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10.1	 �Introduction

Leukocyte infiltration of tumors can have either a 
pro-tumorigenic or tumor-inhibitory functions. 
As an example tumor-associated macrophages 
(TAMs) have tumoricidal activity and can induce 
antitumor T-cells; but, can also suppress cyto-
toxic T-cell responses capable of inhibiting 
tumor growth (Fig.  10.1). Myeloid cell infiltra-
tion of tumors is associated, in part, with tumor-
derived cytokines, GFs, chemokines, and 
expression of immune checkpoint molecules that 
regulate the expansion of myeloid progenitors 
within the marrow and at extramedullary sites 
and to an extent within the tumor (Fig.  10.2). 
Numerous studies have demonstrated that acti-
vated macrophages can kill tumor cells in vitro. 
However, macrophage infiltration of tumors is 
predominately, a pro-tumorigenic/tumor-
progressive phenotype [1]; although, some 
human studies have been equivocal [2]. Indeed, 
most studies have found no relationship between 
immunogenicity, metastatic propensity and infil-

trating TAM frequency [3–5]. Despite this lack of 
an immune correlation, TAM infiltration is asso-
ciated with a poor prognosis [6] and rapid tumor 
progression [7, 8]. Myeloid-derived suppressor 
cells (MDSCs) have also been identified in the 
circulation of tumor bearing (TB) hosts and to 
infiltrate tumors [9–13]. The immunosuppressive 
activity of MDSCs (both murine and human) 
occurs through multiple mechanisms including 
the upregulation of reactive oxygen species 
(ROS), nitric oxide (NO) production and arginase 
levels, as well as the secretion of immunosup-
pressive cytokines [14]. Preclinical studies have 
shown that MDSCs can control tumor growth [3, 
15], while immune augmenting type-1 macro-
phages (M1) and/or dendritic cells (DC1) cells 
contribute to the induction of an antitumor T-cell 
response, although their presence is not sufficient 
for tumor rejection [16]. M1 macrophage deple-
tion or an increase in infiltrating M2 macro-
phages, DC2s, and MDSCs are associated with a 
poor prognosis and increased tumor relapse post 
resection.

Lymphocytes also infiltrate tumors (Fig. 10.1) 
and the associated adaptive immune response has 
a positive prognosis. However, the infiltrating 
lymphocytes can also be T-cell suppressive. 
Thus, while T-cells have the potential to kill 
tumor cells, frequently they are of low frequency 
and avidity [17], and cannot control tumor growth 
[18]. Nonetheless, increased T-cell infiltration of 
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Fig. 10.1  The leukocytes infiltrating tumors regulates 
their growth and progression. Tumor regression is associ-
ated with infiltration by mature dendritic cells (DCs), 
cytotoxic T cells (CTL) and type 1T-helper cells (Th1). 
Contrasting with this, tumor growth is facilitated by 
immune mediated immunosuppression and neoangiogen-
esis by immature DCs, myeloid-derived suppressor cells, 

(MDSCs) plasmacytoid DCs, (pDCs) M2 macrophages, 
as well as T regulatory (T-reg) cells and a low frequency 
of CD4 and CD8 effector T cells. The expansion of 
myeloid cell proliferation, including immunosuppressive 
populations, is regulated by colony stimulating factors 
(CSFs), chemokines and dietary w-6 PUFA
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Fig. 10.2  Tumors secrete growth factors that expand and 
mobilize committed myeloid progenitors (CMP) and 
hematopoietic progenitor cells (HPC) from the marrow to 
extramedullary sites of myelopoiesis including the spleen, 
liver, lungs and primary and metastatic tumor lesions. 
Diets with increased levels of ω6 polyunsaturated fatty 
acids  (PUFA) can increase myeloplasia largely as an 
extramedullary process. These CMPs can mature into 
dendritic cells (DCs), myeloid derived suppressor cells 

