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International Workshop on Bio-Imaging and Visualization
for Patient-Customized Simulations, BIVPCS 2017

Imaging and Visualization are among the most dynamic and innovative areas of
research of the past few decades. Justification of this activity arises from the require-
ments of important practical applications such as the visualization of computational
data, the processing of medical images for assisting medical diagnosis and intervention,
and the 3D geometry reconstruction and processing for computer simulations.

Currently, due to the development of more powerful hardware resources and
mathematical and physical methods, researchers have been incorporating advanced
computational techniques to derive sophisticated methodologies that can better solve
the problems encountered. Consequently, effective methodologies have been proposed,
validated, and in some cases integrated into commercial software for computer
simulations.

The main goal of this MICCAI workshop on Bio-Imaging and Visualization for
Patient-Customized Simulations is to provide a platform for communication among
specialists from complementary fields such as signal and image processing, mechanics,
computational vision, mathematics, physics, informatics, computer graphics,
bio-medical practice, psychology, and industry. Another important objective of this
MICCAI workshop is to establish a viable connection between software developers,
specialist researchers, and applied end-users from diverse fields related to signal pro-
cessing, imaging, visualization, biomechanics, and simulation.

This book contains the full papers presented at the MICCAI 2017 workshop on
Bio-Imaging and Visualization for Patient-Customized Simulations (BIVPCS 2017),
which was organized under the auspices of the 20th International Conference on
Medical Image Computing and Computer Assisted Intervention 2017, held in Quebec
City, Quebec, Canada, during September 10–14, 2017. BIVPCS 2017 brought together
researchers representing several fields, such as biomechanics, engineering, medicine,
mathematics, physics, and statistics. The works included in this book present and
discuss new trends in those fields, using several methods and techniques, including the
finite element method, muscle mechanics, computational fluid dynamics, convolutional
neural networks, similarity metrics, histograms of oriented gradients, local binary
pattern descriptors, non-negative matrix factorization, local cumulative spectral his-
tograms, partial least squares regression, atlas, level-set thresholding, k-means clus-
tering, deformable models, and sensors calibration, in order to address more efficiently
different and timely applications involving signal and image acquisition, image pro-
cessing and analysis, image segmentation, image classification, image reconstruction,
image registration, 2D-3D reconstruction, computer simulation, image based mod-
elling, image based diagnosis, surgery planning and simulation, and therapy planning.



The editors wish to thank all the BIVPCS 2017 authors and members of the Program
Committee for sharing their expertise, and also the MICCAI Society for having hosted
and supported the workshop within MICCAI 2017.

September 2017 João Manuel R.S. Tavares
Shuo Li

VIII International Workshop on Bio-Imaging and Visualization
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International Workshop
on Point-of-Care Ultrasound, POCUS 2017

Point-of-Care Ultrasound (POCUS) encompasses automated ultrasound image and RF
data analysis algorithms, rugged ultrasound probes, robust tracking hardware, and
specialized user interfaces including augmented reality systems. The goal of a POCUS
system is to guide novice users to properly manipulate a ultrasound probe and interpret
the acquired data. The output of a POCUS system is typically a quantitative measure or
an automated diagnosis, not a B-mode image. POCUS applications range from
detecting intra-abdominal bleeding at the scene of an accident to in-home monitoring of
liver health. The POCUS workshop featured invited and accepted presentations, live
demonstrations, and a panel discussion.
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Abstract. Focal cortical dysplasia is one of the most common cause of
medically refractory epilepsy. Its imaging features include cortical archi-
tectural abnormalities and abnormal structural arrangement at the inter-
face between the grey matter and the white matter. It is well-known that
curvilinear multiplanar reformatting (CMPR), consisting in re-slicing the
brain almost prependicular to the inward folding gyri from the view of
anatomical planes, enhances the visualization of these abnormalities. In
this paper, we present yet another interactive modeling of a patient-
customized cortical envelope with which we can automatically re-slice
the brain volume in a fashion similar to CMPR. Although our proposal
requires fewer user interactions in comparison with the previous propos-
als, we show that the outcomes of re-slicing match those of the conceived
CMPR.

1 Introduction

According to the World Health Organization, approximately 50 million people
around the world have epilepsy, making it one of the most common neurological
diseases globally [14]. Focal cortical dysplasia (FCD) is a malformation of cor-
tical development (MCD), which is one of the most common cause of medically
refractory epilepsy [6]. In the majority of FCD cases the findings on magnetic
resonance imaging (MRI) scan are: cortical thickening or thinning, blurring of
the grey–white junction, brain atrophy, and hyperintense signals in the grey
and subcortical white matter, sometimes with tapering toward the ventricle [8].
Some of these features, such as cortical thickening and the grey matter–white
matter transition, cannot be appropriately assessed with multiplanar reformat-
ting because of possible oblique slicing of the cerebral cortex.

For addressing this problem, Bastos et al. [1] proposed curvilinear multi-
planar reformatting (CMPR) to enhance the display of the grey–white matter

c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): BIVPCS/POCUS 2017, LNCS 10549, pp. 3–10, 2017.
DOI: 10.1007/978-3-319-67552-7 1



4 W.S. Loos et al.

transition areas where 74% of patients with FCD present some abnormalities [7].
It consists of peeling off the layers of the brain, like peeling layers of an onion,
such that the complex cerebral cortical structures are cut, from the view of
anatomical planes, along an approximately perpendicular orientation in relation
to the inward folding gyri. The red solid line in Fig. 1(a) illustrates their idea.
To put this idea into practice, Bastos et al. further proposed manual delineation
of the guide curves at several user-selected 2D images. Then, piecewise linear
interpolations are applied to build a grid mesh that fits the input data. This
mesh represents the cortical envelope that will be used to reformat the data
volume. To improve the smoothness of the user-delineated contour, Wansapura
et al. [13] proposed to interpolate the input data with splines. A problem with
the guide curve procedures is that it demands much time for routine clinical use.
In Sect. 2 we show that our proposed procedure can model the cortical envelope
with many fewer user interactions.

(a) CMPR (b) Skull stripping

Fig. 1. The curvilinear slicing geometry, in red, originally conceived to CMPR (a) and
reached with a skull stripping-based algorithm (b). (Color figure online)

Departing from the mesh approach, Bergo and Falcão [2] proposed to imple-
ment CMPR on top of image processing foundations. They apply the Image
Forest Transform (IFT) technique to segment the cortical envelope and the
Euclidean distance transform of the cortical envelope to control the slicing depth.
Huppertz et al. [4] proposed to employ a set of predefined standard masks for
removing the skull and the brain tissue, step by step, in layers of 2-mm thickness
parallel to the outermost mask on the brain surface. They suggest to normalize
the source image with the use of the algorithm of the Statistical Parametric
Mapping (SPM2). Although not clearly stated in the references of the latest ver-
sion of BrainSight R© [10], we conjecture that it has evolved to the direction of
skull stripping followed by automatic reformatting of the brain in 3D curvilinear
slices. At interactive rates, the skull is fully removed in the native space, i.e. in
the patient-centered reference system, and the remaining brain is automatically
sliced parallel to the uncovered surface inwards.

Our concern is that the main goal of non-brain removal algorithms [5,12,17]
is to extract the voxels occupied by the brain tissue whose outer layer (cerebral
cortex) is not smooth, as shows the red solid line in Fig. 1(b). Note that parallel
curves to this red solid line cannot expose the grey–white matter transition so
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well as that in Fig. 1(a). Because no precise details with respect to the brain’s
envelope shape are provided by the mask-based CMPR techniques, it is hard
to assess how close they approach the original idea. In addition, the non-brain
fiducial anatomic landmarks are removed in these techniques. Our proposal not
only preserves the fiducial landmarks as illustrates in Figs. 5 and 6, but also
provides an almost orthogonal slicing for all cerebral sulci and gyri.

Back to the mesh approach, Wu et al. [16] proposed an interactive way to
make the CMPR in the native space. Instead of a mask-based approach to remove
the skull, the user selects a region on the scalp. This region is sampled and a
mesh is created. The mesh is then displaced along the inverse mesh normal direc-
tion at the point where the vertex is located. There are, nevertheless, some flaws
with this method. It is based on the visibility algorithm and a single view can-
not cover the entire cerebral cortex for comparative investigations of the brain.
Another problem is the usage of the scalp’s geometry as the reference for parallel
curvilinear slicing. This may lead to undesirable oblique brain cutting because of
differences in the shape of the scalp and that of the cortical envelope. In Sect. 2.2
we present a novel way to construct the re-slicing mesh that approaches the cor-
tical envelope and covers both the right and left hemispheres.

The contributions of our work can be summarized in: (1) the way that we
model and adhere the cortical envelope to the dura-mater and (2) the way that
the slicing meshes are constructed.

2 Interactive Cortical Envelope Modeling

Our proposal is based on the fact that the dura-mater is a membrane that
envelops the brain, and on our finding that the signals of dura-mater are sligtly
brighter than the skull and the cerebrospinal fluid (CSF) on a 3.0-T T1-weighted
magnetic resonance (T1wMR) scan. We infer that a triangular mesh approxi-
mating these detectable brighter signals should be able to re-slice the brain in a
CMPR fashion. Hence, we devise a two-step interactive cortical envelope model-
ing: pre-processing of T1wMR volumes to enhance the transition from the dark
skull and the subtly brighter dura-mater, and building a triangular mesh of the
cortical envelope on the basis of this transition.

2.1 Suppressing Details

Though not visually perceptible, the intensity values may oscillate largely
between the scalp and the dura-mater. Figure 2(b) illustrates the intensity vari-
ations of the signals we traced along an inward shooting ray from the scalp
in Fig. 2(a). To suppress the signals of diverse micro-structures and to make
these variations smoother as depicts Fig. 2(d), we blur a T1wMR volume with
a Gaussian filter of the size 9 voxels × 9 voxels × 9 voxels (σ = 2) (Fig. 2(c)).
Experimentally, we observed that, despite individual variability, the majority
of smoothed signals present the same variation pattern with a local minimum
in the skull vault. It is, for example, between the scalp (about 10 mm) and the
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(a) raw data
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Fig. 2. The signal intensity with respect to the distance from the scalp in (a–b) an
original T1wMR volume, and (c–d) Gaussian-filtered T1wMR volume.

dura-mater (about 23 mm) in Fig. 2(d). We associated this local minimum to the
transition between the skull and the dura-mater. To avoid overlooking this local
minimum when we trace the shooting ray at discrete steps, we adopt as the step
size the minimum of the half of the voxel dimensions.

2.2 Cortical Envelope

Since the dura-mater’s brighter signals are often not continuous due to the
T1wMR sampling resolution, improving the transition signals from the dark
skull and subtly brighter dura-mater is not enough for segmenting the dura-
mater. Inspired by the works of Bastos et al. [1] and Wu et al. [16], we propose
to deform a sphere triangular mesh toward the detectable brighter signals corre-
sponding to dura-mater for reconstructing the most likely cortical envelope. The
procedure comprises five steps (Fig. 3): (1) interactive removal of background
noise with the use of an enhanced threshold filter described in [15] (Fig. 3(a));
(2) automatic placement of the center of a sphere mesh, with the radius equal
to 55% of the largest dimension of the volume, at C =

∑n
i=1 Pi

n , where Pi are
position coordinates of all n valid voxels (Fig. 3(b)); (3) interactive configura-
tion of the region of interest through a clipping plane and of the maximal search
depth D for the dura-mater (Fig. 3(c)); (4) automatic deformation of the sphere
mesh into a scalp envelop (Fig. 3(d)); and (5) automatic deformation of the scalp

Fig. 3. Cortical envelope modeling pipeline: (a) filtered data, (b) sphere mesh,
(c) initial deforming mesh, (d) scalp envelope, and (e) cortical envelope.
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envelop into the cortical envelop by moving the vertices of scalp envelop toward
the brighter signals of dura-mater not greater than D (Fig. 3(e)).

3 Slicing Mesh Quality

Because of its curvilinear shape, the parallel slicing meshes present different
triangle sizes and different curvatures at each vertex while we move the cortical
envelope inwards. A trial-and-error approach has been conducted for assessing
the resolution of the cortical envelope that may prevent degenerate triangles and
self-intersection. Three exhaustive experiments have been performed. First, we
measured for a slicing mesh with N triangles at the distance d from the cortical
envelope its quality Qd =

∑N
t=1 λ(t)

N , where λ(t) = 4
√
3w(t)

l21(t)+l22(t)+l23(t)
is a measure

of triangle compactness in function of its area w(t) and the lengths li(t) of its
edges [3]. Figure 4(a) is the plot Qd × d of the sequence of slicing meshes. The
initial mesh of this plot at 0 mm contains around N = 640 triangles. Then, it is
displaced at the depth of 40 mm.

0 10 20 30 40 50
0.95

0.96

0.97

0.98

0.99

1

(a) (b) (c)

Fig. 4. Numerical evaluations of the quality and the degeneracy of the slicing mesh:
(a) quality × distance (mm), (b) degeneracy × distance (mm) and (c) degenerated
triangles.

Second, we measured the mesh degeneracy from the ratio Rd of the number
of triangles, that tend to shrink to a point, relative to the total number N of
triangles in the slicing mesh M at the distance d. For each displacement Δd, an
adaptive threshold is computed and every triangle with the area lower than it
is labeled as degenerate. Empirically, we set as the threshold 28% of the largest
triangle area of the mesh. Figure 4(b) presents the curve of Rd × d for an initial
mesh with N = 640 triangles. Note in Fig. 4(b) that about 6% of the total
triangles of the mesh, more precisely 39 triangles, are labeled as degenerate at
the depth of 40 mm, as illustrated. A careful analysis shows us that all degenerate
triangles are on the border of the deforming mesh. Therefore, they will not affect
the slicing quality. Figure 4(c) shows the location of the degenerate triangles, in
red, from the left side view of a mesh at the depth of 40 mm.

Finally, we evaluated the visual cropping quality with meshes of different
resolution. Figure 5 shows a brain cropped by a slicing mesh of 200, 640 and
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2,634 triangles. Visually it is imperceptible the difference between the CMPR
slices obtained with 640 triangles (Fig. 5(b)) and the CMPR slices which utilized
meshes of higher resolution (Fig. 5(c)), whereas the mesh with 200 triangles
cannot fit the cortical envelope well (Fig. 5(a)). To trade-off performance and
slicing quality, we decided for an initial tessellated sphere of 1,280 triangles in
our implementation and no degeneracy checking was performed along the mesh
deformation.

(a) 200 triangles (b) 640 triangles (c) 2,634 triangles

Fig. 5. Visual evaluation of slicing quality at the depth ≈20mm.

4 Results and Discussion

We implemented the proposed algorithm in C++ on top of the half-edge data
structure [9]. The OpenGL shading language was employed for programming
the graphics processing unit (GPU) [11]1 to improve the performance of our
proposed algorithm. On a desktop Intel R©Core i7 2.8 GHz with 8 GB of RAM
and graphic card NVIDIA GTX 650Ti with 1 GB of VRAM spends our algorithm
less than 2 s to curvilinearly reformat a volume of dimensions 356× 512 × 512. All
T1wMR test images were acquired with the Philips Achieva 3 T at the hospital
of the University of Campinas. The dimensions of most tested MR volumes are
either 180 × 240 × 240 or 356 × 512 × 512. All patients enrolled in the present
study signed an informed consent form approved by the Ethics Committee of
our university.

Figure 6 illustrates results we achieved concerning the quality of our proposal
in curvilinearly slicing the brain in the direction that is almost orthogonal to
inward folding gyri. We present six different volumes from different view planes.
Observe that the green curve, which is the intersection of the T1wMR volume
and our proposed slicing mesh, satisfies the CMPR requirement in all cerebral
regions except in the temporal pole (Fig. 6(a)). This is because of anatomical
connections between the brain and the eyes through the optic chiasm. The inten-
sity variations along the path connecting the scalp and the brain in this region
1 Supplementary video demonstrating curvilinear reformatting on MR-T1 volumes
was uploaded as part of this submission.
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does not follow the pattern shown in Fig. 2(d). Further studies are necessary to
improve the characterization of intensity variations between the scalp and the
brain in this region. Note that our proposal also works for non-spherical shaped
cortical envelopes, as illustrate Figs. 6(c) and (e).

