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Preface FIFI 2017

The application of sophisticated analysis tools to fetal, infant and paediatric imaging
data is of interest to a substantial proportion of the MICCAI community. The main
objective of this workshop is to bring together researchers in the MICCAI community
to discuss the challenges of image analysis techniques as applied to the fetal and infant
setting. Advanced medical image analysis allows the detailed scientific study of con-
ditions such as prematurity and the study of both normal singleton and twin devel-
opment in addition to less common conditions unique to childhood. This workshop
brings together methods and experience from researchers and authors working on these
younger cohorts and provides a forum for the open discussion of advanced image
analysis approaches focused on the analysis of growth and development in the fetal,
infant and paediatric period.
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Preface OMIA 2017

Age-related macular degeneration, diabetic retinopathy, and glaucoma are the main
causes of blindness. Oftentimes blindness can be avoided by early intervention, making
computer-assisted early diagnosis of retinal diseases a research priority. Related
research is exploring retinal biomarkers for systemic conditions like dementia,
cardiovascular disease, and complications of diabetes. Significant challenges remain,
including reliability and validation, effective multimodal analysis (e.g., fundus
photography, optical coherence tomography, and scanning laser ophthalmoscopy),
more powerful imaging technologies, and the effective deployment of cutting-edge
computer vision and machine learning techniques. The Fourth International Workshop
on Ophthalmic Medical Image Analysis (OMIA-4) addresses all these aspects and
more, this year in collaboration with the ReTOUCH retinal image challenge.
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Template-Free Estimation of Intracranial
Volume: A Preterm Birth Animal Model Study

Juan Eugenio Iglesias1(B), Sebastiano Ferraris1, Marc Modat1, Willy Gsell2,
Jan Deprest2,3, Johannes L. van der Merwe2, and Tom Vercauteren2,3

1 Translational Imaging Group, University College London (UCL), London, UK
e.iglesias@ucl.ac.uk

2 Biomedical Sciences Group, KU Leuven, Leuven, Belgium
3 Wellcome/EPSRC Centre for Interventional and Surgical Sciences,

UCL, London, UK

Abstract. Accurate estimation of intracranial volume (ICV) is key in
neuro-imaging-based volumetric studies, since estimation errors directly
propagate to the ICV-corrected volumes used in subsequent analyses.
ICV estimation through registration to a reference atlas has the advan-
tage of not requiring manually delineated data, and can thus be applied
to populations for which labeled data might be inexistent or scarce, e.g.,
preterm born animal models. However, such method is not robust, since
the estimation depends on a single registration. Here we present a group-
wise, template-free ICV estimation method that overcomes this limita-
tion. The method quickly aligns pairs of images using linear registration
at low resolution, and then computes the most likely ICV values using a
Bayesian framework. The algorithm is robust against single registration
errors, which are corrected by registrations to other subjects. The algo-
rithm was evaluated on a pilot dataset of rabbit brain MRI (N = 7), in
which the estimated ICV was highly correlated (ρ = 0.99) with ground
truth values derived from manual delineations. Additional regression and
discrimination experiments with human hippocampal volume on a subset
of ADNI (N = 150) yielded reduced sample sizes and increased classifi-
cation accuracy, compared with using a reference atlas.

1 Introduction

Background. Intracranial volume (ICV) is a crucial covariate in MRI-based
neuroimaging studies. Correcting for ICV, by division or regression [1], is neces-
sary for comparing volume estimates of brain structures from cases with different
head sizes. While the automated segmentation of brain structures has received a
considerable amount of attention in the literature, ICV estimation is often over-
looked, despite the fact that a poor ICV estimate can have a very detrimental
impact on the corrected volume of an otherwise very well segmented structure.
Compared with skull stripping, ICV estimation needs to account for all the tis-
sue and fluid inside the skull, not only the brain. Otherwise, atrophy or growth
of brain structures would be partially explained by changes of the whole brain.
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): FIFI/OMIA 2017, LNCS 10554, pp. 3–13, 2017.
DOI: 10.1007/978-3-319-67561-9 1



4 J.E. Iglesias et al.

The literature of ICV estimation is dominated by methods designed for adult
human brain MRI. Earlier approaches relied on simple thresholding and mor-
phological operations [2]. In the 2000s, methods based on linear registration [3,4]
gained popularity: scaling factors are derived from an affine registration to a ref-
erence atlas, and multiplied by the ground truth ICV of the atlas to yield the
estimates. These methods are implemented in widespread neuroimaging packages
(e.g., FreeSurfer [5], FSL [6]). Other approaches rely on explicit segmentation of
the intracranial cavity, typically with supervised methods based on parametric or
non-parametric models. Representative examples of the former are the Bayesian
segmentation [7] implemented in the SPM package [8], or variants thereof [9].
Examples of the latter include multi-atlas methods [10] and patch matching [11].

Although supervised methods can potentially yield better results,
registration-based algorithms for ICV estimation are still widely used in adult
human brain MRI, e.g., in FreeSurfer and FSL. The reason is threefold: they
are fast; they do not require multimodal MRI pulse sequences; and they do not
require labeled training data. Even if no ground truth ICV is available for the
reference atlas, the ICV can still be estimated up to a constant scaling factor,
which has no impact on the subsequent ICV correction. The main drawback
of registration-based ICV estimation is that it is very sensitive to registration
errors, which reflect directly on the ICV estimates through the determinant of
the transformation matrix.

Motivation: limitations in ICV computation for developing brain
and animal models. The literature on ICV estimation in the developing human
brain is very sparse, but it is possible to use registration-based methods based on
existing atlases, such as those described in [12,13]. In animals, however, the avail-
ability of atlases – particularly for species other than mouse, rat and monkey –
is very limited, especially for the developing brain. A particularly interesting
case is rabbit models, which are increasingly important in neuroscience. One of
the main application of rabbit models is the study of preterm birth, a problem
with large economic and social impact [14,15], and which is difficult to study in
humans [16]. The only available rabbit atlas [17] is for the adult brain, and has
no ICV information, as it was created from ex vivo brains without the skull.

Contribution. In this paper, we address the problem of ICV estimation by
computing the ICV of all subjects/cases in a study simultaneously. The method
has two major advantages: it does not require any labeled data, which is costly to
collect (which is why many methods rely on semiautomatically generated silver
standards, e.g., [4,10,11]); and is agnostic to species. Therefore, the proposed
method readily enables application to developing brain and animal studies.

More specifically, we propose a probabilistic framework, in which the true,
underlying ICVs are assumed to be independent samples of a Gaussian distrib-
ution with unknown parameters, and in which pairwise registrations yield noisy
measurements of the ratios between these ICVs. Within this framework, we use
Bayesian inference to compute the most likely ICVs. The information in the reg-
istrations enables estimation up to a scaling factor, which is disambiguated by
the model hyperparameters. The proposed method preserves the advantages of
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registration-based algorithms described above, while being more robust to reg-
istration errors. Such robustness translates into increased statistical power and
reduced sample sizes in subsequent analyses, as shown in our experiments below.

2 Methods

2.1 Probabilistic Framework

The graphical model of our probabilistic framework is shown in Fig. 1. Let v =
[v1, . . . , vN ]t be a vector of log-transformed ICVs from N subjects; since we work
with ratios, the logarithmic domain is more appropriate. These ICVs are assumed
to be independent samples of a Gaussian distribution with unknown mean and
variance (μ, σ2). Prior knowledge on these two parameters is encoded in the
hyperparameters of their prior distribution, which we choose to be a Normal
Inverse Gamma (NIG), parameterized by [m,n, a, b]t. This is the conjugate prior
of a Gaussian with unknown mean and variance, and can be decomposed into an
Inverse Gamma (IG) distribution on σ2 (parameterized by [a, b]t) and a Gaussian
distribution on μ, with mean m and variance σ2/n.

(a)

σ2 ∼ IG(a, b) = ba

Γ (a)
σ2

)−a−1
exp −b/σ2

)

μ ∼ N (m, σ2/n) =
√

n√
2πσ2 exp

[− n
2σ2 (μ − m)2

]

vi ∼ N (μ, σ2) = 1√
2πσ2 exp

[− 1
2σ2 (vi − μ)2

]

c ∼ IG(α, β) = βα

Γ (α)
c−α−1 exp(−β/c)

Sij ∼ L(vi − vj , c) = 1
2c

exp(−|vi − vj |/c)

(b)

Fig. 1. Graphical model (a) and corresponding equations (b). Circles represent random
variables, boxes represent hyperparameters, shaded elements are observed, and plates
indicate replication. N is the Gaussian distribution, and L is the Laplace distribution.

Now, we assume that we have a set S of subject pairs (i, j) for which pair-
wise scaling factors Sij have been computed. Factor Sij corresponds to a noisy
estimate of the difference in log-ICVs between subjects i and j, i.e., vi − vj .
The set of measurements does not need to exhaustively cover every (i, j), but
must ensure that the adjacency matrix Aij = δ(Sij �= 0) corresponds to a fully
connected graph, such that there is always a path of scaling factors available
between any two subjects. We use the matrix S to represent the measured scal-
ing factors, with diagonal Sii = 0,∀i, and Sij = NaN if the scaling factor is not
available, i.e., (i, j) �∈ S. These measurements, which are computed with a linear
registration algorithm, correspond to the logarithm of the determinant of the
estimated transform matrices. Here we assume that the registration method is
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symmetric, which yields an antisymmetric S, i.e., Sij = −Sji. In order to make
the algorithm robust against outliers, we further assume that the measurement
errors are independent samples of a Laplace distribution (based on the robust �1
norm, rather than �2 that the Gaussian distribution relies on) with zero location
and scale parameter c. Assuming zero location is appropriate, since the registra-
tion is symmetric. The scale parameter is unknown, but we place a conjugate
prior distribution on it – the IG distribution, with hyperparameters α and β.

2.2 Bayesian Inference

Our goal is to find the value v̂ that maximizes the posterior probability of the
ICVs v, given the pairwise scaling measurements and the hyperparameters:

v̂ = argmax
v

p(v|S,m, n, a, b, α, β) = argmax
v

p(S|v, α, β)p(v|m,n, a, b)

= argmax
v

∫
c

p(S|c,v)p(c|α, β)dc

∫
μ

∫
σ2

p(v|μ, σ2)p(μ, σ2|m,n, a, b)dμdσ2. (1)

Thanks to the conjugate priors, the two integrals in Eq. 1 have closed-form solu-
tions, so we can easily consider all possible values of the model parameters –
weighted by their probabilities – in the estimation. The negated logarithm of
this expression is the cost function to minimize (C). In the appendix, we show
that C is equal to:

C(v;S,m, n, a, b, α, β) = (α + |S|) log

⎡
⎣β +

∑
(i,j)∈S

|Sij − vi + vj |
⎤
⎦ + . . .

2a + N

2
log

[
b +

N∑
i=1

(vi − v̄)2

2
+

Nn(v̄ − m)2

2(N + n)

]
+ Z(α, β, |S|, n, a, b,N), (2)

where Z is a term independent of v, and v̄ = (1/N)
∑N

i=1 vi is the sample mean
of v. The final optimization problem is hence: argminv C(v;S,m, n, a, b, α, β).
This is an unconstrained problem, which can be efficiently solved with standard
algorithms; we used conjugate gradient [18] initialized with vi = m, ∀i. The final
solution is obtained by exponentiating v̂ to bring it back to the natural domain.

3 Experiments and Results

3.1 Data

We used two brain MRI datasets in this study: one of rabbits, and one of humans.
The rabbit dataset was acquired as part of a study seeking to understand the
effects of steroids on fetuses. Scans from 7 rabbits (5 preterm born, 2 term) were
acquired in vivo on a Bruker 9.4 T animal scanner using a RARE T2 sequence
(TR = 42 ms, TE = 1000 ms, 0.15 mm resolution isotropic). The intracranial cav-
ity was manually delineated by S.F. on the images, providing a ground truth for
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the ICVs. Since the size of the rabbit dataset is limited, we also performed exper-
iments on a larger, more conventional human dataset consisting of T1 scans of
150 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI): 77
Alzheimer’s disease (AD) patients and 73 age-matched controls (EC). No ground
truth ICVs was available for this dataset, so we used indirect validation tech-
niques. While direct validation is generally preferable, indirect methods make
the evaluation independent of segmentation errors, and do not require manual
delineation, which is prohibitive for large datasets.

3.2 Experiments on Rabbit Dataset

This experiment assesses the performance of the method in pediatric animal
brain MRI, in which the availability of labeled data is extremely limited. We used
correlation with ground truth volumes rather than absolute errors because the
errors depend on m, whereas correlations do not, and also because ICV correction
is based on correlation. We set the hyperparameters to n = a = α = 0.001, b =
β = 0.1, which represents very weak priors, such that the posterior distribution
of the model parameters is mostly driven by the data. We set m to the mean
value of the ground truth volumes, which has no effect on the correlation or ICV
correction. For registration, we used a symmetric linear method based on block
matching (NiftyReg [19]), applied to images downsampled by a factor of 4 in each
dimension (for efficiency). Figure 2 shows sample MRI slices and the scatter plot
for the ground truth and estimated ICVs, along with their linear regression.
The correlation is very strong: ρ = 0.996, with p ≈ 10−6. These results are
encouraging, but further validation is needed, given the small dataset.

Fig. 2. (a) Sample axial and (b) sagittal slices from rabbit scans in our dataset; letters
indicate orientation. (c) Scatter plot of ICVs: ground truth vs. estimated with our
method, along with regression line (solid) and its 95% confidence interval (dashed).

3.3 Experiments on Human Dataset

We further evaluated our method indirectly with three experiments on the
human dataset: we tested the strength of the correlation of hippocampal volume
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with age and ICV; we evaluated the ability of the ICV-corrected hippocampal
volumes to discriminate EC from AD; and we tested the dependence of the
performance on the set size |S|.

We compared our proposed approach (“PROP”) against performing no cor-
rection (“NOCORR”) and four different methods: 1. FreeSurfer v5.3 [4] (“FS”):
based on registration to a single template (MNI305) using cross-correlation;
2. Single atlas (“SINGAT”): a reimplementation of FS with NiftyReg at full
resolution; 3. SPM [7]: we compute the ICV by summing the volumes of the
gray matter, white matter and CSF, computed with SPM12 (default parame-
ters); and 4. Non-linear (“PROPNL”): PROP with nonlinear registration [20] –
we manually segmented the intracranial cavity in the atlas; nonlinearly propa-
gated this mask to all subjects to create a silver standard; computed pairwise
nonlinear registrations between subjects; propagated the silver standard masks;
and computed Sij as the difference in mask volume before and after registration.

By matching registration algorithms, SINGAT isolates the contribution of
our framework to the improvement achieved over FS. SPM represents a much
more complex, segmentation-based algorithm. PROPNL enables us to assess the
potential improvement yielded by a more precise registration, which in principle
could avoid bias from brain atrophy and disregard the contribution of extracra-
nial regions. We used the same values of n, a, α, β as in the rabbit dataset, and
set m to the mean ICV computed by FreeSurfer.

Table 1. Correlation coefficients (ρ) between hippocampal volume and age/ICV, with
95% confidence intervals and p-values (null hypothesis: ρ = 0). For age, we have
included the required sample size to detect the effect of age on hippocampal volume,
with significance level 0.01 and power 0.99. Bold font indicates the top performing
method.

Method ρage (95% C.I.) p-value Sample size ρicv (95% C.I.) p-value

NOCORR −0.23 ([−0.44, −0.01]) 0.0453 13 N/A N/A

FS −0.32 ([−0.51, −0.10]) 0.0076 10 0.31 ([0.09,0.51]) 0.009312

SINGAT −0.38 ([−0.56, −0.16]) 0.0014 9 0.47 ([0.27,0.63]) 0.000042

SPM −0.37 ([−0.55, −0.15]) 0.0021 9 0.45 ([0.24,0.61]) 0.000109

PROPNL −0.32 ([−0.51, −0.10]) 0.0067 10 0.40 ([0.19,0.58]) 0.000615

PROP −0.40 ([−0.58, −0.18]) 0.0008 8 0.51 ([0.32,0.67]) 0.000007

Effect of aging on hippocampal volume: Using only the healthy subjects,
we first inspect the partial correlation between hippocampal volumes (computed
with FreeSurfer, left-right averaged) and age/ICV, i.e., correcting for each other.
For our method, we used all pairwise registrations. The results are shown in
Table 1, and sample outputs in Fig. 3. All methods increase the correlations
between hippocampal volume and age. SINGAT outperforms FreeSurfer, thanks
to the more robust registration. Despite being a more complex method, the
performance of SPM is on par with that of SINGAT, because SPM sometimes
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Fig. 3. Coronal slices of three subjects, and estimated ICVs (in liters). The intracranial
cavity mask from SPM is contoured in red, and the one propagated from the reference
atlas in blue. (a) Oversegmentation by SPM. (b) Good SPM segmentation, poor mask
from reference (see areas pointed by arrows). (c) Good SPM segmentation; poor reg-
istration to the atlas negatively impacts the performance of all methods, except ours.

includes large portions of bone in the segmentation due to poor contrast in T1
MR (see Fig. 3a). We observed a similar effect in PROPNL, exacerbated by the
fact that errors propagate along two registrations (see Fig. 3b). Our method
produces the highest correlation, with a mild, borderline significant (Steiger’s
test [21]: p = 0.05) improvement over the second-to-best method (SINGAT).
Compared with the widely used FreeSurfer, the improvement is noticeable: Δρ =
0.08 (Steiger’s p = 0.01), and sample size reduced from 10 to 8. A similar trend
can be observed for the correlation between ICV and hippocampal volume.

Alzheimer’s disease classification: We computed the area under the ROC
curve (AUROC) and the accuracy at its elbow for classifiers based on thresh-
olding ICV/age corrected hippocampal volumes. We used DeLong’s test [22] to
compare AUROCs. The results are shown in Table 2. Our method provides the
highest AUROC, with significant improvement with respect to all others, except
SPM. It also provides the second-to-best accuracy at elbow, after PROPNL.

Table 2. AD/EC classification: AUROC, accuracy at elbow and Delong’s p for com-
parison of the AUROC with that of the method in the corresponding column.

Method AUROC Acc. Elbow Vs. FS SINGAT SPM PROPNL PROP

NOCORR 0.905 0.847 DeLong p 0.0311 0.0077 0.0052 0.0031 0.0008

FS 0.911 0.840 * 0.0193 0.0148 0.0045 0.0005

SINGAT 0.915 0.847 * * 0.0716 0.0461 0.0004

SPM 0.921 0.873 * * * 0.9962 0.1052

PROPNL 0.921 0.880 * * * * 0.0468

PROP 0.927 0.873 * * * * *

Performance as a function of the number of available registrations:
Since the number of registrations increases quickly with N , it is useful to test how
robust our algorithm is against missing scaling factors, to see if computational
cost can be reduced by computing only a subset of the registrations, without
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Fig. 4. Performance vs. % of maximum set size; error bars span two standard deviations

significant loss of accuracy. For a number of set sizes, we drew 100 random
samples (with rejection to ensure fully connected graphs); computed the partial
correlations, AUROCs and accuracies; and calculated their averages across the
samples. The results are shown in Fig. 4. The correlations increase quickly in the
beginning, and plateau at around 40–50% of the maximum set size. The AUROC
and accuracy improve slowly until 100%, as they are more sensitive to volume
estimate changes in samples closer to the decision boundary.

4 Discussion and Conclusion

We propose an ICV estimation method that does not require labeled data and is
agnostic to the imaged species, and which inherits the advantages of registration-
based ICV estimation – while being more robust against registration errors. This
is despite using linear registration, which could be biased by extracranial and
intracranial changes (e.g., neck size, atrophy); such bias was not observed in our
experiments. Our approach can be combined with any registration method; we
used a symmetric algorithm to save half of the registrations when building S.

Despite the high number of required registrations, our method is not too
computationally expensive, as low-resolution registrations run in 3–4 s on a single
core. Moreover, S can be precomputed such that, when a new scan arrives, only
N new registrations are required. We also tested a non-linear version, but the
increased flexibility did not compensate for the introduced registration errors and
increased computational cost. The inference algorithm takes just a few seconds,
which is negligible compared with the running time of the registrations.

The experiments in this paper have shown that our method outperforms
single atlas ICV estimation in analyses like effect of age and AD classification.
Moreover, it also outperforms the much more complex SPM, in spite of using
linear registrations. Even though the contribution of the raw hippocampal vol-
ume is larger that of the ICV to such analyses, our method can still provide a
moderate, statistically significant improvement. Future work will consider more
complex distributions for the ICVs, e.g., conditioned on sex and gestational age.

Acknowledgement. Supported by ERC (677697), EPSRC (EP/L016478/1,
EP/M506448/1), Wellcome/EPSRC (203145Z/16/Z, WT101957, NS/A000027/1).
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Appendix: Details of the Inference Algorithm

Replacing p(S|c,v) and p(c|α, β) (Fig. 1b) in the first integral of Eq. 1:

∫
c

(2c)−|S| exp

⎛
⎝−1

c

∑
(i,j)∈S

|Sij − vi + vj |
⎞
⎠ βα

Γ (α)
c−α−1 exp(−β/c)dc. (3)

Defining α′ = α + |S| and β′ = β +
∑

(i,j)∈S |Sij − vi + vj |, Eq. 3 becomes:

1
2|S|

Γ (α′)
Γ (α)

βα

β′α′

∫
c

β′α′

Γ (α′)
c−α′−1 exp(−β′/c)dc =

1
2|S|

Γ (α′)
Γ (α)

βα

β′α′ , (4)

as the integral is over the probability density of IG(α′, β′) and thus equal to 1.
For the second integral in Eq. 1 (over μ and σ2), substitution of the expres-

sions for the probabilities (again, see Fig. 1b in the paper) yields:

∫
μ

∫
σ2

1
(2πσ2)N/2

exp

(
− 1

2σ2

N∑
i=1

(vi − μ)2
)

. . .

× ba

Γ (a)
(
σ2

)−a−1
exp

(−b/σ2
) √

n√
2πσ2

exp
[
− n

2σ2
(μ − m)2

]
dμdσ2. (5)

We now define m′ = (nm + Nv̄)/(n + N), n′ = n + N , a′ = a + N
2 , and:

b′ = b +
1
2

N∑
i=1

(vi − v̄)2 +
nN

n + N

(v̄ − m)2

2
,

where v̄ is the average of v. Then, Eq. 5 becomes:
∫

μ

∫
σ2

b′a′

Γ (a′)
(
σ2

)−a′−1
exp

(−b′/σ2
) √

n′
√

2πσ2
exp

[
− n′

2σ2
(μ − m′)2

]
dμdσ2 . . .

× 1
(2π)N/2

√
n

n′
ba

b′a′
Γ (a′)
Γ (a)

=
1

(2π)N/2

√
n

n′
ba

b′a′
Γ (a′)
Γ (a)

, (6)

since the integral is over the probability density function of NIG(m′, n′, a′, b′)
and hence equal to 1.

Combining Eqs. 4 and 6, the problem in Eq. 1 becomes:

v̂ = argmax
v

1
2|S|

Γ (α′)
Γ (α)

βα

β′α′
1

(2π)N/2

√
n

n′
ba

b′a′
Γ (a′)
Γ (a)

= argmax
v

(
β′α′

b′a′
z(α, β, |S|, n, a, b,N)

)−1

,

where z groups the terms independent of v. Taking the negated logarithm:

C = α′ log β′ + a′ log b′ + log z.

Substituting a′, b′, α′ and β′ into this equation, and defining Z = log z, we finally
obtain the cost function in Eq. 2.
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Abstract. As maturation of neural networks continues throughout
childhood, brain lesions insulting immature networks have different
impact on brain function than lesions obtained after full network mat-
uration. Thus, longitudinal studies and analysis of spatial and temporal
brain signal correlations are a key component to get a deeper understand-
ing of individual maturation processes, their interaction and their link
to cognition. Here, we assess the connectivity pattern deviation of devel-
oping resting state networks after ischaemic stroke of children between
7 and 17 years. We propose a method to derive a reorganisational score
to detect target regions for overtaking affected functional regions within
a stroke location. The evaluation is performed using rs-fMRI data of
16 control subjects and 16 stroke patients. The developing functional
connectivity affected by ischaemic stroke exhibits significant differences
to the control cohort. This suggests an influence of stroke location and
developmental stage on regenerating processes and the reorganisational
patterns.

1 Introduction

Human brain development starts during pregnancy and proceeds in building
structural as well as functional trajectories through adulthood until senescence
[17]. Morphological, functional, and cognitive maturation is shaped by genetic
and environmental influence such as learning processes and experience after
birth, and the resulting structure varies substantially across individuals [21].
While the functional and morphological organization of the adults’ brain is
known to a large extent, we are only starting to understand its emergence and
maturation [17]. We know that we can observe distributed components simi-
lar to those in adults already in neonates [8], while substantial changes to the
brain network structure occur during childhood, such as an increase in long-,
c© Springer International Publishing AG 2017
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and a decrease in short-distance connections from infants to adults [5]. However,
these observations primarily focus on the comparison of age snapshots, and do
not capture multivariate temporal change patterns of the connectome. There is a
particularly critical gap in knowledge concerning normal development confronted
with disease or adverse events such as stroke.

Paediatric Ischaemic Stroke (IS) is caused by a decreased blood flow in cerebral
vessels (ischaemia), which in an irreversible case leads to the death of brain cells
and forming of brain lesions [15]. Stroke in children is a rare event, with an
international incidence of 1.2 to 13 per 100,000 children per year under 18 years
of age [19]. Children, who survive an IS, suffer from lifelong motoric or cognitive
disabilities as well as developing or learning problems. Their outcome varies
over age, the stroke location or additional comorbidities [15]. Functional MRI
techniques (fMRI) enable the measurement of functional organisation [4]. In
comparison to task-based fMRI, pediatric resting state (rs)-fMRI aims to image
neural activation and analyse brain signals due to their temporal correlation
independent of a stimulus [1] in a non-invasive way.

Plasticity is the process which enables the central nervous system to dynamically
adapt to external stimuli. Natural plasticity is induced by the age and develop-
mental related changes of the brain and is triggered by learning and experience
[2], where adaptive plasticity refers to pathology related modifications, e.g. func-
tional and structural reorganisation of brain tissue after stroke [13]. Also genetic
factors can drive these processes [12]. While we have gained some understand-
ing in reorganization processes in adults [14], we have poor understanding of
how reorganization interacts with development. Resting state fMRI enables the
study of these processes driving the functional and structural organisation. Ulti-
mately they can lead to improved functional outcome of children suffering from
brain injuries, by developing novel interventional techniques or adapting therapy,
dependent on the developmental stage of a disease [13].

Challenges. The challenges for studying reorganisation in children lies in captur-
ing the dynamics of interactions between adaptive and developmental processes.
After a damage, plasticity and vulnerability of the brain influence recovery
together with the injuries severity, the age and the time since damage [2]. Func-
tional recovery after brain injury depends on the ability of the brain to adapt to
changes [9]. Recent studies suggest that cognitive abilities after brain injury are
dependent on the plasticity of neural networks that control brain functions [10].
Thus, the impact of brain injury on cognition is best studied by investigating
neuronal networks rather than circumscribed areas [3]. As maturation of neural
networks continues throughout childhood [5], brain lesions insulting immature
networks have a different impact on function than lesions acquired after full net-
work maturation. A deeper understanding of individual continuous maturation
processes, their interaction, and their link to cognition is essential for our under-
standing of the functional brain architecture, treatment and optimal promotion
of children [12].
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Contribution. The methodological contribution of this work is two-fold: (1) we
propose a technique to quantify connectivity pattern deviation in the develop-
ment of functional connectivity, and (2) a method to track regions which exhibit
similar connectivity characteristics as source regions such as an area impacted
by stroke after reorganization. We hypothesize that (1) stroke subjects exhibit
higher deviation from a control population age specific mean than controls, and
(2) reorganization causes new regions to adopt connectivity characteristics of
areas impaired by stroke due to reorganization. We adapt an approach by [16]
to extract connectivity pattern deviation over development and reorganisational
patterns of functional connectivity in children induced by laesions forming after
an ischaemic stroke. The methodologies proposed are summarised in Sect. 2. The
evaluation setup and computed results are documented in Sect. 3 and a discus-
sion and possibilities for future work are given in Sect. 4.

2 Methodology

In this section the methodology is introduced, by providing (1) a Connectivity
Profile Deviation (CPD) score to analyse deviations between control and stroke
subjects and (2) by tracking reorganization using the proposed prior. For the
formulations we assume a graph based representation of the cortical surface,
which is previously normalized to a standardized surface consisting of nodes x =
1 . . . N . For every subject the Connectivity Matrix CM ∈ R

N×N is computed
and stroke masks are annotated (for more details regarding the preprocessing
and dataset used cf. Sect. 3).

Age specific reference of connectivity profiles across the cortex. Accord-
ing to the size of the dataset and preliminary analysis we decided to perform
element wise linear regression of correlation coefficient matrices of control sub-
jects to derive the slope B ∈ R

N×N . An age matched correlation matrix CM is
then computed using Eq. 1.

CM
age

= B ∗ age + B0 (1)

Fig. 1. Schematic illustration of the computation of the CPD score.
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Identifying deviations of local connectivity characteristics. In a sec-
ond step the CPD score D ∈ R

1×N is computed between every single subject’s
CMs and the age matched CM

ages using Pearson Correlation Coefficient (PCC)
(cf. Eq. 2).

Ds
x = 1 − PCC(P s

x , P
ages
x ), x = 1 . . . N (2)

Therefore, a connectivity pattern P s
x ∈ R

1×N of a vertex x and the corresponding
age matched connectivity pattern P

ages
x ∈ R

1×N of controls are computed, where
P s
x = CMi=x,j , P

ages
x = CM

ages
i=x,j , j = 1 . . . N (cf. Fig. 1). This CPD score is

computed for every subject s in the dataset (control and stroke cases).

Finding target areas of reorganization. In this work we propose a ReOr-
ganisation Score (ROS) for identifying possible regions, where functional net-
works of a stroke region transfer to. For clearer understanding its computation
is schematically illustrated in Fig. 2. In a first step the corresponding stroke
case’s age matched CM

age
is computed. In a second step for every stroke sub-

ject separately the stroke mask is used to determine the set u, 1 . . .W,W ≤ N
of nodes corresponding to the stroke regions. In a third step we compute the
Reorganisation Maps (RM) RMs

u,z and RMages
u,z between connectivity patterns

using Eqs. 3 and 4. We define z = x \ u as set of nodes not belonging to the
stroke region. P

ages
ul

= CM
ages
i=ul,j=z, P

s
zk

= CMi=zk,j=z, P
ages
zk

= CM i=zk,j=z,
k = 1 . . .M,M =| x \ u |, l = 1 . . .W.

RMs
u,z = PCC(P

ages
u , P s

zk
), s = 1 . . . S (3)

RMages
u,z = PCC(P

ages
u , P

ages
zk

), s = 1 . . . S (4)

After the calculation of the RMs we extracted the vertex of set u with the
maximum value. Since RM of the control model show higher values as RM of

Fig. 2. Schematic illustration of the computation of the reorganisation score.
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the stroke, we decided (for obtaining comparability for visualisation purposes)
to perform histogram equalisation, resulting in two vectors RM∗s ∈ R

1×M and
RM∗ages ∈ R

1×M . Subsequently, we estimate the ROS of a subject S as defined
in Eq. 5.

ROS = RM∗s − RM∗ages , (5)

3 Results

The participants in this study are 32 children between 7 and 17 years consisting
of 16 control cases and 16 ischaemic stroke cases (cf. participant demographics
in Table 1). Subject No. 15 (control), No. 17 (stroke), and No. 21 (stroke) were
excluded, due to technical issues during acquisition. During the preprocessing
phase three stroke subjects (No. 3, 10 and 22) and control subjects (No. 26, 33
and 34) were excluded because of high motion artefacts (5 subjects) and severe
stroke (more than the half of the size of a hemisphere was affected). The stroke
events occurred at different spatial locations on the right (RH) or left hemi-
sphere (LH). The children were right-, left- or mixed handed. The time frame
between scan event and stroke event, as well as the range of the age at stroke
of the children ranges from 0 to 15 years. All participants’ guardians (parents)
were informed about the aim of the study and gave their written, informed con-
sent prior to inclusion. The protocol of this study was approved by the national
ethics committee of the Medical University of Vienna and performed in accor-
dance with the Declaration of Helsinki (1964), including current revisions and
the EC-GCP guidelines. The scanning was performed on a 3T TIM Trio System
(Siemens Medical Solution, Erlangen, Germany) Scanner and rs-fMRI measure-
ments were performed using single-shot, gradient-recalled, echo-planar imaging
with the following setup: TR = 2000 ms, TE = 42 ms, FOV = 210× 210 mm,
slices = 20, gap between slices = 1 mm, slice thickness = 4 mm, frames = 150
volumes. All subjects are scanned in an awake state with open eyes for 5 min.
To restrict head motion, pillows are used as fixation on both sides of the child’s
head. The probands wore headphones to attenuate the noise level during scan.
All study participants watched a video, explicitly designed for children, which
showed and explained an MRI acquisition procedure.

Table 1. Participant demographics

Control Pediatric stroke

Sample size 16 (7 Female) 16 (5 Female)

Excluded 4 5

Mean age, yr (Standard deviation) 11.2 (3.19) 11.63 (3.14)

Stroke location (number of subjects) - RH (7), LH (7), RH+ LH (2)
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Anatomical and Functional Preprocessing. Anatomical and functional pre-
processing is performed using Freesurfer1[6] and FSL2[11]. The functional pre-
processing includes a registration to the anatomical data, head motion regres-
sion and bandpass temporal filtering (0.01–0.1 Hz) to remove constant offsets
and linear trends. Cerebral signals of the stroke and control cases are resampled
to common FreeSurfer fsaverage5 space [7]. After this alignment every subject’s
cortical surface is represented as a standardized mesh consisting of 20484 nodes.
After resampling the data are spatially smoothed using a 4 mm FWHM Gaussian
filter. For the identification of correlating regions, the PCC is computed between
the time course of a node x(t)i in each subject’s brain and every other node’s
x(t)j time course. This results in a correlation coefficient matrix CMi,j ∈ R

N×N ,
where N is the number of nodes observed, i = 1 . . . N the ith row and j = 1 . . . N
the jth column of the matrix [18]. For every subject in the stroke cohort masks
of brain lesion are annotated by an expert and also preprocessed using the intro-
duced preprocessing pipeline.

Deviation of local connectivity characteristics in the control cohort.
Figure 3 illustrates the CPD score for control subjects of different age (left) and
its change over increasing age (right). The intersubject deviation of controls is
minimal in the visual, sensory and motor cortices and correlates with increasing
age to the deviation estimates in [16] of adult controls. High deviation is observed
in the temporal cortex including primary auditory cortex, Wernicke’s area, in the
prefrontal cortex and parietal lobe. Considering the age a decrease of deviation
in the heteromodal regions is observable with increasing age also visible in the
corresponding boxplot of CPD scores in Fig. 4 (left).
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Fig. 3. Visualisation of the CPD score in control subjects during ageing: 6 control
subjects and their deviation to the age matched average, and the visualisation of the
change: red regions exhibit increased deviation/deviation change, while blue regions
are more stable. (Color figure online)

1 http://surfer.nmr.mgh.harvard.edu [accessed 16th May 2017].
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL [accessed 16th May 2017].

http://surfer.nmr.mgh.harvard.edu
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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Fig. 4. Visualisation of CPD score of LH and RH within the stroke and control cohort
(CPD scores of all subjects at same age are grouped here). Control cases show symmet-
ric mean CPD between RH and LH and a decrease according to increasing age. The
CPD scores of stroke subjects show higher means on the hemisphere of stroke location.
(Color figure online)

Deviation of local connectivity characteristics in the stroke cohort.
For the stroke subjects RH and LH stroke cases are grouped together for clearer
visualisation in Fig. 5. The stroke cohort shows higher variabilities compared
to the control cohort, which overlaps with the hypothesis that stroke affects the
reorganisation of connectivity networks, resulting in higher CPD. It is observable
that higher intersubject CPD over 0.8 are observable on the hemisphere of stroke
location also visible in the corresponding boxplot of CPD scores in Fig. 4 (middle,
right).

C
PD

SC
O

R
E 

ST
R

O
KE
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Stroke Location

mediainfarct LH mediainfarct RH

Fig. 5. Visualisation of CPD score of LH stroke subjects (left) and RH stroke subjects
(right). (Color figure online)

Target regions of reorganisational processes. To evaluate the ability of the
ROS to detect reorganisational regions we first divided the brain surface into
17 cortical networks using the parcellation proposed by Yeo et al. [20], which
is computed based on rsfMRI acquisitions of 1000 subjects and additionally
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provides fsaverage 5 surface labels. For every region (total 36 - LH and RH are
observed separately) the ratio of stroke voxels and the region’s mean ROS and
mean CPD are estimated. In Fig. 6 the first row illustrates correlation matrices
∈R36×36 based on correlations computed between the ratio of stroke voxels and
mean CPD for all subjects (first column), for LH stroke subjects (second column)
and RH stroke subjects (third column). In Fig. 6 second row the mean ROS
score is used instead of the mean CPD to estimate the correlations. In Fig. 6
a deviation of correlation values between LH and RH stroke subjects is visible,
since correlations only between a stroke voxel ratio (>0) on the ipsilateral side
can be computed. In the first row of Fig. 6 positive correlations are observable,
which can be interpreted as regions greater affected by a stroke lesion show a
higher mean CPD and a lower mean CPD if they are less affected. Additionally,
stronger blocks of correlation scores are observable in the default mode network
regions (except the temporal component Default A) or somato motoric areas. In
the second row of Fig. 6 especially for RH stroke subjects (right) a division of
RH and LH correlation values according to their sign is visible, since the severity
of stroke and number of subjects is higher in this cohort compared to LH stroke
subjects. The voxel ratio positively correlates with the ROS of the contralateral
side and negatively with the ROS of the ipsilateral side. This suggests a decrease
of the ROS in ipsilateral and an increase of the ROS in contralateral regions with
increased stroke voxel ratio in the stroke hemisphere. In Fig. 7 the target regions
for possible reorganisational processes after stroke, computed using the ROS

Fig. 6. Row one visualises the network wise correlations between the stroke voxel
ratio and the CPD score using all stroke subjects (first column), LH stroke (second
column) and RH stroke subjects (third column). Visualisation of network wise correla-
tions between the stroke voxel ratio and the ROS are shown in row two. (Color figure
online)
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Fig. 7. Visualisation of regions that pick up connectivity patterns observed in the
stroke region in age matched control average. Red ROS indicates regions that exhibit
characteristics typical for the stroke regions if the subject is a control. (Color figure
online)

proposed are visualised for LH stroke subjects (left) and RH stroke subjects
(right). The first row visualises the stroke location, the second row the ROS and
the third and fourth row the histogram equalized reorganisation vectors. Subject
S08 shows possible target regions in its strokes neighbourhood on the ipsilateral
side. S11 shows possible symmetric reorganisation targets. S13 and S23 with a
severe mediainfarct on the RH show both on the contro and ipsilateral side of
non-stroke region an increased ROS as well as on the contralateral side in the
stroke region.

4 Conclusion

We present a methodology to assess connectivity pattern deviation in developing
functional networks and to estimate possible target regions of reorganisational
processes after ischaemic stroke. According to the results we can conclude that
stroke subjects show a higher deviation compared to control subjects, especially
more on the hemisphere of stroke location. Control subjects show decreasing
deviation over age to age matched controls, with highest changes occuring in
the prefrontal cortex and temporal lobe. We proposed a reorganisational score,
which identifies ipsi-lateral and symmetric networks in neighbourhood of the
stroke location as possible indicator for reorganisation in developing resting state
networks. The limit of our approach lies in the size and heterogeneity of the
dataset. For future work we will evaluate different stroke datasets with similar
locations of the stroke lesions and a higher number of participants.
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Abstract. Ultrasound is the primary imaging method for prenatal
screening and diagnosis of fetal anomalies. Thanks to its non-invasive
and non-ionizing properties, ultrasound allows quick, safe and detailed
evaluation of the unborn baby, including the estimation of the gesta-
tional age, brain and cranium development. However, the accuracy of
traditional 2D fetal biometrics is dependent on operator expertise and
subjectivity in 2D plane finding and manual marking. 3D ultrasound has
the potential to reduce the operator dependence. In this paper, we pro-
pose a new random forest-based segmentation framework for fetal 3D
ultrasound volumes, able to efficiently integrate semantic and structural
information in the classification process. We introduce a new semantic
features space able to encode spatial context via generalized geodesic dis-
tance transform. Unlike alternative auto-context approaches, this new set
of features is efficiently integrated into the same forest using contextual
trees. Finally, we use a new structured labels space as alternative to the
traditional atomic class labels, able to capture morphological variabil-
ity of the target organ. Here, we show the potential of this new general
framework segmenting the skull in 3D fetal ultrasound volumes, signifi-
cantly outperforming alternative random forest-based approaches.

Keywords: Random forest · Generalized geodesic distance · Structured
class

1 Introduction

Ultrasound (US) imaging is the preferred screening modality for the diagnosis
and monitoring of fetal anatomy during pregnancy. Its non-ionizing and non-
invasive nature makes it possible to safely perform routine US-based examination
of the unborn baby. In particular, an accurate gestational age (GA) estimation is
essential. It defines the estimated date of delivery and may influence the success
or safety of a clinical intervention. 2DUS-based biometrics, such as biparietal
diameter, occipital-frontal diameter and head circumference, have been exten-
sively used to establish the GA. However, these biometrics are prone to errors
c© Springer International Publishing AG 2017
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due to the high intra- and inter-observer variability associated with manual mea-
surements [15], and the subjectivity in 2D diagnostic plane selection. Moreover,
the early detection of cranial malformations (e.g., craniosynostosis) requires the
detailed analysis of the curvilinear cranial bones and their boundaries, which
may be difficult to visualize in a single 2D plane. Despite 2DUS remains the
gold standard of prenatal care [3], studies [1] have reported on the superior-
ity of 3DUS in the evaluation of fetal anatomy and anomaly. The possibility
to scan and store volumetric data offers a significant advantage over 2DUS, not
only overcoming limitations associated with plane selection subjectivity, but also
allowing a better understanding of fetal cranial structure [1], and the definition
of new volumetric biometrics. In this context, the development of accurate auto-
matic segmentation methods in 3DUS is paramount to alleviate the tedious and
subjective manual delineation process. In recent years, there has been increasing
interest in developing new segmentation strategies for sonographic images [2].
However, to the best of our knowledge, the automatic segmentation of the skull
in prenatal 3DUS has not yet been satisfactorily addressed. In the early works
of Lue et al. [4] and Shen et al. [5], the authors use the Hough transform to
approximate the head contour to an ellipsoid in 2DUS. While the use of a pre-
defined parametric curve can be useful to deal with fuzzy, or even incomplete
skull boundaries, it cannot capture the local shape variations of skulls that are
not perfectly elliptically shaped, or showing cranial malformations. Similarly, Foi
et al. [7] proposed a fully automatic segmentation method of the fetal skull in
2DUS images, modeling the skull intensity as a difference of Gaussians revolved
along predefined elliptical contours. More recently, Namburete and Noble [6]
presented a simple random forest classifier to identify cranial pixels in 2DUS,
using superpixels-based statistics as feature space. Chen et al. [8] proposed a
first segmentation framework for 3DUS. However, despite acceptable results, the
authors use a fetal phantom to impose shape priors, which limits the generality
and applicability of this registration-based method.

In this paper, we introduce a new fully automatic framework for the segmen-
tation of the skull in fetal 3DUS. We term this framework structured geodesic
random forest (SGeo-RF). The integration of structural information in RF [9]
was recently exploited by Oktay et al. [12] for the registration of cardiac images.
However, its potential for the segmentation of medical images remains unex-
plored. The use of structured labels and semantic features is particularly relevant
in the context of US image segmentation, where the low signal-to-noise ratio,
signal attenuation, and missing boundaries often lead to noisy and inaccurate
segmentation results which do not follow object boundaries, and anatomically
inconsistent. SGeo-RF is a general framework that efficiently integrates seman-
tic and structural information in the segmentation process, thanks to a new
super-class label space introduced here.

2 Method

Traditional RF formulations suffer some important limitations. Typically, each
observation is considered as a separate unit of information, making predictions
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for each sample independently, and preventing the classifier from enforcing
dependencies between variables (i.e., predicting features), or in the label space.
While the independence assumption enables efficient training and fast predic-
tions, it also limits the capability of RF to incorporate valuable contextual and
structural information into the framework. This is of particular relevance in
challenging contexts such as fetal 3DUS.

Suppose S represents the set of data points extracted from all training images,
S = {pi, li}N

1 . Typically, each observation is defined by the corresponding voxel
position, pi, the feature vector, v(pi) = (v1, . . . , vm) ∈ X, and its associated
class label, li ∈ Y = {0, . . . , K} where K ∈ N is the number of organ classes we
are trying to segment. RF are composed of multiple independently learnt random
decision trees, tree-structured classifiers expressed as a recursive partition of the
feature space X. For a given node within the tree, Nj , and the corresponding
training subset, Sj ⊂ X×Y, the goal is to find a semi-optimal binary test function,
Ψj : X → {0, 1} that provides a good split of the data Sj = {SjL,SjR|Ψj(SjL) =
0 , Ψj(SjL) = 1}, according to an information gain criterion (e.g., maximizing
the Shannon entropy-based information gain). The training process continues
recursively on the left and right nodes with data Sj,L and Sj,R, respectively,
until the information gain or the training set size fall below a minimum threshold.
During testing, each new sample v(p) is classified using Ψj(v(p)) to successively
branching left or right down the tree until a terminal node (leaf) is reached. At
this point, the corresponding label, l is estimated by using the empirical class
distribution associated with the leaf node.

2.1 Geodesic Contextual Information

Typically, the feature space X is characterized by a set of appearance-based fea-
tures extracted directly from the original raw images (or from filtered versions
of them). Recent works on auto-context, and deep learning [14] has shown how
the use of learned contextual information directly in the classification can lead
to a significant improvement of the results, although at the cost of a signifi-
cant computational over-head. Here, we use the GGD formulation presented by
Kontschieder et al. [11], to efficiently compute the geodesic distance from each
class and to incorporate additional contextual information within the same deci-
sion tree, without the need for additional heuristics and significant additional
computing cost.

SGeo-RF trains trees in breadth-first order, and in sections, {s0, s1, . . . , sD},
as shown in Fig. 1(b). For each section of the tree, sd, we use the class distrib-
ution associated with each node to generate new predictive contextual features
for the next section, sd+1 (see Fig. 1(b) and (c)). Using the estimated class pos-
terior P k

d (v) associated to each class k ∈ Y, the GGD can be defined, for every
data point v(p) in the image I, as Gk

d(p) = minp′∈I(δ(p,p′)+ν(1−P k
d (v(p′)))),

with δ(p,q) = infΓ

∫ l(Γ )

0

√
1 + γ2(∇I(r) · Γp,q(r))2dr, (ν, γ ∈ R), representing

the geodesic distance between two points p and q (which can be efficiently com-
puted in linear time [13]), and Γp,q being the path connecting these two points.
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Fig. 1. SGeo-RF framework. (a) Image and labels patches extracted from the 3DUS
images. The structured label space, Ŷ, is used to define the super-class dictionary,
W. (b) Structured entangled tree. Intermediate super-class probabilities and GGD are
used to as features for the lower sections. (c) Intermediate probability maps, P k

d , for
super-class k = 0 (background) computed at the first (s0) and the last (sD) section.

This new GGD-based connectivity features can be considered as a new set of
features able to encode variable dependencies directly in the feature space the
forests operate on. The intuition behind this is that these new features encode
the edge-aware distance of any point in the image from the class k, thus enriching
the feature space X with new long-range and soft connectivity features.

2.2 Structured Label Space

In traditional RF, the input data samples are processed independently, assum-
ing independent output labels. However, for many applications, including the
segmentation of anatomical organs, the label space does exhibit an inherently
topological structure, thus rendering the class labels explicitly interdependent.
For the particular case considered here, it is expected that the labels assigned to a
certain patch of the image containing foreground information reflect the charac-
teristic curved pattern of the skull. Here, we incorporate this structural informa-
tion by defining a new structured label space Ŷ, as alternative to the traditional
space of independent atomic labels, Y. In this new context, each training data is
now associated to a (N × N × N) structured label patch, Li ∈ R

N3
, centered at

pi (see Fig. 1(a)). During training, the set of structured labels reaching the node
Nj , {Li}, is mapped to an intermediate continuous space, Ŷ → Z, such that the
dissimilarity between patches can be approximated by the Euclidean distance
in Z (c.f., [10] for details). In order to apply the same information gain crite-
rion when computing the corresponding splitting function Ψj , new cluster-based
binary labels can be easily assigned to {Li}, by applying k-means clusterization
over Z.

The dynamic assignment of labels provides an efficient strategy to work
with a large and potentially heterogeneous set of patches. However, the com-
putation of the new semantic GGD-based features requires a predefined set
of atomic labels associated to each patch. In [9], the authors propose to use
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the original label of the patch central voxel defined over Y as label associ-
ated to the entire patch {Li}. However, the new structured split functions
are now defined over Ŷ, thus leading to inaccurate or uninformative estima-
tions of P k

d and Gk
d (see Sect. 2.1). Alternatively, we also could use the original

labels initially assigned to each of the voxels that constitute the new struc-
tured patches,{Li}, to estimate P k

d and Gk
d over the original space of atomic

labels, Y. However, none of these alternatives integrates the structural infor-
mation provided by Ŷ when computing the new contextual features. Here, we
define a new super-class label space W by clustering the entire set of training
patches into K clusters (i.e., P k

d and Gk
d are now defined over k ∈ W). Intuitively,

this new space of super-classes can be considered as a dictionary of representa-
tive patches, specifically tailored to the particular geometry of the organs of
interest (see Fig. 1(a)). Moreover, W allows us to define new re-balancing fac-
tors to compensate the class imbalance, particularly important in segmentation
problems where voxels in the background class are dominant. The global and
node-based re-balancing factors are defined as wk = (

∑
k∈K n(k,S0))/n(k,S0),

and wk,j =
∑

k∈K wkn(k,Sj), respectively, with n(k,Sj) denoting the number
of training patches of super-class k in the training subset Sj reaching the node
Nj . The Shannon entropy used to define the splitting function Ψj is now defined
as E(Sj) = −∑

l∈{L,R}
∑

k∈K wkn(k,Sjl) log(wkn(k,Sjl))/wk,jl.

2.3 Contextual Feature Space

In the proposed method, the original feature vector v(pi) is defined as set of
appearance-based features extracted from images patches of fixed size (M ×
M × M) centered at pi. In particular, these features correspond to statistics
extracted from different information channels, including the raw intensity, gradi-
ent magnitudes, six HoG-like channels, and the monogenic signal. Additionally,
we extend X by generating new contextual-based features at the end of each
section, sd as described in Sect. 2.1. For each observation, {pi, Li}, we define a
set of T randomly located probe patches pairs, {q1

i,t,q
2
i,t}T

t=1 offset from pi.
The new features are defined as the sum, difference and absolute difference
between these two patches in different feature channels: the raw image inten-
sities (I(q1

i,t), I(q
2
i,t)), the intermediate class posteriors (P k

d (q1
i,t), P k

d (q2
i,t)), and

the GGD (Gk
d(q1

i,t), G
k
d(q2

i,t)).

