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Preface CMMI 2017

Molecular imaging is an evolving clinical and research discipline enabling the visu-
alization, characterization, and quantification of biological processes taking place at the
cellular and subcellular levels within intact living subjects. As a dedicated workshop,
Computational Methods for Molecular Imaging (CMMI 2017) covered various areas
from image synthesis to data analysis and from clinical diagnosis to therapy individ-
ualization, using molecular imaging modalities PET, SPECT, PET/CT, SPECT/CT,
and PET/MR. Technical topics included image reconstruction, image enhancement,
physiological modeling, computational simulation, multi-modal analysis, and artificial
intelligence methods with clear clinical application and close industrial connection.

September 2017 Fei Gao
Kuangyu Shi
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Preface RAMBO 2017

Physiological motion is an important factor in several medical imaging applications.
The speed of motion may inhibit the acquisition of high-resolution images needed for
effective visualisation and analysis, for example in cardiac or respiratory imaging or in
fMRI and perfusion applications. Additionally, in cardiac and fetal imaging, the
variation in frame of reference may confound automated analysis pipelines. The
underlying motion may also need to be characterised either to enhance images or for
clinical assessment. Techniques are therefore needed for faster or more accurate
reconstruction or for analysis of time-dependent images. Despite the related concerns,
few meetings have focused on the issues caused by motion in medical imaging, without
restriction on the clinical application area or methodology used.
After a very successful international workshop on Reconstruction and Analysis of
Moving Body Organs (RAMBO) at MICCAI 2016 in Athens, Greece, we are proud to
have organised this meeting for the second time in conjunction with MICCAI 2017 in
Quebec, Canada.
RAMBO was set up to provide a discussion forum for researchers for whom motion
and its effects on image analysis or visualisation is a key aspect of their work. By
inviting contributions across all application areas, the workshop aimed to bring together
ideas from different areas of specialisation, without being confined to a particular
methodology. In particular, the recent trend to move from model-based to
learning-based methods of analysis has resulted in increased transferability between
application domains. A further goal of this workshop series is to enhance the links
between image analysis (including computer vision and machine learning techniques)
and image acquisition and reconstruction, which generally tends to be addressed in
separate meetings.
The presented contributions can be broadly categorised into “registration and tracking”
and “image reconstruction and information retrieval”, while application areas include
cardiac, pulmonal, abdominal, fetal, and renal imaging, showing the breadth of interest
in the topic. Research from both academia and industry is presented and keynote
lectures from Dr. Aleksandra Popovic (Philips Research North America) and Prof. Ali
Gholipour (Harvard Medical School) give an overview of recent developments.
We believe that this workshop fosters the cross-fertilisation of ideas across application
domains while tackling and taking advantage of the problems and opportunities arising
from motion in medical imaging.
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Preface SWITCH 2017

The first Stroke Workshop on Imaging and Treatment Challenges (SWITCH) was held
at the Medical Image Computing and Computer Assisted Intervention Conference
(MICCAI) in Quebec City, Canada, 2017.
The SWITCH workshop focused on the challenges in the management of stroke
patients, particularly regarding diagnostic imaging and treatment. The purpose of this
workshop was to introduce the clinical background of challenges/opportunities related
to imaging for stroke to the imaging community and to stimulate discussion and the
exchange of ideas. The SWITCH half-day workshop joined the MICCAI initiative for
bundled joint proceedings of the satellite events together with the Ischemic Stroke
Lesion Segmentation (ISLES) Challenge.
The SWITCH workshop organizing committee consisted of scientists and clinical
experts from the Erasmus MC, Delft University of Technology, Massachusetts Institute
of Technology, Harvard Medical School, the University of Bern, the University
Hospital of Bern, and Amsterdam Medical Center.
The challenges in stroke imaging were addressed by three clinical keynote speakers,
Dr. Roland Wiest (University Hospital of Bern) on MR imaging, and Dr. Kambiz Nael
(Icahn School of Medicine at Mount Sinai) on CT imaging and Dr. Vitor Mendes
Pereira (Toronto Western Hospital) on stroke interventions.
The papers submitted for this workshop were evaluated by two independent scientific
reviewers each, whose affiliations were checked to avoid conflict of interest, and all
four papers were included in the proceedings. The topics addressed in these papers
focus on CT(A)-based quantitative imaging biomarkers for stroke.
The organizers of the two workshops would like to express their sincere thanks to the
keynote speakers, the authors of the contributed papers, and the attendees of the
workshops. A special word of thanks goes to the sponsors, Olea Medical and Philips
Healthcare, who facilitated the contributions of the clinical keynote speakers at the
workshop.

September 2017 Theo van Walsum
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Adrian Dalca

Mauricio Reyes
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3D Lymphoma Segmentation in PET/CT
Images Based on Fully Connected CRFs

Yuntao Yu1,2, Pierre Decazes2, Isabelle Gardin2, Pierre Vera2,
and Su Ruan1(&)

1 Université de Rouen, LITIS EA 4108, 76031 Rouen, France
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2 CHB Hospital, Rue d’Amiens, CS11516 76038 Rouen Cedex1, France
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Abstract. Positron Emission Tomography (PET) is widely used for lymphoma
detection. It is often combined with the CT scan in order to provide anatomical
information for helping lymphoma detection. Two common types of approaches
can be distinguished for lymphoma detection and segmentation in PET. The first
one is ROI dependent which needs a ROI defined by physicians who firstly
detect where lymphomas are. The second one is based on machine learning
methods which need a large learning database. However, such a large standard
database is quite rare in medical field. Considering these problems, we propose a
new approach which combines a multi-atlas segmentation of the CT with CRFs
(Conditional Random Fields) segmentation method in PET. It consists of 3
steps. Firstly, an anatomical multi-atlas segmentation is applied on CT to locate
and remove the organs having hyper metabolism in PET. Secondly, CRFs detect
and segment the lymphoma regions in PET. The conditional probabilities used
in CRFs are usually estimated by a learning step. In this work, we propose to
estimate them in an unsupervised way. A list of the detected regions in 3D is
visualized. The final step is to select real lymphomas by simply clicking on
them. Our method is tested on ten patients. The rate of good detection is 100%.
The average of Dice index over 10 patients for measuring the lymphoma is 80%
compared to manual lymphoma segmentation. Comparing with other methods in
terms of Dice index shows the best performance of our method.

Keywords: Positron Emission Tomography (PET) � Lymphoma
segmentation � Fully connected conditional random fields � Anatomical atlas

1 Introduction

Positron Emission Tomography (PET) is a nuclear medicine functional imaging
technique which can observe the metabolic activity of tumors. Despite of the low
resolution and poor SNR as described in [1], the positron emission tomography using
18F-FDG is still one of the most widely used approaches for the lymphoma detection,
as most lymphoma subtypes have high (18)F-FDG avidity [17].

Lymphoma is a group of blood cancers which develops in lymphatic system. Its
high morbidity and mortality has drawn an important attention by doctors and related

© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CMMI/RAMBO/SWITCH 2017, LNCS 10555, pp. 3–12, 2017.
DOI: 10.1007/978-3-319-67564-0_1



researchers. In particular, it has been shown that the whole volume of the lymphoma is
an important prognostic factor [18] which supports the need to find an algorithm
measuring automatically the volume of the disease. To identify a lymphoma from
PET/CT scan needs to overcome the following difficulties. Firstly, lymphoma’s
metabolism on PET image in terms of standardized uptake value (SUV) [15] is not
fixed. Its metabolism varies from different patients, subtypes of lymphoma and
severities. Secondly, as lymphatic system belongs circulatory system, lymphoma can
appear in many parts of body. In addition, the form of lymphoma varies from one to
another and it contains very little texture information, as shown in Fig. 1.

The lack of image characteristic information of lymphoma makes it difficult to be
automatically detected. Different approaches have been reported for this task in the
literature. They can be separated into two common types. The first type consists of
ROI-dependent methods, where the ROI is usually defined by a doctor with a human
time-consuming processing. The most widely used segmentation approach of this type
in clinical application is thresholding by 40% of the maximum SUV in ROI. But in
several particular situations, when SUV values in the ROI are not homogeneous, this
threshold approach using fixed-value can provide a poor result. Thus, different methods
[8, 9, 10] are proposed to improve it. Vauclin’s method [10] uses a no linear model to
find the threshold by an iterative way. Cellule automata (CA) [2] is based on region
growing approach with seeds distributed in a ROI. Second type of lymphoma detection
and segmentation approach does not need a ROI a priori, it uses machine learning by
learning and analyzing a huge database. Different features of lymphoma are learnt and
trained from PET image. The main methods of this second type of approach are SVM
[12], Random Forest and Component-Trees [3], recently deep learning [13].

As the lymphoma can appear in many parts in the body and the number of lym-
phoma can be important, definition of ROI increases largely doctors’ work. In addition,
the results of segmentation are highly related with the defined ROI. The second type of
approach is promising. However, it needs a standard and global admitted database
which is hard to get. So, our approach tries to use another way to segment the

Fig. 1. (a) Combination of PET image (in red) and CT scan. (b) The ground truth of lymphoma
sites contoured in yellow in PET and CT. (Color figure online)
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lymphoma. It combines an anatomical atlas obtained in CT and a fully connected
conditional random fields based segmentation to detect and segment automatically
lymphoma regions in 3D. Firstly, the anatomical multi-atlas segmentation of the CT
removes the organs on the PET which have a physiological hyper metabolism and
which are usually not affected by the disease: brain, heart, kidneys and bladder. We use
the method proposed in [14] for this step. After removing these organs, the CRFs
algorithm is applied on the PET image volume for lymphoma detection and segmen-
tation. The CRFs model is composed by a unary energy and Gaussian kernel pairwise
energy. The conditional probabilities used in the unary energy are usually estimated by
a learning step. In this work, we propose to estimate the probability of lymphoma in an
unsupervised way. It combines k-means clustering algorithm and a model based on
sigmoid function. The pairwise energy includes the contrast and the spatial distance
information in order to improve segmentation results. And finally, all the detected
regions are visualized in 3D, allowing the user to select the lymphoma to be studied by
simply clicking on it. This interaction allows to largely reduce the time comparing to
the creation of ROI on whole patient body.

In this paper, we focus on the development of CRFs based segmentation. The
paper’s structure is as follows: Sect. 2 presents our CRFs model and related inference;
Sect. 3 explains our evaluation metrics, the parameters’ estimation and our obtained
results comparing to other segmentation algorithms; Conclusion and perspectives are
given in the last section.

2 Method

CRFs algorithm is applied widely in natural language processing and sequential data
labelling or parsing. Recent researches show also its significant application in object
recognition and multi-class image segmentation [4, 5]. To our knowledge, our work is
the first application of the fully connected CRFs on PET image.

2.1 The Fully Connected CRFs Model

Consider C = {c1, c2, …, cl} is a set of class with l representing the number of class.
The conditional probability of the class C on image X = {x1, x2, …, xN}, where N is the
number of pixels and xi SUV value of the voxel i, is defined as:

log P CjX; hð Þ ¼
X

i
U Ci; xi; huð Þþ

X
i;j
V Ci;Cj; xi;xj; hv
� �� log Z h;Xð Þ ð1Þ

where U is the unary potential on each voxel and V is the pairwise potential between
two voxels i and j, Z(h, X) the partition function which normalizes the distribution, Ci

the related label for voxel i. h = {hu, hv} contains the unary potential parameters hu and
the pairwise potential parameters hv. The unary potential proposed in the literature is
usually estimated by a supervised learning step, such as DCNN (Deep convolutional
neural networks) in [5]. We propose in this work a mathematical model using medical
knowledge in CT and PET and a clustering algorithm.
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In our case C = {clymphoma, cbackground} and X is SUV values in PET. To define the
unary potential, we first group all voxels into k clusters. The SUV distribution of each
cluster can be considered as a Gaussian distribution. Then we use Gaussian Mixture
Models (GMMs) [4] where the mixture coefficients depend on the class label C to
define the unary potential which is described as follow:

U Ci; xi; huð Þ ¼ log
X

k
p Ci=kð ÞP kjxið Þ ð2Þ

where k is cluster number. The total number of clusters is fixed by user. In our
experiment, we choose 10 clusters. k-means algorithm is applied to obtain the k
clusters. p(X│k) is considered as Gaussian distribution and can be calculated from:

p Xjkð Þ�NðXjlk; rkÞ ð3Þ

As P xijkð Þ / P kjxið Þ according to Bayes rule [4]. P kjxið Þ can then be calculated by
(3). To find p Cijkð Þ, we propose a sigmoid function as follow (details in Sect. 3.3):

p Clymphomejk
� � ¼ Sigmoid lk; a; b

� � ¼ 1

1þ e�a lk�bð Þ p Cbackgroundjk
� �

¼ 1� Sigmoid lk; a; b
� � ¼ 1

1þ e�a lk�bð Þ ð4Þ

where a(a ¼ 0:05 in our experiments) determines the degree of the sigmoid slope, lk is
the average of the k th cluster, b is the translation value along horizontal axis to be
determined by a prior knowledge.

Concerning the pairwise potential, we use the same model as described in [5]:

X
i;j

V Ci;Cj; xi;xj;w; hv
� � ¼

�
X

i;j
Potts Ci;Cj

� �
exp � yi � yj

�� ��2
2h2a

� xi � xj
�� ��2

2h2b

 !
þwexp � yi � yj

�� ��2
2h2�

 !" #
ð5Þ

where w; hv ¼ ha; hb; h�
� �

are the parameters to be estimated, yi and yj coordinates of
voxels i and j, Potts (Ci;Cj)=1 if Ci 6¼ Cj, otherwise =0. A Potts model is used to
spatial labelling regularization. The objective of appearance kernel is to encourage the
nearby pixels with similar SUV values to have the same label. ha and hb decide how
important the spatial nearness and intensity similarity are. The smoothness kernel with
h� considers only the impact of the nearest neighborhood. This pairwise potential
allows to remove small isolated regions [4].
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2.2 Inference of CRFs Model

The final label Cf for X is obtained by maximizing log P CjX; hð Þ. As log Z h;Xð Þ is the
normalization term in (1), the energy to be maximized becomes:

J ¼
X

i
U Ci; xi; huð Þþ

X
i;j
V Ci;Cj; xi;xj; hv
� � ð6:1Þ

We can also minimize –J to obtain C f:

C f ¼ argmin
c

�½
X

i
U Ci; xi; huð Þþ

X
i;j
V Ci;Cj; xi;xj; hv
� �� ð6:2Þ

Many algorithms can be used for this energy minimization problem, such as ICM
[16], alpha-expansion graph-cut [6, 11], mean field approximation [5, 7] etc. In our
case, there are only two classes, so a simple ICM algorithm is used. ICM can give a
local optimal solution. However, if we have a good initialization of C, we can find the
global optimal solution and also reduce the converging time.

3 Evaluation and Results

3.1 Database

PET images were acquired by a PET/CT scanner (Biograph Sensation 16; Siemens,
Knoxville, TN), which includes a 16-slice CT component and a PET system with
lutetium oxyorthosilicate crystals. For PET imaging, the emission data were acquired
from the base of the skull to the proximal thigh with acquisitions of 3 to 3.5 min per
bed position, depending on the patient’s body mass index (BMI), each covering
16.2 cm, at an axial sampling thickness of 2 mm per slice. The CT scan parameters
were set to 100–120 kVp and 100–150 mAs (based on the patient’s BMI) using dose
reduction software (CareDose; Siemens Medical Solutions, Knoxville, TN). Both the
PET scans and the CT scans were obtained during normal tidal breathing. The PET
images were reconstructed with attenuation correction using the CT-derived data and
an attenuation-weighted ordered-subsets expectation maximization (AW-OSEM)
algorithm. The spatial resolution was 5.3 mm � 5.3 mm � 2 mm.

Each patient has approximately two tumor sites of Hodgkin’s lymphoma. Among
10 studied patients, we have 21 tumor sites to analyze with their manual references.
The average volume of lymphomas is 100.77 cm3 corresponding to 1800 voxels.

3.2 Evaluation Metrics

We separate two kinds of evaluation metrics: region based one is for detection per-
formance, while voxel based is for segmentation. The labelled voxels with lymphoma
after CRF are grouped into 3D regions by 26 convexities. One 3D region presents one
lymphoma.

Considering that A is a set of ground truth regions, G = {G1, G2,…, Gng}. Each
region Gi is composed of gi voxels. B is a set of the segmented lymphoma regions,
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B = {B1, B2,…, Bnp}. Each region Bi is composed of bi voxels. And for each region in
B, we have [ j¼1;...;ng Bi \Gj

� � 6¼ ;: S is a set of detected false regions, S = {S1, S2,…,
Snn}. Each region Si is composed of si voxels. And for each region in S, we have
[ j¼1;...;ng Si \Gj

� � ¼ ;. F(M) defines the number of elements in set M.
The first metric is Dice index defined for evaluating the segmented lymphoma

regions:

DICEref ¼ 2 * FðG\BÞ
F Gð ÞþF Bð Þ

The second metric is different from the first DICE index by adding S:

DICEglobal ¼ 2 � F½B \G�
F Gð ÞþF Bð ÞþF Sð Þ

DICEglobal indicates the accuracy of the segmentation in a global way. This metric
can have some problems if the false positive regions are important. Thus, it’s wise to
calculate DICEref and DICEglobal separately for assessment.

For evaluating the false positive region volume, the third metric is defined by:

VOLUMEsup ¼ FðSÞ
F B [ Sð Þ

The fourth metric is rate of true positive detected region (Sensitivity) indicates the
rate of the truth lymphoma detected regions to all detected ones. If sensitivity equals to
1, it means all the ground truth lymphomas have been detected.

3.3 Estimation of the Parameters in CRF Model

As mentioned in Sect. 3, P Cijkð Þ is modeled by a sigmoid function (4), shown in
Fig. 2. We propose to determinate the parameter according to the medical knowledge.

Fig. 2. Illustration of the sigmoid function. 40% SUVmax value corresponds to the parameter b
in (4).
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In clinical application [19], 40% SUVmax of local ROI thresholding is widely used
for lymphoma detection and volume measurement. The result of 40% SUVmax

thresholding is close to the manual reference. Thus b is chosen to equal to 40%
estimated SUVmax, which means if lik [ 40% of the estimated SUVmax, the voxel i in
cluster k has more than 50% chance to belong to the lymphoma. The estimated SUVmax

can supported by Deauville five-point scale [20], which is recommended for response
assessment in international guidelines and which have been validated in most lym-
phoma subtypes [21]. The following table shows the definition of Deauville five-point
scale (Table 1).

Deauville Score 1 to 3, i.e. a metabolism of the target below the normal hepatic
metabolism, is in favor of a PET-negative exam with an inactive disease and Deauville
Score 4 and 5, i.e. a metabolism of the target above the normal hepatic metabolism, is if
favor of a PET-positive exam with an active disease. The liver metabolism can
therefore be used as a reference metabolism to detect the pathological metabolism [21].
Thus, we can estimate SUVmax as d* SUVliver, where d (� 2.5) is a user selected float.
In addition, the SUVliver can be calculated in the liver region defined by an anatomical
multi-atlas segmentation the CT. In our experience, d = 3.

To estimate the pairwise potential parameters: w and hv ¼ ha; hb; h�
� �

; a grid
search method is used as described in [5]. Since the results are not very sensible to the
smoothness kernel, we fixe w ¼ 1 and h� ¼ 0:8. We study the impact of the param-
eters ha; hb

� �
to the final result. The Fig. 3 shows how ha; hb influence the segmen-

tation results by measuring DICEref , DICEglobal, VOLUMEsup, Sensitivity.
By changing ha theta1ð Þ and hb theta2ð Þ from 3 to 30, the results of DICEref,

DICEglobal, VOLUMEsup = 1, and SENSITIVITY show that when ha = 15, hb ¼ 10, the
best results are obtained: DICEref = 82.8%, DICEglobal = 77.6%, VOLUMEsup =
11.6%, SENSITIVITY = 100%. We can see also that ha is not sensible to the result.

Table 1. Definition of Deauville five-point scale [21]. The scale sores the most intense uptake in
a site if initial disease, if present.

Deauville score Definition

1 No uptake
2 Uptake 	 mediastinum
3 Uptake > mediastinal but 	 liver
4 Moderately increased uptake compare to the liver
5 Markedly increased uptake compared to the liver and/or new lesions
X New areas of uptake unlikely to be related to lymphoma
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3.4 Results

Our method with the estimated parameters is applied on ten patients. We compare our
results with different ROI dependent methods in [2] by calculating DICEref, shown in
Table 2. The best result is provided by our approach. In addition, as a no ROI
dependent approach, our method detected all lymphomas comparing to the ground
truth. Although it exists a certain quantity of false positive lymphomas (with average of
VOLUMEsup ¼ 32%Þ, our result is encouraging, shown in the Fig. 4. In Fig. 4 (a), the
patient contains one lymphoma with high contrast of metabolism. Our method can well
detect and segment it. Figure 4 (b) shows two lymphomas sites that have been detected
and well segmented. The high metabolism area (heart) on the right corner had been
removed by anatomical atlas, thus, no false positive detected regions. The situation is
complex in Fig. 4 (c) because of a several sites similar to the lymphoma, our method
obtained some false positive regions which can be removed by the user in the last step.

Fig. 3. Impact of the parameters ha theta1ð Þ and hb theta2ð Þ to the four evaluation metrics.

Table 2. Comparison results [2]

Approach name Mean DICEref Min DICEref Max DICEref

40% SUVmax 72.9 ± 11.5 50.2 88.5
Black [8] 78.1 ± 9.4 58.4 89.6
Nestle [9] 78.9 ± 6.3 66.1 89.6
Vauclin [10] 72.2 ± 11.9 46.6 88.3
Fitting [2] 80.6 ± 4.7 68.9 88.4
CA [2] 80.0 ± 4.8 71.2 87.4
CRFs 81.2 ± 11.8 61.2 95.9
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4 Conclusion and Perspectives

Our approach applies an anatomical multi-atlas segmentation on the CT of the PET/CT
to remove on the PET images the organs having physiological hyper metabolism and
which are usually not concerned by the lymphoma (brain, heard, kidneys and bladder).
Then a CRFs algorithm is developed for lymphoma detection and segmentation using
medical knowledge and mathematical models for conditional probability. Finally, users
can manually select lymphomas from the detected 3D regions. In future, more patients
will be tested and a combination of PET and CT images will be considered to extend
the unary energy.
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Abstract. We introduce a pipeline for the individual analysis of
positron emission tomography (PET) data on large cohorts of patients.
This pipeline consists for each individual of generating a subject-specific
model of healthy PET appearance and comparing the individual’s PET
image to the model via a novel regularised Z-score. The resulting voxel-
wise Z-score map can be interpreted as a subject-specific abnormality
map that summarises the pathology’s topographical distribution in the
brain. We then propose a strategy to validate the abnormality maps on
several PET tracers and automatically detect the underlying pathology
by using the abnormality maps as features to feed a linear support vector
machine (SVM)-based classifier.

We applied the pipeline to a large dataset comprising 298 subjects
selected from the ADNI2 database (103 cognitively normal, 105 late
MCI and 90 Alzheimer’s disease subjects). The high classification accu-
racy obtained when using the abnormality maps as features demonstrates
that the proposed pipeline is able to extract for each individual the signal
characteristic of dementia from both FDG and Florbetapir PET data.

1 Introduction

Long before the clinical symptoms of the disease appear, neuroimaging, mainly
magnetic resonance (MR) and positron emission tomography (PET), plays an
important role in the diagnosis of dementia [1]. Information derived from PET

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-67564-0_2
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images is of crucial value: 18F-fluorodeoxyglucose (FDG) PET reflects the glucose
consumption, which correlates with the activity of the synapses, while other PET
tracers such as Florbetapir are used to image the deposition of beta-amyloid
(Aβ) plaques in the brain. However, the analysis of multiple imaging modalities
for diagnostic purposes is to date challenging, and hardly translated to clinical
practice. The main drawback is represented by the large amount of information
that needs to be consistently processed and analysed to derive clinically useful
information.

A popular way to extract meaningful information from neurological images
is to use computational methods based on machine learning to directly estimate
the category of pathology in a patient. Most machine learning methods devel-
oped for classification in dementia studies extract the features used to draw the
border that differentiates normality from abnormality directly from the images,
e.g. thickness of the cortex extracted from structural MR images [2], or glu-
cose consumption extracted from PET images [3]. However, these features are
affected by the anatomical variability present in the population, which acts as
a confounding factor making the task of finding the frontier (i.e. the decision
function) between normality and abnormality very challenging. Instead of try-
ing to find this frontier at the population level, transporting the problem to the
individual level might reduce its complexity.

In previous work, we developed a framework for the analysis of FDG PET
data that consists of creating a patient-specific model of healthy PET appear-
ance and comparing the patient’s PET image to the model via a Z-score, thus
providing voxel-wise statistics on the variation of glucose metabolism in a control
population [4]. We showed that this approach was able to distinguish subgroups
in a small dataset comprising 22 subjects with distinct neurodegenerative syn-
dromes [4].

In this paper, we introduce a pipeline for the individual analysis of PET
data on large cohorts of patients. This pipeline consists of generating a subject-
specific model of healthy PET appearance for each subject following the method
described in [4] and comparing the subject’s PET image to the model via a novel
regularised Z-score, which results in the generation of subject-specific abnormal-
ity maps summarising the pathology’s topographical distribution in the brain.
We then propose a strategy to validate the abnormality maps on several PET
tracers and automatically detect dementia by using the abnormality maps as
features to feed a linear support vector machine (SVM)-based classifier. This
strategy enables us to assess on a large dataset composed of 298 subjects selected
from the ADNI2 database if the proposed subject-specific abnormality maps are
able to extract for each individual the signal characteristic of abnormality from
both FDG and Florbetapir PET data, with the aim to reduce the confound-
ing impact of anatomical variability when trying to distinguish disease versus
normal ageing.
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2 Methods

2.1 Data

Imaging data were obtained from the ADNI2 database1. We selected 298 par-
ticipants who had T1-weighted MRI, 18F-FDG PET, and Florbetapir (18F-
AV45) PET images at baseline and were diagnosed as cognitively normal (CN)
(n = 103, 68 Aβ−), late mild cognitive impairment (LMCI) (n = 105, 71 Aβ+)
or Alzheimer’s disease (AD) (n = 90, 80 Aβ+). In [5], Landau et al. categorised
subjects as amyloid positive (Aβ+) or negative (Aβ−) on Florbetapir based on a
cortical mean cutoff of 1.11. Here, we define as amyloid positive the subjects with
a cortical mean standardised uptake value ratio (SUVR) higher than 1.11 + 5%
and as amyloid negative the subjects with a cortical mean SUVR lower than
1.11− 5%. The control dataset used in this paper is composed of the CN partic-
ipants amyloid negative (n = 68).

2.2 Data Preprocessing

PET images were downloaded from the ADNI website after pre-processing (frame
averaging, spatial alignment, interpolation to a standard voxel size, and smooth-
ing to a common resolution of 8mm full width at half maximum). For each sub-
ject, the T1 image was mapped to the PET images using a rigid transformation.
The T1 images from all the subjects were then mapped to a common coordinate
frame via an affine groupwise registration [6]. Finally, the transformations were
applied to the T1, FDG PET and AV45 PET images by updating their image
coordinate system (without resampling), forming a database of T1 and PET
images globally aligned in a common space.

2.3 Subject-Specific Analysis of PET Data

The proposed subject-specific PET analysis framework consisted of selecting
in the control dataset the subjects that were morphologically the most similar
to the subject being analysed, creating subject-specific models of healthy PET
uptake from the selected controls and the target subject’s T1 image, and using
the resulting model to create subject-specific abnormality maps.

Selection Based on Global and Local Image Similarity Measures. Sub-
jects were first selected from the control dataset according to their global mor-
phological similarity to the target subject, as assessed by a global similarity
measure, the normalised cross-correlation (NCC). Because all the subjects were
pre-aligned with each other, the T1 image of each subjects was simply resam-
pled to the common space and the NCC was computed between each resampled
control subject and the resampled target subject. The 50 control subjects with
1 Imaging data were provided by the Alzheimer’s disease neuroimaging initiative
(http://adni.loni.ucla.edu/).

http://adni.loni.ucla.edu/


16 N. Burgos et al.

the highest NCC were selected (top 75%). This step is meant to discard the
controls too dissimilar to the target and thus limit the computational time while
maintaining a high synthesis accuracy.

The T1 images of the 50 pre-selected controls were then non-rigidly registered
to the target subject’s T1 image in its native space [7], and the PET images of
the control dataset, pre-aligned to the T1 images, were mapped using the same
transformation to the target subject. Once non-rigidly aligned to the target
subject, the controls morphologically the most similar to the target subject at the
voxel level were identified using a local image similarity measure, the structural
image similarity (SSIM) [8].

Subject-Specific Models of Healthy PET Appearance. To generate the
subject-specific model, which is composed of two elements: a spatially-varying
weighted average and a spatially-varying weighted standard deviation, the con-
trols locally selected were fused based on their morphological similarity to the
target subject. The weights, corresponding to the contribution of each control
subject to the model, were obtained by ranking at each voxel x the SSIM across
the N globally pre-selected control subjects and applying an exponential decay
function: wn(x) = e−βrn(x), where rn(x) denotes the rank of the nth control
subject, and β = 0.5 [4]. For each of the N pre-selected subjects in the control
dataset, let the nth mapped PET image be denoted by Jn. The two subject-
specific model elements (Iμ, Iσ) are computed as follows:

Iμ(x) =
∑N

n=1 wn(x) · Jn(x)
∑N

n=1 wn(x)
,

Iσ(x) =

√
√
√
√ Nw

Nw − 1

∑N
n=1 wn(x) · (Jn(x) − Iμ(x))

2

∑N
n=1 wn(x)

(1)

where Nw is the number of non-zero weights.

Subject-Specific Abnormality Maps. To compare the target subject’s PET
image to the subject-specific model, in [4] a Z-score was computed for each voxel
of the image. However, we observed that this leads to the generation of high
frequency signals in certain areas due to the standard deviation approaching
zero. To avoid this problem, we define a regularised Z-score

Z̃(x) =
I(x) − Iμ(x)

Iσ(x) + α ∗ Iσ̄
(2)

where Iσ̄ is the standard deviation averaged over all the voxels. We set α equal
to 2 as a compromise between the resulting Z-score maps being too smooth
and the presence of high frequency signals. The voxel-wise regularised Z-score
map can be interpreted as an abnormality map, as it statistically evaluates the
localised deviation of the subject-specific uptake with respect to the healthy
uptake distribution.
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2.4 Validation Scheme

To assess the ability of the abnormality maps to extract relevant information
from PET data on a large dataset and to offer a new strategy for computer-
assisted diagnosis, we propose to use the abnormality maps as features to feed
a linear SVM classifier.

Non-linear Alignment to Group Space. A way to compare the abnormality
maps, each generated in the subject’s native space, across all the subjects, is to
align them with each other. As the T1 images from all the subjects were already
mapped to a common coordinate frame via an affine groupwise registration, the
T1 images were subsequently non-rigidly registered to the group-space. The same
transformations were then applied to the abnormality maps.

Linear SVM Classifier. We chose a linear SVM to classify the abnormality
maps. A linear kernel was calculated using the inner product for each pair of
abnormality maps available in the dataset (using all the brain voxels). This kernel
was then used as input for the generic SVM2. Two nested 10-fold cross-validation
procedures were used to train the classifier and to optimise the hyperparameters.
The process was repeated ten times and the classification results averaged over
the ten repeats. This process guarantees an unbiased evaluation of the classifi-
cation accuracy.

Classification Tasks. The experiments consisted of two simple tasks:

1. differentiating cognitively normal subjects from subjects with a disease, i.e.
CN vs AD and CN vs LMCI;

2. differentiating between amyloid negative and amyloid positive subjects (β−

vs β+).

For the first experiment, 219 subjects (68 CN Aβ−, 71 LMCI Aβ+ and 80 AD
Aβ+) were considered, while for the second experiment 298 subjects (112 Aβ−

and 186 Aβ+) were analysed.

Comparison to State-of-the-Art. To set the results in perspective, the sub-
jects’ PET images themselves and state-of-the-art Z-maps were also used as
features and fed to the classifier. The state-of-the-art Z-maps were obtained by
comparing the subject’s PET image in the group space to the mean and stan-
dard deviation computed from all the 68 subjects in the control dataset, also in
the group space.

2 http://scikit-learn.org.

http://scikit-learn.org
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3 Results

Abnormality maps were generated for each of the 298 ADNI2 participants
selected, for both the FDG and AV45 PET images. Note that for the CN β−

subjects (forming the control dataset), a leave-one-out strategy was used, i.e.
the images of the CN subject being processed were excluded from the control
database. Examples of abnormality maps are displayed in Fig. 1 for a CN, a late
MCI and an AD subject. We observe that, as expected, no specific signal is being
detected for the CN subject, for both the FDG and AV45 tracers. For the LMCI
subject, abnormal glucose uptake is detected mainly in the precuneus and in the
cingulate gyrus, and abnormal amyloid deposition is detected in the frontal,
parietal, temporal and cingulate cortices, which is consistent with previous

Fig. 1. Examples of FDG PET images with the corresponding abnormality maps (top)
and of AV45 PET images with the corresponding abnormality maps (bottom) for a CN,
an LMCI and an AD subject.
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Table 1. Balanced accuracy obtained when using PET images, state-of-the-art Z-
maps, and the proposed subject-specific abnormality maps as features of the linear
SVM classification algorithm. The average ± SD balanced accuracy, obtained over ten
repeats, is expressed in percentages.

FDG AV45
PET Zmap Abn. map PET Zmap Abn. map

CN vs AD 88.9 ± 1.1 89.6 ± 1.2 91.6 ± 1.2 100 ± 0 100 ± 0 100 ± 0
CN vs LMCI 78.3 ± 1.7 78.7 ± 1.9 80.5 ± 1.6 100 ± 0 100 ± 0 99.5 ± 0.5
Aβ+ vs Aβ− 71.5 ± 1.0 71.4 ± 1.1 73.9 ± 1.7 99.8 ± 0.4 99.4 ± 0.5 99.7 ± 0.5

observations [9]. Finally, for the AD subject, abnormal glucose uptake is detected
in areas such as the hypocampus, the precuneus, the cingulate gyrus or the occip-
ital cortex, and abnormal amyloid deposition is detected in all the cortex, which
is typical of AD [1].

The abnormality maps were then fed to the linear SVM classifier. The bal-
anced accuracy obtained with the proposed method applied to the FDG data
when differentiating CN from AD and LMCI (92% and 81%, respectively) is
higher than the balanced accuracy obtained using PET SUVR values (89% and
78%) and the state-of-the-art Z-maps (90% and 79%) as features. Similar results
were obtained when differentiating amyloid negative and positive subjects. When
analysing AV45 data, using the PET images themselves, the state-of-the-art
Z-maps or the proposed abnormality maps leads to similar, highly accurate, clas-
sification results. These highly accurate results were expected, but are here con-
firmed, as differentiating CN (Aβ−) from AD and LMCI (both Aβ+) subjects,
or amyloid negative from amyloid positive subjects, based on features extracted
from AV45 data is a quite trivial task. More detailed results are shown in Table 1.
The high classification accuracy obtained with the abnormality maps confirms
their ability to detect meaningful signal from both FDG and AV45 PET images.

To further analyse the classification results, we studied the feature maps gen-
erated by the linear SVM classifier that show which voxels are relevant for each
classification task. The maps obtained for the classification of CN vs AD subjects
and CN vs LMCI subjects are shown in Fig. 2. We observe that the areas that
were detected as abnormal with the proposed method (i.e. hypocampus, pre-
cuneus, cingulate gyrus) are also the ones mostly used to separate AD from CN
subjects, no matter the features used. We also observe that these areas are more
strongly targeted when the abnormality maps are used as features compared
to the PET images themselves or the state-of-the-art Zmaps. This confirms the
ability of the abnormality maps to detect areas that are characteristic of AD. A
similar trend was observed for the classification of CN vs LMCI subjects and for
the classification of Aβ+ vs Aβ− subjects (not shown).
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Fig. 2. Voxels the most relevant for the classification of CN vs AD (top) and CN vs
LMCI (bottom) subjects when using the PET images themselves, the state-of-the-art
Zmaps and the proposed subject-specific abnormality maps as features, for both the
FDG and AV45 tracers. The red areas indicate the regions that are mostly used to
separate AD or LMCI from CN subjects. (Color figure online)

4 Discussion and Conclusion

This paper presents a pipeline for the individual analysis of molecular brain
images on large-scale datasets. This pipeline is able to automatically locate and
characterise the areas characteristic of dementia by generating abnormality maps
summarising the pathology’s topographical distribution in the brain. This abil-
ity was demonstrated by using the abnormality maps as inputs of a classifier
and comparing the classification results to the ones obtained when using the
PET images themselves or state-of-the art Z-maps as features. Although the
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three methods produced a high classification accuracy when differentiating CN
from late MCI and AD, and when differentiating amyloid negative subjects from
amyloid positive subjects, more accurate results were obtained with the proposed
method. These results can be explained by the fact that both the PET images
and the state-of-the-art Z-maps are affected by the anatomical variability present
in the population, which acts as a confounding factor when trying to differentiate
between normality and abnormality. As the subject-specific mean and standard
deviation used to compute the abnormality maps are obtained by selecting the
subjects in the control dataset that are morphologically the most similar to target
subject, the abnormality maps are less impacted by morphological variability.

