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Abstract. Characterisation of cardiac cycle phase in echocardiography
data is a necessary preprocessing step for developing automated systems
that measure various cardiac parameters. Accurate characterisation is
challenging, due to differences in appearance of the cardiac anatomy and
the variability of heart rate in individuals. Here, we present a method for
automatic recognition of cardiac cycle phase from echocardiograms by
using a new deep neural networks architecture. Specifically, we propose
to combine deep residual neural networks (ResNets), which extract the
hierarchical features from the individual echocardiogram frames, with
recurrent neural networks (RNNs), which model the temporal depen-
dencies between sequential frames. We demonstrate that such new archi-
tecture produces results that outperform baseline architecture for the
automatic characterisation of cardiac cycle phase in large datasets of
echocardiograms containing different levels of pathological conditions.

Keywords: Deep residual neural networks · Recurrent neural
networks · Long short term memory · Echocardiograms · Frame
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1 Introduction

According to the World Health Organization1 millions of people worldwide suffer
from the heart-related disease, a major cause of mortality. The 2-D echocardiogra-
phy (echo) examination is a widely used imaging modality for early diagnosis. Echo
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can be used to estimate several cardiac parameters such as stroke volume, end-
diastolic volume, and ejection fraction [1]. These parameters are generally mea-
sured by identifying end-systolic and end-diastolic frames from cine echos [1,2].
Current detection is either manual or semi-automatic [3,4], relying primarily on
the availability of electrocardiogram (ECG) data, which can be challenging in
point-of-care and non-specialized clinics. Moreover, such detection techniques add
to theworkload ofmedical personnel and are subject to inter-user variability.Auto-
matic detection of cardiac cycle phase in echo can potentially alleviate these issues.
However, such detection is challenging due to low signal-to-noise ratio in echo data,
subtle differences between the consecutive frames, the variability of cardiac phases,
and temporal dependencies between these frames.

(a) End-Diastolic(ED) Frames (b) End-Systolic(ES) Frames

Fig. 1. Examples of end-diastolic and end-systolic frames in 2-D echocardiograms.

There have been a number of attempts for automatic detection and labeling of
frames in echo [2,4,5]. The most common approach is to use a segmentation strat-
egy, such as level-sets or graph-cuts, for identifying the boundary of the left ven-
tricle in an echo sequence [2,5]. Boundaries that correspond to largest and small-
est ventricular areas are regarded as end-diastolic (ED) and end-systolic (ES)
frames [5] (Fig. 1). A major drawback of those segmentation-based approaches
is the requirement for a good initialization and localization of the left ventricle.
In another approach [4], information from cine frames was projected onto a low-
dimensional 2-D manifold, after which the difference of distance between points
on the manifold was used to determine ED and ES frames. However, this app-
roach does not consider the complex temporal dependencies between the frames,
which may subsequently lead to sub-optimal results. Recently, methods based on
convolutional neural networks (CNNs) combined with recurrent neural networks
(RNNs) have produced state-of-the-art results in many computer vision prob-
lems [6–9]. A combination of CNNs and RNNs has been successfully applied in
various problem domains such as detecting frames from videos, natural language
processing, object detection and tracking [3,8,10,11]. However, our experience
is that such network structure cannot be easily extended to the analysis of echo
data, which suffer from low signal-to-noise ratio, where anatomical boundaries
may not be as clearly visible compared to other imaging modalities.

Here, we formulate a very deep CNN architecture using residual neural net-
works (ResNets) [7] for extracting deep hierarchical features, which are then
passed to RNNs containing two blocks of long short term memory (LSTM) [12]
to decode the temporal dependencies between these features. The primary moti-
vation of using a ResNets with LSTMs is that layers in ResNets are reformulated
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for learning the residual function with respect to input layers for countering the
vanishing or exploding gradient problem in CNN while going deeper [7]. In addi-
tion to this, we minimize the structured loss function that mimics the temporal
changes in left ventricular volume during the systolic and diastolic phase [3]. We
demonstrate that the proposed method using ResNets and LSTMs with struc-
tured loss function produces state-of-the-art accuracy for detecting cardiac phase
cycle in echo data without the need of segmentation.

