
reduced functionality of TIL [87]. Additional 
inhibitory or checkpoint receptors, have been 
identified that contribute to immune evasion 
within the tumor. TIM3, a receptor expressed on 
CD4+ and CD8+ T cells, as well as DCs, mono-
cytes, and other lymphocyte populations [88], has 
been shown to negatively impact T cell responses 
through interaction with its ligand galectin-9 [89]. 
LAG-3 interacts with MHC II [90, 91] and nega-
tively regulates TCR signaling, leading to func-
tional impairment [92]. Recent evidence suggests 
that LAG-3 can also initiate reverse signaling via 
MHC II that can protect MHC II-positive tumor 
cells from apoptosis [93], while LAG-3 expressed 
on Tregs can also interact with MHC II and sup-
press DC function [94]. Inhibition of TIM3 activ-
ity has been shown to improve T cell proliferation 
and cytokine production [95] and antibody- 
mediated TIM-3 blockade can enhance T cell- 
dependent anti-tumor immunity [96–98]. 
Similarly, LAG-3 blockade enhances cytokine 
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production by T cells and shows a synergistic 
improvement in anti-tumor immunity when com-
bined with PD-1 blockade [99], suggesting that 
blocking multiple checkpoint pathways simulta-
neously may further improve anti-tumor 
immunity.

14.4  Immune Suppression 
in the Tumor 
Microenvironment Occurs 
in Response to Immune 
Attack

As stated previously, the immunosuppressive 
tumor microenvironment is a critical barrier to 
successful cancer immunotherapy. While the 
suppressive mechanisms employed by individual 
tumors can be varied, these processes are often 
thought to be intrinsic properties of the tumor. 
However, emerging evidence suggests that the 
immunosuppressive microenvironment of the 
tumor may actually reflect an adaptive response 
by the tumor to immune attack that has been 
termed adaptive resistance [100].

A study by Taube et al. [83] reported that 
B7-H1 (PD-L1) expression in human melanoma 
lesions was strongly associated with T cell infil-
tration and the expression of IFN-γ, indicating 
that the PD-L1 expression was elevated in direct 
response to immune attack. A follow up study by 
the same group further emphasized the intrica-
cies of the inflammatory tumor microenviron-
ment in PD-L1+ tumors of human melanoma 
patients compared to PD-L1- tumors [101]. In 
this study, the authors identified a number of 
markers consistent with T cell activation (CD8A, 
PRF1, IL-18, IL-21), as well as increased expres-
sion of IFN-γ, PD-1, LAG-3, IL-10, and IL-32-γ 
in PD-L1+ tumors, further emphasizing the con-
cept that PD-L1 is elevated as a consequence of T 
cell attack. Using in vitro studies, the authors fur-
ther identified IL-10 and IL-32-γ as factors that 
could enhance expression of PD-1 ligands on 
monocytes but not tumor cells, suggesting a com-
plex mechanism by which both tumor cells and 
infiltrating immune cells may act to regulate 
inflammatory attack within the tumor. An inde-

pendent study by Kluger et al. [102] adds further 
support to these findings, where the authors 
reported strong association between PD-L1 
expression and the presence of TILs in biopsies 
collected from different anatomical sites from 
patients with advanced metastatic melanoma. 
High expression of PD-L1 was associated with 
increased TIL density (Total CD3+ and CD8+) 
and improved patient survival, presenting an 
apparent paradox where the levels of PD-L1, an 
immunosuppressive ligand, actually correlate 
with improved outcome. In truth, there is no par-
adox as PD-L1 expression is simply a direct mea-
sure of local immune activity in melanoma.

