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Abstract. Automatic identification of abnormalities is a key problem in med-
ical imaging. While the majority of previous work in mammography has
focused on classification of abnormalities rather than detection and localization,
here we introduce a novel deep learning method for detection of masses and
calcifications. The power of this approach comes from generating an ensemble
of individual Faster-RCNN models each trained for a specific set of abnormal
clinical categories, together with extending a modified two stage Faster-RCNN
scheme to a three stage cascade. The third stage being an additional classifier
working directly on the image pixels with the handful of sub-windows generated
by the first two stages. The performance of the algorithm is evaluated on the
INBreast benchmark and on a large internal multi-center dataset. Quantitative
results compete well with state of the art in terms of accuracy. Computationally
the methods runs significantly faster than current state-of-the art techniques.

1 Introduction

Numerous studies have shown that early detection of breast cancer can both increase
treatment options and reduce mortality [1]. There are two main types of abnormal
objects detected in mammograms (MG) –Masses are seen as compact areas that appear
brighter than the embedding tissue and Calcifications [2]. Macro calcifications
(macro) are usually benign bigger bits of calcium, appearing as coarse calcium
deposits in the breast, such as Coarse or “popcorn-like”, Dystrophic or Rim-like (eg-
gshell). Micro calcifications (micro) are tiny specks of mineral deposits that can be
distributed in various ways, clusters, specific patterns or scattered. Certain features and
presentations of micro calcifications, specifically, amorphous, pleomorphic shapes and
clustered distribution can be associated with malignant breast cancer. However,
detection and identification are extremely difficult, due to the subtle fine-grained visual
categories and large variability of appearance of the different categories. Therefore,
automatic detection, localization and quantification of abnormal findings, has the
potential of separating the normal-negative from positive exams in the screening
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processes, allowing the radiologist to focus on the challenging cases and avoiding
unnecessary breast biopsies.

Deep learning has shown remarkable performances in recognition tasks such as
detection and classification [3–6]. Below we briefly review the dominant detection
algorithms in the field, emphasizing the differences compared to our approach.

R-CNN and its variants use external region proposals instead of sliding windows to
find objects in images. Commonly, classical methods are used to generate those region
proposals. In R-CNN [5], Selective Search [7] is used to generate candidate object
boxes, a CNN [3] is used to generate the feature vector for each box, an SVM is trained
to classify the box feature vectors, and linear regression followed by non-maximal
suppression is used to adjusts the bounding boxes and eliminate duplicate detections.
Each stage of this complex pipeline must be precisely independently tuned and the
resulting system is slow, taking more than 40 seconds per test on a GPU [8].

Other CNN based detectors, such as Deep MultiBox [9], Fast [8] and Faster [6]
R-CNN, and YOLO [10], focus on speeding up the R-CNN framework by sharing
computation and using Region Proposal Networks (RPN) – a CNN that effectively
performs sliding window searches in a fully convolutional manner [11] over a grid of
receptive fields, to generate object proposals instead of Selective Search [6–8]. YOLO
[10] also puts spatial constraints on the grid cell proposals. While they offer speed and
accuracy improvements over R-CNN, they still fall short of real-time performance,
running in about 2–3 FPS similar to Faster-RCNN.

Advances in deep learning methods have recently been exploited successfully in the
medical imaging domain [12, 13] and specifically in breast mammography (MG) for
mass and calcification classification [14, 15]. Our study departs from the majority of
previous work as it focuses on detection and localization of abnormalities rather than on
binary classification of calcification or masses. An exception is the prominent work on
mass detection of [16], which is based on a multiscale deep belief network classifier and
is followed by a cascade of R-CNN and random forest classifiers. A recent study by the
same authors [17] is currently considered the most effective study for detection of micro
calcification, utilizing a cascade of boosting classifiers with shape and appearance
features. Based on these approaches [18] recently presented a deep residual neural
network aimed at classification of anMG as benign or malignant. The final segmentation
maps of the masses and micro-calcifications are not evaluated, yet they demonstrate
INBreast [19] separation into normal and benign with an ROC AUC of 0.8.

An important component of the Faster-RCNN framework differing it from similar
detection frameworks like YOLO [10], is the classifier running after the RPN built on
top of an ROI-pooling layer [6] that pools features from the top most layer of the base
network shared between RPN and the classifier. This can be seen as a two stage
cascade with RPN being the first stage and the classifier second. However, the rep-
resentation generated by ROI-pooling is not specifically optimized for classification
(being shared between the detector and the classifier). Therefore this work follows the
Faster-RCNN architecture presented in [20] yet proposes to extend the scheme to a
three stage cascade, the third stage being an additional classifier working directly on the
image pixels with the handful of sub-windows generated by the first two stages.

Our contribution is three fold: First, to the best of our knowledge there are no
studies utilizing a unified deep learning approach to combine both detection,
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localization and classification of multiple type of masses and calcifications. Second we
utilize a three- stage cascade integrating a two-stage ensemble of RPN and
Faster-RCNN models and a third CNN classifier and demonstrate its effectiveness for
reducing the number of FP detections. Finally, our methodology competes well with
state of the art in terms of inference time and accuracy even on a large dataset.