(a) Patient 1 (b) Patient 2 (c) Patient 3

(d) Patient 4 (e) Patient 5 (f) Patient 6

Fig. 6. Slicing a brain in the CMPR fashion. (Color figure online)

Our algorithm requires that the user provides the noise threshold (Fig. 3(a)),
the region of the scalp to be curvilinearly reformatted (Fig. 3(c)), and the patient-
customized maximal search depth for the dura-mater. Although our algorithm is
not fully automatic, the required values are physical measurements that do not
involve advanced knowledge about the underlying algorithm and an interactive
interface has been designed for accomplishing the three tasks. Usability tests
should be performed for assessing its clinical value.

5 Conclusion

We present an interactive CMPR algorithm that distinguishes from previous
works in the way that the slicing meshes are constructed. Besides that, the
CMPR algorithm presented reformats a brain volume in curvilinear slices parallel
to the dura-mater, aiming to better expose the transition area from the gray
matter and the white matter. To our best knowledge, it is the first work that
provides a deep analysis of the quality of the slicing geometry.
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Abstract. Intraoperative ultrasound is an imaging modality frequently
used to provide delineation of tissue boundaries. This paper proposes a
simulation platform that enables rehearsal of patient-specific deformable
ultrasound scanning in real-time, using preoperative CT as the data
source. The simulation platform was implemented within the GPU-
accelerated NVIDIA FleX position-based dynamics framework. The
high-resolution particle model is used to deform both surface and vol-
ume meshes. The latter is used to compute the barycentric coordinates of
each simulated ultrasound image pixel in the surrounding volume, which
is then mapped back to the original undeformed CT volume. To validate
the computation of simulated ultrasound images, a kidney phantom with
an embedded tumour was CT-scanned in the rest position and at five
different levels of probe-induced deformation. Measures of normalised
cross-correlation and similarity between features were adopted to com-
pare pairs of simulated and ground truth images. The accurate results
demonstrate the potential of this approach for clinical translation.

1 Introduction

Intraoperative imaging has been used for navigation in robotic surgical pro-
cedures as a mean to compensate for the limited access, narrowed field-of-view
and lack of tactile feedback. In the context of robot-assisted partial nephrectomy
(RAPN), intraoperative ultrasound (US) facilitates delineation of the tumour’s
borders, potentially improves the tumour dissection and minimises the risk of
positive margins. The benefit of using such an imaging modality associated with
the challenge of acquiring and understanding the data, has encouraged the devel-
opment of simulation-based environments. Depending on the specific application
of the simulator, different features are desired, from real time performance, use
of patient-specific data, a biomechanical model to account for deformation and
acoustic imaging features. Regarding the use of patient-specific data, by resort-
ing to the GPU and the use of CT volumes, Reichl et al. [1] achieved realistic US
images and acoustic features in real time. The similar principle of using imaging
volumes and wave propagation techniques has been adopted by Shams et al.
[2] and Salehi et al. [3]. The former results in accurate and realistic modelling
of acoustic phenomena while using patient-specific data. However, deformation
caused by external forces were not integrated into the simulations. Alternatively,
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): BIVPCS/POCUS 2017, LNCS 10549, pp. 11–18, 2017.
DOI: 10.1007/978-3-319-67552-7 2
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some effort has been focused on compensating for deformation. Pheiffer et al. [4]
defined a framework for correcting non-rigid tissue compression induced by the
probe in US scanning, to allow for a more accurate volume estimation to be used
in image guidance. Flach et al. [5] used a FEM model around the contact areas
and the known probe geometry to provide an accurate undeformed 3D volume.
Similar work was developed by Goksel et al. [6] to simulate B-mode images of
deformable tissue. These techniques depend on the use of a priori known 3D
US volumes, commonly unavailable in the context of RAPN. Techniques com-
bining 3D volumes and biomechanical modelling have been adopted to address
simultaneously deformation and the use of patient-specific data. Selmi et al. [7]
developed a method for realistic 3D deformable US image generation in real
time. A biomechanical model was combined with a 3D elastic texture in order
to re-slice the patient’s volume to achieve deformable US images. Bürger et al.
[8] developed an US simulator for medical education based on a convolution ray-
tracing approach and a deformable mesh model. Morin et al. [9] simulated US
imaging for breast cancer. MRI volumes in combination with a biomechanical
model provided the means to simulate realistic US imaging.

The framework adopted in this paper combines the use of a biomechanical
model and a 3D preoperative volume to simulate deformable US images inter-
actively. This biomechanical model was previously implemented and validated
for a patient-specific surgical simulator, as described in Camara et al. [10]. The
focus of the work is not on modelling realistic US images but rather in pro-
viding an accurate simulation platform that ultimately provides the user with
the opportunity to rehearse scanning with patient-specific data. Additionally,
it can act as a validation context for manually-operated 3D tumour acquisition
and reconstruction, and to assist further with the automation of intraopera-
tive scanning protocols. The novel aspect in this paper lays on the deformation
method implemented for a patient-specific simulation in real time, associated
with a straightforward data preparation that enables a facilitated translation
into clinical practice.

2 Methods

2.1 Development of a Partial Nephrectomy Phantom

A kidney phantom with embedded tumour was developed in a methodology sim-
ilar to the one used by Hughes-Hallett [11]. Polyvinyl alcohol (PVA), a polymer
that presents similar tensile strength and elasticity to tissue, can be used as a
surrogate for soft tissue organs. A 10% PVA by weight concentration solution
was used. Regarding mimicking tissue biomechanics, by subjecting the solution
to a certain number of freeze-defrost cycles, one can change the material rigid-
ity. A tumour is often stiffer and less elastic when compared to the surrounding
renal parenchyma. Therefore, the tumour was subjected to an initial cycle and
the overall phantom to an extra cycle to create realistic kidney properties. With
respect to CT imaging the phantom, there was a need to clearly differentiate the
boundary between tumour and kidney parenchyma. The tumour was enveloped
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in a thin layer of dense putty, as it presents an increased radiographic attenuation
coefficient and allowed the boundary to be identified. A 3D-printed non-diseased
kidney was used as the mould for phantom. The tumour mould was a simple
spherical mould with diameter of 2.3 cm.

2.2 Experimental Setup

A rig designed in SolidEdge and 3D-printed with polyamide (Materialise), was
used to induce deformation. The rig was composed of a platform designed to
support the phantom and a movable structure which represents an US probe.
Five different levels of deformation were used (total of 14.6 mm), each inducing
approximately a 2.5 mm increment. The bottom part of the kidney mould was
used to act as boundary conditions. The combination of mould and kidney was
placed within the rig and the movable structure varied its position to desired
locations for each set of acquired CT scans. CT images were acquired with
a GE Innova 4100 scanner. Initially, the entire setup was CT scanned for no
applied deformation. It was always assured that the US probe was positioned
as if scanning part of the tumour and that the probe was rigidly fixed. This
procedure was continued for the different levels of deformation, by moving the
probe to the subsequent level of deformation and CT scanning the setup. The
entire setup is showed in Fig. 1(a).

Fig. 1. (a) Deformation rig with phantom and support, placed on the CT scanner
table. (b) Cluster distribution within tumour (red) and kidney (yellow) meshes. (Color
figure online)

2.3 Simulation Platform and Biomechanical Model

The simulation platform was implemented within the GPU-accelerated NVIDIA
FleX position-based dynamics framework [12], in a manner similar to that
reported in Camara et al. [10]. All structures of interest, i.e. the kidney, tumour,
support mesh and structure representing the US probe, were segmented from
the 3DCT scans using ITK-SNAP and exported as surface mesh files. Kidney
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and tumour meshes were imported to MeshLab, whereby smoothed (using the
volume-preserving HC Laplacian smoothing algorithm) and decimated (with
the quadratic edge collapse decimation algorithm). The FleX framework sup-
ports different forms of modelling structure and collision geometries. The tumour
mesh was modelled as a triangular mesh, solely used for analysis, whereas the
kidney, which embeds the tumour region, was modelled as a combination of
particles. These particles were distributed and clustered together into shape-
matching clusters, assuming two different values of stiffness coefficients. For all
the clusters where centroids were found within the tumour mesh boundaries,
the cluster stiffness coefficient modelled the tumour deformation, whereas the
remaining clusters were assigned to a different stiffness coefficient to model the
kidney deformation. This assured that the approximate regions of kidney and
tumour were modelled as different structures. The support structure was rep-
resented as a static triangular mesh and used as boundary conditions for the
kidney model. The ultrasound transducer (Aloka UST-533) was approximated
as a cuboid and modelled as a dynamic convex mesh. Both the vertices of the
tumour mesh and triangular mesh representing the kidney surface were defined
in accordance with local particle positions through a weighted matrix bending
technique, often referred as ‘skinning’ [13]. Therefore, the structures attached to
the particle system deformed in terms of the manipulated kidney parenchyma.
The representation of clusters, kidney and tumour surface meshes are showed in
Fig. 1(b).

2.4 Ultrasound Simulation

The deformable US scans were simulated by using the same ‘skinning’ technique.
A tetrahedral mesh for the kidney was computed with Gmsh and imported
into the simulation. This mesh was embedded within the particle system and
deformed in accordance with its displacements. A planar discretisation, i.e. a
grid of 1× 2 cm with a resolution of 0.25 mm, was registered to the US probe
to display the deformable slice, by means of an efficient interpolation method
that mapped the simulated ultrasound pixels to the undeformed voxels in the
respective CT volume. Each ultrasound image pixel was expressed by barycentric
coordinates in terms of the tetrahedral mesh vertices, and then mapped back
to the voxels of the respective undeformed CT volume. For each image pixel
p = [x y z]T , its 3D position within a tetrahedral element t, can be expressed as

p =
3∑

i=0

λiri with
3∑

i=0

λi = 1, λi ≥ 0 (1)

where λi are the barycentric coordinates in terms of the element corners ri =
[xi yi zi]T , which represent the deformed ‘skinned’ vertices. Rearranging Eq. 1
and expressing it in a matrix form, results in

Tλ = p − r3 (2)
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where the matrix T and the array λ are defined as

T =

⎡

⎣
x0 − x3 x1 − x3 x2 − x3

y0 − y3 y1 − y3 y2 − y3
z0 − z3 z1 − z3 z2 − z3

⎤

⎦, λ = [λ1 λ2 λ3]T

The barycentric coordinates can be found solving Eq. 2 for λ,

λ = T −1(p − r3) (3)

Finally, to recover the pixel texture coordinates from the undeformed voxels, as
pixel p is defined by the same barycentric coordinates in the original configura-
tion and the deformed state, one needs to solve the following equation,

p = T 0λ + r0
3 (4)

where T 0 and r0i describe the undeformed state and are expressed as

T 0 =

⎡

⎣
x0
0 − x0

3 x0
1 − x0

3 x0
2 − x0

3

y0
0 − y0

3 y0
1 − y0

3 y0
2 − y0

3

z00 − z03 z01 − z03 z02 − z03

⎤

⎦, r0i = [x0
i y0

i z0i ]
T

To compare the simulated slices with the respective ground truth images, the
location of pixels within the grid was registered to the respective CT volume and
saved into an image. The process was repeated for all levels of deformation. The
mapping technique to estimate both the simulated and ground truth images is
similar, but where simulated slices map the grid to the undeformed volume by
means of skinning the particle system, the ground truth slices are obtained by
mapping the grid to the volume respective of each level of deformation.

2.5 Calibration

An estimation of parameters to model soft tissue deformation of the porcine
kidney was achieved in Camara et al. [10], but a calibration is still necessary as
the model used here is a phantom presenting different material properties and
hence, different deformation behaviour. Therefore, a calibration was performed
to determine the framework parameters that allowed for the most realistic defor-
mation modelling and validation of US simulation. A simple two-dimensional
search was used to determine the ideal cluster stiffness coefficient of the general
kidney parenchyma, for a given particle radius. The stiffness coefficient for clus-
ters embedded within the tumour boundary was defined as 0.95, as the tumour
is known to be stiffer than the surrounding kidney parenchyma, for this specific
phantom. The particle radius was permitted in the range [2.2, 2.5, 5.7, 3.0, 3.3]
mm and the remaining clusters with a stiffness coefficient in a range [0,1]. The
simulation sub-steps and sub-steps iterations were defined as 3 and 9, respec-
tively. The metric undergoing minimisation was the difference, in percentage, of
the average count of tumour and kidney pixels between the simulated and the
ground truth slices.
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3 Results

The metric undergoing minimisation achieved a minimum of 4.5%, across all lev-
els of deformation, for a cluster stiffness coefficient of 0.6 and radius of 2.2 mm.
The resulting US image for each level of deformation, against the ground truth,
is visible in Fig. 2. Normalised cross-correlation and the difference in approxi-
mate distances of the upper and lower extends of boundaries between the simu-
lated and ground truth tumour meshes, are showed in Fig. 3. Absolute distance
between the same meshes is showed in Fig. 4. For no deformation, these meshes
resemble in volume by 97% compared to the 79% achieved for the 5th level of
deformation.

Fig. 2. US images for the increasing levels of deformation (from left to right), of the sim-
ulated (top) and ground truth (bottom) slices. Cluster stiffness coefficient was defined
as 0.6 and particle radius as 2.2 mm.

Fig. 3. The left axis represents the difference between the simulated and ground
truth slice as a function of the cumulative induced deformation, for the upper and
lower extents. The right axis represents the normalised cross-correlation between both
images.
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Fig. 4. Representation of the absolute distance (in mm) between the simulated and
ground truth tumour meshes. From left to right are represented the anterior, right and
inferior views. From top to bottom are represented the 0th and 5th levels of deformation.

4 Discussion and Conclusion

The normalised cross-correlation follows a decreasing trend as the induced defor-
mation increases. The same conclusion is observed in Fig. 2, where the tumour to
kidney boundary between the simulated and ground truth images seem to bet-
ter align for the initial levels of deformation. The tumour meshes in Fig. 4 show
similar results, where the pair of meshes presents increasing absolute difference
in surface distance for increasing levels of deformation. Regardless of the level
of deformation induced by the probe, the difference in the tumour deformation
represented in the US slices is smaller than to 1 mm. In the context of an overall
displacement of 14.5 mm induced by the US probe, the simulation results in an
accurate deformation and visualisation of the US images. The imperfect align-
ment of the scans and tumour meshes for no applied deformation can only be
caused by gravity. Therefore, there is an initial influence on the displacement of
particles that was not compensated for throughout the simulation. The use of
complex geometries for the phantom and boundary conditions might also influ-
ence on the accuracy of the simulation. A three dimensional exhaustive search
would have been ideal if accounting for the calibration of the cluster stiffness
coefficient for the clusters within the tumour boundaries. Future work will focus
on the addition of ultrasound imaging features to improve the realism of the
slices. The need for initial gravity compensation will also be addressed. To note
that the simulation is patient-specific solely regarding geometry. As described
in Miller K. et al. [14], the adoption of patient-specific tissue properties in this
family of applications is of secondary importance. Though the simulation uses
methodology-based parameters, these can be mapped to real tissue properties
in a manner similar to that described in Roberto C. et al. [15].

This paper presents a framework that accurately simulates deformable US
slices in real time using patient-specific imaging as source of data. The imple-
mented methodology, which provides a stable and robust real time simulation,
coupled with a feasible data preparation, enables a facilitated translation into
clinical practice and patient-specific simulation possible on a broader scale.
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I.: Characterisation of position based dynamics for elastic materials. In: Proceed-
ings of the XXVI Spanish Computer Graphics Conference, pp. 49–57 (2016)

http://dx.doi.org/10.1007/978-3-540-85990-1_88
http://dx.doi.org/10.1007/978-3-540-85990-1_88
http://dx.doi.org/10.1007/978-3-319-24571-3_61
http://dx.doi.org/10.1007/978-3-319-24571-3_61
http://dx.doi.org/10.1007/978-3-319-12057-7_14
http://dx.doi.org/10.1007/978-3-319-12057-7_14
https://developer.nvidia.com/flex


A Hybrid CNN Feature Model for Pulmonary
Nodule Differentiation Task

Tingting Zhao2, Huafeng Wang1,2(B), Lihong Li3, Yifang Qi2, Haoqi Gao2,
FangFang Han4, Zhengrong Liang5, Yanmin Qi6, and Yuan Cao6

1 Electrical Information School, North China University of Technology,
No. 5, Jinyuanzhuang Road, Shijingshan District, Beijing, China

Wanghuafengbuaa@gmail.com
2 School of Software, Beihang University, Beijing, China

3 Department of Engineering Science and Physics,
City University of New York at CSI, Staten Island, NY, USA

4 Department of Biomedical, Northeast University, Shenyan, China
5 Department of Radiology, State University of New York at Stony Brook,

Stony Brook, NY, USA
6 Civil Aviation Medical Center of Civil Aviation Administration of China,

Beijing, China

Abstract. Pulmonary nodule differentiation is one of the most challenge
tasks of computer-aided diagnosis(CADx). Both texture method and
shape estimation approaches previously presented could provide good
performance to some extent in the literature. However, no matter 2D
or 3D textures extracted, they just tend to observe characteristics of
the pulmonary nodules from a statistical perspective according to local
features’ change, which hints they are helpless to work as global as the
human who always be aware of the characteristics of given target as a
combination of local features and global features, thus they have certain
limitations. Enlightened by the currently prevailing learning ability of
convolutional neural network (CNN) and previously contributions pro-
vided by texture features, we here presented a hybrid method for better
to complete the differentiation task. It can be observed that our pro-
posed multi-channel CNN model has a better discrimination in capacity
according to the projection of distributions of extracted features and
achieved a new record with AUC 97.04 on LIDC-IDRI database.