(MDSCs); both monocytic (M) and granulocytic (G), 
monocytes, endothelial progenitor cells and macrophages 
including tumor-associated macrophages (TAMs), as well 
as become activated, or “paralyzed”, within the tumor 
environment. DC1 and DC2 are dendritic cell subsets that 
are immune augmenting and suppressive respectively. 
Dependent upon the infiltrating subset and extent of matu-
ration and activation, these cells are critical components 
and regulators of immune suppression, angiogenesis, vas-
culogenesis, and tumor regression or growth
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tumors is associated with an improved outcome 
[19–26], and an increased understanding of infil-
trating T-cell phenotypes and their functions has 
resulted in an improved understanding of their 
prognostic potential. However, some tumor cells 
express checkpoint molecules that downregulate 
immune responses. Myeloid cells, including 
macrophages, PMNs and MDSCs, can also 
express immunosuppressive checkpoint media-
tors, such as PD-L1 [27], providing another 
mechanism to down regulate T-cell proliferation 
and function. Consequently, although anti-tumor 
T cells are present in the tumor microenviron-
ment their anti-tumor activity may be limited. 
However, antibodies that inhibit immune check-
points are demonstrating efficacy in reactivating 
anti-tumor T cell responses [28].

10.2	 �Immune Cell Infiltration 
of Tumors

The hypothesis that hematological markers of 
systemic inflammation, in particular the neutro-
phil–lymphocyte ratio (NLR), can predict sur-
vival in tumor bearing patients has recently 
received much interest. Many groups have inves-
tigated the prognostic value of the NLR in a vari-
ety of tumors and at different disease stages. To 
date, over 60 studies (>37,000 patients) have 
examined the clinical utility of the NLR to pre-
dict outcomes [29]. There is also an emerging 
relationship between proinflammatory cytokines 
in the plasma of patients with elevated NLR (>5) 
and the tumor microenvironment. A number of 
studies have measured circulating cytokines 
together with the NLR [30, 31] providing insight 
into the mechanisms underlying the NLR, includ-
ing one study that documented an elevated NLR 
associated with an increased peritumoral infiltra-
tion of macrophages [30]. Together, these obser-
vations suggest that the NLR reflects, at least in 
part, the up-regulation of innate immunity pro-
viding easily measurable biomarkers that can 
predict OS and PFS in cancer patients.

The interactions between tumor infiltrating 
immune effector cells takes place primarily 
around the tumor. Thus, while the NLR may have 
prognostic significance, specific subsets of infil-
trating cells, as discussed above, may prove more 
informative. Specifically, cytotoxic CD8+ lym-
phocytes, as a component of tumor-specific adap-
tive immunity, may constitute a critical mediator. 
Further, the T-cell suppressive nature of myeloid 
cells, including MDSCs, M2 macrophages, and 
DC2s suggests the potential sensitivity and criti-
cality of the myeloid cell-to-CD8+ lymphocyte 
ratio in tumor tissue. A few studies have 
undertaken such analyses observing, for example, 
that CD66+ myeloid cells provide an independent 
prognostic factor for poor disease free survival 
(DFS) and overall survival (OS) [32]. This obser-
vation has been extended by the analysis of infil-
trating NLR (iNLR) as a CD66b:CD8 cell ratio 
with the observation of a relationship with a 
cumulative incidence of relapse, OS and tumor 
stage [33]. As discussed below, a patient’s life-
style, both preceding and following diagnosis, can 
contribute to not only cancer initiation and pro-
gressions but also outcome. Thus, hosts eating a 
high-fat diet, or one with a high level of saturated 
fat or ω-6 PUFAs generally have an inflammatory 
phenotype with neutrophilia, which may contrib-
ute to cancer development and poor outcomes. 
Conversely, and with little data to date, diets with 
a high ω-3 PUFA content have been associated 
with decreased inflammation and extramedullary 
myelopoiesis, and potentially improved clinical 
outcomes. We posit, herein, that dietary ω3 PUFA 
may also increase infiltrating T-cells thereby con-
tributing to improved clinical outcomes.

