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Abstract. In this work we propose a deep learning network for
deformable image registration (DIRNet). The DIRNet consists of a con-
volutional neural network (ConvNet) regressor, a spatial transformer,
and a resampler. The ConvNet analyzes a pair of fixed and moving images
and outputs parameters for the spatial transformer, which generates the
displacement vector field that enables the resampler to warp the moving
image to the fixed image. The DIRNet is trained end-to-end by unsuper-
vised optimization of a similarity metric between input image pairs. A
trained DIRNet can be applied to perform registration on unseen image
pairs in one pass, thus non-iteratively. Evaluation was performed with
registration of images of handwritten digits (MNIST) and cardiac cine
MR scans (Sunnybrook Cardiac Data). The results demonstrate that
registration with DIRNet is as accurate as a conventional deformable
image registration method with short execution times.
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1 Introduction

Image registration is a fundamental step in many medical image analysis tasks.
Traditionally, image registration is performed by exploiting intensity informa-
tion between pairs of fixed and moving images. Since recently, deep learning
approaches are used to aid image registration. Wu et al. [11] used a convolu-
tional stacked auto-encoder (CAE) to extract features from fixed and moving
images that are subsequently used in conventional deformable image registration
algorithms. However, the CAE is decoupled from the image registration task and
hence, it does not necessarily extract the features most descriptive for image reg-
istration. The training of the CAE was unsupervised, but the registration task
was not learned end-to-end. Miao et al. [8] and Liao et al. [6] have used deep
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Fig. 1. Schematics of the DIRNet with two input images from the MNIST data. The
DIRNet takes one or more pairs of moving and fixed images as its inputs. The fully
convolutional ConvNet regressor analyzes spatially corresponding image patches from
the moving and fixed images and generates a grid of control points for a B-spline
transformer. The B-spline transformer generates a full displacement vector field to
warp a moving image to a fixed image. Training of the DIRNet is unsupervised and
end-to-end by backpropagating an image similarity metric as a loss.

learning to learn rigid registration with predefined registration examples. Miao
et al. [8] used a convolutional neural network (ConvNet) to predict a transforma-
tion matrix for rigid registration of synthetic 2D to 3D images. Liao et al. [6] used
a ConvNet for intra-patient rigid registration of CT to cone-beam CT applied to
either cardiac or abdominal images. This ConvNet learned to predict iterative
updates of registration using reinforcement learning. Both methods are end-to-
end but use supervised techniques, i.e. registration examples are necessary for
training, which are often task specific and highly challenging to obtain.

Jaderberg et al. [3] introduced the spatial transformer network (STN) that
can be used as a building block that aligns input images in a larger network
that performs a particular task. By training the entire network end-to-end, the
embedded STN deduces optimal alignment for solving that specific task. How-
ever, alignment is not guaranteed, and it is only performed when required for
the task of the entire network. The STNs were used for affine transformations,
as well as deformable transformations using thin-plate splines. However, an STN
needs many labeled training examples, and to the best of our knowledge, have
not yet been used in medical imaging.

In this work, we present the deformable image registration network (DIR-
Net). The DIRNet takes pairs of fixed and moving images as inputs, and it
outputs moving images warped to the fixed images. Training of the DIRNet is
unsupervised. Unlike previous methods, the DIRNet is not trained with known
registration examples, but learns to register images by directly optimizing a
similarity metric between the fixed and the moving image. Hence, similar to
conventional intensity-based image registration, it directly learns the registra-
tion task end-to-end and it is truly unsupervised. In addition, a trained DIRNet
is able to perform deformable image registration non-iteratively on unseen data.
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To the best of our knowledge, this is the first deep learning method for end-to-end
unsupervised deformable image registration.

2 Method

The proposed DIRNet consists of a ConvNet regressor, a spatial transformer,
and a resampler (Fig. 1). The ConvNet regressor analyzes spatially corresponding
patches from a pair of fixed and moving input images and outputs local deforma-
tion parameters for the spatial transformer. The spatial transformer generates
a dense displacement vector field (DVF) that enables the resampler to warp
the moving image to the fixed image. The DIRNet learns the registration task
end-to-end by unsupervised training with an image similarity metric. Since the
training phase involves simultaneous optimization of registration of many image
pairs, the ConvNet implicitly learns a representation of the features in images
that are important for predictions of local displacement. Unlike regular image
registration methods that typically perform iterative optimization for each image
pair at hand, a trained DIRNet registers images in one pass.