The abnormality maps have two complementary uses. They can (i) help clin-
icians in their diagnosis by highlighting, in a data-driven fashion, the pathologi-
cal areas obtained from the individual PET data, and (ii) provide quantitative,
voxel-based, abnormality scores that can be used as input for computer-assisted
diagnosis tools for the automatic detection of dementia.
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Abstract. The assessment of bone lesion is crucial for the diagnostic
and therapeutic planning of multiple myeloma (MM). 68Ga-Pentixafor
PET/CT can capture the abnormal molecular expression of CXCR-4
in addition to anatomical changes. However, the whole-body detection
of dozens of lesions on hybrid imaging is tedious and error-prone. In
this paper, we adopt a cascaded convolutional neural networks (CNN)
to form a W-shaped architecture (W-Net). This deep learning method
leverages multimodal information for lesion detection. The first part of
W-Net extracts skeleton from CT scan and the second part detect and
segment lesions. The network was tested on 12 68Ga-Pentixafor PET/CT
scans of MM patients using 3-folder cross validation. The preliminary
results showed that W-Net can automatically learn features from multi-
modal imaging for MM bone lesion detection. The proof-of-concept study
encouraged further development of deep learning approach for MM lesion
detection with increased number of subjects.

1 Introduction

Multiple myeloma (MM) is a type of hematological malignancy with the pro-
liferation of neoplasma cells in the bone marrow [1]. It accounts for 13% of all
hematologic malignancies and 1% of all malignancies [2]. Common symptoms
of MM are summarized as CRAB: hypercalcemia (C), renal failure (R), anemia
(A), and bone lesions (B). Modern treatment has achieved a 5-year survival rate
of 45% [3]. Nevertheless, MM remains an incurable disease at the moment and
it usually relapses after a period of remission over therapy. The identification of
bone lesions plays an important role in the diagnostic and therapeutic assessment
of MM.
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Fig. 1. Properties of MM lesions of an exemplary patient with 68Ga-Pentixafor PET
imaging: (a) maximum-intensity projection of 68Ga-Pentixafor PET; (b) histogram
distribution of maximum activity of the lesions; (c) histogram distribution of mean
activity of the lesions; (d) histogram distribution of volumes of the lesions.

Traditional radiographic skeletal survey (whole body X-ray), which is widely
used, is limited in sensitivity and detection accuracy. It can only sense lesions
when the trabecular bone has already lost more than 30% [4]. 3D computed
tomography (CT) allows the detection of smaller bone lesions that are not
detectable by conventional radiography [5]. Magnetic resonance imaging (MRI)
is also more sensitive than skeletal survey in the detection of MM lesions and
it can detect diffuse bone marrow infiltration [6]. Comparable high sensitiv-
ity in the detection of small bone lesions can be achieved using PET/CT by
combining metabolic (18F-FDG PET) and anatomical (CT) information [7,8].
The lesions can be visualized more clearly with the guidance of hotspots in
fused images. Recently the overexpression of chemokine (C-X-C motif) receptor
4 (CXCR4) has been verified in a variety of cancers, leading to the development
of targeted PET tracer such as 68Ga-Pentixafor [9]. This emerging tracer has
already demonstrated higher sensitivity in the visualization of MM lesions [10].
Even though, systematically detecting bone lesions remains problematic due to
the heterogeneous size and uptake. Manual evaluation can result in variability
between different observers [11] and may be prone to errors. As is shown in Fig. 1,
the 68Ga-Pentixafor PET imaging has a large variation in uptake and size even
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among the lesions in the same patient. Such heterogeneity in the complex con-
text with various unspecific uptake makes the whole-body detection of all the
lesions extremely difficult. So far, no effective methods has been presented for
automated detection of these MM bone lesions.

Computer-aided detection (CAD) has been developed to assist radiologists to
resolve the critical information from complex data, which improves the accuracy
and robustness of diagnosis [12–14]. Machine learning is the engine for typical
CAD approaches [15]. Several methods have been developed to detect lesions in
oncological applications [16], in which lesion and non-lesion parts are differenti-
ated and segmented. Random walk and graph cut method were integrated for
segmenting tumors in PET/CT scans [17]. A probabilistic, spatially dependent
density model has been developed to automatically identify bone marrow infil-
tration for femur lesions in low-dose CT [18]. The convolutional neural network
(CNN), such as U-Net, offers a 2D framework to segment biomedical images
[19]. It is extended to a 3D version as V-Net [20] and achieves good results by
introducing an optimized objective function to train the data end-to-end. A cas-
caded fully CNNs has been developed to first segment the liver and then the
liver lesion [21].

In this paper, we aim to automatically detect MM lesions by taking advan-
tage of both molecular and anatomical features from 68Ga-Pentixafor PET/CT
whole-body scans. Two enhanced V-nets are cascaded to build a W-shaped
framework to learn the volumetric feature representation of the skeleton and
its lesions from coarse to fine. The network does not require the extraction of
features for learning. The proposed method is trained and tested on 12 patients
diagnosed with MM and the preliminary results demonstrate its potential to
improve the MM bone lesion detection.

2 Method and Experiment

2.1 Data Preparation and Preprocessing

A total of 12 patients (3 female and 9 male) with histologically proven multiple
myeloma disease were referred for 68Ga-Pentixafor PET/CT imaging (Siemens
Biograph mCT 64; Siemens Medical Solutions, Germany). Approximately 90
to 205 MBq 68Ga-Pentixafor was injected intravenously 1 h before the scan. A
low-dose CT (20 mAs, 120 keV) covering the body from the base of skull to the
proximal thighs was scanned for attenuation correction. PET emission data were
acquired using a 3D mode with a 200× 200 matrix for around 3 min emission
time per bed position. PET data were corrected for decay and scattering and
iteratively reconstructed with attenuation correction. This study was approved
by the corresponding ethics committees. Patients were given written informed
consent prior to the investigations. The co-registration of PET and CT were
visually inspected using PMOD. With the fusion of PET and CT, all the lesions
were manually annotated by an experienced senior radiologist. Then each lesion
was segmented by local thresholding at half maximum using PMOD.
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2.2 W-Net Deep Learning Architecture

A deep learning-based architecture is adopted for automated whole-body mul-
tiple myeloma bone lesion detection, which is implemented by segmenting the
lesions inside the bone. We explore a popular CNN-based deep learning archi-
tecture, V-Net, for 3D volumetric image segmentation [20] on hybrid PET/CT
scans. Two V-Nets are cacascaded to form a W-Net architecture to improve
the segmentation to bone-specific lesions. As illustrated in Fig. 2, there is a com-
pression downward path, followed by an approximately symmetry decompression
path inside each V-Net. The former cuts the volumetric size and broadens the
receptive field along the layers, while the latter functions the opposite to expand
the spatial support of the lower resolution feature maps. For both contracting
and expansive path, we use the same 3 × 3 × 3 kernel for convolution and a
stride of two for max pooling or up sampling. For the first one, only volumetric
CT data is fed into the network in order to learn anatomical knowledge about
the bone. The outcome builds a binary mask for the skeleton, which adaptively
offers geometrical boundary for lesion localization. The second V-Net then adds
both PET/CT and the output from the first network as the total input, of which
PET/CT provides additional feature information to jointly predict the lesion.

The W-Net architecture and experiments are conducted on Theano and all
the PET/CT volumes are trained on NVIDIA TITAN X with a GPU memory
of 12 GB. We employed 3-fold cross validation to test the prediction accuracy.
Dice score was calculated to estimate the segmentation accuracy. In addition, the
lesion-wise detection accuracies (sensitivity, specification, precision) was summa-
rized on the segmented results based on the criteria of bounding box overlap.
The bounding boxes of size 9 × 9 × 9 were generated across the lesions with
an overlap of 4 voxels being added in all three directions. A lesion was consid-
ered as detected when the amount of lesion labels fell into the bounding box is
above 10%.

Fig. 2. Overview of a simplified W-Net architecture.



W-Net for Whole-Body Bone Lesion Detection 27

3 Results and Discussion

The performance of W-Net is trained and tested on 68Ga-Pentixafor PET/CT
scan of twelve MM patients. Exemplary detection results of 3 slices at differ-
ent body regions are visualized in axial plane in Fig. 3, where the bone lesion
segmentation is denoted in red. Yellow arrow represents false positive detection
and false negatives are marked in green. Typically, false negative occurs when
the lesion is too small while the contrast is not enough to identify its presence.
The false positive is highly intensity driven, which considers the non-specific
high tracer uptake as lesion by mistake. For W-Net, the obtained binary skele-
ton mask is forwarded to the second V-Net together with PET/CT volumes.
Therefore, W-Net geometrically offers extra anatomical restrictions and reduces
the probability of assigning wrong lesion labels.

Fig. 3. Expemplary MM bone lesion segmentation and detection results. The first
column gives the original CT scan in axial direction, the second column gives the
corresponding PET scan and the third column shows MM bone lesion prediction using
W-Net. (Color figure online)
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Table 1 shows the performance of MM bone lesion detection. The W-Net,
which combines PET/CT with additional binary skeletal mask, reaches a Dice
score of 72.98%. It also obtains similar score for sensitivity (73.50%) and preci-
sion (72.46%). Besides distinguishing the information on CT and PET, and the
extracted CT skeleton can be utilized for the regularization. The maximization
of information utilization improves the segmentation and lesion detection. How-
ever, the overall performance of the W-Net may be restricted by the first V-Net.
If the skeleton mask is not correctly labeled, its segmentation error will be prop-
agated to the second V-Net and once again cause negative effect on lesion detec-
tion subsequently. Further improvement of the individual V-Net may improve
the overall performance. In addition, W-Net obtains very high specificity (true
negative rate) as 99.59%, which demonstrates the deep learning methods can
properly exclude non-lesion parts.

Table 1. Experimental results of lesion and bone segmentation

Performance (%) Sensitivity Specificity Precision Dice

MM bone lesion 73.50% 99.59% 72.46% 72.98%

For the first time, this study adopted a deep learning method to automati-
cally detect and segment the whole-body MM bone lesions on CXCR-4 imaging.
However, it also has certain limitations as our work is restricted by small number
of patient data. Even though we try to augment the number of training samples
by generating bounding boxes, the performance of the deep learning methods
is still hampered. Therefore, the developed CAD approach is yet not mature
enough for real application considering the limited segmentation and detection
accuracy. On the other hand, we only focus on multiple myeloma resided in the
bone, for severe cases with bone marrow infiltration, where the myeloma lesions
already outgrow from the bone structure and penetrate into the surrounding tis-
sue (known as extramedullary myeloma), the neoplasma should be also included
in the detection. However, this is out of the scope of our current goal. Nev-
ertheless, this explorative study demonstrated the potential of deep learning
methods in combining multimodal information for lesion detection. The prelimi-
nary results support the further development of deep learning methods for whole
body lesion prediction. The performance is expected to be improved with the
availability of more data. And there is also a lack of contrastive study with other
methods, this will be conducted as our future work.

4 Conclusion

This paper employed a W-Net architecture to volumetrically learn and predict
MM bone lesions on whole-body 68Ga-Pentixafor PET/CT imaging. It explored
a deep learning scheme for lesion segmentation and detection. The deep method
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does not require manual extraction of learning features. The preliminary results
based on limited number of data support the W-Net with additional skeletal
regularization for MM bone lesion detection. Increasing the data may further
enhance the detection performance. The implementation of this study makes a
step further towards developing an automated tool for multiple myeloma bone
lesion detection.
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Abstract. Positron emission tomography – computed tomography
(PET-CT) has been widely used in modern cancer imaging. Accurate
tumor delineation from PET and CT plays an important role in radia-
tion therapy. The PET-CT co-segmentation technique, which makes use
of advantages of both modalities, has achieved impressive performance
for tumor delineation. In this work, we propose a novel 3D image mat-
ting based semi-automated co-segmentation method for tumor delineation
on dual PET-CT scans. The “matte” values generated by 3D image mat-
ting are employed to compute the region costs for the graph based co-
segmentation. Compared to previous PET-CT co-segmentation methods,
our method is completely data-driven in the design of cost functions, thus
using much less hyper-parameters in our segmentation model. Compar-
ative experiments on 54 PET-CT scans of lung cancer patients demon-
strated the effectiveness of our method.

Keywords: Image segmentation · Interactive segmentation · Lung
tumor segmentation · Image matting · Co-segmentation

1 Introduction

Positron emission tomography – computed tomography (PET-CT) has revolu-
tionized modern cancer imaging. Improved determination of the extent of can-
cer spread (staging) in patients by PET has illustrated the compelling need of
acquiring this information for determining the therapeutic method to achieve
improved prognoses. The integrated PET-CT, by adding precise anatomic local-
ization to functional imaging, currently provides the most sensitive and accurate
information available on tumor extent and distribution for a variety of common
cancers. It increasingly plays a critically important role in tumor staging, clin-
ical management/decision making, treatment planning, and therapy response
assessment [1–3].

To make full use of the superb PET-CT imaging, accurate target delineation
becomes indispensable. Current standard medical practice heavily relies on man-
ual contouring, which is performed visually on a slice-by-slice basis by radiation
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CMMI/RAMBO/SWITCH 2017, LNCS 10555, pp. 31–42, 2017.
DOI: 10.1007/978-3-319-67564-0 4
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oncologists for target delineation. Due to the nature of PET-CT imaging, man-
ual contouring is cumbersome and error-prone, and suffers substantial inter- and
intra-observer variability [4–7]. This may limit its use as a quantitative imaging
tool or biomarker of outcome/response in large-scale clinical trial research and
even for use in daily clinical care.

Substantial endeavors have been made on automated tumor definition from
PET-CT scans using, for example, standardized uptake values (SUVs) based
thresholding [8–11], image gradients [12,13], deformable contour models [14–16],
mutual information in hybrid [17–19], random walk [20], and Gaussian mixture
models for heterogeneous regions [21,22]. Recently, the co-segmentation tech-
nique for tumor delineation on both PET and CT images has been attracted
great attentions [18,23–26], in which tumor contours on PET and on CT are
segmented simultaneously while admitting their possible differences. As demon-
strated in those previous works, the design of cost functions in the framework
of graph based co-segmentation is critical to achieve good segmentation per-
formance. Consequently, the region/unary costs were usually carefully designed
based on some sophisticated image priors (e.g., Gaussian mixture models [18,23],
shape prior [26], texture information [25], etc.) or clinical information from exper-
tise [23–26], and often heavily rely on hyper-parameters selection (e.g., the num-
ber of models in Gaussian mixture models [18], the curvature parameters [26],
etc.) for improved results.

In this paper, we propose a novel 3D alpha matting technique to com-
pute the region costs for co-segmentation on PET-CT images. The “matte”
values computed from the 3D matting are used to design the region costs in
the co-segmentation model [23]. Compared to previous PET-CT segmentation
approaches, the proposed method is completely image-derived with less image
and clinical priors, and consequently with less hyper-parameters. By integrating
the 3D alpha matting technique into the context-aware co-segmentation frame-
work [23], the proposed PET-CT co-segmentation method eases the design of
cost functions for segmentation, and significantly outperforms the state-of-the-
art PET-CT segmentation approach [23]. Note that although 3D matting has
been used as post-processing for the refinement of segmentation [27,28], no pre-
vious work has been done using it for cost function design in the segmentation
framework based on graph algorithms.

2 Methodology

The proposed PET-CT tumor segmentation method is semi-automated, which
mainly consists of three steps: (1) Active contour is adopted to generate larger
seed regions from given initial seeds on PET and CT image pairs, respectively.
(2) Based on the new seed regions, 3D image matting are conducted in both
volumes to obtain the tumor object probability maps, which are further used
for computing region/unary costs for the co-segmentation model [23]. (3) The
co-segmentation in both PET and CT modalities is formulated as a context
constrained energy minimization problem, as in Song et al.’s method [23], which
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Fig. 1. The flowchart of proposed PET-CT co-segmentation framework.

can be solved optimally by the well-known max-flow/min-cut algorithm to obtain
the simultaneous tumor segmentation result. The flowchart is shown in Fig. 1.
In the following, we will describe those three steps in detail.

2.1 Active Contour Based 3D Trimap Generation

As a standard yet important procedure in medical image processing, a pre-
processing step is needed in our framework. Similar to [23,26], the PET images
are first co-registered and up-sampled to have one-to-one voxel correspondence
with the CT image. For each PET-CT image pair, initial foreground seeds (i.e.,
voxels that definitely belong to tumor object) and a background region (i.e.,
voxels that definitely do not belong to tumor object) are given with user inter-
action (for example, by drawing two spheres: the inner one indicates the tumor
seeds and the region outside the outer sphere represents the background seeds).
For CT image, we cut the intensity values (Hounsfield Units, HU) to the range
of [−500, 200] as possible tumor voxels to ignore irrelevant image details. For
PET image, as suggested in literature, the raw image intensities are converted
to standardized uptake values (SUV) according to de-identified patient meta-
information.

Then, for each PET-CT pair, based on the given foreground seeds, the active
contour technique is employed on the PET and CT images, respectively. As a
consequence, we obtain an enlarged seed region on PET and CT images. How-
ever, due to the complex nature of a CT image, non-tumor voxels might also be
included in the enlarged seed region, which would lead to inaccurate segmenta-
tion. To alleviate this problem, we remove some voxels by simply thresholding to
keep those voxels whose HU values are in a specific range. The lower and upper
bound of this range in HU are empirically set to max(−412, 0.1 ∗ CTmed) and
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min(CTmax, 1.5 ∗ CTmed). The CTmax and CTmed are maximum and median
values within the initial foreground seed region on the CT image, respectively.
Finally, the intersection of the enlarged foreground seed regions on both PET
and CT serves as the final foreground seeds. Along with the given background
seeds, a 3D trimap image is further computed to classify the image voxels into
three categories of regions (i.e., the tumor region, background, and the mixed
or uncertain voxel region), which will be given as inputs for the subsequent 3D
alpha matting procedure.

Note that the active contour method in this step is applied to 2D slices of
PET and CT images where initial foreground seed regions are given. For the
purpose of illustration, some intermediate results are shown in Fig. 1.

2.2 3D Alpha Matting Based Tumor Object Probability Maps

Alpha matting is an important tool for image and video editing, which refers to
the process of extracting foreground object from an image. It usually produces
a “matte” image that can be used to separate the foreground from the back-
ground in a given image. Suppose that an image I is composed of two parts: the
foreground object F and the background B. The gray or color intensity of the
i-th pixel is assumed to be a linear combination of the corresponding foreground
(object) and background intensities: Ii = αi · Fi + (1 − αi) · Bi where αi, Fi and
Bi are, respectively, the matte, the foreground, and the background (intensity)
values of the i-th pixel. Alpha matting aims to simultaneously compute all three
values for each pixel in one image by considering a “local smoothness assump-
tion” that both F and B are approximately constant vector over a small local
neighborhood window around each pixel. Inspired by the closed-form matting
[29], we extend the 2D alpha matting to 3D and propose to adopt the “matte”
values to compute tumor object probability maps used for region cost computa-
tion in the subsequent co-segmentation.

Specifically, given an image with a size of H × W × D, the local smoothness
assumption allows us to reformulate the “alpha” for each voxel j in the 3D
image I as αj ≈ a · Ij + b,∀j ∈ w, where a = 1

Fj−Bj
, b = − Bj

Fj−Bj
, w is a small

neighborhood window. The goal of 3D alpha matting is to find the alpha for
each voxel, which can be modeled as the following problem:
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where |wj | is the number of voxel in j-th voxel neighborhood wj , Ij
k and αj

k

(k = {1, · · · , |wj |}) are intensity and alpha values of k-th neighbor of j-th voxel,
respectively. ε is a regularization constant. Using matrix notation, we have
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J (α, a, b) =
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− ᾱj

∣∣∣∣

∣∣∣∣
2

. (2)

Then, for each voxel j, we need to solve aj ∈ R, bj ∈ R and ᾱj ∈ R
(|wj |+1)×1.

Suppose we knew ᾱj , then we can obtain the optimal aj and bj as
[

aj

bj

]∗
=

(
GT

j Gj

)−1
GT

j ᾱj , (3)

then substituting this solution back into (2) and denoting Ḡj = I(|wj |+1)×(|wj |+1)−
Gj

(
GT

j Gj

)−1
GT

j ∈ R
(|wj |+1)×(|wj |+1), we obtain the α-subproblem as
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It is easily shown that ḠT
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where μj and σ2
j are the mean and variance of the intensities in neighborhood

window wj (typically with a size of 3 × 3 × 3) around j-th voxel, and |wj | is the
number of voxels in the voxel set wj . Finally, after some simple mathematical
operations, the α-subproblem is formulated as

α = arg min
α

αT Lα, (5)

where α ∈ R
N×1 is the alpha matte vector for all N = W × H × D voxels, and

L ∈ R
N×N is the matting Laplacian matrix, with (i, k)-entry being

∑

j|(i,k)∈wj

⎛

⎝δik − 1
|wj |
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⎣1 +
1(

ε
|wj | + σ2

j

) (Ii − μj) (Ik − μj)

⎤

⎦

⎞

⎠ , (6)

where δik is the Kronecker delta. However, the above problem (5) has singu-
lar solution. Thus, by considering user-supplied constraints on alpha values as
in [29], the 3D alpha matting problem is finally formulated as:

α = arg min
α

αT Lα + λ
(
αT − bT

S

)
DS (α − bS) , (7)

where λ is a coefficient, DS is a diagonal matrix with an element 1 for each
constrained voxel and with an element 0 for each of the remaining voxels, bS

is a vector indicating the alpha values for the constrained voxels. Since (7) is
quadratic in alpha, we can obtain the final global optimum solution by solving
a sparse linear system [29].

By considering the neighborhood relationships among spatially-adjacent and
slice-adjacent voxels (e.g., wj neighborhood for voxel j), the constructed matting
Laplacian matrix L can better model tumor object structures, and consequently
the probability generated from alpha matting would produce better segmenta-
tion results, which is validated in our experiments.
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2.3 Context-Aware Co-segmentation

The context-aware graph cut based co-segmentation has been studied for tumor
delineation on dual-modality PET-CT images [23]. Two sub-graphs are respec-
tively constructed for both PET and CT images. Each sub-graph is constructed
in a similar way as that in traditional graph cut based segmentation [30]. The
edge weights in each sub-graph encode the region (or unary) and boundary (or
pairwise) information from the corresponding image. In co-segmentation, a key
ingredient lies in the incorporation of context information between the PET and
CT images, which enforces the context-aware segmentation consistency between
the corresponding nodes in the two sub-graphs by adding inter-edges between two
sub-graphs. The co-segmentation is finally formulated as the following energy min-
imization problem that can be solved by the well-known maximum flow algorithm:

E (l) = ECT (l) + βEPET (l) + Econtext (l) (8)

ECT (l) =
∑

v∈I
Dv (lv) + λ1

∑

(u,v)∈NCT

Vuv (lu, lv) (9)

EPET (l) =
∑

v′∈I′
Dv′ (lv′) + λ2

∑

(u′,v′)∈NP ET

Vu′v′ (lu′ , lv′) (10)

Econtext (l) =
∑

(v,v′)

Wvv′ (lv, lv′) (11)

where I denotes the input CT image, I ′ denotes the input co-registered PET
image, lv and lv′ denote the binary labels assigned to each voxel v ∈ I and
v′ ∈ I ′, respectively. Dv(lv) and Vu,v(lu, lv) denote the region and the boundary
costs of each node (voxel) v on CT, respectively. Dv′(lv′) and Vu′v′ (lu′ , lv′) denote
the region, and the boundary costs of each node (voxel) v′ on the PET image,
respectively. Wvv′(lv, lv′) is a context-ware cost function. β, λ1 and λ2 are user-
defined weight coefficients. NCT and NPET are the neighborhood systems defined
on CT and PET, respectively.

In previous co-segmentation methods, Dv(lv) is often computed based on
Gaussian mixture model [23] or integration of other complex image priors (e.g.,
shape prior [26]), while Dv′(lv′) is usually specially-designed based on clini-
cal information (e.g., empirically-thresholded SUV values [23,26], 3D derivative
costs [26], etc.). In our work, an important difference is that those region costs
are generated directly from the alpha mattes computed by the 3D image mat-
ting. Take as an example the voxel v in the CT image. The region terms take the
form Dv(lv = 1) = − log(αv) and Dv(lv = 0) = − log(1 − αv) where αv is the
alpha matte value. For the design of the boundary term and the context term,
we use a similar strategy as that in [23]. For the completeness, we summarize
these terms here, as follows:
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Vuv (lu, lv) = − log
(

1 − exp
(−|∇I|2 (u, v)

2σ2
CT

))
(12)

Vu′v′ (lu′ , lv′) = − log
(

1 − exp
(−|∇I ′|2 (u′, v′)

2σ2
PET

))
(13)

Wv,v′ = θ (1 − |Nv − Nv′ |) (14)

where |∇I|2 (u, v) denotes the squared gradient magnitude on CT between u
and v. σCT and σPET are Gaussian kernel parameters. Nv and Nv′ are alpha
mattes between [0, 1] obtained from the CT and PET images, respectively. θ is
a scaling parameter.

3 Experiment

3.1 Datasets

A total of 54 PET-CT scan pairs from different patients with primary non-small
cell lung cancer are obtained. The image spacing varies from 0.78×0.78×2mm3

to 1.27 × 1.27 × 3.4mm3. The intra slice image size is 512 × 512. The number
of slices varies from 112 to 293. Manual expert tracings of the primary tumor
volume is available for each scan.

The 54 scans are separated disjointly as a 10-scan training set and 44-scan
testing set. The selection procedure starts by sorting all scans according to tumor
volume. Then one scan out of every five scan is selected as training scan. This
stratified strategy makes sure the training set is representative of the whole
population in terms of tumor volume. All parameters are tuned on the training
set. All reported results are from the testing set.

3.2 Experiment Settings

The same initialization procedure in [23] is employed. The user first specify two
concentric spheres with the different radii to serve as object and background
seeds. More specifically, all voxels inside the smaller sphere are used as object
seed. All voxels outside the larger sphere are used as background seed.

The segmentation accuracy is measured by the Dice coefficient (DSC). Dice
coefficient measures the volume overlap of two segmentations A and B. It is
defined as 2|A∩B|/(|A|+ |B|), with a range of [0,1]. The higher the DSC is, the
better volume overlap the two segmentations have.

A grid search strategy is used to select the parameters. The parameters
returning highest training set DSC is used to run the co-segmentation on the test
set. The values of those parameters are set, as follows: β = 5, λ1 = 5, λ2 = 0.1,
σCT = 15, σPET = 0.1, and θ = 255.

We conducted quantitative comparisons to the state-of-the-art PET-CT co-
segmentation method of Song et al.’s [23]. For better illustration of the alpha-
mattes based region costs for (co-)segmentation, two groups of experiments were
conducted. In the first group, the context term was not used, and the traditional
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graph cut based segmentation method [30] was applied solely on CT or PET
for tumor segmentation using our proposed mattes based cost functions. In the
second group of experiments, both PET and CT scans were used for our co-
segmentation of tumor contours.

3.3 Results and Analysis

Table 1 reports the mean DSCs and standard deviations of the evaluated meth-
ods on the 44 test datasets. Figure 2 shows their quantitative results for each
method on each case. From these results, we have the following observations.
First, compared to Song’s co-segmentation method, our matte based method can
achieve better performance on most cases with higher DSCs (on average, 3.4%
improvement) with a significant confidence (p-value of 0.005). Second, from the
results of either Song’s or our method, the co-segmentation can achieve better
results over the traditional graph cut segmentation methods (i.e., the superiority
of co-Seg. over CT-only or PET-only). Third, considering the traditional graph
cut based segmentation (i.e., without context-aware information between inter-

Table 1. Average DSC’s and standard deviations of the proposed method and Song
et al.’s co-segmentation method [23].

Methods Modalities DSC p-values

Song et al. [23] CT-only 0.495 ± 0.208

PET-only 0.582 ± 0.134

PET-CT 0.768 ± 0.114

Proposed CT-only 0.744 ± 0.101 10−10

PET-only 0.757 ± 0.077 10−13

PET-CT 0.802 ± 0.069 0.005
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Fig. 2. Quantitative results and comparative performance evaluation based on the
computed DSC values.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Segmentation results of compared methods on three PET-CT scans: No. 000577,
001255 and 001263 (from the first row to the last row). The 1st and 2nd columns:
contours on CT and PET images with co-segmentation. The 3rd and 4th columns:
contours on CT and PET images without co-segmentation. Red: ground truth, Green:
Song’s method, Blue: Our method. (Color figure online)

subgraphs), the segmentation results using the proposed region costs generated
by 3D alpha matting outperformed those using Song et al.’s region costs.

Qualitatively, Fig. 3 shows the segmentation results of the compared methods
on three PET-CT scans. From those figures, we can see our method is able to
locate tumor boundary more accurately. Note that the ground truth was only
given on CT images, we draw the contours on PET images for demonstration.

It is noted that although our method can achieve good segmentation results
on most cases, it still cannot handle some hard cases. One example case for which
our method achieved less accurate segmentation is shown in Fig. 4. As we can
see in this figure, although our method can localize the obvious tumor boundary
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(a) (b) (c) (d)

Fig. 4. One example case for which our method achieved less accurate segmentation.

on CT images, it is difficult to recognize those voxels with extremely low HU
values in tumor region. Possible improvements in the future lies in how to design
more effective cost function for these hard cases.

Our algorithm was implemented in MATLAB on a Windows 10 workstation
(3.4 GHz, 32 GB memory). As to the average computation time over the 44 test
cases, the 3D image matting step took about 43.49 s, the co-segmentation step
took about 68.76 s. Thus, our method took about 2 min for each case, which was
comparable to those reported in [23].

4 Conclusion

The novel 3D image matting can generate high-quality region cost on both PET
and CT images, which can be effectively used to locate the tumor boundary.
When integrated in the powerful graph cut based co-segmentation framework, it
can achieve high accurate segmentation for tumor delineation. Experiments on
54 datasets demonstrated the effectiveness of the proposed method.
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Abstract. Positron emission tomography (PET) imaging is widely used
for staging and monitoring treatment in a variety of cancers including the
lymphomas and lung cancer. Recently, there has been a marked increase
in the accuracy and robustness of machine learning methods and their
application to computer-aided diagnosis (CAD) systems, e.g., the auto-
mated detection and quantification of abnormalities in medical images.
Successful machine learning methods require large amounts of training
data and hence, synthesis of PET images could play an important role
in enhancing training data and ultimately improve the accuracy of PET-
based CAD systems. Existing approaches such as atlas-based or methods
that are based on simulated or physical phantoms have problems in syn-
thesizing the low resolution and low signal-to-noise ratios inherent in
PET images. In addition, these methods usually have limited capacity
to produce a variety of synthetic PET images with large anatomical and
functional differences. Hence, we propose a new method to synthesize
PET data via multi-channel generative adversarial networks (M-GAN)
to address these limitations. Our M-GAN approach, in contrast to the
existing medical image synthetic methods that rely on using low-level
features, has the ability to capture feature representations with a high-
level of semantic information based on the adversarial learning concept.
Our M-GAN is also able to take the input from the annotation (label)
to synthesize regions of high uptake e.g., tumors and from the computed
tomography (CT) images to constrain the appearance consistency based
on the CT derived anatomical information in a single framework and
output the synthetic PET images directly. Our experimental data from
50 lung cancer PET-CT studies show that our method provides more
realistic PET images compared to conventional GAN methods. Further,
the PET tumor detection model, trained with our synthetic PET data,
performed competitively when compared to the detection model trained
with real PET data (2.79% lower in terms of recall). We suggest that
our approach when used in combination with real and synthetic images,
boosts the training data for machine learning methods.
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1 Introduction

[18F]-Fluorodeoxyglucose (FDG) positron emission tomography (PET) is widely
used for staging, and monitoring the response to treatment in a wide variety of
cancers, including the lymphoma and lung cancer [1–3]. This is attributed to the
ability of FDG PET to depict regions of increased glucose metabolism in sites
of active tumor relative to normal tissues [1,4]. Recently, advances in machine
learning methods have been applied to medical computer-aided diagnosis (CAD)
[5], where algorithms such as deep learning and pattern recognition, can provide
automated detection of abnormalities in medical images [6–8]. Machine learn-
ing methods are dependent on the availability of large amounts of annotated
data for training and for the derivation of learned models [7,8]. There is, how-
ever, a scarcity of annotated training data for medical images which relates to
the time involved in manual annotation and the confirmation of the imaging
findings [9,10]. Further, the training data need to encompass the wide varia-
tion in the imaging findings of a particular disease across a number of different
patients. Hence effort has been directed in deriving other sources of training data
such as ‘synthetic’ images. Early approaches used simulated, e.g., Monte Carlo
approaches [24,25] or physical phantoms that consisted of simplified anatomi-
cal structures [11]. Unfortunately, phantoms are unable to generate high-quality
synthetic images and cannot simulate a wide variety of complex interactions,
e.g., presence of the deformations introduced by disease. Other investigators
used atlases [12] where different transformation maps were applied on the atlas
with an intensity fusion technique to create new images. However, atlas based
methods usually require many pre-/post-processing steps and a priori knowledge
for tuning large amounts of transformation parameters, and thus limiting their
ability to be widely adopted. Further, image registration that is used for creating
the transformation maps affects the quality of the synthetic images.

In this paper, we propose a new method to produce synthetic PET images
using a multi-channel generative adversarial network (M-GAN). Our method
exploits the state-of-the-art GAN image synthesis approach [13–16] with a novel
adaptation for PET images and key improvements. The success of GAN is based
on its ability to capture feature representations that contain a high-level of
semantic information using the adversarial learning concept. A GAN has two
competing neural networks, where the first neural network is trained to find
an optimal mapping between the input data to the synthetic images, while the
second neural network is trained to detect the generated synthetic images from
the real images. Therefore, the optimal feature representation is acquired dur-
ing the adversarial learning process. Although GANs have had great success in
the generation of natural images, its application to PET images is not trivial.
There are three main ways to conduct PET image synthesis with GAN: (1)
PET-to-PET; (2) Label-to-PET; and (3) Computed tomography (CT)-to-PET.
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For PET-to-PET synthesis, it is challenging to create new variations of the
input PET images, since the mapping from the input to the synthetic PET
cannot be markedly different. Label-to-PET synthesis usually has limited con-
straints in synthesizing PET images, so the synthesized PET images can lack
spatial and appearance consistency, e.g., the lung tumor appears outside the tho-
rax. CT-to-PET synthesis is not usually able to synthesize high uptake regions
e.g., tumors, since the high uptake regions may not be always visible as an
abnormality on the CT images. Both PET-to-PET and CT-to-PET synthesis
require new annotations for the new synthesized PET images for machine learn-
ing. Our proposition to address these limitations is a multi-channel GAN where
we take the annotations (labels) to synthesize the high uptake regions and then
the corresponding CT images to constrain the appearance consistency and out-
put the synthetic PET images. The label is not necessary to be derived from
the corresponding CT image, where user can draw any high uptake regions on
the CT images which are going to be synthesized. The novelty of our method,
compared to prior approaches, is as follows: (1) it harnesses high-level seman-
tic information for effective PET image synthesis in an end-to-end manner that
does not require pre-/post-processing or parameter tuning; (2) we propose a new
multi-channel generative adversarial networks (M-GAN) for PET image synthe-
sis. During training, M-GAN is capable of learning the integration from both CT
and label to synthesize the high uptake and the anatomical background. During
predication, M-GAN uses the label and the estimated synthetic PET images
derived from CT to gradually improve the quality of the synthetic PET image;
and (3) our synthetic PET images can be used to boost the training data for
machine learning methods.

2 Methods

2.1 Multi-channel Generative Adversarial Networks (M-GANs)

GANs [13] have 2 main components: a generative model G (the generator) that
captures the data distribution and a discriminative model D (the discrimina-
tor) that estimates the probability of a sample that came from the training
data rather than G. The generator is trained to produce outputs that cannot
be distinguished from the real data by the adversarially trained discriminator,
while the discriminator was trained to detect the synthetic data created by the
generator.

Therefore, the overall objective is to minimize min-max loss function, which
is defined as:

L(G,D) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1 − D(G(z)))] (1)

where x is the real data and z is the input random noise. pdata, pz represent the
distribution of the real data and the input noise. D(x) represents the probability
that x came from the real data while G(z) represents the mapping to synthesize
the real data.
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Fig. 1. Flow diagram of our M-GANs.