10.3	 �PUFA Regulation 
of Inflammatory Cells 
in Rodents

Several lines of evidence suggest that the dietary 
PUFA composite can influence inflammatory or 
anti-inflammatory cellular responses. Fatty acids 
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from animal sources, mainly contain saturated 
fatty acids (SFAs) or ω6 PUFA. In contrast, fatty 
acids derived from some plant-based oils, and 
certain types of fatty fish consist mainly of ω3 
PUFA. Recent studies have suggested that diets 
rich in ω6 PUFAs increase the risk of inflamma-
tory diseases, including rheumatoid arthritis, 
inflammatory bowel disease, and asthma [34]. 
In contrast, diets rich in ω3 PUFAs have anti-
inflammatory effects as supported by a decreased 
risk and control of these diseases [34]. PUFAs 
can be oxidized to generate either pro-inflam-
matory or pro-resolving lipid mediators 
(Fig.  10.3). These mediators have potent 
immune modulatory capacities and are gener-
ated rapidly during an inflammatory response 
[35]. Pro-inflammatory mediators, including 
prostaglandin (PG)s and leukotrienes (LTs), are 

induced in response to “foreign” materials and 
when they are cleared, pro-resolving lipid medi-
ators restore normal tissue homeostasis [36]. 
Diets rich in ω3-PUFAs such as α linolenic acid 
(ALA, 18:3n-3), eicosapentaenoic acid (EPA), 
and docosahexaenoic acid (DHA) are associated 
with a decreased incidence and severity of 
inflammatory diseases [37]. The beneficial 
effects of these dietary FAs include anti-inflam-
matory metabolites such as a subset of PGs, 
LTs, thromboxanes, resolvins and lowered lev-
els of inflammatory cytokines. However, the 
activities of ω3-PUFA contrast with other FAs 
that differ mainly in the position of their double 
bonds in the acyl chain, such as linoleic acid 
(LA) and arachidonic acid (AA) found with 
ω6-PUFA containing diets and their correspond-
ing metabolites (Fig. 10.3).
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Fig. 10.3  Outline of the eicosanoid and resolvin related 
mediator synthesis pathways from arachidonic acid (AA) 
and alpha linolenic acid and their inflammatory and anti-
inflammatory activities. COX cyclooxygenase, CYT p450 
cytochrome p450, CXC CXC chemokines, HETE 
hydroxyeicosatetraenoic acid, HDHA hydroxyldocosa-
hexaenoic acid, HPETE hydroperoxyeicosatetraenoic 

acid, HPDHA, hydroperoxydocosahexaenoic acid, 
HPEPE hydroperoxyeicosapentaenoic acid, IL interleu-
kin, IFN interferon, LOX lipoxygenase, LT leukotriene, 
LX lipoxin, PG prostaglandin, PMN polymorphonuclear 
leukocytes, ROS reactive oxygen synthetase, TNF tumor 
necrosis factor, TX thromboxane
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Omega-3 PUFAs are anti-inflammatory in part 
by modulating the metabolism of inflammatory 
eicosanoids, cytokines, ROS and the expression 
of adhesion molecules [38]. EPA and DHA 
dietary supplementation has proven effective in 
decreasing intestinal damage and improving gut 
histology in inflammatory bowel disease [39], as 
well as, decreased joint pain, number of tender 
and swollen joints, and duration of morning stiff-
ness in patients with arthritis [40]. Due to these 
responses, the effects on the immune response in 
various organs has been the subject of recent 
review articles [41].

10.4	 �PUFA and Immune Function

Studies using both ω6 and ω3 PUFA in rodent 
dietary studies, have documented different effects 
depending on the type of study (in vitro or in 
vivo), and the response measured. In vitro studies 
with ALA have shown an enhanced secretion of 
superoxides from neutrophils and macrophages 
[42], resulting in neutrophil adhesion to endothe-
lial cells [43] promoting pro-inflammatory 
effects. However, ALA has also been shown to 
inhibit the proliferation of rodent and human 
lymphocytes following mitogen stimulation [44] 
suggesting that ALA may also be immunosup-
pressive. Studies where rodents were fed a high-
fat diet, rich in ALA resulted in decreased 
mitogen-stimulated lymphocyte proliferation and 
NK cell activity [45].

