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Abstract. Deep-learning has proved in recent years to be a powerful
tool for image analysis and is now widely used to segment both 2D
and 3D medical images. Deep-learning segmentation frameworks rely not
only on the choice of network architecture but also on the choice of loss
function. When the segmentation process targets rare observations, a
severe class imbalance is likely to occur between candidate labels, thus
resulting in sub-optimal performance. In order to mitigate this issue,
strategies such as the weighted cross-entropy function, the sensitivity
function or the Dice loss function, have been proposed. In this work, we
investigate the behavior of these loss functions and their sensitivity to
learning rate tuning in the presence of different rates of label imbalance
across 2D and 3D segmentation tasks. We also propose to use the class
re-balancing properties of the Generalized Dice overlap, a known metric
for segmentation assessment, as a robust and accurate deep-learning loss
function for unbalanced tasks.

1 Introduction

A common task in the analysis of medical images is the ability to detect, segment
and characterize pathological regions that represent a very small fraction of the
full image. This is the case for instance with brain tumors or white matter lesions
in multiple sclerosis or aging populations. Such unbalanced problems are known
to cause instability in well established, generative and discriminative, segmen-
tation frameworks. Deep learning frameworks have been successfully applied to
the segmentation of 2D biological data and more recently been extended to 3D
problems [10]. Recent years have seen the design of multiple strategies to deal
with class imbalance (e.g. specific organ, pathology...). Among these strategies,
some focus their efforts in reducing the imbalance by the selection of the training
samples being analyzed at the risk of reducing the variability in training [3,5],
while others have derived more appropriate and robust loss functions [1,8,9].
In this work, we investigate the training behavior of three previously published
loss functions in different multi-class segmentation problems in 2D and 3D while
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assessing their robustness to learning rate and sample rates. We also propose to
use the class re-balancing properties of the Generalized Dice overlap as a novel
loss function for both balanced and unbalanced data.

2 Methods

2.1 Loss Functions for Unbalanced Data

The loss functions compared in this work have been selected due to their poten-
tial to tackle class imbalance. All loss functions have been analyzed under a
binary classification (foreground vs. background) formulation as it represents
the simplest setup that allows for the quantification of class imbalance. Note
that formulating some of these loss functions as a 1-class problem would miti-
gate to some extent the imbalance problem, but the results would not generalize
easily to more than one class. Let R be the reference foreground segmentation
(gold standard) with voxel values rn, and P the predicted probabilistic map
for the foreground label over N image elements pn, with the background class
probability being 1 − P .

Weighted Cross-Entropy (WCE): The weighted cross-entropy has been
notably used in [9]. The two-class form of WCE can be expressed as

WCE = − 1
N

N∑

n=1

wrn log(pn) + (1 − rn) log(1 − pn),

where w is the weight attributed to the foreground class, here defined as w =
N−∑n pn∑

n pn
. The weighted cross-entropy can be trivially extended to more than

two classes.

Dice Loss (DL): The Dice score coefficient (DSC) is a measure of overlap
widely used to assess segmentation performance when a gold standard or ground
truth is available. Proposed in Milletari et al. [8] as a loss function, the 2-class
variant of the Dice loss, denoted DL2, can be expressed as

DL2 = 1 −
∑N

n=1 pnrn + ε
∑N

n=1 pn + rn + ε
−

∑N
n=1(1 − pn)(1 − rn) + ε
∑N

n=1 2 − pn − rn + ε

The ε term is used here to ensure the loss function stability by avoiding the
numerical issue of dividing by 0, i.e. R and P empty.

Sensitivity - Specificity (SS): Sensitivity and specificity are two highly
regarded characteristics when assessing segmentation results. The transforma-
tion of these assessments into a loss function has been described by Brosch
et al. [1] as

SS = λ

∑N
n=1(rn − pn)2rn∑N

n=1 rn + ε
+ (1 − λ)

∑N
n=1(rn − pn)2(1 − rn)
∑N

n=1(1 − rn) + ε
.
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The parameter λ, that weights the balance between sensitivity and specificity,
was set to 0.05 as suggested in [1]. The ε term is again needed to deal with cases
of division by 0 when one of the sets is empty.