For our M-GAN, we embed the label and the CT image for training and
testing, as shown in Fig. 1. During the training time, the generator takes input
from the label and CT to learn a mapping to synthesize the real PET images.
Then the synthesized PET images, together with the real PET images, enter
into the discriminator for separation as:

LM−GAN (G,D) = El,c,t∼pdata(l,c,t) [logD(l, c, t)] +
Ec∼pc(c),l∼pl(l) [log(1 − D(l, c, G(l, c)))] (2)

where l is the label, c the CT and t is the PET image. The conceptual approach
to train the M-GAN is to find an optimal setting G∗ that maximizes D while
minimizing G, which can be defined as:

G∗ = arg minGmaxDLM−GAN (G,D) (3)

Based on the latest empirical data reported by van den Oord et al. [14],
we used L1 distance to encourage less blurring for the synthetic images during
training. Therefore, the optimization process becomes:

G∗ = arg minGmaxDLM−GAN (G,D) + λEc∼pc(c),l∼pl(l) [‖t − G(l, c)‖1] (4)

where λ is a hyper-parameter, which balances the contribution of the two terms
and we set it to 100 empirically. We followed the published work Isola et al.
[15] and used a U-net [17] architecture for the generator G and a five-layer
convolutional networks for the discriminator D.

2.2 Materials and Implementation Details

Our dataset consisted of 50 PET-CT studies from 50 lung cancer patients pro-
vided by the Department of Molecular Imaging, Royal Prince Alfred (RPA) Hos-
pital, Sydney, NSW, Australia. All studies were acquired on a 128-slice Siemens
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Biograph mCT scanner; each study had a CT volume and a PET volume. The
reconstructed volumes had a PET resolution of 200 × 200 pixels at 4.07 mm2, CT
resolution of 512× 512 pixels at 0.98 mm2 and slice thickness of 3 mm. All data
were de-identified. Each study contained between 1 to 7 tumors. Tumors were
initially detected with a 40% peak SUV (standardized uptake value) connected
thresholding to detect ‘hot spots’. We used the findings from the clinical reports
to make manual adjustments to ensure that the segmented tumors were accu-
rate. The reports provided the location of the tumors and any involved lymph
nodes in the thorax. All scans were read by an experienced clinician who has
read 60,000 PET-CT studies.

To evaluate our approach we carried out experiments only on trans-axial slices
that contained tumors and so analyzed 876 PET-CT slices from 50 patient studies.
We randomly separated these slices into two groups, each containing 25 patient
studies. We used the first group as the training and tested on the second group,
and then reversed the roles of the groups. We ensured that no patient PET-CT
slices were in both training and test groups. Our method took 6 h to train over
200 epochs with a 12GB Maxwell Titan X GPU on the Torch library [18].

3 Evaluation

3.1 Experimental Results for PET Image Synthesis

We compared our M-GAN to single channel variants: the LB-GAN (using labels)
and the CT-GAN (using CTs). We used mean absolute error (MAE) and peak
signal-to-noise ratio (PSNR) for evaluating the different methods [19]. MAE mea-
sures the average distance between each corresponding pixels of the synthetic
and the real PET image. PSNR measures the ratio between the maximum pos-
sible intensity value and the mean squared error of the synthetic and the real
PET image. The results are shown in Table 1 where the M-GAN had the best
performance across all measurements with the lowest MAE and highest PSNR.

Table 1. Comparison of the different GAN approaches.

MAE PSNR

LB-GAN 7.98 24.25

CT-GAN 4.77 26.65

M-GAN 4.60 28.06

3.2 Using Synthetic PET Images for Training

In the second experiment, we analysed the synthetic PET images to determine
their contribution to train a fully convolutional network (FCN - a widely used
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Fig. 2. Synthetic PET images. (a) label, (b) CT image, (c) real PET image, (d, e)
synthetic PET images produced with only using (a) or (b), (f) our synthetic PET
images with both (a) and (b) as the input.

deep convolutional networks for object detection task [20–22]). We trained the
FCN model with (i) LB-GAN, (ii) CT-GAN, (iii) M-GAN produced synthetic or
(iv) real PET images. Then we applied the trained FCN model to detect tumors
on real PET images (We used the first group to build the GAN model and
the GAN model was applied on the second group to produce the synthetic PET
images. After that, the synthetic PET images were used to build the FCN model.
Finally the trained FCN model was tested on the first group with the real PET
images for tumor detection. We reversed the roles of the two groups and applied
the same procedures). Our evaluation was based on the overlap ratio between
the detected tumor and the ground truth annotations [23]. A detected tumor
with >50% overlap with the annotated tumor (ground truth) was considered
as true positive; additional detected tumor was considered as false positive. We
regarded an annoted tumor that was not detected, or an overlap, smaller than
50%, between the detected tumor and the annoted tumors as false negative. We
measured the overall precision, recall and f-score.

Table 2 shows the detection and segmentation performances. The results indi-
cate that the M-GAN synthesized PET images performed competitively to the
results produced from using real PET images for tumor detection.

Table 2. Comparision of FCN-based tumor detection performance, trained using syn-
thetic or real PET.

Trained FCN with Precision Recall F-score

LB-GAN PET 76.42 44.06 55.90

CT-GAN PET 36.89 3.69 6.71

M-GAN PET 81.73 52.38 63.84

Real PET 88.31 55.17 66.38
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4 Discussion

Table 1 indicates that the M-GAN is much closer to the real images when com-
pared with other GAN variants, and achieved the lowest MAE score of 4.60 and
a highest PSNR of 28.06. The best score in both MAE and PSNR can be used
to indicate the construction of the most useful synthetic images. In general, LB-
GAN may be employed to boost the training data. However, due to the lack
of spatial and appearance constraints that could be derived from CT, LB-GAN
usually result in poor anatomical definitions, as exemplified in Fig. 2d, where
the lung boundaries were missing and the mediastinum regions were synthesized
wrongly.

CT-GAN achieved competitive results in terms of MAE and PSNR (Table 1).
However, its limitation is with its inability to reconstruct the lesions which are
information that is only available in the label images (or PET), as exemplified
in Fig. 2e, where the two tumors were missing and one additional tumor was
randomly appeared in the heart region from the synthetic images. The relative
small differences between the proposed M-GAN method and CT-GAN method
was due to the fact that tumor regions only occupy a small portion of the whole
image and therefore, resulting less emphasis for the overall evaluation. In gen-
eral, CT-GAN cannot synthesize the high uptake tumor regions, especially for
the tumors adjacent to the mediastinum. This is further evidence in Table 2;
CT-GAN synthesized PET images have inconsistent labeling of the tumors and
resulting the trained FCN producing the lowest detection results.

In Table 2, the difference between the M-GAN and the detection results by
using the real PET images demonstrate the advantages in integrating label to
synthesize the tumors and the CT to constrain the appearance consistency in a
single framework for training.

5 Conclusion

We propose a new M-GAN framework for synthesizing PET images by embed-
ding a multi-channel input in a generative adversarial network and thereby
enabling the learning of PET high uptake regions such as tumors and the spa-
tial and appearance constraint from the CT data. Our preliminary results on
50 lung cancer PET-CT studies demonstrate that our method was much closer
to the real PET images when compared to the conventional GAN approaches.
More importantly, the PET tumor detection model trained with our synthetic
PET images performed competitively to the same model trained with real PET
images. In this work, we only evaluated the use of synthetic images to replace
the original PET; in our future work, we will investigate novel approaches to
optimally combine the real and synthetic images to boost the training data. We
suggest that our framework can potentially boost the training data for machine
learning algorithms that depends on large PET-CT data collection, and can also
be extended to support other multi-modal data sets as PET-MRI synthesis.
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Abstract. In traditional radiation therapy of lung cancer, the planned target
volume (PTV) is delineated from the average or a single phase of the planning-4D-
CT, which is then registered to the intra-procedural 3D-CT for delivery of radi‐
ation dose. Because of respiratory motion, the radiation needs to be gated so that
the PTV covers the tumor. 4D planning deals with multiple breathing phases,
however, since the breathing patterns during treatment can change, there are
matching discrepancies between the planned 4D volumes and the actual tumor
shape and position. Recent works showed that it is promising to dynamically
estimate the lung motion from chest motion. In this paper, we propose a patch-
based Kernel-PCA model for estimating lung motion from the chest and upper
abdomen motion. First, a statistical model is established from the 4D motion
fields of a population. Then, the lung motion of a patient is estimated dynamically
based on the patient’s 4D-CT image and chest and upper abdomen motion, using
population’s statistical model as prior knowledge. This lung motion estimation
algorithm aims to adapt the patient’s planning 4D-CT to his/her current breathing
status dynamically during treatment so that the location and shape of the lung
tumor can be precisely tracked. Thus, it reduces possible damage to surrounding
normal tissue, reduces side-effects, and improves the efficiency of radiation
therapy. In experiments, we used the leave-one-out method to evaluate the esti‐
mation accuracy from images of 51 male subjects and compared the linear and
nonlinear estimation scenarios. The results showed smaller lung field matching
errors for the proposed patch-based nonlinear estimation.

Keywords: Dynamic image-guided radiotherapy · Breathing pattern shift ·
Statistical model-based motion estimation

1 Introduction

In traditional radiation therapy of lung cancer, after obtaining 4D-CT of a patient, the
clinical target volume (CTV) and the planned target volume (PTV) are delineated from
the average 3D-CT or a selected phase. 4D-CT is used to ensure that PTV covers the
tumor during the breathing cycle. The PTV margin can be designed smaller if a gating
technology is used during therapy. To better match patient’s motion, the radiotherapy
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planning can also be performed in 4D so that radiation can be performed in multiple
phases [1–5].

However, it has been found that patient’s breathing pattern can change during treat‐
ment [6], due to the lack of reproducibility of breathing, or patients tend to calm down
or sleep during the treatment. Figure 1 illustrates such variability of breathing using two
4D-CT series of the same subject. We first registered the baseline images (first time-
point) of the two image series. After global registration, deformable registration of the
two baselines shows large shape differences (mean value of lung field movement range
is 12.4 mm (±5.3 mm), and mean value of chest surface movement range is 6.8 mm
(±2.6 mm)). Further, the magnitudes of deformation (MOD) of subsequent phases from
the respective baseline are plotted. It can be seen that the amounts of breathing are
different in the two 4D-CT series. Such breathing trajectory changes in individuals could
cause the static planning does not necessarily cover all the breathing cycles well during
radiotherapy.
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Fig. 1. Magnitudes of deformations (MOD) from baseline (phase 0) to other phases for two 4D-
CTs of one subject.

TD1 TD2 TD3

TD4 TD5 TD6

Fig. 2. Different chest motions were observed from the cone-beam CTs for a patient during
treatments on different treatment days.

Figure 2 shows examples of MODs of cone-beam CTs captured during six treatments
of a subject. TD1 is the surface extracted at treatment day (TD) one. After registering
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the subsequent TD images to TD1, the magnitudes of deformations (does not count
global transformation) are probed on the surface of TD 1 (see TD2-TD6). It can be seen
that relatively big differences are close to the armpit, which may be caused by the arm
positioning. What is more, patient’s breathing statuses are quite different on the chest
surfaces, although cone-beam CT images were captured while the patient was freely
breathing, and the images reflect different breathing statuses.

These examples indicate that discrepancies between planning-4D-CT images and
patient’s current breathing pattern could reduce the accuracy for precise treatment. It is
in this context that lung motion estimation is particularly useful to adapt the plan‐
ning-4D-CT onto the patient’s current status, and ideally, the real-time respiratory
motion can be tracked and compensated by deforming patient’s the 4D-CT to his current
position. Thus, in this paper, we will study how to estimate the patient’s respiratory
motion based on one planning-4D-CT of the patient and the real-time measurable chest
and upper abdomen signals. The statistics of motion vectors from a population will be
used as the prior knowledge for the estimation.

In the literature, surrogate signals, fiducial signals, and surface signals were used for
lung motion estimation [7–18]. Specifically, the high-dimensional estimation algorithms
indicated that it is possible to estimation lung motion from the chest and abdominal
surfaces captured during the radiotherapy procedure. However, these methods attempted
to estimate the deformation from one 3D image (e.g., the baseline) to different respiratory
phases, and none of them has applied the motion estimation entirely in 4D space.

In this paper, we establish the 4D statistical respiratory model and estimate the lung
motion from chest/upper abdomen surface motion sequences. First, we performed stat‐
istical analysis on the 4D motion fields, by registering longitudinal motion of each
subject onto a patient space. The analysis shows that 4D lung motion is a combination
of many complex components, and a limited number of sensor signals might not be
sufficient for precise motion estimation. Second, lung respiratory motions are spatially
different in the thorax and can be clustered into different partitions. Partitioning of the
thorax and estimating the motion within each region under a global smoothness
constraint would be more effective to improve the motion estimation accuracy. Finally,
both linear and nonlinear estimation algorithms are investigated and compared based on
51 4D-CT datasets.

In experiments, 4D deformation fields of 51 male subjects are used to generate the
patch-based Kernel-PCA statistical models. By selecting one subject as the patient to
be modeled, all the images are registered onto the patient space. The thorax area is
partitioned into 8 regions by applying the K-means clustering algorithm on the normal‐
ized longitudinal deformation fields. Then, the statistical model is trained on the patient
space, and the lung motion vector of the patient is estimated based on a least-squares
optimization method to match the patient’s chest and upper abdomen motion. The leave-
one-out method was used in the evaluation so that every time 50 subjects were used for
the statistical model and 1 subject was used for testing. For each testing subject, we
simulated 5 longitudinal deformations from the 4D-CT by sampling from a separate
wavelet-based field statistics and tested the estimation from the surfaces extracted. The
lung field surface matching accuracy between the estimated images and the original
simulated images was calculated. The results suggest that the proposed patch-based
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Kernel-PCA estimation improves the performance for lung respiratory motion
modeling, and the estimation error is consistently lower than linear and individual phase-
based estimation.

2 Method

2.1 Statistical Respiratory Motion Patterns

After intra-subject global registration, 4D-CT of each subject

I(s) =
{

I
(s)

0 ,… , I
(s)

T

}
, s = 1,… , S and their longitudinal deformations 𝐟 (s)0→t

, t = 1,… , T

are computed using deformable registration [14]. To establish point correspondences

across the population, the first time-point or the baseline of each subject I(s)0  is registered

to that of the subject p, I(p)0 , resulting a global transformation Gp→s and a deformation
field 𝐟p→s. Thus, given a voxel 𝐱 in p, the motion trajectory for subject s is computed as

𝐦
(s)

t,𝐱 = R
(
𝐟p→s

◦Gp→s

)
𝐟
(s)

0→t

(
𝐱 + 𝐟p→s

◦Gp→s

)
, t = 1,…T . 𝐱 + 𝐟p→s

◦Gp→s is the corre‐

sponding point of 𝐱 in the baseline of subject s, and R
(
𝐟p→s

◦Gp→s

)
 is the rotation matrix

of the local Jacobian of the combined global and deformable transformation [9].

Phase 1 Phase 2 Phase 3

Phase 4 Phase 5 Phase 6

Phase 7 Phase 8 Phase 9

Surface color bar Lung field color bar

Fig. 3. Average motion magnitudes of the population probed on chest and lung field surfaces.

Principal component analysis (PCA) is first computed on the entire 4D motion fields
of S = 50 subjects, by concatenating the 4D fields of each subject into vectors:

𝐮(s) =
[
𝐦

(s)T

t,𝐱 , …
]T

. For all the 50 samples, the magnitudes of the average 4D fields from
the baseline chest surface of subject p are shown in Fig. 3. It can be seen that the motion
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from phase 0 (inhale) reaches the largest at phase 5 (exhale) and comes back at phase
9. The biggest motion appears in the central/lower chest area.

Fig. 4. PCA and Kernel-PCA of 4D lung motion vectors. Left: samples in the three-PC space;
and right: samples in the three-Kernel-PC space.

For PCA, the first 10 principal components (PCs) account for 76.7% of the total
cumulative variance proportion. Figure 4 left shows the scattered feature points of the
first three PCs. Further, the Kernel-PCA of the 50 samples 𝐮(s) is computed, and the
projected feature points are shown in Fig. 4 (right). The points are shown in different
colors if we cluster them in two (PCA) and four (Kernel-PCA) groups. The figures
indicate that respiratory motion patterns are complex and may not be precisely repre‐
sented linearly by a small number of PCs (Fig. 4 left), and compared to PCA, K-PCA
may better represent lung motion pattern variability. To demonstrate different breathing
patterns, Fig. 5 shows the motion represented by the two center points (hollow points
in Fig. 4, left). In summary, the need of more PCs may explain why surrogate- or fiducial-
based estimation has limited ability on precise lung motion estimation because they have
limited number of freedom in measuring patient’s motion.

Phase 1 Phase 3 Phase 5 Phase 7 Phase 9

Fig. 5. Two different motion patterns on the template baseline surface based on PCA.

The above statistical lung motion patterns motivate us to improve the statistical
representation and estimation performance using nonlinear and patch-based methods:
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first, the entire thorax region is partitioned into sub-regions; and then, a Kernel-PCA is
applied for the statistical model. For thorax partitioning, the 4D deformation fields are
clustered into a number of sub-regions by the K-means algorithm. Further detailed image
features can also be used in the clustering [19, 20]. Figure 6 (left) shows the partitions
overlaid on the baseline image of subject p. Eight regions were used in our study, and
it can be seen that the constraint-free partitioning shows symmetric patterns on the
cavity, muscle, and different lung lobes.

Fig. 6. Lung region partitions and the surface area to be used for motion estimation.

In addition, for the chest surface we threshold the average deformation at phase 5
(see Fig. 3). The highlighted surface area (Fig. 6 right) demonstrates overall motion
magnitude larger than 1.8 mm, which will be used in the lung motion estimation, as
detailed in next section.

2.2 Patch-Based Linear and Nonlinear Motion Estimation

For a subject s, its entire 4D motion fields can be represented by a vector formed by two

parts 
[
𝐮T , 𝐯T

]T, with 𝐮 as the 4D lung motion fields and 𝐯 the corresponding 4D surface
motion. 𝐮 is partitioned into C parts, so 𝐮 = ∪c=1,…,C 𝐮

c. Using the method proposed in
[21], where a PCA is performed separately for each partition, for the cth partition, we

get 
[
𝐮c

𝐯

]
=

[
�̄�c

�̄�

]
+𝖬

c𝐛c. The objective for motion estimation is to estimate u from a

given chest motion vector 𝐯′, subject to the statistical constraints. This can be achieved
by solving the optimal projection vector 𝐛 = ∪c 𝐛

c by minimizing,

E(𝐛) =
∑C

c=1

{
‖‖𝐯

′ − �̄� −𝖬
c

v𝐛
c‖‖

2
+ 𝜉

∑M

k=1

(
bc

k

)2

2𝜆c
k

}

+ 𝜖
‖‖‖∇ ∪c

(
�̄�

c +𝖬
c

u𝐛
c
)‖‖‖

2
. (1)

𝖬
c
u and 𝖬c

v are the sub-matrices of 𝖬c , whose rows correspond to vectors u and v,
respectively. The first term ensures the reconstructed surface from the statistical model
is similar to the observed one; the second is the statistical prior constraint (M PCs); and
the third term is a spatial smoothness constraint for combining different partitions. After
solving 𝐛 using the finite gradient descent algorithm u can be estimated.
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As discussed in Sect. 2.1, because of the high dimensionality and complexity of lung
motion patterns, the relationship between lung motion and surface motion could be better
modeled using nonlinear estimation. Herein, we extended the above estimation using
Kernel-PCA, which performs PCA after projecting the original data to a high-dimen‐
sional space.

For partition c by combining lung motion 𝐮c with surface motion vector 𝐯 into one,

i.e., 𝐰c =
[
𝐮cT , 𝐯T

]T, we can calculate their Kernel-PCA. The radial basis function kernel
is used and denoted by . Denoting Kc as
the kernel matrix, by solving the Eigenvalue problem N𝜆𝛂 = Kc𝛂, we obtain the Eigen‐
values 𝜆c

k
 and Eigenvectors 𝜶c

k
, k = 1,… , M (M is the number of principal components

chosen). 𝜶c
k
 is normalized by 𝜆c

k

(
𝜶

c
k
⋅ 𝜶

c
k

)
= 1. Given a new motion vector of partition c,

𝐰c, the k th element of the projected feature vector 𝐛c is calculated by,

(2)

Because we are interested in a representation of the motion in the original space, not
the mapped space, according to [22], given a projection vector 𝐛c, the corresponding
motion vector 𝐰c can be obtained by minimizing

. On the other hand, the motion vector 𝐰c needs
to be constrained by the shape prior derived from the samples. Different from the multi‐
variate Gaussian prior constraint of PCA, here, the “proximity to data” measure [23] is
used. Thus, the shape constraint term is defined by

. Finally, the surface motion part of 𝐰c, 𝐯 needs
to be similar with the input surface motion vector 𝐯′, and the lung motion vectors 𝐮c

should be spatially smooth across the partition boundaries. Combining these require‐
ments, we come up with the following objective function:

E(𝐰) =
∑

c=1,…,C

{
𝜌c(𝐰

c) + 𝜀fc(𝐰
c) + 𝜂‖‖𝐯 − 𝐯

′‖‖
2
+ 𝜖‖‖∇c𝐮

‖‖
2
}

. (3)

In short, the first term is the Kernel-PCA reconstruction, the second is the prior
constraint, the third is the similarity between the actual surface signal and the one gener‐
ated from the statistical model, and the last term is smoothness across different partitions.
The finite gradient method can be used to optimize Eq. (3). We iteratively calculate 𝐛
using Eq. (2) after each optimization of Eq. (3) until the differences of 𝐰 in two conse‐
quent iterations are smaller than a prescribed threshold. Notice that the initial values of
𝐮

c
 are unknown, and we set them to the mean of the S samples.

3 Results

The linear and nonlinear estimation algorithms were implemented using R and
performed on a server with 24 cores and 32 GB memory running Ubuntu 16.04 × 64.
Slicer software was used for visualization. 51 4D-CT of male lung cancer patients
undergoing radiotherapy were used. The exception is Fig. 2, where a female data was
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illustrated due to availability. In the future, we will evaluate/eliminate the effects of the
breast area and study whether it is feasible to combine both genders. Only subjects with
small lesions <5 cm are selected. Each data has 10 respiratory phases: the first (baseline)
is inhale; the 5th is exhale; the 9th is inhale, representing a breathing cycle. The in-plane
resolution is 1.17 mm and the slice thickness is 3 mm for all the images.

To evaluate the performance, we used the leave-one-out strategy. In each test, the
real 4D-CT, as well as simulated longitudinal deformations for the testing subject, were
used as ground truth: 5 image series were randomly sampled from the wavelet-based
deformation statistics trained without the testing subject. Different bands of the wavelet
coefficients were independently sampled so the simulation is a mimic of piece-wise
linear simulation. Please refer to [24] for more details. The reason for simulating image
series is to test the algorithm on more breathing variability with known “ground truth”.
Chest surfaces for each image series were extracted by deforming the chest surface of
the template baseline onto them, and the serial surfaces act as the input surface signals
𝐯′. Because no global transformation was simulated, it was not considered in the experi‐
ments. Altogether, we generated 6 × 51 testing data (1 real + 5 simulated for each leave-
one-out study) and estimated the corresponding 4D-CT images using linear and
nonlinear estimation, respectively.

We compared the linear, nonlinear, and the single-phase-based 3D estimation [9] –
images of individual phases were estimated directly from the baseline. Parameters 𝜀, 𝜂,
and 𝜖 were selected so that the second term contribute half, and the third and fourth terms
contribute ¼ of the initial values of the first term. Surface distances between the lung
field surfaces extracted from the testing images and those extracted from the estimated
image sequences were calculated as the measure of the results [25].

Fig. 7. Overlay of estimated image on original image (left: linear; right: nonlinear estimation).
(Color figure online)

Figure 7 shows an example of the reconstructed image (red) overlaid on the testing
image (gray scale) for phase 5. In Fig. 8, the average and std of the differences for each
phase over all the 306 tests are plotted. We can see that nonlinear estimation performed
better compared to linear methodology. Notably, unlike the individual phase-based esti‐
mation which estimates the deformation from baseline to different phases and yields
larger error when the breathing motion is large, by modeling the statistics and estimation
in 4D, the estimation error turns to be stable across different phases. We plan to perform
a further evaluation on multiple real 4D-CT images for patients who need repeated 4D-
CT scans. Currently, estimation can be accomplished within 10 min, but parallel
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computing and pre-computation of multiple image series may boost onsite evaluation
in operation.

Fig. 8. Average estimation errors on lung field surfaces.

4 Conclusion

The lack of reproducibility of respiratory motion limits breathing motion pattern shifts
for patients undergoing lung cancer treatment. In this paper, we propose to dynamically
align planning-4D-CT onto patient space by adapting to the real-time collectible chest
surface motion. Partition-based 4D breathing statistics of a population are applied as
priors in motion estimation. The comparative results with 51 4D-CTs showed that
nonlinear estimation outperforms the linear method and also yields consistently smaller
errors for different phases.
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Abstract. Computed Tomography (CT) of the lungs play a key role
in clinical investigation of thoracic malignancies, as well as having the
potential to increase our knowledge about pulmonary diseases including
cancer. It enables longitudinal trials to monitor lung disease progres-
sion, and to inform assessment of lung damage resulting from radiation
therapy. We present a novel deformable image registration method that
accommodates changes in the density of lung tissue depending on the
amount of air present in the lungs inspiration/expiration state. We inves-
tigate the Monge-Kantorovich theory of optimal mass transportation to
model the appearance of lung tissue and apply it in a method for reg-
istration. To validate the model, we apply our method to an inhale and
exhale lung CT data set, and compare it against registration using the
sum of squared differences (SSD) as a representative of the most popular
similarity measures used in deformable image registration. The results
show that the developed registration method has the potential to han-
dle intensity distortions caused by air and tissue compression, and in
addition it can provide accurate annotations of the lungs.

1 Introduction

Deformable image registration (DIR) of Computed Tomography (CT) images
of the lungs is used in a range of clinical applications including diagnosis and
radiation therapy. For instance, longitudinal DIR of CT images helps to monitor
and visualize disease progression including lung nodule changes, radiotherapy
planning, and/or regional lung ventilation. Consequently, DIR methods have
become increasingly important in informing clinicians and in supporting med-
ical physicists in quantitative analyses of data sets, by presenting them in a
common coordinate frame. The estimation of plausible correspondences between
data sets is a crucial step in analyzing longitudinal data [6]. It is particularly
challenging in clinical trials where data may be acquired several weeks apart.
As usual, the choice of the similarity measure in the DIR method plays a key
role, since it describes the (dis)similarity between the images to be registered.
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Fig. 1. Coronal view for (left) inhale and exhale lung CTs, and (right) their corre-
sponding intensity distributions showing significant changes in tissue density due to
large volume change over the breathing cycle. The difference in lung volume is high-
lighted by magenta and green lines. (Color figure online)

Typical choices, such as the sum of the squared differences (SSD), assume that
anatomical locations deemed to be in correspondence are represented by the
same intensity value. However, this assumption is invalid when the task is to
register lung CT volumes that are acquired at different breathing phases, since
in such cases the lung tissue density is related to the amount of air present in the
lungs (see Fig. 1). This is despite the fact that CT voxels are given as Hounsfield
Units (HU), which, unlike image intensities in ultrasound and magnetic reso-
nance imaging (MRI), are physical parameters that measure the X-ray attenua-
tion of the tissue. Local changes intensity may also indicate the effectiveness of
radiation therapy [5]. Intensity changes resulting from tissue compression have
previously been considered in the literature using mass preserving DIR [7,20].
Both [7,20] modeled lung tissue density using the determinant of the Jacobian of
the transformation function. Since the density of lungs is inversely proportional
to the local volume, the local volume change can be estimated from the change
in density.

Contributions. We explore optimal mass transportation to lung CT volumes as
a method that is intrinsically invariant to lung expiration/inspiration, and thus
lung tissue density. In particular, we developed a joint segmentation and registra-
tion approach using optimal mass transportation theory to enable assessment of
lung CT intensity changes. The main contributions of this manuscript are as fol-
lows: we use the Wasserstein distance to measure the similarity between local HU
distributions (represented as histograms) for joint segmentation and registration.
We do this because the Wassserstein distance is a closed-form solution to the
optimal mass transport equations when the distributions are one-dimensional.
Local distributions (histogram) representations, and the Wasserstein distance,
are combined within a level-set framework to deal effectively with: changes in
local tissue properties; significant levels of noise; and image acquisition artifacts.
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2 Methods

We first describe our general joint registration and segmentation framework,
which extends the idea of level set registration [17], and level set segmenta-
tion [3]. A number of joint segmentation and registration approaches have been
reported for other applications, and in general they show improved performance
for both segmentation and registration e.g. for human lungs [15,16]. Yezzi et al.
[19] introduced the idea of coupling rigid registration and segmentation within an
active contours framework. Incorporation of non-linear deformations and exten-
sion to a 3D segmentation model, which was the main limiting factor of this
approach was presented in [8]. Recently this variational formulation has been
extended to 4D image time series of dynamic contrast-enhanced magnetic reso-
nance imaging (DCE-MRI), where respiratory-induced motion was compensated
for in parallel with multi-compartment kidney segmentation [10].

Level Set Deformation Fields (LSDF). For segmentation, we consider gen-
eral Chan-Vese level set formulation [3]. Our choice of formulation comes from
the fact that level-sets have been used as a well-known example to illustrate
the mass transportation idea, however it would be relatively straightforward to
extend to any other segmentation and registration framework. First, we define a
contour Γ in the image domain Ω to be the boundary distinguishing between the
areas Ω1 (e.g. inside the contour Γ ) and Ω2 = Ω \ Ω1 (e.g. outside the contour
Γ ). The key idea as regards to segmentation is to evolve the contour Γ from its
given initial position in the direction of minimizing the cost function εseg:

∂Γ

∂t
= −∂εseg(Γ )

∂Γ
(1)

Following [3,4], the contour Γ can be represented as the zero level set of a
function Φ: Γ = {x ∈ Ω | Φ(x) = 0}, and the evolution equation (Eq. (1)) is
then defined on the space of the level set function:

∂Φ

∂t
= −∂εseg(Φ)

∂Φ
= −F

∇Φ

|∇Φ| (2)

where F is a speed function, and ∇Φ
|∇Φ| defines the normal direction of the level

set contour evolution. Chan and Vese [3] proposed the following cost function
for a binary (two phase) segmentation εseg:

arg min
Ω1,Ω2

(
εseg (Ω1, Ω2) =

∫
Ω1

ρ(x, μ1)dx +
∫

Ω2

ρ(x, μ2)dx + κ|Γ |
)

(3)

where μ1 and μ2 are the mean values of the areas Ω1 and Ω2, respectively, and
the final term of Eq. (3) represents the constraint that minimizes the length of
the contour.

As well as segmentation, we also consider pair-wise image registration
between two 3D CT volumes, namely the reference image IR and source image IS .
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Deformable image registration (DIR) process aims to estimate a plausible trans-
formation ϕ represented by dense deformation field u: ϕ(x) = x + u(x), where
x is spatial coordinate. A generic non-linear registration framework can be for-
mulated as the minimization of a cost functional εreg as follows:

arg min
u

(εreg (u) = D(IR, IS(u)) + γR(u)) (4)

where ε combines a (dis)similarity between input images D and R is some suit-
able regularization term. The original idea of Vemuri’s registration framework
[17] to address the registration problem (given by Eq. (4)) is to solve a partial
differential equation of level set intensity evolution with explicit tracking of the
deformation field u as follows:

du(x, t)
dt

= F (x, t)
∇IS(x, t)

‖∇IS(x, t)‖ (5)

where F (x, t) is the speed function, which was defined in [17] as an intensity dif-
ference (IS(x, t) − IR(x)), and ∇IS(x, t) is the direction of the intensity based
level set evolution at spatial position x and at time t. The warped image at
time t, which we denote by IS(u) = IS (x + u(x, t)), is given by warping the
source image IS using the deformation field u. By coupling the level set evolu-
tion equation for segmentation (given by Eq. (3)) with the deformation field u:
ρ(x + u(x), μ), one obtains the level set deformation field framework for joint
registration and segmentation [8]:

arg min
u

(αεreg (u) + βεseg (u)) (6)

where α and β are user-defined parameters balancing between registration and
segmentation. Equation (6) indicates that registration is driven both by the
registration term εreg and the segmentation term εseg, so the estimated dis-
placement field u maximizes the matching between objects of interest in the
reference image and the warped source image.

Locally Optimal Mass Transportation. The mass transport problem inves-
tigates ways to find the optimal redistribution of mass [9]. A solution to the
optimal transportation problem is given by the Monge-Kantorovich theorem and
such defines it as a minimal cost transforming one probability density function
(pdf) into another. In the case of CT volumes, we can approximate a pdf for the
intensities by calculating a local intensity histogram hp(x) at each spatial posi-
tion x ∈ ΩI within a local neighborhood p. In the special case of one-dimensional
histograms with equally weighted bins, the Wasserstein distance (viz. the Earth
Mover Distance [14]) is simplified to a closed-form solution of optimal mass
transport, which is defined as follows:

ρW (h1, h2) =
B∑

b=1

(|cdf1(b) − cdf2(b)|) (7)
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where cdf1 and cdf2 are the cumulative distribution functions of the local his-
tograms h1 and h2 respectively, and B is the number of bins used for the his-
togram calculation. In the context of lung segmentation and registration, the use
of a non-parametric model based on local histograms has yet another advantage
because it makes no assumptions either about the image intensity distribution
or the type of noise. In CT, intensity values correspond to Hounsfield Units
(HU), which represent the radiological density of the tissue, and while this is
not the same as biomechanical density, for the lung they are closely correlated.
This is because for a CT of the lungs it may be assumed that the lung comprises
two compartments: tissue (parenchyma and blood) and air [20]. Based on these
observations, our DIR method is explicitly driven by the Wasserstein distance
between local histograms. The energy function can be formulated within the
Chan-Vese level set method as a minimization problem of finding an optimal
region e.g. Ωi represented by local histogram h1 as follows:

arg min
Ω1,Ω2

(
εseg (Ω1, Ω2) =

∫
Ω1

ρW (h1, h(x))dx +
∫

Ω2

ρW (h2, h(x))dx
)

(8)

where h(x) is a local histogram that depends only on the spatial location x, and
can therefore be computed efficiently before registration (see implementation
details in Sect. 3). Similarly, the approximation of the histograms for the regions
of interest hi is not a function of the displacement field u, so it can remain fixed
during optimization.

It may be argued that a multimodal similarity measure such as joint entropy
or mutual information are both estimated based on a pdf and so may capture
changes to the intensity values in lung CT. However, we require the measure-
ment to represent tissue density distributions, as part of a mass transportation
algorithm, to model density changes associated with lung inflation, and this is
less obviously the case for conventional pdf -based similarity measures.

Diffeomorphic LSDF. In order to preserve the smoothness of the estimated
displacement field u, parameterization of the contour evolution is done via iter-
ative estimation of the final displacement field û defined as follows:

û = u1 + . . . + un + . . . + uN (9)

where n is an iteration index, and N is the maximum number of iterations. How-
ever, addition of partial estimates of the displacement field un may potentially
lead to undesired effects such as folding or tearing of the displacement field [18].
In many biomedical applications, including lung assessment presented in this
paper, such a lack of one-to-one correspondence between the registered volumes
is considered to be implausible. In order to preserve the regional topology of
organs, we parameterize the evolution of the contour encoded as the displacement
field u in terms of exponential mapping of a stationary velocity field u = exp(v)
using approximation of a Lie group structure on diffeomorphism (see details in
[1]). Such a representation of the displacement field brings significant benefits.
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First, it constrains the estimated deformation field û to be diffeomorphic (so
preserves the one-to-one mapping between the regions of interest). Second, the
exponential mapping can easily be calculated using a recursive scale-and-square
algorithm [1], resulting in an overall efficient implementation of a diffeomorphic
level set deformation field framework. In summary, the diffeomorphic evolution
of the contour is calculated as follows:

dv(x, t)
dt

= F (x, t)
∇IS(x, t)

‖∇IS(x, t)‖ (10)

and the final diffeomorphic displacement field is estimated by:

û = exp(v1) ◦ . . . ◦ exp(vn) ◦ . . . ◦ exp(vN ) (11)

where ◦ denotes an composition operator. Calculation of updates on the Lie alge-
bra mapped through the exponential mapping has been previously considered
for non-linear dense registration e.g. in [18]. In contrast, here we propose to use
it as a constraint for contour evolution in a joint registration and segmentation
framework. Thus, due to the assumption of the diffeomorphic evolution of the
contour, we exclude from our approach the explicit contour constraint κ|Γ | from
the cost function (given by Eq. (3)).

3 Experiments and Results

Numerical Implementation. While the specifics of implementation are not
the primary focus of this article, the following details should enable any inter-
ested reader to reproduce our work. First, the new similarity measure (the
Wasserstein distance) and diffeomorphic contour propagation have been incorpo-
rated into the level-set approach (see details in [17]). Following [17], the images
were smoothed with a Gaussian kernel because of image noise. For regulariza-
tion, we chose isotropic Gaussian smoothing of the displacement field [18]. The
composition of the exponential mapping (Eq. (11)) for contour propagation is
approximated using the Baker-Campbell-Hausdorff formula (see details in [1]).
The Euler-Lagrange equations for the Wasserstein based contour evolution are as
presented in [12]. As an efficient method of calculating local histograms with dif-
ferent patch sizes we used a concept of so-called integral images (or histograms)
proposed in [13]. A size of patch to calculate local histogram from integral images
is 7×7×7. The contour is initialized prior to registration based on labels obtained
from manual delineation of the baseline volumes.