In vitro studies using the ω6 PUFA; AA, have 
documented inflammatory properties including 
enhanced superoxide release [42], neutrophil 
adhesion to endothelial cells [43], and IL-1β pro-
duction by macrophages [46]. Feeding mice a 
diet with high levels of ω-6 PUFA has been 
shown, in a dose dependant manner, to result in 
increased levels of LTE4 and PGE2 following 
in  vivo stimulation with zymosan [47]. In a 
recent study, diets high in AA were shown to 
increase angiotensinogen, IL6 and MCP-1 levels 
in response to the proinflammatory transcription 
factor; nuclear factor κβ (NFκβ) stimulation 
[48].

A number of studies have shown that the ω3 
PUFA, ALA inhibits the proliferation of rodent and 
human lymphocytes in vitro [44, 49, 50]. Studies 
where rats were fed an oil with a high ALA compo-
sition (linseed oil, 100  g/kg diet) for 8  weeks, a 
decrease in superoxide production by peritoneal 
macrophages in response to phorbol esters, was 
observed [51]. However, rodents fed linseed oil 
also had an increase in TNF secretion by resident 
macrophages, but no effect on TNF production by 
inflammatory macrophages [52]. Thus, the precise 
effect of the w-3 PUFA, ALA on lymphocyte func-
tions appears to depend on the levels of ALA and 
the total PUFA content of the diet [53].

Because dietary fish oil leads to decreased 
PGE2 production, it has been suggested that ω3 
PUFAs should have anti-inflammatory activities, 
enhance the production of Th1-type cytokines, 
increase MHC II expression, lymphocyte prolif-
eration and NK cell activity, as well as, decrease 
IgE production. Culture of human neutrophils 
with EPA or DHA has been shown to inhibit 
superoxide production and phagocytosis [54]. 
Similarly, the incubation of murine peritoneal 
macrophages with EPA or DHA inhibits expres-
sion of MHC II [55]. In a study, in which human 
monocytes were incubated with either EPA or 
DHA, both were shown to decrease the propor-
tion of HLA-DR or -DP positive monocytes in 
response to IFN-γ [56] resulting in a reduced 
ability to present antigen [57]. The addition of 
fish oil to rodent diets can also decrease superox-
ide and hydrogen peroxide production by macro-
phages [58]. As compared to safflower oil, the 
addition of fish oil to murine diets results in lower 
peak plasma levels of TNF-α, IL-1β, and IL-6 
following endotoxin injection [59]. Furthermore, 
parenteral nutrition that includes fish oil can 
decrease serum TNF-α, IL-6, and IL-8 levels in 
rats with burns compared with animal given ω6 
PUFA–rich parenteral nutrition [54]. However, 
the majority of rodent studies with dietary fish oil 
use a diet in which EPA plus DHA comprise up 
to 30% of dietary fatty acids and up to 12% of 
dietary energy. The conclusions from these stud-
ies have been refined by studies in rats and mice 
that have indicated that relatively low levels of 
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EPA or DHA at a level of 4.4% of total fatty acids 
or 1.7% of dietary energy are sufficient to pro-
vide anti-inflammatory activities [60].