The ConvNet regressor expects concatenated pairs of moving and fixed
images as its input, and applies four alternating layers of 3 × 3 convolutions
with 0-padding and 2×2 downsampling layers. Downsampling reduces the num-
ber of the ConvNet parameters, but it is associated with translational invari-
ance. We postulate that this effect should be minimal in a ConvNet used for
image registration, thus we use average pooling which should retain the most
information during downsampling. Subsequently, 3 × 3 convolutional layers are
added to increase the receptive field of the ConvNet to coincide with the cap-
ture range of the control points of the spatial transformer. Finally, three 1 × 1
convolutional layers are applied. Batch normalization [2] and exponential linear
units [1] are used throughout the network, except in the final layer. The num-
ber of kernels per layer can be of arbitrary size, but the number of kernels of
the final layer is determined by the dimensionality of the input images (e.g. 2
kernels for 2D images that require 2D displacement). The fully convolutional
design in combination with downsampling allows fast analysis of separate spa-
tially corresponding patch pairs from the fixed and moving images. The input
image sizes and the number of downsampling layers jointly define the number of
output parameters, i.e. the size and spacing of the control point grid. This way,
for images of different sizes, similar grid spacing is ensured. Using the control
point displacements, the spatial transformer generates a DVF used to warp the
moving image to the fixed image. Like in [3], a thin-plate spline could be used
as a spatial transformer, but due to its global support it is deemed less suitable
for a patched-based approach. Therefore, we implemented a cubic B-spline [10]
transformer which has local support. Thereafter, a resampler is used to generate
warped moving images with linear interpolation.

The DIRNet is trained by optimizing an image similarity metric (i.e. by back-
propagating dissimilarity) between pairs of moving and fixed images from a train-
ing set using mini-batch stochastic gradient descent (Adam [4]). Any similarity
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metric used in conventional image registration could be used. In this work nor-
malized cross correlation is employed.

After training, the DIRNet can be applied for registration of unseen image
pairs from a separate dataset.

3 Data

The DIRNet was evaluated with handwritten digits from the MNIST database [5]
and clinical MRI scans from the Sunnybrook Cardiac Data (SCD) [9].

The MNIST database contains 28× 28 pixel grayscale images of handwritten
digits that were centered by computing the center of mass of the pixels. The test
images (10,000 digits) were kept separate from the training images (60,000 digits).
One sixth of the training data was used for validation to monitor overfitting during
training.

The SCD contains 45 cardiac cine MRI scans that were acquired on a single
MRI-scanner. The scans consist of short-axis cardiac image slices each containing
20 timepoints that encompass the entire cardiac cycle. Slice thickness and spacing
is 8 mm, and slice dimensions are 256×256 with a pixel size of 1.25 mm×1.25 mm.
The SCD is equally divided in 15 training scans (183 slices), 15 validation scans
(168 slices), and 15 test scans (176 slices). An expert annotated the left ventricle
myocardium at end-diastolic (ED) and end-systolic (ES) time points following
the annotation protocol of the SCD. Annotations were made in the test scans
and only used for final quantitative evaluation. In total, 129 image slices were
annotated, i.e. 258 annotated timepoints.

4 Experiments and Results

DIRNet was implemented with Theano1 and Lasagne2, and conventional regis-
tration was performed with SimpleElastix [7].

4.1 Registration of Handwritten Digits

To demonstrate feasibility of the method we first applied it to registration of
handwritten digits from the MNIST data. Separate DIRNet instances were
trained for image registration of a specific class: one for each digit. The DIR-
Nets were designed with 16 kernels per convolution layer, the third and fourth
downsampling layers were removed. This resulted in a control point grid of 7×7
(grid spacing of 4 pixels). Each DIRNet was trained separately with random
combinations of digits from its class with mini-batches of 32 random fixed and
moving image pairs in 5,000 iterations (i.e. backpropagations). See Fig. 2 (left)
for the learning curves.