Data Description. We have evaluated our method using a publicly available
4D CT data set [2]. The Dir-Lab data set consists of 10 consecutive respiratory
cycle phase volumes with spatial resolution varying between 0.97 × 0.97 × 2.5
and 1.16 × 1.16 × 2.5 mm3. To quantify the registration accuracy, we calculated
the Target Registration Error (TRE) for the well-distributed set of landmarks,
which are provided with this data set (300 landmarks per case for inhale and
exhale volumes). In all cases, the end-inhale image was selected as the baseline
image and the end-exhale image as the moving image.
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Experimental Setup. We compare our method against the state-of-the-art
level-set registration methods: (vem) Vemuri’s level set registration [17], (c-v)
Chan-Vese segmentation driven registration (following implementation details
given in [8]), and (our) registration with local mass transportation model.

Results. The initial TRE is 8.46 ± 5.5 mm and the transformations estimated
by the proposed method (our) reduce the TRE to 2.64 ± 2.2 mm, achieving
the best result in our comparison. Vemuri’s level set registration [17] reduces
the TRE to 2.72 ± 2.2 mm, and finally (c-v) Chan-Vese [8] segmentation driven
registration achieves the TRE to 3.40 ± 1.1 mm. The TRE achieved by our
proposed method is slightly lower than the TRE for Vemuri’s method. This can
be however explained by the level of inspiration/expiration, which is relatively
low in this data set.

Visualization of the results for the presented method is shown in Fig. 2. While
both methods produce similar TRE, Vemuri’s method does not distribute density
across the lung region, whereas our method gives results that match well density
distributions within the lung region. Our results are consistent with the results
from [7], where only minor improvement in terms of the TRE was found.

Fig. 2. Coronal view of differences between inhale and exhale CTs and their corre-
sponding intensity distributions calculated within the lung region only: (left) before
registration, after registration using: (middle) Vemuri’s level set registration (vem)
based on the SSD, and (right) (our) method with locally optimal mass transportation
model. Our method successfully models density changes associated with lung inflation.
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4 Discussion and Conclusions

In this paper, we have investigated the use of optimal transportation theory
for deformable image registration of lung CT. We incorporated the Wasserstein
distance, which is a solution to optimal transportation problem, as a similarity
measure to our DIR using level-set framework. We evaluated our method on
pairs of CT images acquired over breathing cycle, in which there are intensity
changes due lung tissue compression. Our initial results suggest that our model
can handle such tissue density changes in a plausible way. Future work is focused
on evaluation of our method for longitudinal clinical studies of lung disease
progression including publicly available thoracic CT data (EMPIRE10) [11] and
assessment of radiation induced lung injuries.
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6. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a
comprehensive framework for the spatiotemporal statistical analysis of longitudinal
shape data. Int. J. Comput. Vision 103(1), 22–59 (2013)

7. Gorbunova, V., Sporring, J., Lo, P., Loeve, M., Tiddens, H.A., Nielsen, M., Dirksen,
A., de Bruijne, M.: Mass preserving image registration for lung CT. Med. Image
Anal. 16(4), 786–795 (2012)

8. Gorthi, S., Duay, V., Bresson, X., Cuadra, M., Castro, F.S., Pollo, C., Allal, A.,
Thiran, J.-P.: Active deformation fields: dense deformation field estimation for
atlas-based segmentation using the active contour framework. Med. Image Anal.
15(6), 787–800 (2011)

9. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for
registration and warping. Int. J. Comput. Vision 60(3), 225–240 (2004)

10. Hodneland, E., Hanson, E., Lundervold, A., Modersitzki, J., Eikefjord, E., Munthe-
Kaas, A.: Segmentation-driven image registration-application to 4D DCE-MRI
recordings of the moving kidneys. IEEE Trans. Image Process (2014)

http://dx.doi.org/10.1007/11866565_113
http://dx.doi.org/10.1007/11866565_113


74 B.W. Papież et al.
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Abstract. In this work, we introduce a novel motion-robust spatially
constrained parameter estimation (MOSCOPE) technique for kidney
diffusion-weighted MRI. The proposed motion compensation technique
does not require a navigator, trigger, or breath-hold but only uses the
intrinsic features of the acquired data to track and compensate for motion
to reconstruct precise models of the renal diffusion signal. We have
developed a technique for physiological motion tracking based on robust
state estimation and sequential registration of diffusion sensitized slices
acquired within 200 ms. This allows a sampling rate of 5Hz for state esti-
mation in motion tracking that is sufficiently faster than both respiratory
and cardiac motion rates in children and adults, which range between
0.8 to 0.2 Hz, and 2.5 to 1Hz, respectively. We then apply the estimated
motion parameters to data from each slice and use motion-compensated
data for (1) robust intra-voxel incoherent motion (IVIM) model estima-
tion in the kidney using a spatially constrained model fitting approach,
and (2) robust weighted least squares estimation of the diffusion tensor
model. Experimental results, including precision of IVIM model parame-
ters using bootstrap-sampling and in-vivo whole kidney tractography,
showed significant improvement in precision and accuracy of these mod-
els using the proposed method compared to models based on the original
data and volumetric registration.

1 Introduction

Quantitative diffusion-weighted MRI (DW-MRI) of kidneys has shown to be use-
ful in evaluating renal microstructure and function in clinical applications such as
renal fibrosis and allograft dysfunction [4]. The kidney is a highly perfused organ
with complex anatomy including multiple compartments with isotropic (cortex)
and anisotropic (medulla) diffusion properties. Accurate model fitting and esti-
mation of IVIM [16] parameters of slow diffusion (due to Brownian motion) and
fast diffusion (due to microcapillary perfusion and flow), as well as parameters

c© Springer International Publishing AG 2017
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76 S. Kurugol et al.

of diffusion anisotropy is limited by several factors. The physiological motion
including respiratory and cardiac motion, and low signal-to-noise-ratio (SNR)
reduces the reliability of estimated model parameters. Especially, the estimation
of the micro-capillary perfusion contribution has demonstrated a large variabil-
ity [4], which is considered to be largely due to uncompensated (residual) motion.

Navigator triggering, breath-holding, 3D rigid or 2D slice-based registration
techniques have been used for motion compensation in renal DW-MRI [14,23].
Recent studies demonstrate the impact of motion compensation; however, cur-
rent motion compensation techniques either require a complex setup (breath-
holding, external devices), increase scan time (triggering, respiratory gating), or
cannot fully correct for the effect of motion (e.g., gating, and 3D volumetric reg-
istration, or 2D slice-based registration). Respiratory gating prolongs scan time
and does not use the entire data. Breath-holding prolongs scan times and cannot
be used in patients who cannot hold their breath, for example young children. In
this work, we propose an alternative, widely applicable approach that only uses
the intrinsic features of the acquired DW-MRI data to track and correct motion
to reliably reconstruct models of the renal diffusion signal. Unlike dynamic MRI
techniques that make assumptions about the respiratory motion phases [3,17],
we keep our technique generic and widely applicable by not making any specific
assumptions about the type and source of motion.

Our proposed motion-robust spatially constrained parameter estimation
(MOSCOPE) technique for kidney diffusion-weighted MRI is based on robust
state estimation [1] for dynamic motion modeling, and 3D slice-to-volume image
registration, which has been used in several challenging body imaging applica-
tions [5,6,10,12,13,18]. This approach uses the image features of 2D diffusion-
sensitized slices which are the smallest packets of k-space data, each acquired in
about 200 ms. This high sampling rate in renal DW-MRI allows effective estima-
tion of physiological motion via a slice registration algorithm adapted from [19].
The estimated motion parameters are then applied to correct the position of
each slice in 3D, which leads to scattered point cloud data, that is used in (1)
spatially-constrained model fitting [15] for robust estimation of IVIM model
parameters, and (2) weighted least squares estimation of diffusion tensor model
parameters.

We evaluated the improvement in precision of parameter estimations using
bootstrap-sampling on in-vivo DW-MRI datasets of 10 kidneys from 5 volun-
teers; and compared coefficient of variation percent (CV%) of the MOSCOPE
parameter estimates to the CV% of the parameter estimates obtained from
(1) the original DW-MRI data, and (2) rigid volume-to-volume registration
of DW-MRI data. We also reconstructed diffusion tensor models in the kid-
ney parenchyma and performed whole-kidney tractography. Our experimental
results show that by estimating motion at the slice level, MOSCOPE allows
better spatiotemporal resolution in motion correction and model reconstruction.
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2 Methods

2.1 Renal DW-MRI Acquisition

Kidney DW-MRI involved free-breathing single-shot echo-planar imaging using
the following parameters: repetition/echo time (TR/TE)=3300/91ms; matrix
size=158 × 118; field of view=360 × 270 mm; slice thickness/gap = 4 mm/0 mm;
16 coronal slices; 10 b-values = 0, 10, 30, 80, 120, 200, 400, 600, 800 s/mm2, 17 gra-
dient directions; 10 b = 0 images; total acquisition time=10.7 min. This protocol
allowed sequential acquisition of N = 16× 9× 17+16× 10× 1 = 2608 DW-MRI
slices.

2.2 3D Motion Tracking and Correction of Sequentially Acquired
Slices

We propose to track and estimate physiological motion (including respiratory
motion) based on the information content of the sequential DW-MRI slice acqui-
sitions. Given N DW-MRI slices, yk, and the associated d degree-of-freedom
motion parameters xk at each instant of slice acquisition, we formulate the
dynamics of motion with a state space model:

xk = xk−1 + wk−1; yk = I(x)k + vk; k = 1, ..., N ; (1)

where wk and vk are the process and measurement noise that represent the
uncertainty in modeling the motion dynamics and the slice acquisitions, respec-
tively. Given N yks, we aim to estimate the motion states xk. The solution
for motion tracking constitutes estimating the a posteriori probability density
function p(xk|y0, ...yk). For this purpose we use robust state estimation [1] as
it was recently used in the algorithm proposed in [19]. To this end, we solve
the state estimation problem through 3D slice-to-volume image registration,
where we assume a moving window of size 2h + 1, that maps the set of slices
yk = yk−h, ...,yk+h to a reference volume. The window size controls the bias-
variance trade-off in the estimation of the motion parameters.

For sequential slice registration-based motion tracking, the first b=0s/mm2

(B0) image is used as the initial reference volume. Then, an average B0 image
is reconstructed after one iteration of slice motion correction. This averaged
B0 image is used as reference to register next set of b values, i.e. b=10s/mm2

images, followed by reconstruction of an average diffusion-sensitized image (B10)
from b=10s/mm2 images. The output (B10) image is used as the reference for
the reconstruction of the next set of b value images, and the process repeats
for all b-values; in this case finishing at b=800s/mm2. At the end, we have
reconstructed average reference images for all the b values, which were used
as reference images to estimate motion parameters for all DW-MRI slices over
time using the proposed sequential slice registration technique. After motion-
compensation, we estimate both IVIM and diffusion tensor model parameters in
cortex and medulla compartments of kidney parenchyma.
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2.3 Spatially Constrained IVIM Parameter Estimation

The intravoxel incoherent motion (IVIM) model [16] represents the two-
component isotropic diffusion signal decay with a bi-exponential function that
has two decay rate parameters, one for the slow (D) and one for the fast diffusion
(D*) and a parameter representing the fraction of fast diffusion (f):

Si = S0(f.ebi(D+D∗) + (1 − f)ebiD) (2)

at b-value bi, where i ∈ {1, 2, ..10} is the index of b-value and S0 is the signal at
b=0s/mm2. The parameters θ = [S0,D,D∗, f ] at each voxel can be estimated
by solving a maximum-likelihood (ML) estimation problem. In order to improve
IVIM parameter estimation accuracy from low SNR abdominal DW-MRI sig-
nal, instead of solving the ML optimization for each voxel independently, we
use the recently developed spatially constrained IVIM (SC-IVIM) model fitting
technique, where a spatial homogeneity prior model [7,15] is added into the for-
mulation. The parameters of the spatially constrained IVIM model are estimated
by maximizing the posterior distribution given by the product of likelihood and
prior terms given by

p(S|Θ)p(Θ) ∝
∏

v

p(Sv|Θv)
∏

vp∼vq

p(Θvp
, Θvq

) (3)

where each spatial prior term is defined over a neighborhood around voxel vp.
This optimization problem can be formulated as a continuous Markov Random
Fields problem where the spatial homogeneity prior is defined as the L1 norm of
the difference between parameters of neighboring voxels. To efficiently estimate
the model parameters, we used the “fusion bootstrap moves” solver [7].

2.4 Weighted Least Squares Diffusion Tensor Model Estimation

For diffusion tensor model estimation based on the Stejskal-Tanner equation:

Si = S̃0e
−bgT

i Dgi , (4)

where S0 and Si are the intensity values of the b=0 image and the diffusion
sensitized images, respectively. We compute this model through weighted least
squares estimation based on the following formula:

f(γ) =
1
2

n∑

i=1

ω2
i α

2
i

⎛

⎝ln
(

Si

S̃0

)
−

6∑

j=1

Mi,jγj

⎞

⎠
2

, (5)

in which γ = [Dxx,Dxy,Dxz,Dyy,Dyz,Dzz] is a vector of 6 diffusion tensor model
parameters; Mi,j is the n × 6 diffusion tensor design matrix based on the trans-
formed gradient directions (gi’s) and the b values; and the weights ωi’s are
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defined by a kernel function based on the distances ri’s of n scattered points
within the range of the kernel to the center of the ith voxel:

wi =
1

σ
√

2π
e− 1

2 (
ri
σ )2 (6)

The second set of weights (αi) are set to Si as suggested in [22], to account for
the nonlinearity of the diffusion tensor model. Note that the gi’s in Mi,j are the
gradient directions corrected by the motion parameters estimated for each slice;
i.e. gi = Rkg0i, where g0i is the ith predefined gradient direction in the scanner
coordinates, and Rk is the rotation matrix corresponding to the transformation
xk calculated for slice k by the motion estimator in Sect. 2.2. Based on the
estimated tensor model for all voxels, we perform whole kidney tractography
using a locally deterministic step tractography with 8 tract seeds and 5 steps
per voxel, minimum fractional anisotropy threshold of 0.1, and a stopping mask
on the entire kidney parenchyma.

3 Results

We tested the performance of MOSCOPE in DW-MRI of 10 kidneys from 5
healthy volunteers scanned on a 3 T scanner (Skyra, Siemens Medical Solutions,
Erlangen, Germany). We assumed a 3D, 6 degree-of-freedom rigid motion model
for each slice, and h was set to 2. We approximated the non-rigid motion as a
combination of local rigid motion models around each kidney.

Using the proposed motion estimation technique, we measured three rotation
and three translation parameters of each slice. Figure 1 shows the motion para-
meters calculated by the motion tracking algorithm (Sect. 2.2) plotted against

Fig. 1. The rotation (top) and translation (bottom) parameters of estimated physiolog-
ical motion by the robust state space model estimation in Sect. 2.2. The x-axis points
correspond to the sequentially acquired slices. The bottom red and green lines show
periodic translation in the z (head-to-foot) and y (back-to-front) directions consistent
in magnitude and frequency with respiratory motion of the diaphragm. Translation
in the x (left-to-right) direction, shown by the blue line, was limited to a small drift.
(Color figure online)
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Fig. 2. (a) Motion-corrected b = 0 image using MOSCOPE method, (b) Signal decay
curves of a voxel (red square in the first image) compared for without registration (w/o
reg), with volume-to-volume registration (vol-to-vol reg), and MOSCOPE methods.
MOSCOPE led to the most effective motion correction and model estimation. (c) Bar
plot of CV% of multiple bootstrap parameter estimates are shown using the SC-IVIM
model for w/o reg, vol-to-vol reg, and MOSCOPE methods. The reduction in CV%
using the MOSCOPE method was statistically significant (paired student t-test at α
threshold of 0.01) compared to w/o reg and vol-to-vol reg methods for all 3 parameters.
(Color figure online)

time in seconds for one of the subjects. It is observed that the registration-based
motion tracking algorithm accurately estimated large respiratory motion in two
directions (z: head-to-foot, y:back-to-front), while found very small translational
motion in the left-to-right direction. The magnitude and frequency of the trans-
lation in z and y directions was consistent with the expected respiratory motion.

Regions of kidney parenchyma including medulla and cortex and exclud-
ing kidney pelvis were delineated on DW-MRI images of both kidneys of each
subject. We quantified the uncertainty of estimating parameters using the wild
bootstrap analysis [8] on all in-vivo DW-MRI datasets. To this end, we resam-
pled the diffusion signal for each b-value from the estimated signal model using
the bootstrap resampling strategy.

Next, we estimated the signal decay model parameters using (1) original
data, without registration (w/o reg); (2) with volume-to-volume registration
(vol-to-vol reg) to the b = 0s/mm2 image; and (3) with the proposed MOSCOPE
method. As a measure of the uncertainty of parameter estimation, for each
method we calculated the percent coefficient of variation (CV% = standard devi-
ation/mean ×100) of the parameter estimates at each voxel over multiple boot-
strap resampling repetitions. The smaller the CV% value, the more precise the
parameter estimation.

Results are plotted in Fig. 2; where a motion-corrected b=0 image is shown
in (a), and (b) compares the signal decay curves of a voxel of original signal
without (w/o) motion compensation (blue), motion compensation with volume-
to-volume registration (red) and MOSCOPE in black. MOSCOPE achieved a
smooth exponential decaying signal while the other two decay curves had jumps.
Also Fig. 2(c) shows that MOSCOPE led to the lowest (best) CV% values for
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all three parameters of the IVIM model, indicating the lowest uncertainties in
parameter estimation. Using MOSCOPE the CV% of D, f , and D∗ parameters
were reduced by 4%, 20%, and 7%, respectively compared to the CV% of w/o
motion compensation method. The reduction in CV% using MOSCOPE was
statistically significant (paired student t-test at α threshold of 0.01; p < 0.01)
compared to the w/o reg and vol-to-vol reg methods for all 3 parameters.

The parameter maps of the IVIM model for kidney parenchyma regions in
one of the experiments is shown in Fig. 3.

Fig. 3. The b=0 image, and parameter maps of D, D∗ and f parameters of the SC-IVIM
model. Medulla has more restricted diffusion (D) than cortex. Medulla regions have
high f (perfusion fraction) value compared to nearby cortex regions. Cortex regions
with high vascularity also show high f values.

We compared the fractional anisotropy (FA) maps and values obtained from
diffusion tensor models computed using (a) w/o registration, (b) vol-to-vol reg-
istration, and (c) MOSCOPE. Table 1 reports and compares mean FA values in
the medulla and cortex for the three methods, and Fig. 4 shows the FA maps in
one of the kidneys. Overall, MOSCOPE achieved the highest FA values in the
medulla, while the other two methods resulted in reduced FA values, artifacts,
and blurrier FA maps. Figure 5 shows tractography results in the left and right
kidneys of a subject, without registration in (a) and with MOSCOPE in (b).

Table 1. The results showed that medulla has higher anisotropy with higher FA values
compared to the cortex. The MOSCOPE method resulted in a significantly higher
difference in the FA values (using paired student t-test) of medulla and cortex compared
to without registration (w/o reg) and volume-to-volume registration (vol-to-vol reg).

w/o reg vol-to-vol reg MOSCOPE

FA medulla 0.28 ± 0.05 0.26 ± 0.05 0.30 ± 0.04

FA cortex 0.21 ± 0.02 0.21 ± 0.02 0.20 ± 0.01
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Fig. 4. FA maps from (a) w/o reg. (b) with vol-to-vol reg. and (c) MOSCOPE are com-
pared. Motion robust parameter estimation with MOSCOPE resulted in the sharpest
FA maps with highest FA values in the medulla regions. Tractography results obtained
from MOSCOPE are shown on the right, where tracts are color coded by direction.

Fig. 5. Tractography based on the diffusion tensor model in the left and right kidneys of
a subject, (a) without registration; and (b) with MOSCOPE. While we achieved robust
diffusion tensor model fitting through constrained weighted least squares estimation
(Sect. 2.4), the improvement achieved through motion correction using MOSCOPE is
still observed in the images in (b) compared to (a). The tracts corresponding to the
tubules in medulla region of the kidney are sharper in (b) compared to (a).
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4 Conclusion

In this paper we introduced MOSCOPE for motion-compensated model esti-
mation in renal DW-MRI. The technique has three main components: (1) we
adapted an approach based on robust state estimation [1], which was recently
utilized to solve slice-based motion estimation [19], to track physiological motion
(including respiratory motion); (2) we used motion compensated data to achieve
improved IVIM model estimation using a spatially constrained method; and (3)
we used weighted least squares to estimate diffusion tensor model and perform
tractography from motion-compensated data. For practical reasons (due to lim-
ited SNR and large slice thickness), we assumed rigid slice-level motion and used
a non-causal model for motion tracking. Our formulation, however, is generic and
can be used with deformable motion models, or in a causal form for prospec-
tive motion tracking. With better MR hardware and pulse sequences leading to
improved SNR and higher resolution, more complex motion models may further
improve the results, and more efficient implementations on powerful processing
units may allow prospective motion tracking and near real-time reconstruction.
In-vivo experiments with bootstrap sampling showed that the proposed method
significantly reduced the uncertainty of parameter estimation. Precise quanti-
tative diffusion-weighted imaging has the potential to be reliably used in clinic
to identify renal pathologies where kidney function is compromised [2,9,11,21].
Our motion-compensated DW-MRI framework can also be used with other sig-
nal decay models of kidneys such as combined diffusion tensor-IVIM model [20]
or 3-compartment signal decay model [24].
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Abstract. Imaging of the heart during exercise can improve detection
and treatment of heart diseases but is challenging using current clini-
cally applied cardiac MRI (cMRI) techniques. Real-time (RT) imaging
strategies have recently been proposed for exercise cMRI, but respira-
tory motion and unreliable cardiac gating introduce significant errors
in quantification of cardiac function. Self-navigated cMRI sequences are
currently not routinely available in a clinical environment. We aim to
establish a method for cardiac and respiratory gated cine exercise cMRI
that can be applied in a clinical cMRI setting. We developed a retro-
spective, image-based cardiac and respiratory gating and reconstruction
framework based on widely available highly accelerated dynamic imag-
ing. From the acquired dynamic images, respiratory motion was esti-
mated using manifold learning. Cardiac periodicity was obtained by iden-
tifying local maxima in the temporal frequency spectrum of the spatial
means of the images. We then binned the dynamic images in respira-
tory and cardiac phases and subsequently registered and averaged them
to reconstruct a respiratory and cardiac gated cine stack. We evaluated
our method in healthy volunteers and patients with heart diseases and
demonstrate good agreement with existing RT acquisitions (R = .82). We
show that our reconstruction pipeline yields better image quality and
has lower inter- and intra-observer variability compared to RT imaging.
Subsequently, we demonstrate that our method is able to detect a patho-
logical response to exercise in patients with heart diseases, illustrating
its potential benefit in cardiac diagnostic and prognostic assessment.

Keywords: Exercise MRI · Cardiac imaging · Image-based motion cor-
rection · Manifold learning

1 Introduction

Assessment of cardiac volumes, function and wall motion using cardiac Mag-
netic Resonance Imaging (cMRI) during physiological stress (exercise) has a
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CMMI/RAMBO/SWITCH 2017, LNCS 10555, pp. 86–95, 2017.
DOI: 10.1007/978-3-319-67564-0 9
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great potential to improve early diagnosis, treatment evaluation and prognostic
stratification in patients with heart disease [2,10]. Unfortunately, visualising the
heart during exercise is challenging using routine clinical cMRI as bodily move-
ments and the inability to breath hold severely corrupt quality of the images
(see Fig. 3a).

In an attempt to enable imaging during exercise, several clinical research
groups have proposed the use of non-gated real-time (RT) MRI sequences
[10,13]. These highly accelerated imaging techniques sacrifice spatial resolution
and signal-to-noise ratio (SNR) compared to breath held, ECG gated cine cMRI
(conventional cine) to produce images that are not corrupted by motion, see
example in Fig. 3b. Although the resulting images allow assessment of cardiac
function during exercise, through-plane motion of the heart during respiration
and bodily movements during exercise lead to significant errors and variability
in quantification of cardiac volumes and function [3] and complicate the assess-
ment of wall motion abnormalities. Furthermore, due to the presence of multiple
heart beats in one acquisition inter- and intra-observer variability in choice for
target images for assessment of cardiac volumes are likely to add further errors,
limiting the potential use of RT imaging for clinical application.

To account for respiratory motion during free-breathing cMRI, a navigator
echo is typically added to cMRI sequences [15]. However, this method reduces
temporal resolution of dynamic imaging, making it unsuitable for use during
exercise. Several self-navigating (SG) sequences have recently been developed
that account for respiratory and cardiac motion during cMRI. In SG, target
motion is estimated directly from the acquired data. As a result, most SG tech-
niques do not increase scan-time or reduce temporal resolution. SG techniques
can be divided in image-based, k-space based, and model-based approaches.
Image-based SG relies on registration of high quality dynamic images based on
motion signals derived from lower temporal or spatial dimensional images recon-
structed from the same dataset [11,12,14,17]. K-space based methods derive
the respiratory signal from central k-space lines [4,5,9]. Finally, model-based
approaches have been proposed for motion detection in cMRI. An example of
such an approach is described by Yoon et al. [18], who use a low-rank method
that separates the background of the image mathematically from the dynamic
portions. Although the above described SG techniques have great potential for
imaging during exercise, the proposed methods rely on complex k-space trajecto-
ries, such as radial [11,12] or golden angle radial [5,14,17] acquisition schemes,
and computer intensive reconstruction frameworks. Unfortunately, such tech-
niques are currently not widely available in a clinical cMRI setting, limiting
their use for routine clinical exercise cMRI. Hansen et al. proposed a method
for image-based respiratory gating at rest, based on a real-time cMRI sequence
that is standardly available on commercial MRI systems [8]. However, this tech-
nique uses ECG waveforms for cardiac gating; a strategy that is not feasible for
imaging during exercise as ECG signals are significantly disturbed due to bodily
motion.
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In this work, we develop and evaluate a semi-automatic framework for recon-
struction of cardiac and respiratory gated cine cMRI (exGated cine) that allows
for assessment of cardiac volumes, function and wall motion during strenuous
physical exercise. In order to maximise application of our technique in clini-
cal cMRI settings, we aimed for a method with minimal user interaction that
can be flexibly applied on all imaging platforms without the need for advanced
sequence programming or the use of intensive computing power. We show that
our technique, based on a widely available real-time imaging sequence, is able to
reconstruct gated cine images with improved image quality and lower inter-and
intra-observer variability than non-gated RT imaging. Furthermore, we demon-
strate that our method allows detection of a pathological cardiac response to
exercise in patients with a heart disease.

2 Methods

We propose a strategy that involves (i) acquisition of highly accelerated dynamic
(real-time) MRI using widely available acceleration techniques followed by (ii)
image-based cardiac synchronisation, (iii) respiratory gating and (iv) motion
correction and reconstruction of a 24–30 phase cardiac cine image stack. We
evaluated our method in 10 healthy volunteers and 10 patients with congeni-
tal heart diseases (CHD) and exercise intolerance. Dynamic imaging datasets
were acquired at moderate and high intensity, supine bicycle ergometer exercise
corresponding to a heart rate (HR) of ∼100–110 beats per minute (bpm) and
∼135–150 bpm, respectively. As routinely used clinical cine cMRI (conventional
cine) is not feasible during exercise, we compared exGated cine with a previ-
ously validated, non-gated real-time imaging protocol (non-gated RT) that uses
manual selection of respiratory state using a dedicated cardiac analysis software
package (RightVol, KU Leuven) [10]. We assessed agreement between the two
methods using Pearson’s correlation, assessed inter- and intra-observer variabil-
ity with Bland Altman plots and tested for difference in variance between the two
methods using the F-ratio. Image quality was rated using a 5-point Image Qual-
ity Score (IQS; 1 = unsuitable for diagnostic use, 5 = similar to conventional cine
imaging at rest) by two blinded imaging-cardiologist. Lastly, we compared sys-
tolic function between healthy volunteers and patients with CHD during exercise
using a repeated measures ANOVA with exercise intensity as the within-subject
effect. Values are expressed as means ± SD. p< .05 was considered statistically
significant. The main novelty of the proposed method lies in the clinical applica-
bility of our semi-automatic, image-based reconstruction framework that creates
respiratory and cardiac gated cine images of the heart during exercise without
the need for intensive computing power or advanced cMRI pulse-sequences. The
proposed framework is illustrated in Fig. 1. Our pipeline was implemented in
MATLAB R2015b (MathWorks, Natick, USA) utilizing the signal processing,
image processing and statistics toolboxes. This study has been approved by our
regional ethics board (REC: 15/LO/522, Bloomsbury London,UK) and informed
consent was obtained from all participants.



Semi-automatic Cardiac and Respiratory Gated MRI 89

2.1 Highly Accelerated Dynamic MRI

Our method relies on high temporal resolution (∼35 ms/frame) dynamic imag-
ing, using acceleration techniques that are currently available on all commer-
cially available MRI scanners, without the need of advanced user settings. In
this study, images were acquired on a 1.5T MRI scanner (Ingenia, Philips Med-
ical, Best, The Netherlands). Steady-state free precession imaging was performed
without cardiac gating. 80–100 consecutive frames were acquired over 14 slices
with a thickness of 8 mm in a short axis orientation. Imaging parameters were:
field of view, 300 × 260 mm (approx.); flip angle 50◦; SENSE factor 3 (Cartesian
k-space undersampling); partial Fourier factor 0.5, repetition time 1.8 ms; echo
time 0.9 ms and reconstruction-matrix, 128× 112, resulting in a reconstructed
voxel size, 2.3 × 2.3 × 8 ms and a frame rate of ∼35 ms. After acquisition, a region
of interest around the heart (cROI) and a centre point for the LV were manually
selected on an average of all images to facilitate the reconstruction process. This
is the only manual step of our pipeline.

Fig. 1. Overview of the proposed framework for cardiac and respiratory gated MRI
during exercise.

2.2 Cardiac Synchronization

ECG signals, routinely used for cardiac gating in cMRI, are significantly dis-
torted during physical exercise. However, the high temporal resolution of our
acquisition allows for direct estimation of the cardiac periodicity from the images,
as was previously demonstrated by van Amerom et al. [1]. In order to obtain
cardiac gating, we estimated the cardiac periodicity during exercise by trans-
forming the images to the frequency domain and taking the spatial mean of the
cROI. Before Fourier transformation the signal was interpolated to a resolution
of 0.03 bpm (0.05 mHz) by zero-padding in the time domain. The local maxima
in the frequency spectrum within the range of fundamental frequencies (0.8–
2.8 Hz) were identified and used to calculate cardiac periodicity (see Fig. 2a).
Subsequently, each frame was assigned to an associated cardiac phase bin based
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Fig. 2. (a) Range of fundamental frequencies (1.8–2.7 Hz) of the temporal frequency
domain, estimated cardiac rate on the ROI appeared as the maxima (red arrows). (b)
Estimated respiratory signal (red line) overlay to a spatio-temporal intensity profile
through diaphragm. (Color figure online)

on the cardiac time interval. For HRs<130 bpm, the cardiac time interval was
divided in 30 equally spaced cardiac phase bins, whereas for higher HRs the
frames were divided over 24 cardiac phase bins. In both cases, the temporal res-
olution (in cardiac phases) of the cine reconstructions comply with guidelines
for cine acquisitions in routine clinical cardiac MRI [6].

2.3 Respiratory Gating

In order to resolve high quality gated cine imaging of the heart, respiratory
motion needs to be corrected. As respiratory excursions result in a high degree
of through-plane motion of the heart, simply averaging respiratory cycle motion
throughout the acquisition would lead to significant blurring of the reconstructed
images. This also deviates from the current standard of end-expiratory assess-
ment of cardiac volumes. We therefore applied Laplacian Eigenmaps, a Manifold
Learning (ML) technique, in order to automatically estimate the respiratory
motion in each slice in the imaging stack based on image intensity [17]. ML
projects a higher dimensional manifold (e.g., an image of large dimensions) to
a corresponding low dimensional representation. Previous work has shown that
this technique is be able to accurately estimate a 1D representation of respira-
tory motion from dynamic cardiac imaging at rest [17]. As the ML estimated
respiratory signal may have cardiac component due to high temporal resolution
of real-time images, we filtered this signal in the frequency range of 0.1–0.5 Hz
in order to retain the respiratory component. Subsequently a predefined respi-
ratory gating window was used to select the images at end-expiration (20% of
respiratory movement from maximal expiration) for further reconstruction. This
gating window is equivalent to a ∼6–8 mm gating window using a respiratory
navigator echo. Figure 2b shows an example of the ML estimated respiratory
signal overlaid on a spatio-temporal intensity profile through diaphragm.
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Fig. 3. Cardiac reconstructed MRI images: (a) conventional cine MRI, (b) non-gated
RT MRI [10], (c) proposed approach - exGated cine MRI. Arrows denote better delin-
eation of pericardium fat and RV wall of the proposed method.

2.4 Cine Reconstruction

After cardiac and respiratory gating, the most representative image within each
cardiac phase bin was selected by computing the mean-square error between all
image pairs in that bin. The image with lowest error with respect to all other
images was selected as the reference image. Subsequently, a Demons non-rigid
registration algorithm [16] was used to estimate the set of displacement fields
that aligns each image to this reference image. All images were registered and
averaged to form a unique image per bin, hereby improving SNR. In order to
assure temporal alignment of the cardiac phases between all slices, we segmented
the LV blood pool using an automatic segmentation algorithm based on Otsu’s
method that was guided by the cROI and LV centre point. The smallest seg-
mentation of each slice was selected as the end-systolic frame. Based on this
reference frame all slices were temporally aligned. Finally, a rigid body in-plane
image registration was performed to register the position of the heart over time
to reduce inter-frame exercise motion, facilitating the interpretation of ventric-
ular contraction and wall motion abnormalities.

3 Experiments and Results

All datasets were successfully reconstructed to exGated cine stacks that allowed
volumetric analysis. There was good agreement in ventricular stroke volume
(SV) between exGated cine and non-gated RT imaging (R = 0.82). Bland Alt-
man analysis of the two methods and their respective inter- and intra-observer
agreement are shown in Figs. 4 and 5. The inter- and intra-observer variance
of SV was significantly lower in exGated cine compared to RT imaging (intra-
observer: F(29,29) = 2.75, p< .01 and inter-observer: F(29,29) = 3.01, p< .01). The
IQS was 1.1 ± .3 for conventional cine, 3.1± .6 for non-gated RT and 3.9± .5
for exGated cine (see Fig. 6). Figure 3 shows an example of conventional cine,
non-gated RT MRI and our gated cine approach, with good delineation of peri-
cardial fat and RV-wall obtained by our proposed method. Lastly, we show that



92 B. Ruijsink et al.

Fig. 4. Bland Altman plots of inter- and intra-observer variability of stroke volume
(mL) of the two methods. Note the smaller limits of agreement and variance in exGated
Cine.

the increase in LV systolic function (measured by ejection fraction) was signif-
icantly lower in patients with congenital heart disease and exercise intolerance
compared to healthy volunteers (p< .01 for both moderate and high exercise),
see Table 1.

Table 1. Ejection Fraction during exercise for patients with complex congenital heart
disease (CHD) and healthy volunteers using the exGated cine MRI.

LV ejection
fraction (%)

Healthy
Volunteers
(n= 10)

Patients with
complex CHD
(n = 10)

Rest 62± 5 51± 8

Moderatea 68± 4 53± 6

Higha 74± 6 55± 4
arepresents p< .05.
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Fig. 5. Bland Altman plot of agreement in stroke
volume (mL) between exGated cine and non-gated
RT.

Fig. 6. Image quality score
between conventional cine
MRI (white bar), non-gate
RT [10] (gray bar) and our
proposed approach - exGated
cine MRI (black bar).

4 Discussion

In this work, we present a reconstruction pipeline for cardiac and respiratory
gated cine cMRI that allows for accurate assessment of cardiac function during
strenuous physical exercise. Imaging of the heart during exercise has so far been
restricted due to bodily motion and cardiac gating issues. However, its widely
recognized potential for disease evaluation [2] appeals for exploration of tech-
niques to enable exercise cMRI. No satisfying technique has yet been developed
that allows widespread clinical implementation of exercise cMRI. RT imaging
strategies suffer from significant errors in quantitative assessment due to respi-
ratory motion [3]. Whereas SG strategies, recently developed and applied in MRI
at rest [4,5,7,11,14,17], require custom-build cMRI pulse sequences and compu-
tationally expensive reconstruction schemes that are currently not available in
most clinical cMRI environments.