Similarly, analysis of tumors from HPV- 
associated head and neck cancer patients revealed 
that TILs co-localized with PD-L1-expressing 
tumor cells [103]. Expression of both CD8 and 
IFN-γ was higher in PD-L1-positive tumors than 
PD-L1-negative tumors, reinforcing the concept 
that TIL activity directly contributes to induction 
of PD-L1, and, in turn, immune suppression, 
within the tumor microenvironment. In line with 
this, the authors noted that PD-1+ CD8+ TILs 
were functionally impaired compared to PD-1+ 
peripheral CD8+ T cells. Furthermore, the pres-
ence of PD-L1+CD68+ macrophages within the 
analyzed tumors suggests that infiltrating hema-
topoietic cells can also contribute to the adaptive 
resistance within the tumor.

Using an in vitro co-culture system to model T 
cell/tumor cell interactions, Dolen and Esendagli 
[104] observed that myeloid leukemia cells could 
provide effective co-stimulation to CD4+ T cells, 
enhancing T cell activation and proliferation. In 
turn, the activated CD4+ T cells triggered up 
regulation of PD-L1 and B7-DC (PD-L2) on the 
leukemia cells. When these “T cell-conditioned” 
leukemia cells were used in subsequent co- 
culture assays with naive CD4+ T cells, the T 
cells displayed poor proliferative capacity, 
diminished expression of activation markers 
(CD25, CD154), and reduced capacity for cyto-
kine production, providing direct evidence that 
the tumor cells adapt to T cell attack and augment 
their immunosuppressive properties. Importantly, 
the blockade of PD-1 in this co-culture system 
led to reversal of the immunosuppressed CD4+ T 

14 Adaptive Resistance to Cancer Immunotherapy



218

cell phenotype, restoring T cell proliferative and 
functional capacities confirming a key role for 
PD-1 ligands in adaptive resistance.

Additional support for adaptive resistance was 
reported by Spranger et al. [105], who observed a 
strong correlation between CD8+ T cell infiltra-
tion in human melanoma and the expression of 
PD-L1 and IDO, and the infiltration of FoxP3+ 
Tregs. Using mouse models, the authors observed 
that the induction of IDO and PD-L1 was medi-
ated by CD8+ T cells and IFN-γ. Further, CD8+ 
T cells reacting to the tumor triggered both in situ 
proliferation and increased tumor infiltration of 
Tregs through a CCL22/CCR4 dependent chemo-
kine axis. Similarly, Hosoi et al. [106] observed 
that tumor infiltration of suppressive myeloid 
populations, in particular CD11b+Gr-1intLy6C+ 
monocytic MDSCs, was driven by tumor-specific 
CD8+ T cells and the production of IFN-γ. Τhe 
tumor infiltrating MDSCs were observed to sup-
press T cells through a variety of mechanisms 
including iNOS and Arginase I activity, as well 
as the production of reactive oxygen species 
(ROS) [106]. In line with this, by analyzing 
immune cell populations isolated from the ascites 
of ovarian cancer patients, Wong et al. reported 
that activated type-1 immune cells (NK cells and 
CD8+ T cells), via secretion of IFN-γ and TNF- 
α, could promote the production of suppressive 
factors by MDSC’s including IDO1, NOS2, 
IL-10, and COX2 [107]. Importantly, this 
“counter- regulatory” immune suppression could 
be largely reversed through treatment with the 
COX2 inhibitor celecoxib and resulted in reduced 
production of these immunosuppressive factors 
by MDSC’s, leading to increased production of 
IFN-γ and TNF-α by NK cells and restored pro-
liferation of Granzyme B+ CD8+ T cells follow-
ing MDSC co-culture, suggesting that the COX2/
PGE2 axis functions in multiple ways to promote 
MDSC-mediated immune suppression in 
response to local inflammatory events. These 
results demonstrate that adaptive resistance is 
more complex than simple up regulation of PD-1 
ligands and the adaptation includes both tumor 
cell intrinsic effects (ex. up regulation of PD-L1) 
and tumor extrinsic effects (ex. infiltration of 
Tregs and MDSCs) [105, 106, 108].