Keywords: Convolutional neural network · Multi-channel CNN ·
Texture · CADx · Deeplearning · Pulmonary nodule differentiation

1 Introduction

According to statistics from the American Cancer Society, Lung cancer is the
first most commonly diagnosed cancer and the first leading cause of death from
cancer in the United States, which accounts for 27% of all cancer mortality
[6]. Fortunately, early detection and diagnosis of benign or malignancy on those
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): BIVPCS/POCUS 2017, LNCS 10549, pp. 19–26, 2017.
DOI: 10.1007/978-3-319-67552-7 3
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pulmonary nodules can effectively decrease the incidence of lung cancer. Though
in the past decades, a large and increasing number of pulmonary nodules have
been detected each year by means of the widely using of computer tomography
(CT) for lung cancer screening [11], the task of evaluating a large number of
detected nodules by the experts or radiologists can still be very burdensome.
Therefore, a much better computer-aided diagnosis (CADx) is expected to play
an important role in the evaluating task, where the extraction of effective features
from detected nodules is of the research interests.

In practice, convolutional neural network (CNN) delivers state-of-the-art per-
formance, which is a derivative of Multilayer Perceptron (MLP) neural networks
optimized for two-dimensional pattern recognition. The lack of dependence on
prior knowledge and human effort in designing features is a major advantage for
CNNs [2,13].

Nevertheless, the feature extraction methods presented by previous artifi-
cial designs should still be a useful supplement to CNN features, this paper is
to explore the feasibility and validity of the fusion methods among CNN and
traditional feature extraction methods by an empirical research. Literately, in
2016, Anirudh R et al. [1] proposed the use of three-dimensional CNN to achieve
lung CT image in the nodule location detection, and achieved sensitivities of
80% for 10 false positives per scan. However, to get the 3D labeled training
data are really expensive and either are the 3D convolutions; Shen et al. [13]
exploited CNN to differentiate lung nodules, and proposed MC-CNN network
structure to achieve a 0.93 AUC and 87.14% accuracy on LIDC-IDRI by multi-
scale cutting and merging of pooling. As we can see, the classification accuracy
and AUC produced by CNN are higher than those of simply produced by tra-
ditional methods. Moreover, the result of convolution defines features of input
data, such as corners, curves, lines etc. Feature occurrence is mirrored on fea-
ture map by corresponding receptive field location, defining features map. After
each convolution layer follows subsampling layer. The motivation of this study
is to explore a simple way for strengthening the lung nodule feature map by
traditional feature incentives, such as HOG and LBP.

As for another challenge of the lung nodule differentiation task be concerned,
the original inputs are acquired from CT scans, while in CT scanning, image
quality has many components and is influenced by many technical parameters.
It is generally considered that the image quality is the main reason why different
physicians possibly estimate the same lung nodule with varying reports. So, we
argue that if by any other representation of inputs can it bring any gains, such as
enhancing the feature of the nodule. In addition, the disadvantage of CNN based
methods is that they usually need much large datasets to train a feasible model.
Therefore, the main contribution of our new proposed model is to enlarge the
training dataset with more feature enhanced inputs given by traditional feature
extraction methods and to present a much effective feature model which not
only takes advantage of CNN autonomous learned image features, but also the
traditional features such as HOG and LBP operators.
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2 Method

The overall pipeline of the proposed method is shown in Fig. 1. Firstly, the loca-
tion of the pulmonary nodule is manually drawn from the lung CT images by
up to four radiologists; then all the nodules volumes are extracted automati-
cally from the pulmonary CT images by combining all the radiologists’ painting
boundaries; next, the hybrid features extracted from the pulmonary volumes will
be fed into our proposed CNN models; finally the probability of the benign and
malignant be obtained by Softmax classifier.

Fig. 1. A schematic diagram of the proposed model

2.1 Histograms of Oriented Gradients (HOG) and Local Binary
Pattern (LBP) Descriptors

– HOG: In order to clearly depict the appearance characteristics of lung nod-
ules, Shingo Iwano et al. [14] clinically classified the lung nodules into seven
categories: round or oval, lobulated, polygonal, tentacular, spiculated, ragged
and other irregular types according to the visual observation from 2D CT
images. The idea of HOG stems from the observation that local features such
as object appearance and shape can often be characterized well by the distrib-
ution of local intensity gradients in the image [4]. HOG features are extracted
from an image based on a series of normalized local histograms of image gra-
dient orientations in a dense grid [10]. The HOG feature conveys information
that is somewhat like that of an edge map, which also gives the representa-
tion some degree of invariance to small and local geometric and photometric
changes.

– LBP: Since 1994, LBP has been found to be a powerful feature for texture clas-
sification [12]; and it has further been determined that when LBP is combined
with the HOG descriptor, it improves the detection performance considerably
[15]. Because of the advantage on the powerful illumination invariant, LBP
has been widely recognized as a texture operator. This LBP texture operator
has been highly successfully used for various computer vision applications,
especially for face recognition.
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2.2 Hybrid CNN Network Model

Although those previously proposed models such as edge, shape and texture are
capable of representing to great certain the characteristic of pulmonary nod-
ules, they are still lack of the ability of generalization and performance varies
respectively as far as their designed models to be concerned. By mapping the
data into new space through linear or non-linear transformation on the input
data, convolutional neural network [2] recently perform very well on the task
of extracting the inherent characteristics of the given images. In view of pos-
sible complementary characteristics related to traditional texture method and
CNN, we thus proposed a novel hybrid CNN model by incorporating traditional
features into CNN. CNN network structure generally includes data input layer,
convolution layer, pooling layer, full connection layer and an output layer (Soft-
max and other classifiers). Aspect of our method, it aims to facilitate the data
input layer by data fusion. In this paper, the following two feature based hybrid
CNN methods are comparatively proposed:

– Multi-branch CNN: In the training CNN stage, the neural network structure
is divided into three branches, as are related to gray-scale, LBP and HOG
characteristics respectively. Both HOG and LBP features of the lung nodules
were extracted as the input of different branches of the CNN and further
processed with convolution (as shown in Fig. 2).

– Multi-channel CNN: Although the feature fusion method can effectively
exploit the features combined, the fact is that the complexity of the net-
work is increased by 2 times, and the training time is also very consuming.
Therefore, a multi-channel feature fusion CNN is proposed. At the begin-
ning of training of CNN, LBP and HOG features are integrated into different
channels of the input image, so that local information and global information
have been taken into account in training a CNN model (as shown in Fig. 3).
Then the input layer changes from 56 × 56 × 1 to 56 × 56 × 3.

Fig. 2. Multi-branch CNN Model Fig. 3. Multi-channel CNN model

We here describe the cost function that our proposed models used for softmax
regression. Given the model parameters θ which were trained to minimize the
cost function, and θ1, θ2, . . . , θk ∈ Rn+1 are the parameters of our model. Notice

that the term ∑k
j=1e

θ
T

x(i)
j normalizes the distribution, so that it sums to one.

Such that, Softmax regression cost function J(θ) takes form as,
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where 1{.} is the indicator function, so that 1{a true statement} = 1, and
1{a false statement} = 0.

3 Experiment

3.1 Dataset Preparation

The lung CT images used in this paper were downloaded from the online resource
named LIDC-IDRI [3], in which the malignancy assessments are defined in five
levels, i.e., 1, 2, 3, 4, and 5, from benign to malignant. In this study, those nodules
labeled “1” and “2” were as benign class, and the rest were as malignant nodules.
The final dataset contains 5820 images, training set (60%), validation set (15%)
and test set (25%).

3.2 Experiments Design and Analysis

A number of comparison experiments will be demonstrated for validation, and
the Receiver Operating Characteristics (ROC) Curve and the Area Under Curve
(AUC) are exploited to testify the accuracy of the model. The dimension of full
connection layer nh = {100, 500, 1000}, the kernel size ns = {3, 5, 7}, the number
nc= {48, 96, 144}, the results were used to examine which network structure was
more effective. The models as mentioned above were implemented on the keras1

deep learning framework. The HOG and LBP features are extracted based on
the scikit-image [5] and the proposed models are trained by the GPU (NVIDIA
Tesla K80).

At the beginning of either multi-branch or multi-channel pipeline, it needs to
calculate the LBP and HOG feature maps as the input. As shown in Table.1, the
experimental result indicates that the models respectively performed very well
when the HOG parameters with Cell size = 8, and the LBP with a parameter
P = 16 and R = 1. Please note, these results are produced by a general CNN
model.

– Multi-Channel CNN model

For the multi-channel feature fusion CNN model in Fig. 2, the gray scale, LBP
feature and HOG are trained as the input of CNN, then the accuracy and AUC
of the model on the test set are calculated. The experimental results showed
that compared with those models by using only the original pulmonary nodule
gray scale, by adding the LBP feature map and HOG feature map, the model
performs much better. The results show that the accuracy is improved by 0.017
and the AUC is increased by 1.65% compared with by only using the gray scale
image as the input (as shown in Figs. 4 and 5).
1 https://github.com/fchollet/keras.

https://github.com/fchollet/keras
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Table 1. Accuracy and AUC for varying HOG and LBP feature parameters

Feature Parameters’ configuration Accuracy AUC

HOG Cell size = 6 87.84 0.9417

Cell size = 8 89.61 0.9510

Cell size = 10 88.93 0.9420

LBP P = 12, R = 1 86.40 0.9321

P = 16, R = 1 89.53 0.9512

P = 20, R = 1 89.10 0.9410

Fig. 4. Accuracy and AUC of varying
branching CNN at the same scale

Fig. 5. Accuracy and AUC with vary-
ing feature of multi-channel CNN

– Comparison Among Models

In order to visualize the advantages of each algorithm, the outputted features
for each model are reduced to three dimensions by t-SNE [8] algorithm, and
the MATPLOTLIB library2 of python is used to plot their spatial distribution
patterns. (as shown in Fig. 6). It can be seen from the figures that the CNN
models after feature fusion have much gains in the discrimination of benign and
malignant lung nodules compared to the conventional CNN model. The CNN
model with the multi-channel CNN model has the best differentiation, and the
multi-branch CNN Model followed. The ROC curves of the three models are
shown in Fig. 7, the dashed line represents the traditional CNN models, the
cyan indicates the CNN models of the multi-channel feature fusion, and the blue
represent the CNN models of the branching feature fusion. In summary, the
feature fusion CNN model has a much better performance.

Fig. 6. Feature distribution: left is the plot for the conventional CNN, middle is for
multi-branch CNN and right is the plot of multi-channel CNN

2 http://matplotlib.org/.

http://matplotlib.org/
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Table 2. Accuracy and AUC of different models: the blue stands for the results given
in the original literature

Feature extraction method Classifier Accuracy AUC

2D Texture [7] SVM-RBF 87.5 0.942

3D Texture [7] SVM-RBF – 0.9441

Auto-encoder [9] Decision Tree 82.68 –

MC-CNN [13] Softmax 87.14 0.93

The proposed model Softmax 91.75 0.9704

We also compared the differentiation method of lung nodules in literature
with our method, and the results are shown in Table 2. The tabular shows that
our method outperforms those traditional methods previous presented.

Fig. 7. ROC for conventional CNN model and feature fusion CNN models (Color figure
online)

4 Conclusion

In this paper, we proposed a hybrid CNN model for CT images of pulmonary
nodules, and improved it through multi-feature fusion to solve the differentia-
tion of benign and malignant for pulmonary nodules. The comparative exper-
iments show that the hybrid fusion CNN model outperforms those methods
presented before. After a multi-channel feature fusion,the model can combine
the LBP feature and HOG feature to capture the significant feature information
of benign and malignant pulmonary nodules more effectively. Although deep
learning has strong self-learning ability,the traditional feature integration model
can strengthen the important feature information in the initial stage to improve
the classification accuracy.
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Abstract. Muscle fascicle structure characterises muscle function, which in turn
plays a key role in computer simulation of muscle shape. In this study we use 3D
ultrasound from human gastrocnemius muscle to identify and map the muscle
fascicle orientation and deformation during passive motion in four subjects. This
muscle fascicle description is integrated into a representative muscle volume
element using a free-form deformation technique to create a muscle primitive that
deforms according to the embedded muscle fascicles within. For each subject
computed passive tensile force was used to optimise the constitutive behaviour
so that the known deformation matched this load. Each subject was fit to match
deformation at 25%, 50%, 75% and 100% of muscle stretch. The medial gastro‐
cnemius muscle built from these muscle primitives exhibited a contractile shape
that is consistent to that observed in human gastrocnemius contraction. This shape
was evaluated against the same muscle embedded with muscle fascicles derived
from diffusion-weighted magnetic resonance imaging and was in good qualitative
agreement. Muscle primitives may be used as building blocks to build large
muscle volumes for mechanics simulation, visualisation and medical education.

Keywords: Finite elements · Gastrocnemius · Ultrasound · Muscle mechanics

1 Introduction

Muscle fascicle architecture has been reported as a key factor in how well continuum
computer models predict muscle shape and muscle force. For example, the detailed
muscle fascicle architecture of the myocardium was reported by Nielsen et al. [1] who
showed how contractile function is highly dictated by 3 microstructural directions.
Material properties were fitted to the ‘pole-zero’ constitutive strain energy density func‐
tion [2] which is also adopted in this study. Skeletal muscle continuum fascicle descrip‐
tions play a key role in understanding physiological behaviour as part of multiscale
models. Whole continuum muscle behaviour is highly influenced from homogenising
substructural models that contain detailed muscle fascicle descriptions [3]. Further, the
orientation of muscle fascicles fitted to continuum FE models has been shown to explain
the non-uniform strains observed in experiment [4].

© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): BIVPCS/POCUS 2017, LNCS 10549, pp. 27–34, 2017.
DOI: 10.1007/978-3-319-67552-7_4



Including muscle fascicles within a FE framework should not be linked to a specific
element type but rather fitted to a mesh topology. One possible approach is to use a
NURBS description and integrate this with a FEM (finite element model) for generic
elements [5]. In this study we adopt a similar approach whereby a discrete muscle
fascicle data set is fitted to a continuum field using a basis function that describes the
element interpolation (from linear to cubic). Muscle fascicle vectors are treated as a
continuous field that may be applied to any element type. Basic building blocks serve
as an efficient way to construct whole muscle volumes. For example a brick element
basis with embedded muscle fascicles has been used to construct an entire cat gastro‐
cnemius [6] and was shown to agree with experimental measurement of muscle defor‐
mations and force. Moreover, the concept of embedding digitised cadaver muscle
fascicle fields into FE model primitives has been presented before [7], which can
improve predicted force and contractile shape by up to 20% over simplified parallel
muscle fascicle fields.

Ultrasound is a real-time imaging modality used widely to assess size and pennation
of muscles such as in the quadriceps of young and old women [8] and in vivo pennation
angle in human quadriceps [9]. Specific muscle fascicle behaviour has also been eval‐
uated including the relationships between muscle fascicle size and angle [10], changes
in pennation with joint angle and torque [11], prediction of tibialis anterior pennation
angle changes during dorsiflexion [12]; and the in vivo human gastrocnemius architec‐
ture during rest and isometric contraction [13].

In this study we extend this concept by deriving a FE primitive from in vivo 3D
ultrasound data from passive deformation of the human gastrocnemius. The model is
developed for four subjects to predict deformation in a representative volume of interest
(a muscle element primitive) as part of a FE analysis. For each subject the passive tensile
force was measured and combined with the fascicular data to determine subject-specific
passive constitutive muscle parameters. The model was fit to 25%, 50%, 75% and 100%
muscle deformation for each subject. A medial gastrocnemius muscle is built from these
muscle primitives to highlight usability. Contractile mechanics simulations are run to
observe predicted surface shape. Ultrasound informed muscle shape is compared with
an equivalent geometrical model informed with muscle fascicles derived from Diffusion
Tensor Imaging (DTI).