We developed a method for exercise cMRI that can be directly applied in
clinical practice. Our proposed reconstruction framework starts with the acqui-
sition of a stack of highly accelerated dynamic images. This type of dynamic
cMRI sequences is currently available on all commercial MRI scanners. Our pro-
posed reconstruction framework starts with the acquisition of a stack of highly
accelerated dynamic images. This type of dynamic cMRI sequences is currently
available on all commercial MRI scanners. We exploit the temporal resolution
of the acquired images for image-based estimation of cardiac and respiratory
motion. By using image-based techniques, we avoid the use of raw image data
and complex reconstruction techniques. In order to keep computational expenses
low, we utilize dimensional reduction in our motion estimation techniques. As
a result, our framework is able to reconstruct a cine stack of the heart in a
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clinically acceptable total reconstruction time of ∼30–40 min using a standard
laptop computer.

We used ML to estimate motion from the acquired stack of dynamic images.
This method has previously been used in combination with dynamic imaging and
shown to be both robust and fast [17]. We found that respiratory motion was
accurately estimated with the ML using the entire image as input (see Fig. 2b).
ML did also detect a cardiac signal. However, the cardiac periodicity estimation
based on this signal proved to be not precise enough for cardiac gating, due to
significant shifts in image intensities as a result of through-plane motion of the
heart and surrounding fat. Estimation in the temporal frequency domain proved
more accurate. However, we needed to introduce a cROI in order to avoid the
detection of exercise motion.

We implemented our proposed reconstruction pipeline in our clinical cMRI
facility and showed that the output of our reconstruction pipeline, exGated cine,
is in acceptable agreement with non-gated RT imaging for SV. There is some
variability in quantification of SV noted between the two methods. However,
inter- and intra-observer variability of exGated cine was superior compared to
non-gated RT imaging. These results most likely reflect the improved accuracy of
exGated cine, as quantification errors introduced by respiratory motion in non-
gated RT imaging are eliminated [3]. This improved repeatability in quantifica-
tion of SV is an important gain of our technique, as it facilitates implementation
of exercise cMRI in a clinical setting.

Finally, we demonstrated that our method was able to detect a clear patho-
physiologic response to exercise in patients with CHD, expressed by the signif-
icantly lower increase in systolic function compared to healthy volunteers. This
highlights the potential advantages of exercise cMRI for clinical cardiology. Our
work is a preliminary step in the application of image processing techniques in
the emerging field of exercise cMRI. We aim to improve our method further
by implementing automatic segmentation techniques for detection and segmen-
tation of the LV bloodpool. Some recently proposed self-gated cMRI sequences
could have important potential for imaging during exercise. Unfortunately, trans-
lation of such techniques to clinical settings remains challenging. We hope that
our work is an encouragement for development and implementation of these
techniques for clinical exercise cMRI.
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Abstract. CoronARe ranks state-of-the-art methods in symbolic and
tomographic coronary artery reconstruction from interventional C-arm
rotational angiography. Specifically, we benchmark the performance of
the methods using accurately pre-processed data, and study the effects
of imperfect pre-processing conditions (segmentation and background
subtraction errors). In this first iteration of the challenge, evaluation is
performed in a controlled environment using digital phantom images,
where accurate 3D ground truth is known.

Keywords: Angiography · 3D reconstruction · C-arm Cone-beam CT ·
Motion compensation

1 Introduction

Coronary artery disease (CAD) is a serious illness, which is responsible for
approximately 20% of the deaths in Europe [1] and in the US [2]. Currently, clini-
cal decision regarding the presence and the extent of CAD is taken by the help of
several diagnostic and interventional medical imaging modalities. Among those,
invasive (catheter-based) X-ray coronary angiography is still the most common
choice for the assessment of CAD. Owing to its high spatial/temporal resolution
and its availability, it is still considered as the gold standard in clinical decision
making and therapy guidance [3].

The X-ray angiography systems evolved continuously since their first intro-
duction almost five decades ago. However, X-ray coronary angiography is known
to be fundamentally limited due to the projective 2D representation of the coro-
nary artery trees with complex anatomy and motion. Misinterpretation of lesion
lengths, eccentricity, angles of bifurcations and vessel tortuosity due to the 2D
nature of the X-ray angiography could lead to over/under estimation of lesion
severity and incorrect selection of stent size [4,5]. Methods computing recon-
structions of coronary arteries from X-ray angiography aim to overcome this
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shortcoming by providing 3D information of the coronary arteries. Due to the
complexity of this task, the topic of reconstruction from X-ray coronary angiog-
raphy remains as a challenging and active research area.

Public benchmarks contribute to drive forward this area as they allow for
objective comparison of coronary artery reconstruction algorithms from rota-
tional angiography. A previous effort, CAVAREV [6] laid the foundation for
public benchmarks in this field but is limited to tomographic reconstruction
algorithms.

Within the CoronARe challenge, we seek to continue the CAVAREV incen-
tive by providing a public benchmark for both tomographic and symbolic recon-
struction algorithms. In this first iteration of the challenge, we study current
state-of-the-art reconstruction algorithms in a highly controlled setup on numer-
ical phantom data, where accurate 3D and 2D data is available.

2 Materials and Methods

2.1 Scope and Specific Goals

The literature is divided into symbolic (i.e. model-based) and tomographic meth-
ods [7]. Symbolic reconstruction algorithms try to recover a binary representation
of the topology of the arterial tree while tomographic reconstruction methods
directly reconstruct the 3D volume of attenuation coefficients. Irrespective of
their categorization as symbolic or tomographic, most currently known coronary
artery reconstruction algorithms from rotational angiography rely on projection
domain vessel segmentation or centerline extraction algorithms to either per-
form background suppression or obtain sparse data. Much work has considered
automatic vessel segmentation [7–9] both in an analytic, model-based but also
in a machine learning context. While results are promising when a static imag-
ing geometry can be assumed (e.g. as in traditional angiography), satisfactory
segmentation quality cannot yet be reliably achieved in rotational angiography
because of substantial changes in vessel visibility in successive views due to over-
lap with high contrast structures, such as the spine.

Consequently, automatic segmentation algorithms inevitably lead to projec-
tion domain mis-segmentations and inconsistencies (which we will refer to as
corruption) that have to be addressed during reconstruction. Within the chal-
lenge described here, we investigate how different methods cope with imperfect
pre-processing of the projection images, i.e. errors in centerline segmentation and
single-frame background subtraction based on vessel segmentation and inpaint-
ing. The setup of the challenge is described in greater detail in the remainder of
this manuscript.

2.2 Data

Numerical Phantom. To create the controlled setup for benchmarking the
reconstruction algorithms, we decided to use the 4D XCAT Phantom [10]. This
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phantom defines detailed and anatomically correct cardiac vasculature using
non-uniform rational B-splines (NURBS). It also allows for the simulation of
cardiac motion.

The left coronary artery (LCA) geometry of the XCAT phantom is used to
generate the projection data for both symbolic and tomographic reconstruction
parts of this challenge. A sequence of 133 NURBS descriptions of the LCA is
simulated for the whole acquisition duration, where we set the heart rate to 80
beats per minute.

For the symbolic reconstruction, 3D ground truth is obtained by sampling the
spline defining the centerlines at regular arc length intervals of 0.3 mm. For each
projection in the sequence, the 3D spline is projected onto the corresponding
image plane. Similar to 3D, points defining the uncorrupted centerline segmen-
tations are sampled from these splines at regular arc length intervals of 2.0 mm.

In addition, the sequence of NURBS files are voxelized with an isotropic
image spacing of 0.3 mm, and the values of the voxels corresponding to artery
locations set to one, whereas remaining voxels are set to zero. A subvolume of size
512 × 512 × 360 centered at the barycenter of the 3D ground truth points of the
end-diastolic phase defines the ground truth for each time step in the sequence.
The CT Projector [10] is used to simulate the projection images, which is capable
of computing the sum of attenuation values analytically from NURBS definitions
given the imaging geometry.

Imaging Geometry. The 4D numerical phantom is forward projected using
the geometric calibration of a real scanner taken from CAVAREV [6] describ-
ing a standard rotational angiography protocol. In particular, 133 images are
acquired during a single 5.3 s sweep on a circular source trajectory covering
200◦. The projection images have a size of 960 × 960 pixels in horizontal and
vertical direction, respectively, with an isotropic size of 0.32 mm. The source-to-
isocenter and source-to-detector distances nominally are 800 mm and 1200 mm,
respectively.

Artificial Corruption: Imperfect Preprocessing. Within this challenge,
corruption of the acquisition will be random but with increasing severity. Partic-
ularly, for both the symbolic and tomographic data sets we use the uncorrupted
acquisitions as the baseline and add excessive structure such that the corruption
amounts to 10%, 20%, and 30% of the true information [11].

Symbolic Reconstruction. It is well known that the reconstruction problem in
rotational angiography is ill-posed due to high frequency cardiac motion. Sym-
bolic reconstruction algorithms exploit sparsity of the vessel centerlines to over-
come this challenge suggesting that reconstruction results heavily depend on the
quality of the centerlines.

To realistically simulate vessel extraction errors, points were sampled from
random curves, and added to the true segmentation points following [11]. Specif-
ically, random trajectories of particles were generated using Brownian motion,
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and smoothed by fitting cubic Hermite splines. The points corresponding to the
vessel extraction errors were sampled from these splines at 2.0 mm, which is the
same rate used for generating the true centerline segmentation.

Tomographic Reconstruction. Background subtraction or -suppression proved
highly beneficial for reconstruction quality when considering both analytic and
algebraic reconstruction algorithms [7], as it promotes sparsity and corrects for
truncation [12]. This preprocessing step usually relies on binary masks of the tar-
get vessels to identify the contrasted lumen and, subsequently, virtually remove
the background.

We simulate errors in the suppression process by generating a corruption
image for each projection in the sequence, and adding it to the corresponding
uncorrupted image. The same random points generated for symbolic reconstruc-
tion were employed in this process. To this end, these random points were first
converted into a binary image. This image was smoothed by a Gaussian filter,
and the intensity values were rescaled so that the maximum intensity value equals
to the mean of the non-zero pixels in the corresponding uncorrupted image.

Examples of background subtracted projection images and corresponding
centerline segmentations at varying levels of corruption were shown in Fig. 1.

Fig. 1. Examples of the projection images at different corruption levels and from dif-
ferent views. (a)–(d) Projection images at 0%, 10%, 20%, and 30% corruption levels,
respectively. (e)–(h) The centerline segmentations provided for the symbolic recon-
struction were overlaid on the corresponding projection images.
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Public Challenge Input Data. Finally, after generation of the projection
domain data (i.e. images and centerline points) and artificial corruption thereof
we provide the following data set as designated input to candidate reconstruction
algorithms:

– Background-subtracted projection images: We provide background
subtracted line-integral data of the contrasted coronary arteries at varying
levels of corruption. The data is stored as meta-image [13] with detached
headers. For analytic, FDK-type [14] reconstruction algorithms, we provide
pre-processed versions of the line-integral images in the same format.

– Densely sampled projection domain centerline points: Projection
domain centerlines at the four corruption levels are provided in separate text
files, where the horizontal and vertical detector coordinates of a particular
centerline point are whitespace separated and occupy one row each.

– Cardiac phase data: The relative cardiac phases are stored in a simple text
file. The phases are periodic and in the interval [0, 1], where 0 ≡ 1 represents
a phase at the end of ventricular diastole.

– Projection matrices: We provide projection matrices P i ∈ R
3×4 that

encode the imaging geometry [15] and map from 3D world to 2D image
coordinates. The matrix entries are stored as floats in a single binary file
containing the 133 matrices in row-major order.

For a more detailed description of the provided data kindly refer to the
particular section of this manuscript or the CoronARe challenge homepage1,
where we also link to exemplary code that provides guidance on how to handle
the data.

2.3 Evaluation Protocol and Ranking

Tomographic Reconstruction. Scoring of tomographic reconstructions relies
on 3D volumetric overlap.

The input volume arising from tomographic reconstruction is repeatedly
binarized using a sweeping threshold within the interval [0, 255] [6]. The binary
volume is then compared to the segmentation mask of the ground-truth morphol-
ogy using the Dice similarity coefficient [16], a common two-sided measure for
the overlap of two binary images ranging from zero (no overlap) to one (perfect
match). As the final score, it selects the best value over all thresholds.

Symbolic Reconstruction. Scoring of symbolic centerline reconstructions
relies on 3D reconstruction overlap curves.

For a particular combination of ground truth and test centerline points, PG
and PS , respectively, the procedure is as follows.

To assess the overlap of a input reconstruction with the 3D ground truth
we use a sweeping distance threshold tO ∈ [tmin, tmax] rather than the vessel

1 Visit https://www5.cs.fau.de/research/software/coronare/.

https://www5.cs.fau.de/research/software/coronare/
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Fig. 2. Schematic illustration of the 3D reconstruction overlap curve computation. 3D
points of the test and ground truth centerlines are labeled as true and false positives
or negatives depending on the sweeping test distance tO.

diameter. Given a distance tO, every point of the ground truth p ∈ PG is marked
as belonging to the set TPR(tO) of true positives of the reference if there is at
least one point u ∈ PS satisfying d(p,u) < tO and to the set FN(tO) of false
negatives otherwise. Points of the reconstruction u are labeled as belonging to
the set TPM(tO) of true positives of the tested method if there is at least one
ground truth point p satisfying d(u,p) < tO and to the set FP(tO) of false
positives otherwise. An schematic of the labeling process is provided in Fig. 2.
The overlap for a certain distance can then be computed as

O(tO) =
|TPM(tO)| + |TPR(tO)|

|TPM(tO)| + |TPR(tO)| + |FN(tO)| + |FP(tO)| . (1)

Similar to the Dice score, the overlap measure ranges from zero (no over-
lap) to one (perfect match). With increasing distance thresholds the measure
increases monotonically. A simple score that reflects the overall quality of a
reconstruction is the area under the overlap curve

Õ =
1

tmax − tmin

∫ tmax

tmin

O(t) dt (2)

that, again, ranges from zero to one indicating no to perfect overlap, respectively.
A reasonable choice may be (tmin, tmax) = (0mm, 1mm).

2.4 Ranking

Our challenge design accommodates symbolic (i.e. centerline only) and tomo-
graphic coronary artery reconstruction. As the output of algorithms from both
categories is substantially different, we perform a separate ranking of symbolic
and tomographic algorithms.

Particularly, we select the best tomographic and symbolic methods with
respect to overall reconstruction performance (averaged over all input data cor-
ruption levels) and with respect to clean data reconstruction performance.

Currently, there is no separate category for methods that incorporate external
information, e.g. by using learning-based algorithms. The organizers emphasize
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that, in such cases, the XCAT anatomy must be excluded from the training and
validation set.

2.5 Submission Guidelines and Formats

Partial participation (e.g. tomographic reconstruction, clean data only) is pos-
sible.

Although we provide full rotational angiography data, we highly encourage
the participation of algorithms that do not operate on the complete data set,
such as reconstruction from bi-plane data that is artificially created from the
provided sequence.

The winners of the first phase of CoronARe were announced during an oral
session at the Reconstruction of Moving Body Organs (RAMBO)2 workshop that
was held in conjunction with the 20th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI) 20173. Evaluation
within CoronARe is fully automated as it hosted using Kitware’s Covalic [17].
Consequently, data download, result submission, and ranking remains possible
even after the official completion of the first phase.

Submission formats for tomographic and symbolic reconstructions are held
as simple as possible. For tomographic data we rely on the previously established
CAVAREV format. For symbolic reconstruction we use a simple text file format
where the coordinates of every 3D centerline point are whitespace separated and
occupy one row each.

For a more detailed description of the submission file formats including exam-
ple code for the tomographic format kindly refer to the CoronARe challenge
homepage (see footnote 1).

3 Discussion and Outlook

We are aware and convinced of the fact that ranking of coronary artery recon-
struction methods ultimately is most meaningful on clinical patient data, as such
data imposes difficulties that are not sufficiently captured by in silico phantoms,
such as anatomical variations (i.e. generalization). However, there is no joint
benchmark for tomographic and symbolic reconstruction, even in a simple, con-
trolled experimental setup. Moreover, the effects of corrupted projection domain
data onto the reconstruction quality are not yet sufficiently understood. This
challenge is meant to overcome these shortcomings, and to have a better under-
standing of the problem for future challenges that should be carried out on
clinical data.

In conclusion, this challenge constitutes yet another effort in providing data
and means of objective comparison. We hope to publish our findings of this
first submission phase in a comprehensive journal article, ranking methods of

2 Visit https://sites.google.com/view/miccai-rambo2017/home.
3 Visit http://www.miccai2017.org/.

https://sites.google.com/view/miccai-rambo2017/home
http://www.miccai2017.org/
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the current state-of-the-art. In tomographic reconstruction, we would be par-
ticularly interested in understanding how motion compensation strategies com-
pare to algebraic methods that exploit prior knowledge on image appearance.
When considering symbolic reconstruction methods, we believe that a compari-
son between bi-plane and multi-view reconstruction algorithms is of substantial
interest.

Both data and submission will remain available even after closure of the
initial submission phase. We hope this data to be helpful in future publications
of peers, ideally, as a highly competitive benchmark of tomographic and symbolic
coronary artery reconstruction algorithms.

Acknowledgement. The authors would like to thank Zach Mullen, Kitware, for his
support in hosting this challenge.
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7. Çimen, S., Gooya, A., Grass, M., Frangi, A.F.: Reconstruction of coronary arteries
from X-ray angiography: a review. Med. Image Anal. 32, 46–68 (2016)

8. Dehkordi, M.T., Sadri, S., Doosthoseini, A.: A review of coronary vessel segmen-
tation algorithms. J. Med. Sig. Sens. 1(1), 49 (2011)

9. Unberath, M., Taubmann, O., Hell, M., Achenbach, S., Maier, A.: Symmetry, out-
liers, and geodesics in coronary artery centerline reconstruction from rotational
angiography. Med. Phys. (2017, in press)

10. Segars, W.P., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B.M.W.: 4D XCAT
phantom for multimodality imaging research. Med. Phys. 37(9), 4902–4915 (2010)
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Abstract. Sonography synthesis has a wide range of applications, including
medical procedure simulation, clinical training and multimodality image regis‐
tration. In this paper, we propose a machine learning approach to simulate ultra‐
sound images at given 3D spatial locations (relative to the patient anatomy), based
on conditional generative adversarial networks (GANs). In particular, we intro‐
duce a novel neural network architecture that can sample anatomically accurate
images conditionally on spatial position of the (real or mock) freehand ultrasound
probe. To ensure an effective and efficient spatial information assimilation, the
proposed spatially-conditioned GANs take calibrated pixel coordinates in global
physical space as conditioning input, and utilise residual network units and short‐
cuts of conditioning data in the GANs’ discriminator and generator, respectively.
Using optically tracked B-mode ultrasound images, acquired by an experienced
sonographer on a fetus phantom, we demonstrate the feasibility of the proposed
method by two sets of quantitative results: distances were calculated between
corresponding anatomical landmarks identified in the held-out ultrasound images
and the simulated data at the same locations unseen to the networks; a usability
study was carried out to distinguish the simulated data from the real images. In
summary, we present what we believe are state-of-the-art visually realistic ultra‐
sound images, simulated by the proposed GAN architecture that is stable to train
and capable of generating plausibly diverse image samples.

1 Introduction

Realistic simulation of medical ultrasound images is at the centre of many computer-
assisted medical imaging innovations, such as simulating obstetric examination proce‐
dures to facilitate sonographer training [1] and simulating intra-operative images from
pre-operative images to enable multimodality image data fusion for surgical planning
and guidance [2]. However, one of the ultrasound-specific difficulties in modelling the
imaging process is that significant variation during image acquisition comes from
unquantified sources of uncertainty.
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Physics-based simulation methods for synthesising ultrasound images face signifi‐
cant challenges. Solving large-scale partial differential equations for modelling the
nonlinear wave propagation requires substantial computational resource, often infea‐
sible for interactive use. For instance, state-of-the-art simulation needs to make many
simplifying assumptions such as ray tracing, static scattering map and requires a prior
segmentation in order to obtain real-time simulations, e.g. [3]. Furthermore, it is partic‐
ularly challenging to simulate ultrasound images for individual subjects as acoustic
properties of patient-specific soft tissue are in general infeasible to obtain. In vivo soft
tissue properties are deformable, heterogeneous, and may contain pathologies of interest,
all of which vary significantly in individual patients. To the best of our knowledge, there
has little published modelling technique available to model acoustic patterns in sonog‐
raphy due to variation at cellular level while modelling motion and deformation at organ
level remains on-going research [3].

Manikin based simulators highly depend on the quality of the materials (e.g. realistic
acoustic and viscoelastic properties) and the pre-designed fixed anatomy, and hence
remains an expensive option. Real patient image databases have also been used in
commercial ultrasound simulators. Building these databases relies on nontrivial effort
in collecting comprehensive patient cohort, clinical problems and usage cases. There is
little published detailed methodology or available data library for research validation.
Both methods are therefore limited to pre-defined clinical scenarios for training purposes
and are not directly applicable for patient-specific applications such as registering to the
pre-operative images of the same patient.

Alternatively, machine learning methods potentially can overcome these restrictions
by inferring from real image data. In this work, we are primarily interested in obstetric
examination, where freehand ultrasound simulators are increasingly used for training
sonographers [1]. Ideal for this clinical scenario, images of the fetus need to be simulated
(inferred) at new spatial locations relative to patient anatomy. We argue that fully super‐
vised approaches, such as regression, for predicting ultrasound images are problematic
because acquisition-position-independent uncertainties in acquiring training data are
both inevitable and significant, such as those caused by the distribution of the acoustic
coupling agent, patient motion and other user-dependent variation. For instances,
acoustic shadows and refraction artefacts could occur at various regions within the
ultrasound fields of view acquired at the same physical location; the speckle pattern
changes due to the flow of fluid (e.g. blood) in living tissue. As a result, regression
models often lead to blurred averages of nearby training data (see an example in Fig. 5)
and instantiations that contain sonographic characteristics cannot be easily sampled.
Therefore, we propose to use generative adversarial networks (GANs) [4, 5] to model
the image distribution as opposed to predicting one single “best” image. From the trained
neural network, instances can then be sampled to retain realistic features learned from
training data. Furthermore, neural-network-based models can readily generate simulated
images on-the-fly without extra engineering effort or specialised hardware.

Using ultrasound image and optical tracking data acquired on a fetus phantom, we
summarise our contribution in this proof-of-concept study as follows: (a) proposing a
novel and stable network architecture for generative modelling of ultrasound images;
(b) demonstrating the feasibility of conditional GANs to simulate fetal ultrasound
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images at locations unseen to the networks; (c) quantifying the proposed method using
clinically relevant anatomical regions and landmarks; (d) producing state-of-the-art
visually realistic ultrasound simulation results verified by a usability study.

2 Method

2.1 Spatially-Conditioned Generative Adversarial Learning

In this work, we propose to model the conditional distribution P
im
(𝐱|𝐲) of the ultrasound

images 𝐱 ∼ P
im
(𝐱|𝐲), given spatial locations 𝐲 ∼ P

loc
(𝐲) with respect to a fixed physical

reference obtained from a position tracking device. The experiment and data acquisition
details are provided in Sect. 2.3. The ultrasound simulator can then be constructed by
optimising the latent parameters 𝛉

G
 of a generator neural network G(𝐳, 𝐲), so it maps

independent unit Gaussian noise 𝐳 ∼ N(𝐳) to the observed image space for each given
spatial location 𝐲.

In a zero-sum minimax optimisation framework described in GANs [4], the gener‐
ator is optimised through the discriminator neural network D(𝐱, 𝐲) with latent parameters
𝛉

D
, which outputs a scalar likelihood classifying the input as true or false, i.e. real or

fake ultrasound image at location 𝐲. This is achieved by jointly optimising the cost
functions of the discriminator and the generator, J(D) and J(G), respectively:

J
(D) = −

1
2
𝔼(𝐱,𝐲)∼P

data

log D(𝐱, 𝐲) − 1
2
𝔼𝐳∼N,𝐲∼P

loc

log (1 − D(G(𝐳, 𝐲), 𝐲)) (1)

and

J
(G) = −

1
2
𝔼𝐳∼N,𝐲∼P

loc

log D(G(𝐳, 𝐲), 𝐲) (2)

where 𝔼 is the statistical expectation. Using sample pairs from data distribution
(𝐱, 𝐲) ∼ P

data
(𝐱, 𝐲), parameters 𝛉

D
 and 𝛉

G
 are each updated once in every iteration to

decrease the values of respective J(D) and J(G) cost functions. Conceptually, optimising
J(G) aims to enable G(𝐳, 𝐲) to generate samples that the discriminator classifies as true
images; while J(D) is optimised, in an adversarial manner, to “correctly” classify the
generator produced images G(𝐳, 𝐲) and samples from the training data set 𝐱 as false and
true images, respectively. Once convergence is reached, the generator is expected to
generate samples from a distribution approximating the conditional data distribution, by
only sampling from the N(𝐳) with a given spatial location. The implementation details
of the two networks are given in the following sections.

2.2 Network Architecture

Central to our proposed method is to assimilate the spatial information in an effective
and balanced manner, so the non-stationary minimax optimisation can produce images
conditioned on the given spatial locations while variations, captured by the input noise,
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are still preserved. Although, in theory, the physical transformation directly obtained
from the tracking could be added to the inputs of the generator and the discriminator for
conditioning purpose [4], we found in practice simple concatenation of the transforma‐
tion vectors in terms of rotation and translation was not effective. The neural networks
failed to converge to generating images containing spatially correct anatomy at the given
locations. Therefore, we propose: (1) to use calibrated 3D physical coordinates of the
image pixels as the input conditioning data (Fig. 1 Left); (2) to concatenate the resized
x-, y- and z coordinate grids (as three channels) before each up-sampling layer in the
generator; (3) to adopt residual network units [6] throughout the discriminator with the
conditioning coordinates only being concatenated with input image. An overview of the
network architecture is sketched in Fig. 1.

Fig. 1. Left: an illustration of the calibrated physical x-, y- and z coordinates of image pixels,
contained in three channels; Right: an overview of the neural network architecture used in the
proposed conditional generative adversarial networks, where si and sk are sizes of the feature maps
while ni and mk are numbers of channels. See details in Sect. 2.2.

In the generator network, 100 random Gaussian noise with zero mean and unit
variance is first projected with rectified linear units (ReLU) to feature maps having a
small size s1 and n1 initial channels. Then the “up-sampling” layers double the size of the
previous feature maps and halve the number of channels, until the size of the image is
reached. Each ith(i = 1,… , I) up-sampling layer consists of a transposed convolution with
a 2 × 2 stride and a convolution (conv), both with batch normalisation (BN) and ReLU.
The last layer has a convolution with BN and ReLU, and a second convolution with
hyperbolic tangent function (TanH) as activation without BN to retain true data statistics
and range [5]. The three conditioning channels containing x-, y- and z pixel coordinates
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are resized to the respective sizes and concatenated to the feature maps just before each
up-sampling (the image-sized coordinate channels were therefore not used directly in the
generator). All the convolutional layers in the generator have a 3 × 3 kernel size.

The discriminator network accepts a concatenation of an input image and its corre‐
sponding three-channel pixel coordinates, mapping to feature maps of the same size and
m0 initial channels by a convolution with leaky ReLU (LReLU) as activation function,
suggested in [5]. Pairs of residual network unit (Resnet) and “down-sampling” layer
halve the size of the previous feature maps and double the number of channels. Each
kth(k = 1,… , K) Resnet layer has two convolutions both with BN and LReLU, and an
identity mapping for shortcut. Each down-sampling layer has a 2 × 2 stride convolution
with BN and LReLU. The final Logit with one-sided label smoothing [7] is outputted
after an additional Resnet, two projections (to a single image size and to a scalar, respec‐
tively) with a nonlinear LReLU in between. All the convolutional layers in the discrim‐
inator also have a 3 × 3 kernel size, with an exception of the first one having a larger
5 × 5 kernel.

2.3 Validation Experiment

An approximately one hour scan of an anatomically realistic fetus ultrasound examina‐
tion phantom (“SPACE FAN-ST”, Kyoto Kagaku Co., Ltd, Kyoto, Japan) was
performed by a Reporting Sonographer with more than ten years’ experience. As illus‐
trated in Fig. 2, the abdominal probe (Ultrasonix 4DC7-3/40, BK Ultrasound, BC,
Canada) was tracked by an optical tracker (Polaris Spectra, NDI Europe, Radolfzell,
Germany). The ultrasound images and tracking data were timestamped by NifTK
(niftk.org) [8]. The data were acquired in four sessions at neurological, cardiological,
abdominal and fetal profile regions, following standard NHS Fetal Anomaly Screening
Programme.

Fig. 2. Left: the laboratory setup for acquiring the ultrasound image and optical tracking data;
Right: example ultrasound frames plotted both in 3d (using calibrated tracking data) and in 2d.
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A total of 26,396 image frames were normalised to an intensity range of [−1, 1] and
were down-sampled to 160 × 120 pixels in this study, only images containing anatomical
structures being used in this study for computational consideration. The physical pixel
coordinates were calibrated based on a pinhead-based calibration method [9], before
being normalised to zero-mean and unit variance. The calibration procedure acquired
87 tracked 2D ultrasound images of a fixed pinhead at different angles and positions to
estimate the relative transformation from local image coordinates to global physical
coordinates together with the in-plane resolution.

The proposed GANs-based ultrasound simulator was implemented with Tensor‐
Flow™ and trained on a 12 GB NVIDIA® Tesla™ K40 GPU, using the Adam optimiser
with learning rate set to 0.0002, first- and second moment estimates set to 0.5 and 0.999,
respectively. The results presented in this paper was obtained with a minibatch size of
36, no weight decay or clipping, I = 4 down-sampling- and K = 5 up-sampling layers,
512 and 32 initial channels for the generator and the discriminator, respectively.

To assess the anatomical fidelity of the simulation, clinically interesting landmarks,
including crux of four heart chambers, centre of stomach, cord insertion, mid-line echo,
cavum septum pellucidum and nasal tip on profile, were identified in both the held-out
real images and the simulated images generated from a 10-fold cross-validation experi‐
ment (see examples in Fig. 3). Images were also excluded from training data if the
tracked transformation (in rotation and translation) is within 95% confidence interval
[10] of any transformation in those of held-out test data.

Fig. 3. Example anatomical landmarks (orange arrows) used in this work, between real images
(top row, R1-5) and simulated images sampled at the same locations (bottom row, S1-5). (Color
figure online)

For comparison with regression-like approaches, two additional models were also
trained: (1) a heavily-supervised GANs with an equally-weighted L2-norm regularisa‐
tion term [11] added to the generator’s cost function (Eq. 2), with other settings
unchanged; (2) a regression model of the same generator architecture, directly mini‐
mising L2-norm of the difference between generated- and training images.

A usability study was conducted, in which the sonographer was asked to distinguish
whether the images are simulated or real. Randomly sampled 100 generated simulations
together with 100 real ultrasound images were shuffled, before being displayed full-
screen on a 15-inch monitor. To further quantify the GANs’ ability to generate realistic
content at different spatial frequencies, the experiment was repeated while a Gaussian
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filter was applied with different kernel sizes (standard deviation σ ranged from 2 to 0 mm,
with zero indicating that the original images produced by the network and the original
real images were used directly).

3 Results

The generator network can produce more than 1 k frames per second (fps) on the same
GPU and ~60 fps on an Intel® Core™ i7 CPU, well satisfying real-time requirement.
The examples of simulated ultrasound images at locations unseen to the networks are
provided in Fig. 4, together with corresponding ground-truth images at the same spatial
locations. Verified by the same sonographer who acquired the data, 120 landmarks were
identified in the held-out real images. Among the randomly sampled 120 simulated
images, 3 (2.5%) were considered as producing incorrect or unrecognisable regions,
while 47 (39.2%) simulated images contain recognisable anatomical regions but no
clearly identifiable corresponding landmarks. From the remaining 70 (58.3%) image
pairs, 2D distances were calculated between the corresponding landmarks from simu‐
lated- and ground-truth images, yielding a mean 6.1 ± 1.2 mm error.
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Fig. 4. Top four rows: examples of randomly-sampled ultrasound image simulations at unseen
spatial locations; bottom four rows: real ultrasound images at the same locations in the validation
data set.

Figure 5 contains example simulated images from (1) the GANs trained with heavily
supervised regularisation and (2) the regression model, both described in Sect. 2.3. It
demonstrates that, compared with the images from the proposed simulator, the apparent
blurring effect is predominant from the two more supervised learning approaches with
inferior visual features and details.
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Fig. 5. Examples of simulations using the supervised cost functions: (1) Top row: the images
sampled from the trained GANs with heavily supervised regularisation; (2) Bottom row: the
regression predicted images with the L2-norm objective function (see details in Sect. 2.3).

We report an interesting result from the usability study described in Sect. 2.3. The
sonographer was able to correctly distinguish 124 (62%) and 162 (81%) test images,
with Gaussian filtering (σ = 1 mm) and without filtering (σ = 0 mm), respectively. The
difference may partly be explained by the network-related high frequency artefacts (e.g.
checkboard artefacts in transposed convolution [12]) being filtered with larger kernels.
We note that any Gaussian kernel with a size larger than σ = 1.5 mm was deemed too
blur to avoid random guess (approaching 50% correction rate).

To further investigate the variance learned by the generative models, Fig. 6 illustrates
the simulated images by only sampling the prior noise 𝐳 with fixed conditioning 𝐲. It
shows that, also found in Fig. 4, changes in detailed intensity patterns, positions of
shadows and artefacts, and minor anatomical variation may be captured by modelling
the conditional distribution of ultrasound images.

Fig. 6. Examples of randomly-sampled ultrasound image simulations at the same spatial
locations (rows) with the first column displaying the ground-truth real ultrasound images acquired
at the same locations.
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4 Conclusion and Discussion

Based on both the qualitative and quantitative results reported in this paper, we present
a promising approach for generative representation learning of freehand ultrasound
images in fetal examination.

Our experience suggests that the proposed GAN architecture, together with the cali‐
brated physical coordinates as conditioning input, not only reduces the training time but
also stabilises the convergence, e.g. the training was relatively insensitive to hyperpara‐
meters and no divergence or imbalanced cost functions were observed in the experi‐
ments. This is probably a result of the presumably simplified training objective and better
supervision from the conditioning information at different resolution levels. However,
further results are needed to draw a comprehensive conclusion.

There has been evidence of mode-collapse at some physical locations. Arguably, it
may not be critical in this application that aims to produce high quality samples instead
of complete coverage of the image distribution. A full investigation of this well-recog‐
nised problem is beyond the scope of the current work, and remains an open research
question, e.g. [7]. Minor underfitting has been observed with the presented GANs,
evidenced by the fact that the samples drawn from locations in the training set are very
similar (both in subjective appearance and quantitative landmark distance) to those
found in testing. Therefore, we believe that, considering the variation in the learned
conditional distribution, the reported landmark error reflects the modelling ability of
generating spatially coherent anatomical features, rather than an indication of copying
nearest training data.

Although deformation was commonplace during the experiment due to probe pres‐
sure and the soft mattress of the surgical bed on which the deformable phantom was
placed, future research will aim to apply the method on real patient data which exhibit
more complex variation such as challenging fetal movement. A wider range of training
and test data (e.g. acquired by non-experts) may need to be included for the purpose of
training less experienced users, and investigating other types of conditioning informa‐
tion (e.g. ultrasound parameters and temporal variation) could also improve the inter‐
active capacity of the proposed simulator. We would also like to note that, although an
optical tracker was used in this validation, the trained simulator may be feasible to run
on consumer-grade mobile devices equipped with inexpensive inertial measurement
units.
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Abstract. 3D Magnetic Resonance Imaging (MRI) is often a trade-off
between fast but low-resolution image acquisition and highly detailed but
slow image acquisition. Fast imaging is required for targets that move
to avoid motion artefacts. This is in particular difficult for fetal MRI.
Spatially independent upsampling techniques, which are the state-of-the-
art to address this problem, are error prone and disregard contextual
information. In this paper we propose a context-sensitive upsampling
method based on a residual convolutional neural network model that
learns organ specific appearance and adopts semantically to input data
allowing for the generation of high resolution images with sharp edges
and fine scale detail. By making contextual decisions about appearance
and shape, present in different parts of an image, we gain a maximum of
structural detail at a similar contrast as provided by high-resolution data.
We experiment on 145 fetal scans and show that our approach yields an
increased PSNR of 1.25 dB when applied to under-sampled fetal data
cf. baseline upsampling. Furthermore, our method yields an increased
PSNR of 1.73 dB when utilizing under-sampled fetal data to perform
brain volume reconstruction on motion corrupted captured data.

