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Abstract. Cardiac MRI allows for the acquisition of high resolution
images of the heart. Long acquisition times of MRI make it impractical
to image the full heart in 3D at high resolution. As a result, multiple
2D images are commonly acquired with a slice thickness greater than
the in-plane resolution. One way of achieving isotropic high-resolution
images is to apply post-processing techniques such as super-resolution to
produce high resolution images from low resolution input. We use short-
axis stacks as well as orthogonal long-axis views in a super-resolution
framework, constraining the reconstruction using the contrast indepen-
dent directional total variation algorithm to produce a high resolution 3D
reconstruction with isotropic resolution. The 3D reconstruction retains
the contrast of the short-axis stack, but incorporates the edge informa-
tion from both the short-axis and the long-axis stacks. Results show
improved reconstructions, with a segmentation voxel misclassification
rate of 3.51% as opposed to 4.27% using linear interpolation.
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1 Introduction

Magnetic Resonance Imaging (MRI) is a non-ionising and non-invasive imaging
method exhibiting particularly good soft tissue contrast. It provides structural
as well as functional information, and it is taken as gold standard for soft tissue
imaging notably for vital organs such as the brain and the heart. In a clinical
setting, patient motion from breathing, cardiac motion as well as long acquisition
times restrict imaging from being performed at full isotropic 3D high resolution
routinely. As a consequence, 2D slices with highly anisotropic voxels are acquired.
The standard clinical protocol is to image a set of stacked parallel short-axis (SA)
images and a smaller number of long-axis (LA) views orthogonal to the SA stack
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covering most of the heart. 2D low resolution (LR) slices are typically acquired
with in-plane pixel size of 1–2 mm and slice thickness of 6–10 mm with a small
slice gap of 2–4 mm [1]. SA image stacks often fail to capture the apex or the
base of the heart appropriately, and data for those essential features is only
contained in the LA slices. In practice, one 4-chamber view and one 2-chamber
view are acquired, making it very imbalanced between numbers of SA and LA
acquisitions. However, this choice of orientation is not made with the aim of
reconstructing a 3D volume.

Methods for improving image quality may occur at different points along the
image reconstruction pipeline. For example, compressed sensing algorithms work
with the acquired k-space data, reconstructing images using sparse modelling.
This serves to decrease imaging time whilst still giving adequate image quality
[2]. The technique has been successfully applied to dynamic 2D CMR recon-
structions [3]. Other algorithms operate after images have been reconstructed,
performing de-noising, super-resolution or other post-processing techniques. The
proposed algorithm falls into the latter category. Super-resolution in MRI has
first been described in [4], in which a reconstruction algorithm is applied on
acquisitions with small shifts in the slice selection direction, giving improved res-
olution and edge definition. In super-resolution MRI reconstruction, the imaging
process is generally modelled as follows: A real ground truth object G is imaged
by a process resulting in an image, X. This is modelled by applying a transfor-
mation T and additive gaussian noise n X = TG+n. The operator T is defined
as a combination of geometric transformations, convolution with a point-spread
function, which is often a Gaussian kernel, and downsampling [5]. Having defined
an acquisition model, the image reconstruction process can be posed as an ill-
conditioned inverse problem. In addition to the data consistency term, different
regularisers R have been applied [6,7]. Such regularisers control features of the
reconstructions such as the magnitude of edges and degree of smoothness, and
allow ill-conditioned problems to be solved as follows:

Y = min
Y

N∑

i=1

||TiY − xi||2 + λR (1)

Where Y is the reconstruction, N 2D slices are used, and λ determines the
weighting of the regularisation term.

The feasibility of such super-resolution methods was shown by Plenge et al.
[8], in which they compared iterative back-projection, algebraic reconstruction
and regularised least squares algorithms on phantoms and in vivo MRI. In [7,9],
a Laplacian regulariser is applied to control the high spatial frequencies on recon-
struction of small bird and full body mouse MRI images, giving good qualita-
tive results and outperforming standard interpolation techniques. However, as
opposed to sparse sampled cardiac MRI, most of the imaging volume is sampled
in those studies.
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Total variation is another popular regulariser with edge-preserving and con-
vex characteristics, and has especially been used for de-noising [10]. It has also
been applied to super-resolution and compressed sensing of MRI data as a
regulariser [11]. An added difficulty in cardiac MRI are the differences in inten-
sity and contrast between SA and LA acquisitions occurring because of differ-
ent imaging protocols and sequence timings. Thus, any reconstruction algorithm
aiming to reconstruct images using information from both the SA and LA images
must be contrast independent. Directional total variation (dTV) is a recently
introduced approach for reconstructing images using a reference image with the
same structure but different contrast. In a study by Ehrhardt et al. [12] 2D
dTV is used to combine information from brain MRI with different T1 and T2
weightings. It uses one image and its structural information as a reference for
the dTV to guide the reconstruction of the other. A different regulariser which
has been applied to super-resolution of CMR is the Beltrami regularisation [13]
in which they solve Eq. (1) using three sets of image stacks covering the whole
left ventricle in the SA, horizonal LA and vertical LA orientations. Limitations
of this work are that the slice protocol used does not reflect clinical practice
as the number of slices is a lot higher, and it does not address differences in
contrast between SA and LA. Recent studies such as work by Oktay et al. [14]
have focused on the use of Convolutional Neural Networks for super-resolution
of CMR and shown great promise. However, methods based on machine learning
make the assumption that testing data is well represented by the training data,
which may not hold in pathological cases.