Generalized Dice Loss (GDL): Crum et al. [2] proposed the Generalized Dice
Score (GDS) as a way of evaluating multiple class segmentation with a single
score but has not yet been used in the context of discriminative model training.
We propose to use the GDL as a loss function for training deep convolutional
neural networks. It takes the form:

GDL = 1 − 2
∑2

l=1 wl

∑
n rlnpln∑2

l=1 wl

∑
n rln + pln

,

where wl is used to provide invariance to different label set properties. In the
following, we adopt the notation GDLv when wl = 1/(

∑N
n=1 rln)2. As stated

in [2], when choosing the GDLv weighting, the contribution of each label is
corrected by the inverse of its volume, thus reducing the well known correlation
between region size and Dice score. In terms of training with stochastic gradient
descent, in the two-class problem, the gradient with respect to pi is:

∂GDL
∂pi

= −2

(w2
1 − w2

2)

[
N∑

n=1

pnrn − ri

N∑

n=1

(pn + rn)

]
+ Nw2(w1 + w2)(1 − 2ri)

[
(w1 − w2)

∑N
n=1(pn + rn) + 2Nw2

]2

Note that this gradient can be trivially extended to more than two classes.

2.2 Deep Learning Framework

To extensively investigate the loss functions in different network architectures,
four previously published networks were chosen as representative networks for
segmentation due to their state-of-the art performance and were reimplemented
using Tensorflow.

2D Networks: Two networks designed for 2D images were used to assess the
behaviour of the loss functions: UNet [9], and the TwoPathCNN [3]. The UNet
architecture presents a U-shaped pattern where a step down is a series of two
convolutions followed by a downsampling layer and a step up consists in a series
of two convolution followed by upsampling. Connections are made between the
downsample and upsample path at each scale. TwoPathCNN [3], designed for
tumor segmentation, is used here in a fully convolutional 2D setup under the
common assumption that a 3D segmentation problem can be approximated by a
2D network in situations where the slice thickness is large. This network involves
the parallel training of two networks - a local and a global subnetwork. The
former consists of two convolutional layers with kernel of size 72 and 52 with
max-out regularization interleaved with max-pooling layers of size 42 and 22

respectively; while the latter network consists of a convolution layer of kernel
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size 132 followed by a max-pooling of size 22. The features of the local and global
networks are then concatenated before a final fully connected layer resulting in
the classification of the central location of the input image.

3D Networks: The DeepMedic architecture [4] and the HighResNet network
[6] were used in the 3D context. DeepMedic consists in the parallel training of
one network considering the image at full resolution and another on the down-
sampled version of the image. The resulting features are concatenated before
the application of two fully connected layers resulting in the final segmenta-
tion. HighResNet is a compact end-to-end network mapping an image volume
to a voxel-wise segmentation with a successive set of convolutional blocks and
residual connections. To incorporate image features at multiple scales, the con-
volutional kernels are dilated with a factor of two or four. The spatial resolution
of the input volume is maintained throughout the network.

3 Experiments and Results

3.1 Experiments

The two segmentation tasks we choose to highlight the impact of the loss function
target brain pathology: the first task tackles tumor segmentation, a task where
tumor location is often unknown and size varies widely, and the second comprises
the segmentation of age-related white matter hyperintensities, a task where the
lesions can present a variety of shapes, location and size.

In order to assess each loss function training behavior, different sample and
learning rates were tested for the two networks. The learning rates (LR) were
chosen to be log-spaced and set to 10−3, 10−4 and 10−5. For each of the net-
works, three patch sizes (small: S, moderate: M, large: L), resulting in different
effective field of views according to the design of the networks were used to
train the models. A different batch size was used according to the patch size.
Initial and effective patch sizes, batch size and resulting imbalance for each net-
work are gathered in Table 1. In order to ensure a reasonable behavior of all
loss functions, training patches were selected if they contained at least one fore-
ground element. Larger patch sizes represent generally more unbalanced training
sets. The networks were trained without training data augmentation to ensure
more comparability between training behaviors. The imbalance in patches varied

Table 1. Comparison of patch sizes and sample rate for the four networks.

UNet TwoPathCNN DeepMedic HighResNet

Batch size 5 3 1 5 3 1 5 3 1 5 3 1

Initial patch size 56 64 88 51 63 85 51 63 87 51 63 85

Effective patch size 16 24 48 19 31 53 3 15 39 15 27 49

Imbalance ratio 0.52 0.33 0.15 0.29 0.25 0.16 0.20 0.01 0.002 0.02 0.01 0.003
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Table 2. Comparison of DSC over 200 last iterations in the 2D context for UNet and
TwoPathCNN. Results are under the format median (interquartile range).