1 Introduction

Currently, 3D imaging of moving objects is limited by the time it takes to acquire
a single image. The slower an imaging modality is, the more likely motion induced
artefacts will occur within and between individual slices of a 3D volume. Very
fast imaging modalities like Computed Tomography are not always applicable
because of harmful ionising radiation, and ultrasound often suffers from poor
image quality. Thus, Magnetic Resonance Imaging (MRI) is usually the modal-
ity of choice when; large fields of view, high anatomical detail, and non-invasive
imaging is required. MRI is often applied to image involuntary moving objects
such as the beating heart and examination of the fetus in-utero. Motion com-
pensation for cardiac imagining can be achieved through ECG gating. How-
ever, fetal targets do not provide options for gated or tracked image acquisi-
tion to compensate for motion. Thus motion compensation is performed during
c© Springer International Publishing AG 2017
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post-processing of oversampled input spaces, usually involving the acquisition
of orthogonally oriented stacks of slices [8]. Oversampling with high resolution
(HR) slices causes long scan times, which is uncomfortable and risky for patients
like pregnant women. This limits the possible number of scan sequences during
examination. However, improving image resolution is key to improving accuracy,
understanding of anatomy and assessment of organ size and morphology. Imag-
ing at lower resolution increases acquisition speed, thus partly mitigating the
likelihood for motion between individual slices but at the cost of missing struc-
tural detail that could render the scan inappropriate for diagnostic purposes.
Due to signal-to-noise ratio (SNR) limitations, the acquired slices are usually
also thick compared to the in-plane resolution and thus negatively influence the
visualization of anatomy in 3D.

Näıve up-sampling of fast but low resolution (LR) images is undesirable for
the clinical practice, since results lack information. Information content can-
not be increased by simply increasing the number of pixels with linear interpo-
lation methods. Therefore, optimization-based super-resolution (SR) methods
have been explored to generate rich volumetric information from oversampled
input spaces. However, these methods are highly dependent on the quality and
amount of input samples and depend on the choice of the objective function.
Recent work, e.g. [4], on example-based SR has focused on incorporating addi-
tional prior image knowledge, and, in particular, deep neural networks have been
employed to solve the single-image SR (SISR) problem. However, the majority
of recent contributions typically place strong emphasis on natural images and
therefore lack domain specific high-frequency detail prior knowledge [1].

Contribution: We present a novel approach to SISR in the context of motion
compensation when using fast to acquire, low resolution volumes. Taking inspi-
ration from recent investigation of network based SR for MRI modalities [15], we
propose a network architecture with convolutional and transposed-convolutional
layers and hypothesize that such a deep network architecture can be tailored to
context sensitive applications, such as motion compensation of the fetal brain,
and yield volume reconstruction improvements from low resolution input. Our
network learns subject specific details from potentially motion corrupted input
data and accurately reintroduces the expected fidelity allowing motion compen-
sation and high quality reconstruction from fast low resolution input.

Our model is in particular data-adaptive since the upsampling is performed
by learnable transposed-convolution layers instead of a fixed kernel. By perform-
ing the upsampling in the final layers of the network we avoid early redundant
computation in a HR space, enabling a computational saving. Additionally by
considering entire LR in-plane slice samples at training time, in comparison to
image patches, we gain a large receptive field to enable the learning of spatial
context, organ structure and anatomy.

We evaluate our method on 145 healthy fetal scans. The proposed approach
shows improved qualitative results when compared visually to linear methods.
Quantitative reconstruction performance, peak signal-to-noise-ratio (PSNR) and
structural similarity index measure (SSIM) improve, accordingly. In particular,
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we reach comparable reconstruction quality with half as many data samples, thus
half of the currently required scan time, when compared to motion compensated
reconstruction from high-resolution image acquisition.

Related work: The topic of SR has received much attention in the literature
and a large body of work exists however, historically, algorithms exhibiting good
performance in 2D domains such as satellite or facial imagery, are not necessarily
ideal for 3D medical imaging. This is partly due to domain specific effects such
as loss of spatial information caused by motion during slow target acquisition.
Various algorithms have been shown to produce leading results [14] in differing
domains.

SISR accounts for missing image information by using previously observed
examples to optimise the LR-HR mapping between images or patches. In the
medical imaging domain, data-adaptive patch-based approaches to SISR recon-
struction [7,13] have been shown to prevent the occurrence of well-known blur-
ring effects, often found when using classical interpolation approaches. Inter-
polation techniques tend to increase the smoothness of images in an isotropic
manner, however data-adaptive non-local methods allow for highly anisotropic
reconstruction where required. In patch-based methods, the radius of 3D patch
used to compute the similarity among voxels is often a free parameter and the
choice of receptive field size typically affects computational cost when using iter-
ative optimisation.

Learning based approaches also allow data-adaptive reconstruction and
CNNs in particular have recently been successfully applied to context sensitive
SISR for cardiac imaging. The work of [15] use a regression architecture based
on [4] with a modified l1 objective function. The approach performed SR in the
slice-select direction of lowest MRI resolution, i.e., one-dimensionally and uti-
lized transposed convolutional layers at the start of the network architecture to
perform the upsampling, prior to convolutions, thus learning high level features
in latter layers on (spatially) large feature maps.

Two-dimensional SR is a popular research area in natural image processing
due to many applications requiring enhancement of a visual experience while lim-
iting the amount of raw data that needs to be recorded, transferred or stored.
Recent network-based approaches such as SRGAN [12] apply Generative Adver-
sarial Networks (GAN) to achieve large up-sampling factors of up to four.

Motion compensation for MRI volume reconstruction typically incorporates
a SR component. However to the best of our knowledge state-of-the-art net-
work based SR techniques, capable of learning problem and sensor specifics from
available data have not been harnessed for the upsampling step found in Slice-
to-Volume frameworks for the reconstruction task. In this work we investigate
the accuracy advantages that such an approach can contribute to the example
of fetal MRI volume reconstruction.

Contemporary SR components in MRI Slice-to-Volume reconstruction (SVR)
tasks perform optimisation based incremental updates to the HR volume esti-
mate. To achieve this, the SR problem for volume reconstruction has been
modelled directly by considering minimisation of an error norm function and
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use of Huber function statistics [5] or gradient-weighted averaging [10]. The ill-
posed nature of modelling upsampling requires that the objective be regularised.
Gholipour et al. [5] add a Tikhonov term to the cost for this purpose while
Rousseau et al. [16–18] select a regularisation term that includes an approxi-
mation of Total Variation (TV) to better preserve edges. Tourbier et al. [21]
apply fast convex optimization techniques for the SR problem also using an
edge-preserving TV regularization. Murgasova et al. [11] used intensity match-
ing and complete outlier removal for reconstruction. SR volume intensities are
iteratively updated using the error gradients resulting from differences between
simulated and observed slice samples. Transforming observed slice information to
the upsampled volume space requires accurate yet potentially computationally
expensive estimation of the sensor point spread function (PSF) and [8] developed
a fast multi-GPU accelerated implementation for the task.

2 Method

The proposed approach implements a fully three-dimensional CNN architecture
to infer upsampled MRI imagery, enabling HR input to be provided for subse-
quent SVR and motion compensation tasks. We define an architecture utilising
3D volumetric convolutions that have recently been shown to add value for med-
ical imaging tasks considering 3D imagery [2,9]. Figure 1 provides a schematic
of our upsampling network and architecture design details are provide in the 3D
MRI CNN subsection below. Figure 2 provides a schematic diagram indicating
where the upsampling network component is implemented in a SVR reconstruc-
tion framework.

The architecture differs from recent network based MRI SR models [15] by
generating feature maps in the LR image space cf. early redundant feature chan-
nel upsampling or fixed kernels [3], reducing memory and computation require-
ments while retaining the flexibility of learnable upsampling layers. As previously
reported [19], early upsampling tends to introduce redundant computation in the

Fig. 1. Our proposed CNN network architecture for MRI super-resolution. See text for
architecture details.
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Fig. 2. The proposed framework for providing upsampled, high resolution input for
motion correction and volume reconstruction.

HR space since no additional information is added into the model by performing
transposed convolutions at an early stage of the architecture.
Our approach mitigates the acquisition quality cost of low resolution imagery
by considering the problem of estimating a high dimensional y ∈ R

M , for a
given observation x = f(y) ∈ R

N where (N � M). SR is an underdetermined
inverse problem, and as such the function f performs a downsampling and is
typically non-invertible. The low-dimensional observation x is mapped to the
high-dimensional y by recovery through the MR image acquisition model [6],
a series of operators such that: x = DBSMy + η where M defines a spatial
displacement, e.g. due to motion, S is the slice selection operator, B is the
point-spread function (PSF) used to blur the selected slice, D is a decimation
operator, and η is a Rician noise model. We approximate solutions to this inverse
problem by estimating φ(x, Θ) from the LR input such that a cost, defined
between φ(x, Θ) and y, is minimized. We estimate the parameters Θ using a
CNN architecture with parameters Θ that parametrise network layers to model
the distribution p(y|x). Training samples are defined as (xi,yi).

3D MRI CNN: In-plane, low-resolution MRI stacks are synthetically generated
simply by filtering HR images with a Cosine Windowed Sinc blurring kernel
followed by a decimation operator to provide LR-HR training pairs as input.
Training samples consist of entire LR in-plane imagery with a volume defined
by z >= 1 out-of-plane slices forming 3D volume training samples, providing
contextual information from multiple slices. Here we report on experimental
upsampling factors of ×2, ×4 and z = 5.

Our 3D-CNN architecture contains nine layers consisting of six convolu-
tional layers, utilising standard ReLU activations and residual units, followed
by two transposed-convolutional layers (with corresponding strides of two or
four) and a final single-channel layer to build the full resolution output. The
ReLU activation function has exhibited strong performance when upscaling
both natural images [4] and MRI 3D volume data [15]. Intermediate fea-
ture maps h

(n)
j at layer n are computed through convolutional kernels wn

kj as

max(0, ΣK
k=1h

(n−1)
k ∗wn

kj) = hn
j where ∗ is the convolutional operator. We follow
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the common frugal strategy [20] of applying small (3×3×3) convolution kernels
and spending compute-budget alternatively on layer count to increase receptive
field size.

By introducing two transposed convolution layers we perform the upscaling
on in-plane sampling dimensions. In this manner, upscaling weights are learned
specifically for the SR task where (x ↑ Ux) ∗ wj = h0

j and (h1 ↑ Uy) ∗ wj = h1
j

where ↑ is a zero-padding upscaling operator and {Ux, Uy} = M/N are the in-
plane upscaling factors. This allows for explicit optimization of the upsampling
filters and facilitates training in an end-to-end manner for the SR task. By imple-
menting trainable upsampling layers we improve upon the alternative strategy
of initial independent linear upsampling, followed only by convolutional layers,
as we gain an ability to learn upsampling weights specific to the SR task. In
practice this often improves MRI image signal quality in image regions close to
boundaries [15]. Residuals learned by the convolution layers and the upscaled
transposed-convolutional output are used to reconstruct the final HR image. This
allows the regression function to learn non-linearities such as the high frequency
components of the signal.

Training involves evaluating the error function Ψl2(·) that calculates the dif-
ference between the reconstructed HR images and the ground truth volumes that
were down-sampled to provide training data. Model weights are updated using
standard back-propagation and adaptive moment estimation. In comparison to
modified l1 losses [15] or recent perceptual-quality SR objective functions [12], we
implement a standard voxel-wise l2 loss function to provide gradient information
and emphasize voxel-wise difference to the ground-truth. An implementation of
our model training strategy is made available online1.

Fetal Brain Volume Reconstruction: We combine our SR network with
Slice-to-Volume registration (SVR) [8]. SVR requires multiple orthogonal stacks
of 2D slices to provide improved reconstruction quality. By upsampling stacks
prior to reconstruction we provide a means to acquire larger sets of low-resolution
input. The motion-free 3D image is then reconstructed from the upsampled slices
and motion-corrupted and misaligned areas are excluded during the reconstruc-
tion using an EM-based outliers rejection model.

3 Experiments

Data: We test our approach on clinical MR scans with varying gestational
age. All scans have been ethically approved. The dataset contains 145 MR
scans of healthy fetuses at gestational age between 20–25 weeks. The data
has been acquired on a Philips Achieva 1.5T, the mother lying 20◦ tilt on
the left side to avoid pressure on the inferior vena cava. Single-shot fast spin
(ssFSE) echo T2-weighted sequences are used to acquire stacks of images that
are aligned to the main axes of the fetus. Three to six stacks with a voxel size of

1 https://github.com/DLTK.

https://github.com/DLTK
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1.25mm×1.25mm×2.5mm per stack are acquired for the whole womb. Imagery
is manually masked and cropped to isolate fetal brain regions.

Experimental details: We employ our 3D MRI network and separately two
baseline SR strategies to upsample image stack inputs that serve as input to
the SVR pipeline. SVR then performs motion compensation and volume recon-
struction. We assess upsampled image quality directly and, additionally, inves-
tigate the effect of the proposed upsampling strategy on reconstruction quality,
from the (initially) low resolution fetal data. We report three quantitative met-
rics: PSNR, structural similarity index (SSIM) and cross-correlation. In the first
experiment, the data is randomly split into two subsets and used to train (100)
and test (45) with our SR network. MRI stacks represent 46 individual patients
and all image stacks, belonging to a particular patient, are found uniquely in
either the train or test set. Images are cropped, intensity normalised and linearly
downsampled by factors of 2 and 4 with respect to the in-plane stack axes. This
resampling provides LR images to our network resulting in multiple training
samples per volume with corresponding ground-truth label (HR source image).
The network uses these training pairs to learn the LR to HR mapping. Note
that image volume size choices introduce a trade-off between available contex-
tual information and pragmatic memory constraints.

4 Evaluation and Results

Image Quality Assessments: We compare HR ground-truth 3D volumes with
upsampled LR raw data by measuring PSNR, SSIM and cross-correlation. We
report SSIM, in particular, due to the well-understood metric properties that
afford assessment of local structure correlation and reduced noise sensitivity. LR
test imagery is upsampled in-plane (X,Y ) by factors of 2, 4 to align with target
ground-truth resolution. Quality metrics in Fig. 3 report improvements observed
for an image upsampling factor of 2. This provides initial evidence in support
of our hypothesis; learning problem and sensor specific deconvolutional filters to
perform MRI stack upsampling is of benefit for subsequent resolution-sensitive
tasks such as motion compensation and HR volume reconstruction.

By learning problem specific HR synthesis models, our 3D MRI CNN strat-
egy outperforms the näıve baseline up-sampling, quantitatively improving the

Fig. 3. PSNR, SSIM and Cross Correlation metrics for 45 LR image stacks with voxel
spacing (2.50× 2.50× 1.25) mm that are upsampled ×2 in-plane (X, Y) and compared
to ground-truth image stacks (1.25× 1.25× 1.25) mm using Linear, B-Spline, 3D MRI
CNN methods.
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Fig. 4. Orthogonal fetal MRI stacks showing in-plane stack axes per row. Low resolu-
tion input (left) is upsampled by two baselines (col Linear, B-spline) and our learning
based approach (col 3D MRI CNN ) cf. ground-truth (GT) HR imagery. The learning
based 3D MRI CNN, with modality specific priors, provides improved high frequency
signal components cf. baselines.

quality of the inferred HR imagery. Figure 4 exhibits an example of qualitative
improvement in orthogonal fetal MRI test-stack axes.

We additionally perform preliminary experiments towards integrating
network-based SR components more tightly with an SVR pipeline by investigat-
ing the ability of the network to upsample LR voxel intensities that result from
an initial volume reconstruction iteration. Successful integration of an iterative
(learning-based) SR and volume reconstruction loop will facilitate the well under-
stood mutual benefits of reduced-motion SR input and improved input fidelity
for the motion correction task. Qualitative comparison of (×4) LR volume-
reconstructed input and resulting upsampled results are found in Fig. 5. The
benefit of learning the upsampling with modality specific data can be observed
to manifest as sharper edge gradients and improved high frequency signal com-
ponents. The visual quality gap between the baselines and our method can be
seen to widen as the prior information required to successfully upsample at larger
factors make the task more challenging.

Volume Reconstruction Improvement: In our third experiment we evaluate
SVR performance using LR input stacks, upsampled by the considered strategies,
before initiating the volume reconstruction task. We additionally perform SVR
reconstruction with original HR imagery to provide the “ground-truth” refer-
ence brain volumes. Employing the three quality metrics, introduced previously,
we evaluate how well super-resolved LR stack reconstructions correspond to the
reconstructions due to original high, in-plane, resolution imagery. Table 1 reports
PSNR, SSIM and cross-correlation metrics for volume comparison (SR strat-
egy with respect to “ground-truth” volume) for the 13 patients that define the
MRI stack test set. Super-resolving the LR input data with the proposed learn-
ing based approach can be observed to facilitate reconstruction improvement,
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Fig. 5. SR applied to LR (×4) volume reconstructed input. Benefits of learning the
specific non-linearities to recover sharp edge gradients and improved high frequency
signal components of the modality become more evident cf. baselines as the amount of
information required to upsample-successfully increases.

Fig. 6. (a) 2D slice through a fetal brain reconstruction, resulting from HR input-
imagery. Attempting similar reconstruction from faster to acquire LR imagery, at half
the in-plane resolution, results in highly degraded visual reconstruction quality (b) and
gross DSSIM disparity (ie. red heatmap regions) (f) with respect to the HR reconstruc-
tion. Näıve up-sampling (×2) of the LR in-plane input prior to reconstruction, with
linear interpolation or B-splines, result in over-smoothed input. Loss of sharp gradient
information and input-image fidelity can be seen to propagate to the respective recon-
structions (c), (d) and disparity, with regard to the HR reconstruction, remains high
(g), (h). Our 3D MRI CNN upsampling affords input closer to the original HR imagery
and results in improved reconstructions (e) and reduced DSSIM (i) with visibly cooler
heatmap regions (standard jet color scale). (Color figure online)

across the investigated metrics. Visual evidence supporting this claim is found
in Fig. 6 (best viewed in color). Figure 6 displays 2D slices of patient fetal brain
reconstructions resulting from the original HR input-imagery (far left) and iden-
tically spatially-located slices (a) resulting from (b) LR imagery (half the in-
plane resolution), (c-d) input using näıve up-sampling strategies and (e) our 3D
MRI CNN upsampling. Corresponding Structural Dissimilarity (DSSIM) error
heatmaps (second row) provide improved visual spatial congruence between HR
ground-truth and our method, supporting the claim that utilizing sensor specific
priors is of marked benefit for the task of MRI fetal brain reconstruction from
LR imagery.
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Table 1. PSNR, SSIM and Cross-correlation evaluating disparity between recon-
structed volumes using upsampled LR input (Linear, B-Spline, 3D MRI CNN) and
ground-truth volumes.

Upsample PSNR [dB] SSIM Cross-correlation

No upsample 18.466 ± 1.88 0.534 ± 0.15 0.699 ± 0.12

Linear 19.268 ± 1.14 0.665 ± 0.08 0.815 ± 0.06

B-Spline 19.985 ± 1.52 0.698 ± 0.12 0.836 ± 0.08

3D MRI CNN 21.715 ± 1.84 0.779 ± 0.10 0.885 ± 0.07

5 Discussion and Conclusion

We introduce a 3D MRI CNN to upsample low resolution MR data prior to per-
forming volumetric motion compensation and SVR reconstruction. Our method
produces upsampled images and uses them to reconstruct volumetric fetal brain
representations that quantitatively outperform on reconstruction tasks that
utilise conventional upscaling methods. This contribution helps to address the
well-understood image resolution challenge in fetal brain MRI. Analysis of accu-
racy metrics, assessing upsampling quality, exhibit a mean PSNR increase of
1.25 dB. Furthermore, when utilizing the upsampled imagery as SVR input,
reconstructed fetal brain volumes show improvements of up to 1.73 dB over the
provided baseline. In addition to quality improvement, 3D MRI CNN upsam-
pling provides a computationally efficient approach affording an ability to ini-
tially image at lower resolutions, with a shorter acquisition time, thus provides
faster and safer scanning for high-risk patients like pregnant women.

The current work has implicitly provided evidence that the method learns
the PSF of the investigated MRI data well. In future it would be valuable to
investigate this further, explicitly. Real-world LR/HR samples, acquired from
scanners at differing resolutions, would allow quantitative evaluation of the abil-
ity to reconstruct physical scanner PSF and would further allow investigation
of a model’s ability to generalise to the reconstruction of PSFs not explicitly
seen at training time. Further to this; the current work only investigates a single
problem instance under one image modality. Future work will look to investigate
the generalisability of the proposed framework to additional problem domains.
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Abstract. Cardiac MRI allows for the acquisition of high resolution
images of the heart. Long acquisition times of MRI make it impractical
to image the full heart in 3D at high resolution. As a result, multiple
2D images are commonly acquired with a slice thickness greater than
the in-plane resolution. One way of achieving isotropic high-resolution
images is to apply post-processing techniques such as super-resolution to
produce high resolution images from low resolution input. We use short-
axis stacks as well as orthogonal long-axis views in a super-resolution
framework, constraining the reconstruction using the contrast indepen-
dent directional total variation algorithm to produce a high resolution 3D
reconstruction with isotropic resolution. The 3D reconstruction retains
the contrast of the short-axis stack, but incorporates the edge informa-
tion from both the short-axis and the long-axis stacks. Results show
improved reconstructions, with a segmentation voxel misclassification
rate of 3.51% as opposed to 4.27% using linear interpolation.

Keywords: 3D image reconstruction · Super-resolution · Cardiac MRI ·
Regularisation · Directional total variation

1 Introduction

Magnetic Resonance Imaging (MRI) is a non-ionising and non-invasive imaging
method exhibiting particularly good soft tissue contrast. It provides structural
as well as functional information, and it is taken as gold standard for soft tissue
imaging notably for vital organs such as the brain and the heart. In a clinical
setting, patient motion from breathing, cardiac motion as well as long acquisition
times restrict imaging from being performed at full isotropic 3D high resolution
routinely. As a consequence, 2D slices with highly anisotropic voxels are acquired.
The standard clinical protocol is to image a set of stacked parallel short-axis (SA)
images and a smaller number of long-axis (LA) views orthogonal to the SA stack
c© Springer International Publishing AG 2017
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covering most of the heart. 2D low resolution (LR) slices are typically acquired
with in-plane pixel size of 1–2 mm and slice thickness of 6–10 mm with a small
slice gap of 2–4 mm [1]. SA image stacks often fail to capture the apex or the
base of the heart appropriately, and data for those essential features is only
contained in the LA slices. In practice, one 4-chamber view and one 2-chamber
view are acquired, making it very imbalanced between numbers of SA and LA
acquisitions. However, this choice of orientation is not made with the aim of
reconstructing a 3D volume.

Methods for improving image quality may occur at different points along the
image reconstruction pipeline. For example, compressed sensing algorithms work
with the acquired k-space data, reconstructing images using sparse modelling.
This serves to decrease imaging time whilst still giving adequate image quality
[2]. The technique has been successfully applied to dynamic 2D CMR recon-
structions [3]. Other algorithms operate after images have been reconstructed,
performing de-noising, super-resolution or other post-processing techniques. The
proposed algorithm falls into the latter category. Super-resolution in MRI has
first been described in [4], in which a reconstruction algorithm is applied on
acquisitions with small shifts in the slice selection direction, giving improved res-
olution and edge definition. In super-resolution MRI reconstruction, the imaging
process is generally modelled as follows: A real ground truth object G is imaged
by a process resulting in an image, X. This is modelled by applying a transfor-
mation T and additive gaussian noise n X = TG+n. The operator T is defined
as a combination of geometric transformations, convolution with a point-spread
function, which is often a Gaussian kernel, and downsampling [5]. Having defined
an acquisition model, the image reconstruction process can be posed as an ill-
conditioned inverse problem. In addition to the data consistency term, different
regularisers R have been applied [6,7]. Such regularisers control features of the
reconstructions such as the magnitude of edges and degree of smoothness, and
allow ill-conditioned problems to be solved as follows:

Y = min
Y

N∑

i=1

||TiY − xi||2 + λR (1)

Where Y is the reconstruction, N 2D slices are used, and λ determines the
weighting of the regularisation term.

The feasibility of such super-resolution methods was shown by Plenge et al.
[8], in which they compared iterative back-projection, algebraic reconstruction
and regularised least squares algorithms on phantoms and in vivo MRI. In [7,9],
a Laplacian regulariser is applied to control the high spatial frequencies on recon-
struction of small bird and full body mouse MRI images, giving good qualita-
tive results and outperforming standard interpolation techniques. However, as
opposed to sparse sampled cardiac MRI, most of the imaging volume is sampled
in those studies.
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Total variation is another popular regulariser with edge-preserving and con-
vex characteristics, and has especially been used for de-noising [10]. It has also
been applied to super-resolution and compressed sensing of MRI data as a
regulariser [11]. An added difficulty in cardiac MRI are the differences in inten-
sity and contrast between SA and LA acquisitions occurring because of differ-
ent imaging protocols and sequence timings. Thus, any reconstruction algorithm
aiming to reconstruct images using information from both the SA and LA images
must be contrast independent. Directional total variation (dTV) is a recently
introduced approach for reconstructing images using a reference image with the
same structure but different contrast. In a study by Ehrhardt et al. [12] 2D
dTV is used to combine information from brain MRI with different T1 and T2
weightings. It uses one image and its structural information as a reference for
the dTV to guide the reconstruction of the other. A different regulariser which
has been applied to super-resolution of CMR is the Beltrami regularisation [13]
in which they solve Eq. (1) using three sets of image stacks covering the whole
left ventricle in the SA, horizonal LA and vertical LA orientations. Limitations
of this work are that the slice protocol used does not reflect clinical practice
as the number of slices is a lot higher, and it does not address differences in
contrast between SA and LA. Recent studies such as work by Oktay et al. [14]
have focused on the use of Convolutional Neural Networks for super-resolution
of CMR and shown great promise. However, methods based on machine learning
make the assumption that testing data is well represented by the training data,
which may not hold in pathological cases.

In this work, we address the problem of reconstructing 3D images from a
stack of 2D slices in both SA and LA orientations, in a contrast-independent
manner using the directional total variation regulariser. This allows a recon-
structed image with the contrast of the short-axis images but with the additional
structural information of the LA images.

2 Materials and Methods

2.1 Image Acquisition

Experimental investigations conformed to the UK Home Office guidance on the
Operations of Animals (Scientific Procedures) Act 1986 and were approved by
the University of Oxford ethical review board. One heart was excised from a
female Sprague-Dawley rat during terminal anaesthesia, fixed then embedded
in 1% agarose gel, and imaged on a 9.4 T preclinical MRI scanner (Agilent,
CA, USA). A single 3D gradient echo image was acquired: FOV = 25.6 × 25.6 ×
25.6 mm, acquisition matrix = 384 × 384 × 384, TR = 200 ms, TE = 4 ms, flip
angle = 60◦, scan time = 8.2 h. LR 2D slices X: FOV= 25.6 × 25.6mm, acqui-
sition matrix = 128 × 128, in-plane resolution = 0.2 mm, slice thickness = 1 mm
were synthetically generated from the 3D image Y using the sampling func-
tion T, such that Xi = TiY. The sampling function differs to the ones generally
used in the literature by working in k-space. Instead of averaging points in image
space, the Fourier transform of Y is truncated in k-space, after rotation of the
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Fig. 1. LHS: cut through 3D view of 11 SA in 3D space. The blue plane is aligned with
the SA while the red and green planes are aligned with the LA. RHS: cut through 3D
view of 11 LA in 3D space. The LA slices have noticeably different contrast than the
SA slices. (Color figure online)

3D image. The image is rotated such that the in-plane view corresponds to the
orientation of the slice to be synthetised. The LA images were synthetised after
applying a histogram shift to the ground truth 3D volume, to ensure the LR SA,
and LA images have different contrast. This is visible in Fig. 1.

2.2 Super-Resolution Algorithm

We formulate the problem by simultaneously solving the following

Y∗
SA = arg min

YSA

nSA∑

i=1

||TiYSA − Xi||22 + λJ(YSA,YLA) (2)

Y∗
LA = arg min

YLA

nLA∑

j=1

||TjYLA − Xj ||22 + λJ(YLA,YSA) (3)

In both (2) and (3), the first term in the problem is related to data accuracy,
ensuring that the current estimate does not deviate too much from the 2D LR
image Xi which are the ground truth measurements. The second term sets a
constraint using the directional total variation of the image. It pushes the first
term in J towards being smooth whilst using the structural information of the
second term in J as a reference. λ is a weight adjusting the contribution of the
directional total variation term. The 3D directional total variation constraint J
applied to image A with reference image B is defined as follows [12]:

J(A,B) =
3∑

n=1

|Dn∇An| (4)
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where matrix field Dn ∈ M
3 = 1−ξnξ∗

n and ξn := ∇Bn

|∇Bn|η . The tuning parameter
η relates to the size of the edges in reference image B. Equations (2) and (3) were
simultaneously solved using nonlinear conjugate gradient optimisation [15], in
which one step towards the minimum in both Eqs. (2) and (3) was taken during
each iteration. The image YSA was initialised by putting the LR SA slices into
their respective orientations in a 3D matrix with isotropic spacing matching the
LR in-plane resolution. The gaps between slices are filled by linear interpolation
for a fairer comparison than just using nearest neighbor. YLA is initialised in
similar fashion, by putting the LR LA slices into a 3D matrix and filling the
gaps using nearest neighbour interpolation. Voxels where the LA slices overlap
are averaged. Nonlinear conjugate gradient method alternates between iterations
as to which image to reconstruct of to use as a reference for the dTV. The λ
parameter was empirically set to 0.5 and the η parameter was set to 0.05. Data
consistency checks SA LR within the SA reconstruction, and LA LR within the
LA reconstruction. The process is repeated until convergence. Results are shown
on the SA reconstruction as the aim is to increase their through-plane resolution.

2.3 Validation

The 3D reconstructions will be validated against the HR ground truth image
acquired for that purpose, using the Peak-Signal-to-Noise ratio (PSNR) which
is widely used in image quality assessment because of its simplicity and clear
physical meaning. However, this metric is often criticised for not matching visual
quality. In addition, we evaluate the Dice score as well as voxel misclassification
for segmentations of the Left Ventricular volume by binarising the images via
simple thresholding and give a percentage of misclassified voxels. The contrast
between the myocardium and the left ventricle is sufficient that the segmentation
result is insensitive to minor changes in the threshold value. The experiment will
be run using 11 SA and 11 LA slices covering most of the space, and then with a
total number of 12 slices with different combinations of LA and SA acquisitions
as to not use more slices than acquired in practice.

3 Results

Table 1 contains qualitative results for reconstructions using 3 different combi-
nations of slices. The first one was chosen to resemble clinical acquisitions with
a highly unbalanced number of SA and LA slices. The second one was chosen to
balance them by taking an equal number of each orientation, and the third one
was done to see if an increased number of LA slices is of benefit.

The result in Fig. 2 shows a cut in LA orientation through the final recon-
struction, at an orientation not covered by one of the 11 ground truth LA slices,
for a fair comparison. The synthetic slices cover most of the space and do not
represent a real clinical scenario. In order for a more realistic approach, we chose



132 N. Basty et al.

Table 1. Quantitative results: Dice score, Voxel misclassifications and Peak-Signal-to-
Noise Ratio in the reconstruction and in the interpolated image.

9 SA, 3 LA 6 LA, 6 SA 3 SA, 9 LA

Dice score (Reconstruction) 0.9690 0.9762 0.9629

Dice score (Interpolation) 0.9742 0.9710 0.9426

Misclassification (Reconstruction) 4.45% 3.51% 5.37%

Misclassification (Interpolation) 3.70% 4.27% 8.18%

PSNR (Reconstruction) 13.52 dB 14.59 dB 12.69 dB

PSNR (Interpolation) 14.31 dB 13.69 dB 10.08 dB

Fig. 2. (a) 11 SA slices in 3D space with nearest neighbour interpolation (b) Initiali-
sation achieved by linear interpolation between 11 SA slices, (c) Reconstruction using
the framework aided by 11 SA and 11 LA slices (d) Ground truth (e) Segmentation of
nearest neighbour (f) Segmentation of interpolation image, (g) Segmentation of recon-
struction (h) Segmentation of ground truth

to use 12 synthetic acquisitions - 6 LA and 6 SA. The more clinically used com-
bination of approximately 10 SA and 2 LA leaves space very under-sampled for
through plane detail, especially around the apex and base. Similarly to Fig. 2, the
result in Fig. 3 shows a cut in LA orientation through the final reconstruction,
at an orientation not covered by one of the 6 ground truth LA slices.
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Fig. 3. (a) 6 SA slices in 3D space with nearest neighbour interpolation (b) Initialisa-
tion achieved by linear interpolation between 6 SA slices, (c) Reconstruction using the
framework aided by 6 SA and 6 LA slices (d) Ground truth (e) Segmentation of nearest
neighbour (f) Segmentation of interpolation image, (g) Segmentation of reconstruction,
(h) Segmentation of ground truth

4 Discussion and Conclusion

The reconstruction using 9 SA and 3 LA slices does not show improvements with
respect to interpolation on any of the metrics that were applied (cf. Table 1),
whereas the reconstruction using 3 SA and 9 LA slices does show improvements
in the metrics, but starting off with worse quantitative results on the initial-
isation. This highlights our finding that the slice protocol followed in clinical
practice is not ideal for 3D reconstruction, and that increasing the number of
LA slices improves the reconstruction. Balancing the number of LA and SA slices
shows improvements which outperform the interpolation.

This work has addressed the problem of combining structural information
from long-axis images to improve the generation of 3D volumes from short-
axis images. Accurate 3D volumes are required for the generation of meshes
for mechanical models as well as other applications such as measuring cardiac
volumes or estimating ejection fractions.

There are some limitations to this study. The algorithm assumes a pre-
processing step of SA-LA registration, and any inaccuracies in this step will
be propagated into the image reconstruction. Furthermore, as it is based on
total variation, regions outside the sampled planes will typically be as smooth
as possible (i.e. the image in-painting is extremely crude). It is therefore crucial
that as much of the heart as possible is imaged by at least one plane, which is
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not currently done in clinical cardiac MRI. Between the spokes of the LA slices,
only the SA is driving the reconstruction and is highly sensitive to initialisation.

Unlike a number of recently proposed methods using convolutional neural
networks [14,16], the proposed algorithm does not incorporate any prior infor-
mation. While these CNN based super-resolution methods have shown excellent
performance, the cardiac MRI specific ones assume that short-axis stacks are
non-overlapping and parallel [17]. After motion correction, this is rarely the case
in clinical acquisitions. It is also unclear how these networks, trained on healthy
hearts, will perform on hypertrophic or infarcted hearts. The proposed algo-
rithm does not make any assumptions about the size, orientation, or shape of
the heart, or on the slice selection protocol. Thus, it is widely applicable and
may be preferable when training data is not available, or when the test data is
not well represented by the training data.

Further work will include extending the algorithm to use all frames of cine
MRI datasets, rather than operating on a static image. Improved performance is
also expected to be achieved by optimising the slice planning, since the slice pro-
tocol used in clinical practice is not designed with the aim of 3D reconstruction.
At present, standard clinical datasets have too few LA acquisitions, limiting the
algorithm’s performance.
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1 Image Processing Lab, University of Valladolid, Valladolid, Spain
rmenchon@lpi.tel.uva.es

2 Department of Biomedical Engineering, King’s College London, London, UK

Abstract. In this work, we propose a novel approach for the reconstruc-
tion of 3D isotropic, free-breathing cardiac cine MRI with 100% data effi-
ciency. The main components are a continuous 3D Golden radial k-space
data acquisition, a robust groupwise cardio-respiratory motion estima-
tion technique and a multiresolution strategy introduced in a previously
proposed compressed sensing reconstruction scheme. Initial results on
simulated data show better reconstruction quality than the non-motion
compensated counterpart and reduced reconstruction times with respect
to a single-resolution procedure for equivalent acceleration factors rang-
ing 24.38 to 34.8.

1 Introduction

Cardiovascular diseases (CVDs) are the first cause of death, with 17.5 million
estimated deaths in 2012 (about 31% of all deceases in the world). As for detec-
tion and follow up of CVDs, magnetic resonance imaging (MRI) has become the
reference imaging modality in anatomic and functional heart studies due to its
high contrast and spatiotemporal resolution.

However, MRI is a slow technique in terms of acquisition time and it is
also highly sensitive to motion of the inspected structures. Specifically, motion
induced by both the natural heart motion as well as patient breathing translate
itself in artifacted images, a fact that constitutes one of the major challenges,
still today, in cine cardiac MRI.

Cine MRI lets the practitioner visualize heart motion along the whole cardiac
cycle, which, in turn, allows the physician to calculate descriptive parameters of
both the function and the anatomy as well as to detect and diagnose contractility
anomalies. In a conventional cine examination, a set of two-dimensional slices
covering the full cardiac volume (or, at least, the left ventricle) is obtained.
To mitigate the effect of motion in acquisition, current clinical practice either
makes use of breath hold procedures or navigators that trigger image acquisition
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CMMI/RAMBO/SWITCH 2017, LNCS 10555, pp. 136–145, 2017.
DOI: 10.1007/978-3-319-67564-0 14
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intervals at certain positions of the diaphragm along the respiratory cycle; the
two processes, however, are highly inefficient since a large fraction of the time
spent by the patient within the magnet is not effective acquisition time. The final
result is a set of 2D+t dynamic images whose spacing is typically several times
higher than the intra-slice resolution (e.g., 8 mm inter-slice vs. 2 mm intra-slice).
This remarked anisotropy has an additional implication: due to the complex
orientation of the heart in the thoracic cavity, a previous planification stage is
mandatory, in which the orientation planes of the image are carefully chosen
to match the principal axes of the heart. 3D approaches naturally avoid these
problems.

