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Abstract. Computed Tomography (CT) is the standard imaging tech-
nique for radiotherapy planning. The delineation of Organs at Risk
(OAR) in thoracic CT images is a necessary step before radiotherapy,
for preventing irradiation of healthy organs. However, due to low con-
trast, multi-organ segmentation is a challenge. In this paper, we focus on
developing a novel framework for automatic delineation of OARs. Dif-
ferent from previous works in OAR segmentation where each organ is
segmented separately, we propose two collaborative deep architectures
to jointly segment all organs, including esophagus, heart, aorta and tra-
chea. Since most of the organ borders are ill-defined, we believe spatial
relationships must be taken into account to overcome the lack of con-
trast. The aim of combining two networks is to learn anatomical con-
straints with the first network, which will be used in the second network,
when each OAR is segmented in turn. Specifically, we use the first deep
architecture, a deep SharpMask architecture, for providing an effective
combination of low-level representations with deep high-level features,
and then take into account the spatial relationships between organs by
the use of Conditional Random Fields (CRF). Next, the second deep
architecture is employed to refine the segmentation of each organ by
using the maps obtained on the first deep architecture to learn anatomi-
cal constraints for guiding and refining the segmentations. Experimental
results show superior performance on 30 CT scans, comparing with other
state-of-the-art methods.
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1 Introduction

In medical image segmentation, many clinical settings include the delineation of
multiple objects or organs, e.g., the cardiac ventricles, and thoracic or abdominal
organs. From a methodological point of view, the ways of performing multi-organ
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): DLMIA/ML-CDS 2017, LNCS 10553, pp. 21–29, 2017.
DOI: 10.1007/978-3-319-67558-9 3



22 R. Trullo et al.

segmentation are diverse. For example, multi-atlas approaches in a patch based
setting have been shown effective for segmenting abdominal organs [11]. Many
other approaches combine several techniques, such as in [4] where thresholding,
generalized hough transform and an atlas-registration based method are used.
The performance of these approaches is bound to the use of separate methods
that can also be computationally expensive. Usually, organs are segmented indi-
vidually ignoring their spatial relationships, although this information could be
valuable to the segmentation process.

In this paper, we focus on the segmentation of OAR, namely the aorta, esoph-
agus, trachea and heart, in thoracic CT (Fig. 1), an important prerequisite for
radiotherapy planning in order to prevent irradiation of healthy organs. Rou-
tinely, the delineation is largely manual with poor intra- or inter-practitioners
agreement. Note that the automated segmentation of the esophagus has hardly
been addressed in research works as it is exceptionally challenging: the bound-
aries in CT images are almost invisible (Fig. 2). Radiotherapists manually seg-
ment it based on not only the intensity information, but also the anatomical
knowledge, i.e., the esophagus is located behind the trachea in the upper part,
behind the heart in the lower part, and also next to the aorta in several parts.
More generally, this observation can be made for the other organs as well. Our
aim is to design a framework that would learn this kind of constraints automat-
ically to improve the segmentation of all OAR and the esophagus in particular.

Fig. 1. Typical CT scan with manual segmentations of the esophagus, heart, trachea
and aorta.

Fig. 2. CT scan with manual delineation of the esophagus. Note how the esophagus is
hardly distinguishable.
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We propose to tackle the problem of segmenting OAR in a joint manner through
the application of two collaborative deep architectures, which will implicitly learn
anatomical constraints in each of the organs to mitigate the difficulty caused by
lack of image contrast. In particular, we perform an initial segmentation by using
a first deep Sharpmask network, inspired by the refinement framework presented
in [8] which allows an effective combination of low-level features and deep high-
level representations. In order to enforce the spatial and intensity relationships
between the organs, the initial segmentation result is further refined by Condi-
tional Random Fields (CRF) with the CRFasRNN architecture. We propose to
use a second deep architecture which is designed to be able to make use of the
segmentation maps obtained by the first deep architecture of all organs, to learn
the anatomical constraints for the one organ that is currently under refinement
of its segmentation. We show experimentally that our framework outperforms
other state-of-the-art methods. Note that our framework is also generic enough
to be applied to other multi-label joint segmentation problems.