Fig. 2. The proposed method for characterisation of cardiac cycle phase from echocar-
diograms using deep residual recurrent neural networks (RRNs), which contains resid-
ual nets (ResNets), followed by two blocks of long term short term memory (LSTM)
and a fully connected layer (FC).

2 Methods

2.1 Dataset

Let D = {(c(i),y(i))j}|D|
j=1 represent the dataset, where i ∈ {1, 2, .., N} indexes

the number of cardiac cycles for an individual study j, c = {x1,x2, ..,xt} rep-
resents the collection of frames x for each patient such that xt : Ω → R with
Ω ⊂ R

2, and y = {y1, y2, .., yt} denotes the class label for individual frames
computed using the following function [3]:
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where T i
ES and T i

ED are the locations of ES and ED frames in the ith cardiac
cycle and τ is an integer constant. The expression in Eq. 1 mimics the ventricular
volume changes during the systole and diastole phases of a cardiac cycle [3].
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2.2 Deep Residual Recurrent Neural Networks (RRNs)

We propose deep residual recurrent neural networks (RRNs) to decode the phase
information in echo data. RRNs constitute of a stack of residual units for extract-
ing the hierarchical spatial features from echo data, RNNs that use LSTMs for
decoding the temporal information, and a fully connected layer at the end. As
shown in Fig. 3(a), each residual unit is made by the addition of a residual func-
tion and an identity mapping, and can be expressed in a general form by the
following expression [7]:

x(t)
L = x(t)

l +
L−1∑

l=1

fRES(x
(t)
l ;Wl), (2)

where x(t)
l is the input feature to the l ∈ {1, ..., L}th residual unit (for l =

1, xl = xt), Wl = wl,k is the set of weights for the lth residual unit, k ∈
{1, ...,K} represents the numbers of layers in the residual unit, fRES(.) is called
the residual function represented by a convolutional layer (weight) [6,13], batch
normalization (BN) [14] and rectilinear unit (ReLU) [7,15] (Fig. 3(a)).

We use RNNs for decoding the temporal dependencies within the echo
sequence. LSTM network as shown in Fig. 3(b) is a type of RNNs with the addi-
tion of memory cell that allows the network to learn to remember or forget the
hidden states. In particular, LSTM updates the hidden states ht and its memory
units ct with given sequential input xt using the following expressions [8]:

(a) ResNet model (b) LSTM model

Fig. 3. Two basic building blocks of our proposed method: (a) ResNet, and (b) LSTM.
A typical ResNet model contains residual units with BN, ReLU, and convolutional
(weight) layers, stacked together and identity mapping (addition). An LSTM model
is made of memory units (cells) which maintain a cell state using input, output, and
forget gates.
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it = φ (wxixt + whiht−1 + bi) ;
ft = φ (wxfxt + whfht−1 + bf ) ;
ot = φ (wxoxt + whoht−1 + bo) ;

(3)

ct = ft � ct−1+it � ψ (wxixt + whiht−1 + bi) ,

ht = ot � ψ(ct),
(4)

where � is element-wise product, ψ is the hyperbolic tangent function, φ is the
sigmoid function, and wxi, whi, and bi are the weights and biases between input
it and hidden state ht−1; wxf , whf , and bf are the weights and biases between
forget state ft and hidden state ht−1; and wxo, who, and bo are the weights and
biases between output ot and hidden state ht−1. Our proposed RRNs (Fig. 2)
can be expressed as the following function:

{ỹ1, ỹ2, .., ỹt} = fRRNs (x1,x2, ..,xt;WRRNs) , (5)

where fRRNs takes the sequential echo images as input to RRNs and
outputs the predicted values ỹt with parameters of RRNs as WRRNs =
[WResNets,WLSTM,wfc]. WResNets represents the parameters of ResNets, WLSTM

represents the parameters of LSTM, and wfc is associated with weights of the
final fully connected layer. We train the proposed RRNs in an end-to-end fash-
ion with stochastic gradient decent to minimise the following loss function [3]
containing a first term as L2 norm and a second term as structured loss (for
notation simplicity, we dropped index i denoting the echo sequences):

�(WRRNs) =
|D|∑

j=1

[
α

T

T∑

t=1

||y(j,t) − ỹ(j,t)||2 +
2β

T

T∑

t=2

(
I(y(j,t) > y(j,t−1))

max(0, ỹ(j,t−1) − ỹ(j,t)) + I(y(j,t) < y(j,t−1))max(0, ỹ(j,t) − ỹ(j,t−1))
)
]

,

(6)

where I denotes the indicator function, T is the maximum frame length, and α, β
are user defined variables which are cross validated during the experiment. The
structured loss term takes into account monotonically decreasing nature of the
cardiac volume changes during the systole phase and monotonically increasing
nature of cardiac volume changes in the diastolic phase. Finally, inference in the
purposed method is done in a feed-forward way using the learned model.