3 Results and Discussion

The new SGeo-RF segmentation framework is evaluated on a dataset of 59 fetal
3DUS images acquired under an IRB approved protocol during the routine sec-
ond trimester obstetrical ultrasound examination (23.4 weeks average GA, range
from 20 to 30). The images were acquired from the axial plane with transfrontal
3D acquisition, using a Philips iU22 system with an X6-1 xMATRIX array trans-
ducer. The ground truth was delineated manually under the supervision of an
expert radiologist. All the images were denoised using non-local means filtering
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and resampled to isotropic voxel size of 0.50 mm per dimension. The perfor-
mance of SGeo-RF is compared with two alternative segmentation methods, a
classic non-structured RF classifier without any contextual information, and a
convolutional neural network (CNN) for image segmentation based on the U-net
architecture [14]. A total of 16 independent decision trees were used for both,
SGeo-RF and RF, with a maximum tree depth of 64 levels. For the rest of the
configuration parameters the selected values were: M = 24, N = 12, D = 16,
K = 7, T = 20, ν = 15 and γ = 30.

(a) (b)

1

0.5

0

Fig. 2. Segmentation results obtained with SGeo-RF. (a) Output probability map for
the skull after merging all trees. SGeo-RF correctly identifies the skull region despite
the presence of highly echogenic regions with similar intensity pattern. (b) 3D render
of the segmented skull resulting from SGeo-RF inference, including the orthogonal
semiaxis used to estimate GA.

Table 1 shows the segmentation error for the three methods, using 49 images
for training and 10 images for testing. It can be observed that SGeo-RF pro-
vides better segmentation results than the classic RF for most of the metrics:
Dice’s coefficient (DC), Jaccard index (JI), sensitivity, specificity, and accuracy.
In particular, the new method provides an average DC of 0.80 ± 0.03, a statis-
tically significant improvement over the 0.65 ± 0.04 of RF (p-value < 0.05 using
Wilcoxon paired signed non-parametric test). CNN-based methods have become
very popular in recent years, providing some of the most accurate methods for
organ segmentation. However, in spite of the superior average DC obtained by
the CNN (0.84 ± 0.12), no statistically significant difference was found between
CNN and SGeo-RF (p-value > 0.16). However, we observed that both RF and
CNN provided a significantly higher number of false positives than SGeo-RF
(p-value < 0.05), obtaining specificities of 0.97±0.01, 0.95±0.02 and 0.99±0.01,
respectively. While SGeo-RF provided more conservative results (0.80±0.07 sen-
sitivity), the calculation of 3D-based biometrics was more severely affected by
the presence of false positives far from the target organ observed in RF and CNN,
which required additional post-processing of the segmentation results. Figure 2
shows the resulting segmentation for one case using SGeo-RF.

The CNN required about 45 h of training on a GPU-accelerated system,
with an estimated testing time of 1.6 s. per 3D volume. SGeo-RF represents a
computationally more efficient option than CNN, requiring only 3 h of training
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(no GPU used). However, the average execution time was 60 s. per volume. Even
though this still represents a more efficient option than manual marking process,
it represents a considerable increase over CNN. In the future, we plan to optimize
the execution time of our new method by implementing a parallelized version of
the code.

Finally, a linear regression model was used to automatically estimate the fetal
GA, using the three orthogonal semiaxis of the segmented skull as predictive
variables (see Fig. 2(b)). This simple predictive model provided a GA estimation
error of 0.5 ± 0.3 weeks (statistically similar results were obtained with SGeo-
RF and CNN), which is within the reported 7 to 12 days margin when using
manually defined 2D biometrics parameters, such as the biparietal diameter or
head circumference [15].

Table 1. Segmentation accuracy evaluation of the fetal skull segmentation using SGeo-
RF, a classic non-structured RF method (RF), and CNN. The table present the average
and standard deviation for the Dice’s coefficient (DC), Jaccard index (JI), sensitivity,
specificity and accuracy.

DC JI Sensitivity Specificity Accuracy

SGeo-RF 0.80 ± 0.03 0.65 ± 0.04 0.80 ± 0.07 0.99 ± 0.01 0.98 ± 0.01

RF 0.65 ± 0.15 0.50 ± 0.17 0.97 ± 0.02 0.95 ± 0.02 0.93 ± 0.02

CNN 0.84 ± 0.12 0.70 ± 0.17 0.97 ± 0.02 0.97 ± 0.01 0.94 ± 0.01

4 Conclusions

In this paper, we present the first automatic framework for the segmentation
and quantification of the skull in fetal 3DUS. In particular, we propose a new
general RF-based method able to efficiently integrate semantic and structural
information in the same decision forest. First, new contextual information and
potential variable dependencies are encoded in a new extended feature space via
GGD. Second, structural information of the target organs are also integrated
in the system defining a structural label space. Both semantic and structural
information are finally integrated into an intermediate super-class space intro-
duced here. Moreover, the proposed RF-based framework represents an accurate
and efficient alternative to the popular CNN-based methods, which are signifi-
cantly more computationally demanding and less intuitive. The promising results
obtained in the segmentation and characterization of the fetal skull demonstrate
the potential utility of this general method for the automatic and objective analy-
sis of the skull in fetal 3DUS. In the future, we plan to extend this framework in
two directions. First, the study of more sophisticated predictive models based on
3DUS-based biometrics, able to provide even more accurate predictions of the
GA and validated over a larger database. Second, we plan to incorporate a more
detailed analysis of the skull, including the detection of sutures and fontanelles.
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This would provide valuable anatomical information of the baby, enabling a
more accurate structural analysis and the early and automatic assessment of
congenital malformations, such as fetal craniosynostosis.
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Fast Registration of 3D Fetal Ultrasound Images
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Abstract. We propose a fast feature-based rigid registration framework
with a novel feature saliency detection technique. The method works by
automatically classifying candidate image points as salient or non-salient
using a support vector machine trained on points which have previously
driven successful registrations. Resulting candidate salient points are
used for symmetric matching based on local descriptor similarity and
followed by RANSAC outlier rejection to obtain the final transform.
The proposed registration framework was applied to 3D real-time fetal
ultrasound images, thus covering the entire fetal anatomy for extended
FoV imaging. Our method was applied to data from 5 patients, and
compared to a conventional saliency point detection method (SIFT) in
terms of computational time, quality of the point detection and registra-
tion accuracy. Our method achieved similar accuracy and similar saliency
detection quality in < 5% the detection time, showing promising capa-
bilities towards real-time whole-body fetal ultrasound imaging.

1 Introduction

Ultrasound imaging is a fast, non-invasive and cost-effective modality that
enables real-time 3D imaging of soft tissues. Ultrasound imaging is widely used
in many clinical applications, and particularly in fetal imaging for screening pur-
poses. The “anomaly scan” carried out at 20 weeks of gestational age (GA) pro-
vides detailed information of individual fetal organs. Inconveniently, the size of
the fetus at 20 weeks is such that the field-of-view (FoV) of a 3D ultrasound image
can only capture a small region of the fetal body. The lack of whole-body images
does not provide sufficient context for global interpretation of fetal anatomy, and
prevents researchers and clinicians from accurately estimating global parameters
such as fetal weight, which is an important biomarker of fetal growth [4].
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Extended FoV images can be achieved from multiple 3D ultrasound images
using mosaicing [11] (or image stitching). Mosaicing involves at least two steps:
first, the images must be spatially aligned; second, the aligned images must be
stitched seamlessly to provide a single, extended FoV image. In this paper we
focus on the first problem, that is, registering multiple 3D ultrasound images
together. More precisely, we aim towards a fast registration method that can
be used to register images in real time during acquisition. A simple max com-
pounding fusion method [12] is used after registration to produce the mosaiced
images for proof of principle.

1.1 Related Work

3D ultrasound image registration, particularly when aiming at real-time perfor-
mance for fetal applications, presents a number of challenges for conventional
registration techniques:

1. Fetal features will appear differently across images because of the different
angle of insonation as the transducer or the fetus moves.

2. View-angle dependent artefacts, such as shadows, mirroring and reverberation
will appear differently in different images, even if these images show the same
object.

3. Surrounding maternal tissue and placenta can misguide the registration
process when there is fetal motion.

4. Image quality varies from one image to another depending on other exogenous
factors including applied force, as well as contact between the transducer
surface and the skin.

For all the factors listed above, ultrasound-specific methods for pair-wise
[3,6,7,11] and group-wise [10] offline 3D ultrasound image registration have
been proposed. These methods mostly use intensity based registration using
input images or feature images extracted from the input images. As a result,
these techniques require the evaluation of computationally expensive cost func-
tions over large voxel regions and are in general not well suited for fast image
registration.

Recently, feature-based methods have been applied to fast and real-time 3D
ultrasound image registration. Schneider et al. [9] proposed to use a simplified
version of SIFT [5]. In their paper, point detection was followed by a symmetric
matching of feature points, and from these matched points a rigid transform
was estimated using RANSAC [2] for outlier rejection. Interestingly, they keep a
database of feature points which allows a one-to-many registration of every newly
arrived image. The proposed method is fast thanks to a GPU implementation,
but is very sensitive to view changes and probe rotations, and it therefore is only
able to capture relatively small displacements. As a result, their method is not
suitable for applications where the target is moving and where sweeps are not
linear.

A hybrid feature-intensity based registration scheme was proposed in [1]. This
scheme uses block matching to find matching points between two sequences, and
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then to use a point correspondence method to remove outliers and find the
true correspondence. Feature point selection is done using a regular grid. This
feature extraction method is extremely fast since no image processing is involved;
as a result, there is no guarantee that the selected points will have a distinct
feature that can help to establish a correspondence. For this reason, the points
are matched using normalized cross-correlation (NCC) in block matching [8],
assuming small rotations and translations for the search window, and achieving
volume registration at 8 Hz.

Both [1,9] focus on applications where the entire FoV contains the object of
interest: an in-vitro, static heart model in [9] and a liver in [1]. However, both
are unable to deal with moving objects or the combination of static and moving
tissue that are typical in fetal ultrasound. In such cases, the ability to select
relevant feature points to drive the registration is critical.

The novelty of this paper is two-fold: we introduce (i) a fast candidate point
detection method and (ii) a salient point classification step to discard points that
are not likely to contribute to the registration process. These two novelties allow
us to maintain a fast registration rate while achieving an accurate registration by
improving the selection of salient points. An overview of the method is covered in
Sect. 2.1 and specific details are given for (i) in Sect. 2.2 and for (ii) in Sects. 2.3
and 2.4. Results in terms of efficiency, execution time and registration accuracy
for 5 fetal patients are given in Sect. 4.

2 Method

2.1 Image Registration Framework

The feature-based registration framework between a fixed and a moving image
is represented in Fig. 1. Salient points are extracted from each image (1). This is
achieved in a two step process where first candidate points are selected (Sect. 2.2)
and then from those the points that are not salient are discarded (Sect. 2.3).
Local feature descriptors are extracted at the salient point locations (2). As
in [9], we use a sparse sampling feature, which provides a good balance between
complexity and accuracy for small rotations. Correspondence between points is
found by symmetric matching of the two point sets (3) followed by RANSAC
outlier rejection (4) to fit the matched points using a rigid transform (5) similar
to [1,9]. The choice of parameters for each block is detailed in Sect. 3.

2.2 Extraction of Candidate Points

As in [1] we start from a uniform grid of points, but then search for the local
maximum within a local neighbourhood. The size of this neighbourhood is fixed
so that the entire image is covered. This approach ensures to have points that are
local maxima, allows to control the number of candidate points and the distance
between them. In our experiments we used a grid of 1000 points.



36 A. Gomez et al.

Fig. 1. Registration framework. Featured points are extracted from the fixed and the
moving images using a point extractor (1) followed by a feature extraction (2) at the
points location. Correspondences between fixed and moving points are found using sym-
metric matching (3) and the transform (5) between matched points is found through
outlier rejection (4).

2.3 SVM Saliency Detector

The key to finding corresponding points in the method proposed in [9] (and, by
extension, in our method) is the assumption that salient points can be found
at corresponding locations in two different images. However this approach relies
on the ability of the method to detect salient points and distinguish them from
other feature points in the image that capture artefacts (e.g. edges generated
by shadows) or points which belong to maternal tissue or other non-interesting
structures which might mislead the registration. Schneider et al. [9] proposed a
simple saliency model: a point was considered salient if the intensity value was in
the range 150 to 200. We observed (as reported in our results) that this strategy
admits too many points which in turn yields computationally expensive point
matching and outlier rejection processes.

Instead we propose to learn a model for salient points by using a simple
Support Vector Machine (SVM) classifier. Each candidate point is classified using
a feature descriptor calculated on a N -voxel neighbourhood (i.e. a total of (2N +
1)3 values) around the point. The feature descriptor was designed to represent
whether the central point is salient with respect to its environment and to capture
texture and image patterns, while being rotation and translation invariant. For
that reason we use a 2D histogram H(i, j) with the distance to the centre on
one axis and voxel intensity on the other as a descriptor:

H(i, j) = #{x ∈ N (c)|ri ≤ ‖x − c‖ ≤ Ri, lj ≤ I(x) ≤ Lj} (1)

where ri, Ri are the minimum and maximum distances from a voxel x in the
patch to the central voxel c for the i-th bin in the radial direction, lj , Lj are the
minimum and maximum intensities for the j-th bin along the intensity direction,
and N (c) is the set of all voxels in the neighbourhood of c.
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2.4 Generation of Training Data

Each sample of the training data was an image patch where the centre point was
either salient or non-salient. To reliably identify salient and non-salient points to
generate the training data, pairwise registrations of every two consecutive images
in each sequence were carried out. These registrations were manually intialized
and artefacts and maternal tissue were manually masked out. The result of these
registrations was verified by experts to ensure that they were successful. Each
of these registrations defined a set of inlier points (i.e., points which were used
after matching and RANSAC to define the parameters of the rigid transform)
and outlier points (non-inlier points that were detected as salient following the
method in [9]). Then a sliding temporal window of T consecutive volumes was
defined. Points which were inliers in all registrations within the window were
labelled as salient, and points which were outliers in all registrations were labelled
as non-salient. Only points in the overlapping FoV of volumes within the window
were considered. In this paper, inliers and outliers were generated with windows
T = 3 and T = 7 respectively. This process produced 6813 ± 2820 samples per
patient (790 ± 350 salient and 6023 ± 2465 non-salient).

3 Materials and Experiments

We used sequences of 3D images from five healthy fetuses, acquired with insti-
tutional ethical approval and informed consent of the mother. Details on GA,
volumes per sequence, etc. are shown in Table 1. Data were acquired using a
Philips EPIQ V7G and X6-1 matrix array transducer in 4D mode, by sweeping
from the fetal head to the lower body. Experiments were carried out using 5-fold
cross-validation: for each trial, images from four patients were used for training
the SVM and the remaining patient was used for testing. Average and stan-
dard deviation values over these five trials are reported in the results section.
The SVM classifier was trained twice, first with all support vectors and then
restricting the maximum number of support vectors to 100 (approximately 10%
of the total number of support vectors). The SVM parameters γ = 10−3 (for
the Gaussian kernel) and C = 104 (penalisation) were found by 3 fold cross-
validation.

In addition to our proposed SVM saliency detector (Sect. 2.3), we carried out
experiments using the image to point set filter (block 1 in Fig. 1) proposed by
Schneider in [9], based on SIFT, which used using a single scale Laplacian of
Gaussian (LoG, σ = 3mm). Note that, apart from the salient point extraction
step, our proposed method is identical to that in [9], and unless otherwise stated
the same parameters are used. The implementation of both methods was our
own in C++, except for the use of ITK filters and dlib (CPU) for SVM. Each
volume in each sequence was registered to the previous in a pair-wise fashion
to prevent bias in the execution time measurements introduced by accumulated
target points when using multiple images as in [1,9].

For the LoG and the proposed SVM methods we measured (1) the proportion
of points classified as salient that were matched and, of those, the proportion
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Table 1. Details on patient data, including the number of inlier and outlier points
obtained from correctly registered volumes.

GA # volumes volume rate # inliers # outliers

Pat 1 22w + 2 94 3 Hz 894 6855

Pat 2 23w + 5 90 3 Hz 739 4625

Pat 3 23w + 4 139 5 Hz 1311 9897

Pat 4 20w + 2 69 3 Hz 345 3529

Pat 5 22w + 3 101 4 Hz 661 5212

that turned out to be inliers, (2) the average time to register every new image
including the breakdown into the different registration steps detailed above,
and (3) the target registration error (TRE) for 25 manually picked landmarks
distributed over the entire fetus.

4 Results

Figure 2 shows the results related to registration efficiency. Three salient point
detection schemes are compared in this graph: local extrema of the LoG [9],
and our SVM proposed method with all support vectors, and with 100 support
vectors and different patch radius N = 3, 4, 5. The graph on Fig. 2a shows the
average fraction of the salient points that are true inliers, matched but then
resulting outliers, and not matched. In average the fraction of detected points
that are inliers is comparable to the reference method (LoG). In all our experi-
ments the value is actually higher with our method (by approximately 2% with
100 support vectors and N = 4), however this improvement is not supported
by statistical evidence. The graph on Fig. 2b shows the total computation time,
broken down into point detection, point matching and outlier rejection. Our
method reduces execution time by two mechanisms: first, using a reduced num-
ber of support vectors makes salient point detection very fast (less that 100ms
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Fig. 2. Relation of points that determine the registration efficiency (a), for the different
saliency detection methods and different values of the patch size N used by the SVM
classifier. Computation time breakdown for image registration (b).
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Table 2. Registration error in mm (average ± std.), from 5 patients. N = neighbour-
hood size, LoG = Laplacian of Gaussian, SVM 100v = SVM with only 100 vectors.

N = LoG SVM SVM 100v

3 4 5 3 4 5

Pat 1 2.60± 1.87 2.58± 1.87 2.57± 1.87 2.57± 1.86 2.58± 1.87 2.57± 1.87 2.57± 1.87

Pat 2 2.65± 1.59 2.64± 1.54 2.65± 1.51 2.66± 1.55 2.65± 1.55 2.66± 1.56 2.68± 1.56

Pat 3 3.01± 1.93 2.97± 1.90 2.98± 1.90 3.01± 1.96 2.97± 1.90 2.98± 1.90 2.97± 1.90

Pat 4 3.62± 2.82 3.57± 2.75 3.78± 2.84 3.79± 2.84 3.58± 2.73 3.69± 2.81 3.83± 2.87

Pat 5 1.67± 1.61 1.71± 1.63 1.68± 1.63 1.69± 1.62 1.70± 1.63 1.69± 1.62 1.69± 1.62

Average 2.71± 1.97 2.69± 1.94 2.73± 1.95 2.75± 1.97 2.70± 1.94 2.72± 1.95 2.75± 1.96

Fig. 3. Example slice of compounded volumes. The compounded image is represented
in the background and three individual volumes are overlaid in green.

when using 100 support vectors and N = 4). We show later that this does not
have a negative impact in accuracy. Second, the SVM picks salient points that
are more likely to be inliers, hence less detected points are needed to achieve the
same accuracy and the matching and registration (outlier rejection) processes
can be done more rapidly.

Table 2 shows the average TRE calculated using 25 manually picked corre-
sponding landmarks on each patient. Accuracy is comparable across methods
(around 2.7 ± 1.9mm).

Figure 3 shows three example slices of registered and fused fetal volumes from
patient 11 (using SVM with 100 vectors and N = 4). The compounded image is
shown in grayscale in the background with three different images transformed
to their location within the volume and overlaid in semi-transparent green.

5 Discussion and Conclusions

We have proposed a new method for fast extraction of salient points as part of
a fast registration framework towards real-time 3D ultrasound image mosaicing.

1 Additional figures with slices from all other patiens are available as supplementary
material.
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Our method aims to increase the chance that the salient points will be inliers in
the feature matching process. An SVM classifier was trained using salient points
that drove successful registrations, and used to classify candidate points into
salient and non-salient. Our results indicate an improvement in the number of
inliers out of the number of salient points with a substantial reduction of the
point extraction time.

In the future, computational time can be further reduced by using more effi-
cient point-matching algorithms and a parallel implementation. Future work will
also include the use of non-rigid transformation models to deal with deformable
types of fetal motion.

In summary, we have presented a new fast method to extract salient points
from 3D ultrasound images to drive successful registrations. The method has
been demonstrated on five fetal patients and has shown potential towards real-
time registration in a real scenario.
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Abstract. MR images of the fetus allow non-invasive analysis of the
fetal brain. Quantitative analysis of fetal brain development requires
automatic brain tissue segmentation that is typically preceded by seg-
mentation of the intracranial volume (ICV). This is challenging because
fetal MR images visualize the whole moving fetus and in addition par-
tially visualize the maternal body. This paper presents an automatic
method for segmentation of the ICV in fetal MR images. The method
employs a multi-scale convolutional neural network in 2D slices to enable
learning spatial information from larger context as well as detailed local
information. The method is developed and evaluated with 30 fetal T2-
weighted MRI scans (average age 33.2 ± 1.2 weeks postmenstrual age).
The set contains 10 scans acquired in axial, 10 in coronal and 10 in
sagittal imaging planes. A reference standard was defined in all images
by manual annotation of the intracranial volume in 10 equidistantly dis-
tributed slices. The automatic analysis was performed by training and
testing the network using scans acquired in the representative imaging
plane as well as combining the training data from all imaging planes. On
average, the automatic method achieved Dice coefficients of 0.90 for the
axial images, 0.90 for the coronal images and 0.92 for the sagittal images.
Combining the training sets resulted in average Dice coefficients of 0.91
for the axial images, 0.95 for the coronal images, and 0.92 for the sagit-
tal images. The results demonstrate that the evaluated method achieved
good performance in extracting ICV in fetal MR scans regardless of the
imaging plane.
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1 Introduction

Fetal magnetic resonance imaging (MRI) is increasingly used as a non-invasive
tool for monitoring the fetal brain development. A number of papers describ-
ing automatic quantitative analysis of brain in MR scans of fetuses have been
published [2,3,18]. Compared to automatic analysis of the brain in adults and
neonates, analysis of the fetal brain carries unique challenges. In contrast to
brain MRI of adults and neonates that mostly visualize the head only, fetal MR
images have a larger field of view that includes the entire fetus as well as part of
the maternal body. In addition, because of fetal movement, the brain location
and orientation in fetal MRI may vary considerably. Hence, prior to analysis of
the brain tissue classes, automatic methods often determine a volume of interest
containing the brain.

To identify a volume of interest, several methods performed brain segmenta-
tion. Anquez et al. [1] proposed a method for automatic segmentation of intracra-
nial volume (ICV) in fetal MR scans. The method first localizes the eyes and
exploits this information to segment ICV using a graph cut approach that is
guided by shape, contrast and biometrical priors. The method was applied to
scans with unknown fetal orientation and the results demonstrate that it is able
to perform segmentation with high accuracy. Rajchl et al. [11] proposed a deep
learning approach for brain and lung segmentation. Their method combines a
convolutional neural network and iterative graphical optimization to obtain the
final segmentation. The method is trained with weakly labeled data consisting of
the brain bounding boxes. It was applied to data with large anatomical variation
and achieved high segmentation accuracy. Recently, Salehi et al. [13] proposed
a method for segmentation of the brain in adult and fetal MR scans. In this
approach, the fetal brain is first localized by defining a bounding box around it
with ITKSNAP [20]. Next, the segmentation was performed using a multi-scale
CNN as proposed by Moeskops et al. [10] with an iterative approach that uses
input from the posterior probabilities of the previous segmentation step to refine
the segmentations. The authors reported high segmentation accuracy.

Unlike methods performing ICV segmentation, several methods perform
brain localization in fetal MRI. Ison et al. [5] proposed a pipeline to detect
a bounding box in several stages. The method first employs a two-stage random
forest classifier. In the first stage, maternal tissue is separated from the fetal
head, and in the second stage the fetal brain tissue is classified in several classes.
Thereafter, a Markov random field appearance model is used to find the brain
orientation using results of the brain tissue classification. Hence, the detected
bounding box follows the orientation of the brain in the scan. The results show
that the proposed approach is robust but with moderate accuracy. Only 28% of
the coronal images and 53% of the axial and sagittal images contained whole
brain in the detected bounding box. Keraudren et al. [8] proposed a method for
brain localization that determines a bounding box in the orientation of the image
axis. The method first fits an ellipse around the brain in every image slice. There-
after, ellipses meeting criteria about expected brain size and knowledge about
gestational age are analyzed using SIFT features in a bag-of-words model to
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identify brain voxels. Thereafter, a bounding box is fitted to the extracted fea-
ture cloud using a RANSAC algorithm. The method can be applied to scans of
any orientation and it achieved good results with 85% of the cases containing
the whole brain within the bounding box. Taimouri et al. [16] proposed a tem-
plate matching approach to find slices containing the brain. This was applied to
determine a bounding box around the brain. Unlike methods that encode prior
knowledge about the gestational age and brain size in the features, this method
uses prior information from an age-matched template. The results demonstrate
high success rate in determination of the brain bounding boxes.

In this study, we investigated whether the method previously developed for
brain tissue segmentation by Moeskops et al. [10] can be used for the challenging
task of segmentation of the ICV in fetal MRI. Unlike other methods for fetal
brain segmentation, the proposed method directly segments the ICV from MRI
data without the need to crop the image to a region of interest first or using prior
knowledge about the brain size or gestational age. We evaluated the method with
MR scans acquired in axial, coronal and sagittal imaging planes.

2 Data

This study includes T2-weighted MR scans of 10 fetuses. The gestational age of
fetuses ranged from 22.9 to 34.6 weeks. For every patient, 3 images were acquired
on a Philips Achieva 3 T scanner using a turbo fast spin-echo sequence. The data
set contains 30 images in total: 10 images acquired in the axial, 10 images in the
coronal and 10 images in the sagittal imaging plane. The acquired voxel size is
1.25 × 1.25 × 2.5 mm3 and reconstructed voxel size is 0.7 × 0.7 × 2.5 mm3. The
reconstruction matrix is 512 × 512 × 80.

To define the reference standard, manual segmentation of the ICV was per-
formed by a trained medical student in 10 slices for each of the 30 MR images.
The slices were equidistantly distributed over the brain. Manual annotation was
performed using in-house developed software. The process was done by painting
brain voxels in each slice.

Images were divided into training and test set. The training set contained
images of 7 patients and the test set contained images of the remaining 3 patients.

3 Method

To segment ICV a multi-scale convolutional neural network (CNN) as proposed
by Moeskops et al. [10] is employed. This network has been developed for brain
tissue segmentation in neonatal and adult brain MR scans. The network analyzes
2D patches of different sizes to allow exploiting information from the local and
global context. Hence, the network takes three patch sizes that are each analyzed
in a separate network branch and combined in the last layer. Each branch con-
sists of three convolutional layers alternated with downsampling layers to reduce
feature map sizes. Convolution layers of each network branch are followed by a
fully connected layer. Outputs of the three branches are concatenated and input
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Fig. 1. CNN architecture: The network contains three branches which are fed by three
different patch sizes extracted from the input image as illustrated by red squares in the
input image. Each branch has three convolution layers and two fully connected layers.
In the last layer, all three branches are concatenated in a single fully connected layer
and classified as either ICV or background.

for a fully connected layer with a softmax function, which distinguishes between
positive (ICV) and negative (mother and fetus excluding the brain) classes. As
opposed to the network used for neonatal and adult images [10], the network in
the current study uses larger input patches (51 × 51, 101 × 101 and 151 × 151
vs. 25 × 25, 51 × 51 and 75 × 75), and uses strided convolution instead of max-
pooling. Detailed network parameters are shown in Fig. 1. To avoid bias towards
the majority class, the network was trained with an equal number of positive
(ICV) and negative (mother and fetus excluding the brain) samples randomly
selected from each scan. In addition, training samples were randomly chosen in
every epoch. In order to avoid overfitting, batch normalization [4] was used for
the convolutional layers and dropout [15] was used for the fully connected layers.
The CNN was trained by backpropagation using cross-entropy as loss function
and Adam [9] for optimizing the weights and biases.

Pixel classification may result in isolated clusters of voxels that may locally
resemble the brain. To prevent this, only the largest 3D connected component
segmented by the CNN was retained.

4 Experiments and Results

Three sets of experiments were performed. In all experiments, segmentation per-
formance was evaluated using Dice coefficients between manually and automat-
ically segmented images.

First, to evaluate the performance of the network when training and testing
with the representative data, the network was trained with images acquired in
axial, coronal and sagittal planes separately and tested with images from the
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corresponding orientation. From each set of axial, coronal and sagittal scans, 7
images were used for training, and the remaining 3 images from each orientation
were used for testing.

Second, to evaluate whether the network is able to generalize with respect
to image orientation, the network was trained with a mix of images from the
axial, coronal and sagittal planes, and evaluated with images acquired in all
three orientations. Thus, training and test sets from the first set of experiments
were merged. Hence, the training set contained 21 images and test set contained
9 images.

(a) (b)

(c) (d) (e)

Fig. 2. Dice coefficients obtained between manual and automatic segmentation in dif-
ferent experimental settings for each test scan in axial (Ax.), coronal (Cor.) and sagittal
(Sag.) imaging plane. Results were obtained when the CNN was trained with: (a) 7
scans from a single orientation and tested with scans acquired in the representative
orientation; (b) a combination of 7 axial, 7 coronal, 7 sagittal scans; (c) 3 axial, 2
coronal and 2 sagittal; (d) 2 axial, 3 coronal and 2 sagittal scans; (e) 2 axial, 2 coronal
and 3 sagittal scans.

Third, because the second experiment uses a much larger training set than
the first experiment (21 vs. 7 training images), experiments with 7 training
images acquired in axial, coronal and sagittal orientations were performed as
well. For this purpose, experiments with three different training settings were
performed: From a set of 3 axial, 3 coronal and 3 sagittal training scans, training
was performed using 3 axial, 2 coronal and 2 sagittal images; 2 axial, 3 coronal
and 2 sagittal images; and 2 axial, 2 coronal and 3 sagittal images.

Table 1 lists average of quantitative evaluation results of these experiments
and Fig. 2 shows results obtained from each image. Figure 3 shows examples of
the obtained segmentations.
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Fig. 3. Example of ICV segmentations in images acquired in axial (left), coronal (mid-
dle) and sagittal (right) planes. Top row: A slice from T2-weigted image; Second row:
Automatic segmentations obtained using 7 training images from the representative
imaging planes; Third row: Automatic segmentations obtained using all 21 training
images from all 3 image orientations; Bottom row: Manual segmentation.
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Table 1. Average Dice coefficients between manually and automatically obtained ICV
segmentations: First three rows list results when network was trained with 7 images
from a single plane and tested with images acquired in the corresponding plane. Fourth
row lists results obtained when the network was trained with 21 training images from
all three imaging planes. Last three rows list results of the network trained with 7
training images combined from all three imaging planes.

Test set

Training set composition Axial Coronal Sagittal

7 axial 0.90 - -

7 coronal - 0.90 -

7 sagittal - - 0.92

7 axial, 7 coronal, 7 sagittal 0.91 0.95 0.92

3 axial, 2 coronal, 2 sagittal 0.86 0.93 0.84

2 axial, 3 coronal, 2 sagittal 0.85 0.94 0.85

2 axial, 2 coronal, 3 sagittal 0.89 0.93 0.84

Fig. 4. Example of three slices strongly affected by imaging artifacts.

5 Discussion

We have presented an evaluation of a multi-scale CNN for segmentation of ICV
in fetal MRI. The method was evaluated with images acquired in axial, coro-
nal and sagittal imaging planes and the results demonstrate that the method
achieves Dice coefficients of 0.91 regardless of the image orientation. Unlike pre-
vious fetal brain extraction methods, the proposed method segments ICV from
fetal MRI without the need for bounding box localization or exploiting prior
information about the patient age or expected anatomy. To allow an indication
of the segmentation performance compared with other methods, the results from
previous studies are summarized in Table 2. Note that these results are obtained
on different data sets, and can therefore not be directly compared.

The segmentation performance appears similar when using representative
training images and when using mixed training images with respect to imag-
ing plane. This demonstrates that the method is robust with respect to image
orientation. Results obtained in the experiment using a larger training set with



Automatic Segmentation of the Intracranial Volume in Fetal MR Images 49

Table 2. Segmentation performance as reported in three previous studies. Note that
these results are obtained on different data sets, and can therefore not be directly
compared.

Previous studies Dice coefficients Hausdorff distance(mm) Kappa

Salehi et al. [13] 0.98 - -

Rajchl et al. [11] 0.94 - -

Anquez et al. [1] - 3.4 0.93

training images from all three imaging planes do not seem to lead to substantial
improvement in performance, although they tend to be more consistent. Because
a small test set of in total 9 test scans from 3 patients was available, statistical
difference among the different experimental settings was not evaluated. In future
research these results need to be confirmed in a larger set of images.

Because of the continuous fetal motion, fetal MR images contain motion
artifacts that were most present in scans acquired in sagittal imaging plane.
Slices that contained very strong artifacts were not segmented by the automatic
method (Fig. 4). Because quantitative evaluation was performed only in slices
with manual annotations, these did not affect the quantitative evaluation. Nev-
ertheless, poor image quality in such slices prohibits manual expert as well as
automatic brain segmentation. Hence, to solve this, motion correction, as e.g.
proposed by Kainz et al. [6] could be applied prior to brain segmentation.

In this work, segmentation was performed using a multi-scale CNN as pro-
posed by Moeskops et al. [10]. Similar multi-scale CNNs could likely also be
used, such as the network proposed by Kamnitsas et al. [7]. In addition, other
segmentation network architectures could be evaluated, such as the fully con-
volutional architectures as proposed by Shelhamer et al. [14] and Ronneberger
et al. [12], which contain upsampling layers and skip-connections to acquire
multi-scale information. Another approach used for segmentation are dilated
CNNs [17,19], which can achieve large receptive fields with a limited number of
trainable weights. Moreover, in future work, network architectures that use 3D
information will be investigated.

The gestational age of fetuses included in this study was relatively narrow
(range: 22.9 to 34.6). However, the method can likely be applicable to fetal MR
scans made at other gestational ages. Our future work will investigate application
of this method in a large set of fetal scans acquired in a broad range of gestational
ages.
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Abstract. In this paper, voxel probability maps generated by a novel
fovea fully convolutional network architecture (FovFCN) are used as
additional feature images in the context of a segmentation approach
based on deformable shape models. The method is applied to fetal 3D
ultrasound image data aiming at a segmentation of the abdominal outline
of the fetal torso. This is of interest, e.g., for measuring the fetal abdom-
inal circumference, a standard biometric measure in prenatal screening.
The method is trained on 126 3D ultrasound images and tested on 30
additional scans. The results show that the approach can successfully
combine the advantages of FovFCNs and deformable shape models in
the context of challenging image data, such as given by fetal ultrasound.
With a mean error of 2.24 mm, the combination of model-based segmen-
tation and neural networks outperforms the separate approaches.

1 Introduction

Ultrasound (US) is the modality of choice for fetal imaging. The advantages are
above all that it is a widely available modality of limited cost, with no known
adverse effects, being able to render fetal anatomy in sufficient detail to enable
diagnostic decisions. At the same time, ultrasound is recognized as being a very
operator-dependent modality, demanding high skill of the clinician to provide
meaningful imaging material and being the contrary of a push-button modality.
Historically, Ultrasound has been predominantly a 2D modality, showing the
patient’s anatomy in a fan-like portion of a plane and demanding high skills of
anatomical orientation and recognition just to be able to find the right view-
plane to answer a given clinical question.

In light of the above mentioned challenges, fetal imaging is an extreme case.
Since a patient within a patient is examined, the anatomy and pose of the
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“outer patient”. In addition, anatomical structures of the fetus are very small,
sometimes just at the resolution level of the device. Since maternal tissue has
to be penetrated before reaching the fetus, ultrasound frequencies cannot be
chosen as high as the need for spatial resolution would demand. In this context,
3D ultrasound (3D US) may be of benefit. Since a whole volume is captured at
once, the field of view needs to be defined with considerably less accuracy, only
requiring that the anatomy of interest is included.

Fetal screening is routinely performed in two examinations at 18 to 22 weeks
GA, covering a variety of fetal growth measures and the detection of fetal abnor-
malities. A third examination at 28 to 36 weeks GA is offered (depending on the
setting) to all women or to those with specific risk factors, and is mainly devoted
to assessment of growth control and fetal presentation.

Advanced image analysis tools can support the screening workflow in several
ways. First of all, data navigation can be facilitated by automatic recognition of
fetal anatomy and display of anatomy correlated views. Secondly, automatic
delineation of anatomical structures enables automatic biometrical measure-
ments. Thirdly, biometrical measurements and other image processing results
may be used to support a diagnosis. One way to cope with the difficult image
properties of fetal US image data is to introduce domain knowledge using a
deformable shape model [13]. It can very well deal with noise, incomplete field
of views, and drop-outs due to shadowing, and was successfully applied to 3D
US fetal head screening [12]. In order to increase the capture range or the adap-
tation accuracy, the adaptation procedure can be extended to use not just one
input image but several ones, e.g., in the case of MRI image data, where different
sequences may be available [3,6].

As a first step in the direction of automatic assessment of fetal body mea-
surements, we aim at automatically segmenting the fetal torso in 3D US data.
This could be used to automatically determine the abdominal circumference,
which is a critical measure of second trimester screening that suffers from high
inter-observer variability [8]. To the best of our knowledge, this has not yet been
addressed in the literature. We propose to improve accuracy of a model-based
segmentation (MBS) by considering the output of a convolutional neural net-
work (CNN) applied to the original 3D US as an additional input. On this behalf,
a resource-friendly multi-scale convolutional network architecture is presented.
Similar to [6], the network output is then integrated into the segmentation app-
roach. We show that the combination of CNN and MBS considerably enhances
robustness of the segmentation and outperforms both separate approaches.

2 Methods

2.1 Model-Based Segmentation

The approach for model based segmentation (MBS) used in this work was orig-
inally introduced for heart segmentation in 3D CT images [13] and since suc-
cessfully applied to a variety of applications, e.g., for head segmentation in fetal
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ultrasound [12]. Here, the boundary of the structure to be segmented is rep-
resented by a triangulated mesh, which is propagated towards boundaries in
the images. The segmentation task is formulated as an energy minimization, in
which the energy functional consists of two parts: On the one hand, an external
energy that attracts the triangle center points of the mesh ci towards detected
boundaries points xtarget

i in an image (with a weight wi):

Eexternal :=
T∑

i=1

wi

(
∇I(xtarget

i )
||∇I(xtarget

i )||
· (xtarget

i − ci)

)2

. (1)

On the other hand, an internal energy that penalizes deviations of the mesh
vertices vk from a learned typical shape µk (mean shape plus eigenmodes):

Einternal :=
V∑

k=1

∑

j∈N(k)

((vk − vj) − (T (µk) − T (µj))2 + Eeigenmodes . (2)

Here, T is a global transformation that registers the model mesh on the target
mesh and Eeigenmodes weighs the eigenmode configuration. For details, please
refer to [13]. The energy is minimized using gradient descent until a maximum
number of deformations is reached.

The boundary detection function in the core of the algorithm looks for xtarget
i

by maximizing the feature response Fi along a search ray orthogonal to each
triangle center. It considers gradient direction, strength, gray value range inside
and outside and other distinctive features for each triangle individually. Thus,
the resulting deformable model is locally specific for the organ or organ set to be
segmented and highly discriminative. In this work, the limited projected gradient
feature following [13] is used:

Fi(x) = (n · ∇I(x))
gmax(gmax + ||∇I(x)||)

g2max + ||∇I(x)||2 , (3)

where I(x) is the gray value image at position x. The gradient norm ||∇I(x)|| is
limited by gmax and projected onto the triangle normal vector n. Additionally, if
neighboring gray values violate learned intervals, the feature response is rejected
and – if no other valid target point is found for that triangle – it is adapted only
based on the internal energy. The optimal parameter gmax and the intensity
intervals are learned specifically for each triangle using simulated search [13].

2.2 Model Initialization

Since deformable models only have a local capture range, a robust model initial-
ization is of crucial importance. Well-established approaches like the Generalized
Hough Transformation [1] are less suited for the given application, because they
are generally not invariant to scale and rotation, while the fetus is growing
rapidly and can be of arbitrary orientation in the womb.
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In this work, the model is therefore initialized based on three characteristic
landmarks in the fetus: heart, stomach, and bladder. Here, two sets of land-
marks are compared: On the one hand, manual landmarks defined by a clinical
expert. On the other hand, landmarks automatically detected using random
forests (RF) [9]. Once these landmarks are determined, they define a trans-
formation (rotation plus uniform scaling) from the model domain to the image
domain, which is applied on the learned mean shape model [13] for initialization.

2.3 Fovea Fully Convolutional Networks (FovFCN)

Since the recent rejuvenation of neural networks, object segmentation – often
referred to as semantic segmentation [11] – has gained a lot of attention. This
task was originally approached by classifying center pixels of patches using neural
networks consisting of convolutional, pooling and dense layers [4]. Larger images
were then processed in a sliding window fashion, which leads to many redundant
calculations in the network where patches overlap. To address this, fully con-
volutional networks (FCNs) were proposed [11]. By replacing dense layers with
1 × 1 convolutions, multiple voxels can be classified simultaneously by feeding
whole images through the FCN. However, the resulting classification output is of
a lower resolution than the original image. Several publications address this issue
by combining convolution and pooling with convolution transpose and unpooling
layers (with potential shortcut paths) [2,7,10]. Using such a succession of con-
traction and upsampling layers allows feature extraction on different abstraction
levels and yields an output of original image resolution.

In particular for large patch sizes in 3D images, these approaches can lead to
a significant memory footprint. If the network size exceeds the memory of the
GPU– e.g., in ultrasound devices with strict hardware constraints – segmentation
performance can be affected considerably. If the patch size is chosen too small,
however, image context is lost by only considering local regions at a time. In
particular in fetal ultrasound, it can be difficult even for a human observer to
tell if a local patch is part of the fetus or the background (i.e., the placenta, cf.
Fig. 2) without considering the “big picture”.

To address this issue, we propose a fully convolutional network architecture
that feeds in patches at different resolutions, which allows the network to take
large context into consideration while reducing the amount of required mem-
ory compared to previously proposed architectures [2,7,10]. In contrast to the
multi-resolution approach proposed in [5], our network successively integrates
the information from an arbitrary number of resolutions instead of only two.
To maintain image context, the patch to be segmented is regarded in conjunc-
tion with larger, but down-sampled patches at the same position. This approach
is loosely inspired by the distribution of photoreceptor cells in the human eye,
which have the highest resolution at the fovea centralis. As illustrated in Fig. 1,
features are extracted on each resolution level. Then, feature maps of coarser
resolutions are up-sampled using average unpooling and additively joined with
finer levels. The network is trained using the cross-entropy between the output
layer and the known labels as the cost function.
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Fig. 1. Sketch of the Fovea CNN with three levels. To segment a patch of a given size
(here: 74×74×74 voxels, red box), three input patches of different sizes are cropped from
the input image. The larger “context” patches are then rescaled to a lower resolution.
For each level, features are extracted (convolutional layers with ReLU activation) using
cross entropy loss function. Feature maps at rescaled levels are up-sampled to original
resolution using mean unpooling and then added to integrate features of all levels.

2.4 FovFCN-Powered Model-Based Segmentation

When segmenting the fetal torso in US images, the true boundary is often barely
visible, e.g. due to shadow artifacts. Instead, other nearby boundaries of mater-
nal tissue may attract the model searching for gradients. By considering a larger
image context, techniques like FovFCN are superior to a local feature point
search at distinguishing the true boundary of the torso in such regions. However,
the resulting torso probability map does not directly provide a valid mesh. To
combine advantages of shape models with the selective strengths of neural net-
works, probability maps are regarded as additional input to deformable models
in this work. A similar idea was previously described for vertebra segmentation
in MR images [6].

On this behalf, the ground truth torso segmentations are used for training
features on torso-probability maps created by the FovFCN described in Sect. 2.3.
Then, the model is used on the probability map instead of the original US image.
An additional step is to combine the proposed target point search on probability
maps and trained features for the original US image: For each triangle, both
features search for target points and the external energy is a weighted average
between both target point distances [3]. Thus, in contrast to [6], both the actual
image information and the computed probability maps are part of the energy
formulation for the optimization procedure.



Abdomen Segmentation in 3D Fetal Ultrasound 57

3 Experiments and Results

3.1 Image Data

Experiments presented in this paper are based on 168 3D US datasets acquired
with a Philips EPIQ 7 Ultrasound system using a V6-2 3D transducer. The
imaged field of view covers the abdomen and parts of the thorax of the fetus.
Typically, bladder, stomach, (internal) umbilical vein, and the heart are con-
tained in the images. The gestational age ranges from 15 to 38 weeks. Depend-
ing on the gestational age and size of the fetus, the image matrix (x,y,z) con-
tains (256 · · · 512) × (263 · · · 510) × (143 · · · 256) voxels with a voxel size of
(0.1 · · · 0.5) × (0.06 · · · 0.4) × (0.18 · · · 0.8) mm3. For training, a subset of 126 cases
was used, for testing the remaining 42 cases, aiming for equal age distributions.
Figure 2 shows a random selection of case examples (only an abdominal slice of the
3D volume is shown). The variable image appearance and the influence of noise
(especially for the smaller gestational ages) and of shadow artifacts caused by bone
structures (especially for higher gestational ages) can be appreciated.

Fig. 2. Some exemplary cases of different gestational ages (GA). The selected slices
(of the 3D data sets) show an abdominal region containing the bladder. Differentiating
between torso and fetus can be impossible when only looking at small patches.
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3.2 Intensity-Only MBS

In Table 1, quantitative results for the model-based segmentation MBSI using
only the ultrasound image I are given for both initialization approaches (manual
and RF with mean landmark localization error of 16.5 mm). Exemplary results
are shown in Fig. 3. In these experiments, deformable models are often attracted
by wrong contours in the image. For example, the mother’s tissue may exhibit
stronger edges then the boundary of the fetus and therefore distract the model.
Further, the impairing effect of false positive edges increases with the distance of
the initial model to the correct boundaries. Therefore, the segmentation accuracy
is considerably worse for RF-based initialization.

3.3 FovFCN

For segmenting the fetal torso, a FovFCN with three levels and a patch size of
74×74×74 voxels and 7×7×7 convolution kernels was employed. This implied
input patches of sizes 86×86×86 (level 0, original resolution), 52×52×52 (level
1, after rescaling with factor 2) and 35 × 35 × 35 (level 2, factor 4). Parameters
were chosen empirically as a trade-off between computation time and accuracy.
The network is trained using all 126 training images for 1000 epochs. In each
epoch, one training patch per scan is randomly sampled (for all resolution levels),
which introduces a certain degree of data augmentation.

Exemplary results of the FovFCN are shown in Fig. 3. The general position
of the torso is detected well, with few false positives in the background. How-
ever, typical image artifacts like drop-off and shadows by the mother’s ribs can
entail a considerable amount of false negative voxels inside the torso. Also, the
boundaries are often quite fuzzy. For a quantitative evaluation, the output of
the FovFCN is binarized with a threshold of 0.5. In total, a Dice coefficient of
0.76 is obtained (sensitivity 0.89, specificity 0.95).

3.4 FovFCN-Powered MBS

Further, the FovFCN output P is used as single modality for a model-based
segmentation MBSP . Quantitative results are given in Table 1, with exemplary

Table 1. Segmentation results comparing model-based segmentation with different
initialization (manual and RF-based) and input data (MBSI : ultrasound intensities,
MBSP : FovFCN-based probabilities, and MBSIP : a combination of both). Accuracy is
given in mean distances of triangle centers of the segmented to the ground truth mesh.

Metric Init MBSI MBSP MBSIP

Manual initialization Mean distance (mm) 4.01 2.23 2.00 2.06

Max distance (mm) 6.28 4.43 3.77 4.17

Manual initialization Mean distance (mm) 5.47 3.75 2.39 2.24

Max distance (mm) 9.05 7.22 5.12 4.97
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Fig. 3. Exemplary results for two cases. In the first case, the model is incorrectly
attracted by a strong edge by from the mother’s tissue. In the second example, a
shadow artifact leads to a intensity drop-off at one side of the fetus, impairing the
segmentation. In both cases, integrating the probability map yielded by the FovFCN
considerably improves the result.
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results shown in Fig. 3. Generally, segmentation performs significantly better
(paired ttest, p ≤ 10−4 and p ≤ 10−12 for manual and RF initialization) on the
probability maps P than on the ultrasound images I. In particular, the approach
is much more robust against initialization errors because fewer edges in the image
distract the model adaptation.

In the final experiments, segmentation was performed with image and prob-
ability map as input (MBSIP , see Table 1 and Fig. 3). The results are slightly
worse for well-initialized models, for RF-based initialization the combined con-
sideration of images and probability maps is better than the separate approaches.

Dice values of the MBSIP result were 0.87 (sensitivity 0.99, specificity 0.82)
for manual and 0.86 (sensitivity 0.99, specificity 0.82) for RF-based initializa-
tion, compared to the 0.76 obtained with FovFCN alone. While the difference
between MBSP and MBSIP is small, the use of both FovFCN and MBS clearly
outperformes the individual approaches.

4 Discussion and Conclusion

In this work, an approach for model-based segmentation is presented that inte-
grates image information with voxel probability maps generated by a novel CNN
architecture. For segmenting the fetal torso, the MBS using solely intensity
images is lacking robustness. This can be attributed to the challenging ultra-
sound data, which is impaired by noise and image artifacts. Further, the het-
erogeneous background exhibits many misleading edges. Similarly, the results
yielded by the presented FovFCN network are lacking accuracy. While excellent
results are obtained with the same architecture when segmenting MR or CT
images, it can be assumed that the training set is too small to be representative
for the wide range of (highly heterogeneous) fetal ultrasound scans. Therefore,
it fails to learn the image content sufficiently well to be able to extrapolate the
fetal anatomy in regions impaired by artifacts. This is further supported by the
observation that the difference between training and test set is larger for the
FovFCN than for the MBS.

Performing model-based segmentation on CNN-generated probability maps
combines advantages of both approaches. The neural network eliminates the
majority of distracting edges in the image and increases the capture range of the
model. This is of particular interest if the initialization of the mesh is lacking
accuracy, in which case considering the probability map greatly improves robust-
ness. Further, the model-based segmentation is – to a certain degree – able to
compensate for artifacts and noise due to explicitly modeled shape and shape
variations.

Compared to MBS only, the combination reduces the mean surface distance
error from 3.75 mm to 2.24 mm. Compared to FovFCN only, the combination
increases the Dice coefficient from 0.76 to 0.86. Thus, FovFCN-powered MBS
clearly outperforms either separate approach.
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Roberto Ardon1, Angelo Cavallaro2, Ibtisam Salim2, Aris Papageorghiou2,

and Laurence Rouet1

1 Philips Research MediSys, Paris, France
{caroline.raynaud,cybele.ciofolo-veit}@philips.com

2 Nuffield Department of Obstetrics and Gynaecology,
University of Oxford,Oxford, England

Abstract. 3D ultrasound (US) is a promising technique to perform
automatic extraction of standard planes for fetal anatomy assessment.
This requires prior organ localization, which is difficult to obtain with
direct learning approaches because of the high variability in fetus size
and orientation in US volumes. In this paper, we propose a methodol-
ogy to overcome this spatial variability issue by scaling and automati-
cally aligning volumes in a common 3D reference coordinate system. This
preprocessing allows the organ detection algorithm to learn features that
only encodes the anatomical variability while discarding the fetus pose.
All steps of the approach are evaluated on 126 manually annotated vol-
umes, with an overall mean localization error of 11.9 mm, showing the
feasibility of multi-organ detection in 3D fetal US with machine learning.

