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Abstract. A general method for balance of planar mechanisms is
presented in this paper. In order to determine the force that causes
unbalanced, called shaking forces, the dynamics equations of motion for
mechanisms are formulated systematically using the Davies’ method. The
formulation leads to an optimization scheme for the mass distribution to
improve the dynamic performances of mechanisms. The method is illus-
trated with a slider-crank mechanism. Balancing of shaking forces shows
a significant improvement in the dynamic performances compared to that
of the original mechanisms.
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1 Introduction

Despite large research effort in the field of balance of mechanisms, modelling
the behaviour of unbalanced forces are still considered important and a major
challenge in recent investigations [13]. The development of models using Fourier
series in analytical way can be difficult to interpretate, due to the complexity of
the equations. Also, an approach that considered the behaviour of others forces
in the model, as example, gravitational force, can be difficult to integrate with
analytical models.

In order to address the issues previously discussed we proposed a method
based in a synthetical view which can not only be used to solve the inter-
nal unbalanced forces, but integrated also external forces which are applied to
the structure. The method is validated using a planar slider-crank mechanism
(Fig. 1), but it has the potential to be expanded in order to use it in spatial
mechanisms.

An overview on balancing techniques is presented in Sect. 2. Section 3 describe
the proposed methodology and summarises scientific contributions of this paper.
The mechanical design of the slider-crank mechanism is presented in Sect. 4 along
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Fig. 1. Slider-crank mechanism

the equivalent masses model. Section 5 present the solution of the accelerations
center of mass and Sect. 6 the solution of the inertial equations. The optimization
algorithm used is briefly introduced in Sect. 7. Section 8 present the results for
the shaking forces and Sect. 9 the conclusions of the paper.

2 Background

Different approaches has been developed for the balance of mechanisms. In
[2,11] a method based on the conditions of the angular and linear moment being
equal to zero was used. In [3,13] a closed analytical condition has been found to
determine the position of the center of mass of a mechanism and the conditions
for being stationary. Both methods are convenient for the analytical solution
of the problem but sometimes leads to complex solutions, requiring significant
algebraic effort to the derivation of the balance conditions.

In [4,6] a fast Fourier transform analysis is derived and investigated to the
partial balancing of high-speed machinery by the use of counterweights mounted
on shafts. This solution has found wide application as it may be accomplished by
attaching balancing elements to the crank. However, for mechanisms with more
degrees of freedom (DOFs), the dynamic balance conditions become increasingly
to find as the number of bodies increase. In [8] a screw-based dynamic balancing
approach has been developed to obtain the balancing conditions directly from the
momentum equations. Using Screw theory it has been found that a simplification
of the balancing process is obtained. On overview of the theory of balancing
mechanism is given in [1].

In this paper, the Davies’ method is used to solve the dynamic balance for
a planar slider-crank mechanism. The method is based on Graph theory, Screw
theory and an adaptation of the Kirchhoff’s laws and is applied to solve both
differential kinematics and statics of mechanism [5,7,9]. Recently, the method
was used to solve the rollover of long combination vehicles, treating the accel-
eration of the last unit (trailer) and the stiffness of the suspension system [10].
Because of this combination of powerful mathematical tools, as Graph theory
and Screw theory, and also for the adaptation from electric circuits, the Davies’
method have been proved to be more general and straight forward than other
tools.
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3 Methodology

In this section, a new methodology is derived and presented to solve the shaking
forces in a slider-crank mechanism. The methodology is based on the Davies’
method to solve the inertial equations and after an optimization method to
describe the position of the counterweights to reduce the shaking forces in the
mechanism.

Fig. 2. Flowchart of the methodology

Figure 2 shows the flow chart of the methodology: the first step is solving the
accelerations of the center of mass of each link of the mechanism and the inertial
forces acting in each link, as we call the kinematic pre-processing and static pre-
processing. Once the accelerations and the inertial forces are known, to solve
the shaking forces, an objective function is built, using a convenient number
of optimization variables. In this paper, the differential evolution optimization
method was used to solve the minimization of the shaking forces.