2 Methods

2.1 Experiment

The ultrasound data used in this study are a subset of data that have been reported else‐
where [14]. Four subjects (mean age 24.6 ± 5.2, mean weight 60.6 ± 10.8 kg, mean
height 171.6 ± 6.4 cm) had 3D ultrasound collected during a passive seated knee flexion
task. The knee was flexed about 79 ± 6.7 ̊ (Fig. 1).
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Fig. 1. (Left) Each subject was seated with their leg in a flexed pose and the foot was moved
through dorsiflexion. A triad of markers attached to the leg was used to define the leg frame of
reference. Markers are also attached to the ultrasound transducer to define the imaging plane.
(Middle) 3D Ultrasound image identifying a manually segmented muscle fascicle. (Right) Muscle
fascicles embedded inside a three-element 3D host mesh, a FE muscle primitive.

No subjects had any musculoskeletal disorders. Ethical approval was obtained from
the South Eastern Sydney Local Health District Human Research Ethics Committee.
The left foot was placed on a dynamometer foot plate (Cybex Norm with Humac, CSMi,
Stoughton, MA, USA) and the ankle was rotated from fully plantarflexed to fully dorsi‐
flexed. Ankle rotation was slow (5 degrees/second) as slow speed stretches are unlikely
to evoke muscle stretch reflexes, so the muscle is more likely to be passive. Surface
electromyography (EMG) was used to confirm that the ankle plantarflexor muscles were
relaxed. Two ultrasound transducers (Esaote MyLab25 with LA522E 46 mm linear
array, 7.5–12 MHz operating at 12 MHz; Esaote, Genoa, Italy) were used synchronously
to image the gastrocnemius over the core muscle belly with a field of view of 110 mm.
The location and orientation of the ultrasound image in leg space was determined using
an optical 3D motion analysis system. For full ultrasound experiment protocols see the
work of Herbert et al. [14]. Passive tensile force Tm in the gastrocnemius muscle was
computed using the method described by Hoang and colleagues [15]. This involved
measuring the passive torque-angle relationship of the ankle at a range of knee angles.
Changes in the passive torque-angle relationship of the ankle with knee angle were
assumed to be due solely to the two-joint gastrocnemius muscle. The plantarflexor
muscles were assumed to be relaxed if there was no discernible increase in EMG ampli‐
tude above baseline levels (standard practice in human muscle physiology). The weakest
contractions that a person can make voluntarily can easily be identified in this way. Tm
is related to muscle length by Eq. 1 with details given in Kwah et al. [16].

T
m
=

1
𝛼

G

e
𝛼

G(lg−lgs) (1)

where αG is a constant, found by optimisation, that determines the stiffness of the muscle
and is referred to as the “stiffness index” [16]. lg is the muscle length and lgs the muscle
slack length. For all the tensile forces collected, see Tables 1 and 2.
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Table 1. Subject passive tensile force during muscle elongation.

Muscle stretch % Tensile force (N)
Subject 1 Subject 2 Subject 3 Subject 4

25.00% 1.5 2.8 0.8 0.3
50.00% 4.1 8.4 3.7 1.7
75.00% 8.5 19.6 11.3 6.3

100.00% 15.5 39.9 31.7 21.1

Table 2. Min/max tensile force, Min/max muscle length, muscle slack length and muscle
stiffness index for each subject.

Subject 1 Subject 2 Subject 3 Subject 4
Tensile force min (N) 2.5 1.9 0.4 0.1
Tensile force max (N) 42.4 17.5 32.1 21.2
Muscle length min (m) 0.38 0.406 0.392 0.394
Muscle length max (m) 0.42 0.431 0.428 0.439
Muscle stiffness index (m−1) 82.8 88.6 127.2 119.4
Slack length (m) 0.3 0.3 0.4 0.4

2.2 Finite Element Model

For each subject a set of muscle fascicles were digitised by identifying the 3D coordi‐
nates of the muscle fascicles’ origins and insertions into the tendon.

Figure 2 shows this process from the 3D ultrasound set identifying segmented muscle
fascicles at 0% elongation. This is repeated for nine muscle fascicles with the proximal
and distal insertions shown as spheres. Finally, the muscle fascicles are embedded inside
a three-element host mesh, which represents the basic muscle primitive in this study.
This primitive is morphed so as to minimise the distance between green landmarks and
red targets. In order to solve this we employ an iterative closest point algorithm to solve
a least squares minimisation. The objective function that is minimised is:
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smoothing penalty function [17] used to conserve muscle primitive volume. A struc‐
turally based orthotropic constitutive law previously used for passive cardiac [18] and
skeletal muscle [19], the ‘pole-zero’ relation [2] was adopted and is defined in Eq. 3

W = k𝛼𝛽

E2
𝛼𝛽

|||a𝛼𝛽 E𝛼𝛽

|||
b𝛼𝛽 (3)

30 M. Alipour et al.



where the strain energy density function, W, is defined by an asymptote function with
kαβ the scaling function, bαβ curvature control, aαβ a strain limiting pole and Eαβ the
Green’s strain components. The model was treated as transversely isotropic with the
muscle fascicle direction α = β = 1 aligned to the muscle fascicle orientation from
ultrasound images. After choosing an initial guess for the ‘pole-zero’ law we optimised
parameters that minimised the difference between the measured muscle tensile force and
the computed tensile force. This was performed until the RMS error was less than 0.01 N
(or 0.58 ± 0.19% error across all subjects). For this study we optimised the pole (aαβ) in
the muscle fascicle direction, which was the most sensitive parameter and fixed the
scaling (kαβ) and curvature (bαβ) parameters. The curvature was set to 1.0 and scaling
coefficient set to 0.1 MPa based on previous investigations with cardiac [2] and skeletal
tissues [19]. We set a bound on the solution space for aαβ as 0.01 to 5.0. All models were
simulated using the custom software, CMISS, available at www.cmiss.org.

3 Results

Following optimisation of the muscle fascicle end points to match 25% to 100% of
muscle stretch the deformed host shape was predicted. The average RMS error between
landmark and target muscle fascicles was at most 2 mm in all host mesh deformations.
The constitutive law was fit for all four subjects with parameters given in Table 3.

Fig. 2. Free form deformation of subject 1 highlighting the matching of all baseline muscle
fascicles to the muscle fascicle locations at 50% and 100% elongation. This produces a deformed
host whose shape minimises the difference between baseline and target muscle fascicles.
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Table 3. Fitted ‘pole zero’ parameters for all four subjects.

Subject 1 Subject 2 Subject 3 Subject 4
scaling κ11 (MPa) 0.1 0.1 0.1 0.1
pole α11 0.12755 0.656 0.3047 0.494
curvature β11 1 1 1 1
scaling κ22/κ33 (MPa) 0.1 0.1 0.1 0.1
pole α22/α33 0.8 0.8 0.8 0.8
curvature β22/β33 1 1 1 1
Avg % error 0.73% 0.71% 0.56% 0.30%

A gastrocnemius muscle was built from these muscle primitives and is shown in
Fig. 3. There was a clear bi-pennate characterisation for the whole continuum with
muscle fascicles merging towards a central tendon. A finite elastic mechanics simulation
using a Hill type contraction model produced a distinct bulge on the medial head of the
gastrocnemius (the larger head) and a distinct crease formed between the heads. To
evaluate this behaviour we compared this with the same muscle fitted with DTI derived
muscle fascicles under the same level of contraction and the resulting muscle profile
was highly consistent with an RMS error difference in shape of 8.8 mm.

Fig. 3. (Left) Medial gastrocnemius muscle constructed from FE primitive. (Middle) Embedded
muscle fibres. (Right) Fully contracted muscle derived from ultrasound (red) overlaid on same
geometry with diffusion tensor imaging derived fibres (gold). (Color figure online)

4 Discussion

The study developed a muscle primitive using 3D ultrasound in the human gastrocne‐
mius from four subjects as a representation of a bipennate muscle. The extracted 3D
ultrasound muscle fascicle data were embedded inside a representative muscle volume
element that captured approximately 4 cm × 2 cm × 2 cm of the muscle belly and
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morphed to match the moving muscle fascicle field imaged from 3D ultrasound using a
free-form deformation technique called ‘host-mesh’ fitting. This produced a series of
known muscle shapes (that matched the underlying muscle fascicle data) and we
mechanically simulated these known displacements in order to match the measured
muscle tensile force by optimising material properties. The ‘pole-zero’ parameters were
optimised to match four positions in the data (25%, 50%, 75% and 100%) of the exper‐
imental passive muscle stretch with an average fitting error of less than 1% of the tensile
force. It was shown that the whole continuum muscle produced a realistic contractile
shape when simulated, which was comparable with a DTI derived model. These muscle
primitives are being developed as part of the Physiome repository [19] and the Muscu‐
loskeletal Atlas Project (MAP) [20] in order for people to adopt and fit to subject-specific
data.

It was observed that the benefit of modelling muscle volume at the chose scale was
that all the muscle fascicle and muscle fascicle connection behaviour is captured in the
one muscle primitive. Hence, the scale of the representative muscle element is highly
suitable as a building block for whole muscles without being concerned about multiscale
methods, which is more computationally challenging. Future uses of this data include
characterising healthy versus pathologic muscle and creating a table of material param‐
eters for patients with different age and health conditions to be used for mechanics and
graphical representation.
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Abstract. In this paper, the reconstruction of 3D intensity volumes of
femur, tibia and three muscles around the thigh region from a pair of
calibrated X-ray images is addressed. We present an atlas-based 2D-3D
intensity volume reconstruction approach by combining a 2D-2D non-
rigid registration based 3D landmark reconstruction procedure with an
adaptive regularization step. More specifically, an atlas derived from the
CT acquisition of a healthy lower extremity, together with the input cali-
brated X-ray images are used to reconstruct those musculoskeletal struc-
tures. To avoid the potential penetration of the reconstructed femoral
and tibial volumes that might be caused by reconstruction error, we
come up with an articulated 2D-3D reconstruction strategy, which can
effectively preserve knee joint structure. Another contribution from our
work is the application of the proposed 2D-3D reconstruction pipeline
to derive the patient-specific volumes of three thigh muscles around the
thigh region.

Keywords: Atlas · 2D-3D reconstruction · Articulated · Lower
extremity · Musculoskeletal

1 Introduction

In order to reduce radiation exposure to patients, 2D-3D reconstruction, which
can reconstruct 3D patient-specific models from 2D X-ray images, is proposed
as an alternative to CT scan for certain applications. Depending on the output,
those 2D-3D reconstruction methods can be generally classified into two cate-
gories [1]: 3D surface model reconstruction [2,3] and 3D intensity volume recon-
struction [4–7]. The methods in the former category compute 3D patient-specific
surface models from one or multiple 2D X-ray images. No intensity informa-
tion or information about cortical bone is available. The methods in the second
category generate 3D patient-specific volumes from a limited number of X-ray
images. Most of the previous work tried to solve the ill-posed problem of 2D-3D
volume reconstruction by introducing different statistical prior models, while Yu
et al. [7] firstly explored the potential of atlas-based 2D-3D intensity volume
c© Springer International Publishing AG 2017
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reconstruction. To our knowledge, none of the above mentioned methods have
been applied to reconstruct the intensity volumes of a complete lower extremity.

In this paper we present an atlas-based 2D-3D intensity volume reconstruc-
tion approach which is an extension of the previous work [7] and we apply it to
reconstruct 3D intensity volumes of femur, tibia and three muscles around the
thigh region from a pair of 2D X-ray images.

The remainder of the paper is arranged as follows: the techniques of the pro-
posed atlas-based 2D-3D reconstruction method will be described in Sect. 2.
Section 3 will present the results of our validation experiments on several
datasets, followed by the discussions and conclusions in Sect. 4.

2 Materials and Methods

2.1 Atlas Preparation

The atlas consists of the template volumes of femur and tibia as well as the
template volumes of rectus femoris muscle, vastus lateralis & intermedius muscle,
and vastus medialis muscle (if reconstructing these thigh muscles) which are
segmented from the CT data of a healthy lower extremity. In addition, the atlas
includes two sets of sparse 3D landmarks ({Lfemur,n}N1

n=1 and {Ltibia,n}N2
n=1)

extracted from the outer surfaces and the intramedullary canal surfaces of the
template volumes.

2.2 The 2D-3D Reconstruction Pipeline

The 2D-3D reconstruction process is aiming to fit the atlas to a pair of X-
ray images, one acquired from the Anterior-Posterior (AP) direction and the
other from a oblique view (not necessary the Lateral-Medial (LM) direction).
Both images are calibrated and co-registered to a common coordinate system
called c. A template volume I (x) is aligned to the reference space c via a forward
mapping: I (xc (Tg, Td)) = I (Tg ◦ Td ◦ xf ), where xf is a point in the template
space. Here, a global scaled-rigid transformation Tg as well as a local deformation
Td are to be determined via a 2D-3D scaled-rigid registration stage and a 2D-3D
intensity volume reconstruction stage. Both stages are based on the procedure
of 2D-2D non-rigid registration based 3D landmark reconstruction.

The 2D-2D non-rigid registration based 3D landmark reconstruction fol-
lows the previous work [7] which is organized in a hierarchical style: (1) Digi-
tally reconstructed radiography (DRR) generation and 3D landmark projection;
(2) non-rigid 2D-2D intensity-based registration; and (3) triangulation-based
landmark reconstruction. Inspired by the work [2], 3D sparse landmarks instead
of the B-Spline control points used in the previous work are adapted.

Given the initial transformation of the template volumes to the common
coordinate system c via landmark-based alignment, we can generate virtual 2D
radiographic images and also project those 3D sparse landmarks. The non-rigid
2D deformation fields obtained from the registration module based on the regis-
tration library “elastix” [8] enable us to look for the dimensional correspondences
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represented by the paired 2D projected landmarks, and then new 3D sparse land-
marks are reconstructed via the triangulation which is in several milliseconds for
each landmark reconstruction.

2D-3D Scaled-Rigid Alignment is conducted via the paired-point match-
ing between the reconstructed 3D landmarks and the original 3D landmarks in
the atlas (see Fig. 1, left), and we iteratively compute

{
T t
g

}
t=1,2,3,...

in order to
handle those complicated pose differences. The 2D-3D similarity alignment is
applied to femur and tibia individually, and finally we can obtain two scaled-
rigid transformations T femur

g and T tibia
g . Figure 1, right shows an example of the

2D-3D scaled-rigid alignment which can handle large pose difference.

Fig. 1. An illustration of 2D-3D scaled-rigid alignment.

2D-3D Intensity Volume Reconstruction starts with the reconstructed
3D sparse landmarks ({L′

femur,n}N1
n=1 or {L′

tibia,n}N2
n=1) and the original 3D

landmarks in the atlas ({Lfemur,n}N1
n=1 or {Ltibia,n}N2

n=1). Firstly, we transform
these reconstructed landmarks back to the space of the atlas with T−1,femur

g and
T−1,tibia
g , and then two local deformations T femur

l and T tibia
l can be computed

using 3D thin-plate-spline (TPS) transformation as follows:

⎧
⎨

⎩

T femur
l ← TTPS

(
{Lfemur,n}N1

n=1 ,
{
T−1,femur
g ◦ L′

femur,n

}N1

n=1

)

T tibia
l ← TTPS

(
{Ltibia,n}N2

n=1 ,
{
T−1,tibia
g ◦ L′

tibia,n

}N2

n=1

) (1)

Notice that the obtained transformations T femur
l and T tibia

l are usually ill-
posed since there is no restriction on the behaviors of 3D deformation fields,
which may lead to poor reconstruction results (see Fig. 2). Therefore, we apply
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Adaptive  

Regularization 

Fig. 2. A comparison of the reconstruction of femur and tibia w/o the adaptive regu-
larization strategy.

an adaptive regularization on the B-Spline grid(s) sampled from T femur
l and

T tibia
l in order to derive the anatomically correct results.

The adaptive regularization strategy begins with the layout of a combined
B-Spline grid or two individual B-Spline grids in terms of the articulated or
individual 2D-3D reconstruction methods by interpolating the displacements
at the control points from T femur

l and T tibia
l . Following the previous work [9]

which proposed a B-spline transformation regularization approach for non-rigid
registration, the displacement vectors dijk at the control points are regularized
based on the Neumann boundary condition on the control points [10]. Figure 3
illustrates the 3D deformations computed from each step of the regularization.