In this work, we address the problem of reconstructing 3D images from a
stack of 2D slices in both SA and LA orientations, in a contrast-independent
manner using the directional total variation regulariser. This allows a recon-
structed image with the contrast of the short-axis images but with the additional
structural information of the LA images.

2 Materials and Methods

2.1 Image Acquisition

Experimental investigations conformed to the UK Home Office guidance on the
Operations of Animals (Scientific Procedures) Act 1986 and were approved by
the University of Oxford ethical review board. One heart was excised from a
female Sprague-Dawley rat during terminal anaesthesia, fixed then embedded
in 1% agarose gel, and imaged on a 9.4 T preclinical MRI scanner (Agilent,
CA, USA). A single 3D gradient echo image was acquired: FOV = 25.6 × 25.6 ×
25.6 mm, acquisition matrix = 384 × 384 × 384, TR = 200 ms, TE = 4 ms, flip
angle = 60◦, scan time = 8.2 h. LR 2D slices X: FOV= 25.6 × 25.6mm, acqui-
sition matrix = 128 × 128, in-plane resolution = 0.2 mm, slice thickness = 1 mm
were synthetically generated from the 3D image Y using the sampling func-
tion T, such that Xi = TiY. The sampling function differs to the ones generally
used in the literature by working in k-space. Instead of averaging points in image
space, the Fourier transform of Y is truncated in k-space, after rotation of the
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Fig. 1. LHS: cut through 3D view of 11 SA in 3D space. The blue plane is aligned with
the SA while the red and green planes are aligned with the LA. RHS: cut through 3D
view of 11 LA in 3D space. The LA slices have noticeably different contrast than the
SA slices. (Color figure online)

3D image. The image is rotated such that the in-plane view corresponds to the
orientation of the slice to be synthetised. The LA images were synthetised after
applying a histogram shift to the ground truth 3D volume, to ensure the LR SA,
and LA images have different contrast. This is visible in Fig. 1.

2.2 Super-Resolution Algorithm

We formulate the problem by simultaneously solving the following

Y∗
SA = arg min

YSA

nSA∑

i=1

||TiYSA − Xi||22 + λJ(YSA,YLA) (2)

Y∗
LA = arg min

YLA

nLA∑

j=1

||TjYLA − Xj ||22 + λJ(YLA,YSA) (3)

In both (2) and (3), the first term in the problem is related to data accuracy,
ensuring that the current estimate does not deviate too much from the 2D LR
image Xi which are the ground truth measurements. The second term sets a
constraint using the directional total variation of the image. It pushes the first
term in J towards being smooth whilst using the structural information of the
second term in J as a reference. λ is a weight adjusting the contribution of the
directional total variation term. The 3D directional total variation constraint J
applied to image A with reference image B is defined as follows [12]:

J(A,B) =
3∑

n=1

|Dn∇An| (4)
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where matrix field Dn ∈ M
3 = 1−ξnξ∗

n and ξn := ∇Bn

|∇Bn|η . The tuning parameter
η relates to the size of the edges in reference image B. Equations (2) and (3) were
simultaneously solved using nonlinear conjugate gradient optimisation [15], in
which one step towards the minimum in both Eqs. (2) and (3) was taken during
each iteration. The image YSA was initialised by putting the LR SA slices into
their respective orientations in a 3D matrix with isotropic spacing matching the
LR in-plane resolution. The gaps between slices are filled by linear interpolation
for a fairer comparison than just using nearest neighbor. YLA is initialised in
similar fashion, by putting the LR LA slices into a 3D matrix and filling the
gaps using nearest neighbour interpolation. Voxels where the LA slices overlap
are averaged. Nonlinear conjugate gradient method alternates between iterations
as to which image to reconstruct of to use as a reference for the dTV. The λ
parameter was empirically set to 0.5 and the η parameter was set to 0.05. Data
consistency checks SA LR within the SA reconstruction, and LA LR within the
LA reconstruction. The process is repeated until convergence. Results are shown
on the SA reconstruction as the aim is to increase their through-plane resolution.

2.3 Validation

The 3D reconstructions will be validated against the HR ground truth image
acquired for that purpose, using the Peak-Signal-to-Noise ratio (PSNR) which
is widely used in image quality assessment because of its simplicity and clear
physical meaning. However, this metric is often criticised for not matching visual
quality. In addition, we evaluate the Dice score as well as voxel misclassification
for segmentations of the Left Ventricular volume by binarising the images via
simple thresholding and give a percentage of misclassified voxels. The contrast
between the myocardium and the left ventricle is sufficient that the segmentation
result is insensitive to minor changes in the threshold value. The experiment will
be run using 11 SA and 11 LA slices covering most of the space, and then with a
total number of 12 slices with different combinations of LA and SA acquisitions
as to not use more slices than acquired in practice.