10.5	 �Clinical Anti-Inflammatory 
Activity of ω3 PUFA

There have been a number of clinical trials 
assessing the benefits of dietary supplementation 
with fish oil for the treatment of inflammatory 
diseases in humans, including rheumatoid arthri-
tis, Crohn’s disease, ulcerative colitis, psoriasis, 
lupus, and multiple sclerosis [61]. Many of the 
placebo-controlled, double-blind trials of fish oil 
in chronic inflammatory diseases have shown 
significant benefits, including decreased disease 
activity and a lowered use of anti-inflammatory 
drugs. The evidence for a beneficial effect of fish 
oil is strongest in rheumatoid arthritis, where ω3 
PUFA has been found to cause a concentration-
dependent decrease in enzymes that degrade car-
tilage, expression of COX-2, but not COX-1, and 
TNF-α and IL-1β expression in cultured articular 
cartilage chondrocytes [62]. The mechanisms by 
which ω3 PUFAs have a beneficial effect in 
patients with arthritis has been postulated to be a 
competition with the canonical ω6 substrate AA 
resulting in eicosanoids that are less potent at 
inducing inflammation [63]. Recent observations 
have shown that ω3 PUFAs can be enzymatically 
converted to novel bioactive lipid mediators, 
termed resolvins, protectins and maresins, which 
promote the resolution of inflammation and that 
are log- orders more potent than their lipid pre-
cursors [64]. These observations have generated 
a paradigm shift documenting that the resolving 
phase of inflammation is not a passive process, 
but is actively ‘switched-off’ via endogenous 
anti-inflammatory mediators [65]. This contrasts 
with ω-6 PUFA associated metabolites, PGD2, 
LTC4, LTD4, and LTE4, which mediate pulmo-
nary inflammation in asthma and are major medi-
ators of asthmatic bronchoconstriction. AA is a 
precursor to LTs, which promote allergic inflam-
mation, PGE2 also regulates macrophage and 
lymphocyte function. Thus, it has been suggested 
that increased dietary intake of the w-6 PUFA 

LA, as the precursor of AA, is causally linked to 
allergic diseases and suggests a potential treat-
ment focus for ω3 fatty acids [66].

10.6	 �PUFA Modulated 
Inflammation and Neoplasia 
in Rodent Tumor Models

As discussed above, clinically there have been 
varying associations between PUFA consump-
tion/composition and inflammation; but there are 
many confounding factors including genetic sus-
ceptibility, tissue microenvironments, stress, 
obesity, age and duration. Murine models have 
identified a number of mechanisms in the asso-
ciation of dietary PUFA and tumor initiation and 
progression focused on systemic and tissue 
inflammation. Inflammation at tumor initiation 
can be regulated by risk factors, including hor-
mones, obesity and age. However, following 
tumor initiation, inflammation is modulated by 
tumor growth in addition to existing risk factors. 
Thus, inflammatory microenvironments are cre-
ated by cross talk between tumor-secreted GFs 
and host immunity.

Using mammary tumors as an example, the 
cellular microenvironment of mammary glands 
incorporate hormonal responsive epithelial cells, 
stromal cells, as well as, immune cells, in asso-
ciation with adipose tissue, that can result in an 
endocrine as well as an inflammatory organ [67]. 
The role of inflammation in tumorigenesis is sup-
ported by the evidence of a progressive increase 
in infiltrating inflammatory cells, which include 
activated macrophages and granulocytes, during 
the progression from normal tissue to dysplastic 
cells, which are believed to support tumor initia-
tion [68].

The effect of dietary PUFA in tumor progres-
sion and metastasis has been studied in animal, 
and xenograft models of mammary cancer. In a 
xenograft model using MDA-MB-435 injected 
athymic nude mice given diets of either LA, EPA 
or DHA, significant retardation of tumor growth 
and metastasis was observed in the mice given 
EPA or DHA including a reduction in AA levels in 
tumor membrane phospholipids [69]. Further 
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when EPA and DHA were given as a neoadjuvant 
therapy, prior to tumor excision, pulmonary metas-
tases were significantly suppressed compared to 
mice maintained on a LA diet [70]. Similar 
immune-augmenting and therapeutic activities 
were observed in R3230RC and MCF-7 mammary 
adenocarcinoma models [71, 72]. These anti-
inflammatory activities may also include the regu-
lation of MDSCs that can inhibit both non-antigen 
specific and antigen-specific CD4+ and CD8+ 
T-cell responses. The mechanisms of MDSC 
immunosuppression are diverse, including up-reg-
ulation of ROS, NO, and L-arginine metabolism, 
as well as immunosuppressive cytokines. In one 
tumor survival study, mice were switched from an 
8% corn oil (1% ALA) diet to an 8% canola oil 
(10% ALA) diet, when the mice had an average 
primary tumor volume of 60 mm3. In these studies 
tumor growth was significantly lower in mice fed 
the ω-3 based canola oil diet compared to the ω-6 
based, corn oil cohort [73].

