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Abstract. Convolutional neural networks (CNNs) have been applied to
various automatic image segmentation tasks in medical image analysis,
including brain MRI segmentation. Generative adversarial networks have
recently gained popularity because of their power in generating images
that are difficult to distinguish from real images.

In this study we use an adversarial training approach to improve CNN-
based brain MRI segmentation. To this end, we include an additional loss
function that motivates the network to generate segmentations that are
difficult to distinguish from manual segmentations. During training, this
loss function is optimised together with the conventional average per-
voxel cross entropy loss.

The results show improved segmentation performance using this
adversarial training procedure for segmentation of two different sets of
images and using two different network architectures, both visually and
in terms of Dice coefficients.

Keywords: Adversarial networks · Deep learning · Convolutional
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1 Introduction

Convolutional neural networks (CNNs) have become a very popular method for
medical image segmentation. In the field of brain MRI segmentation, CNNs have
been applied to tissue segmentation [13,14,20] and various brain abnormality
segmentation tasks [3,5,8].

A relatively new approach for segmentation with CNNs is the use of dilated
convolutions, where the weights of convolutional layers are sparsely distributed
over a larger receptive field without losing coverage on the input image [18,19].
Dilated CNNs are therefore an effective approach to achieve a large receptive field
with a limited number of trainable weights and a limited number of convolutional
layers, without the use of subsampling layers.

Generative adversarial networks (GANs) provide a method to generate
images that are difficult to distinguish from real images [4,15,17]. To this end,
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GANs use a discriminator network that is optimised to discriminate real from
generated images, which motivates the generator network to generate images
that look real. A similar adversarial training approach has been used for domain
adaptation, using a discriminator network that is trained to distinguish images
from different domains [2,7] and for improving image segmentations, using a
discriminator network that is trained to distinguish manual from generated seg-
mentations [11]. Recently, such a segmentation approach has also been applied in
medical imaging for the segmentation of prostate cancer in MRI [9] and organs
in chest X-rays [1].

In this paper we employ adversarial training to improve the performance of
brain MRI segmentation in two sets of images using a fully convolutional and a
dilated network architecture.

2 Materials and Methods

2.1 Data

Adult Subjects. 35 T1-weighted MR brain images (15 training, 20 test) were
acquired on a Siemens Vision 1.5T scanner at an age (μ ± σ) of 32.9 ± 19.2
years, as provided by the MICCAI 2012 challenge on multi-atlas labelling [10].
The images were segmented in six classes: white matter (WM), cortical grey
matter (cGM), basal ganglia and thalami (BGT), cerebellum (CB), brain stem
(BS), and lateral ventricular cerebrospinal fluid (lvCSF).

Elderly Subjects. 20 axial T1-weighted MR brain images (5 training, 15 test)
were acquired on a Philips Achieva 3T scanner at an age (μ ± σ) of 70.5 ± 4.0
years, as provided by the MRBrainS13 challenge [12]. The images were segmented
in seven classes: WM, cGM, BGT, CB, BS, lvCSF, and peripheral cerebrospinal
fluid (pCSF). Possible white matter lesions were included in the WM class.

2.2 Network Architecture

Two different network architectures are used to evaluate the hypothesis that
adversarial training can aid in improving segmentation performance: a fully
convolutional network and a network with dilated convolutions. The outputs
of these networks are input for a discriminator network, which distinguishes
between generated and manual segmentations. The fully convolutional nature
of both networks allows arbitrarily sized inputs during testing. Details of both
segmentation networks are listed in Fig. 1, left.