Keywords: 3D ultrasound · Volume alignment · Landmark localization

1 Introduction

In clinical routine, 2D Ultrasound (US) is the preferred scanning protocol for
biometry measurements, growth monitoring and anatomy assessment during
pregnancy. Obtaining reproducible and accurate values requires to follow strict
guidelines, especially regarding the selection of the standard 2D viewing planes
which are used to search for abnormalities or perform biometry measurements
such as head and abdomen circumference or femur length. This task can be very
difficult because of multiple factors: the mother morphology, the unknown and
highly variable orientation of the fetus as well as well-known US artefacts, in
particular the shadowing effect. 3D US is a more recent imaging technique that
has the potential to overcome some of the above mentioned difficulties. In par-
ticular, the acquisition of a single 3D volume makes it possible to automatically
select the required viewing planes, even for less experienced users. In addition,
the clinicians can perform offline reading and, if necessary, adjust the position
of the extracted planes prior to standard measurements.
c© Springer International Publishing AG 2017
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Various strategies have been proposed for automatic viewing planes extrac-
tion in 2D. Views of interest can be selected from 2D US sequences by classify-
ing the content of each frame to determine if it corresponds to a standard plane
using a radial component model [1] or a pre-trained recurrent neural network [2].
Another 2D approach consists in fitting geometrical templates built at multiple
resolutions and orientations in order to label the anatomical content [3].

In this study, we propose a new approach using 3D US to localize fetal
abdominal organs which will be used as landmarks for subsequent standard
planes extraction. Because 3D fetal US imaging is a relatively new field and only
limited datasets are available, we chose the random forests method [4–6] among
others possible learning techniques. However, the size, position and orientation
of the fetuses in acquired volumes are highly variable due to fetal presentation,
gestational age or probe position. To overcome this difficulty, our method first
aligns and scales all fetuses in a common normalized reference coordinate system,
so that the learning algorithm focuses only on analyzing fetal anatomy, without
including variations due to spatial misalignments and pregnancy stages.

Overall, the proposed approach consists in tackling the successive difficulties
step by step, by focusing on well identified problems to ensure the robustness of
the whole processing pipeline. An initial volume alignment based on spine and
torso detection is performed, followed by the disambiguation of head-toe orien-
tation. Additional scaling normalizes the organ and fetus sizes. Once all volumes
are aligned, a random forest is trained in order to regress the position of the
main fetal abdominal organs. Finally, we evaluate both the pre-processing steps
and the complete pipeline by using manually annotated landmark positions.

2 Method

To localize fetal organs from 3D US abdominal acquisitions with a learning-based
approach, the input material is a database of 3D volumes associated to expert
annotations of the main abdominal structures. Figure 1 (Left) illustrates, for
each case, the position of the spine (lines) and main organ centers (dots) in the
original acquisition coordinate system. The graph reflects the high variability of

Fig. 1. Expert annotations of fetal spine (lines) and organs (dots). (Left) illustration of
orientation variability of fetal volumes before alignement of fetus coordinate systems.
(Right) Organs positions after volume alignement.
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fetus positions and orientations and confirms that learning on such a database
will include variability due to spatial positioning instead of focusing on real
anatomical variations.

As explained above, this section describes how to solve this issue with a
complete workflow, including a specific alignment and scaling preprocessing
(Sect. 2.1) followed with a multi-organ localization method with random forests
(Sect. 2.2).

2.1 Fetus Reference Coordinate System Definition

To align the whole database of N volumes, a local, fetus-based coordinate sys-
tem noted Ri = (Oi, xi, yi, zi) is defined in each volume i, i ∈ {1 . . . N} (see
Fig. 2). An affine transformation is then applied to the volumes so that the fetus
coordinate systems are scaled and aligned with a common arbitrary reference
coordinate system R = (O, x, y, z).

Fig. 2. Definition of a fetus-based coordinate system

Among all anatomical structures, the fetal spine is unique, clearly visible
and specific enough to provide some basic orientation information, which makes
it a good starting point for coordinate system definition. The first step of the
alignment processing is thus to detect the spine of the fetus, which leads to the
definition of the local origin Oi and a first axis zi. A second, transverse axis xi is
then found by locating the fetus abdomen and the head-toe orientation is finally
determined.

Spine Detection. The spine is automatically detected by combining a morpho-
logical filter which detects elongated bright structures and a deep learning (DL)-
based vertebrae detector, in order to take advantage of both methods strengths.

Morphological filter. For each voxel x in the US volume, in a given spherical
neighbourhood, the morphological filter compares the intensity of the voxels
along a direction u with the intensity of the other voxels. The filter responses
are computed for various neighbourhood radii and orientations u and combined
to obtain a global response. The global responses of neighbouring voxels are
aggregated to define connected components which correspond to the best filter
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responses (red overlay in Fig. 3 (Left)). Although some of the responses are
accurately positioned on the spine, others are outliers that may be located on
ribs or other elongated structures such as long bones.

Deep learning-based vertebrae detector. The DL-based vertebrae detector
consists in a 2D fully convolutional network. The input of the network consists in
2D slices, extracted orthogonally to the original z-axis. The network architecture
is as follows: a succession of three convolution blocks (each composed of 32
filters of two 3 × 3 convolutional layers with relu activation and one pooling
layer), followed by two dense-equivalent blocks (each composed of 512 filters of
1 × 1 convolutions) and a final 1 × 1 convolution. The volume slicing produces
a large amount of data with similar features, which is appropriate for deep
learning methods. The network output is a downsampled probability map, with
values closer to one where the spine might be located. A 3D DL-based vertebrae
detector is built by stacking all the obtained 2D probability maps for one volume.
This output heatmap is coarser than the morphological filter output, but more
robustly located around the vertebrae (Fig. 3 (Center)).

Combined spine detector. By selecting the intersection between the DL ver-
tebrae detector and the morphological filter responses, the network output is
refined and the filter responses that are outside the spine are rejected, so that a
more robust spine binary mask is finally obtained (Fig. 3 (Right)).

Fig. 3. Spine detection with: (Left) morphological filtering, Center: DL approach,
(Right) combination of both approaches.

Origin and Vertical Axis. The center of mass of the spine binary mask is
used as the center of the fetus coordinate system Oi. If the detected spine is
highly curved, its center of mass might not belong to the binary mask. In this
case, the binary mask point that is the closest to the center of mass is used.
Then the extremities of the spine binary mask are used to define the zi axis, a
vertical axis tangent to the spine (see Fig. 2).

Abdomen Detection and Transverse Axes Definition. The xi and yi axes
are searched in the plane orthogonal to zi at Oi, noted (Oi, xi, yi). To do so, the
fetus abdomen is detected in various transverse planes, with the following steps:
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Fig. 4. (Left) Transverse planes extraction and abdomen detection. (Right) Torso vol-
ume of interest from transverse abdomen detections.

– Transverse planes extraction at evenly spaced points along the spine (Fig. 4).
– Abdomen detection in all transverse planes, by using a variant of the

Hough transform tailored to the detection of circular shapes. In practice,
the best convolution of the image with a radially-symmetric kernel model-
ing a disk with the desired border profile is searched among a range of radii
(Fig. 4 (Left)).

– For each plane, computation of the vector going through the spine intersection
with the plane and the center of the detected circle (orange segments in
Fig. 4 (Left)).

– Projection of all vectors on the (Oi, xi, yi) transverse plane.
– Selection of xi as the average projected vector in the (Oi, xi, yi) plane (see

Fig. 2 (Left)). The yi vector is chosen so that the coordinate system is orthog-
onal with right-handed orientation.

Additionally, the stack of abdomen detection results in transverse planes defines
a mask of the abdomen, as shown in Fig. 4 (Right).

Head-Toe Orientation. At this stage, it is necessary to find the head-toe
orientation of the volume and choose between the two possible directions of
the zi axis. This is done by training a classifier to distinguish between the two
configurations in the 2D (Oi, xi, zi) slice of the volume (Fig. 5). In practice we
use a convolutional neural network similar to AlexNet [7]. In order to be robust
to possible inaccuracies during the spine detection step, random noise is added
during the (Oi, xi, zi) slice extraction so that the network is fed with corrupted
data during the training. Then random patches are selected in the slice to train
the classifier, whose output is binary (1 when the fetus head is at the top of
the image, O if it is at the bottom). The testing is done with a similar process,
without the random noise addition.

Scaling. To reduce scale variability due to varying gestational ages (GA), a
scaling factor is also applied to all volumes based on existing growth tables [8].

After this processing, the volumes are rotated and translated so that the
associated fetus coordinate systems Ri are aligned with the common reference
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Fig. 5. Plane extraction along spine and patch extraction for classification.

coordinate system R. An illustration of the alignement is visible in Fig. 1 (Right),
where the spine and various fetal organs have been annotated by experts.

2.2 Organ Detection

The detection of fetal organs is done with a random forest algorithm [4], with a
similar approach as the one proposed in [5]. The principle is to learn, for a given
point in a volume, the relative direction to the target organ landmarks. In the
following description, such a relative direction is referred to as a voting vector.

Training. In order to train the random forest algorithm, it is necessary to
set the values of a number of parameters. The most influential ones are the
following: number of trees, depth of trees, number of training points per image
and threshold on variance of voting vectors in a node, respectively noted NT ,
DT , NP , α. The algorithm also depends on image-based features F = {f}. In
the present study, the features are mostly derived from local gradients, such as
locally normalized gradients and distance to gradients.

A splitting criterion is defined for all nodes. It aims at finding two subsets
of training points so that the sum of the entropy of both subsets is minimal. To
obtain the splitting criterion, a large set of random features is tested at each
node. Within this set, the feature f that provides the optimal subset separation
and the corresponding splitting threshold θ are selected and stored in the node.
The entropy is defined as the variance of the voting vectors to each landmark.

Multiple stopping criteria are defined for all leaves: (i) a given depth DT of
the tree is reached, (ii) the intra-subset variance is below a given threshold α,
(iii) the subset is too small. The mean of the voting vectors is stored in each
leaf. This will be the voting vector of each point classified in this leaf.

Testing. Testing describes the actual landmark localization process, which is
restricted to the volume area located inside the abdomen mask, as defined in
Sect. 2.1. For a given input volume, the following steps are performed:
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– P random testing points are selected.
– The testing points are propagated throughout the tree, using the (f, θ) split-

ting criteria, until they reach a leaf.
– Each point provides a voting vector.
– All voting vectors are converted into landmark predictions.
– To provide a single prediction, all predictions are combined through Gaussian

estimation. An example of all predictions is presented in Fig. 6 as a coloured
overlay. The extracted single prediction is presented as a green point.

Fig. 6. Cross-section planes from a 3D ultrasound volume with overlay of all voting
predictions and extracted single prediction (green point). (Color figure online)

3 Results and Discussion

3.1 Material and Experimental Setup

The database consists in 126 3D ultrasound abdominal volumes, acquired in
2015 at John Radcliffe Hospital, Nuffield Department of Obstetrics and Gynae-
cology. The acquisitions are performed on a EPIQ 7G system (Philips Ultra-
sound, Bothell, WA), using a mechanical V6-2 probe. The probe orientation is
axial with respect to the fetal abdomen and the mechanical sweep spans the
spine longitudinal axis. The database includes gestational ages ranging from 16
to 38 weeks. The volumes dimensions in voxels are 512×512×256, with a spatial
resolution around 0.25 × 0.25 × 0.5 mm.

The whole approach uses learning algorithms at various steps. In order to
perform validation, the data is split into 4-folds of about 32 volumes each. Each
fold reflects the GA distribution in the database. For all validation experiments,
the same folds are used. For each fold, the algorithm is trained on the three
remaining folds. Parameters for random forests training are NT = 20, DT = 20,
NP = 20.106, α = 7.

For each volume in the database, a spine annotation is provided as a point
set, together with the landmarks corresponding to main organs (heart, stomach,
umbilical vein and bladder) annotated as 3D points, when present in the volume.
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3.2 Fetus Reference Coordinate System Validation

Spine Orientation Validation. The spine orientation is validated through
comparison with manual annotations. Two metrics are used: (i) the distance d
between the point set center of the annotated spine and the point set center of
the automatically detected spine, (ii) the angle φ between the tangents to the
spine of annotated and detected points sets.

Results show a mean distance d = 12 mm [±6.3]. The measured mean angle
φ = 12◦[±7]. These errors seem low enough to use the spine detection as a first
step for volume alignment.

Torso orientation and xi axis validation. In order to evaluate the accuracy
of the abdomen detection and the transverse xi axis, the spatial variances of
different structures in two different coordinate systems are compared. Both coor-
dinate systems use the spine direction as zi axis. The first one (Rcurv) is defined
using the curvature of the spine in order to define the xcurv axis. Indeed, if the
spine is curved, its center and both extremities define a plane. The xcurv axis is
the orthogonal vector to zi that points towards the convex side of the curve. The
second coordinate system (Ri) is obtained as described in Sect. 2.1: the xi axis
is obtained through abdomen detection, being the average vector pointing from
the spine to the center of the abdomen. The variance in the spatial distribution
of two given organs, heart and stomach, are compared. Regarding the heart, the
variance is 13.9 mm in the Rcurv and 5.6 mm in Ri. For the stomach it goes
from 10.4 mm to 4.3 mm, which shows that the use of the method described in
Sect. 2.1 makes the xi axis definition more accurate (Fig. 7).

Head-Toe Orientation Validation. As in the previous sections, we have
validated the training of our network in a 4-fold scheme using images patches of
size 128 × 128. On the 126 volumes the successful classification rate is 86%.

Fig. 7. (Left) Landmarks of heart (blue) and stomach (red) using alignment deduced
from spine curvature (Rcurv). (Right) Heart and stomach landmarks in aligned coord.
system after torso detection combined with spine detection (Ri). (Color figure online)
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Processing Time. With a standard CPU architecture (Intel Core i7, 8 GB
RAM), the alignment process takes between 10 and 15 s per image.

3.3 Landmarks/Organs Detection Validation

The validation of organ detection consists in processing all volumes with the full
pipeline. The output of the processing is a set of landmarks corresponding to
fetal organs. In the present study, the localization of heart, stomach, umbilical
vein and bladder is evaluated.

In order to separate localization errors due to both automatic coordinate
system definition and the random forest algorithm itself, two series of evaluations
are performed. The first series consists in using the manually annotated spine as
input to define the fetus coordinate system Ri, thus removing errors due to its
automatic detection. In the second evaluation series, the landmark localization
follows the automatic fetus coordinate system definition. Errors are defined,
for each landmark, as the distance between the annotated landmark and its
predicted position. Results for the whole database are presented in Fig. 8. The
localization error using the fully automatic pipeline is {10.2; 11.1; 11.1; 15.4} mm
respectively for umbilical vein, heart, stomach and bladder, which is close to
{10.0; 10.8; 11.0; 15.3} mm for same organs using manually annotated spine to
initialize volume alignment.

Such results assert the quality of the fetus coordinate system automatic detec-
tion, which is a key in the whole processing. The variance of error using the
automatic pipeline varies depending on the organ of interest. For the bladder,
the error variance is higher. These results may be explained by factors such as
its varying spatial extent, which depends on its filling state, and its location,

Fig. 8. Comparison of distances in mm from prediction to ground truth, per organ.
Errors are measured for detection following automatic volume alignment (Auto), and
also for detection based on spine annotations (GT).
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most often at the edge of the volume, which limits the amount on information
carried by features in its surroundings.

4 Conclusion

The overall performance of the presented approach depends on acquisition
related characteristics, such as limited US field-of-view, especially for late preg-
nancy stages, and fetus orientation and size variations. The number of available
volumes for training is another factor that limits the learning of anatomical vari-
ability. Finally, the successive processing steps also generate errors accumulation.
Taking all these aspects into account, a mean error of 11.9 mm on landmarks
detection appears acceptable for use in later processing, such as automatic view-
ing plane extraction.

This study shows that machine learning approaches can be used to detect
fetal organs in 3D US, even when the dataset is relatively small and presents a
high spatial variability. To do so, it is necessary to pre-process the US volumes
by scaling and aligning them in a common spatial reference coordinate system,
so that the learning algorithm focuses on anatomical variability rather than on
spatial discrepancies. In order to increase the detection performance, directions
such as the use of more volumes, data augmentation, image resolution refinement
or separation of learning according to pregnancy stages are foreseen.
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Abstract. We propose a fully three-dimensional Convolutional Regres-
sion Network (CRN) for the task of predicting fetal brain maturation
from 3D ultrasound (US) data. Anatomical development is modelled as
the sonographic patterns visible in the brain at a given gestational age,
which are aggregated by the model into a single value: the brain matura-
tion (BM) score. These patterns are learned from 589 3D fetal volumes,
and the model is applied to 3D US images of 146 fetal subjects acquired
at multiple, ethnically diverse sites, spanning an age range of 18 to 36
gestational weeks. Achieving a mean error of 7.7 days between ground-
truth and estimated maturational scores, our method outperforms the
current state-of-art for automated BM estimation from 3D US images.

1 Introduction

Estimation of fetal growth and developmental progression is paramount in
obstetric care. The fetal brain undergoes a predictable sequence of structural
changes across gestation: from a smooth surface, to progressively bearing more
folds [1]. This process follows such a precise schedule, that any delays are indica-
tive of impaired brain maturation. Thus, the presence of a cerebral abnormality
may cause the level of brain maturation (BM) to differ from the chronological
gestational age (GA). This work present a tool to automatically estimate BM
from 3D ultrasound (US) images of the fetal brain from as early as 18 weeks.

Routinely used clinical methods for assessment of brain maturation are
largely qualitative [2] or based on the size of a single brain structure [3]. In
these examinations, obstetricians exploit the changes in texture and the emer-
gence and evolution of structures at a given gestational timepoint to inform on
BM [4]. They have to mentally fuse information from different brain structures,
each of which follows a non-linear developmental trajectory, to then determine a
maturational score [4]. The goal of this work is to capitalise on all available brain
biomarkers, both spatially and temporally, in 3D US images to estimate BM.

Automated models have been successful in exploiting neurodevelopmental
biomakers to predict age and maturation from brain images of neonates [5,6]
and fetuses [7]. In [7], random regression forests (RRFs) were used to predict
GA and BM from fetal ultrasound images and clinical biometric data. That
approach demonstrated the ability of RRFs to map sonographic patterns visible
c© Springer International Publishing AG 2017
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in standard clinical US data to gestational age within ±11 days1. By design,
RRFs are non-linear predictors that disregard any image regions which are not
encapsulated within the set of hand-crafted features. Deep convolutional neural
networks (DCNNs), on the other hand, have demonstrated that by not imposing
priors on the data (i.e. no feature hypothesis), they are able to automatically
identify relevant features for the prediction task. During training, the cost func-
tion is optimised to generate a model of high-level abstractions described by a
multi-layered graph which encapsulates both linear and non-linear encodings of
the data. This property makes them well-suited to making predictions about an
organ as complex as the developing brain, with data as challenging as US.

Regression tasks are performed by convolutional regression networks (CRNs),
and success has been achieved in estimating biological age from medical image
data [8]. In this work, we follow this novel direction to apply CRNs to estimate
BM from complex 3D neurosonographic data. However, while most regression
models are designed to minimize the difference between ground-truth and pre-
dicted values by optimising a least-squares function, this tends to be sensitive to
outliers. Within the context of ultrasound-based estimations, outliers are typ-
ically represented by images with strong acoustic shadows, partial anatomical
occlusions, or variations in intensity patterns (due to acquisition protocol). They
may also be represented by developmentally advanced or delayed fetal subjects,
or the rare cases of fetuses affected by cerebral malformations. The L2-norm is
unlikely to perform well in such cases. In this work, we also explore an objective
function that reduces emphasis on such outliers.

2 Methods

In the fetal period, the bright echoes visible in US images change, marking
the emergence of cerebral structures [1]. This work explores two different CRN
architectures for estimating BM from sonographic image patterns. The objective
is to capture the brain features informative of structural brain changes and,
potentially, the process of cortical folding. This section summarises the data
processing pipeline and describes the architecture design.

2.1 Image Pre-processing

Fetal neurosonography is challenged by the fact that scanning through bone
attenuates the ultrasound energy, and the concave shape of the skull surface
refracts the signal. As the skull calcifies over the course of gestation, the US signal
is increasingly affected, thereby lowering the image contrast and the visibility of
anatomical boundaries. These interactions result in only the cerebral hemisphere
farthest from the US probe producing an image with discernible structures. To
circumvent this, a ‘complete’ representation of the brain was generated in our
dataset by mirroring the visible hemisphere across the midsagittal plane.
1 This result refers to the RRF model which exclusively used brain features, and did

not incorporate information about fetal size (i.e. head circumference).
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(a) (b)

Fig. 1. (a) Gestational age distribution of the training (N = 609) and validation
(N = 120) fetal datasets. (b) Example of preprocessed US brain image, following
skull masking, alignment, and mirroring of visible hemisphere.

To exclude prior knowledge about the expected size of the brain, all ultra-
sound images were spatially normalized and aligned to a pre-defined coordinate
frame prior to processing. Specifically, the skull was manually segmented, and
the brain region was cropped and rigidly aligned to a predefined coordinate
frame (Fig. 1b). To reduce the effect of intensity variations, the images were
then individually normalised to have zero mean and unary standard deviation.

2.2 CRN Architectures

CRNs are sequential models consisting of layers which perform operations on the
input data. The input to the network is an image I : Ω → R

3, and the output
is a real-valued scalar y ∈ R corresponding to BM score. Given a training set
{(Ii, yi)}Ni=1 of N data samples, the goal of training a CRN is to learn a function
ϕ(·; θ) and its corresponding parameters θ to map an image to a prediction of
BM: ŷ = ϕ(I; θ). The function, ϕ(·; θ) is minimized by a pre-defined loss function
L(y, ŷ | θ).

The input image is mapped to the output by a series of convolutional blocks
(ConvBlocks). In each ConvBlock, feature extraction is performed by convolu-
tional layers which convolve the images with a pre-defined number of filters (s)
of kernel size k. In the first layer, we use a convolutional layer with filter of size
k ×k × s. All convolutional layers use kernels of fixed size (k = 7), with a sliding
step of size δc = 1. In order to improve feature generalizability, each convolution
is followed by batch normalization. The batch-normalized filter outputs are then
processed by a rectified linear unit (ReLU) as the non-linear activation function.
Weight regularization of 10−4 is also used in each convolution to reduce the gen-
eralization error. In order to reduce computational burden, the image resolution
is decreased by a Max-Pooling operation with a stride of δp = 2. The last is
the only layer of the network whose activation is not a ReLU; instead, it uses a
linear activation to regress to GA as a proxy for BM.

We test two networks, each consisting of four pooling layers. The architecture
of network CRN-2D consists of a ConvBlockA (Fig. 2b) before each pooling layer,
for a total of eight two-dimensional (2D) convolutional layers between the input
and output layers (Fig. 2a). Due to memory limitations associated with perform-
ing 3D convolutions, network CRN-3D was designed as a shallower network. It
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(a)

(b) (c)

Fig. 2. (a) Basic architecture for the CRN-2D network. (b) Schematic of the compo-
nents of ConvBlocks A and B. Each convolution (Conv) is followed by batch normal-
ization (BN) and ReLU activation. (c) L2 increases rapidly with increasing residual
magnitude. We use a smooth approximation (red) of the piecewise (dashed green)
Huber function. Higher values of k bias the curve towards L2.

comprises of a ConvBlockB preceding each pooling operation, amounting to a
total of four three-dimensional (3D) convolutions.

2.3 Loss Functions for Robust Maturation Regression

During the training process, the output of the CRN (ŷ) is compared with the
ground-truth labels y through a loss function L, and the error is back-propagated
to update the filter weights of all the layers. This process is repeated until con-
vergence is reached. The goal of the loss function is to minimize the difference
(or residuals, r) between the known (y) and estimated (ŷ) values. Thus, the
loss function ultimately dictates the speed of convergence, and the quality of the
trained parameters.

In the back-propagation step, the magnitude of the gradient is proportional
to the residual. As a result, the estimations that are close to the ground-truth
(inliers) have a lower influence on the updated network parameters (θ), and
the outliers yielding higher residuals have a greater influence and may thus
bias the model to adapt itself to such examples. There are several options for
objective functions. To achieve a robust BM estimator, we explored the effect of
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different loss functions on the CRN models. Namely, the familiar least-squares
estimator (L2),

L2(r) =
1
n

n∑

i=1

r2i (1)

and the Huber estimator (Lhub) which is less vulnerable to outliers [9],

Lhub(r) =
1
n

n∑

i=1

k2(
√

1 + (ri/k)2 − 1). (2)

where ri = ŷi − yi, and k is the tuning constant for the Huber estimator. As
shown in Fig. 2c, both the L2 and Huber functions increase without bound as
the residual ri departs from zero. The Huber estimator approximates the L2-
norm for small residuals, but the key difference is observed at high residuals
when it approximates a linear model. While the L2-norm assigns equal weight
to all residuals, the weights of the Huber estimator decline when |ri| > k, thus
reducing the emphasis on outliers during training. Furthermore, a small value
of k increases the resistance to outliers, at the cost of performance when errors
follow a normal distribution. For our experiments, we set k = 1.45 for CRN-2D,
and k = 1.7 for CRN-3D.

3 Experiments

In our experiments, we explore two network architectures for the task of predict-
ing brain maturation from 3D ultrasound images. We explore the effect of either
treating the 3D input image (I ∈ R

nx×ny×nz ) as a multi-channel image, or pre-
serving its 3D nature during feature extraction. Specifically, Fig. 2a shows that
in network CRN-2D, the depth of the feature extraction kernels in the first layer
extends to encompass the third dimension of the image, such that the kernel
dimensions are k × k × nz. In network CRN-3D, the CRN performs 3D convo-
lutions throughout the image space, and the kernel dimensions are k × k × k,
where k � nz. Furthermore, we investigate the effect of the choice of loss func-
tion on output predictions. In particular, we compare the L2-norm and Huber
loss functions.

Dataset: The dataset of volumetric US images used in this work comprised of
the same 447 volumes (247 × 190 × 179 voxels at a resolution of 0.6 × 0.6
× 0.6 mm3) used in [7], the results of which constitute the baseline for auto-
mated image-based BM estimation. The sonographic images of the fetal head
were obtained from the INTERGROWTH-21st study database [10], which were
collected using a Philips HD9 curvilinear probe at a 2–5 MHz wave frequency.
Images were selected from fetuses with known gestational age ranging from 18 to
36 gestational weeks, spanning the second and third trimesters of pregnancy: an
active period of spatiotemporal changes visible on the cortical surface. ‘True age’
was defined by the last menstrual period (LMP) and confirmed by first-trimester
(≤ 14 weeks) crown-rump length measurement agreeing within 7 days.
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Experimental setup: The performance of each of the five proposed models was
evaluated in five-fold cross-validation rounds. In each round, the volumes of 121
subjects were reserved for testing, while the remaining 489 images were used in
training. As shown in Fig. 1a, the age distribution in each dataset was uniform
across the gestational age range. To reduce the number of parameters optimized
by the CRNs, the input volumes were resized to 128×96×64 or 96×64×48 voxels
for networks A and B, respectively. Each CRN was re-trained on a dataset of
584 volumes, and tested on an independent set of 146 US volumes from subjects
whose scans were collected as part of a multi-site, ethnically diverse study.
Implementation details: The proposed framework was implemented using the
Keras framework with a Tensorflow backend, using a parallel computing archi-
tecture (CUDA, NVIDIA Corp). All testing was performed on an Intel Xeon
E5-2630 CPU (2.4 GHz, 16 cores) with a NVIDIA Titan X GPU. Optimization
was achieved using the RMSprop algorithm over a maximum of 100 epochs to
ensure convergence [11]. The initial learning rate was set to 10−2, which was
decreased by a factor of ten every 20 epochs. Due to memory limitations, the
CRN-2D and CRN-3D networks were trained with batches of size 32 and 10,
respectively, in each epoch.

4 Results and Discussion

We validated and tested five different models for automated BM prediction from
US images for the fetal brain. The results for BM prediction are summarised in
Table 1, where the first row shows the result of using the RRF baseline model.
The RRF model yielded an accuracy of 10.65 ± 12.65 days on the test set,
which was outperformed by all CRN networks with the exception of CRN-2D
trained with L2 loss. While we observed that both 2D and 3D CRN models were
able to automatically generate filters that extract and characterise patterns of
brain development, notable performance gains were achieved with the 3D CRNs
(< 8 days). This may be attributed to the fact that the 3D models preserve the
appearance statistics and spatial distribution of structures in the dimension that
is ‘compressed’ by the 2D models during feature extraction.

Comparing the performance of the loss function, we observed faster converge
with Huber loss (i.e. 40 epochs versus 45 epochs with L2 loss). In general, the
models trained with Huber loss performed better and with reduced variance.
However, the best-performing model was CRN-3D trained with L2 loss. This
may be due to the fact that our data contained few samples of subjects with
brain abnormalities (i.e. outliers) and so the L2-norm was able to model these
data. Future work may explore whether the same is true when fetuses with
cerebral abnormalities are included in the dataset. Figure 3 shows that when
applied to the test dataset, the CRN-3D model had lower variance and fewer
outliers than the RRF predictions.

It is important to note, however, that the BM predicted in this study is repre-
sentative of the average level of structural development and brain appearance in
fetal subjects of the same GA. Thus, it is expected that the biological variation
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Table 1. Errors in predicting BM as a regression target using networks CRN-2D and
CRN-3D. Mean absolute differences (± standard deviation) between ground-truth GA
and predicted BM score. Results shown for the five-fold cross-validation sets (each
N = 121), and for the independent test set (N = 120). CRN-3D trained with an L2

loss function (in bold) outperformed the others.

Network Loss function Training time
(s/epoch)

Validation
error (days)

Test error (days) No. params

RRF (baseline) L2-norm 60 s/tree 11.62± 10.43 10.65± 12.65 0.36 M

CRN-2D L2-norm 13 12.33± 10.09 11.43± 9.35 7.60 M

Huber 10.32± 8.48 10.15± 9.88

CRN-3D L2-norm 105 6.93± 5.46 7.72± 6.01 6.13 M

Huber 7.61± 6.15 7.81± 7.01

within a given GA is captured within our dataset. GA was used as a proxy for
the ground truth BM score in the knowledge that the INTERGROWTH-21st
dataset comprises of optimally healthy fetuses, with confirmed absence of neu-
rocognitive delays on post-birth follow-up. Furthermore, our ‘true age’ values
were annotated with a confidence level of ±7 days, so our potential accuracy is
limited by this value. Therefore, our result of 7.72±6.01 days is considered a suc-
cessful prediction of brain maturation. Thus, our algorithm trained on healthy
fetuses, is designed to identify fetuses at risk of maturational delays.

(a) RRF (b) CRN-3D (c) |y − ŷ|

Fig. 3. Chronological gestational age plotted against BM of the (a) RRF model and
(b) the best-performing CRN-3D applied to the test dataset. (c) BM estimation results
for the second and third trimesters of pregnancy, comparing the best performing CRN
(red) and to the baseline RRF (blue) model. (Color figure online)

5 Conclusion

This paper presents and validates an automated method to predict brain matu-
ration from 3D US scans of the fetal brain. Two proposed models were applied
to an ethnically diverse fetal cohort, ranging from 18 to 34 weeks’ gestation. We
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have demonstrated that without specifying a feature hypothesis or providing
any information about fetal size, the CRN model is capable of identifying and
characterizing neurodevelopment both spatially and temporally. The proposed
CRN model is generalizable to different fetal cohorts, and capable of accurately
estimating BM even in subjects where the state-of-art method fails.
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Abstract. In this paper, we aim at proving the effectiveness of dictionary
learning techniques on the task of retinal blood vessel segmentation. We
present three different methods based on dictionary learning and sparse
coding that reach state-of-the-art results. Our methods are tested on two,
well-known, publicly available datasets: DRIVE and STARE. The meth-
ods are compared to many state-of-the-art approaches and turn out to be
very promising.

Keywords: Retinal blood vessel segmentation · Medical image segmen-
tation · Dictionary learning · Sparse coding · Linear classification ·
Random forests

1 Introduction

Retinal fundus images are now widely used for the diagnosis of various patholo-
gies, including age-related macular degeneration, diabetic retinopathy and glau-
coma. As a part of the central nervous system, the retina, and in particular its
vasculature, is also used as a biomarker for early detection of neurodegenerative
diseases.

Manual analysis of retinal images by ophthalmologists is a tedious task and,
as for other manual delineation tasks, is subject to inter- and intra-operator
variability. Thus, automatic and semi-automatic tools have been proposed, in
particular, for retinal blood vessel segmentation (RBVS). While these tools are
now starting to pervade clinical practice, the low image quality and the scale
variation of the vessels still represent major challenges to most recent methods.

We examine in this paper a family of supervised RBVS methods based on
sparse representations in learned dictionaries. These methods make use of the
sparse representation of a patch around a pixel to determine its label. The differ-
ences between the proposed methods depend mainly on the number of learned
dictionaries and the way the classifier is trained.

The general framework is composed of three stages: data preparation, seg-
mentation, and post-processing. Data preparation consists in patches extraction
c© Springer International Publishing AG 2017
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and normalization. Then, in the segmentation phase, a patch around each pixel
is used by a dictionary learning method to assign its label. The output of the
previous step leads to impulsive segmentation errors and we propose a robust
regularization approach to tackle this problem. The remainder of this paper is
outlined as follows. We review in Sect. 2 some recent state-of-the-art methods
for RBVS. Section 3 reviews the supervised and unsupervised dictionary learn-
ing approaches and explains how both paradigms yield three different methods
for RBVS. In Sect. 4, the experimental setup and the results are exposed. We
conclude the paper in Sect. 5, pointing to possible directions for future work.

2 Related Work

RBVS has attracted a number of researchers for over two decades. Fraz et al. [1]
presented a global review of the proposed methods in the field, up to 2012. They
divided the methods into 6 classes: machine learning methods, matched filter-
ing methods, morphological processing methods, vessel tracing/tracking meth-
ods, multi-scale methods, and model-based methods. It turns out that machine
learning methods, especially the supervised ones, are in general the best. A more
specific review focusing on computer-aided diagnosis for diabetic retinopathy is
presented in [2].

In recent machine learning based approaches, a Lattice Neural Network with
Dendritic Processing (LNNDP) framework is presented in [3]. Each pixel is clas-
sified using a 5−dimensional feature vector extracted from an enhanced version
of the green channel of the original RGB images. In [4], a discriminative dictio-
nary learning technique is used. Image patches are extracted from an enhanced
version of the green channel image to learn a specific dictionary per class. Two
classes of patches are considered: patches containing a blood vessel and the oth-
ers. Given a test image, overlapping patches are first extracted. The class of each
patch is attributed according to the dictionary that best represents it. Then a
segmentation map of each patch is obtained by thresholding the blood vessel
patches and setting to zero the non-vessel ones.

The numerical results reported in [5,6] indicate that these works constitute
the current state-of-the-art in RBVS. Wang et al. [5] proposed to follow two
steps: a hierarchical feature extraction followed by an ensemble classification.
The hierarchical features are obtained from different layers of a Convolutional
Neural Network (CNN). Then Random Forest classifiers are trained on some
levels of the CNN. The final class is obtained with a winner-take-all strategy.
Liskowski et al. [6] used a CNN both as a feature extractor and a classifier.

3 RBVS Using Dictionary Learning

In what follows, we write patches as vectors. Let X = [x1, ...,xn] ∈ R
m×n be the

input dataset consisting of n patches xi ∈ R
m. In the supervised setting, one has

also access to a vector of labels y ∈ R
n, with yi denoting the label associated

with the sample xi. This section first introduces a general view of dictionary
learning, then, presents the methods proposed for RBVS.
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3.1 Sparse Coding and Dictionary Learning

By choosing an overcomplete family {dk}pk=1 of vectors in R
m one can decompose

an input patch x ∈ R
m as a linear combination x =

∑p
k=1 akdk = Da, where

D ∈ R
m×p is called a dictionary, and a ∈ R

p is the vector of coefficients. Due to
overcompleteness, the previous decomposition is not unique. In order to enforce
sparsity, the following formulation has been widely adopted:

a∗ ← min
a∈Rp

‖x − Da‖22 + λ‖a‖1, (1)

where λ balances the trade-off between sparsity and reconstruction error, ‖.‖q is
the �q-norm1. The first term ensures a good reconstruction of the patch x from
the dictionary, and the last term encourages the vector to be sparse. In general,
increasing the value of λ yields sparser solutions.

The general idea of dictionary learning is to learn D from the dataset X
by ensuring that each patch xi is decomposed in a parsimonious manner (see
[7] and references therein for more details). The formulation we retain for our
present work is the following [8]

D∗,A∗ ← min
D∈Rm×p,A∈Rp×n

[
R(X,D,A) =

1
n

n∑

i=1

1
2
‖xi − Dai‖22 + λ‖ai‖1

]
, (2)

where A = [a1, ...,an] is the matrix of sparse coefficients. To resolve scale ambi-
guity, the columns of D are further constrained to be in the unit Euclidean ball.
This constraint is applied to all subsequent dictionary learning variants.

3.2 RBVS by Sparse Coding Then Classifier (SCTC)

This method first learns a dictionary that best represents the entire training set
(without class discrimination). Then, a random forest (RF) classifier is trained
on the generated sparse codes. The method uses the dictionary learning phase as
a high dimensional feature extractor. The training is done in the two following
steps:

– Step 1: Solve a classical dictionary learning problem (Eq. (2)).
– Step 2: Train a random forest classifier of 50 trees using the matrix of sparse

coefficients produced in Step 1 as input.

Given a patch query z, its label l is computed by first solving a sparse cod-
ing problem using the learned dictionary. Then, the classifier is applied on the
produced vector of coefficients to predict the label.

1 The �q-norm (q ≥ 1) of a vector x is: ‖x‖q = [
∑

i | x[i] |q]1/q.
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3.3 RBVS by Joint Dictionary and Classifier Learning (JDCL)

This method consists in learning jointly a dictionary and a linear classifier instead
of separating them as done in SCTC. Introduced in [9], the method is formulated
as follows

D∗,A∗,W∗ ← min
D,A,W

α‖L − WA‖2F + β‖W‖2F + R(X,D,A), (3)

where R is as defined in Eq. (2), W ∈ R
N×p contains the linear classifier’s

parameters, N is the number of classes, α and β are weight parameters, ‖.‖F
is the Frobenius norm2, and L = [l1, ..., ln] is the label matrix where the vector
li ∈ R

N is 1 at the index corresponding to the class of the sample xi and
0 elsewhere. Equation (3) can be solved efficiently using standard dictionary
learning techniques (see [9] for more optimization details).

The label l of a query patch z is obtained using the following equation:

l = arg max
i=1,...,N

[ei = W∗a∗], (4)

where W∗ is the previously learned classifier of Eq. (3) and a∗ is obtained by
applying Eq. (1) using the query patch z and the learned dictionary D∗.

3.4 RBVS by One Dictionary per Class (DPC)

Let X = [X1, ...,XN ] be the division of the dataset into sub-matrices, where
each sub-matrix Xi ∈ R

m×ni contains only the ni samples that belong to the
class i, and N is the number of classes (N = 2 in our setting).

In this method, we learn independently one dictionary on each sub-matrix.
A query patch is classified by selecting the associated class of the dictionary that
best reconstructs it, similarly to [10].

A dictionary D∗
i associated with the class i is learned using the corresponding

sub-matrix by solving the problem in Eq. (2).
The label l of a query patch z is obtained by first computing the associ-

ated sparse coefficient a∗
i (using Eq. (1)) on each learned dictionary. Then, the

following equation is used to predict the label:

l = arg min
i=1,...,N

[
ei = ‖z − D∗

i a
∗
i ‖22 + λ‖a∗

i ‖1
]
. (5)

3.5 Post-processing: Total Variation with �1 Fidelity Norm (TV−�1)

The three proposed methods produce systematic errors in the form of impulse
noise. This is a common issue encountered in most pixel classification methods.
The image c in Fig. 1 shows a typical example, here obtained after applying
the SCTC method. We formulate the post-processing as a denoising problem:

2 The Frobenius-norm of a matrix A ∈ R
m×n is: ‖A‖F =

[∑m
i=1

∑n
j=1 A[i, j]2

]1/2
.
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we seek to recover a clean, piecewise-constant classification image from a noisy
version. We adopt the TV-�1 model of [11] since it accounts both for our prior
(piecewise constant solution) and for the likelihood (impulse noise). This leads
to the following variational problem

I∗ ← min
I

‖∇I‖1 + κ‖I − I0‖1, (6)

where I0 is a noisy classification image. We note at this point that we do not
impose any binary constraints in (6) but we simply threshold I∗ after solving (6).

4 Experiments

The previously presented methods are tested on the following datasets:

– The DRIVE (Digital Retinal Images for Vessel Extraction) [12] dataset con-
tains 40 expert annotated color retinal images taken with a fundus camera.
It is divided into two sets of 20 images: the training and testing sets. Each
image comes with a ground-truth segmentation (two for the test images and
one for the training ones) and a mask image delineating the field of view
(FOV). The first observer’s ground-truth is considered in this paper.

– The STARE (STructured Analysis of the REtina) [13] is another well-known,
publicly available database. The dataset is composed of 20 color fundus pho-
tographs. Half of the images presents pathological cases and contains abnor-
malities, which make the segmentation task even harder. Unlike the DRIVE
dataset, the mask images are not provided. We construct them with a thresh-
old on the grayscale images followed by a morphological filter with a struc-
turing element of size 10 pixels.

4.1 Data Preparation

Given the contrast variation from one image to another, data preparation aims at
normalizing the illumination beforehand. The grayscale versions of the original
RGB images are considered throughout this experiment.

Pre-processing

– Image normalization and patch extraction: the first normalization consists in
applying the Contrast Limited Adaptive Histogram Equalization (CLAHE)
algorithm to the grayscale image. Then, all pixels outside the FOV are set to
zero. For a given pixel, we extract the centered squared neighborhood patches
of size 8 × 8. On both datasets, about 140 000 pixels are randomly selected
to build our training set (i.e. around 70 000 patches per class). Patches with
standard deviation less than 0.15 are not considered in the training set.

– Patch normalization: the squared neighborhood patches are then flattened
into 64-dimensional vectors. Additional contrast normalization consists in
normalizing each patch vector to have unit �2-norm.
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Post-processings

After classifying each pixel of an image, we first multiply the resulting image
with an eroded version of the mask image. This procedure aims at removing the
pixels on the edges of the FOV. Then, we apply a TV-�1 regularization.

4.2 Experimental Setup and Measurements

The number of atoms p in the dictionary depends on the method: for SCTC p =
1000, for JDCL p = 1000, and finally p = 500 for DPC for each sub-dictionary.
The online dictionary learning [14], available in the sparse modeling software3

(SPAMS), is used in all our experiments as a dictionary learning algorithm. The
primal-dual algorithm of Chambolle and Pock [15] is used for solving the TV-�1
problem (6). The parameters λ (Eq. (2)) and κ (Eq. (6)) are set, respectively,
to 0.5 and 0.9. Note that, all these values are obtained using a grid-search and
cross-validating on the training sets.

Let TP , TN , FN , and FP respectively denote the number of true pos-
itive, true negative, false negative, and false positive. We use the sensitivity

Fig. 1. Segmentation example using SCTC

3 http://spams-devel.gforge.inria.fr/.

http://spams-devel.gforge.inria.fr/
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Sens = TP
TP+FN , the specificity Spec = TN

TN+FP and the accuracy Acc =
TP+TN

TP+FN+TN+FP to quantify the performance of the RBVS methods.

4.3 Results and Discussions

Our results are depicted on Table 1 along with state-of-the-art results. Figure 1
illustrates a segmentation example.

Among the proposed methods, the SCTC approach seems to be the best
only in terms of vessel detection (i.e. good sensitivity) while the DPC approach
outputs good results with respect to all the performance measures.

The SCTC and JDCL methods tend to classify each patch with some line
as vessel. This is due to the fact that these patches and the true vessel patches
activate the same atoms, thus their sparse vectors are quite close. This problem
is reduced when using the DPC model which uses the reconstruction error to
classify a patch. Still, all the proposed methods reach the state-of-the-art results
on the two datasets while being simple in terms of their architecture and number
of parameters.

Other experiments, not reported in this paper, have been carried out with
larger patches (e.g. 16 × 16). It turns out that the sensitivity can be improved
but we are loosing on the specificity. This is due to the fact that, when using
larger patches, more pixels near a blood vessel (but not belonging to it) tend to
be classified as vessels.

Table 1. Our results on DRIVE and STARE versus the state-of-the-art.

Drive Stare

Methods Spec Sens Acc Spec Sens Acc

This paper - SCTC 95.55 83.49 94.48 94.46 85.11 93.81

This paper - JDCL 96.32 80.60 94.93 95.78 77.24 94.45

This paper - DPC 97.05 77.88 95.36 96.75 75.58 95.23

Javidi et al. [4] 97.02 72.01 94.50 96.53 77.80 95.17

Singh et al. [16] − 75.94 95.22 − 79.39 92.70

Orlando et al. [17] 96.84 78.97 − 97.38 76.80 −
Vega et al. [3] 96.00 74.44 94.12 96.71 70.19 94.83

Liskowski et al. [6]* 96.73 84.60 95.07 97.10 92.89 96.67

Wang et al. [5]* 97.33 81.73 97.67 97.91 81.04 98.13

Dasgupta et al. [18]* 98.01 76.91 95.33 − − −
∗ deep learning methods

5 Summary and Perspectives

In this paper, we presented three RBVS methods based on sparse representations
in learned dictionaries. We showed that these methods can reach state-of-the-
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art results on the DRIVE and STARE datasets while remaining conceptually
simple and computationally tractable. Future work will concentrate on taking
patch correlations into account when learning the dictionary and on using more
discriminative features.
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Abstract. Recognizing significant temporal changes in the thickness of
the choroid and retina at an early stage is a crucial factor in the pre-
vention and treatment of ocular diseases such as myopia or glaucoma.
Such changes are expected to be among the first indicators of patho-
logical manifestations and are commonly dealt using segmentation-based
approaches. However, segmenting the choroid is challenging due to low
contrast, loss of signal and presence of artifacts in optical coherence
tomography (OCT) images. In this paper, we present a novel method for
early detection of choroidal changes based on piecewise rigid image regis-
tration. In order to adhere to the eye’s natural shape, the regularization
enforces the local homogeneity of the transformations in nasal-temporal
(x-) and superior-inferior (y-) direction by penalizing their radial diffe-
rences. We restrict our transformation model to anterior-posterior (z-)
direction, as we focus on juvenile myopia, which correlates to thickness
changes in the choroid rather than to structural alterations. First, the
precision of the method was tested on an OCT scan-rescan data set of 62
healthy Asian children, ages 7 to 13, from a population with a high preva-
lence of myopia. Furthermore, the accuracy of the method in recognizing
synthetically induced changes in the data set was evaluated. Finally, the
results were compared to those of manually annotated scans.

Keywords: Early choroidal changes · Piecewise rigid registration

1 Introduction

The choroid is a vascular tissue located between the rather rigid sclera and retina
at the posterior pole of the eye. It provides oxygen and metabolites to the reti-
nal structures [7]. The choroid shows a thickness between 50 and 300µm with
diurnal variations up to 29µm. Several studies [2,6,7] argue that longitudinal
changes of the choroidal thickness are related to the growth of the sclera and,
therefore, to the elongation of the eye bulb. Monitoring choroidal thickness deliv-
ers insight into the pathogenesis and helps in the planning of treatment of various
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): FIFI/OMIA 2017, LNCS 10554, pp. 92–100, 2017.
DOI: 10.1007/978-3-319-67561-9 10
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ocular diseases such as myopia, glaucoma, diabetic retinopathy, choroidal tumors
and macular degeneration [2]. The choroidal thickness is defined as the dis-
tance between the Choriocapillaris-Bruch's membrane-Retinal pigment epithe-
lium complex (CBR) and the Choroid-Sclera Interface (CSI, see Fig. 1b). The
common approach consists of localizing both CBR and CSI, using image segmen-
tation [5,9]. To extract clinically relevant information, the distance CBR-CSI is
visualized in a choroidal thickness map (see Fig. 1a). Due to the hyperreflectiv-
ity of the CBR in OCT imaging, its segmentation is relatively simple (e.g. using
automatic graph-based segmentation methods [3]). In opposition, the CSI is dif-
ficult to segment because of the significantly lower image contrast, an increase of
shadowing artifacts as well as unpredictable shape variations in the weakly scat-
tering choroid [2]. The use of single frame segmentation as in [3,5,9] is difficult
in longitudinal clinical studies where successive imaging sessions can strongly
vary in signal quality.

x

y
x

Fig. 1. (a) Choroidal (CBR-CSI) thickness map overlaid color-coded on fundus image.
(b) OCT B-scan with segmented layers representing the section indicated by the white
dotted line in (a). ILM is the Inner Limiting Membrane.

Due to the interleaved nature of the eye consisting of the soft choroid and
surrounding more rigid tissues, the sclera and CBR, a piecewise rigid strategy
[1] was used in recent developments to accurately model the deformation of
the choroid. This approach allows to decompose the global non-rigid matching
problem of the choroid into numerous local rigid registrations of the individual
subregions. The results are embodied into a dense global non-rigid deformation
field built such that it elastically deforms the soft choroid and preserves the rigid
characteristics of the surrounding sclera and CBR.

In [8], the choroidal thickness changes were detected using atlas-based regis-
tration which could tackle the problem of low SNR. However, several challenges
remain: (1) The method processes only scan-wise. (2) The regularization serves
only as post-processing step and does not take the pixel spacing into account. (3)
Due to the use of non-overlapping patches in the matching process the results
become instable with increasing resolution.

In the proposed method, “Detecting early Choroidal changes using piece-
wise rigid image Registration and eye-shape Adherent Regularization”, as of
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now CRAR, we subdivide the volume around the CSI in partially overlapping
cuboidal subregions, utilizing the rigid CBR as a reference surface. Using a mul-
tiresolution approach, a 3D regularized block-matching registration of the CSI
is conducted. As the images are aligned to the rigid CBR, the displacement cor-
responds to shifts of the CSI. Thus, it is possible to determine the displacement
field around the CSI and to use its outcome to quantify choroidal growth.

This paper’s contribution is threefold: (1) By grouping two or more rectan-
gular subregions around the CSI into cuboidal blocks, the matching is done fully
in 3D (see Fig. 3). (2) We simultaneously regularized along the x- and y-axis
taking different pixel spacing into account. This enforces uniform smoothness of
the results matching the anatomic structure of the eye. (3) The regularization
penalizes the radial differences of the transformations and favors similar dis-
placements of patches within the same neighborhood (see Fig. 4). Mismatches
are corrected during the gradient descent optimization.

In the pre-clinical experiment, we first analyzed the precision with scan-
rescan data. Furthermore, we showed superior change-detection performance
over the CSI using smooth synthetic deformations of the rescans up to 50µm
built into the data set (see Fig. 2). Finally, we compared to manual segmentation.

Fig. 2. Simulation of choroidal growth. Left: The white continuous line serves as ref-
erence for the deformation. Right: After blockwise transformation the reference line is
shifted from the previous (white dotted line).