Interventions using ω-3 PUFA in chemically 
induced mammary tumor models support the 
results from xenograft tumor models. In a 7, 
12-dimethylbenz (α) anthracene (DMBA) 
induced mammary tumor model, a fish oil diet 
significantly reduced tumor incidence, growth 
and metastasis [74, 75]. The effect of an ω-3 diet 
on tumor induction and growth correlated with 
reduced AA serum levels, protection against 
DNA single strand breaks, suppressed tumor cell 
proliferation; c-Myc and HER-2/neu expression 
and an increase in the apoptosis markers Bcl-2 
and Bax [75–77]. Similarly, in a model of 
N-methyl-N-nitrosourea (MNU)-induced rat 
mammary tumors, the activity of dietary fat com-
positions including, saturated fatty acid (SFA), 
monounsaturated fat (MUFA), ω−6 PUFA alone 
or different ratios of ω−6:ω−3 PUFA were stud-
ied. It was found that a 1:1 ratio of ω−6:ω−3 
PUFA was more effective in the prevention of 
mammary tumor development as compared to the 
other dietary cohorts, by decreasing mRNA 
expressions of fatty acid synthase, cyclooxygen-
ase-2 (COX-2), and 5-lipoxygenase (5-LOX) in 

mammary tissues and decreasing peroxisome 
proliferator-activated receptor gamma (PPAR-γ) 
levels [78]. Together, these studies directly sup-
port a role for ω-3 PUFA in modulating an inflam-
matory tumor microenvironment by the up 
regulation of PPAR-γ [77, 78]. When the ω-3 
PUFA content was significantly increased to a 
ω−6:ω3 ratio of 1:14.6 compared to 1:0.7, a 60% 
reduction in tumor growth was observed. This 
was associated with decreased cyclin-D1 and 
phospho-retinoblastoma protein expression and 
increased levels of cyclin-dependent kinase 
inhibitors, CIP1 (p21) and KIP1 (p27), an 
increased apoptotic index, reduced inflammation 
and mammalian target of rapamycin (mTOR) 
activity [79]. In an orthotopic 4  T1 mammary 
tumor model, 5% fish oil was used as therapy 
beginning when hosts had primary tumors that 
were 8–10  mm3 and documented a significant 
reduced tumor growth and metastasis, which was 
correlated with inhibition of cancer cell prolifera-
tion [80].

The ability of ω3 PUFA to downregulate 
inflammatory mediators and increase apoptotic 
proteins emphasizes the importance of exoge-
nous regulation of the tumor microenvironment. 
However the mechanism of regulation is not 
clear. In-vitro studies, have focused on cellular 
phenotypes and the effect of ω3 PUFA on inflam-
matory cells in both LPS and tumor induced 
inflammation. The majority of these studies have 
focused on inflammatory pathway factors. 
Although ω3 PUFA has anti-inflammatory effects 
in inflammatory diseases including cancer, its 
regulation of MDSCs, which is a critical regula-
tor of the tumor microenvironments is understud-
ied. Further, the majority of murine models, 
involve diets that are isocaloric but fully equiva-
lent, raising the question of obesity verses dietary 
constituents. Since obesity itself is an inflamma-
tory disorder, ruling out the effects of obesity 
associated inflammation as a confounding factor, 
is crucial to determine the actual effects of dietary 
components such as fatty acids in tumor initia-
tion, progression and metastasis.
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10.7	 �PUFA Regulation of Immune 
Cells: Consequences 
for Clinical Outcomes 
in Cancer