Patch LR UNet TwoPathCNN

WCE DL2 SS GDLv WCE DL2 SS GDLv

S −5 0.71 (0.17) 0.73 (0.13) 0.37 (0.17) 0.75 (0.14) 0.56 (0.48) 0 (0) 0.53 (0.41) 0.49 (0.44)

−4 0.77 (0.18) 0.76 (0.13) 0.74 (0.16) 0.80 (0.12) 0.80 (0.12) 0.79 (0.11) 0.81 (0.12) 0.80 (0.12)

−3 0.70 (0.17) 0.72 (0.15) 0.39 (0.16) 0.72 (0.15) 0 (0) 0 (0) 0.77 (0.11) 0.72 (0.15)

M −5 0.71 (0.23) 0.70 (0.22) 0.65 (0.25) 0.74 (0.19) 0 (0) 0.73 (0.18) 0.69 (0.21) 0.73 (0.19)

−4 0.73 (0.18) 0.70 (0.22) 0.61 (0.25) 0.72 (0.19) 0.77 (0.16) 0.76 (0.17) 0.71 (0.18) 0.76 (0.17)

−3 0.68 (0.23) 0.67 (0.21) 0.70 (0.26) 0.69 (0.22) 0 (0) 0.71 (0.22) 0.67 (0.21) 0.72 (0.19)

L −5 0.63 (0.46) 0.62 (0.40) 0.49 (0.42) 0.56 (0.44) 0.62 (0.50) 0.50 (0.41) 0.50 (0.38) 0.56 (0.35)

−4 0.68 (0.34) 0.64 (0.44) 0.18 (0.24) 0.66 (0.39) 0.64 (0.42) 0.59 (0.43) 0.52 (0.38) 0.64 (0.35)

−3 0.59 (0.39) 0.57 (0.53) 0.16 (0.22) 0.59 (0.45) 0.77 (0.12) 0.77 (0.14) 0.79 (0.12) 0.79 (0.11)

greatly according to networks and contexts reaching at worst a median of 0.2%
of a 3D patch.

The 2Dnetworkswere applied toBRATS [7], a neuro-oncological datasetwhere
the segmentation task was here to localize the background (healthy tissue) and the
foreground (pathological tissue, here the tumor) in the image. The 3D networks
were applied to an in house dataset of 524 subjects presenting age-related white
matter hyperintensities. In both cases, the T1-weighted, T2-weighted and FLAIR
data was intensity normalized by z-scoring the data according to the WM intensity
distribution.The trainingwas arbitrarily stopped after 1000 (resp. 3000) iterations
for the 2D (resp. 3D) experiments, as itwas found sufficient to allow for convergence
for all metrics.

3.2 2D Results

Table 2 presents the statistics for the last 200 steps of training in term of DSC for
the four loss functions at the different learning rates, and different networks while
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Fig. 1. Loss function behavior in terms of DSC (median over the last 200 iterations)
under different conditions of effective patch size and learning rate in a 2D context.
Isolines were linearly interpolated for visualization purposes.
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Table 3. Comparison of DSC over 200 last iterations in the 3D context for DeepMedic
and HighResNet. Results are under the format median (interquartile range).

Patch LR DeepMedic HighResNet

WCE DL2 SS GDLv WCE DL2 SS GDLv

S −5 0.49 (0.17) 0.44 (0.19) 0.42 (0.14) 0.46 (0.17) 0 (0) 0 (0) 0.06 (0.15) 0.47 (0.32)

−4 0.58 (0.20) 0.60 (0.15) 0.61 (0.22) 0.61 (0.18) 0 (0) 0.71 (0.18) 0.34 (0.20) 0.74 (0.15)

−3 0.61 (0.12) 0.59 (0.14) 0.63 (0.15) 0.60 (0.15) 0 (0) 0 (0) 0 (0) 0 (0)

M −5 0.05 (0.07) 0.05 (0.07) 0.05 (0.06) 0.04 (0.06) 0 (0) 0.60 (0.27) 0.15 (0.13) 0.64 (0.19)

−4 0.09 (0.11) 0.07 (0.09) 0.08 (0.09) 0.08 (0.10) 0 (0) 0.71 (0.20) 0.20 (0.20) 0.69 (0.20)