2 Material and Method

The eyes of 62 volunteers, aged 7 to 13, from Asian urban regions with a high
prevalence of myopia were measured twice as scan-rescans within a few minutes,
resulting in 124 OCT volume stacks. For half of them the left eye was measured,
for the other the right one. For 36 of them a dual wavelength SD-OCT system
prototype was used, which operated simultaneously at 800 nm and 1075 nm and
was developed at the Bern University of Applied Sciences (see [8]). Each volume
stack consisted of 25 slices of 768 × 496 pixels. The pixel spacing in nasal-
temporal/x- and superior-inferior/y-direction were set to 11.47µm/pixel and to
245µm/pixel, the one in anterior-posterior/z-direction was set to 3.87µm/pixel.
To examine the other 26 a Topcon SS-OCT system (DRI OCT Triton) was used,
in which each volume stack consisted of 256 slices of 512 × 992 pixels. The pixel
spacing in x-, y- and z-direction were set to 11.72, 23.44 and to 2.60µm/pixel.

The preprocessing steps are the same as in [8]: the slices from the reference
and template stack images are rigidly registered pair-wise at the CBR. Next,
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Fig. 3. The construction of the 3D cuboidal block Cs
i (green) by grouping five rectan-

gular blocks B̂j−2
i , B̂j−1

i , B̂j
i , B̂j+1

i and B̂j+2
i that have been normalized in height. The

next block Cs+1
i (white) is created analogously.

using the algorithm presented in [3] based on graph search, the CBR is accurately
segmented and becomes the shape-reference for the CSI.

Construction of the 3D Blocks: Let Ωj ⊂ R
2 be the jth slice of size m × n

pixels in a volume stack Ω =
⋃S

j=1 Ωj ⊂ IR3 of S slices. In each slice Ωj the
area around the CSI is divided into N partially overlapping rectangular blocks
Bj

i . Each block has a variable height hi = (ka + ku) · di and a center point xi,
where i = 1, . . . , N . Here, di is the distance between the CBR and the roughly
determined CSI at each location xi, while ka and ku remain constant. The part
of the block above the CSI is denoted by ka · di and the part below by ku · di.

Since a high spatial resolution is needed to recognize small details, enough
inner blocks are needed for a meaningful detection (the first and the last block
are to be treated separately). Thus, the block matching is initialized with N = 8
blocks with a width ω = m

7(1−φ)+1 , where φ is the lateral overlap (in percent)
between two neighboring blocks at the resolution level k = 1. Using a multire-
solution approach, the number N of blocks is doubled with increasing k (i.e.
N = 8 · 2k−1 = 2k+2, k ∈ IN). To optimize the overlaps the values of φ, β ∈ ]0, 1[
are selected such that, at the level k, the block width ωk = ω ·βk−1 exponentially
decreases, while the percentage overlap φk = 1 − ( m

ωk
− 1)/(2k+2 − 1) increases.

At each ith position on the x-axis, partially overlapping 3D cuboidal blocks{Cs
i

}
are formed in the y-direction by normalizing the height of the rectangular

blocks of two or more successive slices, and then by grouping them as follows:

C1
i =

G+1⋃

j=1

B̂j
i , Cs

i =
1+sG⋃

j=1+(s−2)G

B̂j
i (s = 2, . . . , S̄ − 1), CS̄

i =
S⋃

j=S−G

B̂j
i ,

where
{B̂j

i

}
are the normalized blocks and G+1 indicates the number of slices of

two successives cuboids Cs
i and Cs+1

i that overlap. For example, let G = 2 and
S = 25 be given, then, at each position i on the x-axis S̄ = 13 cuboidal blocks
are built: C1

i and C13
i consist of 3 slices while C2

i . . . , C12
i of 5 slices (see Fig. 3).

Between the slices, cubic interpolation is used. As a result, S̄ = � S
G� cuboidal
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blocks in the depth of the volume stack are obtained at the ith position on the
x-axis. For each cuboid Cs

i , the upper coordinate is defined as the minimum, the
lower one as the maximum of all z values of the not yet normalized blocks Bj

i .

3D Piecewise Registration: A reference IR and a template image IT : Ω → IR
mapping Ω to the corresponding intensities are given. Since this study focuses
on quantitative choroidal thickness changes, only shifts in axial/z-direction are
considered. The aim is to find a set U = {us

i } of blockwise constant transforma-
tions in z-direction us

i : Cs
i → IR3 such that IT (p + us

i (p)) ≈ IR(p) for all p ∈ Cs
i .

Thus, the displacement vectors are us
i (p) = us

i (p
s
i ) ∈ IR3, for all p ∈ Cs

i , in which
us

i (p
s
i ) is the center displacement of the block Cs

i . We consider image registration
as a regularized minimization problem for the energy functional J ,

arg min
U

J [U ], J [U ] := D[IR, IT ,U ] + λR[U ]. (1)

D is a distance measure that quantifies the similarity between reference IR and
the transformed template image IT (p+us

i (p)). The regularizer R, with its corre-
sponding trade-off parameter λ > 0, ensures certain properties of the transforma-
tion, which will be explained next. In order to indicate how well the transformed
template image IT (p + us

i (p)) matches the reference IR, the similarity measure

D[IR, IT ,U ] :=
S̄∑

s=1

N∑

i=1

∫

p∈Cs
i

||IT (p + us
i (p)) − IR(p)||2 dp

is defined, where p is the point position in block Cs
i ⊂ Ω. Using piecewise

intensity-based locally rigid registration, an attempt is made to obtain the maxi-
mum correlation. This is done by matching blocks around the approximated CSI
of the pre-registered image with the ones in the corresponding, slightly bigger
search area Ĉs

i ⊃ Cs
i of the reference image.

Radial Differences Regularization: The regularizer R of Eq. (1) is defined
by the fact that even in longitudinal studies of progressing diseases the shape of
the CSI stays comparable to that of the CBR in small curvature and smoothness.
Inspired by that, the regularization is defined as follows: (1) Neighboring dis-
placements should be locally homogeneous. In other words, block centers within
the same neighborhood should show a similar displacement. (2) To limit the
influence of the displacement of a block to its own neighborhood, R ensures that
the shifts of blocks further away converge to zero (see Fig. 4).

We therefore opted for a regularization based on radial differences [4] with
a compactly supported radial kernel. Let N = N · S̄ be the total number of
cuboids, ps

i = (xs
i , y

s
i , z

s
i ) and pt

j = (xt
j , y

t
j , z

t
j) the centers of the blocks Cs

i and
Ct

j respectively. Then, the regularizer R is defined as follows:

R[U ] =
1
N

S̄∑

s,t=1

N∑

i,j=1

||us
i (p

s
i ) − ut

j(p
t
j)||2 K(ps

i , p
t
j), (2)
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(a) The result after 3D block-matching (b) The result after regularization

Fig. 4. (a) The position of the mismatched block (red) in the 3D registration is cor-
rected by regularization. This has a smoothing effect, because the directly neighboring
blocks (yellow) counteract this movement. Distant blocks (light green) have weaker
influence. The blocks are drawn without overlap for better visualization. Both 1D B-
spline kernels with their supports 2σx and 2σy are visualized underneath. (Color figure
online)

where us
i (p

s
i ) and ut

j(p
t
j) are the corresponding displacement vectors of ps

i and pt
j

as obtained from the 3D block-matching. Due to its smoothing properties and
compact support, the radial cubic B-spline function K : Ω × Ω → R has been
chosen as kernel. As the B-splines can be separated in single dimensions, the
kernel K can be split into a product of two 1D cubic B-spline kernels

K(ps
i , p

t
j) = β3

(||xs
i − xt

j ||/σx

) · β3

(||ys
i − yt

j ||/σy

)

where σx, σy are the ratio of pixel spacing in x- and y-direction (Fig. 4a), and

β3(r) =

⎧
⎪⎨

⎪⎩

2/3 − ||r||2 + ||r||3/2 if 0 ≤ ||r|| < σ

(2 − ||r||)3/6 if σ ≤ ||r|| < 2σ

0 if 2σ ≤ ||r||
, where r =

||xs
i − xt

j ||
σ

,

is the 1D radial cubic B-spline kernel in the corresponding axis and σ ∈ {σx, σy}.
Here, 2σ describes the support in [mm] of the B-spline kernel in the x- and
y-direction, respectively. The factor ||us

i (p
s
i ) − ut

j(p
t
j)||2 of Eq. (2) guarantees a

local homogeneity of the transformations while the B-spline kernel takes care of a
(2σx×2σy)-neighborhood. In other words, it makes sure that in case of two blocks
being wide apart, displacements influence each other much less than if they
are within the same neighborhood. The mismatched blocks of the registration
process are not individually corrected. Instead, the entire neighborhood is moved
until the block configuration with the least bending energy is reached (Fig. 4b).
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3 Results and Discussion

The average displacements of all N blocks were detected using the proposed
CRAR, a state-of-the-art method (ICR [8]) and the manual segmentation, each
grouped by resolution level k. First, the methods were applied to the scan-rescan
data set and then to the synthetically deformed data. In Fig. 5a the average dis-
placements of the blocks from volume scan (reference) to its rescan (template)
are shown. The average differences between the synthetically induced displace-
ments (ground truth) and the measured ones are depicted in Fig. 5b.

CRAR shows, especially at higher resolution levels, a superior performance
in comparison to ICR (see Fig. 5a). This is due to the fact that CRAR allows for
the overlap of 3D blocks in both lateral, the x- as well as the y-direction, whereas
in ICR only non-overlapping 2D rectangular patches are applied. With ICR a
considerable deterioration of the scan-rescan results from level k = 5 occurs (see
the trend in Fig. 5a), but with CRAR they remain precise.

This study aims at a precision in the detection of minute changes allowing
clinical application: here it is set at 5µm, i.e. in the range of the pixel scal-
ing in z-direction. Hence, the ideal resolution level k for CRAR is found at
k = 7, corresponding to the detected average displacements |Δz| < 2µm, which
is a clear improvement to ICR (k = 4, |Δz| > 4µm) and manual segmentation
(k = 1, |Δz| > 7µm). This is confirmed by applying CRAR to the synthetic
deformations (see Fig. 5b): CRAR remains precise with only a slightly greater
variance compared to the scan-rescans. Both graphs of Fig. 5 display an impor-
tant, continuous deterioration of the results using manual segmentation with
increasing k. To penalize lower resolutions in the evaluation, the displacements
at each lower level are calculated by translating the corresponding blocks in the
highest resolution level k = 7. Thus, at the sth position, the displacement of the
first block Cs

1 for k = 1 is the average of all the displacements of the centers
ps
1, . . . , p

s
64 at k = 7. For the displacement of the second block Cs

2 at k = 1, the
average of the displacements of ps

65, . . . , p
s
128 at k = 7 is taken. The constants ka

and ku are chosen in the range of ]0, 2
3 ] and ]0, 1

3 ]. The higher blocks include rigid

(a) Displacements by scan vs rescan (b) Displacements by simulated changes

Fig. 5. Average displacements of the CSI obtained with CRAR (red), ICR (green), and
manual expert segmentation (blue), applied on 62 OCT data set pairs (a) as scan-rescan
and (b) after synthetic deformation for different k. (Color figure online)
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tissue, thus detectability might be reduced and subtle changes could be missed.
The ideal trade-off to define the blocks was found at φ = 0.3 and β = 0.55.
After analyzing the feature density of manually segmented interfaces, the min-
imal needed block width for the recognition of subtle thickness changes in the
choroid was set at 5 pixels. Thus, only k ≤ 7 is examined.

4 Conclusion

The advantages of our method are manifold: (1) The precision in the detection
of choroidal thickness changes is achieved in the range of the pixel scaling in
z-direction. Even for finer block sizes, such as k = 5, changes smaller than 5µm
can be reliably recognized. By grouping the slices, the amount of information per
patch increases, thereby reducing mismatches. (2) The regularization enforces
uniform smoothness of the results matching the anatomic structure of the eye.
(3) The simulated deformation proved that our method is able to detect long-
term changes. (4) As the percentage overlap φk increases with k, the amount of
information in the patches is still large, even at high resolution.

Our method, CRAR, enables unsupervised automated detection of choroidal
and scleral changes and can be applied to large data sets to extract minute
differences. It provides a sensitive objective progress indicator for several dis-
eases and their respective treatments. The clinical results and interpretations of
the ongoing longitudinal study of myopia development, utilizing CRAR, will be
presented in an upcoming medical publication.
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Abstract. We present a novel approach to automatically identify the corneal
ulcer areas using fluorescein staining images. The proposed method is based on
a deep convolutional neural network that labels each pixel in the corneal image
as either ulcer area or non-ulcer area, which is essentially a two-class classification
problem. Patch-based approach was employed; for every image pixel, a
surrounding patch of size 19 × 19 was used to extract the RGB intensities to be
used as features for training and testing. For the architecture of our deep network,
there were four convolutional layers followed by three fully connected layers with
dropout. The final classification was inferred from the probabilistic output from
the network. The proposed approach has been validated on a total of 48 images
using 5-fold cross-validation, with high segmentation accuracy established; the
proposed method was found to be superior to both a baseline method (active
contour) and another representative network method (VGG net). Our automated
segmentation method had a mean Dice overlap of 0.86 when compared to the
manually delineated gold standard as well as a strong and significant manual-vs-
automatic correlation in terms of the ulcer area size (correlation coeffi‐
cient = 0.9934, p-value = 6.3e-45). To the best of our knowledge, this is one of
the first few works that have accurately tackled the corneal ulcer area segmenta‐
tion challenge using deep neural network techniques.

Keywords: Corneal ulcer · Deep learning · Convolutional neural network · Patch

1 Introduction

A corneal ulcer is an eye symptom that typically causes pain, red eye, mild or severe
eye discharge, and reduced vision. There are a variety of reasons that might induce a
corneal ulcer, including infection, physical and chemical trauma, corneal drying and
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exposure, as well as over-wearing and misuse of contact lens. The corneal ulcers have
been significantly affecting the eye health of human being.

Fluorescein staining is an important diagnostic tool for the detection of ocular surface
diseases. The corneal staining pattern provides important information for characterizing
corneal diseases, assessing severity, and monitoring clinical response to therapy [1].
Fluorescein staining has been effectively applied to characterizing the corneal ulcer
abnormalities [2–4].

Relying on a fluorescein staining image, the severity of a corneal ulcer may be
subjectively judged using two strategies. One is based on the chromaticity of the bright
green color emitted from sodium fluorescein and the other is based on morphological
characteristics such as the ulcer area size and the number of staining points. To objec‐
tively quantify the ulcer severity using the aforementioned strategies, an important
prerequisite is to automatically segment the ulcer area. Usually, professional software
packages such as the Photoshop (PS) are used to manually extract the corneal ulcer area,
which is however time-consuming, labor-intensive, and subjective.

Regarding automated segmentation of the ulcer area, there have been methods re-
lying on digital image analysis techniques. For example, some approaches applied a
color extraction algorithm using RGB systems and edge detection algorithm [5, 6],
whereas some others utilized thresholding techniques to detect conjunctival hyperemia
and corneal staining collaterally [7]. However, these methods were mainly designed for
fluorescein staining images with the ulcer pattern being a number of separate staining
points but not for images with the ulcer pattern being flaky (a connected area of corneal
ulcer).

Recently, deep neural network (DNN) has gained a substantial popularity due to its
superior performance in many applications, especially in image-related fields (for a
recent review please see LeCun et al. [8]). For example, Srivastava et al. [9] adopted a
deep learning method for optic disc segmentation. An Inception-v3 architecture was
employed for the detection of diabetic retinopathy in retinal fundus photographs [10].
DNN has also been successfully applied to image segmentation problems using patch-
based methods [11–13]. To be specific, instead of predicting a segmentation label with
features obtained from the entire image, this method uses features from small regions,
known as patches, for training and testing in a DNN. In such cases, each image patch
will become a training or testing object, and thus a single image will contain a large
number of training or testing objects. In light of this, in this work, we propose a DNN
based approach to automatically segment the corneal ulcer area from fluorescein staining
images. We test the proposed algorithm on a dataset consisting of 48 fluorescein staining
images with corneal ulcers. The proposed method is compared with a classic image
segmentation approach (the active contour based segmentation) and another deep
learning based method by replacing the network architecture with the VGG net. The
performance of the proposed approach is evaluated using the Dice overlap score, sensi‐
tivity, and specificity, as compared to the manually delineated ulcer area segmentations.
Correlations between the automatic segmentation results and the manual ones are stat‐
istically evaluated.
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2 Materials and Methods

2.1 Dataset and Preprocessing

A total of 48 fluorescein staining images of size 2592 × 1728 were used in this study.
To increase the computational efficiency, all images were down-sampled to be of size
648 × 432. The ulcer area was restricted to the cornea. To extract the cornea region, we
manually labeled four key landmarks (the leftmost, rightmost, most top, and most bottom
points of the cornea) on each image and then employed an ellipse shape model to fit
those landmarks. After that, we constructed a pixel-specific patch of size 19 × 19 for all
pixels in each corneal image. The RGB intensities of that patch (of size 19 × 19 × 3)
for all pixels were used to be our features for classification. Pixels belonging to the ulcer
area were assigned of label value 1 and those belonging to the non-ulcer area were
assigned of label value 0. In Fig. 1, we demonstrate all preprocessing steps.

Fig. 1. The flow of prepossessing steps, including down-sampling, cornea segmentation, and
patch-based feature extraction.

2.2 Deep Neural Network

During training, the inputs to our DNN are intensity patches of size 19 × 19 × 3. The
intensity patches were passed through a stack of convolutional layers, for which we used
different filters at different layers, followed by three fully connected (FC) layers. We

Table 1. The architecture of the deep convolutional neural network used in this study.

Layer Parameter Layer Parameter
1. Convolution 7 × 7 × 3 × 32 9. Fully Connected Neurons:128 × 128
2. ReLU 10. Dropout Ratio: 0.5
3. Convolution 5 × 5 × 32 × 64 11. ReLU
4. ReLU 12. Fully Connected Neurons: 128 × 32
5. Convolution 3 × 3 × 64 × 96 13. ReLU
6. ReLU 14. Fully Connected Neurons: 32 × 2
7. Convolution 3 × 3 × 96 × 128 15. SoftmaxWithLoss
8. ReLU
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used ReLU as the activation function for each layer. A dropout layer was used as a
regularization technique to reduce overfitting in our DNN. Normalization layers were
not utilized in our model because these layers did not improve the performance but
largely increased the memory consumption and computation time. Table 1 lists details
of our network architecture. We will now go through the detail of each type of layers.

Convolutional Layers. The 19 × 19 × 3 intensity patches were processed with the
convolutional layer [14] which was designed to detect local features at different positions
of the patches. A neuron in a convolutional layer operates on a subset of the inputs which
is called the receptive field. In our experiment, the size of our receptive field of the first
convolutional layer was 7 × 7 × 3. Therefore, each neuron in the first convolutional layer
learned a local feature specific to its receptive field of size 7 × 7 × 3. At the same layer,
we desire to obtain image descriptors from a variety of angles. Therefore, a variety of
kernels were used to process the same image intensity patches, obtaining multiple
responses as different local characteristics, which collectively formed the feature maps
(the number of feature maps in the first convolutional layer is 32). The outputs of a
neuron in feature map k of layer l is defined as:

yl

k
=
∑

i

Wl

k,i ∗ yl−1
i

+ bl

k
. (1)

We should note that “∗” denotes the convolution operation. Wl
k,i is the coefficient of

feature k of layer l, yl−1
i

 is the feature map i of layer l−1, bl
k
 is the bias of feature k of

layer l, and 𝛼 is the activation function.

Fully Connected Layers. The four convolutional layers were followed by three FC
layers. The output of a fully connected layer l is given by:

yl = 𝛼(Wl ∗ yl−1 + bl). (2)

We also used a dropout layer right after the first FC layer, which randomly disabled
certain neurons in the network. This largely improved the robustness of the network by
mitigating overfitting.

Activation Functions. During training, all layers except SoftMax layer were equipped
with the same activation function (also named Rectified Linear Unit), which is defined
as:

𝛼:x = max(0, x). (3)

ReLU is less prone to the vanishing gradient problem when it compares to the
sigmoid or tanh activation functions.

The probability for the input to be classified into each of the two categories (ulcer
area versus non-ulcer area) can be found in the last FC layer followed by a softmax
function. Suppose the output of the neuron i is zi, and 𝜎i represents the probability of the
input belonging to label i, then this probability can be computed as:
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𝜎i =
eZi

∑m

j=1 eZj

. (4)

2.3 Training

The training process used the mini-batch gradient descent approach based on back-
propagation [15] with a momentum of 0.9. The batch size was set to be 64. Batch size
defines number of samples that going to be propagated through the network in one
forward or backward pass. The training was regularized by a weight decay (the L2
penalty multiplier was set to be 5 × 10−4) and a dropout regularization for the first FC
layer (drop out ratio was set to be 0.5). The learning rate was initially set to be 0.01.
With the increase of the training steps, learning rate reduced gradually. Initialization of
the network weights is important, since improper initialization may cause inappropriate
result. The Xavier [16] initialization method is a very effective way of initializing neural
network. And it works well with the ReLU activation function.

2.4 Implementation Details

Our network was constructed in the Caffe framework. Caffe is an open-source machine
learning library specializing in deep learning algorithms. It also supports the use of
GPUs, which can greatly accelerate the execution speed. Gradients were computed on
batches, where each gradient update was the average of the individual gradients of the
patches in the batch. A GTX Titan X was used for both training and testing.

3 Results

For the testing process, the Dice overlap coefficient is probably the most widely used
measure for the comparison of two binary segmentations. The Dice coefficient takes
values in the range [0.0, 1.0], where 1.0 is obtained for identical segmentations. In addi‐
tion, Sensitivity and Specificity scores were also computed.

We also evaluated the correlation between the automatic segmentation results and
the manual one in terms of the ulcer area size using the Pearson’s correlation coefficient
(PCC). All evaluation results are shown in Table 2.

Table 2. Results on dice, sensitivity, specificity, and PCC for the three automatic methods.

Method Dice Sensitivity Specificity PCC
Active contour 0.71 ± 0.206 0.74 ± 0.253 0.99 ± 0.009 0.970
VGG net 0.83 ± 0.114 0.78 ± 0.153 0.99 ± 0.002 0.987
Our DNN 0.86 ± 0.073 0.82 ± 0.112 0.99 ± 0.001 0.993

Patch-Based Deep Convolutional Neural Network 105



3.1 Baseline Method

Active contour is a classic approach for image segmentation. In this work, we applied
Chan and Vese [17] region-based energy model to extract the boundary of ulcers and
compared with results from the proposed method. For each image, we manually iden‐
tified an initial contour and then iterated for 200 times to finalize. This method is semi-
automatic since it requires users to manually provide an initial guess of the ulcer region.

3.2 VGG Net

In addition to the active contour segmentation, we also compared our network with
another deep network called VGG net. A 5-fold cross-validation strategy was employed
to evaluate the performance of the proposed approach and VGG net. For the training
process, we can quantify their accuracy and loss. The loss function in our experiment is
the SoftmaxWithLoss function, which is used to predict the label and calculate the loss
during training phrase. The accuracy and loss of our DNN model and VGG net from
one validation fold was illustrated in Fig. 2. Overall, we observe a fast convergence
trend with a relatively high accuracy in both networks, wherein prolonged training
yielded a small but steady improvement in terms of the accuracy.

Fig. 2. Accuracy and loss of the training process during one validation fold for both networks.

As shown in Table 2, the proposed ulcer segmentation method has achieved a very
high Dice score (0.86 on average) as well as high sensitivity and specificity. The Specif‐
icity was found to approach 1. This might be because that the main part of cornea is non-
ulcer. In addition to the high overlap, we also observed a significantly positive correla‐
tion between the automatic ulcer area size and that of the manual delineations
(PCC = 0.993, p-value = 6.3e–45). The proposed method was found to outperform both
active contour and VGG net, especially in terms of Dice and sensitivity. Collectively,
our results showed the superior performance of this proposed method in identifying
ulcers from corneal staining images.

A comparison of results from the three automatic approaches (active contour, VGG
net, and the proposed) and the manual ones for three representative cases is shown in
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Fig. 3. The active contour method was generally not as precise as learning methods,
indicating that deep learning methods are very promising when compared to conven‐
tional methods. Comparing VGG net and our DNN, we observed similar performance
on some cases whereas the proposed network worked better for some other cases (see
the 1st example). Despite its superior performance, two limitations of our method have
been detected: firstly, it may mistakenly extract some tiny areas near the ulcer area (see
the 2nd example); secondly, it may miss some pixels belonging to the ulcer area, such
the 3rd example). The underlying reason is that the color intensity profiles for those
missing spots are different from the major ulcer area. We conjecture that our DNN has
not learned all characteristics of the ulcers, which will be a future direction to explore.

Fig. 3. A comparison of the automatic ulcer segmentation results and the manual ones for three
representative cases.

4 Conclusion

In this paper, we have proposed and validated an automatic segmentation method for
corneal ulcers based on a deep convolutional neural network with the training and testing
features obtained from image patches and compared the result with the active contour
segmentation method and the VGG net based deep learning method. Utilizing a total of
48 images, we have demonstrated the superiority of the proposed method in terms of
both segmentation accuracy and correlation to the manually delineated results. To the
best of our knowledge, there have been very rare work on automatic ulcer segmentation
even using traditional digital image analysis techniques. Methods relying on deep
learning techniques have been even rarer. Our method is one of such kind. The proposed
method can automatically extract corneal ulcers with very promising results. This will
largely improve the diagnostic efficiency, especially in the big data era.
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Abstract. Measuring the cornea’s anterior and posterior refractive
surface is essential for corneal topography, used for diagnostics and
the planning of surgeries. Corneal topography by Optical Coherence
Tomography (OCT) relies on proper segmentation. Common segmenta-
tion methods are limited to specific, B-scan-based scan patterns and fail
when applied to data acquired by recently proposed spiral scan trajecto-
ries. We propose a novel method for the segmentation of the anterior and
posterior refractive surface in scans acquired by 2-D scan trajectories –
including but not limited to spirals. Key feature is a model-driven, three-
dimensional regularisation of the region of interest, slope and curvature.
The regularisation is integrated into a graph-based segmentation with
feature-directed smoothing and incremental segmentation. We parame-
terise the segmentation based on test surface measurements and evaluate
its performance by means of 18 in vivo measurements acquired by spiral
and radial scanning. The comparison with expert segmentations shows
successful segmentation of the refractive corneal surfaces.

Keywords: Optical Coherence Tomography · Segmentation · Cornea

1 Introduction

Optical Coherence Tomography (OCT) is an emerging modality in ophthalmol-
ogy – including measurement of the cornea. Although the cornea consists of
multiple layers, refraction mainly occurs at the anterior and posterior surface.
Correct three-dimensional delineation of the anterior and posterior corneal sur-
faces is therefore crucial for determining the corneal refractive power and the
generation of corneal topography maps, used for diagnostics and surgical plan-
ning. For corneal measurement by OCT, the cornea is usually scanned by scan
patterns consisting of multiple straight scans (B-scans). Raster patterns consist
of parallel B-scans. Radial scan patterns consist of meridional B-scans rotated
around the apex of the eye and are commonly used for corneal topography [4].
Recently, Wagner et al. [5] proposed a spiral scan pattern for corneal topogra-
phy with reduced susceptibility to disturbances caused by eye blinking or abrupt
movements. However, the appearance of the cornea in spiral scans is different
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): FIFI/OMIA 2017, LNCS 10554, pp. 109–117, 2017.
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(a) (b)

Fig. 1. (a) A typical radial B-scan. (b) One eighth (one cycle) of a spiral scan where
the center of the scan pattern is aligned to the apex of the eye.

and more variable (cf. Fig. 1), e.g. it varies with the relative position of the eye.
This asks for new, more versatile segmentation and regularisation methods.

Common methods are optimised for the segmentation of classical B-scans –
using active contours or graph theory. To overcome the typically low signal-to-
noise ratio (SNR) of OCT images, 2-D regularisation schemes are applied. Yaz-
danpanah et al. [8] add 2-D shape and smoothness terms to their active contour
approach. Williams et al. [6] use graph cut with 2-D curvature and shape terms.
LaRocca et al. [3] use a two step process for segmenting corneal layers in radial
B-scans. They restrict the search region by parabolic extrapolation from the cen-
tral high SNR area into the lateral low SNR areas. Recently, Williams et al. [7]
added a 2-D shape prior to their shortest path method, resulting in more accu-
rate segmentation compared to level set and graph cut methods. Fu et al. [2] used
graph-search to find markers for a later segmentation by a fourth order.

These methods are by design inappropriate for the segmentation of images
obtained by spiral scan patterns. We present a model-driven 3-D regularisa-
tion for robust graph-based segmentation of the anterior and posterior refractive
surface in scans from 2-D scan trajectories – including but not limited to spi-
rals. Apart from the novel regularisation, the graph-based segmentation features
intrinsic, feature directed smoothing for enhanced robustness to noise. Further,
we developed an incremental segmentation scheme that enables the processing
of long scans (as obtained by spiral scanning) on systems with limited memory.

2 Methods

2.1 Graph-Based Segmentation

Although the regularisation is our main contribution, we first describe the basic
segmentation method. Because graph-search methods performed best in recent
work [7], we convert the segmentation into a shortest path problem on a weighted
directed graph. The nodes represent individual image pixels. Contrary to the
state of the art, we only assign nodes to every bth A-scan and introduce edges
that span the A-scans lying in between, where edge length b is an integer greater
than one. We will refer to A-scans with assigned nodes as nodal A-scans. The
edge weights are calculated from the intensities of pixels lying on a straight line
between their start and end pixel, which is done by means of kernel convolution
(see Fig. 2a). This leads to a piecewise linear segmentation with averaging in edge
direction. The averaging results in feature-directed smoothing and enhances the
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(a) (b)

Fig. 2. (a) The graph structure (top) with source (S) and target (T) nodes and the
shortest path (red), while gray colour indicates nodes and edges outside the ROI or
slope limits. An ideal edge (bottom, left) and the resulting kernel for edge weight
calculation (bottom, right). (b) Piecewise segmentation scheme. The shortest distances
(d2b,i) to the last nodal A-scan of the first frame graph (top) are used as weight to
connect the start node (S*) for the next frame (bottom). (Color figure online)

robustness to noise. Because the intensity of a nodal pixel is used twice – for
incoming and outgoing edge weights – these pixels are weighted half. To ensure
an unrestricted start and end, we connect a source and a target node by zero
weight edges with all the nodes from the first and last nodal A-scan, respectively.

Incremental Segmentation. We developed an incremental scheme to solve
the global graph search problem. With this scheme, neither the complete scan
nor the complete graph has to be in memory at once. We divide the scan image
into frames containing a b+1 A-scans, where b is the edge length and a an integer
greater than one. Therefore, each frame starts and ends with a nodal A-scan.
Because the last A-scan of a frame is the first A-scan of the following frame, the
frames overlap by one A-scan. Thus, the first frame contains the A-scan indices
0 up to a b and the second frame contains a b to 2 a b. The procedure consists of
the following steps (cf. Fig. 2b): (1) Generate the graph for the first frame, (2)
determine the shortest path dab,j to all nodes in the last A-scan, (3) generate
the graph for the next frame using the path distances dab,j to connect the new
start node, (4) repeat steps (2) and (3). The shortest path to the target is then
put together from the shortest paths determined in step (2). To save memory,
the single frames are read in and preprocessed on demand for steps (2) and (3).

Preprocessing. After applying the fast Fourier transform to the spectral OCT
scans, subtracting the background scan and taking the logarithm (of base 10),
a specific preprocessing is performed for each feature to segment (see Sect. 2.2).
The given filter widths are specific for the used scan system (see Sect. 2.3). For
the stroma, Gaussian smoothing (σ = 7 px) and box filtering (width = 28 px) in
scan direction and 2D sub-scaling by the factor 7 is performed. For the anterior
surface and posterior surface, filtering in scan direction with the negative and
positive first derivative of a Gaussian (σ = 4 px) is performed, respectively.
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(a)

(b) (c)

Fig. 3. (a) Segmentation procedure. (b) Section of a scan, preprocessed for the seg-
mentation of the anterior surface, with the regularisation limits for ROI, slope and
curvature (cyan). (c) Original scan section with the resulting segmentations. (Color
figure online)

2.2 Regularisation

Based on a three-dimensional model, the region of interest (ROI), slope and
curvature are selectively limited. To increase robustness, we perform a stroma
segmentation prior to the segmentation of the anterior and posterior corneal
surfaces (see Fig. 3). The regularisation model is updated between the segmen-
tations. Figure 5 shows the positive effect of this regularisation scheme, especially
for segmentation of the posterior corneal surface.

Regularisation Model. We used Zernike polynomials as the basis for our reg-
ularisation model because they are state of the art for the description of optical
surfaces [5]. Our model consists of a 6th-order Zernike surface, defined by its
radius and coefficients cn,m, and tolerances tn,m assigned to the coefficients (all
in millimeters), where n and m indicate the radial and azimuthal degree of the
Zernike polynomials Zm

n , respectively. For the initial model, we constructed a
Zernike surface that approximates a sphere with radius of 7.8 mm – the shape
and size of a typical cornea. A relative coefficients tolerance tn,m = 0.2 · cn,m
was applied, except for the offset tolerance which was set to t0,0 = 0.5. Thus, the
operator has to adjust the distance between OCT system and subject in advance
with an accuracy of ±0.5 mm. For the model updates, the Zernike surfaces are
constructed based on the previous segmentation as described in [5]. We use the
coefficients’ standard errors sn,m, measures for the confidence in the reconstruc-
tion [5], to calculate the tolerances of the coefficients by tn,m = 4 · sn,m.

The reconstructed surface is shifted by redefining the offset coefficient c0,0 :=
c0,0 + dz, where dz is the estimated distance from the previous surface. The
corresponding coefficient tolerance is modified as t0,0 := t0,0 + Δdz, where Δdz
is the tolerance of the surface position. Assuming a corneal thickness of 0.8(5) mm
and a corneal refractive index of nc = 1.38, we use a distance shift for the anterior
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surface of dzsa = 0.4 · 1.38 with a tolerance of Δdzsa = 0.25 · 1.38 and a shift for
the posterior surface of dzap = 0.8 · 1.38 with a tolerance of Δdzap = 0.5 · 1.38.

Implementation. To restrict the ROI, nodes are generated only for pixels
lying in an estimation band for the depth zE(i) ± zM (i). The depth zE(i)
is estimated by sampling the model surface at the scan position i. The mar-
gin zM (i) is determined based on the coefficients tolerances tn,m. Because
the Zernike polynomials Zm

n are orthogonal, the margin from the individual
tolerance Zernike polynomials zn,mM (i) = abs(tn,m · Zm

n (xi, yi)) are added to
obtain the total margin zM (i) =

∑
zn,mM . To restrict the slope, two nodes at

scan positions i1 and i2 are only connected when the slope Δz(i1, i2) is in
the slope estimation band ΔzE(i1, i2) ± ΔzM (i1, i2). The slope ΔzE(i1, i2) is
estimated by sampling the model surface at the scan positions and calculat-
ing the depth difference ΔzE(i1, i2) = Z(xi2, yi2) − Z(xi1, yi1). For calculat-
ing ΔzM (i1, i2), the slope margins of the tolerance polynomials are determined
and added analogously. The curvature is restricted while solving the shortest
path problem with an adapted version of Dijkstra’s algorithm: The curvature
is restricted by considering only the nodes that result in a discrete curvature
that is in the allowed range. The curvature at a certain scan point i is defined
by ci = z(i − 1) − 2 z(i) + z(i + 1). The estimated curvature is calculated from
the model surface by cE = zE(i − 1) − 2 zE(i) + zE(i − 1). The margin cM is
determined in analogy with the position and slope margin.

2.3 Evaluation

Scan Patterns and Setup. For the evaluation of the method, we used two
scan patterns with different 2-D scan trajectories: a spiral scan pattern (Fig. 4a)
with 32768 points and a radial scan pattern 5920 points (Fig. 4b) that includes
turning loops between B-scans. We implemented the segmentation in Python 2.7,
using Numpy and NetworkX, and used a custom swept-source OCT system at

(a) (b)

Fig. 4. (a) The spiral scan pattern and (b) the radial scan pattern.
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1060 nm featuring telecentric scanning and a sweep rate of 30 kHz. Bandwidth-
limited full-width at half maximum axial resolution of the system is 40μm.
Segmentation is based on data interpolated to 12μm axial pixel dimension.

Parameter Optimisation. Edge length b is a crucial parameter. A short edge
results in low averaging and high susceptibility to noise. On the other hand,
a long edge is expected to bias the segmentation because the piecewise linear
approximation is not adequate anymore. Thus, we optimised the edge length by
means of test surface measurements with both scan patterns. We used three test
surfaces with different shapes: a sphere with a radius of 6.4 mm, a sphere with
a radius of 8.8 mm, and a torus with radii of 7.6 mm and 8.0 mm. We performed
a torus fit on the points obtained by the individual segmentations and used the
RMS of the fit error to find the trade-off between high robustness to noise and
accuracy.

In Vivo Evaluation. For the in vivo evaluation, we used an edge length of
20 for the segmentation of the corneal surfaces and an edge length of 10 for the
sub-scaled stroma segmentation. We used a edge length at the lower end of the
optimal range (see parameter optimisation results) because the test surfaces only
represent normal eyes and idealized astigmatism. The method was evaluated
by comparing to expert segmentations. Nine different eyes from nine healthy
volunteers were measured with both scan patterns. The expert manually marked
the pixel-position of the anterior and posterior cornea surface in 10 randomly
selected A-scans (cf. Fig. 5). This procedure was done a second time for the
same A-scans, by the same expert. For each of the 180 A-scans, we calculated the
differences between the piece-wise linear interpolated automatic segmentation zS
and the expert segmentation zE1 by dzSE1 = zS − zE1 as well as the differences
between the two expert segmentations dzE12 = zE1 − zE2.

Fig. 5. Section of a spiral in vivo scan. The segmented cornea anterior (blue) and
posterior (green) corneal surface. The stroma segmentation is shown in red. As com-
parison, the unregularised segmentation of the posterior surface is shown in magenta.
Expert segmentations are shown in yellow. (Color figure online)

3 Results

Parameter Optimisation. The test surface measurements confirm the posi-
tive effect of the feature-directed smoothing introduced by the A-scan-spanning
edges. Figure 6a shows minimal fitting error for an edge width between 16 and
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28 for the radial scan pattern. For the spiral scan pattern, the error still seems
to decrease when increasing the edge length above 24, albeit being close to con-
vergence. This can be explained by the fact that the radial pattern scans along
the maximal surface gradient whereas the spiral pattern scans nearly along the
minimal surface gradient.

In-Vivo Evaluation. Figure 6b shows the comparison with expert segmen-
tations. For the difference to the expert segmentation dzSE1 we removed two
outliers (−72 px and −66 px), caused by exceptionally low SNR in one radial
scan. This results in a mean difference d̄zSE1 of −0.73 ± 1.06 px (mean±SD)
for the anterior surface and −0.13 ± 2.91 px for the posterior surface, over both
scan patterns. The mean difference between expert segmentations d̄zE12 is −0.31
± 0.87 px for the anterior surface and −0.35 ± 2.85 px for the posterior surface.

Fig. 6. (a) Optimisation curve of the edge width for the scan patterns (spiral: red,
radial: blue) and test surfaces (small sphere: dashed, big sphere: dash-dot, torus: solid).
(b) In vivo differences between automatic segmentation and expert segmentation dSE1

(blue) and between the expert segmentations dE12 (green). (Color figure online)

4 Discussion

Motivated by the recently proposed spiral scan pattern and the limitations of
current segmentation methods, we introduce a novel 3-D regularised segmen-
tation for the anterior and posterior corneal surface in scans acquired by 2-D
scan trajectories like spirals. The in vivo comparison with expert segmentations
shows successful segmentation of the anterior and posterior corneal surfaces.
Both differences, between our method and expert segmentations and between
the expert segmentations, are within ±3 px. With the pixel resolution of 12μm,
this corresponds to a spatial range of ±36 μm, which is less than the full-width
at half maximum axial resolution (40μm) of the OCT system. This indicates
segmentation of the accurate surfaces. Because our method works for two con-
trary 2-D scan trajectories, one scanning along the maximal surface gradient and
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one scanning along the minimal surface gradient, we suppose that the method
is suited for various 2-D scan trajectories – assuming continuous scanning.

We want to point out that comparison with common methods is not pos-
sible or would be unfair because they are not able to segment scans from 2-D
scan trajectories by design. The limited system resolution, the variable angle
of the incident laser beam relative to the interface and noise lead to a diffuse
interface signal which makes the exact identification of the interface imprecise –
even for an expert. Due to this lack of a quantitative gold standard, quantitative
comparison below the level of system resolution is inappropriate. However, we
believe that expert segmentation is gold standard to show successful segmenta-
tion of the surfaces in a qualitative manner. We did this by showing that the
segmentation difference is below the axial resolution the OCT system. Regarding
our future work, we believe that quantitative verification of the segmentation is
only possible in the course of a comprehensive validation that involves the whole
pipeline for OCT-based corneal topography and comparison with established
topographers on normal and pathologic eyes.

We want to emphasise that the key of the method lies in the novel model-
driven 3-D regularisation that guides the graph-based segmentation. This 3-D
regularisation enables robust segmentation of scans from 2-D scan trajectories.
By using hard restriction margins for ROI, slope and curvature, we aim to min-
imise regularisation bias. Others [6,8] use continuous penalty which potentially
introduces bias by pulling the solution towards a prior, e.g. by adding curvature
and shape terms to an energy minimisation. In contrast to established meth-
ods, the presented regularisation can be easily adapted, e.g. unreliable lateral-
horizontal eye alignment can be addressed by adapting the initial regularisation
model – in this case by increasing the tolerances of the tilt coefficient t1,1 [1].
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Abstract. Central serous retinopathy is a serious retinal disease. Reti-
nal layer segmentation for this disease can help ophthalmologists to pro-
vide accurate diagnosis and proper treatment for patients. In order to
detect surfaces in optical coherence tomography images with patholog-
ical changes, an automatic method is reported by combining random
forests and a live wire algorithm. First, twenty four features are designed
for the random forest classifiers to find initial surfaces. Then, a live wire
algorithm is proposed to accurately detect surfaces between retinal layers
even though OCT images with fluids are of low contrast and layer bound-
aries are blurred. The proposed method was evaluated on 24 spectral
domain OCT images with central serous retinopathy. The experimental
results showed that the proposed method outperformed the state-of-art
methods.

Keywords: Central serous retinopathy · Optical coherence tomo-
graphy · Random forest and live wire

1 Introduction

Central serous retinopathy (CSR) is a serious complex disease that usually leads
to blindness. CSR occurs due to the accumulation of serous fluid under inter-
digitation zone of the retina [1] and may also lead to retinal pigment epithelium
detachment as shown in Fig. 1. There are two types of CSR [2,3]. In Type 1
CSR, only serous fluid accumulates under the interdigitation zone. In Type 2
CSR, retinal pigment epithelium detachment may appear under the serous fluid
and may also occur near the center of the macula besides the accumulation of
serous fluid. These fluids lead to large morphological changes of retinal layers. In
addition, thickness and optical intensity of retinal layers may change abruptly
due to the occurrence of CSR [4–6]. CSR is one common type of macular disorder
and the macula is responsible for the central vision. It is important to provide
accurate diagnosis and treatment of CSR.

Optical coherence tomography (OCT) is a noninvasive and non-contact imag-
ing modality for morphological analysis and diagnosis of retinal abnormality,
c© Springer International Publishing AG 2017
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Fig. 1. OCT image with central serous retinopathy and manual annotation of retinal
surfaces and layers.

such as CSR, macular hole, diabetic macular edema, glaucoma and age-related
macular degeneration. The rapid development of OCT technology, especially
recent developed spectral domain (SD) OCT, has led to produce higher resolu-
tion real 3-D volume images of the retina, and identify more anatomical layers
of the retina [1]. The great improvements of SD-OCT devices make it possi-
ble diagnose and monitor retinal disease more accurately based on abnormality
quantification and retinal layer thickness computation both in research centers
and clinic routines. Figure 1 shows a macular centered OCT B-scan image with
CSR. The vitreous, retina, fluid and choroid were annotated with arrows. The
surfaces are numbered 1 to 11 from top to bottom. The retinal layers are nerve
fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner
nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL),
external limiting membrane (ELM), myoid zone, ellipsoid zone, outer photore-
ceptor segment layer (OPSL), interdigitation zone, retinal pigment epithelium
(RPE)/Bruch’s complex and choroid. The abnormalities include serosity (fluid),
pigment epithelial detachment (PED) caused fluid.

To quantify the thickness of retinal layers in OCT with CSR, it is important
to develop a reliable and automatic segmentation of retinal layers since man-
ual segmentation is time-consuming for huge amount of OCT images in clinic
applications. However, there are several challenges in retinal layer segmentation.
First, the internal structures of retinas are complex and difficult to be recognized
as shown in Fig. 1. Inner boundaries of retinal layers are non-smooth and there
are more than twelve layers. Second, there may be several types of fluid, e.g.,
serosity, PED caused fluid. This leads to low contrast and blurred boundaries
in OCT images between retinal layers, and also great structural changes of reti-
nal layers. Therefore, layer segmentation may fail in using traditional surface
detection methods, such as the graph search algorithm [7–10]. Therefore, new
methods that can segment retinal layers are needed for quantitative analysis of
CSR.

In this paper, we focus on segmentation for retinas with CSR in OCT images,
which is associated with serosity and PED caused fluid. An automatic, supervised
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3-D layer segmentation method is proposed for macular-centered OCT images
with CSR. Shapes and intensities of retinal layers are learned by the random
forest classifiers. The initial surfaces constrain the refinement of retinal surfaces
by using the live wire algorithm.

2 Initial Surface Detection via Random Forest

The retinal layers in OCT images with CSR are manually labeled as eight classes.
Class 1: NFL, Class 2: GCL, Class 3: IPL, Class 4: INL, Class 5: OPL, Class 6:
ONL + ELM + myoid zone, Class 7: ellipsoid zone + OPSL + interdigitation
zone + RPE/Bruch’s complex + fluid, and Class 0: choroid. Unlike normal
retinal layers, fovea is often extruded upward by serosity in OCT images with
CSR. It is impossible to find the center of the fovea by computing the thinnest
position as in [11]. We use three spatial features: x, y and z coordinates after
surface 1 is detected. These three features denote the geometric information of
each voxel related to the interface of vitreous and NFL. The intensity of the
original image is considered as one feature. The original image is denoised with
the curvature anisotropic diffusion filtering to reduce speckle noise and preserve
boundary between adjacent layers. In the clinical images, the intensity range
varies from one patient to another and the contrast between neighboring layers
is often low. To address these problems, the filtered and smoothed image is
normalized in several intervals as,

IN (x) =

⎧
⎪⎨

⎪⎩

IN,max; If (x) ≥ If,s + If,r;
IN,max
If,r

(If (x) − If,s) ; If,s < If (x) < If,s + If,r;

0; If (x) < If,s.

(1)

where If (x) is the intensity of a voxel, the intensity interval is [If,s, If,s + If,r],
IN,max is the maximal normalized intensity. Five normalized features are used
and allow the classifier to easily differentiate the darker layers and the brighter
layers, and particularly recognize NFL, IPL, OPL, ellipsoid zone + OPSL +
interdigitation zone + RPE/Bruch’s complex.

Although the sub-range normalized intensities are useful layer features, struc-
tural features can also provide helpful information according to intensities of
neighborhood voxels. The bright layer possibility in the Hessian scale space is
defined as

L (x, σt) =

{
|λ3 (x, σt)| exp

(
−αλ2

1(x,σt)+βλ2
2(x,σt)

λ2
3(x,σt)

)
, λ3 (x, σt) < 0

0, λ3 (x, σt) ≥ 0
(2)

The dark layer possibility is defined as

L (x, σt) =

{
|λ3 (x, σt)| exp

(
−αλ2

1(x,σt)+βλ2
2(x,σt)

λ2
3(x,σt)

)
, λ3 (x, σt) > 0

0, λ3 (x, σt) ≤ 0
(3)

where x denotes the voxel coordinates. α and β are symmetric parameters, which
control the ratio between the two minor components λ1, λ2 and the principal
component λ3.
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To take into account the varying sizes of the layers, the scale-dependent layer
possibility function L (x, σt) is computed for varying thickness for all voxels x
of the 3D image domain. The thickness values are discretized values between
the minimal scale σt,min and the maximal scale σt,max, using a linear scale. The
multiscale layer response is obtained by selecting the maximum response over
the range of all scales as

Lm (x, σt) = max
σt,min≤σt≤σt,max

σ2
t × L (x, σt) (4)

The bright layer responses allow the classifier to learn the possibility of NFL,
IPL, OPL, ellipsoid zone + OPSL + interdigitation zone + RPE/Bruch’s com-
plex while the dark layer responses allow the classifier to learn the possibility of
GCL, INL, ONL + ELM + myoid zone and choroid. For each scale, the bright
layer responses and the dark responses are computed and the maximal responses
from the minimal scale and current scale are also computed. Totally, fourteen
layer-like features are generated for the classifier. The eigenvectors of the Hessian
matrix corresponding to the three eigenvalues λ1, λ2, λ3 are orthogonal to each
other. One eigenvector is the normal of the layer and the other two eigenvector
are tangent. Therefore, layer response features are robust to the deformation and
rotation of retinal layers even with the existence of diseases such as fluid. All the
voxels of the 3D OCT image are classified by trained random forest classifiers.

3 Surface Refinement via Live Wire

The surface is defined as terrain-like interface S (x, y) ∈ {1, 2, · · · , Z}, where each
point (x, y) has one and only one z ∈ {1, 2, · · · , Z} value. Single surface detection
in OCT image is then transformed into finding a minimum cost path in x − z
plane and y −z plane successively with an initial surface. The initial anchors are
equidistantly sampled from the initial surface in one direction with the sampling
step lws. To search the shortest path between two successive anchors, a graph
is constructed in the preprocessing section. Edge features and feature transform
functions selected are used to compute the cost of all edges. The shortest oriented
path 〈e1, e2, · · · , eno

〉 is found. no is the number of edges on the shortest oriented
path between two neighboring anchors ao and ao+1. o = 1, · · · ,

⌊
ax

lws

⌋
and ax is

X in x − z plane or Y in y − z plane. The corresponding local energy can be
defined as,

elw (ao,ao+1) =
no∑

u=1

cij (eu) (5)

where the weighting function cij (eu) for the edge eu is constructed as

cij (u) =

nk∑
k=1

nl∑
l=1

ωkck (fl (u))

nk∑
k=1

ωk

, (6)
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where, fl is the feature function, which define the edge feature for eu. The
edge features consist of nl = 7 features. ck is the transfer function, which maps
a edge feature to the feature cost. The transfer functions consist of nk = 6
functions, the linear mapping function, the inverted linear mapping function,
gaussian function, the inverted gaussian function, the hyperbolic function and
the inverted modified hyperbolic function. ωk is the weight parameter. Then, the
total energy of a boundary curve can be defined as,

Elw =
� ax

lws
�∑

o=1

elw (ao,ao+1) (7)

Initial anchors ao are equidistantly sampled with the step lws from the initial
surfaces. The live wire algorithm is applied to refine the initial curve. The total
energy of the refined boundary curve a′ is computed according to Eq. (7). The
step lws is reduced and a′ is considered as the initial curve. The process is
stopped if the total energy difference ΔE between two iterations and lws ≤ 1.
The retinal surface is detected by the live wire algorithm as pseudo 3D terrain-
like mesh. The live wire algorithm are employed in x− z plane and then in y − z
plane. The Canny edge detection algorithm is used to obtain the initial surface
1. The live wire algorithm is used to refine surfaces 1 to 11.