Epidemiological studies of the incidence and 
progression of breast cancer in populations of 
women of Japanese descent in the USA com-
pared to women in Japan, have indicated a sig-
nificantly higher incidence in the USA compared 
to Japan [81]. This observation was supported by 
the finding that offspring of Japanese immigrants 
to the United States, but not the immigrants 
themselves, had breast cancer rates similar to the 
general American population [82]. In the 1990s, 
dietary components that were implicated in these 
different incidences were identified [83]. These 
relatively weak and sometimes contradictory cor-
relative epidemiologic data were considered 
plausible, given experiments demonstrating ω3 
PUFAs had the potential to reduce pro-
inflammatory cytokines, inflammation and devel-
opment of cancer [84]. Similarly, there are 
indications that high fat diets increase breast can-
cer risk and are associated with an increased inci-
dence of aggressive prostate cancer [85].

In an epidemiological study of 56,007 French 
women over 8 years, it was noted that breast can-
cer risk was not related to dietary PUFA overall, 
but a significant risk was associated with ω6 vs. 
ω3 PUFAs that was inversely related to ω3 
PUFAs in women with the highest intake of ω6 
PUFAs indicating interactions between PUFA 
consumption [86]. The decreased risk of breast 
cancer with ω3 PUFA intake (from fish) was con-
firmed in a case controlled study [87]. A popula-
tion based study showed all-cause mortality was 
reduced 16–34% in women with a high intake of 
ω3 PUFAs [88]. Overall, during the past 20 years, 
data has accumulated to indicate that a high ω6 
PUFA intake is pro-inflammatory, likely involv-
ing COX-2 and NFκβ activation leading to 
increased breast cancer incidence and all-cause 
mortality whereas high ω3 PUFA intake is pro-
tective, against high ω6 PUFA consumption 
downregulating NFκβ and decreasing breast can-
cer incidence and all-cause mortality.

Recent studies have shed  additional light on 
the mechanisms involved in these clinical effects, 
as well as their relationship to the previously dis-
cussed innate and adaptive immune cells in the 
tumor microenvironment. The regulation by ω3 
PUFA of macrophage function, has been docu-
mented with the use of antagonists to GPR120 
(free fatty acid receptor 4 (FFA4R)) which is 
expressed by some myeloid cell populations [89]. 
It is noted that ω3 PUFAs mediate anti-
inflammatory effects via this receptor. However, 
the nuclear receptor PPAR-γ is also a receptor for 
PUFAs and the regulatory mechanisms of ω3 and 
ω6 PUFA on obesity [90], postmenopausal breast 
mammary cancer [91] and microenvironmental 
inflammation [41] require additional study. 
Changes in the lipid content of cell membranes 
associated with ω3 and ω6 PUFA intake have 
effects on oncogenic signalling through modula-
tion of lipid raft profiles and a reduction in cyto-
kine production [92]. In addition, PUFAs 
contribute to the regulation of hematopoiesis in 
the BM, at extramedullary sites such as the spleen 
[93, 94] and have been suggested to induce the 
expansion of myeloid derived suppressor cells 
[95].

In summary, dietary intake of PUFAs have 
shown significant effects on clinical outcomes in 
cancer patients. In general ω6 PUFAs are associ-
ated with increased risk due to both direct effects 
on the mammary gland and promotion of a pro-
inflammatory tumor microenvironment. In con-
trast, ω3 PUFAs have protective effects and 
counter tumor and ω6 PUFA associated inflam-
mation. A general recommendation can be made 
that individuals should decrease dietary ω−6 
PUFA intake and increase their ω3 PUFA con-
sumption such that a dietary ratio of no more than 
1–3 to 1 is consumed to support cancer preven-
tion. PPAR-γ and GPR120 agonists also have 
potential use as neoplastic chemopreventive 
drugs; although both these drugs and dietary 
PUFA regulation have yet to definitively docu-
ment anti-cancer activity. In contrast, long-term 
use of anti-inflammatory drugs has a clearly doc-
umented cancer preventive activity associated 
with inflammatory cell infiltration of tumors [96]. 
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However, these benefits need to be weighed 
against the risks associated with the long-term 
use of anti-inflammatory drugs, which high-
lights  the potential for dietary PUFA regulation 
of inflammation.
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