2 Method

2.1 SharpMask Feature Fusion Architecture and CRF Refinement

The first deep architecture performs initial segmentation, with its output as a
probability map of each voxel belonging to background, esophagus, heart, aorta,
or trachea. In order to alleviate the loss of image resolution due to the use of
pooling operations in regular Convolutional Neural Networks (CNN); Fully Con-
volutional Networks (FCN) [5] and some other recent works such as the U-Net [9]
and Facebooks SharpMask (SM) [8] have used skip connections, outperforming
many traditional architectures. The main idea is to add connections from early
to deep layers, which can be viewed as a form of multiscale feature fusion, where
low-level features are combined with highly-semantic representations from deep
layers.

In this work, we use an SM architecture that has been shown superior to the
regular FCNs for thoracic CT segmentation [12]. The CRF refinement is done
subsequently with the CRFasRNN architecture, which formulates the mean field
approximation using backpropagable operations [15], allowing the operation to
be part of the network (instead of a separated postprocessing step) and even to
learn some of its parameters. Thus, a new training is performed for fine-tuning
the learned weights from the first step, and also for learning some parameters of
the CRF [12]. In the second deep architecture as described below, the segmen-
tation initial results of the surrounding organs by the first deep architecture will
be used to refine the segmentation of each target organ separately.

2.2 Learning Anatomical Constraints

The second deep architecture, using SharpMask, is trained to distinguish between
background and each target organ under separate refinement. This architecture
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has two sets of inputs, i.e., (1) the original CT image and (2) the initial segmenta-
tion results of the neighbouring organs around the target organ under refinement
of segmentation. The main difference of this second deep architecture, compared
to the first deep architecture with multiple output channels representing differ-
ent organs and background, is that it only has two output channels in the last
layer, i.e., a probability map representing each voxel belonging to background or
a target organ under refinement of segmentation. The basic assumption is that
the second deep architecture will learn the anatomical constraints around the
target organ under refinement of segmentation and thus help to produce better
segmentation for the target organ. In Fig. 3 we show the full framework with
both the first deep architecture (top) and the second deep architecture.

Fig. 3. Proposed architecture for multi-organ segmentation. The core sharpmask net-
work is detailed on the right. Numbers indicate the number of channels at each layer.

Note that our framework (using two deep architectures) shares some simi-
larity with a refinement step, called AutoContext Model (ACM) [13], which has
been successfully applied to brain image segmentation [14], by using traditional
classifiers such as Random Forests. The main idea of ACM is to iteratively refine
the posterior probability maps over the labels, given not only the input features,
but also the previous probabilities of a large number of context locations which
provide information about neighboring organs, forcing the deep network to learn
the spatial constrains for each target organ [14]. In practice, this translates to
train several classifiers iteratively, where each classifier is trained not only with
the original image data, but also with the probability maps obtained from the
previous classifier, which gives additional context information to the new clas-
sifier. Comparing our proposed framework with the ACM, we use a deep archi-
tecture. Overall, our method has three advantages: (1) it can avoid the design
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of hand-crafted features, (2) our network can automatically learn the selection
of context features, and (3) our method uses less redundant information. Note
that, in the classical ACM, the selection of these features must be hard-coded;
that is, the algorithm designer has to select a specific number of sparse locations
(i.e., using sparse points from rays at different angles from a center point [13]),
which makes the context information limited within a certain range by the algo-
rithm designer. On the other hand, in our method, the context information can
be automatically learned by the deep network, and limited only by the recep-
tive field of the network (which can even be the whole range of the image in
deep networks). Regarding the redundancy, ACM uses the probability maps of
all organs as input, which is often very similar to the ground-truth label maps.
In this way, the ACM is not able to further refine the results. In our method,
we use only the complementary information, the label probability maps of the
neighboring organs around the target organ under refinement of segmentation.