4 Experiments

4.1 Data

The OCT images were obtained from the Jiangsu Province Hospital by using a
Cirrus HD-OCT 4000 scanner. Macula-centered SD-OCT scans of 24 eyes from
24 subjects diagnosed with CSR were acquired as testing images. Another 6
macula-centered SD-OCT images with CSR were used as training images for the
segmentation of abnormal retinal images. All the OCT volume images contain
512 × 128 × 1024 voxels and the voxel size is 11.74 × 47.24 × 1.96 µm3.

4.2 Evaluation

To evaluate the layer segmentation results, a retinal specialist manually anno-
tated the surfaces in the B-scan images to form the segmentation reference. Due
to the time consumption of manual annotation, only 15 out of the 128 B-scans
were randomly chosen and annotated for each 3D OCT volume in the testing
data set. All the 128 B-scans were manually annotated for each 3D OCT volume
in the training data set, and then each 3D OCT volume was labeled with the
eight classes according to the annotated surfaces for random forest classifiers
training.

To evaluate performance of surface detection methods, average unsigned sur-
face distance was computed for each surface by measuring absolute Euclidean
distances in the z-axis between surface detection results of the algorithms and
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the reference surface [10]. To demonstrate the improvement of our method, our
algorithm (RFLW) was compared to the state-of-art methods: the Iowa reference
algorithm (IR) [7] and the multi-resolution graph search algorithm (MGS) [10].

4.3 Results

An OCT volume image only with CSR is shown in Fig. 2. The green curves are
manual annotated surfaces. The red curves are the detected surfaces via the
surface detection algorithms. The yellow curves are the eight initial surfaces by
using the random forest method.

Fig. 2. Automatic surface detection (green curves are the segmentation reference, red
curves are detected surfaces) of an OCT image with CSR. (a) The original image; (b)
Surfaces detected via the IF algorithm; (c) Surfaces detected via the MGS algorithm;
(d) The eight initial surfaces with the filtered image; (e) Surfaces detected via the
RFLW algorithm. (Color figure online)

Table 1 shows the mean and standard deviation of average signed surface
detection errors for each surface. The results in Table 1 show great improvement
over the IR algorithm [7] and the MGS algorithm [10] even a large proportion of
the layers exhibits dramatic morphological changes. For the RFLW algorithm,
the average unsigned surface detection errors of surface 1 to 11 were dramatically
reduced compared to the IR algorithm and the MGS algorithm as shown in the
third column of Table 1. Surface detection errors were the largest at surface 5 to
7 while detection errors of the rest surfaces were smaller.

The proposed algorithm was implemented in C++ and tested on a PC with
Intel i5-3450 CPU@3.10GHz and 16GB of RAM. In training stage, the average
running time of the algorithm was about 6 h for the 6 CSR OCT images. In
testing stage, the average running time of the random forest algorithm was 304±
34 s for the 24 CSR OCT images. The average running time of the IF algorithm
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Table 1. Comparison of surface detection with average unsigned surface distance
(Mean±SDµma) for CSR images

Surface IR MGS RFLW

1 10.3 ± 16.7 4.4 ± 7.6 2.6 ± 0.9

2 18.7 ± 20.6 10.5 ± 21.0 5.1 ± 1.0

3 21.7 ± 18.5 16.6 ± 20.0 5.0 ± 1.2

4 22.3 ± 17.4 14.8 ± 19.3 3.0 ± 1.4

5 25.2 ± 17.0 24.5 ± 21.2 5.0 ± 1.3

6 27.1 ± 15.0 24.1 ± 15.9 6.7 ± 2.7

7 51.4 ± 40.5 18.9 ± 17.0 8.6 ± 5.0

8 48.3 ± 37.4 16.8 ± 13.8 9.3 ± 5.7

9 47.6 ± 34.7 16.8 ± 11.4 10.7 ± 5.4

10 30.0 ± 43.7 14.3 ± 9.7 8.3 ± 3.3

10’ \ 13.8 ± 30.1 7.3 ± 5.9

11 27.3 ± 47.0 11.1 ± 34.1 4.7 ± 6.6
aVoxel size in z direction is 1.96µm.

was 112 ± 31 s for CSR OCT images. The average running time of the MGS
algorithm was 436 ± 93 s for CSR OCT images.

5 Conclusion

In this paper, a supervised method was proposed for the automated segmen-
tation of retinal layers on OCT scans of eyes with CSR. Surface 1 is detected
by using the Canny edge detection algorithm and the live wire algorithm. Only
twenty four features are generated for the training and testing of the random
forests classifiers, and then eight initial surfaces are detected as constraints. By
utilizing the original intensities of OCT images and the layer-like shape infor-
mation, the live wire algorithm is used to find the final surface. The proposed
method was evaluated on 24 spectral domain OCT images with central serous
retinopathy. The experimental results showed that the proposed method out-
performed the state-of-art methods. Although the proposed method was used
in OCT image with CSR, it can be also transferred to other sources of OCT
images. The proposed method will be tested in normal OCT images and OCT
images with other retinal diseases.
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Abstract. Retinal image quality classification makes a great difference in auto‐
mated diabetic retinopathy screening systems. With the increase of application
of portable fundus cameras, we can get a large number of retinal images, but there
are quite a number of images in poor quality because of uneven illumination,
occlusion and patients movements. Using the dataset with poor quality training
networks for DR screening system will lead to the decrease of accuracy. In this
paper, we first explore four CNN architectures (AlexNet, GoogLeNet, VGG-16,
and ResNet-50) from ImageNet image classification task to our Retinal fundus
images quality classification, then we pick top two networks out and jointly fine-
tune the two networks. The total loss of the network we proposed is equal to the
sum of the losses of all channels. We demonstrate the super performance of our
proposed algorithm on a large retinal fundus image dataset and achieve an optimal
accuracy of 97.12%, outperforming the current methods in this area.

Keywords: No-reference image quality assessment (NR-IQA) · Convolutional
neural networks (CNN) · Retinal image · Fine-tuning

1 Introduction

Retinal fundus images play an important role in ophthalmology diagnosis. In screening
systems for diseases such as diabetic retinopathy (DR), glaucoma, age-related macular
degeneration (AMD), and vascular abnormalities, a clear fundus image is a prerequisite
for the right diagnosis of the disease. Research communities have put great efforts
towards the automation of computer screening systems which are able to promptly detect
DR in fundus images. The success of these automatic diagnostic systems heavily rely
on the quality of input images. However, in reality, due to some unavoidable distur‐
bances, for instance, differing lighting condition, the type of image acquisition equip‐
ment, the situation of different individuals, the images we acquired will be blurred and
affect the final accuracy of diagnosis. Consequently, it is indispensable to conduct image
quality assessment (IQA) in the computer-aided screening system for ophthalmology
diagnosis. Figure 1 shows four instances of poor quality images which will restrict the
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subsequent analysis and DR diagnosis. These images are caused by occlusion, patients
movements, underexposure or overexposure.

Fig. 1. Four instances of poor quality images in the retinal fundus image dataset.

Subjective evaluation and objective evaluation are two existing image quality eval‐
uation methods [1]. In subjective method, quality is evaluated by organized groups of
human observers to mark the distorted images, which is time-consuming and expensive.
In general, objective image quality measures can be classified into three categories: full
reference (FR) IQA, reduced-reference (RR) IQA and no-reference (NR) IQA. But, in
practical applications, ideal image selected as the reference image is often not available
or it costs too much, so NR-IQA is desirable. Many algorithms have been proposed in
the literature for no-reference retinal fundus images quality assessment [2]. Earlier
methods adopt hand-crafted features. Lee et al. [3] use a quality index Q which is calcu‐
lated by the convolution of a template intensity histogram to measure the retinal image
quality. Lalonde et al. [4] adopt the features which are based on the edge amplitude
distribution and the pixel gray value to automatically assess the quality of retinal images.
Yu et al. [5] propose a no-reference image quality assessment method to extract features
and introduce the support vector machine (SVM) into image quality assessment. All
these methods do not generalize well to a new dataset since they rely on some kind of
hand-crafted features that are based on either geometric or structural quality parameters.

For the past decade, a deep architecture [6] has gained a great attention in various
fields and convolutional neural networks is a new breakthrough due to its representa‐
tional power. Different from the traditional handcraft-feature extracted methods, a deep
learning model can find the hidden or latent high-level information inherent in the orig‐
inal features, which can be helpful to build a more robust model. [7–9] propose a new
method for no-reference image quality assessment, and the structure of Le Kang’s CNN
has one convolutional layer with max and min pooling, two fully connected layers and
an output node. However, these methods do not apply to retinal fundus images. [8, 9]
leverage on learned supervised information using convolutional neural networks
achieving high accuracy. Ruwan Tennakoon et al. adopt a shallow CNN architecture
learning features for image quality classification, and use transfer learning achieving the
same classification accuracy but they only fine-tune the AlexNet [10] architecture.
Mahapatra D et al. propose a CNN architecture with five layers of convolution and max
pooling operations. It needs a huge number of data to train the network otherwise it is
going to lead to overfitting.
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In this paper, we aim to conduct accurate classification for retinal fundus images
quality. In our work, we explore four CNN architectures (AlexNet, GoogLeNet,
VGG-16, and ResNet-50) from ImageNet image classification task to our Retinal fundus
images quality classification, then we pick top two networks out and jointly fine-tune
the two networks. The total loss of the network we proposed is equal to the sum of the
losses of all channels. Our analysis shows that the proposed method can learn the neces‐
sary information relevant for IQA, and we demonstrate the superior performance of our
proposed algorithm on a large retinal fundus image dataset.

2 Method

2.1 Image Preprocessing

The resolution of the original sample is 2592 × 1994 to 4752 × 3168. First, all the images
are resized to 256 × 256 pixels. And then, in order to avoid the negative effects of
different conditions such as lighting on the fundus images, the images are normalized
as follows:

I(x, y) = 𝛼Io(x, y) + 𝛽Gaussian(x, y,𝜔) ∗ Io(x, y) + 𝛾 (1)

Where * denotes the convolution operator, Gaussian(x, y,𝜔) represents the Gaussian
filter with a standard deviation of 𝜔, and the size of the Gaussian lowpass filter is
1 + floor(1 × 𝜔). Where floor(X) called the greatest integer function gives the largest
integer less than or equal to X. The value of 𝛼, 𝛽,𝜔, 𝛾 are designed empirically as
𝛼 = 4, 𝛽 = −4,𝜔 = 10, 𝛾 = 128 respectively. In addition we clip the images to 90% size
to reduce the black space on both sides of the retinal fundus images. We will evaluate
the effect of image preprocessing in Sect. 3 showing that the preprocessed dataset
achieves higher classification accuracy than the original dataset. The preprocessed
images are shown in Fig. 2.

     
(a) Original image                 (b) Preprocessed image

Fig. 2. One example from the training set.
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2.2 Data Augmentation

Data augmentation is widely used in training a robust CNN network. We process the
images by image rotation and horizontal reflections to increase the number of images.
The training set are augmented with: random rotation 0–360°, random horizontal and
vertical flips and random horizontal and vertical shifts, while the test set is only prepro‐
cessed without any augmentation. Through these operations, the training set is increased
about 8 times.

2.3 Network Architecture

In practice, deep convolutional neural networks (DCNN) would not be randomly initi‐
alizing trained from the beginning completely for the reason that the dataset with suffi‐
cient size to meet the needs of deep networks are quite rare. Therefore, it is common to
pre-train a deep CNN based on a large dataset, and the weights of the trained DCNN are
used as initial setting. In this work, the networks we used are all trained by the method
of transfer learning. The four state-of-the-art CNN architectures and the Jointly Fine-
tuned CNN model we proposed used for retinal fundus image quality classification are
outlined below.

AlexNet: The AlexNet, proposed in [10] achieves significantly great performance in
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 and wins by a
large margin with the next non-CNN method. The network consists of 5 convolutional
layers, maxpooling layers, dropout layers, and 3 fully connected layers.

GoogLeNet: This is an architecture used by Szegedy et al. [11], which uses several
“Inception” modules to create a deeper network with 22 layers while having much fewer
parameters than other networks such as VGG and AlexNet.

VGG-16: The VGG-16 only uses 3 × 3 filters in convolutional layers and combine them
as sequence of convolution to emulate the effect of lager receptive fields and decrease
the number of parameters. Overall, VGG-16 is made up of 13 convolutional layers, five
maxpooling layers and three fully-connected layers.

ResNet-50: ResNet, the winner of ILSVRC2015 with an incredible error rate of 3.6%,
presents residual learning framework that each layer consists of a residual block and a
skip connection bypassing to ease the training of networks. This architecture substan‐
tially deeper than those used previously with 50, 101 or 152 layers. In this paper, we
evaluate the performance of ResNet-50. ResNet-50 has six modules called conv1, conv2
x, conv3 x, conv4 x, conv5 x and fc. Conv1 is a convolutional layer. Conv2 x, conv3 x,
conv4 x and conv5 x consist of residual blocks with the number of 3, 4, 6, 3 respectively.
And fc is a fully-connected layer.
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Jointly Fine-tuned CNN: We pick top two networks (GoogLeNet and VGG-16) out
and jointly fine-tune the two networks. This method was proposed in [12]. The total loss
(Loss_All) of the network we proposed is equal to the sum of the losses of all channels.
It is given by:

Loss_All = Loss_V + Loss_G (2)

Where Loss_V denotes the loss of VGG-16 and Loss_G denotes the loss of
GoogLeNet. Since all networks update weights in parallel through backpropagation
according to the total loss, they all influence each other’s weight and bias values. The
Jointly Fine-tuned CNN architecture we proposed is illustrated in Fig. 3. Through the
two-channel CNN architecture, we get two accuracy rates: GoogLeNet accuracy rate
and VGG-16 accuracy rate of Jointly Fine-tuned CNN architecture. We use
JCNN_GoogLeNet Acc and JCNN_VGG-16 Acc denote them respectively.

Input data
224*224

Loss_V

Loss_G

Loss_All=Loss_V+Loss_G

GoogLeNet

VGG-16 JCNN_VGG-16 Acc

JCNN_GoogLeNet Acc

Fig. 3. The jointly fine-tuned CNN architectures.

2.4 Training

In this work, we train networks by the method of full fine-tune. It is done by removing
the last fully connected layer and being replaced by a new one with 2 outputs and the
learning rate of the last fully connected layer is increased ten times. In full fine-tune, the
learning rate of every layer is left untouched except the last one. The purpose is to make
the network has a good initial setting and iterate new data for the new fully connected
layer for better learning. For AlexNet, GoogLeNet, VGG-16, and ResNet-50 architec‐
tures, the training data is directly put into the networks with pre-training weight param‐
eters and the training process is carried on a workstation with a NVIDIA-GTX1080
GPU. The size of input data is 227 × 227 for AlexNet, and other networks is 224 × 224.

For the Jointly Fine-tuned CNN architectures, we fine-tune the GoogLeNet and
VGG-16 networks at the same time, and each channel of CNN has the same data of
input. The final loss is equal to the sum of the losses of all channels. It allows the back‐
ward propagation training method to broadcast the classifier gradients to all networks.
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3 Experimental Result

The dataset used to verify the effectiveness of the proposed method is provided by the
Kaggle coding website [13] (http://www.kaggle.com). The images in the dataset come
from different models and types of cameras. Some images are shown as one would see
the retina anatomically. Others are shown as one would see through a microscope
condensing lens. It contains over 80000 images of diabetic retinopathy and a resolution
of 2592 × 1994 to 4752 × 3168, but the proportion of the poor quality images in all
images of Kaggle is small. We randomly select 2894 original samples and 2170 original
samples from the dataset as training set and test set respectively. For the training set
there are 1607 samples with label 1 and 1287 samples with label 0. After data augmen‐
tation, total 26046 images are used to train the CNN. The test set contains 1085 samples
with label 1 and 1085 samples with label 0. All images are tagged by the professionals
including doctors and experts in fields concerned based on if we can make diagnosis
with the image, and the labels are determined under the majority’s rule, in which label
1 represents the image with good quality and the attributes for carrying on the following
DR screening and analysis, and label 0 stands for the poor quality images with the
opposite attributes. The experiment results of this work are shown in Tables 1 and 2.
We evaluate the performance of four state-of-the-art networks and the methods we
proposed (denoted by JCNN) in this work.

Table 1. Accuracy (Acc) and area under curve (AUC) for different methods.

Algorithm Acc AUC
AlexNet 96.53% 0.993
GoogLeNet 97.04% 0.994
VGG-16 96.87% 0.995
ResNet-50 96.20% 0.992
JCNN_GoogLeNet 97.00% 0.995
JCNN_VGG-16 97.12% 0.995

Table 2. Comparison of image quality classification accuracy rate of GoogLeNet, GoogLeNet-
NP, GoogLeNet-NA.

Algorithm GoogLeNet GoogLeNet-NP GoogLeNet-NA
Accuracy 97.04% 96.12% 96.49%

We select the optimal accuracy rate (JCNN_VGG-16 Acc) as the final result of the
JCNN architecture we proposed. The results show that jointly fine-tuning two-channel
CNN architecture can achieve better accuracy than only fine-tuning a single convolu‐
tional neural networks, and GoogLeNet is superior to the other single channel networks.
JCNN_GoogLeNet Acc achieves 97.00% which is close to GoogLeNet Acc, and
JCNN_VGG-16 has achieved optimal accuracy of 97.12%, increasing 0.25% relative to
VGG-16. Furthermore, all the fine-tuned networks have good performance, outper‐
forming current methods we utilized on our dataset. This indicates that the knowledge
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learned from natural image can still transfer to make medical image quality classification
effectively. The methods we proposed has been able to learn the necessary information
for image quality classification in retinal images from convolutional neural networks.

For the Jointly Fine-tuned CNN (VGG16 + GoogLeNet), it makes the best network.
This is a sensible choice because (1) the two network are among the best available
networks, and (2) they are constructed based on two different architectural assumptions,
making them relatively uncorrelated from the misclassification behavior standpoint.

We use GoogLeNet as the default architecture and evaluate the impact of image
preprocessing and data augmentation. GoogLeNet has fewer parameters and higher
accuracy than other single channel networks. Table 2 illustrates the accuracy rates of
GoogLeNet, GoogLeNet-NP (model without preprocessing), GoogLeNet-NA (the
model without data augmentation). We find that with the help of good preprocessing,
the accuracy of the model increases about 1%. Data Augmentation is beneficial in our
experiments, as evidenced by GoogLeNet(97.04%) versus GoogLeNet-NA (96.49%).

Figure 4 shows some classification results of fundus images. (a) and (b) show the
correct classification results that the good-quality-images are classified as 1. (c) and (d)
show the poor-quality-images are classified as 0. (e, f) and (g, h) shows the incorrect
classification results that good-quality-images are classified as 0 and the poor-quality-
images are classified as 1, respectively. It is worth noting that despite a few erroneous
labels, our approach could learn a reliable feature representations and separates different
image classes.

Fig. 4. Eight examples from the classification results.

4 Conclusions

In this paper, we evaluate the performance of different CNN architectures in retinal
image quality classification and extensively evaluate two important factors on CNN
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architectures, preprocessing, data augmentation. It is evident from the results that the
GoogLeNet architecture fine-tuned from ImageNet, with good image preprocessing and
data augmentation performs better accuracy in the four state-of-the-art CNN architec‐
tures. Data augmentation and preprocessing is essential for medical image applications.
Our experiments show the method we proposed that we pick top two networks out and
jointly fine-tune the two networks is more useful for medical image analysis, with better
performance than the other four CNNs. More importantly, the results of classification
demonstrate that the knowledge learned from natural image can still transfer to make
medical image quality classification effectively even though the disparity between them.
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Abstract. In order to realize the localization of optic disc (OD) effectively, a
new end-to-end approach based on CNN was proposed in this paper. CNN is a
revolutionary network structure which has shown its power in fields of computer
vision like classification, object detection and segmentation. We intend to make
use of CNN in the study of fundus images. Firstly, we use a basic CNN on which
specialized layers are trained to find the pixels probably in OD region. Then we
sort out candidate pixels furtherly via threshold. By calculating the center of
gravity of these pixels, the location of OD is finally determined. The method has
been tested on three databases including ORIGA, MESSIDOR and STARE. In
totally 1240 images to be tested, the OD of 1193 are successfully located with the
rate of 96.2%. Besides the accuracy, the time cost is another advantage. It takes
only 0.93 s to test one image on average in STARE and 0.51 s in MESSIDOR.

Keywords: Optic disc localization · Convolution neural networks · Retinal
fundus image

1 Introduction

The optic disc (OD) is one of the main physiological structures of the retina, from which
optic nerve and blood vessels stretch to the surrounding areas. In fundus camera pictures,
these blocks are reflected as a round bright yellow area, where few but thick blood vessels
also exist. Researchers pay attention to the automatic detection of the OD for the reason
that diagnosis of some ocular fundus lesions are based on its correct detection [1, 2].
The main application of this approach is to pre-process the retinal images for further
studies such as the segmentation of optic disc or the detection of Macular region. Till
now, to detect OD, there have occurred several analysis techniques, which can be divided
into two categories: early methods mainly take the characteristics of the OD like bright‐
ness, contrast, shape etc. for example, the method in [3] locate the OD by searching for
the center of rectangle region in which the amplitude of variation of gray level is highest.
In [4, 5], Hough transform, which is convenient for specific shape object detection, is
used to detected the OD region. These early methods can simply and timely get the
results because the OD is usually brighter than other areas in fundus camera pictures
and occurs as a regular ellipse. However, considering that the retinal images are not
always high quality and several diseases may lead to the change of OD [19, 20], these
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methods might fail. The other methods can be described as the methods based on
vascular feature detection. The OD, where the main blood vessels converge in the retinal,
can be easily detected when vascular features are known. In [6], two parabolas are used
to describe the blood vessels in the left and right direction of OD. The center of OD is
just located in the public vertex of two parabolas. In [7], the OD region is determined
via calculating the confluence of blood vessels. Though the methods above could get
relatively high detection accuracy, they should make sure that the detection of vessels
is exact, which in low quality or abnormal images can be hard to realize. Besides, the
OD detection algorithms based on vascular feature detection are usually complex and
time-costing.

Except for two main methods mentioned above, there are several methods consid‐
ering multiple features in OD region. The description of multi-source information about
OD characteristics is undoubtedly helpful to improve the accuracy and robustness of
OD detection. However, simple threshold or models could not make full use of these
information. To overcome this drawback, supervised learning method, which requires
great effort to design such a template that can integrate multiple information, are used.
Supervised learning method increases the complexity of the OD detection algorithm,
which is not suitable for real time applications.

Overall, the speed and accuracy of OD detection are hard to balance. The methods
with appearance characteristics, which are fast, could not get a high accuracy in
abnormal fundus images. In contrast, the methods based on vascular feature detection
could get a relatively high accuracy in no matter normal or abnormal fundus images,
with the cost of high algorithmic complexity and long locating time. Therefore, how to
improve the accuracy and reduce the complexity of the algorithm as well is worth in
further research. In this paper, we propose an end-to-end method for automatic locali‐
zation of OD based on the Convolution Neural Network (CNN). The OD features are
learned through combination of features from different layers of CNN. After this, each
pixel of image will get a probability to judge whether it belongs to OD region. In order
to avoid interference, only points with high probability are picked as candidate points.
Then, we calculate the center of these points and finally the location of OD is determined.
The rest of this paper is organized as follows. In Sect. 2 we show the details of our
proposed method. Section 3 shows the experimental results and discussions. In Sect. 4,
the conclusions are mentioned here.

2 Proposed Method

2.1 Preprocessing

All images in training set are firstly subtracted the mean value of each color channel.
Then, these images are resized into a fixed size of 400 × 600, which makes the training
faster and reduce the computing complexity. Considering the condition of GPU, this
size can be set as other values. There’s no need to pre-process the images in testing set
for the reason that pre-process will not lead to obvious changes in testing results.
However, restricted to hardware condition, images of ORIGA and MESSIDOR are
resized into the same size as training set. The images of STARE are kept as the same.
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2.2 Feature Representation by CNN

We leverage a successful deep learning architectures called VGG network, which orig‐
inally used for the classification of natural images. VGG network is similar to AlexNet,
which is a classic CNN. They both consist of 5 blocks. Between each block, there is
pooling layer. Each block of VGG network contains several convolution layers with
3 × 3 size filters, differs from AlexNet which only has one convolution layer with 7 × 7
size filter. This can be seen as imposing a regularization on the 7 × 7 filters, forcing them
to have a decomposition through the 3 × 3 filters [8]. because of the reduce of filter size,
VGG has much more channels than AlexNet, which is considered to lead to higher
accuracy.

Considering that the CNN are used as feature detector, we remove the fully connected
layers of VGG network. The architecture remained are mainly consisted by convolu‐
tional layers with Rectified Linear Unit (ReLU) activations and max pooling layers.
These layers have been pre-trained on millions of images. Features detected by deep
blocks are rougher than shallow blocks duo to the decrease in size. We decide to combine
features from 3 deeper blocks rather than any one of them to get better results. These
features are then forwarded into deconvolution layers and crop layers to be the same
size as original images. The flow chart of our method is shown in Fig. 1.

Fig. 1. The proposed model architecture

The train starts by loading the weights of VGG network. Then, input images are put
into the designed network. We extract the features of last three pooling layers, which
are then forwarded into corresponding deconvolution layers. the last layers, combined
by these deconvolution layers, output the probabilities of each pixel of the whole image.
The class of each pixel can be determined by setting a threshold. To avoid interference,
we set a high threshold T = 0.9, which means the network judges this pixel as OD with
the probability of 0.9. Finally, by calculating center of gravity of the pixels above, we
realize the localization of OD. In this condition, even there are several pixels are miss-
classified, the center will still in OD region. The center of gravity can be calculated as
following:
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Xc =

∑
P(xi)∑

Pi

Yc =

∑
P(yi)∑

Pi

(1)

where Pi represents the value, xi, yi are the location of pixel.
To train the network, the cross entropy loss is adopted to update the weights through

descent back-propagation. Cross entropy loss is used to measure the similarity between
two probability distributions. It can be defined as following:

J(𝜃) = −
1
m

∑m

i=1
y(i) log(h

𝜃
(x(i))) + (1 − y(i)) log(1 − h

𝜃
(x(i))) (2)

where, input images are X(i)
= (1, x

(i)

1 , x
(i)

2 , ⋯ , x(i)
p
)T and y(i) are predicted labels, θ

denotes the parameters of CNN. Here, 𝜃 = (𝜃0, 𝜃1, 𝜃2, ⋯ , 𝜃p)
T. The hypothesis func‐

tion is defined as h
𝜃
(x(i)) =

1
1 + e−𝜃

T x(i)
.

At training time, we fine-tune the entire network with 880 images (305 from ORIGA
and 575 from MESSIDOR, which will be introduced later) for 150000 iterations. The
input images are operated via CNN with batches of size 1. We use a small learning rate
(lr = 10−9, which will decrease as training time increases). Stochastic gradient descent
is used to minimize error function with momentum = 0.9.

At testing time, the OD detector is realized on 2.8 GHz Intel Xeon E5-1603 v4 CPU
with GTX 1080 using python. The last layer of network outputs the probability of each
pixel of testing image. Then we set a threshold T = 0.9, which removes most of noise
and ensure that pixels remained are mostly in OD region. Finally, we get the location
of OD via calculating the center of these pixels. Considering that some researchers like
[9, 10] proposed that in different fundus images, the diameter of OD is about 1/5 to 1/8
of the ROI region. So, based on the center point determined, we draw a Rectangular box
with length of about 1/4 of ROI region (here we set length = 100 in ORIGA and
MESSIDOR. In STARE, we set as 150).

3 Experiments and Results

3.1 Databases

The approach has been tested on the following three datasets. ORIGA [11], MESSIDOR
[12] and STARE [13]. MESSIDOR and STARE are available publically, among which
MESSIDOR totally includes 1200 images with three sizes: 1440 × 960, 2200 × 1488,
2304 × 1536. Differs from MESSIDOR which contains relatively high quality images
with few lesion, STARE includes many images with lesion and low quality. A large
number of OD detection methods have been tested and compared on this image dataset.
ORIGA is a database with 650 images. All images in ORIGA with the size of
3072 × 2048 are captured via a high resolution retinal fundus camera and well selected,
which ensure the quality.
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3.2 Results and Discussions

Table 1 shows the accuracy of our method in different datasets. Of all the 1240 fundus
images, 1193 images can find the right OD location and the success rate is 96.2%. In
addition, only the rectangle box contains the whole OD region, which comes from label
image, can be seen as success. In Table 2 we compare different methods in MESSIDOR.
Experimental results show that our method could achieve the accuracy of 99.43% with
0.51 s per image, which is better than other methods. In Table 3, it can be seen that the
method based on vascular characteristics like [17] could achieve a high accuracy with
the cost of long processing time. The methods making use of appearance information
like [5] are not competitive in accuracy comparing with other methods for that the
information they use are not stable during different images. Considering both accuracy
and processing speed, our method or method in [18] are more practical. The results of
other methods mentioned above are original ones in their papers.

Table 1. The accuracy of our method in different datasets

Datasets Images Abnormality Accuracy
ORIGA 314 − 100%
MESSIDOR 526 54.5% 99.43%
STARE 400 91% 89%
Total 1240 − 96.2%

Table 2. The accuracy of different methods in MESSIDOR database

Methods Accuracy Running time
Yu [14] 99% 6.6 s
Alghamdi [15] 99.20% −
Zubair et al. [16] 98.65% 3.5 s
Our method 99.43% 0.51 s

Table 3. The accuracy of different methods in STARE database

Methods Accuracy Running time
Foracchia [17] 97.5% 120 s
ZHANG [18] 91.4% 13.2 s
Haar [5] 67.9% −
Alghamdi [15] 86.71% −
Our method 89% 0.93 s

Our method could get a high accuracy except STARE. This is because STARE is a
dataset containing many images with serious lesions. In STARE, many optic discs of
fundus images are damaged and some optic discs of fundus images can only be partially
observed. Besides, images with the bright yellow lesions which is similar to the OD in
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appearance are also contained. Of all images failed to detected by our method, images
with low contrast are the most common situation.

Restricted to the length of the article, only some of the representative fundus images
were selected, which can be seen in Fig. 2. In these samples, all kinds of conditions, in
which OD are hard to be detected correctly, are included. (a), (b), (e) and (f) are images
with regions produced by lesions. (d), (j), (l) are images caused by bleeding in small or
large scales. (i) and (l) are images in which OD were covered by lesions. (k) is the classic
image that OD region locates in the edge of ROI in fundus image. (c), (g) and (h) are
those with low contrast. This shows the power of our method in detecting OD region
from abnormality images.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Several testing results hard to be detected.

In Fig. 3, we show some images detected incorrectly. From the samples, (a)–(c) are
because of low contrast, which accounts for the most of error detected images. in (d)–
(e), OD region, covered by lesion, is hard to identify. Though detecting is failed, the
region given by our method is surrounding the OD. We can conjecture that our method
has learned some information of vessels. In (f), our method judges the lesion region as
OD which are quite similar in appearance, from which we could infer that the main
features CNN learns are mainly about the appearance of OD. Further research is needed
to make the network learns more about vessels.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Several testing results detecting incorrectly.

4 Conclusion

In this paper, we proposed a new approach for OD detection. Current experiment results
show that the method has good robustness. Unlike those complex and time-costing
methods which need for vascular feature detection, our method is fast and accurate in
both normal and abnormal images.

In the future, we are going to evaluate our method on more database in order to obtain
more objective and comprehensive test results. What’s more, model will be improved
by exploiting other algorithms to overcome the drawback of our method. We also want
to add the method of pre-training and image enhancement before the whole architecture
to achieve a better result.
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Abstract. Choroid neovascularization (CNV) usually causes varying degrees of
irreversible retinal degradation, central scotoma, metamorphopsia or permanent
visual lose. If early prediction can be achieved, timely clinical treatment can be
applied to prevent further deterioration. In this paper, a CNV growth prediction
framework based on physiological structure revealed in noninvasive optical
coherence tomography (OCT) images is proposed. The method consists of three
steps: pre-processing, CNV growth modeling and prediction. For growth
modeling, a new combination model is proposed. The hyperelastic biomechanical
model and reaction-diffusion model with treatment factor are combined through
mass effect. For parameter optimization, the genetic algorithm is applied. The
proposed method was tested on a data set with 6 subjects, each with 12 longitu‐
dinal 3-D images. The experimental results showed that the average TPVF, FPVF
and Dice coefficient of 80.0 ± 7.62%, 23.4 ± 8.36% and 78.9 ± 7.54% could be
achieved, respectively.

Keywords: CNV growth prediction · Reaction-diffusion model · Hyperelastic
bio-mechanical model

1 Introduction

Choroid neovascularization (CNV) is the proliferation of blood vessels from the choroid
capillary, which extends through the stomium of the Bruch membrane. It is the cause of
wet age-related macular degeneration (AMD), and can be commonly seen in central serous
retinopathy (CSC) or pathologic myopic. The symptoms can be decreased visual acuity,
central scotoma, metamorphopsia or permanent visual lose. Although contributing factors
of CNV are not well understood, elimination of intraretinal and subretinal fluid usually
helps for visual acuity gains. Vascular endothelial growth factor (VEGF) [1] is considered

This work has not been submitted to any conference or journal.

© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): FIFI/OMIA 2017, LNCS 10554, pp. 142–149, 2017.
DOI: 10.1007/978-3-319-67561-9_16



to be crucial with the development of CNV. The usual practice of treating CNV is repeated
anti-VEGF injections.

The goal of CNV growth prediction is to accurately model the process, which can
be achieved by modeling the change of physiological structure modeling based on
optical coherence tomography (OCT) volumes. If early noninvasive prediction can be
achieved, quantitative analysis can be performed to help determine the number of injec‐
tions needed and the best injection time. Such personalized anti-VEGF treatment can
both improve the curative effect and reduce the risk of intravitreal injections.

The traditional methods for prediction of CNV progress were overly focused on
measurement and comparison but modeling, such as comparison of choroidal thickness
[2], and estimation on echographic parameters with confocal indocyanine green angiog‐
raphy (ICGA) imaging [3]. Their evaluation indicators are relatively simple and show
less predictive information. As for model-based CNV growth prediction, researches
involved were limited. In [4, 5], a reaction-diffusion equation based finite-element-
method (FEM) was proposed. By solving the partial differential equations (PDE),
growth model can be simulated. However, the performance may be limited by use of
the linear mechanical model, which is proper for small deformation (<5%) but not for
large one. On the other hand, tumor growth modeling was more widely researched. The
method in [6] was established on the isotropic material hypothesis but the framework
in diffusion couldn’t solve the nonlinear deformation of CNV growth. In [7], a mixed
model was used, but it was not actually an integrated model, but a combination of the
results of two separate models. What’s more, the different image modality makes it
difficult to apply these methods for CNV growth prediction based on OCT images.

Aiming at above growth modeling issues, we propose a method based on 3D longi‐
tudinal optical coherence tomography (OCT) image. By combining reaction-diffusion
equation and hyperelastic biomechanical model, vascular proliferation and the resulting
interaction between CNV and its surroundings can be effectively modeled. In this paper,
personalized treatment factor is added in reaction-diffusion equation, which makes drug-
induced treatment also contribute to the growth modeling. Besides, mass effect [8] is
used for combining reaction-diffusion equation with biomechanical model of hypere‐
lastic materials [9]. Therefore, the combined model we propose can provide both
different structural information and functional information of hyper-viscoelastic mate‐
rials simultaneously in CNV growth prediction.

2 Methods

The flow-chart of the proposed method is showed in Fig. 1. The prediction takes place
for the last time point, and is based on model learning from the previous time points. It
is mainly composed of three steps: pre-processing, CNV growth modeling and predic‐
tion. In growth modeling (Fig. 1(a)), mass effect is applied for combining the hypere‐
lastic biomechanical (H-B) model with the reaction-diffusion (R-D) equation with treat‐
ment factor. The genetic algorithm (GA) is used for optimizing the parameters [10]. In
prediction stage (Fig. 1(b)), the model parameter of the last time point is obtained by
curve fitting the optimized parameters from the previous time points, and then the
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predicted CNV region is calculated based on the combined model. The prediction accu‐
racy is evaluated by comparing the prediction with the ground truth label of CNV region.

Fig. 1. Flowchart. (a) pre-processing and modeling, (b) prediction. R-D equation is combined
with H-B model by using mass effect. GA optimization is based on prediction from time point i
and the ground truth label of time point i + 1. 𝜈i stands for the parameters to be estimated. 𝜈̂i is the
optimal parameter.

2.1 Pre-processing

Pre-processing is applied to deal with the displacement of the longitudinal data and to
locate the position of regions of interest. It includes registration, segmentation and
meshing. Registration is first conducted on 3D OCT images using a rigid transformation
[5]. To model the characteristics of different physiological structures, each 3D image is
manually segmented into four parts: CNV region, outer retinal layer, inner retinal layer
and choroid layer. Then ISO2Mesh method [11] is used to mesh CNV volumes and
retinal layers.

2.2 CNV Growth Modeling

In modeling part, both structural and nonlinear functional information is required.
Reaction-diffusion model describes the substances distributed in space and their
temporal development. It is utilized to describe CNV invasion or shrinking, which can
be solved using FEM. For proliferation, most biological tissues can be modeled as hyper-
viscoelastic materials. Thus the hyperelastic biomechanical model with mass effect is
used to simulate mutual forces between CNV region and the surrounding tissues.
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Invasion and proliferation with reaction-diffusion equation. In this paper, the FEM-
based [12] reaction-diffusion equation with logistic growth [13] is used for CNV growth
modeling, which can be formulated as:

𝜕c

𝜕t
= ∇ ⋅ (𝐃∇c) + 𝜌c(1 − c)−fthera (1)

The first and second term stand for CNV invasion and the logistic proliferation [14],
where c is the CNV concentration. the anisotropic diffusion tensor 𝐃 contains three
components: Dx, Dy, Dz. 𝜌 is the proliferate rate. When anti-VEGF treatment is applied,
the third term is added in the equation as the therapy term.

fthera = (
𝛼

1 + e𝜆⋅t
+ FSV) ⋅ c (2)

where 𝛼
2
+ FSV  stands for the initial concentration value, FSV is a constant representing

the final stability value, t is the time point of treatment and 𝜆 is the ratio for efficacy. At
the beginning of treatment (with small t), the concentration curve can be approximately
linear [15]. Substituting (2) into (1), we have (3):

𝜕c

𝜕t
= ∇ ⋅ (𝐃∇c) + 𝜌c(1 − c)−(

𝛼

1 + e𝜆⋅t
+ FSV) ⋅ c (3)

The initial value c is set empirically as 4.0 × 103 [4], which is also the threshold for
the final prediction of CNV volume.

Hyperelastic Biomechanical model. The hyperelastic mechanical model can be used
for simulating stress-strain in large and nonlinear deformations [16]. We use Saint-
Venant-Kirchhoff constitutive law to model the slightly incompressible and isotropic
material of CNV:

𝜀 =
1
2
(FTF − I) (4)

𝜓(𝜀) =
1
2
𝜅(J − 1)2 +

1
2
𝜇Tr(I1 − 3) (5)

In strain energy density function (4), 𝜀 is the Green-Lagrange strain tensor, and F is
the deformation gradient with J = det(F). By F = (J1∕3I)F̄ = J1∕3F̄, F decomposed
multiplicatively to a isochoric deformation component F̄, and J1∕3I is the volumetric
deformation tensor [9]. In (5), the first and the second term account for the volumetric
and isochoric elastic response. I1 is the first invariant of the right Cauchy-Green defor‐
mation tensor. Tr represents the trace, 𝜅 and 𝜇 are the bulk modulus and shear modulus
respectively. The second Piola-Kirchhoff (PKII) stress tensor (𝜕𝜓∕𝜕𝜀) can provide the
nonlinear stress-strain relation [16]. In our model, the four regions (CNV, inner retina,
outer retina, and choroid as segmented) have different mechanical parameters, e.g.
diffusion coefficient, elastic tensor, etc.
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Mass effect. As deformation rate of CNV growth is small enough to remain in internal
equilibrium, the static equilibrium equation is used to simulate mass and volume changes
during the process, which relates the normalized anisotropic concentration (c) in reac‐
tion-diffusion equation and the 𝜎 in hyperelastic mechanical model [9]:

div(𝜎) + f = 0; f = −𝜉∇c (6)

where 𝜎 = J−1FSFT represents the Cauchy stress tensor, f  stands for the gradient force
generated by c, and 𝜉 represents a constant that depends on the biological property.

2.3 Genetic Algorithm for Parameter Optimization

In this study, we use GA for parameter optimization of 𝜈i = {Dx, Dy, Dz, 𝜌, a, c} so that
the following objective function [13] is minimized.

R(𝜈i) =
∑

i

w1 ⋅ (1 − TPVF) + w2 ⋅ FPVF (7)

In (7), w1 and w2 represent weights of the true-positive volume fraction (TPVF) and

false-positive volume fraction (FPVF), and w1 + w2 = 1. TPVF =
ovi+1,c

Ii+1,c
 and

FPVF =
Īi+1,c − ovi+1,c

Ii+1,c
, where ovi+1,c = Īi+1,c ∩ Ii+1 is the overlapping between ground

truth label in time point n = i + 1 (Ii+1) and the prediction (Īi+1,c) based on Ii,c. In this
paper w1 = w2 = 0.5 are used.

In GA, the population size, iteration times/generations and tolerance was set as 20,
200 and 1e-100 respectively. For other parameters, empirical values are adopted [9,
17] with 𝜅CNV = 7 kPa, 𝜅choroid = 6 kPa, 𝜅outer_layer = 6 kPa, 𝜅inner_layer = 0.7 kPa and
𝜇CNV = 𝜇choroid = 5 × 103 N∕m2, 𝜇others = 1 × 103 N∕m2.

2.4 Prediction

For each time point from 1 to n − 1, the optimal parameters 𝜈̂i (i =1 ~ n − 1) is obtained
by GA based on comparison of the prediction Īi+1,c and the ground truth label Ii+1.

Then B-spline interpolation is used for curve fitting {𝜈̂1, 𝜈̂2 … 𝜈̂n−1} to achieve param‐
eter 𝜈̄n of the last time point. Based on 𝜈̄n, the prediction image of the last time point Īn+1
is calculated using the combined H-B and R-D model. Finally, the prediction accuracy
is evaluated by comparing Īn+1 with the ground truth label In+1.

3 Experimental Results

In our study, subjects were randomly put into two groups: treatment group (T-group)
and reference group (R-group) in Fig. 2, respectively. They had different treatment plans
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of repeated injection of anti-VEGF drugs — Conbercept (KH902) — 0.5 mg/eye/time
(Fig. 2). OCT images of patients were collected by ZEISS OCT scanner with
512 × 1024 × 128 voxels of 11.72 × 5.86 × 15.6 um3 voxel size.

Fig. 2. Two different therapy groups during the same interval: M1 to M12 mean Month1 to
Month12. Monthly treatment is illustrated in purple. In months that not marked, placebo was
injected. The orange arrow means the last month, which is the time of assessment.

(a) (b) (c) (d)

Fig. 3. Results. (a) Segmentation results: green, blue, yellow, red and cyan in B-scan represent
CNV area, intra-retinal fluid, choroid layer, outer and inner retinal layer. (b) The sectional view
of concentration slice after growth modeling. (c) The Mises stress distribution slices. (d)
Comparison of prediction result (blue) and ground truth label (yellow) of CNV region, where
green represents the overlapping. (Color figure online)

The results of CNV growth prediction are shown in Table 1 and Fig. 3. Represen‐
tation of concentration is illustrated in Fig. 3(b). The warmer color in the center repre‐
sents the denser area. Stress distribution shown in Fig. 3(c) reflected the pressure on the
surroundings and the border of the CNV region. Navy blue indicates almost no forces
are transmitted to the outside. Dark red means great stress in that region. The 3D over‐
lapping between prediction result and ground truth in Fig. 3(d) indicates high accuracy.

Table 1 shows the promising performance of the proposed method in terms of TPVF,
FPVF and Dice coefficient. The results are compared with those achieved by single
reaction-diffusion (R-D) model [5]. For both groups, by the proposed combined model,
the average accuracy has been improved. The performance was worst for the 2nd patient.
In this case, in each period, the volume morphology had striking differences with the
previous once, which brought accuracy decrease. The experimental results showed that
the average TPVF, FPVF and Dice coefficient of 80.0 ± 7.62%, 23.4 ± 8.36% and
78.9 ± 7.54% could be achieved, respectively.
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Table 1. Results of CNV prediction in TPVF, FPVF and Dice coefficient (DC).

Patient-Label Mean ± Std
T-group 1 2 3 Combined model R-D model
TPVF 0.86 0.641 0.83 0.777 ± 0.097 0.732 ± 0.031
FPVF 0.12 0.39 0.264 0.258 ± 0.11 0.275 ± 0.046
DC 0.861 0.628 0.808 0.765 ± 0.099 0.730 ± 0.036
R-group 1 2 3 Combined model R-D model
TPVF 0.797 0.871 0.802 0.824 ± 0.034 0.776 ± 0.026
FPVF 0.182 0.249 0.205 0.211 ± 0.027 0.242 ± 0.021
DC 0.806 0.836 0.8 0.814 ± 0.016 0.768 ± 0.024

4 Conclusion and Discussion

In this paper, we have proposed a novel 3D CNV growth prediction method, which by
using mass effect in slow deformation combines a bio-mechanical model of hyperelastic
material with reaction diffusion equation with personalized treatment factor. Genetic
algorithm is applied for parameter optimization. Prediction results can help ophthal‐
mologists to assess the progress of CNV, and to make personalized treatment plans.
Experiments on clinical data reached the promising prediction performance. There are
some limitations in this work. First, the size of dataset is small. We are currently
collecting more data and we’ll test the method in a bigger dataset in future work. From
current results, we are unable to conclude how differently the proposed algorithm
performs for the two groups. Clinically, the sensitivity to treatment varies from person
to person. Therefore, we infer that the accuracy of the prediction is more subject-related,
and is also affected by image quality. In the future, to make the method more robust,
we’ll improve both the pre-processing and the flexibility of the model. Secondly, in this
preliminary study, manual segmentation was used in pre-processing. Future work will
also include developing automatic segmentation methods to reduce manual intervention
while keeping the accuracy of prediction.
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Abstract. Dementia is a devastating disease, and has severe implications on
affected individuals, their family and wider society. A growing body of literature
is studying the association of retinal microvasculature measurement with
dementia. We present a pilot study testing the strength of groups of conventional
(semantic) and texture-based (non-semantic) measurements extracted from
retinal fundus camera images to classify patients with and without dementia. We
performed a 500-trial bootstrap analysis with regularized logistic regression on a
cohort of 1,742 elderly diabetic individuals (median age 72.2). Age was the
strongest predictor for this elderly cohort. Semantic retinal measurements
featured in up to 81% of the bootstrap trials, with arterial caliber and optic disk
size chosen most often, suggesting that they do complement age when selected
together in a classifier. Textural features were able to train classifiers that match
the performance of age, suggesting they are potentially a rich source of informa‐
tion for dementia outcome classification.

Keywords: Retina · Dementia · Microvasculature · Classification · Biomarkers

1 Introduction

Dementia is an umbrella term used to describe a set of brain disorders that trigger a loss
of cognitive brain function. There are approximately 850,000 people with dementia in
the UK, with numbers set to exceed one million by 2025 [1]. Alzheimer’s Disease
International reports an estimated 50 million people worldwide living with dementia in
2017, with the numbers affected expected to almost double every 20 years, reaching 75
million by 2030. The total worldwide estimated cost of dementia was put at US$818
billion in 2015, representing 1.09% of the global GDP.
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Identifying individuals at an increased risk of developing dementia later in life earlier
and detecting pre-clinical stages of cognitive decline may provide opportunities to
preserve brain function and delay disease progression. The potential of retinal imaging
to support early detection and risk stratification is under investigation, with studies
relating the retina microvasculature with changes in the cerebral microvasculature (see
[3, 11] for recent reviews). Anatomically and developmentally, the retina is an extension
of the brain, hence the retinal microvasculature could work as an easily observed proxy
reflecting the condition of the cerebral vasculature [2, 4, 5, 10, 11].

McGrory et al. [3] reviewed the application of fundus camera imaging to assess the
associations between retinal microvascular changes and dementia, including various
subtypes (i.e. Alzheimer’s disease (AD), vascular and frontotemporal dementia). Vis-á-
vis the heterogeneity among studies in terms of experimental design and the retinal
parameters assessed, the most consistent finding identified was that a decreased fractal
dimension (a global measure of branching complexity of the retinal vascular tree) tends
to associate with AD, as reported by Williams et al. [4] who analyzed data from 507
participants, and Frost et al. [5] who used data from the Australian Imaging, Biomarkers
and Lifestyle study of ageing.

We consider two categories of features computable from fundus camera imaging:
(i) clinically semantic features, or measurements with direct clinical interpretation, e.g.
optic disc radius, arterial/venular caliber, tortuosity; and (ii) clinically non-semantic
features, or measurements that do not have a direct clinical interpretation, but may
capture valuable patterns in terms of biomarkers. For these we use texture, a character‐
ization of the spatial variation of pixel intensities, e.g. entropy and contrast computed
from co-occurrence matrices [18].

We contribute to the ongoing debate on the value of retinal vascular features for
assessing dementia and predicting its risk [3] with the results of a bootstrap analysis
with regularized logistic regression and cross-validation in a cohort of elderly diabetic
patients. This analysis determines which semantic feature sets are selected most often
in building sparse logistic regression models, indicating their value for associations. The
dementia outcome is defined as whether or not a patient record indicates dementia within
a certain time frame relative to the retinal scan.

2 Materials and Methods

2.1 Dataset

Fundus camera images (3504 × 2336 pixels) were obtained from the Genetics of Diabetes
Audit and Research Tayside (GoDARTS) bio-resource, Scotland [12]. Images of 2,103
diabetic individuals were available, of which 1,742 patients matched our quality control
criteria reported elsewhere [13]. Association with dementia was determined through
linkage with prescription, hospital admission and other medical record repositories, using
the date of the first recorded event of dementia in the patient records. Of the 1,742 partic‐
ipants included, 237 were identified as having developed dementia by the date the records
were inspected. These patients’ earliest recorded dementia event ranged from 2,144 days
(5.87 years) before the retinal image capture to 2,929 days (8.02 years) after. The mean and
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median times to dementia event were 952 and 1033 days post-capture (2.6 and 2.8 years),
respectively; standard deviation was 1,055 days (2.9 years). Sex and age at retinal photo‐
graph were included in our pilot analysis. The mean and median age at scan were 75.7 and
76.1 years for dementia-associated patients, and 69.3 and 71.4 years for the remaining
subjects. Of the dementia-associated patients, 105 were female and 132 were male; of the
remaining subjects 646 were female and 859 were male. The study was carried out in full
accordance with the current data governance and ethical approval regulations in the UK.

2.2 Feature Extraction

Clinically semantic features. A single operator (LB), trained with an established
protocol, used the semi-automatic VAMPIRE 3.0 (Vascular Assessment and Measure‐
ment Platform for Images of the Retina) [14, 15] to measure optic disc (OD) radius,
central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent
(CRVE), retinal arterio-venule-ratio (AVR), tortuosity of arteries (tortA) and veins
(tortV), as well as maximum tortuosity (tortAmax and tortVmax) in right-eye images,
after verifying sufficient correlation (r > ~0.6) of AVR, CRAE, CRVE with the left eye
as done by others, e.g. [20].