1 http://deeplearning.net/software/theano/ (version 0.8.2).
2 https://lasagne.readthedocs.io/en/latest/ (version 0.2.dev1).

http://deeplearning.net/software/theano/
https://lasagne.readthedocs.io/en/latest/
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Registration performance of the trained DIRNets was qualitatively assessed
on the test data. For each digit, one sample was randomly chosen to be the
fixed image. Thereafter, all remaining digits (approximately 1,000 per class)
were registered to the corresponding fixed image. Figure 2 (right) shows the
registration results.

Fig. 2. Left: Learning curves showing the negative normalized cross correlation loss
(LNCC) on the validation set of DIRNets trained in 5,000 iterations for registration of
MNIST digits. Right: Registration results of the trained DIRNets on a separate test
set. The top row shows an average of all moving images per class (about 1,000 digits),
the middle row shows one randomly chosen fixed image per class, and the bottom row
shows an average of the registration results of independent registrations of the moving
images to the chosen fixed image. Averages of the moving images after registration are
much sharper than before registration indicating a good registration result. The blurry
areas in the resulting images indicate where registration is challenging.

4.2 Registration of Cardiac MRI

Next, to demonstrate feasibility of the method on real-world medical data, we
register cine cardiac MR images from the SCD. The DIRNet was trained by
randomly selecting pairs of fixed and moving image slices from cardiac cine
MRI scans (4D data). The pairs of fixed and moving images were anatomically
corresponding slices from the same 4D scan of a single patient but acquired at
different time points in the cardiac cycle. This resulted in 69,540 image pairs for
training, and 63,840 pairs for validation.

A baseline DIRNet, as described in Sect. 2, was designed with 16 kernels
per convolution layer. This resulted in a grid of 16 × 16 control points, i.e. a
grid spacing of 16 pixels (20 mm). To evaluate effect of various DIRNet parame-
ters, additional experiments were performed. First, to evaluate the effect of the
downsampling method, DIRNet-A1 was designed with max-pooling layers, and
DIRNet-A2 was designed with 2×2 strided convolutions. Second, to evaluate the
effect of the spatial transformer, DIRNet-B1 was designed with a quadratic B-
spline transformer, and DIRNet-B2 with a thin-plate spline transformer. Finally,
to show the effect of the size of the receptive field (i.e. patch size), DIRNet-C1
was designed with neighbouring (i.e. non-overlapping) patches, by leaving out
the last two 3 × 3 convolutional layers. In addition, DIRNet-C2 analyzed full
image slices for each control point by replacing the 1× 1 convolution layers with
a 3×3 convolution layer, followed by a downsampling layer, two fully connected
layers of 1,024 nodes, and a final output layer of 16 × 16 2D control points.
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Fig. 3. Learning curves showing the negative normalized cross correlation loss (LNCC)
on the validation set of DIRNets The Net loss over 10,000 iteration for the baseline
DIRNet, DIRNets with different downsampling techniques (A1, A2), DIRNets with
different spatial transformers (B1, B2), and DIRNets with different receptive fields
(C1, C2).

Table 1. Registration performance was quantified in cardiac MRI by registration of
image slices and subsequent transformation of corresponding left ventricle annotations.
Mean and standard deviations of the Dice coefficients between the reference and warped
segmentations were computed. Additionally, 95th percentiles of the surface distance
(95thSD), and mean absolute surface distance (MAD) were calculated. The rows list
results before registration, with conventional iterative image registration using Sim-
pleElastix, and results obtained using the DIRNet. The rightmost column shows the
runtime at inference for the conventional methods and the best performing DIRNet.