Interpolate B-spline 
Control Point 

Displacements

Adaptive 
Regularization on 
the Displacements

Compute 3D TPS 
Transformation

Compute Voxel 
Displacements via B-
spline Interpolation

(a) Voxel-wise 3D 
deformation field computed 
from the TPS tranformation

(d) Voxel-wise 3D deformation 
field interpolated from the 

regularized B-spline tranformation

(b) Displacements of the B-spline 
control points interpolated from 

the TPS tranformation

(c) Adaptive regularization on the 
displacements of these B-spline 

control points

Fig. 3. A comparison of the deformation fields derived from a TPS transformation and
from the regularized B-Spline transformation.

In order to prevent the reconstructed femur and tibia from penetrating each
other, we investigated two strategies to reconstruct the associated structures:
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I. Individual 2D-3D Reconstruction: The reconstruction of femur and tibia
is completely individual, and each time just one anatomy will be reconstructed.
As indicated, there is no consideration over the articulation of knee joint.

II. Articulated 2D-3D Reconstruction: A combined B-spline grid is placed
over the space of the template volumes, and the displacement dijk at a control
point Cijk is computed either by T femur

l or by T tibia
l , depending on the relative

position between a pre-defined axis-aligned plane ζ (see Fig. 4, left) and Cijk:

{
if Cijk is above ζ, dijk ← T femur

l (Cijk)
if Cijk is below ζ, dijk ← T tibia

l (Cijk)
(2)

Individual 2D-3D
Reconstruction

Ground Truth 
CT

Articulated 2D-3D
Reconstruction

Pre-defiend 
axis-aligned

splitting plane

Fig. 4. The schematic view of the articulated 2D-3D reconstruction method (Left) and
the qualitative comparison with the individual 2D-3D reconstruction method (Right).

We found that there is basically the same for the reconstruction accuracy
from both strategies, while the qualitative comparison of reconstructing knee
joint structure demonstrates the superiority of the articulated 2D-3D recon-
struction method over the individual one (see Fig. 4, right).

The Reconstruction of Three Muscles Around the Thigh Region: The
obtained 3D deformation fields from the reconstruction pipeline provide the
potential of reconstructing the muscles in the thigh region. Currently, we just
focus on the reconstruction of (1) rectus femoris muscle; (2) vastus lateralis &
intermedius muscle; and (3) vastus medialis muscle.
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3 Experiments and Results

Approved by a local institution review board (IRB), we conducted three exper-
iments to validate the proposed reconstruction pipeline in regard to different
motivations.

3.1 Experiment on CT Dataset of 11 Cadaveric Legs

Each CT data has a voxel spacing of 0.78 mm × 0.78 mm × 1 mm, and we chosen
a healthy CT data from them to create the atlas for all experiments. For the
atlas, we segmented the binary labels of the femoral and tibial structures as well
as their cortical bone regions, and 641 landmarks for femur and 872 landmarks
for tibia were extracted from these binary labels.

In this experiment, we’d like to evaluate the overall reconstruction accuracy
of femur and tibia as well as the reconstruction accuracy of their intramedullary
canal regions. Therefore, for the left 10 sets of CT volumes, we segmented the
binary labels of the femoral and tibial structures as well as their cortical bone
regions for each CT data as the ground truth, and also we generated a pair of
virtual 2D radiographic images (DRRs) as the reference images (see Fig. 5, top).

Fig. 5. The reference images & the ground truth from each CT data (Top); and the
quantitative (Bottom, Left) and qualitative (Bottom, Right) results of the experiment
conducted on 10 cadaveric legs

We assessed both the individual and the articulated 2D-3D reconstruction
strategies, and the results are shown in Fig. 5, left. Here, the average surface dis-
tance (ASD) and the dice coefficient (DC) for the overall reconstruction and the
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reconstruction of cortical bone region (i.e. cortical bone region ASD (CBRASD)
and cortical bone region DC (CBRDC)) were measured. From the results, there
is no statistically significant difference in accuracy but it is distinct in the preser-
vation of knee joint structure from the two strategies (see Fig. 4). Figure 5, right
shows a qualitative comparison of the reconstructed volumes with the associated
ground truth volumes for both femur and tibia.

3.2 Experiment on X-Ray Images from Patients

10 pairs of X-ray images were collected for this experiment, which is more chal-
lenging due to the image quality. Since only the CT data around three local
regions (hip, knee and ankle joint) were available, the reconstruction accuracy
was evaluated by comparing the surface models extracted from the ground truth
CT data with those extracted from the reconstructed volumes after rigidly align
them together.

The average surface distance (ASD) for the local regions including proximal
femur (PF-ASD), distal femur (DF-ASD), proximal tibia (PT-ASD) and distal
tibia (DT-ASD) were measured. The quantitative results are shown in Fig. 6,
left where an overall reconstruction accuracy of 1.4 mm was found, and Fig. 6,
right shows a reconstruction case.

Fig. 6. The average surface distances measured between the reconstructed surface mod-
els and the ground truth surface models.

3.3 Experiment on Reconstructing Three Thigh Muscles

We also evaluated the accuracy of reconstructing three thigh muscles on a set of
12 one-side CT data with the associated ground-truth segmentations around the
thigh region [11]. One CT volume was randomly chosen to create the atlas, and
we conducted the experiment on the left 11 cases. We measured the dice coeffi-
cient (DC) to evaluate the reconstruction accuracy of the three thigh muscles,
and the results are shown in Fig. 7, ranging from 78% to 85%.
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Fig. 7. (a) The femur & thigh muscle reconstruction accuracy: red (ground truth sur-
face) and green (reconstructed surface); (b) femur; (c) rectus femoris muscle; (d) vastus
lateralis & intermedius muscle; (e) vastus medialis muscle. (Color figure online)

4 Discussion and Conclusion

We presented an atlas-based 2D-3D intensity volume reconstruction approach,
which to our knowledge, is probably the first attempt to derive patient-specific
musculoskeletal structures in the lower extremity. Our method has the advan-
tage of combining the robustness of 2D-3D landmark reconstruction with the
smoothness properties inherent to B-spline based 3D regularization. In order to
preserve knee joint structure, we proposed an articulated 2D-3D reconstruction
strategy which can derive the anatomically correct reconstruction results, and
we also investigated the reconstruction of three thigh muscles via the proposed
reconstruction pipeline, which holds the potential to be used in the clinical rou-
tine in future. The comprehensive results from a set of experiments demonstrated
the efficacy of this 2D-3D reconstruction method.
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Abstract. Automatic liver tumor segmentation is an important step
towards digital medical research, clinical diagnosis and therapy plan-
ning. However, the existence of noise, low contrast and heterogeneity
make the automatic liver tumor segmentation remaining an open chal-
lenge. In this work, we focus on a novel automatic method to segment
liver tumor in abdomen images from CT scans by using fully convolu-
tional networks (FCN) and non-negative matrix factorization (NMF).
We train the FCN for semantic liver and tumor segmentation. The seg-
mented liver and tumor regions of FCN are used as ROI and initializa-
tion for the NMF based tumor refinement, respectively. We refine the
surfaces of tumors using a 3D deformable model which derived from
NMF and driven by local cumulative spectral histograms (LCSH). The
refinement is designed to obtain a smoother, more accurate and nat-
ural liver tumor surface. Experiments demonstrated that the proposed
segmentation method achieves satisfactory results. Likewise, it has been
notably observed that the computing time of the segmentation method
is no more than one minute for each CT volume.

Keywords: Liver lesion · FCN · Non-negative matrix factorization ·
Local cumulative spectral histograms · Segmentation

1 Introduction

The liver is a common site of primary or secondary tumor disease development
[9]. Segmentation and volume measurement of liver tumors are important tasks
for digital medical research, clinical diagnosis and surgical planning. Usually,
manual and semi-manual annotation may obtain accurate segmentation results
but it is operator-dependent and time-consuming.

With the development of medical imaging, there is an increasing interest in
automatic tumor segmentation methods. Due to their variations in the location,
c© Springer International Publishing AG 2017
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appearance and shape, automatic segmentation of liver tumors is very chal-
lenging. Until now, many methods have been developed for liver tumors. These
methods include the thresholding, graph cuts, watershed, region growing, classi-
fication, statistical analysis and so on [12]. Usually, these methods are based on
the pixel or voxel intensity which cause boundary leakage, under-segmentation
or over-segmentation easily.

To palliate these drawbacks, deformable models [1] have been proven useful in
image segmentation due to the sub-pixel accuracy and closed object boundary.
Tumor segmentation using active contours [3] and level set [11,17] have been
proposed. Some techniques using fuzzy clustering [10] and machine learning [8]
methods are also developed. However, these methods are not applied in clinics
if there is no user interaction.

To further make the segmentation result plausible, more efficient and robust
methods should be involved. Recently, deep convolution neural networks (CNN)
are rapidly proven to be the state-of-the-art foundation [14], and achieve
enhanced performance in object recognition and segmentation. FCN, based on
CNN, has shown impressive results in semantic natural image segmentation [13].

In this work, we focus on the automatic liver tumor segmentation combin-
ing FCN and NMF. This combination produces a coarse to fine segmentation
pipeline. Firstly, we train the FCN for semantic liver and tumor segmentation.
The training data is 116 CT volumes (51247 slices) of LiTS. Secondly, the trained
FCN is used to segment liver and tumor regions coarsely. The test data are 3
CT volumes with different tumor size, ambiguous boundary and heterogeneous
densities (selected from LiTS and 3D-IRCADb). Thirdly, the segmented tumor
is refined by a 3D deformable model within the segmented liver region. The
deformable model is derived from NMF and is driven by LCSH. Our contribu-
tions are the following: (1) we train and apply FCN on liver and tumor segmen-
tation simultaneously on CT volumes slice by slice (Sect. 2.2), refine the coarse
segmentation using 3D deformable model based on (2) LCSP on 3D CT volumes
(Sect. 2.3) and (3) NMF (Sect. 2.3).

2 Method

2.1 Overview

Firstly, we present the overview of the proposed segmentation method. The
pipeline is shown in Fig. 1 which consist of two parts:

(1) The training part: We train the FCN on the 51247 image slices of LiTS
which labeled as background, liver and tumor, respectively.

(2) The segmentation part: Firstly, we use the trained FCN to predict seman-
tic segmentation of input CT volumes slice by slice. The segmented slice
are stacked as volumes, and the largest and connected prediction region is
selected as ROI. Then, we compute the LCSH on the ROI. Lastly, the sur-
faces of tumors are refined using the 3D deformable model. The mean LCSH,
referred to as representative features, of liver and tumor region within ROI
contribute to the initialization of refinement.
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Fig. 1. Pipeline of the proposed liver tumor segmentation method

2.2 FCN

FCNs are a rich class of models that address many pixel-wise tasks. They replace
the fully connected layer of classic CNN with convolutional layer and the trans-
posed convolution layer restore the feature map as the size of original image.
FCN can solve the semantic segmentation using pixel classification. The motiva-
tion behind the semantic liver and liver tumor segmentation using FCN is that
many works have demonstrated the generality for a variety of image-to-image
tasks. In the proposed method, we trained the FCN based on the configurations
network of 19 weight layers of VGGNet [15]. In contrast to the cascaded fully
convolutional neural networks [4], the proposed method doesnt have any data
augment and pre-processing. And we segment the liver and tumor at once rather
than two step segmentation.

During training, we used a PC equipped with a single Core i7-6800K CPU
(8 cores, 3.4 GHz) and one NVIDIA GTX 1080 GPU. The framework is tensorflow
with a learning rate of 0.0001, a momentum of 0.9 and a batch size of 20.

2.3 Deformable Model

We develop a combined method that uses the FCN to isolate tumor and
deformable model to refine the tumor surface from the surrounded parenchyma.

Local Cumulative Spectral Histograms (LCSH): To identify ambiguity
boundary between tumor and surrounded liver parenchyma, we present a novel
intensity statistical feature using the LCSH. Suppose the gray-scale of CT volume
I : x ∈ Ω → R is [0, L] and Ωroi is ROI (Ωroi ⊂ Ω). For a local neighborhood
N(x) of x in the Ωroi, the LCSH is define by:

Fx(yi) =
#{z ∈ N(x) ∩ Ωroi : I(z) ≤ yi}

#{N(x) ∩ Ωroi} (1)

yi ∈ [0, L] is the largest gray intensity of the ith bin (i ∈ {1, 2, · · · , N}, N is the
bin number). And # denotes the number of elements contained in the set.
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Compared to the pixel intensity, LCSH has more power to characterize object,
and better ability to suppress noise. Here the image intensity and the response
of one LoG filter are used to compute LCSH.

The Segmentation Energy: In most image segmentation methods based on
multiple feature maps, the segmentation label is decided through the distance
measurement between feature vector and representative feature of each region.
But pixels near boundaries are misclassified usually. To address this problem,
Yuan et al. [16] proposed a different classification approach using NMF. The
segmentation model consider the feature vector of every pixel is a linear combi-
nation of the representation features. The segmentation model is given as:

Y = RW + ε (2)

where Y is an N × M feature matrix, R is an N × n representative feature
matrix, W is a n × M weight matrix and ε is the additive noise. M and n
represent the total number of image pixels and segmentation regions. For the
given representative features, the weights can be compute as:

W = (RT R)−1RT Y (3)

Then Gao et al. [5] extended the model to the level set framework for texture
segmentation. The data fitting energy is expressed as:

E(φ,w1, w2) = −
∫

Ω

w1H(φ) + w2(1 − H(φ))dx (4)

where w1 and w2 are the weight matrix of object and background, respectively.
φ is level set function and H is the Heaviside function.

In this paper, we propose the 3D segmentation model based on NMF and
the LCSH:

E(φ,w1, w2) =
∫

Ωroi

(1 − w1)H(φ) + (1 − w2)(1 − H(φ))dx+v

∫
Ωroi

|∇H(φ)| dx
(5)

v is the weight parameters. The first term is data fidelity energy and the second
term is the regularization term. The vectored weight matrix, also denoted by
w1 and w2, are computed as (w1, w2)T = (RT R)−1RT Y . In application, the
initial representative features R is the mean LCSH of the predicted liver and
liver tumor regions by FCN within the ROI.

2.4 Algorithm Implementation

The energy (5) may be minimized by using the gradient descend method. Because
of the non-convex, this model prone to different minimum. For the fixed w1

and w2, we redefine the energy functional (5) via standard convex minimization
schemes [2]. The convex energy FG(u) is given as:

arg min
0≤u≤1

FG(u) = arg min
0≤u≤1

v

∫
Ωroi

|∇u(x)| dx +
∫

Ωroi

(w2 − w1)u(x)dx (6)
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We should note that object region is given as Ω∗(μ) = {x ∈ Ωroi|u∗ > μ}
where u∗ is the global minimizer of the convex energy FG(u) and μ ∈ (0, 1) is a
simple thresholding (we set μ = 0.5 in this paper).

Next, we will apply the Split Bregman method [7] to minimize the convex
model (6) of u. Introduce the auxiliary variable d such that d = ∇u, the elegant
two-phase Split Bregman iteration is given as following:

(uk+1, dk+1) = argmin
0≤u≤1,d

v

∫
Ωroi

|d| dx +

∫
Ω

(w2 − w1)udx +
γ

2

∫
Ω

∥∥∥d − ∇u − bk
∥∥∥2dx

(7)

bk+1 = bk + ∇uk+1 − dk+1 (8)

The Euler-Lagrange equation of the optimization problem (7) with respect
to u is:

Δuk+1 =
w2 − w1

γ
+ ∇(dk − bk) (9)

Gauss-Seidel formula is used to solve this equation.
Likewise, the optimization problem (7) with respect to d is:

dk+1 = shrink(∇uk+1,
v

γ
) (10)

where shrink(α, β) is the shrinkage operator defined as:

shrink(α, β) =

⎧⎨
⎩

α

|α| max(|α| − β, 0), α �= 0

0, α �= 0
(11)

After one iteration, w1 and w2 are updated using the representative
features R computed by the mean LCSH in

{
x ∈ Ωroi|uk+1 > μ

}
and{

x ∈ Ωroi|uk+1 < μ
}
.