In order to speed up the acquisition procedure, compressed sensing (CS)
techniques have been proposed and they are now relatively mature. These tech-
niques basically consist in drastically subsampling k-space. Then, the recon-
struction procedure is solved by constrained optimization procedures based on
the assumption that natural images are sparse in some transformed domain.

MRI sparse reconstruction, when it is applied to dynamic modalities, can ben-
efit from the high redundancy level typically found along the temporal dimension
of the image. As an example, in cine, intensity variations of a voxel in time will
be mainly due to the motion of cardiac structures (ideally, if a material point
is perfectly tracked, intensity should be constant). Motion effects on the sparse
representations have already been addressed in the literature [1,7,8,11,15,16].
In the cited methods, the authors share the idea that a sparser representation
can be obtained when information about the motion present in the image is
introduced in the sparsifying transform, enabling higher acceleration factors.

In order to increase the scan efficiency, several techniques have been pro-
posed [4,5,14]; these techniques do not restrict data acquisition to certain respi-
ratory states but data are continuously acquired following a radial trajectory in
the k-space without respiratory gating. Cardiac and respiratory signals can be
acquired simultaneously or estimated from the acquired data. These two signals
are used to bin the data into several respiratory and cardiac states according to
the breathing position and cardiac phase at which they were acquired. Images
are then reconstructed imposing spatio-temporal smoothness constraints.

In this paper, we show that better results can be obtained by incorporat-
ing motion estimation (ME) and compensation (MC) methods in the optimiza-
tion procedure for 3D isotropic whole-heart free-breathing cine reconstruction.
Motion is estimated by means of a groupwise nonrigid registration paradigm,
which has already been used for the 2D case by the authors [16]. For the 3D
case, computational load is much higher so we have resorted to a multiresolution
procedure, in which motion is estimated and images are reconstructed. Higher
levels of the pyramid are then interpolated and serve as the starting point of the
immediate lower level of the pyramid. Results indicate that this procedure better
preserves edges and shows a better contrast than methods that do not incorpo-
rate this type of information in the reconstruction procedure. In summary, this
paper proposes an extension of the XD-GRASP [6] reconstruction framework
for free-breathing acquired data based on introducing a MC approach and a
multi-resolution scheme.
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2 Material and Methods

2.1 Compressed Sensing Reconstruction

The problem of MRI reconstruction under CS principle is defined as follows:

argmin
m

‖Φm‖l1 s.t. ‖y − Em‖2l2 < ε (1)

where m represents the image to reconstruct from the acquired undersampled
k-t data (y) and ε indicates the noise level in the acquisition. Φ is the sparsifying
transform, which is typically chosen to be the temporal Fourier transform or the
temporal total variation. The encoding operator E models the acquisition process
by applying spatial Fourier transforms followed by the data undersampling strat-
egy. Moreover, in multicoil acquisitions, E also includes the multiplication by coil
sensitivities [12]. Finally, the constrained problem in Eq. (1) can be reformulated
as the following equivalent unconstrained optimization problem:

argmin
m

1
2

‖y − Em‖2l2 + λ ‖Φm‖l1 (2)

where the parameter λ establishes a trade-off between data consistency and the
sparsity of the solution.

2.2 Motion Compensated MRI Reconstruction

In CS with motion estimation and compensation (ME/MC), the operator Φ is
modified to include some knowledge about the specific motion of the structures
being imaged. In particular, in groupwise (GW) CS [16], the authors propose a
joint estimation and compensation of the motion in the whole image domain,
and the optimization problem in Eq. (2) becomes

argmin
m

1
2

‖y − Em‖2l2 + λ ‖ΦTΘm‖l1 (3)

where TΘ is the GW-MC operator, a set of spatial deformations defined by the
parameters Θ, that performs a mapping between each temporal instant in the
dynamic image and a common reference motion state. Note that the motion in
m is unknown a priori. Therefore, firstly, it is necessary to perform a regular CS
reconstruction by solving Eq. (2).

Essentially, this motion estimation method consists on a GW registration
method based on a B-spline deformation model with set of control points Θ.
The registration metric is defined based on the variance of the intensity along
time, and the control points that minimize its value are found as follows:

argmin
Θ

∥
∥
∥
∥
∥

N∑

n=1

(

TΘ,nmn − 1
N

N∑

k=1

TΘ,kmk

)∥
∥
∥
∥
∥

2

+ RΘ (4)
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where n and k represent the time index, N is the total of temporal instants (num-
ber of images/volumes to reconstruct) and RΘ is an additional regularization
term that encourages local invertibility of the deformations [3]. This regulariza-
tion term is based on the Laplace operator and second order temporal derivatives
of the deformation fields and it can be compactly expressed as follows:

RΘ = α ‖ΔTΘ,n‖22 + β
∥
∥∇2

nTΘ,n

∥
∥
2

2
(5)

2.3 Extra-Dimensinal (XD) MRI Reconstruction

A recently proposed approach for the reconstruction of free-breathing acquired
data (XD-GRASP) [6] is based on the continuous acquisition of k-space data
following a 3D Golden Radial trajectory [10] (Fig. 1a). Data are then distributed
in different respiratory and cardiac phases (double binning process, Fig. 1b),
which results in a 5D domain (kx, ky, kz, respiratory phase and cardiac phase).
This division is made in accordance with the respiratory and cardiac motion
signals, with the approximately same number of spokes in each temporal frame.

The reconstruction is formulated as a CS problem in which sparsity along
both temporal dimensions is simultaneously enforced:

argmin
m

1
2

‖y − Em‖2l2 + λc ‖∇cm‖l1 + λr ‖∇rm‖l1 (6)

where ∇c and ∇r stand for the temporal differences along the cardiac and
respiratory phases, respectively. As a result of the reconstruction, a set of 3D+t
volumes is recovered, one for each respiratory state (Fig. 1c).

Since the data is divided into more motion states, less data is available for
each of them, increasing the net acceleration factor consequently. Moreover, the
size of the solution space is also increased, rising the computational cost.

Fig. 1. Overview of the proposed reconstruction method: (a) data acquisition strategy:
3D golden radial sampling; (b) binned data: respiratory and cardiac phases; (c) initial
CS reconstruction; (d) motion estimation by means of a GW registration method; (e)
final MC-CS reconstruction.
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(b.1)
kx
ky

kz

Joint
cardiac/respiratory 3D

motion estimation

Initial low-resolution
XD-GRASP
reconstruction

Upscale
deformation fields

Cardio-respiratory motion
compensated reconstruction
at higher resolution level

Fig. 2. Overview of the proposed multi-resolution scheme for MC-XD MRI reconstruc-
tion. For the low resolution reconstruction only the central portion of k-space data is
used (blue circle). While for the upper resolution level resolution, scaled deformation
fields and all acquired k-space data (red circle) are used. (Color figure online)

2.4 Multi-resolution Strategy for MC-XD MRI Reconstruction

In this work, we propose to extend the XD scheme in two ways: (1) by introducing
a MC approach in which both the cardiac and respiratory motions are considered
during reconstruction and (2) by introducing a multi-resolution approach in
which the nature of the radial k-space data acquisition is exploited. A description
of the procedure follows.

Once the data has been sorted into a 5D space, an initial reconstruction
is performed by solving Eq. (6), see Fig. 1c. This solution corresponds to the
XD-GRASP method [5,6].

Once an initial reconstruction is available, a ME procedure is carried out. To
this end, we resort to the 3D extension of a group-wise registration algorithm,
which provides robust motion estimation, both in and through-plane for the 3D
case, previously proposed for the CS reconstruction of multi-slice 2D CINE MRI
[16]. The estimation problem is summarized in Eq. (4).

The obtained results are finally used to perform a motion compensated recon-
struction over the initial images (Fig. 1e), being possible to iterate over the last
two steps to refine the results. MC-XD reconstruction can be formulated as:

argmin
m

1
2

‖y − Em‖2l2 + λ ‖∇c,rT c,r
Θ m‖l1 (7)
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where T c,r
Θ is the MC operator that compensates both for cardiac and respiratory

motions and ∇c,r calculates the gradient along both temporal dimensions.
Computational efficiency can be highly improved by means of the multireso-

lution algorithm we propose in this work, a graphical sketch of which is shown in
Fig. 2. In particular, we propose to perform the aforementioned process at mini-
mal spatial resolution, that is, to obtain the initial reconstruction (XD-GRASP)
at low resolution by using only the central portion of the k-space data, and to
apply the motion estimation approach (3D GW registration) at this level. To
this end we exploit the fact that, in radial trajectories, the central region of the
k-space is sampled much more densely that the high frequency domain. In this
situation, the resulting acceleration factor at the low resolution level is much
lower than the original one, leading to a better posed reconstruction problem
with lower computational demand.

Then, by means of an upscaling procedure, both initial images and deforma-
tion fields are interpolated to a higher resolution level. A cubic 3D interpolation
is applied for the image upscaling. While for the registration results, the set
of control points is scaled to recalculate the deformation fields. The obtained
results are then used as the starting point to perform the MC reconstruction in
the following upper level.

2.5 Data and Experiments Description

The proposed strategy has been tested on synthetic data generated by a numer-
ical phantom that provides detailed internal anatomy and realistic cardio-
respiratory deformation models [13,18]. A bSSFP acquisition was simulated in
free-breathing with the following relevant parameters: TR/TE = 3.0/1.5 ms, flip
angle = 60◦, field of view (FOV) of (192 mm)3 with matrix size of 1923 (voxel
size = 1 mm3). The continuous acquisition of a total of 60.480 projections were
simulated. Based on previous publications [6], this corresponds to a simulated
acquisition time of approximately 7 min. Respiratory and cardiac synchroniza-
tion signal were provided by the numerical phantom and used to perform the
double binning procedure described in Fig. 1b. The data was sorted into 4 res-
piratory states and 20 cardiac phases, leading to an average of 756 projections
per reconstructed volume.

The reconstruction was carried out with the proposed method at an initial
resolution of 4 mm3 and at a second level of 2 mm3 and with the original XD-
GRASP approach at 2 mm3 for comparison purposes. The NESTA algorithm [2]
was used to solve the optimization problems in Eqs. (6) and (7). The parameter
λ was fixed to 0.01 by visual inspection, so it is necessary to perform a complete
validation study about this parameter in future works. A median filter of size
33 was applied to the final results to eliminate residual reconstructions artifacts.
The equivalent acceleration factor (AF) was 6.08 for the low resolution level and
24.16 for the final one.
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Fig. 3. Reconstructions of the XCAT phantom with XD-GRASP (left) and the pro-
posed method with MC at diastole (top) and systole (bottom). Original volumes were
reformatted to obtain four short axis slices covering the whole heart and one long
axis slice. Data was binned in four respiratory states (from left to right). (Color figure
online)
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In order to validate the MC-XD approach on a real anatomy an isotropic
3D+t cardiac MR scan of a swine has also been used to obtain MC-XD MRI
reconstruction by using the general scheme in Fig. 1 (without the multiresolution
strategy). Due to the nature of these animals, respiratory motion is not appre-
ciated in MRI, so a spatiotemporal deformation was synthetically generated
to simulate different respiratory positions. Thus, a through-plane respiratory
motion is modelled by a 2D gaussian function centred in the heart together with
a XCAT respiratory signal in the temporal domain. Relevant imaging parame-
ters include: voxel size = 1 mm3, field of view = 183 mm3, temporal resolution
= 43 ms. The acquisition of a total number of 12.831 spokes was simulated and
data sorted as with the phantom data, leading to an AF of 34.8.

3 Results and Discussion

In Fig. 3 the volumes reconstructed with XD-GRASP and the proposed method
with MC are shown for the diastolic and systolic cardiac phases, for the four
respiratory states in which the data was binned. A set of four short axis and
one long axis slices were reformatted from the isotropic, unplanned volumes. In
the images reconstructed with the proposed method, better contrast between
blood pool and myocardium and sharped edges are recovered (green arrows),
although these improvements are difficult to quantify. In fact, sharpness metrics
such us that described in [9] produces similar values for images reconstructed
with XD-GRASP and with the proposed method (49 and 47 in average, respec-
tively), and it is not representative of the better image quality visually found
in the reconstruction with the proposed method that has been highlighted in
Fig. 3. However, high frequency artifacts can be appreciated in some areas in the
results of the proposed method (red arrows). In these areas, the XD-GRASP
reconstructions present strong blurring possibly due to residual intrabin motion
than hinders the estimation of the cardio-respiratory motion. Similar artifacts
have been previously reported for other MC related methods [16].

Figure 4 shows the obtained results for the swine MRI. XD-GRASP and
MC reconstructions are presented for comparison. Better edge delineation, finer
details and higher overall quality are appreciated in the case of images recon-
structed with MC.

The reconstruction times for the synthetic data were 6.2 min for the initial
low-resolution step, 7.1 min for the ME and 1.2 h for the final reconstruction.
The same procedure directly applied to the final resolution level (not shown)
took 23,6 min for the initial step, 10.85 min and 1.6 h for the MC reconstruction.
Overall, the reconstruction time was 1.42 h for the multi-resolution scheme and
2.17 h for the other case, leading to a reduction of 34%.



144 R.-M. Menchón-Lara et al.

Fig. 4. Reconstructions of swine MRI (general scheme Fig. 1) for 60,480 acquired spokes
(2,880 golden-angle-rotated interleaves with 21 spokes each, leading to a mean AF =
34.8 per reconstructed volume). Short axis views (a, c) and long axis views (b, d) of the
heart for both systolic (a, b) and diastolic (c, d) phases. Initial CS reconstruction (XD-
GRASP) is shown in top images; whereas the bottom images show the corresponding
proposed MC-XD reconstruction. Yellow arrows indicate areas where the improvement
in the recovered details with MC can be observed. (Color figure online)

4 Conclusion

This paper proposes an efficient extension of the XD MRI reconstruction. On
one hand, a ME/MC approach based on a groupwise temporal registration is
introduced in the reconstruction procedure, which allows to obtain a better edge
definition in the obtained results. The obtained results have been compared with
the XD-GRASP solution to support this affirmation.

On the other hand, a multi-resolution procedure has been designed to signifi-
cantly reduce the computational cost of the MC-XD reconstruction process with
similar image quality after reconstruction. The tests have shown a reduction of
34% in the overall reconstruction time for the proposed approach. Future works
will focus on the validation of these results and the inclusion of solutions to avoid
the presence of reconstruction artifacts, as it is already proposed in [17].
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Abstract. Accurate ventricle segmentation is important for reliable automated
infarct localization, detection of early ischemic changes, and localization of
hemorrhages. The purpose of this study was to develop a robust and accurate
ventricle segmentation method in image data of ischemic and hemorrhagic stroke
patients. Early follow-up non-contrast CT image data of 35 patients with a clinical
diagnosis of ischemic stroke or subarachnoid hemorrhage were collected. We
proposed a ventricle segmentation method based on a combination of active
contours and an atlas-based segmentation. Ground truth was obtained by manual
delineation of the ventricles by 4 observers with corrections by 2 experienced
radiologists. Accuracy of the automated method was evaluated by calculation of
the intraclass correlation coefficients, Dice coefficients, and by Bland-Altman
analysis. The intraclass correlation coefficient for the automated method
compared with the reference standard was excellent (0.93). The Dice coefficients
was 0.79 [IQR: 0.72–0.84]. Bland-Altman analysis showed a mean difference of
2 mL between the automatic and manual measurements, with broad limits of
agreement ranging from −18 to 15 mL. The automated ventricle segmentation
showed an excellent correlation and high accuracy compared to the manual refer‐
ence measurement. This approach is suitable for reliable ventricle segmentation
even in stroke patients with a severely deformed brain.

Keywords: Ventricular system · Segmentation · Deformed brain · CT · Stroke ·
Subarachnoid hemorrhage
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1 Introduction

Stroke is the leading cause of disability and second leading cause of death worldwide
[1]. Diagnosis and treatment decisions of patients with ischemic and hemorrhagic stroke
depend heavily on radiological imaging. Recently, various automated methods of CT
image analysis of stroke patients have been introduced: infarct core quantification [2],
hemorrhage quantification [3], and ASPECTS scoring [4]. In these methods, accurate
ventricle segmentation plays a key role in correctly locating and quantifying these
lesions.

Several methods have been proposed for segmenting the ventricles either in healthy
or slightly deformed brains. These methods were based on techniques such as region
growing [5, 6], cognition network [7], low-level segmentation combined with high-level
template matching [8], and active model-based segmentation [9–11]. In stroke patients,
severe deformation of the brain is quite common. However, this deformation issue is
not normally addressed in existing literatures. In general, ventricle segmentation for
stroke patients shared a common trait, such as difficulty in distinguishing infarct regions
from the ventricles due to similar intensity and also the stroke regions are often located
adjacent to the ventricle. For example, in ischemic stroke patients, the density of infarct
regions can be in the proximity of that of cerebrospinal fluid (CSF) within the ventricles.
Moreover, in other cases such as hemorrhagic stroke, blood often leaks inside the
ventricles, yielding problems with existing segmentation methods.

Up to now, only several ventricle segmentation methods that are dedicated for stroke
patients have been proposed [10, 12, 13]. These studies, however, focused on either
ischemic or hemorrhagic stroke patients, but not both. We tried to take an approach from
the perspective of brain deformation due to stroke.

The aim of our study was to design a robust automated ventricular segmentation
method for CT images suitable for patients with severe brain deformation due to
ischemic or subarachnoid hemorrhagic stroke to aid subsequent image analyses, such
as infarct quantification and subarachnoid hemorrhage detection tools.

2 Materials and Methods

2.1 Patient Selection

Early follow-up whole-brain non-contrast CT (NCCT) image data of 50 patients with a
clinical diagnosis of ischemic stroke or subarachnoid hemorrhage (SAH) were collected.
Brain image data with 5 mm slice thickness were used, resulting in volumes with 24–
51 slices. We retrieved 1-week follow-up NCCT image data of ischemic stroke patients
from the MR CLEAN database [14], while baseline NCCT image data of SAH patients
were retrieved from the local data base from our institute. From our initial image data‐
base of 50 patients, patients with hemicraniectomy (n = 4) and incomplete image data
(n = 11) were excluded. The image data were anonymized before analyses.
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2.2 Method Overview

The proposed ventricle segmentation approach is based on localized region-based active
contours [15]. Since active contours require a good initial estimation, we divided our
method into two stages: (1) initial contour estimation using atlas-based ventricle
segmentation and (2) active contours based ventricle segmentation.

First stage: Initial contour estimation. In the first stage, we performed an atlas-based
segmentation on skull-stripped brain images. The skull-stripping algorithm is performed
using a thresholding operation [3] to exclude the skull and non-brain tissues from the
subject image. We considered regions >100 HU as the skull and excluded them from
the brain image. Registrations were performed using open source software Elastix
(version 4.3; http://elastix.isi.uu.nl) [16, 17] with mutual information set as similarity
measure. Rigid, affine, and B-splined (grid spacing: 15 mm) transformations were
applied sequentially. Subsequently, we applied the transformation parameter from the
registered image to the ventricle atlas. For this purpose, we used an in-house-developed
ventricle atlas that contains labels of the two lateral ventricles, third ventricle, fourth
ventricle, and nonventricular CSF regions. The atlas-based segmentation resulted in
masks of the ventricles of the patient image (See Fig. 1).

Subsequently in the masked areas, CSF and hemorrhage within the ventricles were
segmented using density-based thresholding. All voxels within the masked image with
a density of 0–16HU and 55–90HU were labeled as CSF and intraventricular blood
respectively. Voxels with a density between 16 and 55 HU were considered as normal
brain tissue.

The result of the procedure described above included false positives, which consist
of adjacent infarct regions, adjacent hemorrhagic regions, and non-ventricular CSF
regions, which mostly occur around the segmentation of lateral ventricles. To detect
false positive regions, in every axial slice of the lateral ventricles, a connected compo‐
nent analysis was performed, subsequently followed by region growing operation on
each of the components. The region growing was performed to include neighboring
pixels with density slightly range slightly higher than the CSF segmentation [0–19 HU]
to ensure connectivity to nonventricular CSF regions. When the result of region growing
overlaps more than 75% with the original segmentation, the seed component is consid‐
ered as a true positive. On the other hand, when the result spread towards previously
unsegmented region, the component is removed from the original segmentation (See
Fig. 2).

Second Stage: Active contours based ventricle segmentation. Localized region-
based active contours was used in the refinement stage [15, 18]. Uniform energy
modeling was used as internal energy measure. The foreground (CSF/ventricle) and
background (white matter, gray matter) are modeled as constant intensity values repre‐
sented by their means. Because of the large differences between in-plane resolution and
slice thickness, active contours was applied in 2D axial slices rather than in a 3D volume,
with the following parameters: radius of local area (rad = 10), coefficient curvature
regularization term (α = 0.001), smoothness (ε = 10), number of iterations (n = 500).
This 2D approach also allowed the active contours to filter out small noise regions.
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We first performed active contours on the main slice of the lateral ventricles. We
defined the main slice as the axial slice that contains the largest two-dimensional (2D)
connected component from the initial estimation. For the main slice, the initial segmen‐
tation from the previous stage is used as the initial contour. The segmentation result
from the main slice is then used to calculate patient-specific CSF threshold. This
segmentation result is propagated to its adjacent inferior and superior slices to be used
as an input for the next initial contour.

Fig. 1. Examples of atlas-based segmentation on a skull-stripped image (First column shows the
original brain image with skull, second column shows the brain image without skull (regions >100
HU excluded), third column shows the registered image, fourth column shows atlas-based
segmentation on the skull-stripped image).

Subsequently, the third, fourth, and the remainder of lateral ventricles slices were
segmented using active contours in a propagative manner. This order was chosen due
to the interconnectedness of the ventricle regions. To compensate to the large distance
between slices, initial contours were obtained by combining the estimation from the first
stage and the projection from the segmentation from the previous slice, masked with the
patient-specific CSF threshold.

Finally, intraventricular calcification regions were identified to be included as ventri‐
cles in the segmentation. In slices that contain the posterior and inferior horns (axial
slices between the roof of the 3rd and roof of the 4th ventricle); dilation morphological
operation with a structuring element of 5 × 5 mm was applied to include calcifications.

2.3 Accuracy

Ventricles in 35 CT images (17 ischemic stroke and 18 SAH patient images) were
manually delineated by trained observers and when necessary corrected by experienced
radiologists (L.F.B and C.B.M, both with >10 years of experience). The manually
delineated ventricles were used as reference standard to evaluate the accuracy of our
method.

The accuracy was measured by calculating the Intraclass Correlation Coefficient
(ICC) and performing Bland-Altman analysis. Furthermore, the Dice similarity coeffi‐
cient (DSC) between the automated and manual segmentation was determined to calcu‐
late the overlap.
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Fig. 2. Illustration of false-positives regions that were detected by region-growing algorithm.
The component which was used as the seed is labelled as a potential leak and excluded from the
refinement process

3 Results

The automated segmentation was successfully performed on all 35 NCCT images (17
ischemic stroke and 18 SAH patients) without any manual intervention or adjustment.
The median ventricle volume was 33.2 mL [IQR: 23.7–43.2] and 28.1 mL [IQR: 25.5–
45.9], according to the automated and manual delineations, respectively. The ventricle
segmentation took 10–20 min per patient to complete on a Core i7, 2.67 GHz PC with
6 GB RAM. This execution time is without the time to perform the atlas-based

Fig. 3. Examples of segmented ventricles (1st column represents the original atlas-based
segmentations with false-positive regions. The 2nd column represents the segmentations after
removal of the false-positive regions. The 3rd column represents the final segmentations. The last
column represents the delineations by experts, which was used as a reference standard). On the
first and second column cyan represents the lateral ventricles, green and red represent non-
ventricular CSF regions. On the third and fourth column red represents the final segmentation.
The first and second row show ischemic and subarachnoid hemorrhagic stroke patient images,
respectively. (Color figure online)
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segmentation, which took 15–30 min per patient. Some segmentation results are shown
in Fig. 3.

The ICC of the automatic and manual ventricle volume measurement was excellent:
0.93 (95%CI 0.88–0.96; p < 0.001). Bland-Altman analysis indicated a mean difference
in ventricle volume of 2 mL between the automatic and manual measurements, with
limits of agreement ranging from −18 to 15 mL. The Dice coefficient of the manual and
automatic measurements had a median of 0.79 [IQR: 0.72–0.84]. Overall, the accuracy
for segmentations in ischemic stroke is higher compared to the SAH patients (ICC: 0.97
vs 0.88, DSC: 0.82 vs 0.72). Bland-Altman analysis also show narrower limits of agree‐
ment in the ischemic stroke segmentation compared to the SAH (−10 to 9.6 mL as
opposed to −24 to 17 mL). See Table 1.

Our method successfully distinguished between CSF and infarcts or hemorrhages.
However, some minor leakages were still observed in 5 (14.3%) of the segmentations,
for example into non-ventricular CSF regions, infarcts, and hemorrhages. Additionally,
in some cases the proposed method did not recognize narrow or small regions such as
the cerebral aqueduct between the third and fourth ventricle.

4 Discussion

We introduced an automated ventricle segmentation method in NCCT images of patients
with ischemic stroke or SAH with a severely deformed brain. The segmentation method
is fully automated and applicable to severely deformed brain. Evaluation with 35 patients
showed a good agreement with manual assessment, with limits of agreement between
−18 and 15 mL compared with the manual reference method. The accuracy of the auto‐
mated method was high.

To our knowledge, the presented method is the first that is robust in segmenting
ventricles in severely deformed brains for both ischemic stroke and SAH patients.
Compared to previous methods [10, 12, 13], the accuracy of our method for ischemic
stroke patients is slightly lower. However, it should be noted that we only selected
severely deformed ventricles in our study. In addition, the presented method works well
in a wide range of ventricle size from our sample data. Previous studies reported some
difficulties in segmenting small sized ventricles [12], while in other studies smaller size
ventricles, such as the fourth ventricle [7, 9, 11] and third ventricle [5] were excluded
in the process.

Table 1. Accuracy of manual ventricle volume measurement and comparison of the manual and
automated segmentation.

Segmentation Intraclass correlation
(95% CI)

Dice coefficient (median
and IQR)

Bland-Altman limits of
agreement (mL)

# samples

Automated vs
manual

0.93 (0.88–0.96) 0.79 [IQR: 0.72–0.84] −18–15 35

Automated vs
manual (ischemic)

0.97 (0.93–0.99) 0.82 [IQR: 0.78–0.86] −10–9.6 17

Automated vs
manual (SAH)

0.88 (0.76–0.95) 0.72 [IQR: 0.64–0.77] −24–17 18

154 E. Ferdian et al.



Recent study from Qian et al. [13] showed an impressive result in segmenting
ventricle and distinguishing stroke regions. However, we find that the method relies on
symmetry of the brain which is not often the case for severely deformed brain. Moreover,
we tried to generalize our method to cover different cases of stroke and not specific to
ischemic stroke.

We used atlas based segmentation for our initial contours by performing non-linear
registration on skull-stripped brain images. We found this approach suitable for our cases
with deformed brain. Other approaches, such as the above mentioned symmetric based
approach is not suitable for our dataset. In terms of active contours segmentation, we
used a propagated 2D approach instead of 3D approach in order to detect leaking as
early as possible. By putting a size threshold on the contours, the extent of leakage is
minimized. The novelty of our method lies in the removal of false-positives using region-
growing algorithm. We took advantage of the leaking characteristics of region growing
to detect false-positive segmentations.

In our study, we have chosen to develop a method that allows the segmentation of
severely deformed ventricles for both ischemic stroke as well as subarachnoid hemor‐
rhage patients. Alternatively, it could also be possible to combine two different segmen‐
tation techniques that are optimized for either ischemic stroke or subarachnoid hemor‐
rhages and select the optimal result retrospectively. However, it was beyond the scope
of this study to explore this strategy.

There are a few limitations in our method. Our method is computationally
demanding. Even though the localized region-based active contours has shorter compu‐
tation time compared to the global variant [15], our implementation took around 20–
30 min per patient. A limitation is that we evaluated the accuracy on the same image
data set as was used for its development. This may, therefore, overestimate its accuracy.
Because of the limited number of severely deformed ventricles, we used the same dataset
for both training and evaluation purposes.

Using our method, the accuracy of the segmentation in SAH patients was somewhat
lower compared to ischemic stroke patients. In SAH patients, there is commonly a large
amount of blood within or adjacent to the ventricle, especially around the posterior and
inferior horns. The ventricle segmentation is the most difficult for these patients because
of the indistinct boundary between intra-and-extra ventricular hemorrhages.

This automated approach enables a reproducible and observer-independent analysis.
Our method offers the following improvements compared to previously presented
methods: complete segmentation of all ventricles (lateral, third, and fourth ventricles),
accurate in patients with subarachnoid hemorrhages, and a control to prevent excessive
segmentation leakage to infarct and non-ventricular CSF regions.

There is still some room for improvement. Future work may address improvement
of the initial contour estimation, reduction of computation time of the active contours,
and improvement in the detection of intra vs. extra-ventricular hemorrhages.

We have presented a robust automatic method for ventricle segmentation in CT
images of ischemic stroke and SAH patients with severely deformed brains. The
segmentation accuracy is sufficient to assist additional automated methods that require
ventricle segmentation such as the detection of infarcts and subarachnoid hemorrhages.
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Abstract. Stroke is the second leading cause of disability worldwide. Throm‐
bectomy has been shown to offer fast and efficient reperfusion with high recan‐
alization rates and thus improved patient outcomes. One of the most important
indicators to identify patients amenable to thrombectomy is evidence of good
collateral circulation. Currently, methods for evaluating collateral circulation are
generally limited to visual inspection with potentially high inter- and intra-rater
variability. In this work, we present an automatic technique to evaluate collateral
circulation. This is achieved via low-rank decomposition of the target subject’s
4D CT angiography, and using principal component analysis (PCA) and support
vector machines (SVMs) to automatically generate a collateral circulation score.
With the proposed automatic score evaluation technique, we have achieved an
overall scoring accuracy of 82.2% to identify patients with poor, intermediate,
and good/normal collateral circulation.

Keywords: CTA · Collateral score · Stroke · Machine learning

1 Introduction

According to the World Heart Federation, each year over 15 million people suffer from
brain stroke, with 6 million dying as a result, and 5 million becoming permanently disa‐
bled1. The two main types of stroke are: (1) hemorrhagic, due to bleeding, and (2)
ischemic, due to a lack of blood flow. In this paper, we focus on ischemic stroke, which

1 http://www.world-heart-federation.org/cardiovascular-health/stroke/.
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accounts for approximately 87% of all stroke cases. In ischemic stroke, where poor blood
flow to the brain causes neuronal cell death, the goal of treatment is to restore blood flow
to preserve tissue in the ischemic penumbra, where blood flow is decreased but sufficient
enough to stave off infarction (i.e. cell death).

It has been shown that recanalization, i.e. restoring blood flow, is the most important
modifiable prognostic predictor for a favorable outcome in ischemic stroke [1]. Timely
restoration of regional blood flow can help salvage threatened tissue, reducing cell death,
and ultimately minimizing patient disabilities. Thrombectomy, where a long catheter
with a mechanical device attached to the tip, is used to remove a clot, has been effective
for treatment for ischemic stroke. However, the inherent risks associated with throm‐
bectomy must be considered, and only patients with certain indications, including a large
penumbra, small infarct, and sufficient collateral circulation should undergo such inter‐
ventions. Collateral circulation (i.e., collaterals) is defined as a supplementary vascular
network that is dynamically recruited when there is an arterial occlusion (e.g. a clot) and
has been shown to be one of the most important factors in determining treatment strat‐
egies [2, 3].

Currently, collaterals are typically evaluated on Computed Tomography Angiog‐
raphy (CTA) or Magnetic Resonance Angiography (MRA), however, there is no
consensus on which imaging modality should be used [4]. For assessment on CTA, a
collateral score is based on visual inspection of the images by a radiologist and can be
graded using scoring systems, such as the Alberta Stroke Program Early CT Score
(ASPECTS) [5]. However, visual inspection is often subject to inter- and intra-rater
inconsistency and can be time-consuming. To the best our knowledge, no automatic
collateral score evaluation methods have been reported previously in the literature.

In this paper, we present an automatic technique for estimating the collateral score
in dynamic 4D CTA images. First, blood vessel patterns are extracted using low-rank
image decompositions, and then collateral scores are assigned using support vector
machines (SVMs) based on eigen blood vessel patterns from principal component anal‐
ysis (PCA). To demonstrate the performance of SVMs for the task, we compared the
results against classification using k-nearest neighbors (kNN) and random forests.

2 Materials and Methods

2.1 Subjects and Scanning Protocols

For this study, we included 29 patients who had suffered a stroke and 8 healthy subjects.
For all subjects (age = 65 ± 15 yo), isotropic computed tomography (CT) imaging was
acquired on Toshiba’s Aquilion ONE 320-row detector 640-slice cone beam CT
(Toshiba medical systems, Tokyo, Japan). The time between symptoms onset and scan‐
ning varies, but for most it is within 24 h. The routine stroke protocol uses a series of
intermittent volume scans over a period of 60 s with a scanning speed of 0.75 s/rotation.
This protocol provides whole brain perfusion and whole brain dynamic vascular analysis
in one examination. A total of 18 volumes are acquired, where a series of low-dose scans
are performed: first for every two seconds during the arterial phase, and then spaced out
to every 5 s to capture the slower venous phase of the contrast bolus. Isovue-370
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(Iopamidol) is used as non-ionic and low osmolar contrast medium (Iodine content,
370 mg/ml).

2.2 Collateral Circulation Scoring for Patients

The collateral circulations of the 29 patients were scored by two radiologists as being
good, intermediate or poor using the Alberta Stroke Program Early CT
score (ASPECTS) [5]. The scoring criteria are as follows: a score of good is given for
100% collateral supply of the occluded middle cerebral artery (MCA) territory; inter‐
mediate score is given when collateral supply fills more than 50% but less then 100% of
the occluded MCA territory; a poor score indicates collateral supply that fills less then
50% but more than 0% of the occluded MCA territory (Fig. 1). Among the patients, we
had 9 good, 14 intermediate, and 6 poor subjects.

Fig. 1. Examples of axial maximum intensity projections (MIPs) for different collateral
circulation scores. The middle cerebral artery (MCA) is annotated with yellow arrows, and the
blue arrow points to calcification at the pituitary gland. The MCA territory is to the lateral region
of the MCAs. The blue and green regions are the projection regions in the coronal and axial
directions that will be used for automatic collateral score computation. (Color figure online)

2.3 Image Processing

Each subject’s 18 CTAs were first rigidly co-registered together, and then spatially
normalized to a population-averaged CTA template created using the first CTA of the
series (with the least blood vessel contrast) with nonlinear registration. The registrations
help ensure all brains were in the same space for analysis, and were completed with the
freely available Advanced Normalization Tools (ANTs) (stnava.github.io/ANTs). The
template was created from 11 healthy subjects that had undergone the same dynamic
4D-CTA imaging protocol. Individual averaged CTAs were deformed and averaged
together through an unbiased group-wise registration scheme as described in [6]. The
resulting template, with a resolution of 1 × 1 × 1 mm3, is shown in Fig. 2. A brain mask
was extracted from the template using the active contour segmentation tool in ITK-
SNAP (www.itksnap.org) and used for the analysis of individual brain volumes.
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Fig. 2. Population-averaged non-linear template (From left to right: axial, sagittal and coronal
views). The brain mask is shown overlaid on the coronal view in the rightmost image.

2.4 Blood Vessel Extraction

The evaluation of collateral circulation is largely determined by the flow of contrast
agent in the blood vessels over time. However, within the CTA images, other brain
anatomy, such as the ventricles and grey matter are still visible. To remove non-vessel
structures that exhibit inter-subject variability and can affect the PCA results intended
only for blood vessels, we employed low-rank decomposition. Previously, low-rank
decomposition has been used to separate foreground and background in a scene from
video footages [7]. In this case, each image in the series can be modeled as the summation
of the low-rank components that contain consistent anatomical structures across time,
and a sparsity term that describes the intensity changes in the blood vessels. For a subject
k, the 4D CTAs are stored in a matrix D =

[
I1

k
, .., I

i

k
,… , I

18
k

]
, where Ii

k
 is the ith CTA

image that is converted to a column vector from the time series. The low-rank repre‐
sentation of D is defined as:

{
L̂, Ŝ

}
= argmin

L,S
(
rank(L) + 𝛾‖S‖0

)
subject to D = L + S (1)

where ‖S‖0 is the counting norm of the sparsity component S, rank(L) is the matrix rank
of the low-rank component L, and 𝛾 is a positive scalar. To make the optimization tract‐
able, the problem is then transformed as:

{
L̂, Ŝ

}
= argmin

L,S
(‖L‖∗ + 𝜌‖S‖1

)
subject to D = L + S (2)

where ‖L‖∗ is the nuclear norm of L, ‖S‖1 is the L1-norm of S, and 𝜌 is a positive scalar
that controls the approximated rank of matrix L. There have been many methods to solve
this optimization problem. For our application, we employed the augmented Lagrange
multiplier method [8] to recover the low-rank and sparsity components. As a result, each
image Ii

k
 is represented as Ii

k
= l

i

k
+ s

i

k
, where li

k
 and si

k
 are the low-rank and sparse repre‐

sentation of Ii

k
. For our application, to reduce image noise and inter-subject anatomical

variability (i.e., blood vessels), the CTA images were first blurred by a Gaussian kernel
of 𝜎 = 3 mm (the thickness of main arteries), and then processed with low-rank decom‐
position. All sparse representations for each subject’s CTA series were averaged. Lastly,
the median value projection in the axial direction and mean value projection in the
coronal direction were obtained using the projection regions in Fig. 1. They were then
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used to extract eigen vessel patterns. Examples of the projections are shown in Fig. 3.
Note that on the left hemisphere, as the blood circulation worsens, the intensity of the
blood vessels becomes lower.