3 Experiments

In our implementation, the full slices of the CT scan are the inputs to our pro-
posed framework. Both the first and second architectures use large filters (i.e.,
7 × 7, or 7 × 7 × 7), as large filters have been shown beneficial for CT segmenta-
tion [2]. Both 2D and 3D settings are implemented in our study. We have found
that, different from MRI segmentation [7], small patches are not able to produce
good results for CT segmentation. Thus, we use patches of size 160 × 160 × 48 as
the training samples. Specifically, we first build a 3D mesh model for each organ
in all the training CT images, and then define each vertex as the mean of a cer-
tain Gaussian distribution with diagonal covariance, from which we can sample
points as the centers of the respective patches. In this way, the training samples
will contain important boundary information and also background information.
In particular, the elements in the diagonal are chosen to be 5, in such a way, the
kernel size used would include them when centered in the boundary. In addition,
it is also important to sample inside the organs and thus, we also sample in an
uniform grid.

3.1 Dataset and Pre-processing

The dataset used in this paper contains 30 CT scans, each with lung cancer or
Hodgkin lymphoma and 6-fold cross validation is performed. Manual segmenta-
tions of the four OAR are available for each CT scan, along with the body contour
(which can used to remove background voxels during the training). The scans
have 512 × 512 × (150 ∼ 284) voxels with a resolution of 0.98× 0.98 × 2.5 mm3.
For each CT scan, its intensities are normalized to have zero mean and unit vari-
ance, and it is also augmented to generate more CT samples (for improving the
robustness of training) through a set of random affine transformations and ran-
dom deformation fields (generated with B-spline interpolation [6]). In particular,
an angle between −5 to 5◦ and a scale factor between 0.9 and 1.1 were randomly
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selected for each CT scan to produce the random affine transformation. These
values were selected empirically trying to produce realistic CT scans similar to
those of the available dataset.

3.2 Training

For organ segmentation in CT images, the data samples are often highly imbal-
anced, i.e., with more background voxels than the target organ voxels. This needs
to be considered when computing the loss function in the training. We utilize
a weighted cross-entropy loss function, where each weight is calculated as the
complement of the probability of each class. In this way, more importance will
be given to small organs, and also each class will contribute to the loss function
in a more equally way. We have found that this loss function leads to better
performance than using a regular (equally-weighted) loss function. However, the
results are still not reaching our expected level. For further improvement, we
use our above-obtained weights as initialization for the network, and then fine-
tune them by using the regular cross-entropy loss. This new integrated strategy
always outperforms the weighted or the regular cross-entropy loss function. In
our optimization, stochastic gradient descent is used as optimizer, with an ini-
tial learning rate of 0.1 that is divided by 10 every 20 epochs, and the network
weights are initialized with the Xavier algorithm [3].

3.3 Results

In Fig. 4, we illustrate the improvement on the esophagus segmentation by using
our proposed framework with learned anatomical constraints. The last column
shows the results using the output of the first network as anatomical constraints.
We can see how the anatomical constraints can help produce a more accurate
result on the segmentation of the esophagus, even when having air inside (black
voxels inside the esophagus). Interestingly, the results obtained by using the
output of the first network or the ground-truth manual labels as anatomical
constraints are very similar, almost with negligible differences. Similar conclu-
sions can also be drawn for segmentations of other organs. In Fig. 5, we show
the segmentation results for the aorta, trachea, and heart, with and without
anatomical constraints. In the cases of segmenting the aorta and trachea, the use
of anatomical constraints improves the segmentation accuracy. For the trachea,
our network is able to generalize to segment the whole part on the right lung
(i.e., left side of the image) even when it was segmented partially in the manual
ground-truth. On the other hand, for the heart, there are some false positives
when using anatomical constraints, as can be seen in the third column. How-
ever, accurate contours are obtained, which are even better than those obtained
without anatomical constraints, as can be seen in the fourth column.