3 Experiments

We carried out the experiments on a set of 2-D apical 4 chambers (AP4) cine
echoes obtained at Vancouver General Hospital (VGH) with ethics approval from
the Clinical Medical Research Ethics Board of the Vancouver Coastal Health
(VCH) (H13-02370). The dataset used in this project consists of 1,868 individual
patient studies containing a range of pathological conditions. The data were
obtained using different types of ultrasound probes from various manufacturers,
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which consists of both normal and abnormal cases. Experiments were run by
randomly dividing these cases into mutually exclusive subsets, such that 60%
of the cases were available for training, 20% for validation, and 20% for the
test. The average length of echo sequence in each study was about 30 frames.
The electrocardiogram (ECG) signals, synchronized with cine clips, were also
available. We considered the ECG signal to generate the ground-truth labels
for ED and ES frames by identifying R and end of T points in that signal.
Subsequently, the intermediate labels for all frames in each echo sequence were
derived using Eq. (1), where the value of τ is selected to be 3 and labels are
normalized in the range of [0–1] (Note that 0 represents ES and 1 represents
ED). The experiment was conducted on the image resolution of 120×120, where
we sub-sample the original image resolution using bi-cubic interpolation.

Our proposed RRNs, shown in Fig. 2, takes as input a cardiac sequence con-
taining 30 frames irrespective of its location in the cardiac phase. Each frame is
passed through the convolutional layer (weights) plus a ReLU, where the con-
volutional layer contains eight filters of size 3 × 3 followed by nine subsequent
residual units. Each residual unit is made up of batch normalization (BN) plus
ReLU plus weights. Each convolutional layer in the first three residual units
contained the same eight filters (size 3 × 3), the fourth, fifth and sixth residual
units contained 16 filters of size 3 × 3, and the seventh, eighth and ninth units
had 32 filters of size 3 × 3. In the second to the last layer, we concatenated the
32 output features from each ResNet to form 192 features (32 × 6), followed by
two blocks of LSTM layer and a final fully connected layer containing 30 neu-
rons, to generate a label for each frame of the cardiac cycle. For comparison, we
also used the shallow CNN model, Zeiler-Fergus (ZF), [3] in combination with
different loss functions. The performance of our approach is calculated based
on three metrics, the coefficient of determination (R2 score), average absolute
frame detection error, and computation time of each sample. R2 score is defined
by R2 = 1 −

∑
(yt−ỹt)

2
∑

(yt−ȳ)2 , where ȳt is the mean of true labels. Average absolute

frame detection error is calculated as ErrS = 1
|D|

∑ |TS − T̃S|, where S is either
the ED or the ES frame. All experiments were performed on a system with an
Intel(R) Core(TM) i7-2600k 3.40 GHz×8 CPU with 8 GB RAM equipped with
the NVIDIA GeForce GTX 980Ti graphics card.

4 Results and Discussion

Table 1 shows the result of the proposed approach using two different loss func-
tions: a) L2 loss, and b) L2 loss + structured loss [3]. The R2 values for these
two settings are 0.36 and 0.66, respectively. Similarly, (ErrED, ErrES) for these
two settings are (4.4, 4.7) and (3.7, 4.1), respectively. The baseline method [3]
using CNN with the same setting produces the R2 score of 0.13, whereas the
average absolute frame detection error for both ED and ES error is 6.3 and 7.3
in setting (a), and 6.4 and 7.3 in setting (b).