3 Experiments and Result

3.1 Dataset

The tested data come from two public databases 3D-IRCADb and LiTS. The
3D-IRCADb database is composed of 20 CT scans with hepatic tumors in 75%
of cases. The LiTS includes 131 training CT scans and 70 test CT scans. The
training data were labeled as liver region, tumor or background. CT scans of
these two public databases differ substantially among the level of contrast, num-
ber and size of tumor tumors. Slice numbers of all the CT volumes vary from 64
to 987. The inner/inter-slice pixel spacing is 0.56∼1/0.7∼5 mm. Without loss of
generality, in this paper, we select 3 CT volumes (no. 3 and 4 of LiTS, no.19 of
3D-IRCADb) with different tumor size, ambiguous boundary and heterogeneous
densities to demonstrate the efficiency of the proposed method.
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3.2 Evaluation Criteria

In order to evaluate the proposed segmentation method, five measures [9], namely
Volumetric Overlap Error (VOE, %), Relative Volume Difference (RVD, %),
Average Symmetric Surface Distance (ASD, mm), Root Mean Square Symmetric
Surface Distance (RMSD, mm), Maximum Symmetric Surface Distance (MSD,
mm), are used for segmentation evaluation. For these measures, the smaller the
(absolute) value is, the better the segmentation result is. Particularly, zero for all
the five measures denotes a perfect segmentation. Other three correct evaluation
metrics [6] (Sensitivity, Specificity and Accuracy) are used. For the three metrics,
the bigger the value ([0, 1]) is, the better the segmentation result is.

3.3 Results and Analysis

In this subsection, firstly, we visually compared the proposed method with fuzzy
clustering method (FLICM) [10] and level set approach (LSACM) [17] on 2D
case with the predicted liver mask of FCN. The results reveal that our method
outperforms the other compared methods.

(a) (b) (c) (d)

Fig. 2. Comparison results on 2D case. (a) FCN, (b) FLICM, (c) LSACM, and (d)
The proposed. The segmentation results are shown with green mask and the ground
truths are surround by yellow contour. (Color figure online)

Then, we evaluate the proposed method on the selected three data. In Fig. 3,
typical 3D distance map between the segmented tumors and ground truth are
visually represented. Quantitative evaluation results by the metrics are listed in
Table 1. The results on these 3 representative volumes further demonstrate the
efficiency of the proposed method.

In practice, the proposed method performs poorly for tiny tumors with low
contrast between the surrounded liver parenchyma and tumors on the low inten-
sity liver parenchyma which are shown in Fig. 4.

The reasons of these failed segmentation can be attributed to the invalid fea-
ture extraction in the complex abdomen CT volumes. All these cases presented
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Fig. 3. Segmentation results of the proposed method. (a) no. 3 of LiTS, (b) no. 19. of
3D-IRCADb and (c) no. 4 of LiTS.

Table 1. Quantitative comparison results in Fig. 3

Volume VOE RVD ASD RMSD MSD Sensitivity Specificity Accuracy

(a) 0.17 0.47 0.84 1.10 3.64 0.93 0.97 0.98

(b) 0.13 1.40 0.96 1.78 9.96 0.94 0.96 0.95

(c) 1.04 1.23 0.76 2.25 15.03 0.97 0.99 0.99

(a) (b) (c)

Fig. 4. Challenge of tumor segmentation in CT images.

are open challenge in tumor segmentation. Other failed segmentation comes from
the missed liver mask location of FCN. We will research further to solve these
problems in our future work.

4 Conclusion

In this study, we proposed a novel automatic method to isolate liver tumors
from abdomen CT images. The proposed method makes full use of the advan-
tage of FCN 3D to automatic localization and deformable model to refine sur-
face. The deformable model is derived from NMF and driven by LCSH. Exper-
imental results on clinical data demonstrated that the proposed segmentation
method achieves satisfactory results. We concluded that the proposed method
is a promising method for automatic tumors segmentation.

Acknowledgments. This research is sponsored by the National Natural Science
Foundation of China (61472053, 91420102), Major Program of National Natural Sci-
ence Foundation of China (No. 61190122), National Key Technology R&D Program of
China (No. 2012BAI06B01).



Automatic Liver Lesion Segmentation in CT Combining FCN and NMF 51

References

1. Becker, M., Magnenat-Thalmann, N.: Deformable models in medical image seg-
mentation. In: Magnenat-Thalmann, N., Ratib, O., Choi, H.F. (eds.) 3D Mul-
tiscale Physiological Human, pp. 81–106. Springer, London (2014). doi:10.1007/
978-1-4471-6275-9 4

2. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of
image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648
(2006)

3. Chen, B., Chen, Y., Yang, G., Meng, J., Zeng, R., Luo, L.: Segmentation of liver
tumor via nonlocal active contours. In: 2015 IEEE International Conference on
Image Processing (ICIP), pp. 3745–3748. IEEE (2015)

4. Christ, P.F., et al.: Automatic liver and lesion segmentation in CT using cascaded
fully convolutional neural networks and 3D conditional random fields. In: Ourselin,
S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9901, pp. 415–423. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8 48

5. Gao, M., Chen, H., Zheng, S., Fang, B.: A factorization based active contour
model for texture segmentation. In: 2016 IEEE International Conference on Image
Processing (ICIP), pp. 4309–4313. IEEE (2016)
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Abstract. We investigate the structural details of the human masseter
and their contribution to force-transmission necessary for mastication
through a computational modelling study. We compare two subject-
specific models, constructed using data acquired by a dissection and
digitization procedure on cadaveric specimens. Despite architectural dif-
ferences between the two masseters, we find that in both instances it is
necessary to capture the combination of the multipennate nature of the
muscle fibres, as well as the increased aponeurosis stiffness, in order to
reproduce adequate clenching forces. We also demonstrate the feasibility
of deformably registering these architectural templates to target muscle
surfaces in order to create new subject-specific models.

Keywords: Masseter · Mastication · Finite element · Aponeuroses

1 Introduction

Mastication, the chewing of food, is an important process that when hindered
can severely affect quality of life. In patients who have undergone treatment
for head and neck cancer, muscle damage due to either surgical resection or
radiotherapy often leads to reduced comminution efficiency, and can result in
chewing or swallowing disorders such as dysphagia. Understanding the mechanics
of mastication is crucial if we are to tailor interventions to subjects in order to
maximize post-treatment function.

Due to the complexity of the masticatory system, and that functional muscle
characteristics are difficult to isolate and measure without interfering with the
chewing cycle, computational biomechanical models have become indispensable
in studying the process. For simulations to be reliable, however, they must cap-
ture all relevant interactions of the coupled system of bones, tendons, muscles,
and other soft-tissues, as well as account for any subject-specific variability. To
this end, we are developing a detailed model of the masseter, the major muscle
involved in mastication, to study the impact of its structural characteristics on
function.
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): BIVPCS/POCUS 2017, LNCS 10549, pp. 52–60, 2017.
DOI: 10.1007/978-3-319-67552-7 7
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(a) Subject #1 (b) Subject #2 (c) Components

Fig. 1. Finite-element models of the masseter and jaw for simulating clenching force
during mastication. The models consist of encapsulating hexahedral muscle volumes,
attached to the mandible and zygomatic arch (blue nodes in (c)-left), which are coupled
to thin interior membrane-like aponeuroses ((c)-right). (Color figure online)

Most existing models of mastication rely on line-based, lumped-parameter
muscle models. Tanaka et al. [15] apply line-based models of the masseter act-
ing on a finite element model (FEM) of the mandible to study stress distrib-
utions during teeth clenching. To study the dynamics of jaw-gaping, Hannam
et al. [4] developed a complete jaw-hyoid model with line-based muscles. Stavness
et al. [14] later used this model to predict muscle activations and forces required
for chewing. These line-based representations of the masseter are somewhat lim-
ited: they assume muscle uniformity, cannot represent broad attachment areas,
and cannot be used to predict stresses within the muscle volume. To examine
the impact of surgical intervention or treatment on muscle function, we need a
more-detailed three-dimensional representation of the structure.

To our knowledge, Röhrle et al. [12] created the only existing finite-element
model of the masseter. They show that using line-based muscles can introduce
significant errors in simulated force distributions, to the point where different
clinical outcomes could be predicted. One of the limitations of the study was a
low prediction of maximum bite force: 77 N, which is quite shy of the potential
200 N+ which has been observed in practice [7]. They note that muscle fibre
distribution plays an important role, and suggest that the model can be improved
by including a more accurate representation of the muscle architecture.

Unfortunately, the internal details of the masseter are extremely challeng-
ing to see using conventional imaging techniques [11]. Because of this, we have
acquired two uniquely detailed architectural descriptions of the masseter through
dissection and digitization studies. In this work we describe our process for incor-
porating this data into an efficient hybrid simulation model, which will later be
included in a larger complete model for studying mastication.
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2 Methods

2.1 Data Collection

Data used for modelling was collected from two human cadaveric studies using
the dissection and digitization procedure of Kim et al. [6] (Fig. 2). In this pro-
cedure, the formalin embalmed tissue was exposed by removing any skin and
superficial fascia. The specimens were securely clamped, and three screws afixed
to the bone to act as a frame of reference. The muscle surface was cleaned
and delineated to allow each muscle fibre bundle (fascicle) to be traced in its
entirety. Digitization of muscle fascicles was carried out using a MicroScribeTM

MX Digitizer (0.05 mm accuracy; Immersion Corporation, San Jose, CA). Each
fascicle was traced at 3–5 mm intervals between attachment sites. The fibres
were then excised to reveal underlying fascicles and aponeuroses. The dissection
and digitization process continued until the entire muscle volume was captured.
Ethics approval for this study was received from University of Toronto Health
Sciences, Mount Sinai Hospital, and University of British Columbia Research
Ethics Boards (P.R. #27210, #28530, 12-0252-E, H12-00130).

The first data set, described in Leon et al. [9], was initially collected to study
fibre motions during opening and closing of the jaw. Unfortunately, no informa-
tion regarding aponeuroses was acquired, so for our modelling efforts they were
manually drawn based on terminating fibre ends and from anatomical references.
For the second specimen, it was decided to additionally digitize the aponeu-
roses, beginning with the perimeter, then following collagen fibre bundles on the
exposed surface. To form three-dimensional sheets of aponeuroses, these out-
lines were transformed into NURBS curves using Autodesk Maya R© and surfaces
were lofted between them. A CT scan of the second specimen was also acquired
(Aquilion ONETM, Toshiba Medical Systems Corporation, Tokyo, Japan) with
resolution 2 mm × 2 mm and slice thickness of 3 mm. The skull was segmented
using thresholding, and manually aligned with the digitized muscle data.

(a) Subject #1 (b) Subject #2

Fig. 2. Digitized muscle fascicles, internal aponeuroses, and encapsulating muscle
volume for two subjects. Colours reflect distinct groups of muscle fascicles.
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2.2 Finite Element Model Construction

To build volumetric muscle models from the digitized data, we first need to cre-
ate an encapsulating muscle volume. Similar to Lee et al. [8], we constructed
a wrapping surface around the collection of fibres and aponeuroses. For this,
we start by computing a three-dimensional distance field on a 100 × 80 × 35
grid of points, determining the distance of each grid point to the nearest ‘fea-
ture’ (either a line-segment from the digitized fibre bundles or face from the
triangulated aponeurosis surfaces). We smooth the distance grid by applying
the Laplacian smoothing operator, then reconstruct a continuous field by tri-
linearly interpolating between the grid points. To create the bounding surface,
we extract an iso-surface from the smoothed field using the Marching Tetrahedra
algorithm [3]. For our masseters, we chose the 2 mm iso-surface.

The next step is to construct the three-dimensional finite-element mesh. Due
to the highly incompressible nature of muscle tissue, hexahedral elements are
preferred as they avoid common volumetric locking artifacts exhibited by tetra-
hedral elements. Unfortunately, for our complex geometry including the thin
aponeuroses, constructing conforming hexahedral meshes is an extremely chal-
lenging and labour-intensive task. Instead, we follow Teran et al. [16], and cre-
ate a non-conforming bounding finite-element mesh of the entire muscle volume.
The result is a voxelized representation, consisting of 1419 and 969 linear 8-node
hexahedral elements for the two models (Fig. 1). The muscle-specific material law
requires determining the fibre orientation at each point of numerical integration
within the FEM volume. We define a fibre field for each compartment of digitized
fibre bundles using the method of Sánchez et al. [13]: around each integration
point, we examine an influence radius (r = 2mm), and compute a weighted aver-
age orientation of all contained digitized fibre segments. These orientations then
define the directions of muscle contraction within the corresponding elements.

For the aponeuroses, we extrude the triangulated surface meshes to create
0.5 mm-thin wedge elements. We detach the top nodes of neighbouring elements
in order to mimic a membrane, which exhibits in-plane elastic behaviour but
zero bending stiffness (Fig. 1c). This allows the aponeuroses to perform their
function of transmitting forces to the muscle attachment sites without overly
stiffening the entire muscle volume. We then couple the bounding hexahedral
FEM and membrane-like aponeurotic sheets using a system of constraints. For
each node that falls on the original aponeurosis surface, we compute the values
of the FEM interpolation functions {φj(t)} at rest such that

t
(0)
i =

∑

j

φj

(
t
(0)
i

)
m

(0)
j , (1)

where t
(0)
i is the location of the ith node on the aponeurotic sheets at time 0,

and m
(0)
j is the location of the jth node in the encapsulating muscle volume. To

enforce coupling of the models, we maintain this relationship as time progresses,
effectively binding the node to its barycentric coordinate within the correspond-
ing muscle element. We can express the constraints as Gn = 0, where n is a
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concatenated vector of node positions including both muscle nodes m and ten-
don (aponeurosis) nodes t, and G is a constraint matrix consisting of the fixed
interpolation coefficients from Eq. (1).

For our first masseter model (Fig. 1a), we manually aligned the masseter vol-
ume with Hannam’s existing model for mastication [4] so that fibre bundle ends
and aponeuroses aligned with the appropriate origin and insertion sites on the
zygomatic arch and angle/ramus of the mandible. For the second model (Fig. 1b),
we similarly manually registered the muscle to the skull and jaw extracted from
CT. We then attached the muscle volumes to these rigid components by securing
nodes to the bones based on proximity as in Fig. 1c.

2.3 Constitutive Laws

We model both the underlying muscle tissue and aponeuroses as incompressible
Mooney-Rivlin hyperelastic solids with strain-energy density function

W (I1, I2, J) = c1(I1 − 3) + c2(I2 − 3) + κ(J − 1)2, (2)

where I1 and I2 are the first and second invariants of the Cauchy-Green deforma-
tion tensor, and J is the determinant of the deformation gradient. The constants
c1 and c2 are stiffness parameters, and κ is the bulk modulus responsible for
incompressibility. To include the anisotropic contraction behaviour of muscles,
we add a material stress based on the Blemker [1] constitutive model:

σ(λ) = σmax (αfact(λ) + fpass(λ)) (λ/λopt), (3)

where σmax is the maximum isometric stress in the muscle, α ∈ [0, 1] is the
normalized muscle activation level, λ is the along-fibre stretch, λopt is the optimal
fibre stretch, and fact and fpass are normalized functions that describe the active
and passive force-length relationships for the muscle, respectively (see [1]). For
our simulations, we use the same values as Röhrle et al., c1 = c2 = 10 kPa,
σmax = 300 kPa, and λopt = 1.4. For the aponeurosis material, we increase c1
and c2 by a factor of 100 to represent its stiff tensile behaviour.

2.4 Simulation, Registration and Results

For our numerical simulations, we use the open-source ArtiSynth platform [10].
ArtiSynth allows us to combine rigid and deformable elements, along with con-
straints and coupling, in a hybrid simulation environment. We fix the location
of the jaw and skull, activate the muscle, and measure the net isometric con-
traction force acting between the bones. We take this to be our clenching force
contribution from each masseter.

To determine the impact of the various architectural properties, we ran three
simulations for each model. In the first, we ignore all internal details, only using
the muscle’s outer shape with a simplified muscle fibre direction field acting
between muscle origin and insertion sites, as in [12]. For the second simulation, we
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(b) Registered models (c) Registration

Fig. 3. Force production in the masseter during clenching, applied to both original
and registered models. In (c), we see the original (top) and registered (bottom) muscle
volumes. The volume from subject #1 (pink) was deformed to fit the muscle surface
from subject #2 (cyan). This provides an architectural mapping between the two.
(Color figure online)

replace the simplified field with the one derived from muscle fascicle digitization.
For the third, we add our thin coupled aponeuroses models, including their stiff
tension properties. Force results are shown in Fig. 3a.