We observed that the adaptive response is a 
key hurdle that limits the therapeutic effect of 
cancer vaccines. Using the B16F10 murine mela-
noma model, we noted that as soon as the 
vaccine- induced T cells infiltrated the tumor, a 
broad adaptation occurred with up regulation of a 
multitude of suppressive pathways, including 
checkpoint receptors/ligands (PD-1, LAG-3, 
TIM-3 and their corresponding ligands), Arginase 
and iNOS [7] [and unpublished data]. Expression 
of these suppressive factors was driven by CD8+ 
T cells and, to a large extent, the production of 
IFN-γ. Strikingly, these pathways were upregu-
lated as soon as the vaccine-induced T cells infil-
trated the tumor demonstrating the rapidity of the 
adaptive resistance. Unlike previous reports, we 
noted a temporal relationship between the adap-
tive response and T cell immunity within the 
tumor. Whereas the vaccine-induced T cells were 
initially highly functional within the tumor, over 
time the functionality of the intratumoral, 
vaccine- induced T cells waned while the adap-
tive response gained in magnitude, resulting in a 
very transient growth suppression. These find-
ings are of particular clinical interest, as immu-
notherapies, including vaccines, often require 
long treatment intervals or multiple immuniza-
tions to generate high numbers anti-tumor T 
cells. In turn, such therapies may instigate sup-
pressive events in the tumor early in the course of 
treatment and long before maximal immune reac-
tivity against the tumor is achieved.

Using the same model, we determined that 
tumor regression could be achieved by combin-
ing vaccination with either administration  
of immunomodulatory antibodies (anti-CD137  
+ anti-PD-1) [109] or adoptive transfer of tumor- 
specific CD8+ T cells [7]. Tumor regression did 
not result from the absence of an adaptive 
response following those therapeutic strategies. 
In contrast, we observed that the effective 
 therapies produced a heightened anti-tumor T 
cell response, which actually resulted in an ele-
vated magnitude of the adaptive immunosuppres-
sive response. In fact, throughout our studies, we 
observed that the magnitude of the adaptive 
response was directly related to the magnitude of 
the therapy-induced immune attack. Thus, adap-

A.J.R. McGray and J. Bramson



219

tive resistance may be a barrier, but it is not abso-
lute and can be overcome when sufficient 
numbers of T cells are present in the tumor, 
despite impairments in T cell function that arise 
from the adaptive immune suppression.

Since adaptive immune suppression is evi-
dence of immune attack within the tumor, mea-
sures of the adaptation may provide prognostic 
value. Tumeh et al. [108] and Taube et al. [83] 
observed co-localization of tumor infiltrating 
CD8+ T cells with expression of immune- 
inhibitory PD-1/PD-L1 markers, consistent with 
the theory that immune attack is responsible for 
adaptive immune resistance within the tumor 
microenvironment. Taube et al. observed that 
metastatic melanoma patients with elevated 
PD-L1 expression survived longer than those 
with low PD-L1 expression. Tumeh et al. went 
further and determined that patients with a high 
density of TILs and markers of adaptive resis-
tance (PD-1/PD-L1) at both the invasive margin 
and in the tumor were more likely to respond to 
PD-1 blocking therapy (pembrolizumab) when 
compared to patients with poor TIL infiltration or 
PD-1/PD-L1 expression. The authors employed 
this information to develop a model that pre-
dicted which patients would respond or progress 
on PD-1 blocking therapy. Furthermore, 
Gajewski has emphasized that patients showing 
favorable clinical outcome often had pre- 
treatment tumor transcriptional profiles consis-
tent with T cell infiltration and an inflamed tumor 
microenvironment, but that these same tumors 
also had the highest expression of genes associ-
ated with inhibitory mechanisms, including IDO, 
PD-L1, and a profile consistent with FoxP3+ Tregs 
infiltration [110–115].