In Table 1, we report the Dice ratio (DR) obtained using each of the compar-
ison methods, including a state-of-the-art 3D multi-atlas patch-based method
(called OPAL (Optimized PatchMatch for Near Real Time and Accurate Label
Fusion [10])) and different deep architecture variants using 2D or 3D as well
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Fig. 4. Segmentation results for the esophagus. (a) Input data to the second net-
work, with the anatomical constraints overlapped; results using (b) only the first net-
work without anatomical constraints, (c) manual labels on the neighboring organs as
anatomical constraints, (d) the output of the first network as anatomical constraints.

Fig. 5. Segmentation without (1st row) and with (2nd row) anatomical constraints.
Green contours denote manual ground-truths, and red contours denote our automatic
segmentation results. Right panel shows the 3D rendering for our segmented four
organs, i.e., aorta (blue), heart (beige), trachea (brown), and esophagus (green). (Color
figure online)

as different combinations of strategies. Specifically, SM2D and SM3D refer to
the use of the Network 1 in Fig. 3 using 2D or 3D respectively. We also tested
their refinement with ACM and CRF, and finally, the proposed framework is
denoted as SM2D + Constraints. As OPAL mainly compares patches for guiding
the segmentation, OPAL should be effective in segmenting the clearly observable
organs, such as the trachea (an identifiable black area), which is true as indicated
by the table. But, for the organs with either low contrast or large intensity varia-
tion across slices and subjects, which is the case for the esophagus, the respective
performance is seriously affected, as the table shows. The highest performance
for each organ is obtained by the SM2D-based architectures, while all 3D-based
architectures do not improve the segmentation performance. This is possibly due
to large slice thickness in the CT scans, as noticed also in [1], where the authors
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preferred to handle the third dimension by the recurrent neural networks, instead
of 3D convolutions. Another observation is that the ACM model is not able to
outperform the CRF refinement. We believe that this is mainly due to the fact
that the CRF used is fully connected and not based on the neighboring regions.
The latter has been used as comparison in the ACM [13], for claiming that the
advantage is coming from the context range information that the framework can
reach. On the other hand, our proposed framework is able to improve the per-
formance for all the organs, except the heart whose quantitative results are very
similar to those obtained by the first network, and which can be well-segmented
by it, by leveraging the large heart size and also the good image contrast around
it. However, the quality of the obtained contours with the proposed framework
is better as shown in Fig. 5. Although room for improvement is still left for the
esophagus (with mean DR value of 0.69), the experimental results show that
our proposed framework does bring an improvement, compared to the other
methods.

Table 1. Comparison of mean DR ± stdev by different methods. Last column indicates
our proposed framework.

OPAL SM3D SM3D+ACM SM2D SM2D+CRF SM2D+ACM SM+Constraints

Esoph. 0.39± 0.05 0.55± 0.08 0.56± 0.05 0.66± 0.08 0.67± 0.04 0.67± 0.04 0.69± 0.05

Heart 0.62± 0.07 0.77± 0.05 0.83± 0.02 0.89± 0.02 0.90± 0.01 0.91± 0.01 0.90± 0.03

Trach. 0.80± 0.03 0.71± 0.06 0.82± 0.03 0.83± 0.06 0.82± 0.06 0.79± 0.06 0.87± 0.02

Aorta 0.49± 0.10 0.79± 0.06 0.77± 0.04 0.85± 0.06 0.86± 0.05 0.85± 0.06 0.89± 0.04

4 Conclusions

We have proposed a novel framework for joint segmentation of OAR in CT
images. It provides a way to learn the relationship between organs which can
give anatomical contextual constraints in the segmentation refinement procedure
to improve the performance. Our proposed framework includes two collaborative
architectures, both based on the SharpMask network, which allows for effective
combination of low-level features and deep highly-semantic representations. The
main idea is to implicitly learn the spatial anatomical constraints in the second
deep architecture, by using the initial segmentations of all organs (but a target
organ under refinement of segmentation) from the first deep architecture. Our
experiments have shown that the initial segmentations of the surrounding organs
can effectively guide the refinement of segmentation of the target organ. An
interesting observation is that our network is able to automatically learn spatial
constraints, without specific manual guidance.
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