Clinically non-semantic features. Using MATLAB R2016b (MathWorks, Massa‐
chusetts, USA), Grey-Level Co-Occurrence Matrix (GLCM) [18] and Grey-Level Run-
Length Matrix (GLRLM) [19] features were computed. Right-eye images were used as
above (high-contrast green channel). Each image was divided into four standard quad‐
rants and 95 textural features were extracted from each quadrant. Additionally, global
features summarizing the overall image texture were extracted, making it possible to
build multi-scale feature pyramids.

In terms of GLCM, 1-pixel distance was chosen for displacement along the 0°, 45°,
90° and 135° directions. The number of grey-levels was quantized to 256 (standardizing
the sizes of the GLCMs). The features were those provided by the library [6] and
included autocorrelation, correlation, energy, and entropy. For the GLRLM, the number
of grey-levels was also quantized to 256. Features extracted were those provided by
library [9] and included short run emphasis, long run emphasis and grey-level non-
uniformity. The full texture pyramid was a concatenation of the global features (95) with
the four quadrants’ features (380), yielding a total of 475 features per image.

2.3 Biomarker Discovery by Regularized Logistic Regression

Our goal was to deliver a pipeline for (i) assessment of the utility of retinal features for
classifying dementia outcome, and (ii) automatic identification of subsets of the avail‐
able semantic retinal features which give rise to models that are parsimonious and that
predict dementia outcome effectively, if any.

Logistic regression was used for ease of model interpretation; model coefficients can
be directly linked to feature importance. Regularization was used to perform shrinkage and
drive feature coefficients towards zero. This approach is well suited for biomarker iden‐
tification; it performs feature selection simultaneously with model estimation. For a
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particular choice of regularization parameters, λ and α ∈ [0, 1], model estimation given N
training pairs (xi, yi), consists of minimizing the penalized negative log-likelihood,

min
(β0 ,𝛃)∈Rp+1

−

[
1
N

N∑
i=1

yi
(
β0 + 𝐱T

i 𝛃
)
− log

(
1 + e(β0+𝐱

T
i 𝛃)

)]
+ λ

[
(1 − α)‖𝛃‖2

2

2
+ α‖𝛃‖1

]
(1)

where β0 and β = [β1, β2, …, βN] are the logistic model coefficients. The parameter λ
controls the strength of regularization. The parameter α is the elastic-net regularization
mixing parameter; α = 1 corresponds to the lasso (also known as L1 regularization)
whereas α = 0 corresponds to ridge regression (L2 regularization) [8]. For highly corre‐
lated features, the lasso tends to pick one of the features and discard the others, whereas
the ridge shrinks the feature coefficients towards each other. Elastic net mixes the two; for
example, α = 0.5 tends to select or exclude groups of highly correlated features together [8].

The R package glmnet [8] was used to perform the regularized logistic regression
experiments. glmnet implements an efficient algorithm for computing entire regulari‐
zation paths, showing the effect of varying λ on the classification error and the number
of features retained in the model. Cross-validation was used to select λ; two values of
interest are reported by glmnet: λmin, the value of λ at which the lowest validation set
error is achieved, and λ1SE, the λ for the most regularized model whose validation error
is within one standard error of λmin. This is of interest because the difference in error
obtained by λmin and λ1SE is unlikely to be significant but the number of features returned
by the classifier identified by the latter is likely to be lower.

We report experiments with lasso and elastic net regularizers. Each drives some
model coefficients to zero and thus performs feature selection. As different data samples
give rise to different feature sets being selected, we perform a bootstrap analysis, meas‐
uring how likely features and feature subsets are to be selected as the data are perturbed
[16]. Bootstrap was used similarly, for example, by Park and Hastie [17] to investigate
gene interactions albeit using a different feature selection method.

Analysis of semantic features. Each bootstrap analysis comprised 500 bootstrap trials.
The feature vector used comprised VAMPIRE measurements, sex and age at scan. The
number of patients associating with dementia was less than 14%, resulting in a significant
imbalance of the dementia and no dementia classes. Therefore, sampling with replace‐
ment was carried out to extract 100 dementia and 100 non-dementia samples from the
cohort in each trial. Regularized logistic regression was implemented on the 200
samples. The regularization path was computed. Model selection used 10-fold cross-
validation (CV) to choose λ. For a λ of interest (e.g. λmin), the corresponding feature
coefficients (β) and classification error obtained were reported.

We then computed the proportion of times within the 500 bootstraps that each feature
had a non-zero weight, thereby providing a measure of how likely the features were to
be selected. To detect interesting or frequently occurring patterns amongst groups of
features across the bootstraps, we computed the number of times each possible feature-
selection permutation took place (e.g., in, say, 200 of the 500 bootstraps, tortuosity and
width of arteries were chosen by the model as important, while the rest of retinal features
were assigned zero weights). The average classification error was calculated across the
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500 bootstraps, together with the corresponding 95% CIs. This process was carried out
under four different regularization settings: (a) Lasso and λmin; (b) Elastic-net and λmin;
(c) Lasso and λ1SE; (d) Elastic-net and λ1SE.

Analysis of non-semantic features. A bootstrap analysis with textural features was
run using the aforementioned methodology. Here, we aimed to explore whether any
texture information would associate with dementia. To this end, we experimented with
two settings: (a) Using the full textural pyramids; and (b) Using the local quadrant
features only. We did not explore different regularization settings but ran the framework
using lasso and reported results obtained with λmin.

3 Results

Clinically semantic features. Figure 1 shows an example of a bootstrap trial. As can
be seen in Table 1, the most powerful feature in predicting dementia association was the
patient age at scan, which was assigned a non-zero weight in almost all bootstrap runs.
This was expected given the elderly cohort, and that the risk of developing dementia
increases with age. Retinal features were to a great extent complementary to age, given
that at least one retinal feature was chosen 81–82% of the time, using λmin. This
percentage was lower when λ1SE was used, as expected. OD radius and CRAE were
highly ranked after age. In terms of classification performance (Table 2), the mean
classification error (MCE) ranged between 35% and 38%, suggesting a reasonable set
of discriminatory patterns available in the models used. CIs were reasonably narrow,
providing a good level of certainty in the classification results obtained.

We computed the frequency of unique feature patterns across the bootstraps, shown
in Fig. 2 (lasso and λmin). The peak of the plot (94/500 times, 18.8%) is age only. The
graph tail covers the large number of permutations possible. In 35 trials (7%), CRAE
alone was selected in addition to age at scan. All retinal measurements were selected
together 26 times (5.2%). All tortuosity measures tended to be selected or discarded
together in the highly ranked counts. The above observations were in line with what
emerged in all four regularization settings used (complete permutation reports not
included for compactness).

Using a classifier trained with semantic measurements only (without age) returned
a high MCE of 46% (CI: 38.5%–55%, lasso and λmin). We then tested the MCE of age-
only classifiers to predict the outcome with unregularized logistic regression Using the
CARET [22] package in R (GLM-based implementation [7]). The MCE was 36.8%
across the trials (95% CIs: 31.5%–43%). Using CRAE and age together (the second most
prevalent feature subset in the feature selection experiment) gave an MCE of 35.3%
(CIs: 29.5%–41%).
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Clinically non-semantic features

(a) Using the textural feature pyramid without age, logistic regression models were
able to classify dementia association with a MCE of 37% (CI: 30%–43%). The
following quadrant features appeared in the majority of trials (at least 300): low
grey-level run emphasis (top and bottom right quadrants), grey-level non-
uniformity (bottom left) and inverse difference moment normalized (45° direction,
bottom right, top right and top left; 135° direction, bottom left). Global features
also appeared in at least 300 trials: inverse difference moment normalized (0° and
45° directions) and grey-level non-uniformity.

(b) Using a feature vector that only comprised quadrant features achieved a comparable
MCE of 38% (CI 32%–44%). The same features that appeared in (a) were also
selected here in at least 300 trials, with the exception of grey-level non-uniformity.
Additionally short run emphasis (bottom left) featured as important.

λmin λ1SE

Fig. 1. Example of an individual bootstrap trial (Lasso). Varying λ affects the MCE (with 10-
fold CV). Numbers above figure are the numbers of features retained in the regularized model.
Interval bars are standard deviations.

4 Discussion and Conclusions

Findings. The role of fundus camera imaging as a means of identifying changes asso‐
ciated to dementia remains disputable [3]. This pilot used a bootstrap analysis based on
regularized logistic regression to investigate the association of retinal vascular features
computed with the VAMPIRE 3.0 software in fundus camera images (semantic features)
as well as of textural features (nonsemantic) with a dementia outcome in an elderly
population of diabetics. In the specific cohort, age was the strongest predictor; retinal
features were selected in up to ~81% of the trials (both Lasso-λmin and Elastic-net-λmin),
suggesting that they do complement age when selected together in a classifier. Arterial
caliber and OD size were the retinal measurements selected most often, indicating
highest discriminative power within the semantic set, when semantic retinal features
only (not age) were considered. Textural features were able to match the performance
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of age and are potentially a rich source of information for dementia outcome classifi‐
cation. Specific features appeared in over 300 of the 500 trials of each experiment, hence
further analysis of these textural features will drive our future efforts.

Study limitations and future work
Analysis. Non-linear models might be able to reveal further associations compared to
linear logistic regression. Classification results were obtained with 10-fold cross-vali‐
dation; a held-out test set could be adopted, although the focus of this work was inves‐
tigating discriminative sets of retinal features, not maximizing classification perform‐
ance. Using one eye only assumes left-right symmetric measurements, an assumption
sub judice in the recent literature [21]. Given promising initial results using textural
features, it will be interesting to also try feature representations obtained from deep
learning using large retinal datasets.

Cohort. The average age at scan of dementia-class subjects was 6.4 years higher than
that of non-dementia subjects, making age the most powerful predictor in this cohort.
The significant time lapses between scans and dementia-defining events make it neces‐
sary to confirm results with a tighter inclusion criterion for the dementia class. We shall
also include further parameters beyond age and sex, used in this pilot. Finally, strongly
longitudinal data are needed to evaluate the strengths of retinal measurements for
predicting risk of dementia.

Fig. 2. Unique feature subset patterns that were selected, together with the counts of the highly
ranked patterns. A ‘1’ indicates that the feature was selected.

Table 1. Relative feature importance as the number of times a feature was selected (non-zero
weight) in the 500 bootstraps. % ret is the percentage of times that at least one retinal feature was
selected. (a) Lasso and λmin, (b) Elastic-net and λmin, (c) Lasso and λ1SE, (d) Elastic-net and λ1SE.
The three most frequently selected features in each analysis are displayed in bold.

Variation OD radius AVR CRAE CRVE tortA tortA
max

tortV tortV
max

Age at
scan

Sex % ret

(a) 243 156 392 151 192 172 180 193 500 188 81%
(b) 263 195 310 168 189 217 215 211 500 211 82%
(c) 61 34 113 36 37 33 40 30 499 44 36%
(d) 66 50 138 61 42 46 67 47 500 58 43%
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Abstract. In this work, we propose a novel similarity measure for non-rigid
retinal optical coherence tomography image registration called conditional
correlation ratio (CCR). CCR calculates the correlation ratio (CR) between the
moving and fixed image intensities, given a certain spatial distribution. The
proposed CCR-based registration is robust to noise and less sensitive to the
number of samples used to estimation the density function. Compared to mutual
information (MI) and CR, both the quantitative indicators using Hausdorff
distance (HD) and M-Hausdorff distance (MHD) and the qualitative indicator
using checkerboard images show that CCR is more suitable to align the retinal
OCT images.

Keywords: Optical coherence tomography � Non-rigid registration � Spatial
information � Conditional correlation ratio

1 Introduction

Optical coherence tomography(OCT) is a medical imaging technique which based on
low-coherence interferometry [1]. OCT has been used to detect and track a number of
eye diseases such as glaucoma, diabetic retinopathy and age-related macular degen-
eration, because of high resolution, convenience and the advantage of noncontact
imaging of the human retina [2]. In clinical application, to successfully achieve the
purpose of detection of eye diseases, it is very important to be able to directly compare
motion parameters of lesions at different time-points and vendors. Also the OCT
images from normal population can produce non-rigid deformation because of the
fluctuation of intraocular pressure [3]. Thus, there is great potential to work on a robust
registration technique of retinal OCT images.
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There are two main categories to register the retinal OCT images. One is based on
the feature point matching. Niemeijer et al. [4] presented a rigid registration method
which used the 3D SIFT feature extractor to find salient feature points. Wu et al. [5]
used Myronenko’s Coherent Point Drift and automated vessel shadow segmentation to
achieve non-rigid registration. However, these methods are not always effective for the
low signal to noise ratio of retinal OCT image. Another way is to consider the intensity
information as the registration criterion. Chen et al. [6] proposed a registration algo-
rithm based on intensity classes by combining the two-dimensional rigid registration in
B-mode scans and the one-dimensional non-rigid registration in A-mode scans.
Qiangding Wei et al. [7] proposed a non-rigid B-spline-based registration method using
mutual information (MI) after aligning retinal OCT volumes by the coherent point drift.

However, the traditional MI only uses the intensity classes to establish the statistical
relationship but ignores the spatial information of voxels. Therefore, the optimal
alignment may not correspond to the minimum dispersion of the joint histogram.
A common way to incorporate the spatial information is to estimate the joint proba-
bility density function given a certain spatial distribution of voxel as a priori.
Studholme et al. [8] extended the spatial information as an additional channel by using
a box function to fit the spatial distribution in the user-defined local region when
calculating MI. Dirk Loeckx [9] proposed the conditional mutual information (CMI),
which defined the spatial distribution using the degree B-spline kernels. Although this
strategy is hard to select appropriate size of bins to calculate local information. If we
choose a large bin, the local spatial information will be lost. But if the bin is too small,
the result of MI will be inaccurate. Considering the advantages of less sensitive to the
sample size and noise of CR, RaPTOR (Robust PaTch-based correlation Ratio) [10]
was presented by computing the CR from small patches selected freely. However, the
spatial kernel in RaPTOR gave the voxels in the patch a same weight, only distinguish
whether the voxels belong to same patch and ignore the spatial information of voxels in
the patch. Another flaw is that RaPTOR used simplified CR to reduce the computa-
tional complexity, causing a reduction of computational accuracy.

Therefore, this paper proposes a non-rigid registration method based on the simi-
larity measure of conditional correlation ratio (CCR). Our approach first computes CR
locally to achieve resistance to the large spatial intensity inhomogeneity in the image.
A spatial kernel was chosen to consider the spatial information of voxels in the patch
by giving the voxels a different weight. Then, L-BFGS is used as optimizer. Finally, the
quantitative experiments using Hausdorff distance (HD) and M-Hausdorff distance
(MHD) and qualitative indicator using checkerboard chart are chosen to verify the
performance of our algorithm.

2 Methodology

2.1 The Similarity Measure Metrics of Conditional Correlation Ratio
(CCR)

Let V ¼ fx ¼ ðx; y; zÞ j 0� x\ Sx; 0� y\ Sy; 0� z\ Szg�R3 denote the image
domain, and let the moving image and fixed image be MðxÞ and FðxÞ respectively.
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The unknown transformation that aligns MðxÞ and FðxÞ is represented by T . The
registration problem can be formulated as minimizing a cost function C

C ¼ DðFðxÞ;MðTðxÞÞþw � CsmoothðTðxÞÞ ð1Þ

where D represents the similarity metric.Csmooth is the constraint of the grid that ensures
its smoothness, as introduced in [11]. w is the weight of the constraint used to balance
the metric and the penalty term. Csmooth is given by

CsmoothðTðxÞÞ ¼ 1
N

X
x2V

½ð@
2T
@x2

Þ2 þð@
2T
@y2

Þ2 þð@
2T
@z2

Þ2 þ 2 � ð @
2T

@x@y
Þ2 þ 2 � ð @

2T
@x@z

Þ2 þ 2 � ð @
2T

@z@y
Þ2� ð2Þ

where x represents the samples used to calculate the cost function and N is the total
number of samples.

We choose a free-form deformation parameterized by the location of cubic B-spline
nodes to model the transformation field. Given the node spacing ðnx; ny; nzÞ and the
location of all the nodes / ¼ ½/x; /y; /z�, the transformation of a pixel at the coor-
dinate ðx; y; zÞ is given by

Tð/; xÞ ¼
X3
a¼0

X3
b¼0

X3
c¼0

BaðaÞBbðbÞBcðcÞ/iþ a;jþ b;kþ c ð3Þ

where i ¼ x=nxb c � 1; j ¼ y
�
ny

� �� 1; k ¼ z=nzb c � 1 and a ¼ x=nx � x=nxb c; b ¼
y
�
ny � y

�
ny

� �
, c ¼ z=nz � z=nzb c, �b c is the truncation operation and Bð�Þ represents

B-spline basis functions.

Correlation ratio. For two random variables X and Y, correlation ratio (CR) measures
the functional dependence between X and Y [12]. Let EðY jXÞ be the conditional
expectation of Y in terms of X, and Var½�� denotes the variance. Then, CR is defined as
follows

gðY jXÞ ¼ Var½EðY jXÞ�
Var½Y � ¼ 1� Var½Y � EðY jXÞ�

Var½Y � ð4Þ

CR takes on values between 0 and 1. The larger the value is, the closer the
functional relationship is. In fact, because of noting gðY jXÞ 6¼ gðXjYÞ, CR is asym-
metric. In our method, the intensity values of moving image are set to X, and the
intensity values of fixed image are set to Y.

Conditional correlation ratio. Compared with the traditional CR, our approach called
CCR extends the joint histogram with spatial information and calculates CR from small
patches by binning of the intensities in the fixed image. This method uses a local
estimation of the joint histogram by subdividing the fixed image and performing a set
of local registrations within average block r. For convenient calculation, we choose
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mesh knots of free-form deformation as r. Thus, the new similarity measure named
CCR between the fixed image and moving image over all patches is given by

CCR ¼ 1� gðF jM; rÞ ¼
X
r

pðrÞ
r2r

X
f

f 2 prðf Þ �
X
m

ðfmÞ2 prðmÞ
" #( )

ð5Þ

with

r2r ¼
X
f

f 2prðf Þ � ðf rÞ2; fr ¼
X
f

fprðf Þ; f m ¼ 1
prðf Þ

X
f

fprðm; f Þ

To extend the joint histogram with spatial information, we incorporate a spatial
kernel xr into the calculation of probability density function (PDF) based on the
parzen-window. hð�Þ is the kernel function which described in detail in [12].

prðm; f Þ ¼
X
x2V

xrðx� rÞhðm�MðxÞÞhðf � FðxÞÞ ð6Þ

prðmÞ ¼
X
f

prðm; f Þ; prðf Þ ¼
X
m

prðm; f Þ ; pðrÞ ¼
X
x2V

xrðx� rÞ

where r,MðxÞ and FðxÞ can be considered as spatial bins. Here, we use the degree
B-spline kernels as xr.The specific formula is shown as follows

xrðx� rÞ ¼ Bkxðxx � rxÞBkyðxy � ryÞBkzðxz � rzÞ ð7Þ

where we use kx;y;z th degree B-spline kernels for the spatial kernel in each dimension,
and patch spacing chooses ðnx; ny; nzÞ which is same as that used in free from defor-
mation. Finally, the above equations can be substituted in (5) to obtain the cost
function.

2.2 Derivatives and Optimization

To minimize the cost function C, we use the gradient-based optimization algorithm
named L-BFGS. The gradient of C with respect to the control points / can be derived
as follows

@C
@/

¼ @CCR
@/

þw � @ Csmooth

@/
ð8Þ

The derivative of constraint Csmooth was obtained in [11]. Next, the derivative of
CCR is given in detail. Given the moving image M and the fixed image F, the
derivative of the similarity metric with respect to the control points / is given as
follows
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where @M=@T is the gradient of the moving image and the @T=@/ is the gradient of the
deformation field with respect to /. Both the definitions in detail are obtained in [11].

3 Experimental Results

In this section, the proposed method was tested on 8 pairs OCT images of normal eyes.
Each image pair acquired from a different time points of one person with a size of
256 � 256 � 128. To demonstrate the excellent performance of our algorithm, we
compared the proposed method against CR and MI which were wildly used in regis-
tration. For all experiments, the number of bins used to calculate PDF is set to 64 and
the weight of penalty term is 0.1. A three-level multi-resolution framework was used to
improve search efficiency. The mesh spacing for the B-spline transformation and the
estimation of PDF is 6 voxels. To verify the robustness to noise, all the experimental
data were not filtered.

The checkerboard images were used to qualitatively analyze the registration per-
formance. HD and MHD [13] were exploited to quantitatively measure how well the
retinal layers between the fixed and moving images were aligned. The lower these
values are, the better correspondence between the retinal layers has been achieved. The
retinal layers of each OCT image were automatically segmented according to [14].
Figure 1 showed that an OCT image divided into 10 retinal layers with 11 surfaces.

Table 1 exhibited the quantitative metrics of HD and MHD calculated by the 11
surfaces. For each case, the mean of MHD obtained by CCR has a significantly
decrease compared to CR and MI. For case 5, it was clear that the mean of MHD
obtained by CR was larger than non-registration, while CCR still demonstrated good
performance. It further validated the robustness of CCR to different data. From the
metric of HD, it was easy to find that the means obtained by CR and MI were worse
compared to non-registration, while that obtained by CCR was still the least for all
cases. It verified that CCR covered the shortage of MI which was sensitive to noise and
the shortage of CR which was restrictive to the functional mapping between the
intensities.
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To demonstrate the alignment effect more directly, we alternately displayed the
fixed and transform image by the checkerboard image with case 1 and case 3 as
examples (as shown in Fig. 2). Figure 2(a) and (b) were fixed and moving images,
respectively, and (c) was the checkerboard image of them without registration.
(d) * (f) severally displayed the checkerboard images which alternately fused the
fixed image and transform image obtained by MI, CR and CCR. It was clear that CCR
not only has a good alignment in the outmost surfaces (NFL and RPE), it could also
capture the more accurate displacement for the inner surfaces.

Fig. 1. OCT image of a normal eye and 10 retinal layers

Table 1. The mean � SD(11 surfaces) of HD and MHD among four algorithms from five cases
(Unit: Pixel)

Non-registration MI CR CCR

case 1 HD 9.24 � 0.55 14.5 � 2.58 9.91 � 0.88 5.49 � 1.89
MHD 2.1 � 0.27 1.13 � 0.21 0.95 � 0.29 0.73 � 0.11

case 2 HD 7.88 � 0.98 9.82 � 2.49 15.6 � 3.58 5.49 � 2.64
MHD 2.06 � 0.1 0.88 � 0.32 0.91 � 0.22 0.57 � 0.16

case 3 HD 5.85 � 0.75 10.7 � 2.59 8.08 � 2.04 4.12 � 1.15
MHD 1.27 � 0.02 0.91 � 0.19 0.72 � 0.13 0.52 � 0.07

case 4 HD 4.45 � 0.5 7.92 � 1.02 5.97 � 0.4 3.12 � 1.56
MHD 0.83 � 0.02 0.68 � 0.12 0.55 � 0.1 0.52 � 0.09

case 5 HD 7.24 � 0.68 3.82 � 0.74 15.1 � 1.94 3.43 � 1.56
MHD 1.57 � 0.04 0.53 � 0.09 1.90 � 0.15 0.52 � 0.11

case 6 HD 10.14 � 0.33 13.27 � 1.15 14 � 0.6 6.22 � 1.09
MHD 3.44 � 0.02 1.06 � 0.22 0.87 � 0.09 0.58 � 0.08

case 7 HD 8.45 � 1.58 9.03 � 2.35 7 � 2.79 4.61 � 1.17
MHD 1.96 � 0.06 0.69 � 0.12 0.58 � 0.10 0.61 � 0.08

case 8 HD 7.64 � 0.31 13.47 � 0.41 16.98 � 1.33 5.22 � 0.28
MHD 1.96 � 0.02 1.88 � 0.16 1.67 � 0.13 0.65 � 0.06
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4 Conclusion

In this paper, we present a novel similarity measure called conditional correlation ratio
(CCR) for retinal OCT image registration. CCR uses a local estimation of the joint
histogram by subdividing the image and performing a set of local registrations.
Therefore, it not only inherits the virtues of CR such as the robustness to noise and less
sensitive to number of samples compared to MI, but also covers the disadvantage of

Case 1

Case 3

Fig. 2. Original images and registration results of case1 and case 3, (a) and (b) are fixed image
and moving image, (c) * (f) are respectively registration results of non-registration, MI, CR,
CCR using checkboard image between fixed image and transformation image
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CR that it is restrictive to assume a functional mapping for all intensities. The quan-
titative metrics of clinic experiments show that CCR is more robust and suitable for
OCT image registration compared to CR and MI. The main limitation is that CCR is
calculated over a series of sub-blocks and the computation time is expensive. In the
future, we will synchronize the code in parallel using GPU.
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Abstract. Glaucoma is a highly threatening and widespread ocular dis-
ease which may lead to permanent loss in vision. One of the important
parameters used for Glaucoma screening in the cup-to-disc ratio (CDR),
which requires accurate segmentation of optic cup and disc. We explore
fully convolutional networks (FCNs) for the task of joint segmentation of
optic cup and disc. We propose a novel improved architecture building
upon FCNs by using the concept of residual learning. Additionally, we
also explore if adversarial training helps in improving the segmentation
results. The method does not require any complicated preprocessing tech-
niques for feature enhancement. We learn a mapping between the retinal
images and the corresponding segmentation map using fully convolu-
tional and adversarial networks. We perform extensive experiments of
various models on a set of 159 images from RIM-ONE database and also
do extensive comparison. The proposed method outperforms the state
of the art methods on various evaluation metrics for both disc and cup
segmentation.

Keywords: Deep learning · Fully Convolutional Networks · Glaucoma ·
Optic disc and cup segmentation · Adversarial networks

1 Introduction

Glaucoma is a potentially blinding disorder affecting a large number of people
worldwide. One of the most important steps in the diagnosis of glaucoma is
the assessment of the Optic Disc (OD) and optic cup, using 2D color fundus
images. Cupping is a phenomena in which there is an enlargement of the cup
due to loss in optic nerve fibers. The enlargement of the cup with respect to
OD, measured as vertical cup-to-disc ratio (CDR) is one of the most important
indicators of the disease. This necessitates accurate segmentation of the optic
cup and disc. This task is typically performed by a highly skilled human grader
and the task is highly time consuming and expensive along with a high degree
of variability between the graders. This requires the need to automate the task
of segmentation.

c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): FIFI/OMIA 2017, LNCS 10554, pp. 168–176, 2017.
DOI: 10.1007/978-3-319-67561-9 19



Joint Optic Disc and Cup Segmentation Using FCN and GAN 169

There have been numerous works on the task of optic disc and cup segmen-
tation [6]. Existing techniques for the determination of optic disc boundary are
either based on morphological techniques [8] or based on deformable energy based
models [9,10]. Some of the drawbacks of existing approaches is their dependency
on initialization and their inability to detect weak edges in neuroretinal rim.

Optic cup segmentation on the other hand is considered to be a challenging
task even for the human graders. Some of the existing works are based on energy
based models similar to optic disc segmentation techniques [11,14], using graph
cuts [12]. Such techniques may not be effective in case of images with very low
contrast.

On the other hand, deep learning based convolutional neural network (CNN)
methods have been successful at many tasks such as image classification, object
recognition, semantic segmentation etc. Recently, CNNs have been used for
deep feature learning for only glaucoma classification [13], wherein they pre-
dict whether the given retinal image has glaucoma or not. For optic disc and
cup segmentation, recently [15] use CNNs and learn filters in a greedy fashion
instead of backpropagation. In their proposed method, given a retinal image
with the region of interest (i.e. containing optic disc and cup), they preprocess
the image and pass it through their network and get pixelwise predictions of
whether the given pixel belongs to optic cup or disk or background thus obtain-
ing a probability classification map on which they use graph cut and convex
hull transformation to get the final segmentation map. Their proposed network
contains fully connected layers and is also not end to end, while consisting
of a pipeline of various techniques to obtain the final segmentation map. We
propose an end to end, fully convolutional, encoder-decoder type network for
this task. Although, such networks have been used in the medical image seg-
mentation tasks (for example U-net) [5], they have not been used for the task
of joint optic disc and cup segmentation. Building upon U-net, we propose a
novel architecture called ResU-net inspired from RESNET [7], incorporating
residual learning along with feature concatenation in an encoder decoder based

Fig. 1. First row shows the segmentation output of U-net and the proposed ResU-
net architecture, along with input image and ground truth. The second row shows
delineations for better comparison, green (disc) and black (cup) lines correspond to
ground truth and red (disc) and yellow (cup) lines correspond to network output.
(Color figure online)
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architecture for segmentation task. This offers an advantage over U-net [5] since
we can have deeper architectures leading to improved segmentation results (as
shown in Fig. 1) and also over fully convolutional networks (FCN) like [16] in
terms of lesser training time. Apart from that, we also incorporate adversarial
training [1,2] for the segmentation task.

2 Methods

In the proposed framework, our goal is to learn a mapping from the fundus
image containing the region of interest to the corresponding segmentation map
with the segmentation map consisting of three classes- optic disc, cup and the
background. Let x be the input image and y be the corresponding ground truth
segmentation map, then our goal is to learn mapping G : x → y, where the
function G is learned using a base network. The base network is a FCN which
is trained to minimize multi-class cross entropy loss Lmce(G) given by

Lmce(G) = Ex,y∼pdata(x,y)[−
N∑

i

yi log (Gi(x))] (1)

where i represents the pixel index with total of N pixels.

2.1 Proposed Base Network Architecture (ResU-net)

The proposed architecture of the main network is shown in Fig. 2. The network,
similar to U-net, [5] consists of a contracting path or an encoder (left side of the
network having downsampling operations) and an expanding path or a decoder

Fig. 2. Proposed Base Network Architecture (ResU-net): The network consists of resid-
ual blocks along with convolutional blocks
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(right side of the network having up sampling operations). The network differs
from U-net in many ways. The network uses residual blocks which is made up of
2 convolutional blocks and a skip connection, with 3 × 3 convolution operation
with a stride of 1 followed by batch normalization and relu. In the encoding path
or contracting path, while downsampling, we do a 4×4 convolution with a stride
of 2 followed by batch normalization relu operation and double the number of
filters in each layer after downsampling. Our architecture is also much deeper
than the U-net but we double the number filters only till it reaches 512. This
is done to keep the number of parameters less while still going deep. For the
decoding or expanding path, we retain feature concatenation operation similar
to the original U-net and again use both convolutional and residual blocks. For
the first 3 decoding layers, we also use dropout with 50% rate. For upsampling
we do a 4×4 deconvolution operation with stride 2. All convolution and residual
operations are followed by batch norm and relu operations. Also the encoder
part employs a leaky relu with slope 0.2 while the decoder part uses normal
relu. After the last decoding layer a 1 × 1 convolution is performed to map to
the number of output channels followed by tanh activation. Thus we see that
the network incorporates best of both skip connections- feature concatenation
and residual addition.

2.2 Adversarial Network

The adversarial network model for our task is motivated from [3] and is shown in
Fig. 3 . In generative adversarial networks (GANs), the learning takes place by
pitting two networks - Generator (G) and Discriminator (D) against each other.
The task of the generator is to generate plausible representations of segmenta-
tion map from the input fundus images, and the goal of the discriminator is

Fig. 3. The Adversarial Network Framework: here the generator has the base network
architecture- either U-Net of ResU-Net and discriminator is a conventional CNN used
for classifying whether the segmentation map is real or fake, and discriminator can also
be conditioned on input fundus image
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discriminate between the generated and ground truth segmentation maps. Gen-
erator and discriminator is jointly trained and the learning process attempts to
maximize misclassification error of the discriminator. Therefore generator tries
to generate more plausible representations of segmentation map that can deceive
discriminator and the discriminator becomes better at its task of discriminating
which in-turn improves the ability of the generator to generate better samples.
Mathematically, the generator is trained to learn a mapping from observed image
x to y : G : x → y in a way such that the generator, G, learns to produce outputs
to fool an adversarially trained discriminator, D, The discriminator is trained
to distinguish between the generated images and real images and thus classify
the given input image as real of fake. The objective function is given by:

LGAN (G,D) = Ex,y∼pdata(x,y)[log(D(y))] + Ex∼pdata(x)[log(1 − D(G(x))], (2)

where Ex,y∼pdata(x,y) represents the expectation of the log-likelihood of the pair
(x, y) being sampled from the underlying probability distribution of real pairs
pdata(x, y), while pdata(x) corresponds to the distribution of optic cup and disc.
We can also have conditional GANs where the discriminator is conditioned on
the input image x, for which the objective function becomes:

LcGAN (G,D) = Ex,y∼pdata(x,y)
[log(D(x, y))] + Ex∼pdata(x)

[log(1−D(x,G(x))] (3)

Since it has also been found useful to combine adversarial loss with the tradi-
tional L2/L1 [3,4] loss, we impose this loss on the generator so that its task is
not only to fool the discriminator but also produce outputs close to the ground
truth in the L1 sense:

LL1(G) = Ex,y∼pdata(x,y)[‖(y − G(x)‖1] (4)

therefore the final objective becomes

G∗ = argmin
G

max
D

(LGAN/cGAN (G,D) + λ(LL1(G)) (5)

where λ balances the contribution of two losses. In Eq. (5), the discriminator
tries to maximize the expression by classifying whether the segmentation map
is real or generated. The generator tries to minimize both adversarial loss and
L1 loss in Eq. (5). Thus, the aim of the learning process for the generator is to
find a good mapping from the retinal image to the segmentation map.

The GAN architecture consists of two parts - generator and discriminator.
The generator is same as U-net or the ResU-net architecture explained in the
previous section. The discriminator has a conventional CNN architecture used
for classification. Let Ln denote a Convolution-BatchNorm-ReLU layer with n
filters. The discriminator uses the following architecture- L64-L128-L256-L512-
L512-L512.

After the last layer, a convolution is applied to map to a 1 dimensional output,
followed by a Sigmoid function. BatchNorm is not applied to the first L64 layer.
Discriminator employs leaky ReLUs, with slope 0.2, and all convolutions being
4 × 4 with a stride of 2.
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3 Experiments and Results

The proposed method is evaluated on the RIM-ONE dataset. The dataset con-
tains 159 retinal fundus images with 85 normal cases and 74 confirmed glaucoma
cases. We select a region of interest around the optic disc in fundus image and
corresponding region in segmentation map and resize it to size 256×256. We do
a 5−fold cross validation for determining classification accuracy as done in [15].
We experiment for the following cases-

1. Standard U-net architecture (U-net)
2. Standard U-net architecture as generator in GAN (U-GAN)
3. Standard U-net architecture as generator in conditional GAN (U-cGAN)
4. Proposed modified U-net architecture (ResU-net)
5. Proposed modified U-net architecture as generator in GAN (ResU-GAN)
6. Proposed modified U-net architecture as generator in conditional GAN

(ResU-cGAN)

All models were trained from scratch with initialization from a Gaussian
distribution with mean 0 and standard deviation 0.02 and run for 200 epochs.

Fig. 4. The Segmentation results along with the ground truth. The green and black
lines indicate the ground truth segmentation boundaries for optic disc and cup respec-
tively and red and yellow lines indicate the segmentation boundaries for optic disc and
cup respectively obtained using various methods (Color figure online)
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The initial learning rate was kept to be 10−4 and halved every 50 epochs. We
used data augmentation techniques like flip, rotate as done in any standard CNN
setting. The training took an average of 4 h on a single Pascal Titan X GPU and
the inference took less than half a second per image on GPU. The results for
some of the test images are shown in Fig. 4

The metrics used for quantitative evaluation are- F-score, the intersection
over union (IOU) the non-overlap ratio (NOR) and absolute difference δ between
the Cup to disc ratios of output segmentation map and the ground truth. F-score
is the harmonic mean of precision and recall. The IOU and NOR measure the
extent of overlap in the segmentation regions of the output and the ground
truth and is given by: IOU = SO∩SG

SO∪SG
NOR = 1 − SO∩SG

SO∪SG
where SO and SG are

segmentation map of the output and the corresponding ground truth segmen-
tation map respectively. The absolute cup-to-disc ratio (CDR) error is given by
δ = |CDRG − CDRO| where CDRG and CDRO are the cup-to-disc ratios of
ground truth and output respectively.

The results for various experiments are shown in Table 1 and Fig. 4. When
comparing just the base networks, the proposed ResU-net performs significantly
better than U-net. From Table 2 it can be seen that compared to other reported
state of the art techniques, all our models perform significantly better. The base
architectures themselves outperform the most recent CCN techniques [15,16].
Also adversarial training helps to improve the disc segmentation by a signifi-
cant amount in terms F-measure and IOU, but shows lesser performance for
cup segmentation. Also unconditional GANs seem to perform better than condi-
tional GANs for the optic disc segmentation but sometimes worse for optic cup
segmentation. A possible reason could be that since the cup region is small in
size and as such difficult to segment, conditioning on the input image may be
helpful in this case. When comparing using CDR as the metric, it can be seen
that the base networks without adversarial training perform better. A reason
for this could be the lack of large data and inherent difficulty in training GANs.
More errors occur in cup segmentation, since it is a tricky area to segment. And
moreover, the strength of GANs lie in solving highly ambiguous and ill-posed

Table 1. NOR for the optic disc segmentation and CDR error for different experiments

Method U-net U-GAN U-cGAN ResU-net ResU-GAN ResU-cGAN

mean NOR 0.1174 0.0509 0.1328 0.0991 0.0388 0.1024

NOR ≤ 0.30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NOR ≤ 0.25 0.9677 1.0000 1.0000 1.0000 1.0000 1.0000

NOR ≤ 0.20 0.9677 1.0000 1.0000 1.0000 1.0000 1.0000

NOR ≤ 0.15 0.8387 1.0000 0.7419 0.9355 1.0000 0.9355

NOR ≤ 0.10 0.3548 1.0000 0.2258 0.4194 1.0000 0.5161

NOR ≤ 0.05 0.0000 0.5806 0.0000 0.0968 0.8387 0.0645

mean CDR error δ 0.03820 0.0509 0.0555 0.03370 0.04380 0.0375
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graphics problems rather than problems like segmentation where non adversarial
training would probably suffice.

Table 2. Comparison with other techniques

Method Optic disc Optic cup

F-Measure IOU F-Measure IOU

[8] 0.901 0.842 - -

[11] 0.931 0.880 0.801 0.764

[14] 0.892 0.829 0.744 0.732

[15] 0.942 0.890 0.824 0.802

[16] 0.960 0.890 - -

U-net 0.973 0.886 0.927 0.749

U-GAN 0.984 0.949 0.779 0.675

U-cGAN 0.971 0.867 0.878 0.718

ResU-net 0.977 0.901 0.945 0.786

ResU-GAN 0.987 0.961 0.906 0.739

ResU-cGAN 0.977 0.897 0.940 0.768

4 Conclusion

In this work, a new architecture for image segmentation was proposed and with
extensive experimental evaluations it was shown that the method outperforms
several state of the art techniques for the task of joint optic disc and cup seg-
mentation. Adversarial training was also explored to evaluate its usefulness for
the task of medical image segmentation. The proposed architecture and mod-
els can be readily applied to other medical image segmentation tasks. A good
future work would be to improve segmentation results of adversarial networks by
improving the design of the discriminator and also evaluate the method for other
retinal image analysis tasks like vessel segmentation and hemorrhage detection.
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Abstract. The choroid plays a critical role in maintaining the portions
of the eye responsible for vision. Specific alterations in the choroid have
been associated with several disease states, including age-related macular
degeneration (AMD), central serous chorioretinopathy, retinitis pigmen-
tosa and diabetes. In addition, choroid thickness measures have been
shown as a predictive biomarker for treatment response and visual func-
tion. Where several approaches currently exist for segmenting the choroid
in optical coherence tomography (OCT) images of healthy retina, very
few are capable of addressing images with retinal pathology. The dif-
ficulty is due to existing methods relying on first detecting the retinal
boundaries before performing the choroidal segmentation. Performance
suffers when these boundaries are disrupted or suffer large morphological
changes due to disease, and cannot be found accurately. In this work, we
show that a learning based approach using convolutional neural networks
can allow for the detection and segmentation of the choroid without the
prerequisite delineation of the retinal layers. This avoids the need to
model and delineate unpredictable pathological changes in the retina
due to disease. Experimental validation was performed using 62 man-
ually delineated choroid segmentations of retinal enhanced depth OCT
images from patients with AMD. Our results show segmentation accu-
racy that surpasses those reported by state of the art approaches on
healthy retinal images, and overall high values in images with pathology,
which are difficult to address by existing methods without pathology
specific heuristics.

Keywords: Segmentation · Deep learning · Convolution neural
network · Retina · EDI-OCT

1 Introduction

The choroid is the vascular layer located between the retina and sclera in the eye.
It plays the vital role of providing nutrients and maintaining the portions of the
c© Springer International Publishing AG 2017
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eye responsible for vision. Specific alterations in the choroid have been associated
with several disease states, including age-related macular degeneration (AMD) [1],
retinitis pigmentosa [2], Stargardts disease, diabetes [3], sarcoidosis, and Vogt-
Koyanagi-Harada syndrome. In addition, choroid thickness measures have been
shown as a predictive biomarker for treatment response [4] and visual function [5].

Since the introduction of enhanced depth imaging optical coherence tomog-
raphy (EDI-OCT) [6], there has been an explosion of interest in studying the
choroid in vivo. This has included not only the disease processes previously asso-
ciated with choroidal abnormalities, but also exploring the role of the choroid in
ocular conditions as diverse as myopia and angle closure glaucoma. This quick
(<1 s per scan), non-contact, safe, and inexpensive imaging modality has become
readily accepted by both clinicians and patients.

To date, most assessments of EDI-OCT images have involved manual evalu-
ation of the borders of the choroid and subjective judgments of choroidal vessel
caliber (large, small, dilated, attenuated) and stromal density, which has proven
difficult and time consuming. Fully or semi-automated systems are needed to
make it possible to use in direct patient care and in clinical studies involv-
ing large numbers of patients examined serially over time. While several tech-
niques [7–16] have been designed for the segmentation and measurement of the
choroid in OCT, existing methods are primarily focused on images with normal
(or normal-appearing) retinal structures with limited pathology.

Current approaches begin by first segmenting the retinal layers using meth-
ods such as graph-cuts [8,10], dynamic programming [7,9], gradient-based edge
detection [11,15], and active contours [16]. After locating the retinal layers, the
choroid is found using an intensity based approach within a sub-region of the
image, typically defined by the Bruchs Membrane (BM) located in the first
step. Proposed approaches for segmenting the choroid in this sub-region include
thresholding and region growing [8], multi-scale filtering with probabilistic esti-
mation [9], constructing statistical [7], morphological models [10], and texture
or gradient analysis [15,16].

In the presence of pathology, existing approaches become less accurate and
robust due to changes to the retinal morphology caused by disease. Very few
methods have been presented that addresses automated choroid segmentation
in the presence of pathology. Notably, [7,9] proposed addressing the problem by
making the retinal boundary segmentation more robust. Their approach first uses
image derivative information and edge orientation to prevent unrealistic bound-
ary jumps and shifts. A convex hull is then fit to the estimated boundaries to
detect possible detachment of the retina. The method is shown to be robust to
many cases of retinal pathology, such as drusen and retinal detachment. How-
ever, the algorithm still relies on the initial delineation of the retinal pigment
epithelium, which the authors locate using the most hyper-intense boundary
in the image. The method will be unreliable in cases where this assumption
is violated due to artifacts or pathology. Also relevant, [17] presents an outer
retinal-subretinal layer segmentation approach that addresses pathology by aug-
menting their graph search algorithm with a specialized fluid detection algorithm
that is able to determine abnormal fluid-filled structures in the layer.
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In this work, we present an approach where the detection and segmenta-
tion of the choroid and choroidal vessels are performed without the prerequisite
delineation of the retinal layers. Instead we train a convolution neural network
to directly identify the interior and exterior boundaries of the choroid in the
image. This approach utilizes the fact that (1) the choroid is often not notice-
ably affected by retinal pathology, and (2) the morphology and texture of the
choroid are distinct from the retina and retinal pathology. This allows us to
directly identify the choroid regardless of the state of the retina in the image.
Our approach aims to avoid needing to model and delineate the often unpre-
dictable pathological changes in the retina due to disease.

2 Method

Our method consists of two primary steps. First, a convolution neural network
(CNN) is trained to find the pixel-wise probability maps for the interior (Bruch’s
membrane) and exterior (choroid-sclera interface) boundaries of the choroid.
Once these probability maps are found we use seam carving [18] to estimate the
two boundaries in the image and produce the final segmentation of the choroid.

2.1 Generating Edge Probability Maps Using CNN

For our CNN architecture, we use the SegNet design presented in [19]. The
network consists of an encoder network, a corresponding decoder network and a
pixel-wise classification layer. The SegNet architecture was designed specifically
for pixel-wise classification of images where boundary delineation is vital. One
of its key features is the ability to reduce the loss of spatial resolution due to
max-pooling and sub-sampling by storing the max-pooling indices in the encoder
and using it in the respective decoder to upsample the input feature map. This
also has the advantage of avoiding the need to learn to upsample, reducing the
overall number of parameters.

For our task, we use 6 layers of encoder and 6 layers of decoder, with
(8, 16, 16, 32, 32, 64) features in each encoder layer and the reverse order in
the decoder layers. A 5-by-5 convolution kernel is used throughout the network.
An element-wise rectified linear non-linearity (ReLU) max(0, x) is applied to
every layer except the final layer, which uses a softmax function to produce a
probability output. Stochastic gradient descent is used for training the network,
with a momentum of 0.9 and a fixed learning rate of 0.0001. We used a constant
scale factor of 2 in the X and Y directions. We found that the network in general
converges within 40 epochs.

Training and Testing. Two different SegNets are trained for our method, one
to locate the Bruch’s membrane and the second to locate the choroid-sclera
interface. Each network is trained on full EDI-OCT images with manually delin-
eations of the respective boundaries, where each pixel in the training image is
marked as either boundary or background. To increase the number of training
examples, small random affine perturbations are used to displace each training
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images. This provides additional examples that can account for anatomical vari-
ability in the eye that may not be fully represented in our data. Given an unseen
image, both SegNet are applied to the image to produce two probability maps
representing the likely location of the two boundaries in the images.

2.2 Seam Carving

To convert the edge probability maps into a binary segmentation of the choroid,
we use a technique known as seam carving [18]. Given an image I with dimen-
sion n × m, the goal of seam carving is to find a path of connected pixel that
fully traverses across the image. For our task, we are interested in finding the
horizontal seam,

s = {syj}mj=1 = {(j, y(j))}mj=1, s.t. ∀ j, |y(j) − y(j − 1)| ≤ 1, (1)

where y is the mapping y : [1, . . . ,m] ⇒ [1, . . . , n]. This formulation ensures that
the seam only has a single pixel in each column and each pixel in the seam is
8-connected to the pixels in the adjacent columns. To find this seam, we define
the cost function

E(s) = E(IS) =
m∑

j=1

e(I(sj)), (2)

where e is an energy function. For our purpose, e(I(sj)) is the value of the
probability map at location sj . Given this energy function, the optimal seam
can be found by using dynamic programming as described in [18].

The optimal seams found for our two probability maps are used as the interior
and exterior boundaries of the choroid, and the pixels between the boundaries
are completely filled to provide the full choroidal segmentation. This approach is
advantageous over simply thresholding the probability maps, because it allows us
to enforce a specific topology, connectivity, and smoothness to the segmentation.

3 Evaluation and Results

3.1 Data

62 EDI-OCT retinal images from 32 patients diagnosed with age related mac-
ular degeneration (AMD) were used for the evaluation of our method. Two
images were acquired from each patient, the first image was of a retina with dry
(atrophic) AMD from one eye, and the second image was of a retina with wet
(exudative) AMD from the other eye. Each EDI-OCT image was a 2D cross-
sectional slice centered on the fovea, with approximate dimensions of 1150 by
700 pixels. For each image, a manual segmentation of the choroid was performed
by a trained rater using ITK Snap [20]. These manual segmentations serve as
the ground truth used in our evaluation.
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(a)

(b)

Fig. 1. Examples of the interior (Bruch’s membrane, shown in red) and exterior
(choroid-sclera interface, shown in green) boundaries of the choroid found by the pro-
posed method on retinal image of eyes diagnosed with (a) dry and (b) wet AMD. (Color
figure online)

3.2 Results

We evaluated our algorithm on each image using 5-fold cross-validation, where
80% of the images (50 image) were randomly selected and used for training,
and the remaining 20% were used to testing. This process was repeated until
all images were segmented. The same parameters as described in Sect. 2.1 were
used for each SegNet network used in the evaluation. Figure 1 shows several
examples of the automated choroidal boundaries detected by our method. We
compared our automated results against the manual ground truth by calculating
the average distance error of the Bruch’s membrane (evaluted as the average
absolute difference between the manual and automated boundary location in
each A-scan), and the overall Dice overlap coefficient [21],

Dice (A,B) =
2|A ∩ B|
|A| + |B| , (3)

between the automated and manual segmentations.
For a baseline comparison, we also performed the same evaluation using

a graph cuts based segmentation approach, which have been shown [22,23] to
produce highly accurate segmentations of retinal layers in OCT images of healthy
subjects. However, for our comparison, we adapted the approach to find the
interior and exterior boundaries of the choroid in our 2D EDI-OCT images.
No pathology-specific correction step was used to improving the BM surface in
the wet AMD cases [17], but rather a single graph cut optimization with two
surfaces was performed. Table 1 shows the average (and standard deviation) of
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Table 1. The average (standard deviation) of the Dice overlap coefficient and average
Bruch’s membrane (BM) boundary distance error (in pixels) of the choroid segmenta-
tion, evaluated between each algorithm and the manual ground truth. Each metric was
first evaluated over the dry and wet AMD cases separately, and then on the combined
overall dataset.

Dice overlap BM error in pixels

Dry Wet Overall Dry Wet Overall

Graph cuts 0.77 (0.11) 0.66 (0.16) 0.71 (0.15) 5.58 (2.48) 8.55 (7.76) 7.09 (6.00)

SegNet+Seam carving 0.85 (0.07) 0.81 (0.10) 0.83 (0.09) 4.19 (2.02) 7.25 (6.92) 5.72 (5.36)

each algorithm’s performance over the dry and wet AMD cases separately and
over the full dataset.

4 Discussion

From our results we see that, overall, our approach produced segmentations
of the choroid that aligned well with the manual delineations. On average our
algorithm produced a Dice overlap coefficient of 0.82 (±0.10) relative to man-
ual segmentation. This is comparable to existing literature [8], which reports an
average Dice overlap of 0.78 (±0.08) for automated segmentation of the choroid
in healthy retinal. While the comparison is indirect, the result is promising con-
sidering that our dataset consisted of 2D images with retina pathology, many
of which contained large intensity and morphological changes. Conversely, our
images are EDI-OCT, which may have allowed the choroidal structures to be
more easily segmented than standard OCT.

From Table 1 we see that on average our approach produced segmentations
with higher Dice overlap and lower BM boundary errors than the graph cuts
based approach. However, it would be fair to note that the graph cuts algorithm
was adapted from a design developed for 3D OCT volumes of healthy subjects.
Thus, the lack of 3D context in our data may explain the lower performance.
Additionally, as noted above, the graph cut approach can be augmented with a
specific correction technique to handle drusen, cysts and RPE detachment [17],
which we have not included. This further contributes to its lower performance
in the wet AMD cases. In contrast, our approach is robust to pathology and can
be readily deployed even in a single 2D B-scan.