2 Methods

Problem Formulation: Given as input a set of training images, bounding boxes
corresponding to abnormal findings Ii; y1i; x1i; y2i; x2i:; cif g and a testing set of images,
we seek to detect the abnormal findings in the test set and locate the bounding boxes
with a corresponding confidence score.

The system preprocesses the input MG image by dividing the *4 k � 3 k pixels
onto an overlapping grid, utilized to train the three-stage cascade deep neural network
(DNN) described below such that each subpart (grid cell) extracts candidate bounding
boxes and predicts confidence scores for those boxes. Then, the image post-processing
performs grid composition of all the DNN parts results. Figure 1 outlines the system
architecture which is composed of three main components detailed below. Roughly
speaking, the stages are ‘initial detection’, ‘classification’ and ‘classification refine-
ment’. In setting these stages we extend the Faster RCNN paradigm, by continuing the
‘re-classification’ loop by adding one more classification iteration, and admitting the
detected crops directly to the final classifier (rather than letting it look on them through
the prism of the ROI pooling layer and a set of features optimized for detection).

(1) A region proposal network (RPN): a deep fully convolutional network that is
trained to detect windows on the input image that are likely to contain objects of
interest regardless of their class. The RPN simultaneously predicts objects bounds
and objectness scores at each position on a wide range of scales and aspect ratios,
following which top scoring 500 predictions are kept [11]. The way the network
effectively operates on the image in a sliding window fashion, yet a lot of internal

Fig. 1. The deep framework for detection and classification of abnormalities in Mammography.
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computation are being inherently re-used due to local and hierarchical nature of
the stacked network layers. The sliding window operates on a regular grid with
the same step size in x and y equal to the final stride of the top most layer
receptive field (32 pixels in our case). For each grid location 9 seed boxes
(sampled with several different aspect ratios and sizes) are being classified. During
training, these boxes, originally called anchors in [6], are being associated with
ground truth object boxes according to IoU scores, where the most similar ones
(according to IoU) are being labeled as object anchors as well as all those that pass
a certain threshold (0.5) in IoU. For each anchor classified as being (part of, or
containing) the object, a linear regression is employed to refine the anchor
bounding box to the candidate object one.

(2) A Fast R-CNN detection network: that is trained to classify candidate object
windows returned by the RPN, each window is classified into one of the classes of
interest or rejected as a false alarm. Both RPN and Fast-RCNN share a large
common set of bottom layers allowing computation re-use and hence a significant
speed-up at test time. For both RPN and the classification network we employ a
modified version of VGGNet by [4]. Originally trained on the ImageNet dataset
[1], and fine-tuned by us on the task at hand. The system was trained on a single
TitanX GPU with 12 GB on chip memory, and i7 Intel CPU with 64 GB RAM.
Training times required *36 h, while testing takes 0.2 seconds per image.
During training 2000 top-scoring boxes are sampled from the RPN, during testing
top scoring 500 boxes are sampled using standard non-maximal suppression

Fig. 2. Original Faster-RCNN architecture (left) Modified Faster-RCNN architecture (right)
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(NMS) based on box overlap. We used the SGD solver with learning rate of
0.001, batch size 2, momentum 0.99, and 60 epochs. Figure 2 shows the modified
Faster-RCNN architecture we followed (see details in [20]).

(3) Third stage Cascade Classifier: The true positive (TP) and false positive
(FP) boxes candidates of the DNN are computed on the training set and selected to
be the positive and negative samples for the next training phase respectively.
These boxes are then cropped and used to train a VGG-16 classifier optimized to
separate between the TP and the hard negatives of the last step (the classifier) of
Faster-RCNN. During training the boxes are randomized and randomly
re-cropped and augmented with random geometric and photometric transforma-
tions in order to enrich the training and improve generalization. The key idea
behind adding this third stage to Faster-RCNN two stage cascade is to allow a
separately optimized network to have an alternative look on the ROIs whose
original Faster-RCNN internal representation is constrained to be shared between
the first two stages (the detector and the classifier). The full training process
details include: each batch contained four images chosen at random; out of each
image up to three positive boxes (true detection of the previous stage) and one
negative box (false detection of the previous stage) were chosen at random; each
box was randomly rotated up to 30°, randomly re-cropped by ±25% of original
size, randomly flipped, mean subtracted, and finally resized to 224 � 224 size as
required by the standard VGG-16 classifier. During testing the original detected
boxes from the previous stage were processed for speed (no augmentation, single
crop).

3 Experiments and Results

We evaluated the algorithm for detection of masses and calcifications. The data set
consists of (1) the publicly available INBreast dataset [19] (2) an Internal dataset
consisting of approximately 3500 images, collected from several different medical
centers with ground truth annotation by experts including 750, 360, 2400 images with
masses, malignant calcifications, and benign calcifications respectively. The mass
category includes Breast Imaging-Reporting and Data System (BI-RADS) subtypes of
2, 3, 4, 5 namely benign and malignant masses. The dataset was split into training 80%
and testing 20% so that all test patients image were excluded from the training set.