−3 0.45 (0.31) 0.42 (0.31) 0.17 (0.24) 0.48 (0.32) 0 (0) 0 (0) 0 (0) 0.65 (0.23)

L −5 0.01 (0.03) 0.01 (0.03) 0.01 (0.03) 0.01 (0.03) 0 (0) 0.54 (0.27) 0.03 (0.06) 0.50 (0.32)

−4 0.01 (0.04) 0.02 (0.04) 0.02 (0.04) 0.01 (0.04) 0 (0) 0.57 (0.32) 0.08 (0.19) 0.60 (0.30)

−3 0.21 (0.33) 0.18 (0.30) 0.05 (0.12) 0.20 (0.33) 0 (0) 0.62 (0.18) 0.22 (0.15) 0.49 (0.34)

Fig. 1 shows the corresponding isolines in the space of learning rate and effective
patch size illustrating notably the robustness of the GDL to the hyper-parameter
space. The main observed difference across the different loss functions was the
robustness to the learning rate, with the WCE and DL2 being less able to cope
with a fast learning rate (10−3) when using TwoPathCNN while the efficiency of
SS was more network dependent. An intermediate learning rate (10−4) seemed to
lead to the best training across all cases. Across sampling strategies, the pattern
of performance was similar across loss functions, with a stronger performance
when using a smaller patch but larger batch size.

3.3 3D Results

Similarly to the previous section, Table 3 presents the statistics across loss func-
tions, sample size and learning rates for the last 200 iterations in the 3D exper-
iment, while Fig. 2 plots the representation of robustness of loss function to the
parameter space using isolines. Its strong dependence on the hyperparameters
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Fig. 2. Loss function behavior in terms of DSC (median over the last 200 iterations)
under different conditions of effective patch size and learning rate in a 3D context.
Isolines were linearly interpolated for visualization purposes.
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Fig. 3. Test set DSC for all loss functions across patch sizes (left) and across learning
rates (right). WCE was omitted as it was unable to cope with the imbalance.

made DeepMedic agnostic to the choice of loss function. In the 3D context with
higher data imbalance, WCE was unable to train and SS dropped significantly
in performance when compared to GDLv. DL2 performed similarly to GLDv for
low learning rates, but failed to train for higher training rates. Similar patterns
were observed across learning rates as for the 2D case, with the learning rate
of 10−5 failing to provide a plateau in the loss function after 3000 iterations.
We also observed that learning rates impacted network performance more for
smaller patch sizes, but in adequate conditions (LR = 10−4), smaller patches
(and larger batch size) resulted in higher overall performance.

3D test set. For the 3D experiment, 10% of the available data was held out for
testing purposes. The final HighResNet model was used to infer the test data
segmentation. Figure 3 shows the comparison in DSC across loss functions for
the different sampling strategies (right) and across learning rates (left). Overall,
GDLv was found to be more robust than the other loss functions across experi-
ments, with small variations in relative performance for less unbalanced samples.
Figure 4 presents an example of the segmentation obtained in the 3D experiment
with HighResNet when using the largest patch size at a learning rate of 10−4.

Fig. 4. The segmentation of a randomly selected 3D test set using different loss func-
tions. Note the increased ability to capture punctuate lesions when using GDLv. Loss
functions were trained using a single patch of size 853 per step at learning rate 10−4.
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4 Discussion

From the observation of the training behavior of four loss functions across learn-
ing rates and sampling strategies in two different tasks/networks, it appears
that a mild imbalance is well handled by most of the loss strategies designed
for unbalanced datasets. However, when the level of imbalance increases, loss
functions based on overlap measures appeared more robust. The strongest reli-
ability across setups was observed when using GDLv. Overall this work demon-
strates how crucial the choice of loss function can be in a deep learning frame-
work, especially when dealing with highly unbalanced problems. The foreground-
background ratio in the most unbalanced case in this study was of 0.02% for the
3D experiment (white matter lesions). Future work will focus on more extreme
imbalance situations, such as those observed in the case of the detection of
lacunes and perivascular spaces (1/100000), where deep learning frameworks
must find a balance between learning the intrinsic anatomical variability of all
the classes and the tolerable level of class imbalance. The studied loss functions
are implemented as part of the open source NiftyNet package (http://www.
niftynet.io).
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