Qualitatively, our proposed algorithm is very robust to retinal pathology (as
shown in Fig. 1(b)). This satisfies one of the primary goals of our approach, which
was to design an algorithm that can detect the choroid independent of the state
of the retina. One disadvantage of using a learning based approach to address
this problem is that the success of the algorithm is predicated on the diversity of
the training images. The training set must cover the wide range of appearances
that the choroid can take in the image. For example, given our limited training
set consisting mostly of normal appearing choroids, we can expect the algorithm
to fail in the presence of choroidal pathology or imaging artifacts in the choroid.
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Likewise images acquired using different systems may also pose a problem if the
imaging characteristics are sufficiently different.

5 Conclusion

We have introduced an automated approach for segmenting the choroid in EDI-
OCT images with retinal pathology. Our results showed high performance rel-
ative to manual segmentations, and does not require prerequisite retinal layer
segmentations which are necessary for most existing algorithm. There are several
direction that this work can be extended. One potential area of exploration is
the use of CNN to directly segment the choroid vasculature instead of locating
the choroidal edges. This can potentially allow for more accurate and robust seg-
mentation by avoiding the need to detect the thin structure represented by the
edges. In addition, 3D information from adjacent (non-EDI) OCT B-scans can
potentially be incorporated into the segmentation to allow for more contextual
information in the segmentation.
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Abstract. Glaucoma, a progressive and degenerative disease of the
optic nerve, is the second leading cause of blindness worldwide. Mechani-
cal deformation of the lamina cribrosa (LC) under high intraocular pres-
sure (IOP) can lead to axonal death of optic nerve fibers. To explore the
effect of pressure on the LC, we utilize an experimental setup where longi-
tudinal 3D optical coherence tomography (OCT) images are acquired at
different levels of IOP administered via a well-controlled external force.
Structural changes are measured via image deformations which map all
observed images simultaneously into a common coordinate space. These
deformations encode local patterns of structural and volume change
across the image sequence, resulting in quantification of the spatiotem-
poral deformation pattern of the LC due to variation of pressure. We
also describe a 3D segmentation algorithm to restrict our deformation
analysis separately to the beams or pores of the LC. A single case study
demonstrates the potential of the proposed methodology for non-invasive
in-vivo analysis of LC dynamics in individual subjects.

Keywords: OCT · Lamina cribrosa · Spatiotemporal analysis ·
Glaucoma

1 Introduction

Glaucoma is a progressive and degenerative disease of the optic nerve and is the
second leading cause of blindness worldwide [1]. Due to irreversible damage to the
optic nerve, it is essential to diagnose glaucoma early and to sensitively monitor
disease progression in order to prevent potential vision loss. The lamina cribrosa
(LC) is a connective tissue meshwork where optic nerve fibers pass through from
inside the eye to the outside. Because of this anatomical placement, it can make it
a vulnerable location in the visual neural pathway. Mechanical deformation of the
LC, especially under high intraocular pressure (IOP), can lead to axonal death
of optic nerve fibers [2]. Therefore, assessment and monitoring of LC condition
may provide clinically useful biomarkers to manage glaucoma.
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Optical coherence tomography (OCT) provides 3D imaging of the ocular
tissues at microscopic resolutions [3]. OCT has been extensively used in glau-
coma studies and is known to provide clinically favorable quantitative measure-
ments [4,5]. Recent advances in OCT technology opened the possibility for 3D
imaging of the LC but significant challenges for analysis of such data remain.
Individual OCT images show considerable noise which make it difficult to obtain
consistent segmentation across a time series. Alignment of images to a common
coordinate frame, accounting for eye movement and deformation, and assessment
of deformations to analyze structural changes remain open issues.

In this paper, we address these challenges with an experimental setup and
novel analysis method to measure structural changes of the LC with respect to
different IOP conditions. The experimental setup includes applying increasing
IOP and acquiring a longitudinal time-series of observations in the form of in-vivo
OCT images [6]. To address the presence of noise in OCT, we explore the noise
reduction properties of several filtering techniques. From the dynamic longitudi-
nal sequence, we estimate a geometric average template image, which establishes
a common reference frame for joint structural segmentation and includes defor-
mation mappings to each observation. The diffeomorphic mappings encode local
deformation and volume changes between any two observations in the sequence.
Such measurements capture detailed non-linear patterns of structural changes
to the LC and provide qualitative and quantitative assessment of regional defor-
mations as a function of external pressure and its release. We present a case
study of newly acquired prototype data to explore the effect of increasing IOP
on a single individual. All methodology in this paper utilizes full volumetric (3D)
images, though results are presented as 2D slices.

2 Methods

2.1 Digital Filtering

Digital filtering is important to overcome the speckle noise pattern inherent
in acquisitions by narrow-band detection systems like OCT. Specifically, the
presence of noise makes it difficult to accurately differentiate the beams and
pores of the LC. Therefore, we seek to reduce speckle noise while also preserving
edge-sharpness, to better delineate between beams and pores.

The 6 compared algorithms were: Lee filtering, non-local means, wavelet
decomposition, virtual averaging [7], anisotropic diffusion, and the block match-
ing and 3D (BM3D) filtering algorithm [8]. In our tests, BM3D provided the
best results with respect to signal-to-noise ratio. Furthermore, B3MD filtered
images also passed visual image quality tests performed by OCT clinical experts.
Figure 1 shows a typical result from B3MD filtering.

2.2 Average Template Construction

Average template construction was initially developed by the brain mapping
community for analyzing shape variability within a population [9]. From a set
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(a) (b)

Fig. 1. Slice extracted from volumetric OCT data from (a) original noisy image and
(b) BM3D filtered image.

of images, the goal is to estimate an ‘average’ template image. The key intuition
is the template is not a simple voxelwise average of the observed images, which
has the known problem of producing fuzzy averages and false structure. Rather
it is a mean in the Fréchet sense, i.e. a minimizer of distance, which produces a
sharp average geometrically representative of the population. Most commonly,
distance is defined by the amount of deformation (via diffeomorphic transport
h : R3 → R3) required to warp one image onto another. Template estimation
can be expressed by the cost function

E(T, {hi}) =
N∑

i=1

||T ◦ hi − Ii||2L2 + Reg({hi}) (1)

where T is the template image, {hi} is the set of diffeomorphic mappings which
align the template to each image observation Ii, and Reg is a measure of regu-
larity on the set of diffeomorphisms (more detail in [9]).

This method allows us to map all images into a common coordinate system
to study local deformations only - without considering global movement (during
acquisition) - and to create an average image, the template T, as shown in Fig. 2.
The most important information, however, is encoded in the deformations them-
selves, as the diffeomorphic mappings capture individual variability as deviation
from average. As shown Fig. 2, we can also compute mappings from any image
to any other image by composition of diffeomorphisms, and are therefore able
to measure the amount of structural change between any two observations.

The average template also serves as a necessary tool for segmentation, as
it is only performed once in the template space, and then propagated to each
observation by the mappings {hi}. This segmentation procedure is essential for
structural analysis, as it guarantees topological consistency across observations.

In this paper we are specifically using the method developed in [10], available
in the ANTs package [11].
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Fig. 2. Overview of average template construction. The template image T (red) is the
geometric average of the set of images {Ii} obtained via deformable mappings. T is
estimated by minimizing the total amount of diffeomorphic deformation per image
{hi} to align observations with the template. Composition of diffeomorphisms allows
to compute mappings between any pair of images to analyze spatiotemporal profiles.
(Color figure online)

2.3 Segmentation

Segmentation involves extracting structures composing the LC, namely the
beams meshwork and the pores, which are respectively characterized as sheet-like
and tube-like structures in OCT images. In [12], a generalized Frangi multiscale
vesselness method was proposed to enhance M dimensional shapes in N dimen-
sional images. It is based on the examination of the Hessian (a square matrix of
local second order spatial derivatives applied to a scalar field f : Hi,j = ∂f

∂xi∂xj
)

and its eigen decomposition. The extracted three orthonormal directions (3D)
encode shape structure regarding the isotropy of those directions.

If we consider M < N , M the shape dimension (0 for blobs, 1 for tubes, 2
for sheets), N the image dimension, and |λ1| ≤ |λ2| ≤ ... ≤ |λN | the eigenvalues
of the N × N Hessian matrix, the following enhancement is defined:

RA =
|λM+1|∏N

i=M+2 |λi| 1
N−M−1

, RB =
|λM |

∏N
i=M+1 |λi| 1

N−M

, S =

√√√√
N∑

j=1

λ2
j (2)

which combine to define an objectness measure as

O(λ)σ =

{
(1 − e− R2

A
2α2 ) · e

− R2
B

2β2 · (1 − e
− S2

2γ2 ) if λj ≤ 0 for M ≤ j ≤ N
0 otherwise

(3)

which is evaluated over a range of spatial scales and the maximum response is
selected as

O(λ) = max σ ∈ [σmin, σmax] O(λ)σ. (4)
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The result is a probability map for each extraction representing the probabil-
ity of each voxel belonging to either beams or pores. Typical segmentation results
are shown in Fig. 3. The binarization step uses a probability threshold of 0.15,
but may be improved in the future with an adaptive thresholding scheme. Note
that segmentation is done only once in the template space and then deformed
to individual images via deformations computed in template estimation.

(a) (b) (c) (d)

Fig. 3. (a) Structural segmentation of beam structures with σmin = 0.2, σmax =
4.0, Nσ = 20, (b) binary label for beams, and (c) pore structures with σmin =
1.0, σmax = 4.0, Nσ = 20, and (d) binary label for pores.

2.4 Spatiotemporal Analysis

The goal is to quantify the effect of increasing pressure on the structure of
the lamina cribrosa. As mentioned in Sect. 2.2, the template provides a set of
deformations which warp any image onto any other image in the time series.
Encoded in the mappings is precisely the structural change that we wish to
measure. Consider the mapping as a displacement field, i.e. vectors f(i) at each
voxel, which describe where intensity values in the source image move to in the
target image. By taking the determinant of the Jacobian of the displacement field
J = [ ∂f

∂x1
... ∂f

∂xn
] at each voxel, we obtain information about volume change, with

positive values indicating expansion, and negative values indicating contraction.
This provides local information about structural change between observations.

3 Experimental Results

We explore our analysis pipeline with a case study, a longitudinal pressure exper-
iment of one patient with 2 images acquired at each stage: baseline, IOP+ 30
mmHg, IOP + 50 mmHg, and post pressure recovery. The images were filtered
using the method described Sect. 2.1 with standard deviation of the noise σ = 0.3
by minimizing the MSE between the filtered image and the original image.
Figure 1 shows the original and the denoised image.

Average Template Construction: The 8 images from the experiment are
used to estimate an average template, as described in Sect. 2.2, shown as T in
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Fig. 4. Top: Original OCT image series showing same 2D slice across time
depicting lack of registration. Middle: Observations warped to the template and thus
co-registered. Bottom: Inverse diffeomorphic mapping from the template to each indi-
vidual image space reveals subtle local deformations due to IOP variations.

Fig. 2. The advantage of this process can be seen in Fig. 4, namely the creation
of a common coordinate system and the ability to isolate local deformations.
The first row shows images before alignment, notice whole 2D slices are not
in correspondence across observations. The second row shows the input volumes
warped into the template space. These images look similar, as they have been co-
registered through template estimation; computing their average is the resulting
template T. The last row represent the diffeomorphisms {hi} applied to the
template. In contrast to the second row (which shows very little change over the
time series, no change in a perfect case scenario), viewing this sequence as an
animation shows local structural changes across time. This is precisely what we
wish to measure with respect to the longitudinal pressure experiment.

Spatiotemporal Analysis: Beams and pores were segmented in the template
space with the method in Sect. 2.3. Deformations between images in the chrono-
logical order of the original timeline are reconstructed, illustrated in Fig. 5 using
the composition rule (arrow from bottom left to bottom right of Fig. 2 is one
example of the composition rule). Structural changes between the baseline image
and IOP + 30 mmHg are shown in Fig. 6(a), with the Jacobian determinant

Fig. 5. Schematic of timeline reconstruction obtained by applying composition of defor-
mations computed via template construction (deformations artificially enhanced).
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(a) (b) (c)

Fig. 6. Slice extracted from deformation analysis between baseline and IOP + 30
mmHg. (a) Jacobian determinant shows volume changes as local expansion (red) or con-
traction (blue). Volume changes masked with segmentation of beams (b) and pores (c).
(Color figure online)

Fig. 7. Global analysis of structural changes for two scenarios shown as normalized
volume evolution along the optic nerve axis for beams (red) and pores (blue). (Color
figure online)

representing local contraction and expansion, as in Sect. 2.4. In Fig. 6(b) and
(c), results of segmentation are used as a mask on Fig. 6(a), to produce mea-
sures of contraction and expansion isolated on beams and pores, respectively.

In addition to analyzing local deformation patterns, we also compute a global
summary of deformation by integrating each slice along the optic nerve axis.
Figure 7 shows the result of this analysis over the whole LC. This study aims to
explore patterns of deformation of the analyzable lamina due to pressure change
and can be focused on individual or small groups of pores. Positive values in
these plots indicates the region is more expanded by deformation, while negative
values indicate the region is more contracted.

4 Discussion

In this paper, we adapted proven image analysis methods developed by the
brain mapping community to study deformation of structures in an OCT image
sequence acquired under a controlled pressure experiment. Template construc-
tion provides an average image with reduced noise, and segmentation in this
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space followed by back-mapping to original coordinates ensures consistent 3D
structural segmentation across all images of the sequence. Cascading spatial
mappings and analysis of the Jacobian of deformations results in spatiotemporal
analysis of patterns of dynamic changes of the LC. Future work will focus on
improved interpretation of deformations by quantifying variability via repeated
scans at each pressure time point, by analysis of the dynamics of beams and
pores via bio-mechanical modeling, and by acquisition and testing of dynamic
image series from multiple subjects diagnosed with glaucoma. The preliminary
case study demonstrates proof of concept of image-based analysis of the LC and
highlights its potential for improved insight into the dynamic deformation of
the LC caused by external pressure. With the hypothesis that resulting mea-
sures may indicate vulnerability to axonal damage, it is our long-term goal to
develop a tool for early monitoring of glaucomateous disease. To our knowledge,
our framework is the first methodology to address fundamental issues related
to the dynamic characteristics of the microstructure of the LC with serial OCT
imaging under varying IOP followed by spatiotemporal image analysis.
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Abstract. Blur is a significant problem in medical imaging which can
hinder diagnosis and prevent further automated or manual processing.
The problem of restoring an image from blur degradation remains a
challenging task in image processing. Semi-blind deblurring is a useful
technique which may be developed to restore the underlying sharp image
given some assumed or known information about the cause of degrada-
tion. Existing models assume that the blur is of a particular type, such as
Gaussian, and do not allow for the approximation of images corrupted
by other blur types which are not easily incorporated into deblurring
frameworks. We present an automated approach to image deconvolution
which assumes that the cause of blur belongs to a set of common types.
We develop a hierarchical approach with convolutional neural networks
(CNNs) to distinguish between blur types, achieving an accuracy of 0.96
across a test set of 900 images, and to determine the blur strength,
achieving accuracy of 0.77 across 1500 test images. Given this, we are
able to reconstruct the underlying image to mean ISNR of 7.53.

Keywords: Deconvolution · Convolutional neural networks · Colour
fundus · Retina · Parametric

1 Introduction

Image deconvolution is a very useful tool amongst image preprocessing tech-
niques which aims to remove blur which can hinder diagnosis with medical imag-
ing and prevent further processing. In a current screening programme, approx-
imately 5% of the images acquired are too blurred for assessment. It is also an
important step for other techniques in image processing such as super resolu-
tion. While there exist models for image segmentation which can cope with some
noise in an image, blur proves to be more of a problem for this as well as related
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): FIFI/OMIA 2017, LNCS 10554, pp. 194–201, 2017.
DOI: 10.1007/978-3-319-67561-9 22



Fast Blur Detection and Parametric Deconvolution 195

tasks such as registration. Parametric kernel identification can be used to deblur
images making some assumptions about the blur function. There exist many
models which work well without noise. However, noise is often present in images
and can cause misidentification of the blur function and thus prevent accurate
recovery of the image. This paper presents a model for restoring noisy, blurred
images in which the blur is assumed to be of a certain type.

Assuming that the blur is spatially invariant, then denoting by h and u the
blur function and true image respectively, we model the blurred image z as
the convolution of the true image and kernel z(x, y) = (h ∗ u)(x, y) + η(x, y)
where ∗ denotes the operation of convolution and η denotes noise. Deblurring
(or deconvolution) [1] is the associated inverse problem which aims to recover
the true image u from the received data z.

Deconvolution models may be split into 3 categories: non-blind deconvolution
[2] involves recovering the true image with known blur function; blind deconvo-
lution, [1] involves restoring the image with no knowledge of the blur function
and is computationally expensive and difficult to achieve; semi-blind deblurring
[3] involves recovering the hidden true image with only partial knowledge or
assumptions about the blur function, such as the type of blur and offers a way
of achieving an accelerated deblurring algorithm. Such models perform well and
can obtain improved results over blind deblurring when the blur type may be
known or estimated. Such techniques are useful in related areas such as the
segmentation of blurred images and super-resolution where the blur is often of
Gaussian or out of focus type. Our aim in this case is to recover the parameters
and thus reconstruct the blur function.

Recently, deep neural networks (DNNs) have been emerged as a new area
in machine learning analytics. Unlike conventional artificial neural networks,
DNN layers are not fully connected and can learn to recognise complex nonlin-
ear features. DNNs are also based use with graphical processing units (GPUs)
which facilitate efficient training of large and complex machine learning tech-
niques. Various deep learning architectures such as convolutional neural net-
works (CNNs) have been reported and developed for various applications includ-
ing speech recognition [4] and bioinformatics [5] where they have been shown
to produce state-of-the-art results on various tasks. Models for deconvolution
employing machine learning approaches, including deep learning, have recently
been reported. Schuler et al. [6] developed a method for non-blind deblurring
where the deconvolution procedure is learned with a multi-layer perceptron.
The method is tested on synthetic examples and real out-of-focus images. The
authors later extended this to the blind case for small blur kernels [7]. Xu et al.
[8] also developed a neural network approach to non-blind deconvolution by link-
ing to optimisation-based schemes, combining deconvolution with denoising. A
semi-blind motion blur [9] approach to deconvolution was presented by Sun et
al. [10] who used convolutional neural networks to estimate motion blur and
adapted a uniform deconvolution approach to the non-uniform problem. In this
paper, we develop a framework for semi-blind deblurring with a fast technique
of finding the type and strength of blur from an image using CNNs which allow
us to determine the blur function quickly and accurately.
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2 Method

Our algorithm is separated into training the neural network to classify our data,
and separate testing which includes classifying our images given the trained
networks and producing a clean image. These stages can be done separately, so
that the algorithm may be trained beforehand and later tested on individual
examples without needing computationally-expensive training for each image,
making this potentially a very fast approach to semi-blind image deconvolution.

For the first part of the training stage of our approach, we attempt to train a
convolutional neural network to distinguish blur type using the training images
with no assumptions on the blur; this includes the case of no blur being present.
We also train individual networks to identify blur strength, for each of a set of
blur types, given only the training images and an assumption on the type of
blur; for example, we may assume that the blur is out-of-focus. At the testing
stage, given an example image which may be blurred or not, we use the first
trained network to determine whether blur is present in the image and, if so,
the type of blur which is present. If the image is determined to not be blurred,
nothing more is done and the image exits the algorithm. Since most images are
likely to not contain blur, this means that most images can be processed in
the approximate 0.0028 s that it takes the one CNN to classify it. If the image
is deemed to blurred, the blur type should already be determined at the same
time. Given this information, the appropriate pre-trained second CNN is used
to classify the image by blur strength. This allows us to determine the kernel
function. Since the kernel function is now assumed to be known, the problem
is transformed into one of non-blind deconvolution which may be solved by an
existing fast method such as [2]. This algorithm is presented in Fig. 1 and the
details of the CNN and deconvolution are shown below.

Fig. 1. Flow chart of our overall approach for testing an example image. Assuming
that the CNNs are trained, the image is first classified as being corrupted by no blur
or a particular type. If the image is blurred, a further CNN determines the strength of
blur before the image is restored by a deconvolution process.

2.1 Classification Using Convolutional Neural Networks

Convolutional neural networks (CNNs) are among the most popular deep neural
network architectures and have achieved state-of-the-art results in image pattern
recognition and other applications. CNNs learn features from raw data without
the need for manually designing hand-crafted features.
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A CNN is comprised of a modified version of LeNet convolutional neural net-
work implemented by LeCun [11] with successive convolution layers alternated
with subsampling and activation functions to implement the feature space for
the input data. Fully connected layers combined with a softmax layer normalises
the probability of the examples to be classified between 0 and 1. The convolution,
nonlinearity, pooling, dropout and classification in a dense layer are the main
operations in a convolutional neural network and considered the basic building
blocks. The convolution layers work as feature detectors by extracting features
from small squares of input image using filters of a certain window size allow-
ing the pixels to preserve the spatial relationship between them. Moreover, to
introduce the nonlinearity to convolutional neural networks, which typically use
linear operations in the convolution operation, the Rectified Linear Unit (ReLU)
is usually used as an activation function after each convolutional layer. To reduce
the dimensionality of the feature maps resulting from the convolutional layers, a
spatial sub-sampling (or pooling) layer is defined by sliding a square window on
the input image and taking the maximum value in each small region. In addition
to that, to decrease overfitting during the training stage, a dropout layer is used
as a regularisation technique. The final layer is the conventional Multi Layer
Perceptron which is a fully connected layer using fully connected nodes followed
by a softmax activation function. The purpose of the dense layer (fully connected
layer) is to use the features extracted from proceeding layers for classifying the
input image into various labels based on the training examples.

The architecture of the CNN used in this experiment was structured as fol-
lows: four convolutional layers; each two followed by a non-linear activation
function, a maxpooling layer, and dropout layer with dropping probability 0.25
and finally two fully connected layers; one has 512 neurons with dropout layer
with dropping probability 0.5 and the other has 5 neurons represent the number
of classes to be detected as shown in Fig. 2.

The network was trained using stochastic gradient descent (SGD) with
a constant learning rate of 0.001 and momentum parameter 0.9 by updat-
ing the network weights which are initialised using Glorot weight initialisa-
tion. The objective function to be minimized was cross-entropy loss function
L = −tlog(p) − (1 − t)log(1 − p).

Fig. 2. Flow chart of our CNN architecture. m denotes the number of output classes.
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2.2 Non-blind Image Deconvolution

Assuming that the blur kernel function is already determined, we aim to recover
the sharp image by a deconvolution process. We might attempt to do this using
a regularised variation approach which may be achieved by solving a minimising
problem of an functional of the form

min
u(x)

{
‖[h ∗ u](x) − z(x)‖2L2(Ω) + |∇u(x)|

}
(1)

where h(x) denotes the blur function, u(x) denotes the clean unknown image
which we aim to recover, z(x) denotes the blurred image which we started with,
‖ ·‖2L2(Ω) denotes the L2-norm over the domain and ∇ denotes the gradient. The
first term in the energy functional is a fitting term which has a minima when
[h ∗ u](x) = z(x) and the second part is a regularisation term, in this case total
variation, which aims to deal with the effects of noise which makes this problem
ill-posed. While this can achieve good results, it can be quite slow to solve using
traditional solvers such as gradient descent and conjugate gradient. The quality
of results from this approach can also suffer from the relative simplicity of the
model. Much work has been done recently in defining constrained deconvolution
models which achieve improved results over more traditional ideas as well as
fast solution techniques such split-Bregman and alternate direction methods.
For this work, we reconstruct our images using an approach from Williams et al.
[2] which provides implicitly constrained image deconvolution and a fast solver.
The problem is presented as minu,ψ;λ(f(u, ψ;λ)) where

f(u, ψ;λ) =
1
2
||h ∗ u − z||2L2(Ω) +

γ

2
||Ta(ψ) − u||2L2(Ω)+ < λ, Ta(ψ) − u >

+ μ||ψ − ζ||2L2(Ω) + α

∫

Ω

∣∣∣∇
(
Ta(ψ) + θ||ψ − ζ||2L2(Ω)

)∣∣∣ dΩ, (2)

where the first term is a deconvolution fitting term, the second and third terms
aim to constrain the values of the reconstructed image u(x) to be similar to
the implicitly constrained function T (ψ) [2] using a lagrange multiplier λ. The
fourth term is included to encourage convexity given certain parameters where
ζ should be an initial approximation of the solution and ψ(x) is a dual variable.
The final component is a regularisation term. To minimise the functional, we first
calculate ζ and proceed with alternate minimisation of the remaining arguments
which can each be solved efficiently. More details are presented in [2].

3 Experimental Results

We test our approach using the Messidor dataset [12] of 1200 eye colour fundus
images as our sharp, true data. These were acquired from patients with varying
stages of retinopathy or maculopathy at three ophthalmologic departments using
a colour video 3CCD camera on a Topcon TRC NW6 non-mydriatic retinograph
with a 45 degree field of view. The 8-bit images were captured at 1440 × 960,
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2240×1488 or 2304×1536 pixels but, for our testing, we resize to 256×256. We
split our datasets (to be defined in the results section) into training (75%) and
testing (25%) sets; of the training data, 20% is reserved for validation. All tests
were run on an HP Z440 Workstation with Intel Xeon E5-1620, 32GB RAM and
an NVidia Titan Xp GPU which was used to train the CNNs.

We first aim to determine blur type. For this experiment, we consider the
cases of no blur, out-of-focus blur and motion blur. We form a dataset for training
and testing the CNNs composed of the 1200 messidor images which are sharp
and uncorrupted; we consider these as class 1. We blur these images using out-
of-focus blur of random diameter (strength) between 1 and 10 and consider
these images as class 2. Similarly, we blur the class 1 sharp images using motion
blur of random strength between 1 and 10; we consider these images as class 3.
Examples are shown in Fig. 3. From each class, 900 images are used for training,
of which 180 are reserved for validation, and 300 images are used for testing once
the network is trained. The network was trained until the cost function reached
a plateau and then tested on the combined testing set. We achieved an accuracy
of 0.9589. All of the clean images were classified correctly, while 99% of the out-
of-focus images were classed correctly and 88.7% of the motion blurred images
were classified correctly. The remaining incorrect images were all classified as
clean.

(a) Clean Image (b) Out-of-focus
Image

(c) Motion Blurred
Image

Fig. 3. Examples of training data: (a) clean image, (b) image corrupted by out-of-
focus blur, (c) image corrupted by motion blur. In the cases of the blurred images, the
strength of added blur corruption was random.

We now consider the feasibility of using neural networks to determine the
strength of blur in an image with an obvious case which should be easily solvable.
We define a set composed of the 1200 resized, clean Messidor images as class 0.
We then blur these using a 20-pixel motion blur function and consider these as
class 1. From each class, we randomly select 900 images for training, of which
180 are reserved for validation. The remaining 300 images from each class are
combined into a test-set and are to be classified once the network is trained.
The network was trained using the training and validation data to distinguish
between clean images and the heavily blurred images, and achieved an accuracy
of 1.00 on the 600 test images, meaning that every image was classified correctly.

Given this encouraging result, we consider the same experiment but with a
more difficult case using 10-tap motion blur. Training again until the relative cost
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was sufficiently small, we achieve 0.988 accuracy on 600 test images. Increasing
the difficulty further by decreasing this to 3-tap blur, we are still able to achieve
accuracy of 0.94. These results strongly suggest that may be able to use CNNs
to reliably determine the unknown strength of blur in fundus images.

We consider a multi-class approach using a set of potential strength values
including no blur, 4-, 6-, 8-, and 10-tap blur since less than 4 is not considered
likely to considerably distort the image and greater than 10- is unlikely to happen
in practice. To form a training and testing dataset, we blur the messidor dataset
by each blur function and consider the resulting corrupted images as classified by
blur strength. 75% of the images of each class (4500 images in total) are used for
training, of which 20% (900 images) are reserved for validation. The remaining
1500 images are used for testing. We trained the network for 100 epochs. Using
all five classes, we achieve 77% accuracy. Subsequent deconvolution resulted in
a mean ISNR of 7.53 across 1200 examples which is similar to the 7.80 achieved
by [3]. However, it should be noted that a different and smaller dataset was used
for experiments. Some results are presenting in Fig. 4.

(a) Blurred (b) Restored (c) Blurred (d) Restored

Fig. 4. Two examples of blurred images (a), (c) restored by our algorithm (c), (d).

4 Conclusion

We have presented a new technique for determining the type and level of blur in
images, considering in particular colour fundus images of the retina. By develop-
ing convolutional neural networks for single and multi-class problems, we have
been able to determine whether an image is blurred and how strong that blur
is to a high accuracy. One considerable benefit is that the method naturally
includes the same number of images in each class, thereby avoiding the issue of
bias requiring solutions such as weighting. Building in image deconvolution, we
create an automatic semi-blind deconvolution technique which does not require
manual inspection of the images to determine or estimate the type and strength
of blur present. An important aspect is to test this method beyond synthetic blur
which requires creation of an annotated dataset. Further work could be consid-
ered in the future to improve the accuracy for distinguishing the strength of
blur so that the correct blur function may be identified, however the high accu-
racies found in this work are very encouraging. This approach may be extended
to consider classification of other blur types which are not currently addressed.
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In particular, this approach is fast, automatic, and provides a technique for deter-
mining that an image is clean, estimating the blur and strength, and recovering
the clean image from the blur degradation.
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Abstract. Optical coherence tomography (OCT) is used to produce
high resolution depth images of the retina and is now the standard of
care for in-vivo ophthalmological assessment. In particular, OCT is used
to study the changes in layer thickness across various pathologies. The
automated image analysis of these OCT images has primarily been per-
formed with graph based methods. Despite the preeminence of graph
based methods, deep learning based approaches have begun to appear
within the literature. Unfortunately, they cannot currently guarantee the
strict biological tissue order found in human retinas. We propose a cas-
caded fully convolutional network (FCN) framework to segment eight
retina layers and preserve the topological relationships between the lay-
ers. The first FCN serves as a segmentation network which takes retina
images as input and outputs the segmentation probability maps of the
layers. We next perform a topology check on the segmentation and those
patches that do not satisfy the topology criterion are passed to a second
FCN for topology correction. The FCNs have been trained on Heidelberg
Spectralis images and validated on both Heidelberg Spectralis and Zeiss
Cirrus images.

Keywords: Retina OCT · Fully convolutional network · Topology pre-
serving

1 Introduction

Optical coherence tomography (OCT) is a widely used modality for imaging the
retina as it is non-invasive, non-ionizing, and provides three-dimensional data
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which can be rapidly acquired [6]. OCT improves upon traditional 2D fundus
photography by providing depth information, which enables measurements of
layer thicknesses that are known to change with certain diseases [9]. Automated
methods for measuring layer thicknesses in large-scale studies are critical since
manual delineation is time consuming. In recent years, many automated meth-
ods have been developed for the segmentation of retinal layers [3,7,10]. The most
prominent technique in use for OCT images are graph based methods coming
from the work of Garvin et al. [5]. Recent developments in deep learning have
made deep convolutional networks a viable alternative to this status quo and it
provides a more flexible framework for abnormal retina analysis. Fang et al. [4]
used a convolutional neural network to predict the central pixel label of a given
image patch, and subsequently used the graph based approach to finalize the
segmentation. However, such patch based pixel-wise labeling schemes use over-
lapped patches which introduces redundancy and a trade-off between localization
accuracy and patch size.

The more elegant architectures of fully convolutional networks (FCNs) [8]
have been proposed and applied to various segmentation tasks. In FCNs, the
fully connected layer of traditional convolutional neural networks is replaced
with convolutional layer. The network can be trained end-to-end and pixels-to-
pixels, and the outputs can have high resolution. This architecture avoids patch
based pixel labeling and is thus more efficient. Roy et al. [13] designed a fully
convolutional network to segment retina layers and fluid filled cavities in OCT
images.

Although FCN based networks have been successful in various segmentation
tasks, at its core it is providing pixel-wise labeling without using higher-level
priors like topological relationships between layers or layer shape, and can thus
give nonsense segmentations. In the case of OCT, or medical imaging in general,
there are strict anatomical relationships that should be preserved. Approaches
proposed to solve this include, Chen et al. [2] using a fully connected conditional
random field (CRF) as a post-processing method for the segmentation map from
a deep network; however, the CRF does not utilize the topology or shape prior
information. Bentaieb et al. [1] proposed a hand-designed loss function to penal-
ize topology disorders, but the pixel-wise labeling of FCN still cannot guaran-
tee the topology correctness and cannot fix the topology defects. Ravishankar
et al. [11] used a FCN to segment kidney and cascaded a convolutional auto-
encoder to regularize the shape and works well.

We propose to segment the retina layers as well as building a framework
to correct topological defects that contradict the known anatomy of healthy
human retinas. We do this by cascading two FCNs. The first FCN segments the
retina layers and produce the initial segmentation masks. We also proposed an
algorithm to check the topology correctness of the segmentation. We then iterate
the masks with topology defects over the second FCN to fix the defects and check
the topology until all the segmentation masks have the correct topology or an
max iteration count is reached. Since the topology fixing net fixes most of the
topology defects in the first two iterations, only a small number of masks need
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to iterate through the second net multiple times. There are two key differences
between our approach and the work of Ravishankar et al. Firstly, we iterate over
the topology correction step with successive iterations correcting 98% of defects;
secondly our network is structurally similar to a segmentation style network with
long skip connections and is not a convolutional auto-encoder.

2 Method

2.1 Preprocessing

We first identify the Bruch’s membrane and flatten the input images to it,
which is a standard OCT pre-processing step. We then subdivide the B-scan into
128 × 128 overlapping image patches with a fixed step size (determined by the
B-scan size), resulting in 10 image patches per B-scan. When we reconstruct the
B-scan segmentation from those patches we average the segmentation probability
map if they are overlapped. See the pre-processing portion of Fig. 1.

Fig. 1. Our proposed cascaded FCNs, made up of a Segmentation FCN and Topology
fixing FCN that we iterate over to resolve topology errors.

2.2 Segmentation Network Architecture

Our segmentation FCN (S-Net) is based on U-net [12], and consists of a contract-
ing encoder and an expansive decoder. The encoder takes a 128×128 image patch
as input and repeatedly uses 3× 3 convolutions and rectified linear unit (ReLU)
activation followed by batch normalization. We conduct 2 × 2 max pooling at
four different layers in the encoder to down sample the image patches. The
decoder portion of our FCN concatenates the feature map from the correspond-
ing encoder and up-samples it repeatedly. The final output from S-Net is a
10× 128× 128 volume, which corresponds to probability maps for our eight lay-
ers and backgrounds above and below the retina(vitreous and choroid). Figure 2
shows a schematic of the network used, with training outlined in Sect. 2.5.
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Fig. 2. A schematic of the network structure of S-Net and T-Net.

2.3 Topology Correction Network Architecture

The topology fixing net (T-Net) shares the same structure as S-Net, with the
addition of an applied dropout of 0.5 after each max pooling and up-sampling
layer. T-Net tries to learn the shape and correct topology of the true segmenta-
tion and use the learnt knowledge to fix the topology identified in the output of
S-Net. Training for T-Net is outlined in Sect. 2.5.

2.4 Topology Checking

The segmentation masks should have a strict topology relationship, with layers
being nested, and the k-th layer should only touch the (k− 1)-th and (k + 1)-th
layers with no overlaps or gaps for k = 1, . . . , 8 (k = 0 and 9 are the vitreous and
choroid respectively). S-Net outputs a segmentation mask of size 10×128×128,
which we denote as Mk(x) for k = 0, . . . , 9, with x the A-scan index within the
128 × 128 image patch. We build a new mask, Mt(x), as

Mt(x) =
9∑

k=0

k ×Mk(x).

Figure 3 shows an example Mt(x) and the corresponding profile of one A-scan.
We perform a backward difference within each A-scan, if the topology is correct,
there are no negative values. However, if there are hierarchical disorders, gaps,
or overlaps, there will be negative values. We use this analysis to identify seg-
mentation masks with topological defects, and such masks are passed to T-Net
for correction.

2.5 Training

S-Net is trained based on 128 × 128 Spectralis image patches, with output
10 × 128 × 128 based on manual delineation of the OCT data. We train the
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(a) (b) (c) (d)

Fig. 3. Shown is an example of (a) Mt(x), the segmentation groundtruth without any
topology defects. While a single (b) middle A-scan of (a), shows that we expect Mt(x)
to be a strictly increasing function when there are no topological defects. (c) is the
image with simulated topology defects added on (a) and the (d) middle A-scan of (c),
showing the effects of topology errors.

FCN using back-propagation to minimize a loss function based on a modified
Dice score between the ground truth and the output segmentations. T-Net, which
fixes topology errors in the segmentation maps, is trained on manual delineations
with simulated randomly generated topological defects. Examples of our simu-
lated defects and the corresponding ground truth are shown in Fig. 3.

3 Experiments

3.1 Data

We have 7 Spectralis Spectral Domain OCT (SD-OCT) scans (of size 496×1024×
49) and each has 8 B-scans manually delineated for training. We flatten and crop
each B-scan into 128×1024 size images and extract overlapped 128×128 patches
by a fixed step and obtain 69 patches from each B-scan, with 7× 8× 69 = 3864
total training patches. For validation, we have 10 manually delineated Spectralis
scans (totaling 490 manually delineated B-scans) and 6 manually delineated
Cirrus scans, each has 8 B-scans delineated (totaling 48 B-scans).

3.2 Comparison to Manual Segmentation

Spectralis. We compared the cascaded network (S-Net + T-Net) with the single
segmentation network (S-Net) and a state-of-art random forest and graph cut
based method (RF+Graph) [7]. The Dice coefficients between the segmentation
results and manual delineation of eight retina layers are shown in Table 1. RF +
Graph is still better than the deep network as the graph have been designed and
refined for retina segmentation. However, the deep network (S-Net) has reached
similar performance to the RF + Graph and the topology fixing (S-Net + T-Net)
gives the deep network the correct anatomical structure. See Fig. 4 for example
results.

Cirrus. The network was trained only on Spectralis images, but was also eval-
uated on Cirrus images, with results shown in Table 2. In this case, we used the
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Fig. 4. The top row shows Cirrus and Spectralis B-scans, respectively. The second row
shows the segmentation after S-Net, and the bottom row shows the effect of topology
correction with the output from T-Net.

Table 1. Dice coefficients of eight layers evaluated against 490 manually delineated
Spectralis B-scans.

Layer RNFL GCL+IPL INL OPL ONL IS OS RPE

S-Net 0.898 0.917 0.829 0.776 0.933 0.832 0.839 0.874

S-Net + T-Net 0.904 0.922 0.830 0.776 0.935 0.835 0.839 0.873

RF + Graph 0.914 0.926 0.831 0.787 0.939 0.833 0.844 0.873

Table 2. Dice coefficients of eight layers evaluated against 48 manually delineated
Cirrus B-scans.

Layer RNFL GCL+IPL INL OPL ONL IS OS RPE

S-Net 0.846 0.927 0.897 0.773 0.948 0.792 0.818 0.901

S-Net + T-Net 0.860 0.939 0.899 0.776 0.951 0.800 0.820 0.844

RF + Graph 0.909 0.950 0.919 0.815 0.958 0.915 0.916 0.927

version of RF + Graph that had been trained on Cirrus data, with graph para-
meters specifically chosen to optimize performance on Cirrus data. It is observed
that S-Net + T-Net has reached comparable performance to that of RF + Graph,
which is rather striking given that the deep network had been trained only on
Spectralis data. See Fig. 4 for example results.

3.3 Evaluation of Topology Correction

From Tables 1 and 2 we see only small improvements in the Dice coefficients after
the T-Net because the topology disorders only affect a small number of pixels,
but the topology disorders are greatly decreased. Figure 5 shows the relation
between the percentage of patches with topology disorders and the iteration
through the T-Net. After eight iterations most segmentation masks converge to
the correct topology. Figure 6 shows some examples of T-Net.
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Fig. 5. Percentage of patches with topology disorder and the iterations into the topol-
ogy fixing net.

Fig. 6. From left to right: original patch, initial segmentation mask by S-Net, first
iteration through T-Net, and fourth iteration through T-Net.

4 Conclusions

In the paper, we propose a cascaded FCN framework to segment both Spec-
tralis and Cirrus retina SD-OCT images while addressing the topology relations
between layers. The topology fixing net is learning the shape and topology pri-
ors of the segmentation and uses the learnt priors to fix the topology disorders.
It fixes 98% of them within eight iterations. The topology errors that are not
corrected are usually single wrongly labeled pixels around layer boundaries as
they are not represented in the simulated training data. We expect that better
topology correction can be achieved by simulating more representative topology
defects and include manually selected real topology defects and original image
intensities as extra information. We plan to modify the framework to incorporate
the prior topological knowledge for segmenting abnormal retinas.
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Abstract. Exudates in retinal images are one of the early signs of
the vision-threatening diabetic retinopathy and diabetic macular edema.
Early diagnosis is very helpful in preventing the progression of the dis-
ease. In this work, we propose a fully automatic exudate segmenta-
tion method based on the state-of-the-art residual learning framework.
With our proposed end-to-end architecture the training is done on small
patches, but at the test time, the full sized segmentation is obtained at
once. The small number of exudates in the training set and the pres-
ence of other bright regions are the limiting factors, which are tackled by
our proposed importance sampling approach. This technique selects the
misleading normal patches with a higher priority, and at the same time
avoids the network to overfit to those samples. Thus, no additional post-
processing is needed. The method was evaluated on three public datasets
for both detecting and segmenting the exudates and outperformed the
state-of-the-art techniques.

Keywords: Exudate segmentation · Retinal images · Residual nets ·
Importance sampling · Diabetic retinopathy · Diabetic macular edema

1 Introduction

Diabetes is threatening the health of many people in the world, and it normally
remains undiagnosed unless its symptoms and complications appear. Among
its different ophthalmic complications, diabetic retinopathy (DR) is one of the
most common and the most vision-threatening complication. DR is classified
to non-proliferative DR (NPDR) and proliferative diabetic retinopathy (PDR),
which determines the severity level and the need for further treatments. On
the other hand, diabetic macular edema (DME) defined as retinal thickening, is
another important complication that might happen in eyes at any DR severity
level. Diabetic eyes are typically categorized into three groups based on the
c© Springer International Publishing AG 2017
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DME severity (healthy, moderate or severe DME). There are several signs and
symptoms associated with DR and DME such as microaneurysms, hemorrhages,
hard exudates and cotton-wool spots. Among these signs, exudates are the early
signs of both moderate NPDR and moderate DME. They are largely made up
of extracellular lipid, which has leaked from abnormal retinal capillaries, and
appear as white, yellowish or waxy lesions situated mainly in the outer plexiform
layer of the retina [6,13].

In this work, we propose a fully automatic method for segmenting the exu-
dates in retinal images. Retinal images are one of the cost-effective and non-
invasive sources of medical information, which are widely used for diagnosis pur-
poses and studying the progression of the diseases. There are several works in
the literature proposed for segmenting the exudates, which are mainly based on
a series of preceding handcrafted feature extraction and landmark classification
steps (e.g. [3,14]). The CNNs are taking over the conventional image processing
approaches in various computer vision tasks, and medical applications are not
excluded from this rapid change. Recently, new methods using the state-of-the-
art convolutional neural networks (CNNs) have been proposed for automatic
lesion and landmark detection, e.g., [1,9,11]. In the work proposed by [11], the
exudate probability map created by a 10 layer CNN is combined with the output
of other methods segmenting the optic disc, vessels, and bright borders to create
the final masks for the exudates. While in [9], a 7-layer CNN is trained to local-
ize the exudates and they are later used in another network for the automatic
classification of DME.

In this article, we present a novel end-to-end segmentation framework using
residual nets (ResNets) [5]. The depth of the neural networks is the key factor
in enhancing the performance of visual recognitions tasks. A residual learning
framework solves the difficulty of training very deep networks by introducing a
reference to the input layer. Using this framework, it is possible to gain higher
performance, while keeping the complexity the same. Since limited images with
their annotations are available, we train the segmentation network with small
patches and then after the kernels are learned well, we test the method on
full-sized images. Bright reflections are always misleading for the network. In
order to help the network to learn better from non-exudate, but exudate-looking
samples, we propose a new sampling approach. This sampling technique presents
the misleading negative samples to the network more often. This leads to a
faster convergence compared to the uniform sampling. The paper is structured
as follows: in Sect. 2, all the steps of our proposed network, sampling technique,
and data preparations are explained in detail. In Sect. 3, the evaluation results
are presented. At the end, the paper is concluded in Sect. 4.

2 Methodology

In this section, all the steps of our proposed technique are presented. An overview
of our approach is depicted in Fig. 1. Each element in this figure will be explained
in the following.
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2.1 Material

There are very few public datasets with manual segmentations of exudates avail-
able. We used the e-ophtha-EX dataset [14], which contains 82 images with
different image sizes ranging from 1440 × 960 px to 2544 × 1696 px. All the
images are taken with the same field-of-view of 45◦. Among these 82 images,
47 images contain in total 2278 annotated exudate components, and 35 images
are normal images, which might contain misleading structures such as optical
artifacts and vessel reflections. Since the images have different resolutions, after
removing the black boundaries so that we have a square bounding box, each
image, and its corresponding manual segmentation are scaled to have the reso-
lution of 1024 × 1024 px. Then the images are enhanced by removing the local
mean values using a Gaussian kernel (Gσ) with the scale of σ = 1024/30 as
Ienh = I − I ∗ Gσ=1024/30, where ∗ is the convolution operator. The top row, the
left side of Fig. 1 shows a sample image before and after pre-processing together
with its corresponding manual segmentation.
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Fig. 1. An overview of our proposed architecture.

We split the data into the training/validation sets (80/20% split) at the
image level. This splitting is done for both healthy and pathological images
randomly. In the next step, for each of the training and validation sets, we
define two different categories called set− and set+. The set− includes patches
that have been selected at random locations from the normal images; while the
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patches in set+ have been selected around the centers of exudate components
in the pathological images. All patches have a fixed size of w × h. We selected
w = h = 128 to have large enough patches so that different structures (blood
vessels, exudates, reflections, etc.) are easily differentiable from each other. Some
sample patches for both set− and set+ are shown in the top row, the right side
of Fig. 1. By selecting maximum 800 patches per image, there are in total 24035
patches in the training set (|set−| = 22400 and |set+| = 1635), and 6184 patches
in the validation set (|set−| = 5600 and |set+| = 584).

The e-ophtha-EX set was mainly used for training the network. For evalu-
ating the method, two other public datasets were used, the DiaRetDB1 [7] and
DR2 [10] public datasets. The DiaRetDB1 includes 89 color fundus images cap-
tured using a 50◦ field-of-view digital fundus camera. Because the annotations
have been done by different experts, we only consider the exudate annotations
with the agreement higher than 75%. These annotations do not show the exact
contours of the lesions and only an approximate mask of the lesion is provided.
The same pre-processing as e-ophtha-EX dataset is applied on these images. The
DR2 dataset includes in total 529 images and only the presence (not the location)
of different types of lesions are provided. We only used 379 images including 300
normal images and 79 images with exudates. The images have the resolution of
867× 575 px. We rescaled all the images to 512× 512 px and pre-processed with
σ = 512/30 after cropping the black boundaries.

2.2 Network Details

We use ResNets as the main blocks of our architecture. The basic ResNet block
(BBf,s

p,q) used in our model is shown in the middle row of Fig. 1. In this figure,
Convf,s

p,q is a 2D convolutional layer, where f , p, q, and s represent the filter
size (f × f), the number of input planes, the number of output planes, and
the convolution step size, respectively. The batch normalization layer and the
rectified linear unit are represented by BN and ReLU respectively. The full
model is depicted in the bottom row of Fig. 1. In this architecture, the cascade
of N ResNet blocks (BB3,1

nf ,nf ) in combination with two convolutional layers,
one ReLU , one BN and one softmax layer is used. In this work, nf and N are
set to 64 and 9 respectively, and the cross entropy criterion is used for the loss
measurements. Using the filter sizes of f = 3 and stride s = 1 in all convolutional
layers, the spatial resolution of the output is similar to the input, i.e. the input
patch has the size of 3 × w × h and the output of the network has the size of
2 × w × h. The first and second channels of the output represent for each pixel
the probability of being a non-exudate or exudate pixel.

In each epoch, the input patches are augmented before feeding them to the
network. The transformations include horizontal and vertical flipping with the
probability of 0.5, rotation between −10◦ to 10◦ with uniform probability and
elastic transformations. The weights are initialized as in [4] and training was done
from scratch. We used the stochastic gradient descent optimization technique
with Nesterov momentum updates [8]. At the beginning, the learning rate was
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set to 0.1 and momentum to 0.9. We decreased the learning rate every time the
loss stopped decreasing, and the training was done until there were no significant
changes in the loss value.

2.3 Importance Sampling

One of the main difficulties in exudate detection is the high number of false
positives due to the presence of reflections and other bright lesions. One way
to solve this problem as proposed by [11,14] is to provide several other masks
(generated in separate pipelines) for these regions and remove falsely classified
non-exudate pixels from the final exudate mask. However, we propose to solve
this problem directly during training the network and without introducing any
additional post-processing steps. The non-exudate pixels are mainly present in
set− and they result in a higher loss when comparing the output of the network to
the ground truth. We propose to use the importance sampling approach so that
the samples in set− having a higher loss in previous epochs, have a higher chance
to be seen in the next training iteration. In this way, the misleading negative
samples are presented to the network more often and the network learns to adapt
its weights and parameters accordingly.

If set+ = {x1, . . . , xM} and set− = {x1, . . . , xN} are the sets of training
samples, then we assign a weight to each sample in these two sets as W+ =
{w1, . . . , wM} and W− = {w1, . . . , wN}, so that the sum of weights for both W+

and W− equals 1. These weights determine the probability of being selected for
the next training iteration. Since the patches with exudates need to be treated
equally, we define wi = 1/M for all wi ∈ W+. However, for the normal patches
wi = li∑N

j=1 lj
for wi ∈ W−, where lj is the loss of the network achieved for

the sample xj ∈ set− in the previous training epoch. For very few epochs at
the beginning (e.g. 5) the network is trained using 2K samples selected only
from set+. This results in a good initialization of the network. Then in the rest
of the iterations, K samples are selected from set+ and K samples from set−

according to their defined weights. After feeding the minibatch to the network
and computing the derivatives of the loss with respect to the output units, one
more step is needed in order to avoid the network to get too biased toward
examples with high losses. We rescale the gradient of the loss on individual
samples of set− with the scale of 1/μj , where μj = N

wj∑N
j=1 wj

(see [2] for more

details). Finally, the weights of the network are updated accordingly.

3 Experiments

To get the segmentation for the entire image, we just pass the image through the
network. The spatial resolution does not change in the network, and the patches
are selected large enough to present enough contextual information; therefore,
the learned kernels are sufficient for segmenting the full image. Figure 2 from left
to right represents the full segmentation (probability maps) of two sample images
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Fig. 2. Four sample segmentation results overlaid on the original images (top row) and
their corresponding ground truth images (bottom row).

from the e-ophtha-EX and two images from the DiaRetDB1 dataset, overlaid on
top of the original images in the first row. Their corresponding ground truth
images are presented in the second row.