Conceptually, the existing experimental data 
support induction of multiple adaptive resistance 
mechanisms in tumors in response to immune 
attack and it is likely that additional pathways/
mechanisms will be identified. Currently, two 
possible scenarios have emerged whereby the 
adaptive response has the potential to be over-
come therapeutically to promote anti-tumor 
immunity with curative potential. As depicted in 
Fig. 14.1a, inflamed tumors, which can arise 
either spontaneously or in response to immuno-

therapy, induce only low level immune attack on 
the tumor, resulting in adaptive resistance, local-
ized immune suppression, and tumor growth. In 
this case, adaptive resistance mechanisms can be 
partially overcome through interventions aimed 
at disrupting these immunosuppressive pathways 
(including co-stimulatory agents, checkpoint 
blockade, as well as chemical inhibitors) to pro-
mote re-invigoration of local immune attack and 
tumor regressions, whether complete or transient. 
In contrast, delivery of more robust immunother-
apies, such as ACT, can initiate rapid immune 
attack and result in tumor regressions despite the 
presence of the same adaptive resistance mecha-
nisms [7], suggesting that increasing the magni-
tude and/or rate of immune attack on the tumor 
may also improve the likelihood of overcoming 
adaptive immunosuppressive mechanisms and 
achieving therapeutic benefit (Fig. 14.1b).

14.5  Adaptive Immune 
Suppression in the Tumor: 
Does the Tumor Benefit 
from Conventional 
Homeostatic Mechanisms 
of Immune Tolerance?

Chronic inflammation had been implicated in 
driving immunosuppressive mechanisms within 
the tumor, thereby limiting anti-tumor immune 
responses [116–120]. However, as described 
above, the emerging concept of an adaptive 
immune resistance argues that the broad network 
of suppressive factors within the tumor microen-
vironment may actually be instigated as a conse-
quence of immune attack on the tumor. Adaptive 
immune resistance does not appear to be unique 
to tumor tissue, as many of the same suppressive 
mechanisms have also been implicated in the 
maintenance of immune tolerance under normal 
homeostatic conditions and in the control of 
autoimmune pathology under chronic inflamma-
tory conditions.

PD-L1 expression has been observed to 
increase with pancreatic inflammation in a mouse 
model of diabetes [121]. In the womb, PD-L1 is 
expressed in the placenta [122] and by Tregs [123] 
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to prevent immune attack on the semi-allogeneic 
fetus. PD-L2 has been implicated in the mainte-
nance of oral tolerance to ingested antigens [124] 
and has been shown to aid in controlling airway 
asthmatic responses [125]. Not surprisingly, the 
checkpoint receptors PD-1, LAG-3, and TIM-3 
play a role in the suppression of inflammatory 
processes to control autoimmune pathologies or 
tissue homeostasis [126–128], as do arginase 
[71], iNOS [129], TGF-β1 [130, 131], IDO [132, 
133], and Galectin-9 [89]. These observations 
argue that tumor tissue is not unique in its ability 

to evade inflammatory attack, but instead exploits 
natural homeostatic mechanisms that limit 
unwanted auto-immune destruction of healthy 
tissues. IFN-γ is particularly interesting in this 
regard as it has been implicated as critical effec-
tor molecule promoting anti-tumor immunity, 
while also playing a key role in the induction of 
the many immune suppressive pathways within 
the tumor. The contribution of IFN-γ to tissue 
homeostasis is underscored by the emergence of 
severe autoimmune pathology in mice deficient 
in IFN-γ or the IFN-γ receptor [134–138]. IFN-γ, 
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Fig. 14.1 Adaptive resistance occurs in direct response to 
immune attack on tumors but can be overcome therapeuti-
cally. (a) Spontaneous immune infiltration or delivery of 
immunotherapy results in an inflamed tumor microenvi-
ronment but only low level immune attack, resulting in 
adaptive resistance, immune suppression, and continued 
tumor growth. Intervention(s) with agents that act to 
enhance or restore local immune attack (co- stimulatory 

molecules, checkpoint inhibitors, or agents targeting 
immunosuppressive pathways) can partially overcome 
adaptive resistance mechanisms, leading to tumor regres-
sion. (b) Delivery of more robust immunotherapies (such 
as ACT) results in vigorous immune attack on tumors 
despite induction of adaptive resistance mechanisms and 
leads to tumor regression
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therefore, acts as a double-edged sword, regulat-
ing both inflammation and immune destruction 
[139]. Developing strategies to mitigate the regu-
latory properties of IFN-γ while maximizing 
tumor destruction will greatly enhance the effec-
tiveness of cancer immunotherapy.