In both subject-specific models, use of the simplified directional fibre field
resulted in the lowest peak force (14 N, 96 N). Adding the detailed pennated
fibre architecture significantly increases force (55 N, 125 N), and incorporating
the aponeuroses increased force even further (64 N, 157 N). For subject #1, the
aponeuroses did not have as strong an impact as for subject #2. This may be
related to our uncertainty in reconstructing the aponeurotic sheets, since the
fibre field was less dense and we had no measurements of the collagen fibres.
The larger discrepancy between the two models, however, seems to be related to
muscle volume. The estimated masseter volume for the first subject, based on the
wrapped-fibre surface, is 19.7 cm3, whereas for the second subject is 38.8 cm3.

The most reliable predictor of a muscle’s peak force is its physiological cross-
sectional area (PCSA), which is measured perpendicular to its fibres [8]. The
muscle’s architecture therefore plays a significant role: the fibre pennation and
attachments to internal aponeuroses allow for a larger cross-sectional area within
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a fixed volume, resulting in the capacity for stronger contraction forces. For our
two models, since the muscle lengths are similar, the doubling of volume is
approximately accompanied by a doubling of PCSA, which would in-turn result
in a doubling of net force. This is approximately what we seem to be observing.

To remove the impact of muscle volume on our force comparisons, allow-
ing us to better examine the effect of architectural intricacies, we deformably
registered the wrapped muscle volumes together (Fig. 3c). We use the FEM-
based deformable registration technique of Khallaghi et al. [5] with parameters:
β = 1000, E = 60 kPa, ν = 0.49, w = 0.05. This technique accounts for changes
in scale, estimates soft-correspondences between points on the two surfaces, and
attempts to minimize strain energy while deforming one dataset to the other.
The deformation map is invertible, allowing us to construct two new registered
models: one in the space of subject #1, and one in the space of subject #2. We
re-ran the clenching simulations, and report results in Fig. 3b. Again, we notice
similar influence of the fibre field and aponeuroses, and that force seems to be
approximately scaled with muscle volume as expected.

3 Conclusions

In this work, we examined the impact of modelling a detailed fibre and aponeu-
rosis architecture on force transmission in the masseter for two subjects. We
showed that by including both the pennated fibre field and the stiff aponeurotic
sheets, we were able to increase simulated maximum bite forces to more realis-
tic levels in subject #2 (167 N vs. 96 N). In subject #1, we also saw gains in
force, but the values themselves were much smaller. We hypothesize that we are
currently under-representing the muscle volume for this subject, which seems to
be confirmed by registering the model to the muscle volume of subject #2. This
resulted in an increased maximum net force from 64 N to 157 N.

The dissection process clearly cannot be used to extract architectural details
in live subjects. Instead, we propose to register our current digitized templates
to muscle surfaces extracted by other means such as image segmentation. We
demonstrated the feasibility of this approach by registering our two masseters
together to create two new registered models. The force patterns in the registered
models are on similar orders of magnitude as their target counterparts, but
still do exhibit differences. This suggests that a significant portion of force-
production can be accounted-for by adjusting for muscle shape and volume, but
that subject-specific architectural variability may still play an important role.
With new advanced imaging techniques (e.g. [2]), we may be able to obtain some
of these internal muscle details in vivo. We could then combine this data with
our template-based approach, using it for both for template selection and for
adding internal targets during registration. Such a hybrid technique would allow
us to quickly and efficiently generate subject-specific models of the masseter for
studying and analyzing the functional impact of treatment on mastication.
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Abstract. In the last decade, electrophysiological models for in-silico simula‐
tions of cardiac electrophysiology have gained much attention in the research
field. However, to translate them to clinical uses, the models need personalization
based on recordings from the patient. In this work, we explore methodologies for
the patient-specific personalization of torso and heart geometric models based on
standard clinical cardiac magnetic resonance acquisitions to enable simulations.
The inclusion of the torso and its internal structures allows simulations of the
human ventricular electrophysiological activity from the ionic level to the body
surface potentials and to the electrocardiogram.

1 Introduction

Biophysical electrophysiological (EP) models for the simulation of the electrical activity
of the human heart are now approaching a mature state and are ready to be translated
from an academic setting to medical research and clinical environments. Multiscale
human ventricular EP models encapsulate mechanisms at the ionic and cellular level
and incorporate a representation of tissue coupling to describe the propagation of the
electrical excitation up to the whole organ (heart) electrical activity. In-silico simulations
of virtual hearts present a research framework for the interpretation of medical data,
allowing the assessment of biological hypothesis. In addition, they can be used to predict
outcomes under simulated conditions such as cardiac or physiological dysfunctions,
remodeling of the cardiac tissue, or drug treatments. Recently, EP models have moved
from the study of general templates, either from a single subject or synthetic geometries,
to be used with patient personalized data. This will be extended in the near future to play
a role in the clinic to understand pathologies, stratify diseases, and also to optimize
therapies. Several works have already made progress towards patient-specific person‐
alized modeling, for example [1, 2]. Structural and functional information of the heart
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is a key aspect in the personalization of the model. Patient-specific characteristics of the
anatomy of the heart can be included into EP models by means of imaging studies
including computer tomography (CT), magnetic resonance imaging, or ultrasound tech‐
niques. In particular, cardiac magnetic resonance (CMR) techniques provide a broad
anatomical and functional information in a non-invasive manner and have become a
routine diagnostic tool for some cardiovascular diseases. However, clinical CMR studies
tend to consist of a sparse set of independent slices, which makes three-dimensional
representation challenging.

Patient-specific electrical activities of the heart can be directly measured. Endocar‐
dial mappings record electrical signals by placing an electrode in different positions of
the left endocardium using a catheter, and epicardial mappings get direct measures at
the epicardial surface in an open chest surgery. Besides those invasive measures, body
surface potential (BSP) mapping and the routinely used in the clinic electrocardiogram
(ECG) measure the electrical activity of the heart non-invasively but in an indirect and
global way.

In this work, we present a CMR based technique to geometrically personalize in-
silico human cardiac models from patient’s CMR to enable forward EP simulations from
the ionic level to the BSPs. The inclusion of the torso enables specifically the simulation
of the electrocardiogram, which is the most widely used tool for evaluation of the human
heart activity. It is worth mentioning that our proposed anatomical personalization could
also be used in an inverse problem setting going from measured BSPs to epicardial
activity. We will show that it is possible to accurately reconstruct the bi-ventricular and
torso anatomy of the patient from a standard CMR acquisition protocol used in clinical
practice with no more than localizers (scout images acquired at the beginning of the
CMR session), 4-chamber and 2-chamber views and a stack of short axis slices from the
base to the apex of the left ventricle in cine acquisition. Using standard CMR protocols
is an important point since acquisition time in the clinic is a very limited and demanding
resource and more extensive acquisition protocols are generally relegated to research.
The focus on magnetic resonance studies is motivated by its noninvasiveness and also
because of the ability of CMR studies to characterize multiple structural and functional
parameters including scars, tissue or fiber microstructure, fat deposits, infarcted or
fibrotic areas.

2 Methods

This section presents the details of our patient-specific reconstruction of a heart-torso
anatomy derived from clinical CMR images with the final purpose to be used in an EP
simulation framework up to the BSPs. Sample results for each step are shown together
with the explanation of the methods.

Bi-ventricular cardiac anatomy
The cardiac tissue is segmented from long axis (LAX) views (4- and 2-chambers views)
as well as from the stack of short axis (SAX) views of a cine acquisition. There are
several software tools to perform tissue segmentation, including commercial products
widely used in the clinical practice (see [3] for references) as well as other research tools
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(for example, [4]). These offer different degrees of automation, from complete manual
contouring, semiautomatic methods to reduce the operator time, up to fully automated
tools. Which of them is the best option for cardiac images is debatable, on the one hand,
manual contouring is usually considered as a ground truth, while automatic methods
avoid operator bias, unintentional errors and have repeatability. In this work, we use
manual contours from a well-trained expert with several years of experience. The
contouring follows the general guidelines and consensus recommendations from [5].
Contouring includes left epicardium (including the septum), left endocardium
(excluding papillary muscles), and right endocardium from and to the septum (excluding
trabeculations). Exemplary LAX and SAX contours are shown in Fig. 1. Images in the
example correspond to the end diastolic (ED) frame.

Fig. 1. Heart cine slices and their contours at ED. From left to right and from top to bottom:
4- and 2-chamber views, short axis stack from the most basal to the most apical slice. Left
epicardium contours in red, left endocardium contours in green, and right endocardium
contours in blue. (Color figure online)

Since we are interested in bi-ventricular geometry, the right ventricle endocardium
borders are needed. However, the image resolution does not usually allow an accurate
delineation. Therefore, we synthesize the right epicardium contour as an offset of the
right endocardium at a distance of 4 mm [6]. After that, contours are automatically
reorganized into a complete epicardial contour (EPI), the left endocardium (LV), and
the right endocardium (RV), now including the septum (see Fig. 2).

Due to different cine slices being acquired at different breath holds, misalignments
and spatial inconsistencies usually appear among the contours. We use the methodology
described in [7] to correct for these misalignments. In summary, the alignment method
computes the optimal rigid transformation in 3D for each slice for the contours to define
spatially consistent surfaces. Realigned contours are shown in Fig. 3.
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Fig. 3. Alignment of the slices to correct the breath motion. The spatial consistency of the
contours is improved as can be seen in the lateral wall of the right ventricle. Left: discrepancies
between contours from intersecting slices before correction. Right: after correction the contours
intersecting contours are more consistent.

Once the contours are consistently aligned, a surface is interpolated for each of the
structures (EPI, LV, and RV), following [8]. As in the case of the correction for align‐
ment of the slices, the use of LAX views is key at this step. In particular, the apical area
can only be well resolved using LAXs. The three surfaces are clipped at the level of the
most basal SAX and they build the bi-ventricular heart geometry. Reconstructed surfaces
together with the contours are shown in Fig. 4.

Fig. 4. Left: contours and the reconstructed surfaces of the heart. Each contour point is colored
according to its distance to the corresponding surface (distances in mm). Right: another view of
the final bi-ventricular heart.

Body and torso anatomy
Unlike CT, cine CMR does not usually produce a volumetric image but a sparse set of
3D oriented slices. Therefore classical surface generation techniques from volumetric
data such as marching cubes cannot be used. This makes the reconstruction of the body

Fig. 2. Re-organization of the contours: synthesis of the right epicardium as part of the whole
epicardium and split the left ventricle into epicardium and septum.

64 E. Zacur et al.



surface (BS) challenging since only very sparse information of the torso is available.
Some previous approaches have dealt with this scenario to reconstruct the body: [9]
proposes a human model customization from monocular photos; [10] uses a manual
affine deformation of a template to sagittal, coronal and axial MR images; [11] combined
CT and MRI scans to make a tetrahedral mesh of a pig thorax; and [12] also uses MRI
and CT scans to personalize a human geometry. In this work, we propose to fit a statistical
shape model (SSM) of human bodies to the BS contours that we can obtain from the
MR images. Although the CMR images are not acquired with a focus on body surface
extraction, their field of view normally includes parts of the BS. Besides, at the start of
the CMR studies, scout images in sagittal, coronal and axial views are commonly
acquired to be used as localizers. We contoured the BS from all these images, using a
semiautomatic tool that extracts isophote curves in the clearly contrasted interface
between air and skin. The extracted contours are shown in Fig. 5, where the sparsity of
the data can be appreciated as well as the presence of large regions (such as the upper-
right part of the chest) with no information at all.

Fig. 5. Left: BS contours on the localizers. Right: 3D arrangement of all the BS controls,
including the ones that can be extracted from heart focused slices (see Fig. 1).

Fig. 6. Left: mean shape of the body SSM with its extreme shapes along the 1st, 2nd, and 3rd

principal modes. Center: the result of the SSM fitted to the body contours. Points of the contours
are colored according to their distances to the surface. Right: the result of TPS deformation towards
the contour points to reduce the contour-to-surface distances.
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A SSM of body shapes1 built from 4300 subjects [13] is fitted to the contours. A
rigid transformation together with the first 40 principal components of the SSM were
considered in the fitting. As initial condition, the mean shape is situated in accordance
with the previously reconstructed heart. The fitting is performed by a gradient descent
to minimize the root mean square (RMS) contours-to-surface distance. Figure 6 shows
an example of the fitting with a final RMS of 6.7 mm. After the SSM fitting, a final
deformation is performed via approximate thin plate splines (TPS) [14, 15] to improve
the agreement with the contours, resulting in a final RMS of 3.4 mm.

Ribs and lungs
In order to compute BSPs, the electrical potentials at the heart surface have to be propa‐
gated to the skin. In that path, the impedances of the different tissues between the
epicardium and the skin have to be considered. The inclusion of the different organs for
computational studies is controversial with some works reporting minor contributions
of different organ impedances on BSP [16] and others reporting significant effects due
to uncertainty in impedances [17]. Therefore, for potential sensitivity analysis, we
include ribs and lungs within the torso representation. These internal structures are
incorporated through template deformation. As we represent the BS by a deformed mean
SSM mesh with fixed anatomical point correspondences, a representation of ribs and
lung in that mean SSM mesh coordinates system is sufficient. This template was built
from the segmentation of a CT acquisition of a single subject, for which its BS was
deformed to the mean SSM shape. The deformation of the internal structures was
smoothly extrapolated by means of TPS. Figure 7 shows the ribs and lungs template
with correspondences at the BS level with the SSM model. This template is finally
deformed to the personalized torso, extrapolating the deformation of the correspondent
anatomical points by TPS.

Fig. 7. Left: segmented internal structures of the torso obtained from a CT of a single subject.
Center: transfer of the internal structures to the mean SSM shape. Left: deformation from the mean
SSM to the patient personalized body shape (only ribs and lungs are transferred to the patient
geometry whilst the heart is the one reconstructed from the patient images).

1 http://humanshape.mpi-inf.mpg.de/.
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Remeshing final surfaces and volumetric meshes
The majority of biophysical EP models are solved using the finite element method (FEM)
with unstructured meshes of tetrahedral elements. The meshes allow the tessellation of
complex geometric objects and the specification of different properties for each element
depending on which structure it belongs to. In our case of a full body simulation, different
spatial scales have to be considered. Spatial resolutions smaller than 0.5 mm are required
to resolve the propagation of the electrical activation within the myocardium with
acceptable accuracy. For example, a spatial resolution of 0.4 mm has been used in [18]
to get an error in the conduction velocity below 10%. However, due to the different
nature of the physical mechanism, larger spatial resolutions can be used to solve the
propagation of the epicardial potentials to the BS. The heart surface (Fig. 4 right) is
remeshed with a restricted Frontal-Delaunay algorithm using the mesh generator
JIGSAW2 [19] with a specified element size of 0.4 mm. The other structures are
remeshed with the same software with the following element sizes: 2 mm for the ribs;
3 mm for the lungs; and 10 mm for the torso. Once surfaces have been remeshed,
TETGEN3 [20] is used to build the final tetrahedral mesh (see Fig. 9 left). The resulting
tetrahedral meshes have a number of elements in the order of 40 × 106 (7 × 106 nodes),
of which 30 × 106 (5 × 106 nodes) correspond to the myocardium.

3 Results

Figure 8 shows the acquired slices together with their intersection with the BS, ribs, and
lungs for a visual assessment of the fitting of the torso and the placement of the internal
structures. A quantitative assessment was performed in terms of the distances from the
manual contour points to the reconstructed meshes. For the epicardium surface, the
resulting RMS of contours-to-mesh distance is 0.5 mm with 90% of the points with a
distance below to 0.75 mm. For the left endocardium, RMS is 1.35 mm and 90% percen‐
tile 2.2 mm. For the right endocardium, RMS is 0.45 mm and 90% percentile 0.72 mm.
Finally, to evaluate the reconstruction of the body surface, RMS is 3.44 mm and 90%
percentile 5.5 mm.

A bi-domain EP simulation following the O’Hara-Rudy model was conducted in
CHASTE4 [21] using the patient-specific personalized mesh. Early activation sites in
the endocardium were selected in accordance with physiological knowledge [22]. Others
physiological parameters were set to standard values found in the literature. Fiber
microstructure was built following the Streeter rule from −60° helix angle at endocardial
surfaces to +60° at epicardium [23]. BSPs were computed by propagating the electrical
activity from the epicardium. Figure 9 depicts the obtained BSPs. In addition, we can
virtually place electrodes on the limbs and the surface chest to synthesize a 12-lead ECG.