4 System Modeling

The slider-crank mechanism is divided by a crankshaft (1), connecting rod (2) and
slider block (3). The respectively total mass of the crankshaft, connecting rod and
slider block is m1, m2 and m3. The length of the crankshaft and connecting rod
is, respectively, r and l. To balance the shaking forces in the mechanism, a coun-
terweight with total mass m4 is add in the crankshaft (Fig. 1). The weight and the
position of the counterweight it will be determined by the optimization method.
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To solve the inertial forces in the slider-crank it is necessary to know the
position of each center of mass of each link and the counterweight. For this
solution, it is better to represent the masses of the links as equivalent masses.
For the dynamic equivalence, it is necessary to assume three conditions [2].

– The mass of the model must be equal that of the original body.
– The center of gravity must be in the same location as that of the original

body.
– The mass moment of inertia must equal that of the original body.

Figure 3 shows the equivalent mass of the crankshaft. The total mass of the
crankshaft m1 can be represented as an equivalent mass in the point b.

m1b r = m1 rG2

m1b = m1
rG2

r
(1)

For the connecting rod, the total mass can be derived in three masses: m2b ,
m2g and m2c (Fig. 3).

Fig. 3. Equivalent mass model

The equivalent mass system is obtained by the Eqs. 2, 3 and 4.

m2b + m2g + m2c = m2 (2)

m2b la + m2g 0 + m2c lb = 0 (3)

m2b l2a + m2g 0 + m2c l2b = JS (4)

Solving m2b in Eq. 3, we obtain,

m2b =
m2c lb

la
(5)

Now, applying Eq. 5 in Eq. 4,

m2c =
JS

lb la + l2b
(6)

Knowing the moment of inertia JS , it is possible to describe the equivalent
masses of the link. These simplifications lead to the equivalent masses model of
the slider-crank.
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5 Solving the Acceleration

As stated previously, the Davies’ method is used in this paper to solve the
kinematics of the slider-crank. The first step in the solution of the shaking forces,
it is necessary to know the accelerations of the center of mass of each link of the
mechanism. For the slider-crank, it is necessary to know the acceleration of the
counterweight (S3), joints b and c of the connecting rod, and the center of mass
S2 of the connecting rod, as shown in Fig. 4(a).

Fig. 4. Kinematic parameters and motion graph of the slider-crank

To describe the acceleration of the connecting rod center of mass it is applied
an assur virtual chain, composed by prismatic kinematic pairs at x and y axis,
and one revolute joint about the z axis, as we called a PPR assur virtual chain.
The prismatic joint is used in these case to solve the linear velocities of the center
of mass vx and vy.

Using graph theory we can represent the whole velocities in the slider-crank
as a graph called the motion graph GM . The slider-crank is composed by three
revolute joints a, b and c and one prismatic joint d. The DOF of the revolute
joint are the angular velocities about the z axis ωa, ωb and ωc. And the DOF of
the prismatic joint is the velocity in the x axis called vd. In the motion graph,
each edge represents the degrees of freedom f of the coupling (joint). The motion
graph GM of the slider-crank mechanism is shown in Fig. 4(b).

In the motion graph, we represent also the degrees of freedom of the assur
virtual chain, in this case 3 virtual chains to describe the velocities of the center
of mass b, S2 and S3. A set of f independent motions represented by twists is
written in the circuit matrix {BM}l,F . The number of circuits l is 4 and the
gross network degree of freedom F is 13, so the circuit matrix GM is

[BM ]4×13 =

⎡
⎢⎣

⎤
⎥⎦

−1 −1 −1 1 0 0 0 0 0 0 0 0 0
−1 0 0 0 1 1 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 1 1 1 0 0 0
−1 0 0 0 0 0 0 0 0 0 1 1 1

(7)
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The solution of the kinematic magnitudes of the slider-crank is obtained
applying the circuit-law in the unit motion matrix [5]. The solution of the sec-
ondary variables [Ψp] is obtained in Eq. 8.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vbx

vby

vS2x

vS2y

vcx

vS3x

vS3y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−yb

xb
−(yS2 xb − yb xc)

xb − xc
xb (xS2 − xc)

xb − xc−(xb yc − yb xc)
xb − xc−yS3

xS3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ωa (8)

where [xi, yi] are the coordinates of each joint and center of mass illustrated
in Fig. 4. Once the velocities are known, the accelerations are easily obtained
applying the derivative.