Fully Convolutional Network. A network with 15 convolutional layers of 32
3× 3 kernels is used (Fig. 1, left), which results in a receptive field of 31× 31
voxels. During training, an input of 51× 51 voxels is used, corresponding to an
output of 21× 21 voxels. The network has 140,039 trainable parameters for C = 7
classes (6 plus background; adult subjects) and 140,296 trainable parameters for
C = 8 classes (7 plus background; elderly subjects).
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Fully convolutional network

Kernel size Dilation Kernels Layers

3×3 1 32 15

1×1 1 256 1

1×1 1 C 1

Dilated network

Kernel size Dilation Kernels Layers

3×3 1 32 2

3×3 2 32 1

3×3 4 32 1

3×3 8 32 1

3×3 16 32 1

3×3 1 32 1

1×1 1 C 1

(a) Segmentation networks (b) Adversarial training

Fig. 1. Left: Segmentation network architectures for the 17-layer fully convolutional
(top) and 8-layer dilated (bottom) segmentation networks. The receptive fields are
67× 67 for the dilated network and 31× 31 for the fully convolutional network. No
subsampling layers are used in both networks. Right: Overview of the adversarial train-
ing procedure. The red connections indicate how the discriminator loss influences the
segmentation network during backpropagation. (Color figure online)

Dilated Network. The dilated network uses the same architecture as proposed
by Yu et al. [19], which uses layers of 3× 3 kernels with increasing dilation factors
(Fig. 1, left). This results in a receptive field of 67× 67 voxels using only 7 layers
of 3× 3 convolutions, without any subsampling layers. During training, an input
of 87× 87 voxels is used, which corresponds to an output of 21× 21 voxels. In
each layer 32 kernels are trained. The network has 56,039 trainable parameters
for C = 7 classes (6 plus background; adult subjects) and 56,072 trainable
parameters for C = 8 classes (7 plus background; elderly subjects).

Discriminator Network. The input to the discriminator network are the seg-
mentation, as one-hot encoding or softmax output, and image data in the form
of a 25× 25 patch. In this way, the network can distinguish real from generated
combinations of image and segmentation patches. The image patch and the seg-
mentation are concatenated after two layers of 3× 3 kernels on the image patch.
The discriminator network further consists of three layers of 32 3× 3 kernels, a
3× 3 max-pooling layer, two layers of 32 3× 3 kernels, and a fully connected layer
of 256 nodes. The output layer with two nodes, distinguishes between manual
and generated segmentations.
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Adult subject (FCN)

Adult subject (DN)

Elderly subject (FCN)

Elderly subject (DN)

(a) Reference (b) Without adversarial (c) With adversarial

Fig. 2. Example segmentation results in four of the test images. From top to bottom:
an adult subject using the fully convolutional network (FCN), an adult subject using
the dilated network (DN), an elderly subject using the fully convolutional network
(FCN), and an elderly subject using the dilated network (DN). The colours are as
follows: WM in blue, cGM in yellow, BGT in green, CB in brown, BS in purple, lvCSF
in orange, and pCSF in red. The arrows indicate errors that were corrected when the
adversarial training procedure was used. (Color figure online)
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2.3 Adversarial Training

An overview of the adversarial training procedure is shown in Fig. 1, right.
Three types of updates for the segmentation network parameters θs and the

discriminator network parameters θd are possible during the training procedure:
(1) an update of only the segmentation network based on the cross-entropy loss
over the segmentation map, Ls(θs), (2) an update of the discriminator network
based on the discrimination loss using a manual segmentation as input, Ld(θd),
and (3) an update of the whole network (segmentation and discriminator net-
work) based on the discriminator loss using an image as input, La(θs, θd). Only
Ls(θs) and La(θs, θd) affect the segmentation network. The parameters θs are
updated to maximise the discriminator loss La(θs, θd), i.e. the updates for the
segmentation network are performed in the direction to ascend the loss instead
of to descend the loss.

The three types of updates are performed in an alternating fashion. The
updates based on the segmentation loss and the updates based on the discrimi-
nator loss are performed with separate optimisers using separate learning rates.
Using a smaller learning rate, the discriminator network adapts more slowly than
the segmentation network, such that the discriminator loss does not converge too
quickly and can have enough influence on the segmentation network.

For each network, rectified linear units are used throughout, batch normali-
sation [6] is used on all layers and dropout [16] is used for the 1× 1 convolution
layers.