Fig. 3. Examples of 2D projection images (axial view: median value in axial direction, coronal
view: mean value in coronal direction) for the typical normal, good, intermediate and poor
collateral circulation.

2.5 Eigen Vessel Patterns and Score Assignment

Principal component analysis (PCA) has been commonly used for object recognition [9]
through the generation of eigen image basis. From the training set composed of selected
vectorized image features X =

[
X1, X2,… , X

m

]
⊂ 𝔑n×m, the covariance matrix C can be

decomposed into C = UΛUT, with Λ being the diagonal matrix containing the eigen‐

values 
{
𝜆

a

}
a=1…N

 and U being the orthonormal matrix that has the corresponding prin‐

cipal components (or eigen vessel patterns) 
{
∅

a

}
a=1…N

. When a new image 𝜓 is

presented, it can be represented as 𝜓 = X +
N∑

a=1
w

a
𝜙

a
, where the reconstruction coeffi‐

cient can be found via w
a
= 𝜙T

a

(
𝜓 − X

)
 and X =

1
m

m∑
j=1

X
j
. As we have images from

coronal and axial direction projections for subject k, two sets of reconstruction coeffi‐
cients wk

coronal
 and wk

axial
 were concatenated as wk =

[
w

k

coronal
, w

k

axial

]
 to feed into multi-

class SVMs with the radial basis function (RBF) kernel and one-vs-all scheme [10] to
assign each subject with a collateral score. For a binary SVM classifier, the decision
function is defined as f (w) =

∑
y

i
𝛼

i
K
(
w, w

i

)
+ b, where the kernel

K
(
x

i
, x

j

)
= exp

(
𝛽
‖‖‖x

i
− x

j

‖‖‖
2)

 is the radial basis function, w
i
 is the support vector, y

i
 is

the binary class label, and 𝛼
i
 and b are the coefficients and bias term to be trained. In the

one-vs-all type scheme, a binary SVM is trained for each class to separate the examples
in the target class (positive labeled) from the remaining ones (negative labeled). For a
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new subject to be classified, the axial and coronal projection images are first projected
to the eigen vessel patterns obtained from the training data, and the associated feature
vector w is produced by concatenating the reconstruction coefficients. Lastly, the feature
vector w is classified with the associated classifier that has the highest score computed
from all classifiers.

2.6 Training and Validation

As there is almost no visual difference between the 4D CTAs of normal controls and
patients with collateral scores of good, we combined them as one group for training and
classification. Therefore, we categorized all the subjects into three classes: good/normal,
intermediate, and poor. As there are much fewer subjects with poor collateral circulation
and it is desirable to have a balanced dataset for training, we generated 8 more new
subjects by nonlinearly registering these cases to normal controls with the least anatom‐
ical similarity to them. We used CTA images that contain general brain anatomy and
clear vasculature for registration. This way, we ensure that the synthesized anatomy is
distinct from both the original image and the image to be registered to. To further enrich
the training set, we also included the left-and-right mirrored versions of the subjects
since most often a stroke occurs unilaterally, and the equal chance of having a stroke on
the left or right hemisphere should be represented. Finally, we employed a leave-one-
out scheme to validate our computer-assisted scoring system. However, as the dataset
contains both the original and mirrored images, we only validated the classification
results for 45 original images in order to avoid repeated classification. More specifically,
for each target subject to receive a score, the subject’s images (both original and mirrored
versions) will be excluded from the training set. This leaves 88 subjects to generate the
eigen vessel patterns and train the classifier at each round of validation. To assess the
performance of the SVMs for collateral scoring, with the same image features, we
compared the classification results using SVMs against those using k-nearest neighbors
(kNN) and random forests. More specifically, through cross-validation, in terms of
overall scoring accuracy, we found that for kNN, the optimal number of neighbors is 7,
and for random forests, 150 trees offer the best results.

3 Results

3.1 Low-Rank Image Decomposition

A demonstration of low-rank decomposition is shown in Fig. 4 for two different subjects.
Compared with the original image, the pattern of blood vessels is captured in the sparsity
component while the other brain anatomy and calcification in the falx (Subject 1) have
been removed. As for Subject 2 with poor collateral circulation, the absence of bright
blood vessels on the right hemisphere can be observed in the sparsity component.
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Fig. 4. Demonstration of low-rank decomposition using two subjects (different from those in
Fig. 3). The yellow arrows point to the calcifications, and the vasculatures are shown as bright
signals in the sparsity images. (Color figure online)

3.2 Eigen Vessel Patterns

The first 5 most significant principal components (or eigen vessel patterns) ranked by
the eigenvalues for the two projections are shown in Fig. 5. Note that the asymmetric
eigen vessel patterns in Fig. 5 are the results of unilateral collateral clots.

Fig. 5. Eigen blood vessel patterns of axial and coronal projection images.

3.3 Automatic Collateral Circulation Scoring Results

The score assignment accuracy for each class and in total are show in Table 1 for the
SVMs, random forests, and k-nearest neighbors. In general, the SVMs achieved higher
scoring accuracy than the other two methods. To better understand the classification
results with SVMs, the related confusion matrix is shown in Table 2.

4 Discussion and Future Work

We used low-rank decomposition to extract vasculatures from the 4D CTA for three
reasons. First, compared with simple subtraction of pre- and post-contrast CTAs, low-
rank decomposition does not increase the image noise level. Second, the method can
remove or mitigate unwanted image features, such as hyperintense signals from the
calcifications in the pituitary gland, ventricles or the falx. Lastly, the method preserves
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the relative image intensity changes due to blood circulation while removing other
anatomical features. We employed 2D projection images for the classification task.
Compared with directly using 3D volumes, which achieved overall scoring accuracy of
73.3%, 46.7% and 46.7% for SVMs, random forests, and kNN techniques, respectively,
the 2D approach requires less computational burden, and performs better likely due to
further reduction of blood vessel anatomical variability from projection. Here, the
projection methods are chosen with the consideration of the blood flow direction (from
bottom to top of the brain). When a clot occurs, the superior side of the MCA territory
will appear dark, and the more severe the case is, the less blood reaches the region. As
a result, the coronal mean projection captures the blood supply perpendicular to the flow
direction while the axial median projection measures the property along flow direction.
Compared with the selected projection methods, the conventional MIPs did not perform
as well (71.1%, 55.6%, and 57.8% overall classification accuracy for SVMs, kNN, and
random forests).

Table 1. Evaluation of collateral circulation score classification accuracy

Normal/Good Intermediate Poor All
SVMs 82.4% 64.3% 100% 82.2%

Random forest 64.7% 42.9% 85.7% 64.4%
kNN 41.2% 42.9% 85.7% 55.6%

Table 2. Confusion matrix for collateral score classification results using SVMs.

Prediction True class
Normal/Good Intermediate Poor

Normal/Good 14 2 0
Intermediate 2 9 0

Poor 1 3 14

For this work, we only had a small cohort of subjects available, yet the cerebral
vasculature has much higher variability than other anatomical structures in the brain.
Therefore, we blurred the CTA images using a Gaussian kernel with a kernel size of
3 mm, which is the diameter of the main cerebral arteries, to reduce the variability of
the smaller vessels. For training, we synthesized new subjects with poor collateral
circulation due to a highly imbalanced dataset. Since nonlinear registration will signif‐
icantly alter anatomical features, rendering the synthesized datasets sufficiently different
from both the original and the image to be registered, they were included in cross-
validation. With more subjects, the classification results may be further improved, and
we could explore the popular convolutional neural networks to inspect the feature space
and potentially improve the classification. Another limitation of the current techniques
comes from the inter- and intra-variability of the scores in practice. With simple visual
inspection of 3D data, it is challenging to establish consistent and accurate scores partic‐
ularly for images that appear in between the categories (e.g., intermediate vs. good).
This may partially contribute to the lower classification accuracy for the intermediate
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class, as many from the group were assigned to good/normal or poor groups. In addition,
in contrast to the good/normal and poor collateral scores, the wider range of variability
among the population of intermediate collateral circulation also contributes to the lower
classification accuracy. However, in clinical practice, it is most important to differentiate
between good and intermediate collaterals versus poor collateral circulation since in
individuals with poor collaterals the results of thrombectomy are poor. In the future, we
will conduct evaluation on the inter- and intra-rater variability in labelling collaterals,
and further validate our technique in relation to such information. Although averaging
the extracted blood vessels for each subject can help gain information regarding blood
flow over time, we would like to explore other techniques that explore temporal infor‐
mation, as well as more advanced rank-reduction techniques that better preserve relevant
features for more accurate collateral evaluation.

5 Conclusions

We have developed an automatic technique to compute a collateral circulation score
with an overall 82.2% accuracy. To the best of our knowledge, this is the first time that
a computer-assisted classification method has been used for this application, and it is
the first step towards helping radiologists and neurosurgeons more efficiently and accu‐
rately determine the best course of treatment and predict patient outcomes.
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Abstract. [Background] It is expected that thrombus density and perviousness
measurements are dependent on CT slice thickness, because density values are
blurred in thicker slices. This study quantifies the effect of slice thickness on
thrombus density and perviousness measurements. [Methods] Thrombus density
and perviousness measurements were performed in 50 patients for varying slice
thicknesses, using a manual and semi-automated technique. Linear regression was
performed to determine the dependence of density measurements on slice thick‐
ness. Paired t-tests were used to test for differences in density and perviousness
measures for varying slice thickness. [Results] Thrombus density decreased for
increasing slice thickness with approximately 2HU per mm. Perviousness meas‐
urements were significantly higher for thick slice compared to thin slice NCCT.
[Conclusion] Thick slice NCCT scans result in an underestimation of thrombus
density and overestimation of thrombus perviousness.

Keywords: Ischemic stroke · Thrombus density · Thrombus perviousness · CT · Slice
thickness

1 Introduction

Stroke has a major impact on society as it is one of the leading causes of death worldwide
[1]. In 87% of all cases, stroke is caused by a thrombus that occludes an intracranial
vessel (ischemic stroke) [2]. As a patient loses around 1.9 million neurons each minute,
fast treatment to restore blood flow is crucial [3].

For the past years, research has focused on improving treatment for ischemic stroke.
This resulted in endovascular treatment (EVT) as an addition to the standard treatment,
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after it showed increased functional outcome in several randomized clinical trials [4].
Nonetheless, patient outcome is still poor and further research is focusing on patient
specific treatment selection, for example based on thrombus characteristics. It has been
suggested that thrombus density measurements provide information on thrombus archi‐
tecture and is a potential predictor for treatment effect [5]. In addition, Santos et al. [6, 7]
showed that thrombus permeability was associated with higher recanalization rate and
better functional outcome, after both EVT and IV-tPA.

Because the measurement permeability requires dynamic imaging, the definition
thrombus perviousness was introduced as a measure to estimate thrombus permeability [6].
Perviousness is defined as the difference in thrombus voxel intensities, comparing CT
angiography (CTA) to non-contrast CT (NCCT) [6]. In this assessment, imaging quality may
be a limiting factor. Preferably, the assessment should be applied on low noise, high reso‐
lution, and thin slice images. In current clinical practice, thick slice NCCT images are
commonly used because of lower noise levels and lower demand on storage capacity. CTA
images have higher contrast to noise ratio and are therefor commonly stored as thin slices
(approximately 1 mm thick). Because of averaging, which is applied to generate thick slice
images, signal of small-scale structures such as thrombi may be reduced. Kim et al. [8]
showed reduced sensitivity and specificity for thrombus detection on thick slice NCCT
compared to thin slice NCCT. In this study we aim to quantify the effect of slice thickness
on thrombus density and perviousness measurements.

2 Methods

2.1 Patient Selection

We included 50 consecutive patients from the Multicenter Randomize Clinical trial of
Endovascular treatment of ischemic stroke in the Netherlands (MR CLEAN) cohort with
thin slice (≤2.5 mm) NCCT and CTA scans that were performed within 30 min on the
same scanner.

2.2 Slice Reconstruction

Thick(er) slice images were reconstructed by taking the average over multiple thin slices
for each voxel location. For a given slice thickness, multiple approaches can be followed
to generate such an image. For example, if a new image is generated with twice as thick
slice thickness, one can combine slice 1 and 2 or slice 2 and 3. Figure 1 illustrates how
multiple approaches can be followed for thick slice reconstructions out of thin slices.
First, all scans were super sampled to an initial slice thickness of 0.45 mm. Then,
different reconstructions were created for given slice thicknesses. The resulted slice
thicknesses ranged from 0.45 mm to 4.95 mm with an increment of 0.45 mm. The CTA
slice thickness was kept at 0.45 mm.

The Effect of Non-contrast CT Slice Thickness on Thrombus Density 169



0

90

60

30
15

75

0

45

90

Fig. 1. Illustration of the slice reconstruction that is used to increase slice thickness. The numbers
in the layers show examples of densities. This figures shows that to create a scan with a slice
thickness twice as large as the original (Left), the example in the middle combined slice 1 and 2
and 3 and 4. The second example (Right) show the results when slice 2 and 3 are used to combined
to generate an image with a thicker slice.

2.3 Density and Perviousness Measurements

Thrombus density measurements were initially performed on the original thin slice
NCCT and CTA by a single expert observer, using both manual and semi-automated
thrombus perviousness measurements described in [6, 9]. First, Elastix® [10] was used
for rigid image registration to align the NCCT and CTA for each patient. For the manual
density measurement, a spherical region of interest (ROI) with a radius of 1 mm was
placed in the proximal, middle and distal part of the thrombus. The semi-automated
perviousness measurements followed multiple steps. First, 2 ROIs were placed proximal
and distal to the thrombus and symmetrically on the contralateral side. A coarse center‐
line of the contralateral vessel between the proximal and distal ROIs- was determined
using a minimum cost path calculation on the CTA image filtered with a tuned Frangi’s
vesselness filter [11, 12]. Then, the vessel contour was obtained from this coarse center‐
line using a graph-cut segmentation technique with kernel regression [12]. The initial
coarse centerline was corrected to be the center of mass of this segmented vessel contour
and the radius along the fine centerline was determined. Finally, based on symmetry,
the fine centerline was projected onto the occluded vessel using 3D-Bspline registration
to optimize alignments. The same kernel regression segmentation technique was used
on the CTA to segment the occluded vessel, guided by the aligned centerline. Due to a
drop of intensity at the location of the thrombus, the radii of the segmented lumen
decreases significantly. At the site of the thrombus, the vessel contours were replaced
with the contralateral radius contours, thereby creating a shape prior. Within the shape
prior, a combination of region growing segmentation and mathematical morphologies
is used to obtain the final thrombus segmentation.

To assess thrombus perviousness, we used the thrombus attenuation increase (TAI),
which is defined as the thrombus attenuation difference between CTA and NCCT meas‐
urements. The thrombus density measurements were obtained using the newly recon‐
structed NCCT images for all slice thicknesses. The density and perviousness measures
for all slice thicknesses were compared to the original, thin slice, density and pervious‐
ness measurements.
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2.4 Statistical Analysis

The mean and standard deviation of the difference in density measurements was calcu‐
lated for each slice thickness. To investigate a potential correlation between thrombus
density and slice thickness, a linear regression model was used based on the mean
thrombus density for all patients. A paired t-test was used to investigate whether a
significant difference in density and perviousness measurements was present, comparing
the thin slice measurements to the measurements with the reconstructed scans with
increased slice thicknesses.

All analyses were preformed using IBM® SPSS® Statistics software, version 24
(IBM Corp., Armonk, NY).

3 Results

Linear regression showed that the thrombus density values significantly decreased with
increasing slice thickness. For each mm increase in slice thickness, the density measures
decreased with 2.9 and 2.2 HU (both p < 0.001), for the manual measurements and the
full thrombus segmentation respectively. Figure 2 shows the manual thrombus density
measurements in 50 patients for varying slice thicknesses. The density measurements
as assessed by the full thrombus segmentation are shown in Fig. 3.

Fig. 2. (Left) NCCT thrombus density measures for varying slice thickness for 50 patients
manually measured with ROIs; (Right) NCCT mean thrombus density for varying slice thickness
measured with ROIs
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Fig. 3. (Left) NCCT thrombus density measures for varying slice thickness for 50 patients
measured with the full thrombus segmentation; (Right) NCCT mean attenuation decrease over
slice thickness measured with the full thrombus segmentation

The paired-t test showed that there was a significant decrease (p < 0.001) in thrombus
perviousness measures for increasing slice thickness, comparing the thin-slice measure‐
ments with the measurement for NCCT with 0.9 mm slice thickness. Figures 4 and 5 show
the results of the perviousness measurements in 50 patients for varying slice thicknesses,
measured with the ROIs and full thrombus segmentation respectively.

Fig. 4. (Left) Thrombus attenuation increase for varying slice thickness for 50 patients manually
measured with ROIs; (Right) Mean attenuation increase over slice thickness measured with the
ROIs
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Fig. 5. (Left) Thrombus attenuation increase for varying slice thickness for 50 patients measured
with the full thrombus segmentation; (Right) Mean attenuation increase over slice thickness
measured with the full thrombus segmentation

4 Discussion

In this study, it was shown that there was a significant decrease in thrombus density
measures with increasing CT slice thickness. As a result, perviousness measures
increased with increasing NCCT slice thickness.

Thrombus characteristics, such as thrombus density and perviousness, may be used
as treatment selection parameters or predictive parameters for treatment success and
functional outcome for patients with ischemic stroke in the future [5–7]. While data
storage will become a major challenge in the medical imaging field, it is important to
know the consequences of data reduction [11]. This study showed that the increase of
NCCT slice thickness resulted in reduced thrombus density and increased perviousness
measurement values. Therefore, previous associations made between thrombus pervi‐
ousness and favorable prognostics cannot be extrapolated for thick slice NCCT meas‐
urements, as they may lead to overestimation of favorable prognostics.

The results showed differences between the thrombus density and perviousness
measurements, performed with the manual annotation compared to the semi-automated
thrombus segmentation. Less variation was visible in the thrombus density and pervi‐
ousness measurements between patients and the effect of increased slice thickness
appeared less for the semi-automated full thrombus segmentation. This was expected
because a larger volume of density values is included in this technique, which makes it
less susceptible for noise.

The placement of ROIs in imaging data is easy applicable and can already be applied
in daily clinical practice. However, it was shown that the full thrombus segmentation is
less sensitive to slice thickness. Also, Santos et al. [12] showed a stronger association
between thrombus perviousness and functional outcome and recanalization, based on
full segmented thrombi measurements.
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The linear regression showed an inverse relation between slice thickness and density
measurements. This suggests that a correction for slice thickness could result in a more
accurate density measurement.

A limitation of this study is that we did not correct for confounders. It could be
possible that factors such as scanner manufacturer, reconstruction, size of thrombus, or
filtering algorithms have influenced our results.

This study only used thrombus density and perviousness measurements from a single
observer. Thereby, we did not take inter-observer variability into account. However,
Santos et al. [9, 13] already showed reasonable inter-observer variability for both meas‐
urement techniques.

The increase of slice thickness creates a blurring effect in the z-direction. As a result,
the decrease in density of the thrombus in the CT image is dependent on the orientation
and fraction of the vessels present within the slice.

Longitudinal partial volume effect will be more apparent in thicker slices. Based on
a phantom study, Monnin et al. [14] suggested that the optimal slice thickness is 75%
of object width. As the average diameter of the M1 segment is 2.3 ± 0.3 mm and the
vessel diameters are expected to decrease distally, this suggests a maximal slice thick‐
ness of approximately 1.7 mm [15]. However, we also see a reduction of thrombus
densities with slice thickness between 0.45 and 1.7 mm.

5 Conclusion

This study showed that increasing NCCT slice thickness results in a decreasing thrombus
density and an increase in thrombus perviousness assessment.
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Abstract. Reliable assessment of collateral blood supply is important in acute
ischemic stroke. We propose a quantitative method for evaluation of collateral
status on CT angiography (CTA). We collected CTA images of 70 patients from
MR CLEAN with an occlusion in the M1 branch. Our proposed quantitative
collateral score (qCS) consisted of atlas-based territory-at-risk identification and
vessel segmentation using a Hessian-based filter. Ground truth was obtained by
manual collateral scoring (mCS). Accuracy was evaluated by analysis of
Spearman ρ and one-way ANOVA. Correlation of mCS and qCS with tissue death
and functional outcome was assessed. Receiver operating characteristics curves
of mCS and qCS were analyzed to distinguish favorable from unfavorable
outcome. qCS strongly correlated with mCS and showed reliable correlations
with tissue death and functional outcome. qCS showed higher discriminative
power between favorable and unfavorable compared to mCS, indicating potential
clinical value.

Keywords: Collateral status · Automatic assessment · Acute ischemic stroke ·
CT angiography · Endovascular therapy

1 Introduction

In stroke patients with acute proximal large vessel occlusion, endovascular therapy
(EVT) and intravenous thrombolysis are the only two effective treatment options used
in routine practice [1]. Many studies have emphasized the relevance of collateral assess‐
ment on baseline imaging to quickly identify patients who potentially benefit from EVT
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[2, 3]. Some studies even utilized the collateral status as an inclusion criteria for their
randomized control trial [4]. Collaterals maintain blood flow via alternative routes in
the brain and good collateral supply is associated with smaller infarct volumes and
improved clinical outcome [5, 6]. To achieve information on the collateral status in the
acute setting, single-phase CT angiography (CTA) is the most widely used imaging
modality. Single-phase CTA is a snapshot of vascular contrast enhancement over time.
Although information on dynamic filling of the leptomeningeal collaterals is lacking,
CTA allows visualization of the extent of collateral capacity.

Many collateral grading systems on CTA have been proposed, but a consistent and
easy to interpret standard score has yet to be found [7]. There is a need for objective and
accurate collateral capacity assessment since current grading methods are susceptible
to poor interobserver agreement and are often scored on coarse ordinal scales. An auto‐
mated and quantitative collateral scoring method holds the promise to overcome these
problems and aid in rapid triaging of patients for EVT. The aim of this study is to intro‐
duce a quantitative method for the evaluation of collateral status on CTA. We investigate
the correlation of our proposed method with tissue and functional outcome and assess
the predictive value for favorable functional outcome as compared to standard visual
scoring.

2 Materials and Methods

2.1 Patient Selection

Study data was acquired from the MR CLEAN [8] database. Patient eligibility and
methods of MR CLEAN have been described previously [9]. All patients or their legal
representatives provided written informed consent. For this post-hoc analysis, we
included 70 consecutive patients from the MR CLEAN database who received baseline
thin-sliced single-phase CTA imaging (approximately 1 mm) and who had follow-up
non-contrast CT (NCCT) imaging to allow follow-up infarct volume (FIV) assessment.
No fixed CTA protocols were used in MR CLEAN, and protocols varied per center. We
only included patients with an occlusion in the middle cerebral artery (MCA) M1
segment. Patients with large diffuse haemorrhagic transformations (PH2) and image data
with extreme artifacts or insufficient scan quality were excluded. A summary of the
clinical patient information is given in Table 1.

Table 1. Clinical baseline characteristics stratified by favorable and unfavorable outcome.

Parameter All (N = 59) mRS 0–2 (N = 22) mRS 3–6 (N = 78)
Age (yr) (mean ± SD) 63.8 (13.5) 64.5 (15.1) 63.0 (13.5)
Sex (female) (No.,%) 24 (40.7) 6 (46.2) 18 (39.1)
NIHSS (median, IQR) 17 (14–21) 14 (9–17) 19 (16–22)
Onset to randomization (min)
(median, IQR)

194 (145–282) 166 (132–233) 205 (148–291)

Note: NIHSS indicates National Institutes of Health Stroke Scale; IQR, interquartile range; mRS, modified Rankin Scale
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2.2 Outcomes

The primary clinical outcome parameter was the patient’s functional outcome at 90 days
as captured by the mRS. The mRS is a 7-point scale ranging from no symptoms (score 0)
to dead (score 6). Primary radiological outcome is the tissue outcome in terms of FIV
assessed on follow-up NCCT. Secondary clinical outcome was the dichotomized mRS
score of 0–2, which indicates functional independence and is considered a favorable
outcome.

2.3 Manual Collateral Score

The presence of leptomeningeal collaterals on CTA was defined as relative differences
in appearance of vasculature between hemispheres, distal to the proximal artery occlu‐
sion. In this study, the collateral status was scored manually on an existing commonly
used ordinal scale by Tan et al. [10] as part of MR CLEAN and in a quantitative fashion
using automatic analysis. In MR CLEAN, a central imaging committee assessed the
manual collateral score (mCS) on baseline CTA. Image evaluators had more than 10
years of experience and were blinded to all clinical findings, except symptom side. All
CTA images were independently graded by two neuroradiologists. A third reader
resolved discrepancies between the initial two readers. The mCS was assessed on a
commonly used 4-point scale, with 0 for absent collaterals (0% filling of the occluded
territory), 1 for poor collaterals (>0% and ≤50% filling of the occluded territory), 2 for
moderate (50% and <100% filling of the occluded territory), and 3 for good collaterals
(100% filling of the occluded territory) [10]. Readers used the non-ischemic hemisphere
as normal reference. A mixture of CTA images with NCCT window-level and
maximum-intensity-projections were used for collateral grading, including all available
slices. An example is shown in Fig. 1A. If different slices expressed different collateral
capacities, an average collateral score over all slices was determined. No fixed CTA
acquisition protocols were used in MR CLEAN and protocols varied per center. Inter-
observer reliability for mCS assessment in MR CLEAN has previously been reported
(kappa = 0.60) [5].

2.4 Quantitative Collateral Score

Quantitative collateral score (qCS) was obtained using an automatic method. This
method uses CTA images as input and consisted of the following steps; (1) identification
of affected territory at risk; (2) segmentation of vessels; and (3) comparison of vessel
presence between hemispheres.

The location and extent of the territory at risk depends on the location of the intra‐
cranial occlusion. Inclusion of all vessels in the entire MCA territory might lead to
overestimation of the collateral capacity. It is well-known that variation in cerebroarte‐
rial structures between patients is common, making precise territory at risk localization
impossible without additional imaging. Therefore, the patient-specific territory at risk
is estimated. Topographic probability maps as presented previously by Boers et al. [11]
allow for identification of the area likely to infarct for a given occlusion location. These
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probability maps are created by the co-registration of individual follow-up NCCT
images into the coordinate space of a healthy subject. FIVs per occlusion location were
segmented, and mapped onto each other. The sum of the FIV masks represented the
frequency of infarction for each voxel. Co-registration was performed to align the prob‐
ability maps with each patient’s CTA by a subsequent rigid and affine transformation.
Mutual information was set as similarity measure. In this study, we focused on M1
occlusions and defined the territory at risk as the area that has >5% prevalence of infarc‐
tion. This region is used as Region of Interest (ROI) and was mirrored to cover both the
ipsilateral and contralateral side for further analysis (Fig. 1B).

Fig. 1. A: Maximum intensity projection (MIP) of a CTA image with an occlusion in the left M1
branch and mCS of poor collaterals (>0% and ≤50% filling of the occluded territory). B: MIP
with overlay of co-registered distribution map of infarct prevalence. Area of >5% is used as region
of interest for the Hessian-based filter. C: MIP with segmented vessels distal to the M1 branch
used for collateral capacity calculation. For this patient, the qCS was 27%.

After obtaining the ROIs in both hemispheres, a Hessian-based filter introduced by
Frangi et al. [12] was applied to enhance tube-like structures (vessels) and suppress disk-
like and blob-like structures. Because this filter is known for its sensitivity near edges,
and thus the skull, a previously described skull-stripping algorithm was applied prior to
filtering [13]. It is important to use a multi-scale approach to capture the variation in
vessel size. For this, a detailed statistical cerebroarterial atlas that was derived from 700
normal MRA datasets [14] was used to obtain the mean vessel diameter distal to the M1
segment, ranging from 0.9 to 3.1 mm. This range was used as the input scale range for
the filter. The step size for the multi-scale approach was set to 1.1 mm. The required
parameters that control the sensitivity of the filter were chosen based on visual inspection
and were set as α = 0.5, β = 0.5, and c = 500. Filtering resulted in a 3D-image with a
vesselness measure; each voxel in the output volume indicated the similarity of the local
structure to a vessel. Applying a patient-specific threshold within the ROI on the vessel‐
ness image resulted in a binary image of the vessels. This threshold was defined as the
mean + SD vesselness measure of the background; the area outside the ROI with a
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density of less than 200 Hounsfield units. A morphological closing operator using a disk-
shaped structuring element with a radius of 0.4 mm was applied as post-processing step
to correct for disconnected segments (Fig. 1C).

To ensure that only the vessels distal to the proximal M1 segment were measured,
vessels with a diameter of >3.1 mm were excluded. Hereafter, the segmented vessels
distal to the M1 segment in both hemispheres were extracted and multiplied by its density
values (in Hounsfield units), where the sum represented the vascular presence (VP) of
each hemisphere. The qCS was calculated as the percentage of the VP of the affected
and healthy hemisphere via the following equation:

qCS = max
(

100,
VPipsi

VPcontra

)
;0 ≤ qCS ≤ 100

where VPipsi and VPcontra is the vascular presence of the affected and contralateral side
respectively.

2.5 Assessment of Tissue Outcome

Tissue outcome was assessed on follow-up NCCT imaging, acquired 5–7 days after
stroke onset. If 5–7 day NCCT was not available due to death or discharge, 24 h follow-
up NCCT was used. In case of hemicraniectomy, the last scan prior to surgery was
selected. The ischemic lesions were segmented using previously developed and vali‐
dated software, resulting in a binary mask of the FIV [13]. Adjacent hyperdense areas
suspected for hemorrhagic transformation were considered part of the FIV. All FIVs
were inspected and adjusted if necessary by a trained observer (AMB) with more than
4 years of experience and at least one neuroradiologist (WvZ, LFB or CBM) with more
than 15 years of experience. A consensus reading with 2 neuroradiologists was
performed to resolve cases with any discrepancies. FIV was calculated in milliliters
(mL) by multiplying the number of voxels of the segmented ischemic lesions with its
voxel size.

Table 2. Tissue outcome and collateral scores

Variable All (N = 59) mRS 0–2 (N = 22) mRS 3–6 (N = 78)
FIV (median, IQR) 88 (31–215) 23 (9–30) 116 (34–249)
mCS (mean ± SD) 1.8 (1.0) 2.5 (0.8) 1.6 (0.9)
qCS (mean ± SD) 47.9 (31.9) 40.6 (30.9) 73.3 (21.2)

Note:– FIV indicates follow-up infarct volume; mCS, manual collateral score; qCS, quantitative collateral
score; mRS, modified Rankin Scale

2.6 Statistical Analysis

Dichotomous variables were presented as proportion of population. Continuous variables
were tested for normality (Kolmogorov–Smirnov test) and presented as mean and SD if
normally distributed or as median and interquartile range (IQR) otherwise. The mCS was
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used as a reference standard to evaluate the accuracy of the proposed qCS method. The
accuracy was assessed by constructing boxplots and calculation of the Spearman rank
correlation coefficients. One-way ANOVA analysis was performed to test for differences
in qCS between mCS groups.

Receiver operating characteristics (ROC) curves were created and the area under the
curve (AUC) was calculated to quantify the discriminative power of mCS and qCS to
distinguish between favorable and unfavorable functional outcome (mRS 0–2 versus
mRS 3–6). Sensitivity and specificity were calculated. All statistical analyses were
performed in SPSS v.24.0 (IBM Corp., Armonk, NY, USA). A p-value of <0.05 indi‐
cated statistical significance in all analyses.

3 Results

We included 70 patients with an M1 occlusion in the MCA territory. We additionally
excluded 11 patients due to incomplete head scans (n = 7), extreme movement artifacts
(n = 2) and errors in co-registration (n = 2), resulting in a total of 59 patients for analysis.
Mean age was 63.8 (SD ± 13.4), mean slice thickness was 0.89 mm (SD ± 0.17), and
median FIV was 81 mL (IQR:31-214.5).

The correlation between qCS and mCS was significant with a Spearman ρ of 0.68,
p < 0.001. Boxplots are displayed per mCS grade in Fig. 2. The qCS was significantly
different between all mCS groups, except for absent collaterals (grade 0) versus poor
collaterals (grade 1). Imaging parameters are shown in Table 2.

Fig. 2. Left: distribution of quantitative collateral score (qCS) per manual collateral score (mCS)
grade, ranging from absent collaterals (0% filling of the occluded territory) to good collaterals
(100% filling of the occluded territory). The qCS was significantly different between all mCS
groups, except for absent collaterals (grade 0) versus poor collaterals (grade 1). Right: ROC curve
analysis of mCS and qCS for discriminating favorable outcome (mRS 0–2) from unfavorable
outcome (mRS 3–6).
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The correlation of qCS and mCS with FIV were similar (both Spearman ρ = −0.61,
p < 0.001). Correlation with mRS as outcome measure was also significant for both
collateral scores; qCS showed Spearman ρ = 0.36, p = 0.006; and mCS showed
Spearman ρ = 0.28, p = 0.03. ROC curves are displayed in Fig. 2. The discriminative
power of mCS to distinguish between favorable and unfavorable functional outcome was
poor with an AUC of 0.66. The proposed qCS showed an AUC of 0.76, representing a
fair discriminative power, with a sensitivity and specificity of respectively 0.77 and 0.67.

4 Discussion

We have presented a new quantitative method to estimate the collateral capacity on CTA
imaging of patients with an acute ischemic stroke. We have shown that the quantitative
score strongly correlates with the manual collateral score. In our population, the asso‐
ciations of the quantitative collateral score with clinical and radiological outcome is
identical to the common manual score, indicating the great potential clinical value.

To our knowledge, this is the first study that quantifies collateral capacity on CTA
imaging. Visualization of the collateral capacity is not limited to CTA, and grading
methods on various imaging modalities have been introduced. Four-vessel Digital
subtraction angiography (DSA) is considered the gold standard for assessment of collat‐
eral supply. However, in the process of rapidly triaging patients for stroke therapy, DSA
is seldom used because of its invasiveness and time-consuming nature [3, 15, 16]. Ernst
and colleagues [17] previously introduced an atlas-based method for TOF- and contrast-
enhanced MRA imaging to score collateral abundance in a quantitative fashion. Despite
promising results, it might be challenging to translate these results to other types of
imaging protocols.

Our study has some limitations. We only selected patients with a proven M1 occlu‐
sion for this study, resulting in a selection bias. Though the M1 segment of the MCA
territory is the most common location for a large vessel occlusion, our proposed method
should prove accurate for other occlusion types as well to be utilized in the total EVT
eligible population. Furthermore, this study suffers from a relative small number of
subjects which impedes multivariable regression analysis. Important prognostic factors,
such as age, baseline National Institutes of Health Stroke Scale (NIHSS) score and
treatment allocation should be included in future studies to further investigate the role
of qCS assessment in acute stroke. We used thin-slice CTA to proof our concept of
quantitative collateral scoring and applying our method on CTA images with thicker
slices might result in suboptimal vessel segmentation, impairing the final qCS.

Our method heavily depends on the output of the Hessian-based filter introduced by
Frangi et al. [12], the so-called vesselness filter. It is known that traditional Hessian-
based filters often fail in preserving the vessel structure during smoothing, and small
vessels and bifurcations might be characterized as background. Despite these disadvan‐
tages, we chose to use Frangi’s vesselness filter for several reasons: (1) it was designed
to detect vessels in angiography images; (2) it addresses the multiscale character of artery
trees, thereby accounting for variations in vessel diameters; and (3) small flaws in
detecting vascular structures would only result in minimal loss of accuracy, since our
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approach compares hemispheres to obtain the final qCS. In this study, we did not
compare other Hessian-based filters or other filter types such as linear and non-linear
anisotropic filters. Furthermore, the optimal sensitivity parameters for the vesselness
filter were set according to visual inspection. Exploring the output of different setting
and filters might result in an even more robust and accurate method, and will be
addressed in a future study.

In this study, a quantitative method to estimate the collateral capacity in automated
fashion on CTA is presented. There is a strong correlation with the manual reference
score and our method showed strong correlations with tissue death and functional
outcome. Quantitative scoring showed higher discriminative power between favorable
and unfavorable outcome after stroke in comparison to manual assessment, and might
be helpful in future patient selection models for EVT.
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