3 Results

Table 1 contains qualitative results for reconstructions using 3 different combi-
nations of slices. The first one was chosen to resemble clinical acquisitions with
a highly unbalanced number of SA and LA slices. The second one was chosen to
balance them by taking an equal number of each orientation, and the third one
was done to see if an increased number of LA slices is of benefit.

The result in Fig. 2 shows a cut in LA orientation through the final recon-
struction, at an orientation not covered by one of the 11 ground truth LA slices,
for a fair comparison. The synthetic slices cover most of the space and do not
represent a real clinical scenario. In order for a more realistic approach, we chose



132 N. Basty et al.

Table 1. Quantitative results: Dice score, Voxel misclassifications and Peak-Signal-to-
Noise Ratio in the reconstruction and in the interpolated image.

9 SA, 3 LA 6 LA, 6 SA 3 SA, 9 LA

Dice score (Reconstruction) 0.9690 0.9762 0.9629

Dice score (Interpolation) 0.9742 0.9710 0.9426

Misclassification (Reconstruction) 4.45% 3.51% 5.37%

Misclassification (Interpolation) 3.70% 4.27% 8.18%

PSNR (Reconstruction) 13.52 dB 14.59 dB 12.69 dB

PSNR (Interpolation) 14.31 dB 13.69 dB 10.08 dB

Fig. 2. (a) 11 SA slices in 3D space with nearest neighbour interpolation (b) Initiali-
sation achieved by linear interpolation between 11 SA slices, (c) Reconstruction using
the framework aided by 11 SA and 11 LA slices (d) Ground truth (e) Segmentation of
nearest neighbour (f) Segmentation of interpolation image, (g) Segmentation of recon-
struction (h) Segmentation of ground truth

to use 12 synthetic acquisitions - 6 LA and 6 SA. The more clinically used com-
bination of approximately 10 SA and 2 LA leaves space very under-sampled for
through plane detail, especially around the apex and base. Similarly to Fig. 2, the
result in Fig. 3 shows a cut in LA orientation through the final reconstruction,
at an orientation not covered by one of the 6 ground truth LA slices.
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Fig. 3. (a) 6 SA slices in 3D space with nearest neighbour interpolation (b) Initialisa-
tion achieved by linear interpolation between 6 SA slices, (c) Reconstruction using the
framework aided by 6 SA and 6 LA slices (d) Ground truth (e) Segmentation of nearest
neighbour (f) Segmentation of interpolation image, (g) Segmentation of reconstruction,
(h) Segmentation of ground truth

4 Discussion and Conclusion

The reconstruction using 9 SA and 3 LA slices does not show improvements with
respect to interpolation on any of the metrics that were applied (cf. Table 1),
whereas the reconstruction using 3 SA and 9 LA slices does show improvements
in the metrics, but starting off with worse quantitative results on the initial-
isation. This highlights our finding that the slice protocol followed in clinical
practice is not ideal for 3D reconstruction, and that increasing the number of
LA slices improves the reconstruction. Balancing the number of LA and SA slices
shows improvements which outperform the interpolation.

This work has addressed the problem of combining structural information
from long-axis images to improve the generation of 3D volumes from short-
axis images. Accurate 3D volumes are required for the generation of meshes
for mechanical models as well as other applications such as measuring cardiac
volumes or estimating ejection fractions.

There are some limitations to this study. The algorithm assumes a pre-
processing step of SA-LA registration, and any inaccuracies in this step will
be propagated into the image reconstruction. Furthermore, as it is based on
total variation, regions outside the sampled planes will typically be as smooth
as possible (i.e. the image in-painting is extremely crude). It is therefore crucial
that as much of the heart as possible is imaged by at least one plane, which is
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not currently done in clinical cardiac MRI. Between the spokes of the LA slices,
only the SA is driving the reconstruction and is highly sensitive to initialisation.

Unlike a number of recently proposed methods using convolutional neural
networks [14,16], the proposed algorithm does not incorporate any prior infor-
mation. While these CNN based super-resolution methods have shown excellent
performance, the cardiac MRI specific ones assume that short-axis stacks are
non-overlapping and parallel [17]. After motion correction, this is rarely the case
in clinical acquisitions. It is also unclear how these networks, trained on healthy
hearts, will perform on hypertrophic or infarcted hearts. The proposed algo-
rithm does not make any assumptions about the size, orientation, or shape of
the heart, or on the slice selection protocol. Thus, it is widely applicable and
may be preferable when training data is not available, or when the test data is
not well represented by the training data.

Further work will include extending the algorithm to use all frames of cine
MRI datasets, rather than operating on a static image. Improved performance is
also expected to be achieved by optimising the slice planning, since the slice pro-
tocol used in clinical practice is not designed with the aim of 3D reconstruction.
At present, standard clinical datasets have too few LA acquisitions, limiting the
algorithm’s performance.
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