Results in Table 1 show that the proposed RRN method outperforms the
baseline method in both settings with a large margin. The advantage of the
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proposed method lies in its ability to go deeper with 126 layers in ResNets
compared to the shallow architecture in the baseline model (CNN). Furthermore,
we note that performance of the proposed RRNs model improves with the use of
structured loss with higher R2 score and lower frame detection error compared
to the use of L2 loss only. This is due to fact that structured loss introduces
a structured constraint in the loss function which helps with smoothing the
predicted labels, thus increasing the overall accuracy. It is also important to note
that R2 score of our proposed model is far better than that of baseline model
(0.66 vs. 0.13), indicating that our approach is a better function approximation
in the global context (with respect to assigning the correct label to individual
frames). The method takes only 80 ms to characterise each cardiac cycle showing
its efficiency in terms of computation cost. Figure. 4 shows some visual results
of frame characterisation in a sequence of 30 frames as a function of labels
represented in Eq. (1). In particular, Fig. 4(a and b) shows cases where the first
frame in the sequence starts as an ED frame, and Fig. 4(c and d) shows cases
where there is a shift in the location of the ED frame. Similarly, in Fig. 5, we
also show one fairly accurate visual example of detection of ED and ES frames
using the proposed method in the test set.

Table 1. Performance of the proposed and state-of-the-art methods on the test set.

Method R2 Score ErrED ErrES

ResNet+LSTM+L2 loss (Proposed) 0.36 4.4 4.7

ResNet+LSTM+L2 loss+struct loss (Proposed) 0.66 3.7 4.1

CNN+LSTM+L2 loss [3] 0.13 6.3 7.3

CNN+LSTM+L2 loss+struct loss [3] 0.13 6.4 7.3
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Fig. 4. Label approximation of the proposed method (blue) plotted against the ground-
truth labels (red) on some sample cases, where the ES and ED frames (denoted by
rectangular boxes) are correctly identified within an error margin of 3 to 4 frames.
(Color figure online)
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Fig. 5. A sample echo cine, consisting of 30 frames, alongside its ECG signal. The
results of the proposed method in terms of ED and ES frame detection are demon-
strated and compared with their ground-truth labels.

5 Conclusion and Future Works

In this paper, we proposed a deep residual recurrent neural net (RRN) for auto-
mated identification of cardiac cycle phases (ED and ES) from echocardiograms.
We also showed that the proposed method produces results that outperform a
baseline method using CNN with a large margin in detecting ED and ES frames.
We achieved the R2 score of 0.66 and the average absolute frame detection error
of 3.7 and 4.1 for ED and ES, respectively. Our results suggest that the method
has the potential to be used in clinical setting and is robust to all sorts of the
pathological condition of the patient. In future, we plan to use the method as a
pre-processing step for assessing several cardiac function parameters, including
the ejection fraction.

References

1. Barcaro, U., Moroni, D., Salvetti, O.: Automatic computation of left ventricle
ejection fraction from dynamic ultrasound images. Pattern Recogn. Image Anal.
18(2), 351 (2008)

2. Abboud, A.A., Rahmat, R.W., et al.: Automatic detection of the end-diastolic and
end-systolic from 4D echocardiographic images. JCS 11(1), 230–240 (2015)

3. Kong, B., Zhan, Y., Shin, M., Denny, T., Zhang, S.: Recognizing end-diastole
and end-systole frames via deep temporal regression network. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9902, pp. 264–272. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9 31

4. Gifani, P., Behnam, H., Shalbaf, A., Sani, Z.A.: Automatic detection of end-diastole
and end-systole from echocardiography images using manifold learning. Physiol.
Meas. 31(9), 1091 (2010)

5. Darvishi, S., Behnam, H., Pouladian, M., Samiei, N.: Measuring left ventricular vol-
umes in two-dimensional echocardiography image sequence using level-set method
for automatic detection of end-diastole and end-systole frames. Res. Cardiovasc.
Med. 2(1), 39 (2013)

http://dx.doi.org/10.1007/978-3-319-46726-9_31


108 F.T. Dezaki et al.

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE CVPR, pp. 770–778 (2016)

8. Donahue, J., Anne Hendricks, L., et al.: Long-term recurrent convolutional net-
works for visual recognition and description. In: IEEE CVPR, pp. 2625–2634 (2015)

9. Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: a uni-
fied framework for multi-label image classification. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2016)
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