6 Solving the Inertial Forces

We can apply the Davies’ method to solve the reactions forces at the frame of the
slider-crank. The reactions forces Rx and Ry can be represented by the inertial
forces acting in each link. The inertial forces due to the acceleration of the link
act in a straight line passing through the center of mass of the link. The inertial
forces Fi acting in each link are shown in Fig. 5.

Fig. 5. Inertial forces acting in the slider-crank.

As in the kinematic solution, the actions in the mechanism can be represented
by a graph called action graph GA. In the action graph, each constraint in a joint
is represented as a set of edges in parallel. The inertial forces acting in each link
of the slider-crank mechanism can be represented as a screw with six coordinates.
Here we call the screw as and inertial screw. The inertial screw is composed by
one unitary vector with six coordinates and an scalar representing its magnitude.
The magnitude is the properly inertial force, as estimated by the second Newton
law: Ψ = −ma.
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The negative in the inertial force is written in the vector of six coordinates.
Written the inertial force in each axis of the coordinate system Oxyz, the inertial
screw is

$in =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M in

−−

Rin

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0 ×Rin

−−−
f in
x

f in
y

f in
z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m (zi ay − yi az)
m (xi az − zi ax)
m (yi ax − xi ay)
−−−−−−−

−max

−may

−maz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

$in =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
−zi
yi
−−
−1
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

max +

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi
0

−xi

−−
0
−1
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

may +

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−yi
xi

0
−−
0
0
−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

maz

(9)

As the slider-crank mechanism is in the planar case (λ = 3), it is possible
to eliminate the rows 1, 2 and 6 of the vector. The set of inertial screws and
wrenches it is written in the cutset matrix {QA}k,C . The number of cut-sets k
is 3 and the gross network degree of freedom C is 17, so the cutset matrix will
be in the form {QA}3,17. For brevity, the cut-set matrix it is not showed here.

Using the cut-set law the algebraic sum of the normalized wrenches that
belong to the same cut must be equal to zero [5]. So it is possible to obtain
the action unit matrix [ÂN ]λk,C = [ÂN ]9,17. Using as primary variables the
magnitudes of the inertial screws, and solving the action unit matrix using the
Gauss-Jordan elimination method, the solution of the system provides the fol-
lowing equations,

Rx = −Fin1x
− Fin2x

− Fin3x
− Fin4x

(10)

Ry = −Fin1y
− Fin2y

− Fin4y
(11)

Equations 10 and 11 describe the shaking forces at the frame of the slider-
crank in function of the inertial forces acting in each link. In the next section,
the construction of the objective function to minimize these shaking forces will
be explained.

7 Objective Function

The strategy used in this paper to solve the optimization problem was the Dif-
ferential Evolution (DE) proposed in [12]. The objective function to the problem
of minimization of shaking forces in the slider-crank was built using three vari-
ables. The first variable is the mass of the counterweight m4. The two others
variables describe the position of the counterweight relative to the coordinate
system Oxyz. r2 is the length of the link counterweight and γ is the angle between
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the crankshaft. Here the objective function is written in the way to minimize
the force (R) of the shaking force,

minimize : R(m4, r2, γ) = R = min(
√

R2
x + R2

y) = . . .