14.6  Adaptive Resistance: 
Knowledge to Practice

Blockade of checkpoint receptors (i.e. CTLA-4, 
PD-1) and their ligands (i.e. PD-L1) has con-
firmed therapeutic benefit in multiple clinical tri-
als across a broad range of tumors [34–36, 
140–149]. These important successes notwith-
standing, single-agent checkpoint blockade only 
achieved therapeutic effects in a fraction of 
patients and data emerging from both mouse and 
human studies has demonstrated additional thera-
peutic benefit through blockade of multiple 
immunosuppressive pathways simultaneously [7, 
34, 99, 149–152]. As expected, given the com-
plexity of adaptive resistance, the combination of 
anti-CTLA-4 and anti-PD-1 produced more 
objective responses in melanoma than either 
agent alone [153]. The requirement to overcome 
multiple resistance mechanisms is further sup-
ported by analysis of tumor-specific T cells iso-
lated from tumor-positive lymph nodes of 
patients, which revealed that these T cells upreg-
ulate a host of suppressive receptors including 
LAG-3, TIM-3, PD-1, BTLA, 2B4, and CTLA-4 
[154], further demonstrating that multiple path-
ways contribute to T cell impairment. Indeed, the 
effects of these pathways are additive as T cells 
receiving multiple suppressive signals possess 
greater functional impairments [96, 155–157]. 
Based on these observations, it is clear that a 
combinatorial approach will be required to effec-
tively block local immunosuppressive processes 
and achieve more consistent objective responses 
in a larger number of patients. Given the high 
cost associated with each of the checkpoint 
blockade antibodies, however, it is unlikely that 
payers will accept using all blockade strategies 
with all patients. In this regard, it is imperative 
that we develop effective predictive tools that can 

determine which checkpoint blockade strategies 
will be most effective with individual patients. 
Adding further complexity to this challenge, a 
recent report investigating combination radio-
therapy and CTLA-4 therapy revealed that PD-L1 
was upregulated in therapy-resistant tumors 
[158], suggesting that re-invigoration of tumor 
attack by overcoming a single immunosuppres-
sive pathway may, in fact, lead to induction of 
additional non-redundant mechanisms of adap-
tive resistance. Interestingly, adoptive T cell ther-
apy can produce tumor regression despite clear 
evidence of adaptive resistance by the tumor [7]. 
Thus, it is possible to overcome the adaptive 
immune resistance when the level of immune 
attack is high enough. Of course, adoptive T cell 
therapy is imperfect and will likely require some 
aspect of checkpoint blockade to maximize clini-
cal activity. Nevertheless, the impressive clinical 
outcomes with checkpoint blockade and adoptive 
T cell therapy support further research to identify 
not only mechanisms leading to the induction of 
adaptive resistance in tumors, but also to under-
stand potential cross talk, interplay, as well as 
differences in the expression kinetics/upregula-
tion of well- characterized and emerging immu-
noregulatory mechanisms that function to limit 
immune attack on tumors.

Collectively, these studies demonstrate that 
immune attack on the tumor triggers a complex and 
dynamic feedback mechanism through which cells 
present within the tumor actively respond to the 
attack by upregulating immunosuppressive path-
ways that limit the durability of the therapeutic 
anti-tumor effects. Understanding the triggers of 
these responses will be key in the development of 
strategies to suppress the adaptive resistance and 
enhance clinical outcomes with immunotherapy.
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