In order to evaluate the performance of our method, we use the same eval-
uation approach as proposed by [14]. In this approach, the evaluation is done
either at the exudate level or at the image level. At exudate level, one exudate
component (defined as a set of connected pixels) is considered to be completely
segmented, if there is a certain overlap between that exudate and the ground
truth. For the definition of true/false positives and true/false negatives, the
reader is referred to [14]. However, the image level validation only evaluates
the correct prediction of the presence of exudates in the images, which is more
important from the clinical point of view. To this aim, the image level prediction
probability is defined as the maximum of all individual probabilities at the pixel
level.

The results are reported in Table 1. The second column represents the total
number of images in each set and the number of healthy vs. images with exudates
(h/ex). The third column represents the F1-score at the exudate level. The next
two columns present the F1-score and the area under the ROC curve (AUC) at
the image level. Finally, the last column includes the AUC only at the image
level reported by the state-of-the-art techniques. The DR2 set was only used for
evaluation at the image level because the exudate masks are not available for
this dataset. Our proposed method achieved the F1-score of 0.832 at the exudate
level on the e-ophtha-EX dataset, which is higher than the score (F1-score =
0.732) reported by [14]. Using the same evaluation approach, the authors in [11]
reported the F1-score of 0.78 for the DRiDB dataset [12], which was not available
to us for comparison. Based on these results, our method outperforms the state-
of-the-art techniques in most of the cases. The performance on the DR2 dataset



216 S. Abbasi-Sureshjani et al.

is also as high as the results reported by [10]. The F1-score values at the exudate
level are very good indications showing that the number of false positives is very
low, i.e., the network is differentiating the exudate pixels from misleading non-
exudate ones very well. The ROC curves for different datasets are also depicted
in Fig. 3.

Table 1. The evaluation results on different public datasets

Dataset Size Exudate Image Literature

Total (h/ex) F1-score F1-score AUC AUC

e-ophtha-EX [14] 82 (47/35) 0.832 0.967 0.994 0.95 [14]

DiaRetDB1 [7] 89 (59/30) 0.819 0.880 0.965 0.95 [14]

DR2 [10] 379 (300/79) - 0.871 0.972 0.978 [10]

Fig. 3. The ROC curves (at the image level) obtained for different datasets.

4 Conclusion

We presented a novel method for exudate segmentation in retinal images. Our
proposed network consists of 20 convolutional layers (9 ResNet blocks). The
proposed importance sampling step, which prioritizes the sampling towards
highly misleading non-exudate samples, helps to decrease the number of falsely
detected non-exudate components to a great extent. Therefore, no additional
post-processing steps are needed. Moreover, it helps to achieve a high perfor-
mance, outperforming the state-of-the-art techniques, in less number of iter-
ations. Even though the main goal of this work was to segment the exudate
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components, the results show that our network performs very well in deciding
about the presence of exudates, which is typically enough for clinicians to take
actions. This method might easily be used for detection of other types of lesions
if their manual segmentations are available.
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Abstract. In-vivo specular microscopy provides information on the corneal
health state. The correlation between corneal nerve tortuosity and pathology has
been shown several times. However, because there is no unique formal definition
of tortuosity, reproducibility is poor. Recently, two distinct forms of corneal nerve
tortuosity have been identified, describing either short-range or long-range direc‐
tional changes. Using 30 images and their manual grading provided by 7 experts,
we automatically traced corneal nerves with a custom computerized procedure
and identified the combination of geometrical measurements that best represents
each tortuosity definition (Spearman Rank Correlation equal to 0.94 and 0.88,
respectively). Then, we evaluated both of these tortuosity indexes in 100 images
from 10 healthy and 10 diabetic subjects (5 images per subject). A Linear
Discriminant Analysis showed a very good capability (accuracy 85%) to differ‐
entiate healthy subjects from pathological ones by using both tortuosity indexes
together.

Keywords: Corneal nerves · Corneal images · Specular microscopy · In vivo
microscopy · Tortuosity

1 Introduction

The cornea is the transparent tissue located in the front of the vertebrate eye and it is
responsible for about two-thirds of the eye’s refractive power [1], and as so, it has an
important role in vision acuity. Much of the cornea’s diagnostic potential relies on the
usage of in vivo confocal microscopy (IVCM) to image the corneal nerves. The cornea
is a richly innervated structure [2]. It is known as one of the most sensitive tissues in the
human body. Peripheral nervous system unmyelinated fibers form a dense plexus known
as the subbasal nerve plexus (SBP) that can be easily and quickly be visualized by IVCM.
Numerous studies have found important correlations between nerve parameters, such
as, density, branching, or tortuosity, and a wide range of ocular and/or systemic diseases.
Recently, a particular increasing interest in the latter has surged. Tortuosity is now a
widely studied corneal nerve property. Many studies have found links to dry eye disease
[3], keratoconus [4], and even diabetes [5, 6]. However, there is still no standard
tortuosity measurement or even definition.
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The clinical perception of corneal nerve tortuosity was recently shown to have two
distinct forms [7]. These are defined by short-range (low amplitude, high frequency) or
long-range (high amplitude, low frequency) directional changes.

In this study, we automatically traced corneal nerves with our own computerized
procedure [9] and identified a combination of mathematical tortuosity measurements
that could correctly represent either the short-range tortuosity (SRT) or the long-range
tortuosity (LRT) definition. Then, we investigated if one or both forms of tortuosity are
capable of highlighting differences between healthy and diabetic individuals, and if these
differences allow to correctly classify the health state of each individual.

2 Material

Two datasets were used in this study. They consisted in IVCM images acquired using
the Heidelberg Retina Tomograph (HRT-II) with the Rostock Cornea Module (Heidel‐
berg Engineering GmbH, Heidelberg, Germany), covering a field of 400 × 400 μm
(384 × 384 pixels).

Images were originally collected at various clinical centers and anonymized by
removing all patient information. As the acquisition of these images was approved by
the respective local ethical review committees, occurred with informed consent, and
followed the tenets of the Declaration of Helsinki, no specific further ethical approval
was sought for the retrospective analysis of the resulting compilation of images.

2.1 Ground Truth Dataset for Tortuosity Indexes Definition

A set of 30 nerve confocal images, ordered by experts according to short- or long-range
tortuosity definition, was used as ground truth in the present study.

The dataset and the manual analysis procedure are described in detail in [7]. Shortly,
images from healthy (10) and diseased (20) subjects were included (one image per
subject). Seven expert graders from different institutions visually assessed and ordered
them by increasing nerve tortuosity, according to either tortuosity definition (Fig. 1).
Their average ordered rankings were assumed as ground truth.

Fig. 1. Corneal nerves image with the highest tortuosity rank for the short-range (left) and the
long-range tortuosity (right) measurement.
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2.2 Dataset for Investigation on Healthy and Diabetic Individuals

A set of 100 nerve confocal images was used to investigate the capability of indexes
above to discriminate between healthy and pathological individuals. Images from 10
healthy and 10 diabetic subjects (Type 1 or 2) with neuropathy were included in this
dataset. For each subject, 5 non-overlapped images from the central part of the cornea
were included.

3 Methods

In [8], the centerlines of all visible nerves in each image were fully manually traced by
an experienced observer and two combination of mathematical tortuosity measurements
that correctly represent SRT and LRT definitions, respectively, were identified. In this
study we automatically traced corneal nerves. Automatically traced nerves differed from
the manually traced ones because of possible errors in the tracing procedure, i.e. false
nerves, missing nerves, splitting of a nerve in multiple segments, etc. Thus, we repro‐
duced what done in [8] to identify the combinations of mathematical tortuosity meas‐
urements that correctly represent short- and long-range tortuosity definitions from auto‐
matically traced nerves.

3.1 Corneal Nerve Tracing

We automatically traced corneal nerves with our own computerized procedure [9].
Briefly, it consists of a thresholding step followed by a supervised classification based
on support vector machines (SVM). As in [8], we applied three different smoothing
functions, with increasing scale (σ = 1, 2, 3), to highlight differences between the two
tortuosity classes. As a result, each nerve segment is defined by an ordered set of xy
positions as [(x𝜎

i
,y𝜎

i
); i = 1,…, n], with n being the total number of coordinates.

3.2 Nerve Tortuosity Metrics

Multiple metrics of tortuosity have been proposed over the years. Typically, tortuosity
measurements fall into one of four categories: length-, angle-, curve-, or twist-based
measurements. In order to have o global view of tortuosity, we have specifically selected
measurements from each of these groups.
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Length-based Tortuosity
One of the first and most widely used measurements of tortuosity is the Arc over Chord
Length ratio (AOC) [10]. It is computed as the ratio between the length of nerve segment
(L) over the length of its chord (Lc) as:

AOC =
L

L
c

(1)

where

L =

n∑

1

√(
Δx

𝜎

i

)2
+
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Another length-based measurement is used in this study. It is computed as:

LR =
L

L
SG

(4)

where LSG is the length of the nerve segment filtered using a 2-degree Savitzky-Golay
filter, computed as in Eq. (2).

Angle-based Tortuosity
The sum of angles metric (SOAM) is used. It is computed as:

SOAM =

n−1∑

2

arccos
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i
⋅ V2
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where V1 and V2 are vectors computed, for each point (x𝜎
i
,y𝜎

i
), as:
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Curve-based Tortuosity
The absolute curvature is used. It quantifies the curvature ki over the entire nerve segment
[11], as:

AC =
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Twist-based Tortuosity
The tortuosity index (TI) was considered. In [12], the number of twists is associated with
the number of changes in the curvature (ki) sign. According to these sign changes, each
nerve segment is partitioned into m sub-segments (s = s1 ⊕ s2 …⊕ s

m
). TI is then

computed as

TI =
m − 1

m

m∑

1

(
L

S
j

c

L
S

j

− 1

)

(10)

where LS
j and LS

j

c  are arch and chord length, respectively, of sub-segment sj (j = 1,…,n).
In addition, High-pass Twist Tortuosity (HTT) was considered:

HTT =

m∑

1

A
j (11)

where m is the total number of local maximums and Aj is the amplitude of the local
maximum j (j = 1,…,m) of the curve obtained by the difference between the nerve curve
and its 2-degree Savitzky-Golay filtered version.

3.3 Normalization

In this study we applied different normalization factors. As so, each tortuosity metrics is
weighted by: 1 (no normalization); L; Lc; LSG; and ƩL (the sum of all segment lengths –
image based normalization).

3.4 Aggregation

Different methods were used to combine all the individual nerve tortuosity into a single
image-level value: (1) average value for all nerves; (2) maximum value for all nerves;
(3) 75th percentile; (4) average value of the (at most) 3 longest nerves; (5) average value
of all nerves whose length is within 15% of the longest nerve.

3.5 Combination of Tortuosity Metrics

Each of the multiple variations of the proposed tortuosity metrics (features) was
computed using the automatic nerve tracing in all the 30 images described in Sect. 2.1.
Spearman Rank Correlation (SRC) was then applied in order to rank all the features
according to the two ground-truth ordered rankings (for LRT or SRT). According to [8],
the 20 features with the highest SRC coefficient were then selected for each tortuosity
definition. A linear regression model was used to combine the selected features into one
tortuosity index for SRT and one for LRT.
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4 Results

4.1 Evaluation of Short- and Long-Range Tortuosity Indexes

SRT and LRT indexes were computed for each of the 30 images described in Sect. 2.1
and used to order them according to increasing tortuosity. Spearman Rank Correlation
(SRC) was computed as a measure of fitness between automated and manual tortuosity
grading. We were able to achieve SRC coefficients of 0.945 and 0.886 for SRT and LRT,
respectively.

It is of interest to note that higher SRC coefficients (0.985 and 0.959 for SRT and
LRT, respectively) were obtained in [8], where manual nerve tracing was used. This
may be an indication that automated tracing, used in this paper, may produce errors that
affect SRT and LRT assessment.

4.2 Evaluation on Healthy and Diabetic Individuals

SRT and LRT were then computed using the automatic nerve tracing on each image of
the healthy and diabetic subjects described in Sect. 2.2. This dataset was used to define
neither the features nor their linear combination used to compute SRT and LRT. For
each subject, the mean SRT and LRT obtained from his/her 5 images was considered
(Fig. 2). Differences between healthy and pathological subjects were evaluated by means
of t-test for unpaired data. For both SRT and LRT, the obtained p-values (Table 1)
revealed a significant statistical difference (< 0.05) between healthy and pathological
subjects, in accordance with previous findings [5, 6].

Fig. 2. Short Range Tortuosity (horizontal axis) and Long Range Tortuosity (vertical axis)
obtained by the mean of the 5 images acquired from each healthy (blue dot) and diabetic (red
triangle) subject. The dashed line represents the class border obtained by a Linear Classifier. (Color
figure online)

A Linear Discriminant Analysis (LDA) was performed to evaluate the ability of each
tortuosity index and of their linear combination to differentiate between healthy and
diabetic subjects. The threshold that minimizes the number of classification errors is
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separately identified for SRT, LRT, and their linear combination. The accuracy obtained
by SRT or LRT alone is 80% and 70%, respectively, whilst their linear combination
provided an accuracy of 85% (Table 1).

Table 1. Statistical Analysis (t-test) and Linear Discriminant Analysis (LDA) conducted to
evaluate the ability of Short Range Tortuosity (SRT), Long Range Tortuosity (LRT) and their
linear combination (SRT & LRT) to differentiate between healthy and diabetic subjects.

t-test
p-value

LDA
accuracy

LDA
sensitivity

LDA
specificity

SRT 0.014 80% 70% 90%
LRT 0.040 70% 90% 50%
SRT & LRT 0.007 85% 70% 100%

5 Discussion and Conclusions

Over the years, several approaches to quantify corneal nerve tortuosity have been
proposed. However, most of them focused on quantifying a single, specific geometrical
property. In order to improve the agreement between proposed measurements and
graders’ perception, two distinct forms of corneal nerve tortuosity have been identified,
describing either short-range or long-range directional changes.

In this study, we proposed a mathematical description of these clinical perception of
tortuosity. We recognized the multifaceted nature of tortuosity by using a combination
of different geometrical measurements. We carefully designed each step of the compu‐
tation, from the smoothing of automatic nerve tracing to the aggregation techniques, and
tested for multiple alternatives. The proposed completely automated method provides
tortuosity indexes that highly correlate with the clinical perception of experts, given by
the ground truth orderings, for both SRT and LRT.

Fig. 3. Short Range Tortuosity (horizontal axis) and Long Range Tortuosity (vertical axis)
obtained by each image acquired from healthy (blue dot) and diabetic (red triangle) subjects. The
dashed line represents the class border obtained by a Linear Classifier. (Color figure online)

Development of Clinically Based Corneal Nerves Tortuosity Indexes 225



We also investigated if one or both forms of tortuosity exhibit differences between
healthy and diabetic individuals with neuropathy. For each subject, the mean SRT and
LRT values obtained by 5 images were considered. We showed that each index of
tortuosity differentiates the two groups of subjects, but that the best accuracy is achieved
by considering both indexes, SRT and LRT.

We also performed the computation of SRT and LRT in each single image (results
shown in Fig. 3). This revealed a poor ability to differentiate between healthy and
pathologic subjects (accuracy of 63%). This is probably due to the large variability of
SRT and LRT in the different regions of the cornea and underlines the importance of
standardizing the acquisition protocol, which should acquire images from a specific
location of the cornea.

An exhaustive evaluation on images from a much larger number of subjects is
currently in progress, as well as an investigation about the changes in one or the other
index of nerve tortuosity exhibited by pathologies other than diabetes.
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Abstract. In this paper, we propose an automatic technique for the
assessment of retinal vessel caliber in fundus images using a fully auto-
matic technique exploiting a multi-scale active contour technique. The
proposed method is compared with the well-known semi-automated
IVAN software and the Vampire width annotation tool. Experimental
results show that our approach is able to provide fast and fully auto-
matic caliber measurements with similar caliber measurement and com-
parable system error as the IVAN software. It will benefit the analysis of
quantitative retinal vessel caliber measurements in large-scale screening
programs.

Keywords: Vessel width · Arteriolar-to-venular ratio · Fundus images ·
Active contour · Diabetes

1 Introduction

Many clinical studies have shown that the changes in retinal vessel caliber
are associated with the progress of a variety of systemic diseases. In diabetic
retinopathy (DR), the narrowing on arterioles and the widening on venules are
observed, which result in a lower arteriolar-to-venular diameter ratio (AVR)
[8,11]. Moreover, a decrease in generalized arteriolar diameter is associated with
a higher risk of developing hypertension [7], and an increase on venular diameter
is associated with renal failure, systemic inflammation and stroke [11].

Most works on assessing the change of vascular caliber on fundus images
still rely on a semi-automatic tool: Eye-van (IVAN), which was developed at the
University of Wisconsin, USA [3,4,10]. However, it takes approximate 7–10 min
to obtain the precise width measurement of vessels, which includes the time of
automatic vessel detection and classification, manual cropping, adding vessel seg-
ments and correcting their labels. Using IVAN in large-scale screening programs
c© Springer International Publishing AG 2017
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is therefore too much time consuming, exhausting and prone to human error.
Developing a fully automatic system for large-scale vessel caliber assessment is
still an open challenge.

In this paper, we propose an automatic and precise quantitative width mea-
surement for retinal blood vessels. We validate the technique by comparing
the results with the IVAN software and the Vampire width annotation tool,
where the former one is semi-automatic measurement and the latter is a manual
measurement.

2 Methodology

The proposed method for automatic vessel caliber measurement uses the center-
line of a segmented blood vessel for initializing a deformable enclosed contour.
Then the contour is evolved iteratively and fitted to the boundaries of the ves-
sel. Finally, the vessel caliber is measured by computing the distance from one
detected vessel edge to the other one. The stages are summarized in Fig. 1.

Fig. 1. The stages of the proposed automatic width measurement technique: (a) center-
line detection; (b) contour initialization; (c) active contour segmentation; (d) obtaining
the left and right edges; (e) Euclidean distance calculation and (f) vessel caliber esti-
mation.

(a) Vessel centerline extraction. The proposed method is initialized by automat-
ically extracting the vascular tree. We used the vessel segmentation technique
proposed in [12], which employs a set of multi-scale Gaussian derivative filters
rotated to different directions in so-called ‘orientation-scores’. This method pro-
vides an enhanced vessel map, which is then converted to a binary vascular map
using a proper threshold value. The vessel segmentation is skeletonized by an
iterative thinning algorithm to obtain the centerline of the vasculature. Junction
points like vessel branchings and crossings are removed, resulting in a map of
individual separated vessel segments.



A Comparative Study Towards the Establishment 229

(b) Artery/vein classification. The separated vessel segments are automatically
classified into arteries and veins by a supervised classifier. In the training phase,
a logistic regression classifier is trained by a dataset of 60 images, which are
acquired by the same Canon camera. For each vessel centerline pixel, we extract
in total 455 features including: the local intensity of RGB and HSB color chan-
nels; the mean, standard deviation, median, minimum and maximum of the
intensities inside small, medium and large circular regions; the intensity val-
ues along each vessel centerline; and the intensity inside each vessel segment.
After that, a genetic-search based feature selection approach is used to select a
subset of features giving the highest classification accuracy. Finally, the classi-
fier is trained with the selected features of the training data and used for the
classification of arteries and veins in this study.

(c) Vessel caliber measurement. In this step, the geodesic active contour model
proposed in [1] for solving a global optimization problem is exploited to locate
the left and right edges for each vessel segment. First of all, an enclosed and
deformable contour x(t) = (x(t), y(t))(t ∈ (0, 1)) is initialized using the extr-
acted centerline pixels. Afterwards, the surface is iteratively deformed to mini-
mize the energy function:

E(x) =
∫ 1

0

Eint(x(t)) + Eext(x(t)) + Econ(x(t))dt (1)

where Eint (internal energy) is resulted by the force of the interaction between
adjacent control points, which preserves the smoothness of the surface. While
Eext (external energy) is resulted by the image gradient which pulls the contour
toward vessel boundary, and Econ (constraint energy) is resulted by a constraint
for the external force. Therefore, at each iteration, the control points follow the
contour evolution equation:

∂x(t))
∂t

= αg(I)(c + κ)−→n + β(�g(I) · −→n )−→n + γ�x(t) · �g(I), (2)

g(I) =
1

1 + �I2
, (3)

where I(x, y) is the image and �I is the first-order Gaussian derivative of I, κ
and −→n are the Euclidean curvature and the unit normal vector of x(t). g(I) is the
speed function given �I and c, α, β and γ are weighting parameters. Contour
evolution is terminated when a stop criterion (e.g. after a certain number of
iterations) is satisfied, resulting in a smooth vessel edges detection.

Vessel caliber is then estimated using the evolved contour. The contour is split
into left and right edges by removing the control points at the two ends of the
vessel segments. For each control point on one side of the vessel, a corresponding
nearest point is found on a B-spline interpolated curve of two nearest points on
the other side. The Euclidean distance between each two points is computed and
converted to micrometer μm using the pixel size of each image. We estimate the
pixel size by taking the ratio between the general optic disc diameter (1800 µm)
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and the diameter in pixels measured by the method described in [2]. In order to
prevent outliers, the measured distances with extreme values are eliminated and
the vessel width is calculated as the average of the remained measurements.

(d) CRAE, CRVE and AVR measurement. The results are used for estimating
the central retinal arterial equivalent (CRAE) and the central retinal venous
equivalent (CRVE) (see Fig. 2). Firstly, the optic disc center and diameter are
obtained using the super-elliptical convergence filters proposed in [2]. Then, the
vessels within the standard area of 0.5 to 1.0 disc diameter around the disc center
are selected and the width values are fed to the Knudtson’s revised formulas [6].
Finally, the AVR value is defined as the ratio between the CRAE and CRVE.

(a) (b)

Fig. 2. The vessels within the standard region are selected for calculating the CRAE
and CRVE values: (a) the widths of selected vessel are measured by the proposed
method; (b) The six largest arteries and veins are then selected for the calculation of
CRAE, CRVE and AVR values.

3 Experimental Result

3.1 Study Population

The study includes a group of 15 healthy volunteers (7 men and 8 women)
with age between 20 and 60 years. For each subject, 5 optic-disc centered images
were repeatedly acquired on the right eyes using a Canon Cr-1 Mark II fundus
camera, with image resolution of 3627 × 2178 pixels. The images are used for
the quantitative cross-sectional comparative study between the three caliber
assessment methods.
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3.2 Vessel Width Measurement Tools

IVAN Tool developed by the University of Wisconsin, USA, is a program for
assessing the blood vessels caliber on fundus images (see Fig. 3(a)). First of all,
it automatically locates the center of the optic disc and determines a standard
area of 0.5 to 1.0 disc diameter around it. The vessels within the region-of-
interest (ROI) are detected and their calibers are measured as the average dis-
tance between the vessel left and right edges. In addition, the detected vessels are
classified as artery and vein for the measurement of CRAE and CRVE. After the
automatic processing, a manual correction is performed by the user. It includes
adjusting the position of the optic disc center, adding the miss-detected vessels,
correcting the vessel labels and eliminating the wrongly detected vessel edges.
When the manual correction is done, the tool computes the values of CRAE,
CRVE and AVR using the Paired, the Parr-Hubbard [5], and the Knudtson’s
revised formulas [6].

Vampire Tool [9] developed by the University of Dundee, Scotland, is used
for the manual measurement of vessel width (see Fig. 3(b)). The instructions of
the program require clicking the vessels around the optic disc region to measure
and determine their vessel type simultaneously. Then for each vessel, the left
and right edges need to be clicked and the Euclidean distance between them is
considered as the width of the vessel. Finally, the values of the CRAE, CRVE
and AVR are computed using the Knudtson’s revised formulas [6].

(a) IVAN - display panel (b) Vampire - display panel

Fig. 3. The user interfaces for the IVAN and the Vampire tools. (a) The IVAN software
measures vessel calibers by automatic processing and manual modification. (b) The
Vampire annotation tool is used for measuring vessel calibers manually.

3.3 Results

The system error indicates the robustness of a tool on measuring biomarkers
for the same vasculature acquired in multiple acquisitions. In this study, it is
calculated by taking the average of the relative errors (mean/standard deviation)
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Table 1. The relative error of the CRAE, CRVE and AVR values obtained by the
proposed method, IVAN and Vampire tools.

Software Relative error

CRAE CRVE AVR Average

Our method 2.84% 2.40% 3.20% 2.81%

IVAN 2.32% 1.91% 2.65% 2.29%

Vampire 4.09% 3.63% 5.73% 4.48%

among 5 acquisitions on 15 subjects. The results are shown in Table 1. Comparing
the error of three tools, as expected the Vampire annotation tool produces the
largest variation among the three tools, which is two times larger than the other
two tools. The calibers obtained by manual vessel annotation are clearly prone
to human error.

We examined the correlation of the measurements obtained by our proposed
method and the IVAN tool. Figure 4 shows the scatter plots for the CRAE, CRVE
and AVR respectively by the two tools. pcc represents the Pearson’s correlation
coefficient and p is the corresponding p-value. Considering the confidence interval
95% (p = 0.05), the results of CRAE, CRVE and AVR obtained by two tools
are significantly correlated. It implies that the proposed automatic tool produces
similar caliber values compared to IVAN.

(a) CRAE (b) CRVE (c) AVR

Fig. 4. Scatter plots for comparing the (a) CRAE, (b) CRVE and (c) AVR obtained
by our method and the IVAN tool on the retinal images acquired using the Canon
camera. The dashed line show the linear regression line for the data points.

(a) CRAE (b) CRVE (c) AVR

Fig. 5. The Bland-Altman plots for comparing the (a) CRAE, (b) CRVE and (c) AVR
values obtained by our method and the Vampire tool with the IVAN.
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The Bland Altman plots in Fig. 5 compare the proposed method and the
Vampire annotation tool using the IVAN software as the reference. The CRAE
values measured by our method have better agreement with the values obtained
from the IVAN, where it has a lower bias than the Vampire. In the case of
measuring CRVE, the performance of both tools is similar, with almost zero
bias, though the error of the Vampire is lower than our method. For measuring
AVR, which is an important clinical relevant biomarker in large-scale setting,
our fully automatic method produces much accurate results than the human
annotation tool, with lower bias and variation.

The assessment of vascular caliber using the proposed method takes around
8 min on one image from the described dataset. In detail, the vessel segmentation,
artery/vein classification and vessel caliber measurement steps respectively take
2, 4 and 2 min on a single core CPU. Since the full processing is automatic,
the calculation time reduced to less than 1 min per image when we process the
images in a parallel setting with a 12 cores 2.30 GHz CPU and 128 GB of RAM.

4 Conclusion

In conclusion, we propose an automatic technique for the vessel caliber measure-
ment on retinal photographs, which will be used in a large-scale retinal screening
program. We validate this method on a dataset consisting of images acquired on
15 healthy subjects, each of which receives 5 repeated acquisitions. In addition,
we compare our tool with the semi-automatic tool - IVAN and the manual vessel
annotation tool - Vampire. The result shows the superiority of the proposed auto-
matic vessel caliber measurement. Additionally, IVAN requires time-consuming
human attention to modify the automatic generated result, which prohibits ana-
lyzing great amounts of data. The proposed method is able to provide automatic
caliber measurements with a comparable system error and similar CRAE, CRVE
measurements to IVAN. It will enable fully quantitative retinal vessel caliber
analysis in large-scale screening programs.
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tion, which is financed by the Netherlands Organization for Scientific Research (NWO),
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Abstract. We propose a method for detecting mechanically induced
wrinkles that present themselves around the optic disc as a result
of swelling. Folds and wrinkles have recently been found to be use-
ful features for diagnosing optic disc swelling and for differentiating
papilledema (optic nerve swelling due to raised intracranial pressure)
from pseudopapilledema. A total of 22 patients were diagnosed with vary-
ing degrees and causes of optic disc swelling, with 3D spectral domain
optical coherence tomography (SD-OCT) images obtained. The images
were used to create fold-enhanced 2D images. Features were extracted
pertaining to the orientation, Gabor responses, Fourier responses, and
coherence to train a pixel-level classifier to distinguish between folds, ves-
sels, image artifacts, and background. An area under the curve of 0.804
was achieved for the classification.

1 Introduction

The optic disc is the region of the back of the eye which gathers and funnels
information from the optical receptors of the eye into the optic nerve via the
retinal ganglion cell axons, and ultimately to the brain. While its healthy func-
tion is critical for the sake of vision, due to its direct connection to the brain,
there are abnormalities which can result in signs visible at the optic disc. In this
paper, we are specifically concerned with swelling of the optic disc (Fig. 1). A
swollen optic disc can be indicative of a number of problems, such as ischemic
optic neuropathy [1], optic neuritis, and papilledema [2]. The retinal area around
the optic disc can respond to the biomechanical physical stress of a swelling and
result in wrinkles (or folds) of the tissue around the optic disc [3].

Additionally, there is a benign condition, known as pseudopapilledema, that
causes the optic disc to appear swollen. Little is known about the cause of
pseudopapilledema, apart from that it is congenital and often correlates to the
presence of calcified deposits in the optic nerve head known as drusen. However,
it is postulated that, since pseudopapilledema is a congenital condition, there is
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): FIFI/OMIA 2017, LNCS 10554, pp. 235–242, 2017.
DOI: 10.1007/978-3-319-67561-9 27
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(a) (b) (c)

Fig. 1. The SD-OCT is a 3D greyscale image, and it is common to take an average of
values in the posterior/anterior direction (known as an en face image). Shown here is
the en face image (a) of a swollen disc and the corresponding 2D fundus image cropped
to show the optic disc (b). Folds are barely visible but are indicated with a green box,
which is also shown magnified (c), with lines drawn parallel to the folds. (Color figure
online)

no stress from the apparent swelling on the tissue around the optic disc to cause
retinal folds. As such, we expect that a definitive way of determining if something
is a true case of optic disc swelling is if there are folds present — although the
absence of folds does not rule out true optic disc swelling. Additionally, it is
likely that different causes of optic disc swelling cause different types of folds.
However, because folds have only been investigated relatively recently, there are
not yet any automated approaches to detecting or quantifying them. We propose
an algorithm to isolate and detect folds in the region around the optic disc, using
spectral domain optical coherence tomography (SD-OCT) en face images.

2 Methods

There were two main components to this work, which were image generation
(Sect. 2.1) and feature extraction (Sect. 2.2). We use an en face rendering (ILM
in Fig. 2) of only the top surface and an en face image of the RPE complex
for fold, vessel, and artifact classification. The feature extraction includes Gabor
filter responses, coherence, orientation, and Fourier results, with straightforward
variants of these features also being used (Sect. 2.2).

2.1 Image Generation

The layers in the SD-OCT images of the optic disc were first segmented [4]
using a graph-based method developed for optic disc swelling (Fig. 2). The layer
segmentation algorithm has a smoothing feature that can complicate its direct
use to visualize folds, as the smoothed surface cuts through the local average of
minor fluctuations along the ILM (Fig. 3). As such, we generate a fold-enhanced
2D image by taking the average pixel value within 7 pixels of the ILM (a total
span of about 29.3 microns). The result is a 2D image in which folds appear to
be thin, tube-like structures. One obstacle is that there are other thin, tube-like
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(a) (b) (c)

Fig. 2. A 3D rendering of the SD-OCT image (a), depicting a captured optic disc
image, along with two slices (b/c) from our dataset. The green line indicates the ILM
and the red line indicates the bottom of the RPE complex. (Color figure online)

(a) (b) (c)

Fig. 3. The (ILM) fold-enhanced en face image (a) with cross section shown (b) to
highlight a visible wrinkle. Red area is magnified (c) to show it more closely. An outline
of the surface is suspended over the surface to accentuate the folds. (Color figure online)

(a) (b) (c) (d)

Fig. 4. Vessel image, which is the en face image of the RPE complex (a), along with
the cropped fundus image (b) to underscore the likeness. The fold-enhanced 2D image
from the 3D SD-OCT (c) along with a version (d) with marked folds (red), vessels
(blue), and artifacts (green). (Color figure online)
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structures we expect to see in these images — the blood vessels and artifacts
(Fig. 4). In order to robustly account for blood vessels, we also generate an en
face image of the RPE layer (where vessels are most pronounced). Features from
both images are used for classification.

2.2 Feature Extraction

The full feature list can be seen in Table 1. Gabor responses [5] were computed at
15◦ intervals, with wavelengths ranging from 4 to 25 pixels. These were applied to
the fold-enhanced image and the en face image of the RPE, each upsampled by a
factor of 4 since we do not expect the physical wavelength of the folds to always
be a whole integer value. In physical space, this means the Gabor wavelengths
ranged between 30 and 187.5 microns. The maximum Gabor response across
all wavelengths and orientation angles, MG, for each pixel location in the fold-
enhanced image was extracted and summed to the maximum Gabor response
from the inverse of the fold-enhanced image, M ′

G. In this paper, we define the sum
of MG + M ′

G = IG. The orientation and coherence [6,7] images were computed
for IG,MG, and M ′

G (Fig. 5).
A line of 29 sample points was extracted from each pixel location in IG span-

ning 435 microns (roughly half-pixel intervals), perpendicular to the orientation.
In regions with folds present, this sample would have a sinusoidal element to it.
We quantify this by taking the Fourier transform of each sample, and the deriva-
tive of each sample (to remove linear components). Disregarding the 0th Fourier
coefficient, the highest Fourier response should correspond to the frequency of
the sinusoidal element, if one exists. We use the highest Fourier element to create
the magnitude, phase, and frequency of a test signal, and remove the test signal
from the sample. The standard deviation of the leftover signal is then taken as
a feature to determine how dominant the sinusoidal element was. Additionally,
the Fourier magnitudes were used as features, directly.

As the artifacts we are looking to detect tend to occur across the image, rather
than in isolated areas, we use the horizontal average of the vertical derivative as
a feature. This means all locations along a horizontal slice have the same feature
value, in a given image. Additionally, as the artifacts often appear to be the result
of a horizontal shift when the image is captured, the displaced location of the min-
imum average vertical derivative when each horizontal slice is shifted across its full
range was used as a feature. Finally, local, 5 × 5 contrast measures, such as local
maximum, local minimum, and the difference, were also used as features.

2.3 Classification

The vessels, folds, and artifacts were marked for each image to generate truths
(Fig. 4). These were classified using a common feature set, but were trained
as separate classifiers. The features were extracted from the fold-enhanced and
RPE complex images, and trained in three leave-one-patient out random forest
regression analyses with 10,000 trees, each 10 decisions deep, with a true set to 1
and a false set to 0. Once trained, the entire feature set from the left-out image
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Table 1. Complete list of features used for classification.

Feature count Description

1 RPE complex image

2 Radial distance from center

3–24 Coherence of Gabor responses to upsampled fold-enhanced images (each
pixel-wavelength used as a separate feature)

25 Coherence of average Gabor response across all wavelengths

26 Gaussian filter applied to 25

27–48 Coherence of Gabor responses to upsampled inverse of fold-enhanced
image

49 Coherence of average Gabor response to inverse fold-enhanced image

50 Gaussian filter applied to 49

51 Local maximum in 7 × 7 window of fold-enhanced image

52 Local minimum in 7 × 7 window of fold-enhanced image

53 Range in a 7 × 7 window (i.e. features 52 − 51)

54 Normalized version of feature 53 (i.e. (52 − 51)/(52 + 51))

55 MG

56 M ′
G

57–78 Gabor responses of RPE complex image

79–100 Gabor responses of inverse of RPE complex image

101 Average of 57–78

102 Average of 79–100

103 Orientation of IG (sum of average Gabor responses)

104 Coherence of IG

105 Standard deviation of cross section after top frequency removed

106 Standard deviation of derivative of cross section after top frequency
removed

107–120 Sorted magnitude of Fourier response of cross section

121–133 Sorted magnitude of Fourier response of derivative of cross section

134 Maximum Fourier response of cross section

135 Difference between max and second rank Fourier responses of cross section

136 Difference between max and third rank Fourier responses of cross section

137–139 Features 134–136 repeated for derivative of cross section

140 Vertical displacement measure of fold-enhanced image

141 Local max of 140

142 Vertical displacement measure of RPE complex image

143 Local max of 142

144 Vertical derivative of fold-enhanced image

145 Vertical derivative of RPE complex image

146 Product of features 144 and 145

147 Locally normalized IG

148 Coherence of thresholded and skeletonized IG

149 11 × 11 median filter applied to IG
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(a) (b) (c)

Fig. 5. (a) IG (max Gabor response), along with the coherence (b) and orientation (c).
The orientation ranges from −90◦ to 90◦ with respect to the horizontal.

was tested for each of the three classifiers, resulting in a pixel-level probability
map. The results from the vessel and artifact classifications are used to mask
(omit) positive results from the fold classification, while the vessel and artifact
truths were used to mask the fold truth.

3 Experimental Methods

A total of 22 images were obtained with varying causes of optic disc swelling.
From these, the en face images of 200×200 pixels, spanning 6×6mm, were made
and marked for classification. The classifier was trained on 100 samples taken
from each feature set of the 22 patients (minus 1 left-out patient) at random, to

(a) (b) (c) (d)

Fig. 6. Example of fold-enhanced images (a) and classification results (b), alongside
an overlay (c) and the ground truth (d). Note that the heavier green areas correspond
to artifact location, blue corresponds to vessels, and brighter red areas correspond to
the location of folds. (Color figure online)
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Fig. 7. Resulting ROC curve of the classification. Area under the curve is 0.804. Addi-
tionally a plot of average importance for each feature, for each classifier. For exam-
ple, the highest point is at feature 100, with a value of 0.0296. This corresponds to
the longest wavelength Gabor response to the RPE complex image, which one would
expect to be significant for the detection of vessels.

include an equal mix of each possible classification (folds, vessels, artifacts, and
background) available for each image. A set of fold probability maps (Fig. 6) were
produced for each combination of vessel and artifact thresholds. The ROC curves
associated with each set of fold probability maps were compiled to generate the
overall ROC curve (Fig. 7).

4 Results

We achieved an AUC of 0.804. The right-most plot in Fig. 7 also shows the aver-
age importance for each feature, listed in order of Table 1. The average process-
ing time for feature extraction was 9 min and 17 s per image, using unoptimized
Matlab. For regression training, the average time was 2 min and 21 s.

5 Discussion and Conclusion

The automatic detection of folds in the ILM is instrumental for determining
if an optic disc is truly swollen or only appears to be. Moreover, extracting
attributes of detected folds is expected to be useful for determining the cause
of the swelling. Some of the most important features for the detection of folds
includes the coherence of the Gabor responses to the inverse of the fold-enhanced
image. This is due to the fact that in the inverse image, vessels are dark instead
of bright, thus diminishing the effects of the Gabor response and reducing false
positives. Additionally, the Gabor responses to the inverse of the RPE complex
image were of high importance, which is sensible as we expect a high-coherence
location in the fold-enhanced image and a low-coherence location in the RPE
complex image to be the most basic indication of a fold on the ILM. Other
attributes of the folds (orientation, spatial wavelength, size) are expected to
be meaningful to the classification of the cause of the optic disc swelling that
resulted in folds, and such attributes are among the features. As such, should
a correlation between fold attributes and edema type be clinically quantified,
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our algorithm should be useful for extracting the features to classify folds, and
then using those same features to determine the cause of the swelling, directly.
Future work may include inpainting vessels, instead of masking them, as folds
can theoretically overlap vessels without existing elsewhere to be detected.
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Abstract. The retinal vasculature imaged with fundus photography has
the potential of encoding precious information for image-based retinal
biomarkers, however, progress in their development is slow due to the
need of defining vasculature morphology variables a priori and develop-
ing algorithms specific to these variables. In this paper, we introduce a
novel approach to learn a general descriptor (or embedding) that cap-
tures the vasculature morphology in a numerically compact vector with
minimal feature engineering. The vasculature embedding is computed by
leveraging the internal representation of a new encoder-enhanced fully
convolutional neural network, trained end-to-end with the raw pixels and
manually segmented vessels. This approach effectively transfers the vas-
culature patterns learned by the network into a general purpose vascu-
lature embedding vector. Using Messidor and Messidor-2, two publicly
available datasets, we test the vasculature embeddings on two tasks:
(1) an image retrieval task, which retrieved similar images according to
their vasculature; (2) a diabetic retinopathy classification task, where we
show how the vasculature embeddings improve the classification of an
algorithm based on microaneurysms detection by 0.04 AUC on average.

1 Introduction

The retina is an important direct or indirect indicator of some of the most
common diseases in the industrialized world, such as cardiovascular conditions,
diabetes complications and neurodegeneration [1]. Fundus imaging is an inex-
pensive and non-invasive optical imaging technique to monitor retinas in the
general population, thus allowing for screening medical risk factors, tracking
progression or diagnosis. Multiple research groups have focused on the develop-
ment of automatic or semi-automatic tools to estimate candidate image based
biomarkers based on the vasculature morphology such as: vessel width, vessel
tortuosity, artery to vein ratio or even fractal analysis [2–5]. While effective,
all of these methods require different algorithmic pipelines and data representa-
tions for each of vasculature variables. Inspired by transfer learning [6] and recent
advances in convolutional networks for segmentation [7,8], we introduce a new
approach to learn a general purpose vasculature descriptor or “embedding” from
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): FIFI/OMIA 2017, LNCS 10554, pp. 243–250, 2017.
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the image data itself with minimal feature engineering. Such descriptor has the
potential of significantly reducing the time required for algorithm development
(by avoiding manual feature engineering) and allowing the creation of candidate
vasculature based biomarkers without a priori information.

Figure 1 diagrammatically illustrates how our method learns a compact vas-
culature representation by leveraging a new encoder-enhanced fully convolu-
tional neural network. We test the vasculature embeddings on an image retrieval
task and on a diabetic retinopathy classification task.

Fig. 1. Diagram of the analysis presented in this manuscript. We train an encoder-
enhanced fully convolutional neural network to segment the retinal vasculature and
at the same time to implicitly learn a compact representation of such vasculature.
This representation is then used for two experiments, firstly for image retrieval, then
to evaluate if the vasculature information can benefit diabetic retinopathy diagnosis
algorithms.

2 Methods

Preprocessing. The image undergoes minimal preprocessing. First, the image
is converted to a single channel and rescaled to 584 pixels of height (maintaining
the aspect ratio), then its luminosity and contrast are adjusted by subtracting
the global mean and diving by the standard deviation. Finally, the image contrast
is enhanced by contrast limited adaptive histogram equalization [9]. The image
is then divided into overlapping patches that are subsequently used as input for
the neural network.

Neural Network. Fully convolutional networks such as U-Net are recent neural
network-based techniques able to be trained on inputs of arbitrary size and pro-
duce correspondingly-sized output with efficient inference and learning [10,11].
As shown in Fig. 2, our network works on local image patches of 48× 48 pixels
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and it consists of the typical U-shaped contracting and expanding of fully con-
volutional network approaches with the addition of encoding layers (see dashed
lines). While not strictly necessary, we decided to work with local image patches
for computational reasons (i.e. keeping a small parameter space and manageable
training time). The contracting path consists in repeated 3× 3 convolutions, fol-
lowed by rectifier linear units and max pooling operations with a stride of 2
for downsampling, which reduce the spatial resolution and increase the number
of filters. The expanding path works in a similar fashion but with upsampling
operations and 3× 3 “up-convolutions”, which decrease the number of filters and
increase image resolution until reaching the final layer. This last layer is mapped
to a tensor with two channels in its third dimension. These channels represent
the likelihood of each pixel of being a vessel or background and use a softmax
activation.

In our network, we relax the fully convolutional network approach and add
three fully connected non-convolutional layers on the saddle point of the network,
where the imaging scale is lowest and the number of filters is highest. These fully
connected layers continue the U-shaped paradigm but act as an implicit encoder
to compress the relevant information flowing through the convolutional filters.
While similar to autoencoders, the encoding layers differ because they do not try
to reconstruct their own input. We train the network end-to-end using stochastic
gradient descent (SGD) using a 0.1 learning rate, dropout regularization with
0.2 ratio after each of the convolutional layers and cross entropy as loss function.

Fig. 2. Neural network architecture. The dashed box represent the encoding layers
allowing the creation of the vasculature embedding and are the main changes over a
typical U-Net architecture [10]. Each blue box represents a 3D dimensional tensor.
The tensors dimensions are shown on the left and on the top of the box, displaying the
first two dimensions (i.e. image x-y) and last dimension (number of filters) respectively.
Each round box represent a vector with a number showing its size. The arrows represent
different operations. (Color figure online)
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The cross entropy loss function is computed uniquely between the target vessel
segmentation and final layer. The result is then back-propagated using SGD to
all layers, including the in the encoding layers.

Once trained, the network receives an image patch as input and it outputs a
vessel segmentation map at the end layer. Importantly, we also generate a vector
a ∈ R

128 by retrieving the activation of 128 neurons in the lowest layer of the
encoder (shown as empty circle in Fig. 2). In order to generate an image wide
vessel embedding e ∈ R

256 we combine the n image patches as follow:

A = [ap=1, ap=2 · · · ap=n], e =

⎡
⎢⎢⎢⎢⎢⎣

fmed(A1)
fiqr(A1)

...
fmed(An)
fiqr(An)

⎤
⎥⎥⎥⎥⎥⎦

where ap is the vector containing the encoder activations for image patch p, fiqr
is the function to compute the interquantile range and fmed is the function to
compute the median.

3 Experiments and Results

We trained our network on the DRIVE datasets [12] using a randomly sampled
set of 190,000 patches extracted from the 20 images (in the training set), leaving
out 10% patches as validation set. We trained with mini batches of 320 patches
for 150 epochs. The final network weights are retrieved from the training epoch
that provided the best accuracy on the validation set. The network was trained in
less than 24 h and it was able to generate a full vasculature embedding in 3.16 s on
a Nvidia Titan X GPU without any code optimization. The code for our exper-
iments was implemented in Python using Keras (https://keras.io), Tensorflow
(https://www.tensorflow.org) and scikit-learn (http://scikit-learn.org) libraries.
Part of the implementation is based on the retina-unet GitHub project (https://
github.com/orobix/retina-unet).

Experiment 1: Image Retrieval. Here, we used the Messidor dataset which
contains 1,200 fundus images annotated with a diabetic retinopathy diagnosis and
risk for macular edema [13]. This dataset was not used for any training purposes.
We compute the 4 closest samples for all 1,200 candidates using Euclidean distance
between the vectors e. In Fig. 3, we show on the left the “query” image and on the
right the 4 closest samples. In order to avoid any selection bias, we show the first 5
groups of images sorted according to ascending “in-group distance”. This distance
is computed as |e0 − e1| + |e0 − e2| + · · · + |e0 − e4| where e0 is the query vector
and eis are the i-closest vectors. We observed that the vessel embedding appeared
to be insensitive to the retina orientation and that each row has approximately
similar vessel morphology especially of the main vasculature arches. Unexpectedly,
we found some duplicated images in the dataset (see Fig. 3, first two columns in

https://keras.io
https://www.tensorflow.org
http://scikit-learn.org
https://github.com/orobix/retina-unet
https://github.com/orobix/retina-unet
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Fig. 3. Example of the images retrieval task according to the similarity to the query
image (left column). The similarity is computed using the euclidean distance between
vasculature embeddings vectors. Best viewed electronically.

row 3, 4 and 5). To our knowledge, it has never been reported before. This further
builds our confidence in the potential of our approach.

In order to further investigate the performance of the vasculature embeddings
for image retrieval, we evaluated the ability of matching left to right retinas
with a realistic public dataset, Messidor-2. This dataset contains 874 retinal
examinations of both eyes (for a total of 1748 images) [13] which were not used
for any training purposes. For each subject, we used his/her right retina as
reference image and computed the euclidean distance to all 874 left retinas in the
vasculature embedding vector space. Figure 4 shows the ratio of correct matches
as a function of the number closest neighbors taken into account. The vasculature
embedding allow for identifying the correct image pairs significantly better than
chance. Other works on vasculature biomarkers showed a significant group level
correlation between left and right eye [1], however, the vasculature morphology
can vary significantly at subject level and perfect matching is not to be expected,
as indicated by our results.

Experiment 2: Diabetic Retinopathy Classification. Obvious changes in
retinal vasculature are typically visible at late stage of diabetic retinopathy,
when neovascularization occurs. Still, it is plausible for different vasculature



248 L. Giancardo et al.

Fig. 4. Unsupervised matching of right/left retinas based on the vasculature embed-
dings on the Messidor-2 dataset. The vasculature embeddings allow for identifying the
correct image pairs significantly better than chance.

Table 1. Diabetic retinopathy classification performance on the Messidor dataset with
different feature vectors. All results expressed as areas under the receiving operating
curve (AUC). No hyperparameter tuning was performed. Of note, the AUC improves
when the vasculature embedding are included in the feature vector, regardless of the
severity of the disease. ***p<0.001, **p<0.01, *p<0.5 for a two-sided Mann-Whitney
U test to reject the null hypothesis that the healthy and DR samples come from the
same distribution.

Healthy vs. Diabetic retinopathy (DR) (n=1,200)

Vasculature embed. Microaneurysm feat. Combination

Logistic Regr. (L1 reg.) 0.680*** 0.842*** 0.863***

Logistic Regr. (L2 reg.) 0.683*** 0.845*** 0.863***

Linear SVM 0.678*** 0.803*** 0.865***

Healthy vs. High DR (n=801)

Vasculature embed. Microaneurysm feat. Combination

Logistic Regr. (L1 reg.) 0.806*** 0.947*** 0.962***

Logistic Regr. (L2 reg.) 0.819*** 0.947*** 0.965***

Linear SVM 0.808*** 0.951*** 0.964***

Healthy vs. Mild DR (n=700)

Vasculature embed. Microaneurysm feat. Combination

Logistic Regr. (L1 reg.) 0.558* 0.666*** 0.685***

Logistic Regr. (L2 reg.) 0.566* 0.667*** 0.692***

Linear SVM 0.533 0.504 0.679***
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morphologies to be correlated with earlier stage of diabetic retinopathy as they
are associated with myocardial infarction [1].

In this experiment, we evaluated whether the vasculature embeddings can be
used to classify diabetic retinopathy (DR) and if they are able to enhance the DR
classification performance of an algorithms trained to identify microaneurysms
[14], which are the pathological hallmarks used by ophthalmologists to diagnose
DR from its early stage.

For each image in the Messidor dataset, we computed three features vectors:
the standalone vasculature embedding e, the microaneurym-based feature vec-

tor m and a combination of the two c =
[
e
m

]
. The microaneurym-based feature

vector m ∈ R
3 represents the microaneurysms probability histogram computed

with a radon based operator trained on a separate dataset [14]. In these exper-
iments, we are not much interested in the absolute classification performance,
rather we focus on the relative performance change using the different feature
vectors. Therefore, we used a set of common linear machine learning classifiers
without any hyper-parameter tuning (the default hyper-parameters provided by
the scikit-learn 0.18.1 library were used). The tests were performed with a 50-fold
cross-validation on the Messidor dataset.

Table 1 shows the diabetic retinopathy classification performance with the
various combination of classifiers and feature vectors. The most relevant result
to highlight is that the vasculature embeddings consistently improved the classifi-
cation performance regardless of the severity of the disease. The average improve-
ment across classifiers is 0.04 AUC points.

4 Conclusions

We have introduced a new approach to learn vasculature embeddings from vessel
segmentation data without the need of defining vasculature morphology variables
a priori. The vasculature embeddings have been tested on two separate tasks,
image retrieval and diabetic retinopathy classification enhancement. In the for-
mer task, we retrieved similar images according to their vasculature, in the latter
task we showed how the vasculature embeddings improve the classification of an
algorithm based on microaneurysms detection by 0.04 AUC on average. The
results obtained are encouraging but further work is needed to test repeatability
and validity as candidate image based biomarker as well as direct comparison
with alternative methods to characterize vasculature. The methodology devel-
oped is not inherently specific to retina images, we will explore other imaging
modalities in future work.
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