. . . =
√

−Fin1x
− (mA − mb) a2x − Fin3x

− Fin4x

+
√

−Fin1y
− (mA − mb) a2y − Fin4y

(12)

Equation 12 shows that the two components of the shaking force are written
in function of the optimization variables (m4, r2, γ). To solve the problem it
is necessary to write a set of inequality constraints for each optimization vari-
ables, indicating the limits of each variable. For this problem the inequality
constraints is,

subject to : g1 (m4) : 0 � m4 � m4max
(13)

g2 (r2) : 0 � r2 � r2max
(14)

g3 (γ) : 0 � γ � 2π (15)

8 Results

The methodology is validated by calculating the shaking forces at the frame of the
slider-crank using Matlab R©. The data used for the slider-crank is: r = 0.4 [m],
l = 0.15 [m], the masses and moment of inertia of the crank, connecting rod and
slider, respectively m1 = 0.5 [kgf] and JS1 = 1.8e−5 [kg m2], m2 = 0.1 [kgf] and
JS2 = 9.50e−7[kg m2], m3 = 0.5 [kgf] and JS3 = 5.05e−7[kg m2]. The angular
velocity is ωa = 300 [rpm]. Figures 6 and 7 shows the shaking force Rx and Ry

at the frame of the slider-crank without counterweight. Figures 8 and 9 shows the
maximum force and the forces Rx and Ry for the case when the counterweight is
add to the crankshaft.

Fig. 6. Unbalanced shaking force Rx Fig. 7. Unbalanced shaking force Ry
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Fig. 8. Maximum shaking force Fig. 9. Shaking forces Rx and Ry

9 Conclusion

In this paper a new methodology to derive the equations of the shaking forces
in a slider-crank mechanism by using the Davies’ method was presented. The
results using the method show that the equations are obtained with a minimum
effort. The method shows a great potential to be applied in spatial mechanisms
and also to include external forces within the model. Compared to another meth-
ods that use Fourier analysis this method treats the shaking forces as a unique
approximation. Another advantage is that the approach is formulated as a gen-
eral mathematical optimization problem. Future works involve including other
variables in the optimization algorithm, such as dimensions and weight of the
connecting rod.
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3. Berkof, R.S., Lowen, G.G.: A new method for completely force balancing simple

linkages. J. Eng. Ind. 91, 21–26 (1969)
4. Chiou, S.T., Davies, T.H.: The ideal locations for the contra-rotating shafts of

generalized Lanchester balancers. Proc. Inst. Mech. Eng. Part C J. Mech. Eng.
Sci. 208(1), 29–37 (1994)

5. Davies, T.H.: Freedom and constraint in coupling networks. Proc. Inst. Mech. Eng.
Part C J. Mech. Eng. Sci. 220(7), 989–1010 (2006)

6. Davies, T.H., Niu, G.H.: On the retrospective balancing of installed planar mech-
anisms. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 208, 39–45 (1994)



212 J.C. Frantz et al.

7. Frantz, J.C., Mejia, L., Simas, H., Martins, D.: Analysis of wrench capability for
cooperative robotic systems. In: Proceedings of 23rd ABCM International Congress
of Mechanical Engineering - COBEM (2015)

8. Jong, J.J., Dijk, J., Herder, J.L.: A screw-based dynamic balancing approach,
applied to a 5-bar mechanism. In: 15th Advances in Robot Kinematics, France
(2016)

9. Mejia, L., Frantz, J.C., Simas, H., Martins, D.: Wrench capability polytopes in
redundant parallel manipulators. In: Proceedings of 23rd ABCM International
Congress of Mechanical Engineering - COBEM (2015)

10. Moreno, G.G., Nicolazzi, L., Vieira, R.S., Martins, D.: Three-dimensional analysis
of the rollover risk of heavy vehicles using Davies method. In: Proceedings of the
14th IFToMM World Congress, pp. 195–204 (2015)

11. Paul, B.: Kinematics and Dynamics of Planar Machinery. Prentice Hall, Englewood
Cliffs (1979)

12. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

13. van der Wijk, V.: Methodology for analysis and synthesis of inherently force and
moment-balanced mechanisms. Universiteit Twente (2014)


	A New Methodology for the Balancing of Mechanisms Using the Davies' Method
	1 Introduction
	2 Background
	3 Methodology
	4 System Modeling
	5 Solving the Acceleration
	6 Solving the Inertial Forces
	7 Objective Function
	8 Results
	9 Conclusion
	References