Figure 3, reports the free response operating characteristic curve (FROC) calcu-
lating the number of true positive rate (TPR) as a function of false positives per image
(FPI). The figure shows the results obtained by each class-model separately on one type
of images, and also results of joining of all models on all images including normal
images. We compare joining the ensemble by ‘naïve’ concatenation of results obtained
by all models or by utilizing the 3rd cascade step on the ensemble of models. The
results show clear reduction of FP’s and performance improvement by the cascade
approach.
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Table 1 summarizes our results compared to the best state-of-the-art results (see
details in [16, 17]). [17] Reported the leading results for detection of calcifications on
the INBreast (INB) dataset, having a TPR for individual calcification of 40% at one FPI
and a TPR of 80% at 10 FPI. The authors noted that these results are significantly better
than the current state of the art, which has a TPR of less than 0.01@1 FPI and a TPR of
0.1@10 FPI. [16] Provided a detailed table for mass detection with the best TPR
0.96 ± 0.03@1.2 FPI and TPR = 0.87 ± 0.14@0.8 FPI for INBreast. The papers also
obtained the best results in respect to running time of 20 s.

The INB results were obtained by testing separately on INB calcification and mass
images with the models trained by our internal data. This is not optimal as there are
significant differences in the images characteristics between the two sets. Accordingly,
removal of small calcifications (radius < 10 pixels) yields a significant improvement in

Fig. 3. Detection performance per class and entire set. FROC curves showing the result on
various operating points with true positive rate (TPR) versus false positive per image (FPI) for
mass images (green), malignant micro calcification images (magenta) and benign macro
calcifications images (purple), for ‘naïve’ joining of all model results on all images (dotted blue),
and for joining all models results on all images based on 3rd cascade (bold blue). (Color figure
online)

Table 1. Presents our results compared to best state-of-art algorithms

Calcifications results TPR@FPI #images Runtime

Ours on micro & macro
calcifications

All: TPR 0.4@1 FPI
No small: TPR 0.85@1.5 FPI

310/410 INB 5 s

Ours on macro benign
calcifications

TPR 0.8@1.5 FPI
TPR 0.52@1 FPI
TPR 0.9@10 FPI

2400 internal 5 s

Ours on micro
malignant calcifications

TPR 0.81@1.7 FPI
TPR 0.48@1 FPI

360 internal 5 s

Micro & macro
calcifications [17]

TPR 0.4@1 FPI
TPR 0.8@10 FPI

410 INB 20 s

Mass results TPR@FPI #images Runtime

Ours on masses TPR 0.93@0.56 FPI 100/410 INB 5 s
Ours on masses TPR 0.9@1 FPI 750 internal 5 s
Benign/Malignant [16] TPR 0.96 ± 0.03@1.2 FPI

TPR 0.87 ± 0.14@0.8 FPI
410 INB 20 s
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performance. Comparison to published results in the field is difficult as most of the
previous work focused on binary classification and also mainly report on DDSM. Yet,
Table 1 and Fig. 3 demonstrate the high accuracy obtained by our approach, the
advantage of adding the cascade to the Faster-RCNN model and the generalization
ability of our model to different classes of abnormalities. The performance on calci-
fications, specifically the small ones remains to be further investigated and improved.

The visual results in Fig. 4, shows a zoom in on the malignant calcification
detection results. A representative example of true-positive, false-negative and false
positive detections is given in Fig. 5 for various abnormal subtypes including micro
calcifications macro calcification and masses.

(a) (b) (c)

Fig. 4. Qualitative Detection Results displayed on a cropped image with clustered malignant
micro calcifications (a) Original (b) With accurately detected boxes, where the lines in autumn
colors correspond to score (red and yellow represents high and low score respectively) (c) zoom
in on highest scoring detected box. (Color figure online)

(a) (b) (c)

Fig. 5. Examples of detection results on full breast images. Ground truth annotation is
highlighted in green for the class depicted while the candidates of automatic detection can be
viewed in dashed line in autumn colors corresponding to score (red and yellow represents high
and low score respectively). (a) Macro calcification (b) Micro calcification and (c) Masses. (Color
figure online)
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4 Summary

The paper presents an efficient DNN framework for detection of abnormalities in MG
images focusing on the demanding task of detection localization and classification of
masses and calcifications. The unified DNN built, is composed of a three-stage cascade,
including RPN, a modified Faster-RCNN and a classifier CNN aimed at reducing the
FP’s. Our results are competitive with the state of the art in terms of efficiency and
accuracy showing promising results for mass and calcification detection on large
datasets. Future work will extend this approach to a multi view, bilateral approach to
integrate information from the four mammography screening views of the right and left
breast and generalize this approach to other abnormal classes.
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