3 Experiments and Results

3.1 Experiments

As a baseline, the segmentation networks are trained without the adversarial
network. The updates are performed with RMSprop using a learning rate of 10−3

and minibatches of 300 samples. The networks are trained in 5 epochs, where
each epoch corresponds to 50,000 training patches per class per image. Note that
during this training sample balancing process, the class label corresponds to the
label of the central voxel, even though a larger image patch is labelled.

The discriminator and segmentation network are trained using the alternat-
ing update scheme. The updates for both loss functions are performed with
RMSprop using a learning rate of 10−3 for the segmentation loss and a learning
rate of 10−5 for the discriminator loss. The updates alternate between the Ls,
Ld and La loss functions, using minibatches of 300/3 = 100 samples for each.

3.2 Evaluation

Figure 2 provides a visual comparison between the segmentations obtained with
and without adversarial training, showing that the adversarial approach gener-
ally resulted in less noisy segmentations. The same can be seen from the total
number of 3D components (including the background class) that compose the
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Fig. 3. Dice coefficients for the adult subjects (top row) and the elderly subjects (bot-
tom row) for white matter (WM), cortical grey matter (cGM), basal ganglia and
thalami (BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebrospinal
fluid (lvCSF), and peripheral cerebrospinal fluid (pCSF), without (blue) and with
(green) adversarial training. Left column: fully convolutional network. Right column:
dilated network. Red stars (p < 0.01) and red circles (p < 0.05) indicate significant
improvement based on paired t-tests. (Color figure online)

segmentations. For the adult subjects, the number of components per image
(μ ± σ) decreased from 1745 ± 400 to 626 ± 247 using the fully convolutional
network and from 417 ± 152 to 365 ± 122 using the dilated network. For the
elderly subjects, the number of components per image (μ ± σ) decreased from
926± 134 to 692± 88 using the fully convolutional network and from 601± 104
to 481 ± 90 using the dilated network.

The evaluation results in terms of Dice coefficients (DC) between the auto-
matic and manual segmentations are shown in Fig. 3 as boxplots. Significantly
improved DC, based on paired t-tests, were obtained for each of the tissue classes,
in both image sets, and for both networks. The only exception was lvCSF in the
elderly subjects using the dilated network. For the adult subjects, the DC aver-
aged over all 6 classes (μ±σ) increased from 0.67±0.04 to 0.91±0.03 using the
fully convolutional network and from 0.91± 0.03 to 0.92± 0.03 using the dilated
network. For the elderly subjects, the DC averaged over all 7 classes (μ ± σ)
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increased from 0.80 ± 0.02 to 0.83 ± 0.02 using the fully convolutional network
and from 0.83 ± 0.02 to 0.85 ± 0.01 using the dilated network.

4 Discussion and Conclusions

We have presented an approach to improve brain MRI segmentation by adversar-
ial training. The results showed improved segmentation performance both qual-
itatively (Fig. 2) and quantitatively in terms of DC (Fig. 3). The improvements
were especially clear for the deeper, more difficult to train, fully convolutional
networks as compared with the more shallow dilated networks. Furthermore, the
approach improved structural consistency, e.g. visible from the reduced number
of components in the segmentations. Because these improvements were usually
small in size, their effect on the DC was limited.

The approach includes an additional loss function that distinguishes between
real and generated segmentations and can therefore capture inconsistencies that
a normal per-voxel loss averaged over the output does not capture. The proposed
approach can be applied to any network architecture that, during training, uses
an output in the form of an image patch, image slice, or full image instead of a
single pixel/voxel.

Various changes to the segmentation network that might improve the results
could be evaluated in future work, such as different receptive fields, multiple
inputs, skip-connections, 3D inputs, etc. Using a larger output patch size or even
the whole image as output could possibly increase the effect of the adversarial
training by including more information that could help in distinguishing manual
from generated segmentations. This could, however, also reduce the influence
of local information, resulting in a too global decision. Further investigation
is necessary to evaluate which of the choices in the network architecture and
training procedure have most effect on the results.
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