Iterations Dice 95th SD (mm) MAD (mm) Time (s)

No registration 0.62 ± 0.15 7.79 ± 2.92 2.89 ± 1.07 -

SimpleElastix 2 × 100 0.79 ± 0.08 5.09 ± 2.36 1.91 ± 0.94 0.51 ± 0.07

SimpleElastix 2 × 2000 0.81± 0.08 5.09 ± 7.25 1.75± 1.29 7.38 ± 0.94

DIRNet BL 0.80 ± 0.08 5.03± 2.30 1.83 ± 0.89 0.049 ± 0.004

A1 0.78 ± 0.08 5.26 ± 2.16 1.95 ± 0.85 -

A2 0.78 ± 0.08 5.30 ± 2.28 1.97 ± 0.87 -

B1 0.72 ± 0.11 6.41 ± 2.61 2.40 ± 0.96 -

B2 0.78 ± 0.09 5.48 ± 2.36 2.01 ± 0.89 -

C1 0.79 ± 0.08 5.20 ± 2.30 1.92 ± 0.89 -

C2 0.76 ± 0.09 5.55 ± 2.24 2.10 ± 0.90 -

Each DIRNet was trained until convergence in mini-batches of 32 image pairs
in at least 10,000 iterations. The training loss closely followed the validation loss
in each experiment, and no signs of overfitting were apparent. Figure 3 shows
the validation loss of 10,000 iterations during training for all experiments. The
DIRNets converged quickly in each experiment, except DIRNet-B2, where con-
vergence was reached after approximately 30,000 iterations. The final loss was
lowest for baseline DIRNet.

Quantitative evaluation was performed on the test set by registering image
slices at ED to ES, and vice versa, which resulted in 258 independent registra-
tion experiments. The obtained transformation parameters were used to warp
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Fig. 4. Top, from left to right: The fixed (ED), the moving (ES), the DIRNet warped,
and the SimpleElastix warped images. Bottom: Heatmaps showing absolute difference
images between the fixed image and (from left to right) the original, the DIRNet
warped, and the SimpleElastix warped moving images.

the left ventricle annotations of the moving image to the fixed image. The trans-
formed annotations were compared with the reference annotations in the fixed
images. The results are listed in Table 1. For comparison, the table also lists
conventional iterative intensity-based registrations (SimpleElastix), with para-
meters specifically tuned for this task. A grid spacing was used similar to the
DIRNet but in a multi-resolution approach, downsampling first with a factor of 2
and thereafter using the original resolution. Two conventional image registration
experiments were performed, one for optimal speed (2 times 100 iterations), and
one for optimal registration accuracy (2 times 2000 iterations), but at the cost of
longer computation time. Experiments with the DIRNets were performed on an
NVIDIA Titan X Maxwell GPU and experiments with SimpleElastix were per-
formed on an Intel Xeon 1620-v3 3.5 GHz CPU using 8 threads. Figure 4 shows
registration results for a randomly chosen image pair.

5 Discussion and Conclusion

A deep learning method for unsupervised end-to-end learning of deformable
image registration has been presented. The method has been evaluated with
registration of images with handwritten digits and image slices from cine cardiac
MRI scans. The presented DIRNet achieves a performance that is as accurate as
a conventional deformable image registration method with substantially shorter
execution times. The method does not require training data, which is often
difficult to obtain for medical images. To the best of our knowledge this is the first
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deep learning method that uses unsupervised end-to-end training for deformable
image registration.

Even though registration of images with handwritten digits is an easy task,
the performed experiments demonstrate that a single DIRNet architecture can
be used to perform registration in different image domains given domain specific
training. It would be interesting to further investigate whether a single DIRNet
instance can be trained for registration across different image domains.

Registration of slices from cardiac cine MRI scans was quantitatively evalu-
ated between the ES and ED timepoints, so at maximum cardiac compression
and maximum dilation. The conventional registration method (SimpleElastix)
was specifically tuned for this task and the DIRNet was not, because it was
trained for registration of slices from any timepoint of the cardiac cycle. Never-
theless, the results of the DIRNet were comparable to the conventional approach.

The data used in this work did not require pre-alignment of images. How-
ever, to extend the applicability of the proposed method in future work, per-
forming affine registration will be investigated. Furthermore, proposed method
is designed for registration of 2D images. In future work the method will be
extended for registration of 3D images. Moreover, experiments were performed
using only normalized cross correlation as a similarity metric, but any differen-
tiable metric could be used.

To conclude, the DIRNet is able to learn image registration tasks in an unsu-
pervised end-to-end fashion using an image similarity metric for optimization.
Image registration is performed in one pass, thus non-iteratively. The results
demonstrate that the network achieves a performance that is as accurate as
a conventional deformable image registration method within shorter execution
times.
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