2 http://github.com/dengwirda/jigsaw.
3 http://wias-berlin.de/software/tetgen/.
4 http://www.cs.ox.ac.uk/chaste/.
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Fig. 9. From left to right: final tetrahedral mesh for FEM simulations (each internal structure
having a label and specific properties); epicardial potentials (in arbitrary units) during the
activation; isolevels of the BSPs and positions of the virtual electrodes (blue dots); synthesized
ECG. (Color figure online)

4 Conclusion

We have described the components of a pipeline for the reconstruction of accurate
patient-specific personalized models of heart and torso from CMR data. We show that
model personalization can be performed using classical CMR protocols, with no need
of extra acquisitions. The reconstruction of the torso geometry, with the accurate local‐
ization of the heart, allows the EP models to simulate the cardiac electrical activity from
ionic currents up to the BS and the ECG. The inclusion of other structural and functional
information from other CMR modalities such as scars or fibrotic areas can be easily
performed. BSPs can be used to synthesize ECG signals that can be compared with the
patient ECG. This pushes the use of in-silico EP models towards the clinical practice
with several applications such as the understanding of pathologies, risk stratification,
optimization and following of therapies.

Fig. 8. Visual assessment of the fitted torso and the reconstructed internal surfaces. Dotted lines
correspond to the manual delineations of the BS and continuous lines correspond to the
intersection of the image plane with reconstructed the surfaces.
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Abstract. Diffusion Tensor Imaging (DTI) has been widely used to characterise
the 3D fibre architecture in both neural and muscle mechanics. However, the
computational expense associated with continuum models make their use in
graphics and medical visualisation intractable. This study presents an integration
of continuum muscle mechanics with partial least squares regression to create a
fast mechano-statistical model. We use the human triceps surae muscle as an
example informed though DTI. Our statistical models predicted muscle shape
(within 0.063 mm RMS error), musculotendon force (within 1% error), and tissue
strain (within 8% max error during contraction). Importantly, the presented
framework may play a role in addressing computational cost of predicting detailed
muscle information through popular rigid body solvers such as OpenSIM.

Keywords: Finite elements · Triceps surae muscle mechanics · Diffusion Tensor
Imaging · Partial Least Squares Regression

1 Introduction

Muscle shape, stress, strain and overall function are strongly dictated by the under‐
lying fibrous architecture. Muscle contraction along fibre paths determines how
muscle interacts with the surrounding muscles and transfers loads to bone. The
importance of anatomically accurate fibre descriptions for understanding muscle
function was showcased by Nielsen et al. [1] who dissected a canine heart and digi‐
tised the 3D fibrous structure. The fibre information was fitted to a finite element
field and used to simulate heart contraction [2, 3] amongst other applications. Lemos
et al. [4] digitised cross-sectional images of a cat hind-limb to create a finite elastic
model of the cat medial gastrocnemius, which described fibre orientation using 12
fibre bundles. Agur et al. [5] used cadaver tissue to build a 3D model of individual
muscle fibre bundles in the human soleus. Around 400 individual bundles were fitted
to a finite element field using B-Splines.

The use of DTI for skeletal muscle has become increasingly popular for identification
of pennation angles and muscle function, however, its influence on 3D continuum
mechanics simulations dictating contractile shape and deformation has received less
attention. Muscle contraction using finite element analysis relies on correctly prescribing
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the spatially varying fascicular orientation. This will have implications for moment arms
in biomechanics, bone remodelling in orthopaedics and medical visualisation. One of
the challenges in using continuum level muscle models is computational cost. Despite
increases in high performance computing, complex finite element models are limited to
small subject numbers. In order to translate computational tools to medical applications
and large-scale visualisation we need to adopt population-based models. This concept
uses the fact that large sets of pre-computed or measured data can be used to train a
model using machine learning. This idea has been previously demonstrated including
development of a surrogate knee model to predict joint contact [6], prediction of human
femur cortical shell thickness [7], and lower limb shape prediction from a few sparse
landmarks [8].

In this study we present a novel coupling between continuum mechanics simulations
(demonstrated for the human triceps surae) and statistical methods. We report accuracy
associated with rapid prediction of muscle force, shape and strain.

2 Methods

2.1 Geometry

Magnetic Resonance Imaging (MRI) was performed on the lower limb of a healthy
subject using a T1–weighted spin echo sequence (Echo Time of 60 ms, Repeat Time of
4400 ms, NEX of 2 and size 2 × 0.9 × 0.9 mm). The triceps surae muscles (gastrocnemius
heads and soleus) were identified and manually digitised. In the same session a Diffusion
Tensor Imaging (DTI) sequence was also performed. This allowed the two datasets to
be easily registered. The limb was imaged from 20 different diffusion directions plus
one baseline image.

Muscles fibres were determined using the Stejskal-Tanner equation [9], which relates
the signal intensity without diffusion weighting, S0, to the signal intensity with diffusion
weighting in the kth direction, Sk, and is given by Eq. 1,

S
k
= S0e

−bĝT

k
Dĝ

k (1)

where, gk, are the normalised diffusion gradient directions with k a minimum of 6 but
typically being 20 or higher. D is the diffusion tensor and b is a factor controlling the
amount of tissue diffusion allowed. For a standard MRI b is 0 (no diffusion), brain tissue
typically uses 1000 and for the skeletal muscle tissue in this study we have used 500.
By solving this equation system for each voxel in the volume image we can compute
the diffusion tensor at each voxel, D. We used 20 directions (plus the references image
with no diffusion) to compute the diffusion tensor, even though only 6 are necessary
(assuming a symmetric tensor). This produced a 3 × 3 diffusion tensor for each voxel
in the image volume, which was further diagonalised into 3 eigenvectors and eigen‐
values. The underlying assumption is that the dominant eigenvector (which has the
largest eigenvalue) is the main direction for fluid migration and aligned with the fibre
direction in muscles. Each voxel will therefore produce a vector in the dominant direc‐
tion, which when using tractography will provide a mapping of fibre information.
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In order to estimate the errors in our DTI modelling pipeline we conducted a test
using a simple phantom made from celery. Celery has been used frequently to evaluate
DTI sequences given it has a strong parallel fibre orientation along its length. Eight
celery sticks were placed in water and tightly sealed using a plastic container. Care was
taken to ensure that no air pockets were present near the celery that can lead to artifacts
in the DTI sequence. The celery fibres were then reconstructed using our presented
pipeline and compared with the ideal digitised fibres.

Figure 1(left) shows the extracted fibre directions. This was fitted to a triceps surae
finite element model using high-order cubic Hermite basis functions [10] shown in
Fig. 1(middle). The muscle model presented here also forms part of a suite of muscu‐
loskeletal data within the International Union of Physiological Sciences (IUPS) Phys‐
iome Project repository [11], which is a framework for creation, sharing and dissemi‐
nation of mathematical models of human physiology.

Fig. 1. (Left) Fitted DTI fibres from plan and cross-section view. (Middle) Undeformed triceps
surae (red muscle). (Right) isometric contraction in gold. (Color figure online)

The fitted fibre field is used to inform a finite elastic mechanics contraction of muscle.
For muscle we adopted a micro-structurally based constitutive law, the ‘pole-zero’ law
[12] for passive muscle,

w = k𝛼𝛽

E2
𝛼𝛽

|
|
|
a𝛼𝛽 − E𝛼𝛽

|
|
|

b𝛼𝛽 (2)
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where w is a strain energy density function, Eαβ are Green’s strain components referred
to a DTI fibre axis, aαβ are the strain limits (poles) and kαβ, bαβ are the scaling and
curvature control parameters, respectively. The values used in this study are adapted
from Fernandez and Hunter [12]. All values of aαβ and bαβ have been set to 1.0. The
scaling coefficients were defined k11 = 0.427 MPa; k22 = 0.1 MPa and k33 = 0.1 MPa
with the shear terms (kαβ, α≠β) set to 0.001 MPa.

We simulated an isometric contraction for each muscle (constant length) using the
HMT model of Hunter et al. [2]. Simulations were conducted by prescribing an incre‐
mental loading approach whereby the muscle activation was gradually increased to
800 N of muscle force (as seen during contralateral toe-off during gait [13]). The
resulting muscle shape due to active contraction is highlighted as a gold muscle in
Fig. 1(right).

2.2 Statistical Model Training

Muscle force production in a quasi-static simulation depends on musculotendon length
and activation level. We trained a Partial Least Squares Regression (PLSR) model by
simulating 36 scenarios (6 different musculotendon lengths for 6 different contraction
states) from FE predicted models (Fig. 2). PLSR creates a linear model to predict
response variables from predictor variables [14]. In this study, the predictor variables
are musculotendon length and activation level, and the response variables are FE
predicted muscle force, deformed shape and tissue strain. Model accuracy was assessed

Fig. 2. Training the Partial Least Squares Regression model on 36 finite element triceps soleus
simulations of different musculotendon length and activation combinations.
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by doing a ‘leave-one-out’ analysis. One simulation from 36 was left out of the PLSR
model and predicted independently. This was repeated for each simulation to report an
average error.

3 Results

For the FE simulation it was observed that the triceps surae contracted with a distinct
crease between the medial and lateral heads. The muscle slightly contracted longitudi‐
nally with minimum lateral expansion. The medial head was elevated and larger
compared to the lateral head. These contractile characteristics are consistent with
anatomy and provide confidence in the FE model predictions. The angle between the
ideal fibre directions and the DTI processed fibre vectors was ~3° using our DTI fibre
phantom.

The PLSR model predicted musculo-tendon force within 1% of the mechanical
simulation. Figure 3(left) shows an example of muscle shape for 80% muscle stretch
and maximum contraction. Blue is the FE mechanics simulation and red is the statistical
prediction. All features of shape were predicted within a 0.063 mm RMS error.
Figure 3 right shows the predicted largest principal component of strain. The principal
components of strain as expected were aligned with the fibre directions. All strain vector
fields were consistent between the mechanics and statistical model, however, the peak
regions of strain magnitude were not predicted as well. The maximum error was within
8% between the mechanical and statistical model. This error was lower for smaller
contractions.

Fig. 3. (Left) FE simulated muscle contractile shape (blue) versus statistical model prediction
(red). (Right) FE simulated muscle strain versus statistical model prediction. (Color figure online)
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4 Discussion

This study has shown that pre-computing FE simulations of muscle mechanics and
capturing this data in a statistical look-up table through Partial Least Squares Regression
is an efficient way to automatically predict continuum muscle information. Our PLSR
based models predicted shape (within 0.063 mm RMS), force (within 1%), and strain
(within 8% max error during contraction). This method rapidly re-creates the 3D muscle
with all parameters and accounts for 3D muscle interactions and muscle wrapping
around bone and other soft tissues.

While the statistical model predicted musculo-tendon force, muscle shape and
muscle strain vector fields accurately, it did not predict the high magnitudes of peak
strain in some spatial locations as well. We are currently exploring additional non-linear
prediction methods including quadratic PLSR, which may account for some of the non-
linear behaviour typically observed in large deformation finite elastic mechanics.

In this study, we used DTI to describe a subject’s muscle mechanics but can easily
replace this with other imaging modalities including 3D freehand ultrasound. Recent
numerical methods that predict fibres based on computational fluid dynamics [15] may
also be efficient alternatives. Importantly, the presented framework may play a role in
addressing computational cost of predicting detailed muscle information through
popular rigid body solvers such as OpenSIM.
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Abstract. In this paper, a comparison of two different approaches is given for
brain tissue segmentation using various sources of techniques, the level-set
thresholding segmentation with sparse model (LTSSM) and the segmentation
with the k-means clustering (SKMC), in magnetic resonance imaging (MRI). In
the LTSSM approach, the system searches for level-set thresholding in the
working subsets recursively for segmentation. Unlike the LTSSM approach, the
SKMC approach applies the k-means clustering to group the brain tissue objects
into three classes (grey matter, white matter and cerebrospinal fluid), and then
segment the three groups in the different components in the RGB color space. At
the validation stage, both approaches of the LTSSM and the SKMC are imple-
mented using the real-timeOASIS data for comparison purpose. The experimental
results demonstrate the robustness of both approaches for brain tissue segmen-
tation with comparison, in terms of the Dice similarity and sensitivity in MRI.

Keywords: Tissue segmentation � Level-set thresholding � The k-means
clustering � Greyscale histogram � Dice similarity �Magnetic resonance imaging

1 Introduction

Medical studies have shown that the degree of atrophy for the volume of brain tissues,
e.g., grey matter (GM), could provide an indicator of disease progression for patients
with age-related dementia in magnetic resonance imaging (MRI) (Guo 2017; Pepe et al.
2013; Petersen 2003). As the tissue segmentation is a crucial early step in the analysis
of brain images, it has become one of the important areas of research in developmental
neuroscience (Tohka 2014; Duchesne et al. 2008; Khademi et al. 2012).

One popular category of brain tissue segmentation methods is based on utilizing
geometric information such as deformable models using a minimization of an energy
functional (West et al. 2012; Yushkevich et al. 2006). A review of some methods can be
found in the work (Weiner et al. 2013; Jack et al. 2010; Liew and Hong 2006).
Therefore, it may be useful to explore new automatic methods using different sources of
techniques for brain tissue segmentation (Masood and Al-Jumaily 2014; Duyn 2012).

The sparsity techniques have been explored for the image shape modeling (Zhang
et al. 2012; Hoyer 2004). The goal of the k-means clustering algorithm is to group
objects of interest into a known number of categories or classes (Demsar 2006). In this
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study, a comparison of two different approaches is given for brain tissue segmentation
using various sources of techniques, the level-set thresholding segmentation with
sparsity model (LTSSM) and the segmentation with the k-means clustering (SKMC), in
terms of segmentation performance in MRI.

2 Approaches

The histogram based approaches are widely used for image analysis and segmentation,
because of the efficiency of the histogram-based techniques (Rafael and Wood 2008;
Guo and Bhattacharya 2014). Figure 1 shows the two proposed approaches, the
LTSSM and the SKMC, for brain tissue segmentation in MRI for comparison purpose.
At the beginning, both of the LTSSM and the SKMC approaches undertake the same
operations of image greyscale transformation. The LTSSM approach searches for
image thresholds recursively in each of the working subsets to obtain the best resulting
segmented brain GM and WM. Unlike the LTSSM approach, the SKMC approach uses
the k-means clustering to group classes of white matter (WM), GM and cerebrospinal
fluid (CSF) in the RGB (red, green, blue) space, and then segment three clusters of
WM, GM and CSF in the three components of R, G and B individually.

SKMC

Segmentation results from the LTSM

Image labeled in cluster index

Image mapped in RGB spaceLevel-set thresholding segmentation

Movement of search direction Sk

Greyscale transformation 

MRI input

Start

Segmentation results from the SKMC

Comparison results between the LTSM and the SKMC approaches

LTSSM

0 25 50 75 100 125 150 175 200 225 250
0

200

400

600

800
Grayscale Intensity

Fig. 1. Approaches of the LTSSM and the SKMC for brain tissue segmentation. (Color figure
online)
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During the implementation, we validate the methods of the LTSSM and the SKMC
on the real-time Open Access Series of Imaging Studies (OASIS) data of brain MRI
scans (http://www.oasis-brains.org). In the next subsections, we provide descriptions of
both methods of the LTSSM and the SKMC.

2.1 Level-Set Thresholding Segmentation with Sparse Model (LTSSM)

The LTSSM approach is performed alone the search direction, Sk, in the subsets of bin
ranges (fixed by thresholds) in the greyscale histogram. Let r(k) be the average value of
a lower threshold Lt(k) and an upper threshold Ut(k). At the kth iteration, the Lt(k) and
Ut(k) are thus represented by:

LtðkÞ ¼ rðkþ 1Þ � f1� rðkþ 1Þg
2

; and

UtðkÞ ¼ rðkþ 1Þþ f1� rðkþ 1Þg
2

:

ð1Þ

We denote the term of xk as a bin range at the kth iteration, which is fixed by the Lt
(k) and Ut(k) in the greyscale histogram.

With the search direction, the process of LTSSM moves recursively on each of the
working subsets, where the object function is calculated to evaluate how well the model
performs in the problem environment (i.e., the working subsets in the active-set method).
The details of the sparsity technique can be found in the work of (Zhang et al. 2012).

In the approach, the active-set technique is applied to define the search direction Sk
(at the kth iteration) in the working subsets. At the (k + 1)th iteration, the working
subset of xk+1 is formulated as:

xkþ 1 ¼ xk þ a� Sk; ð2Þ

where a is a nonnegative scalar value of bin. xk (xk 2 X) is a bin range which is fixed by
the bounds with two thresholds, a lower threshold Lt(k) and an upper threshold Ut(k) at
the kth iteration. Thus, the working subsets induce a partition of xk into a set of fixed bin
ranges in the greyscale histogram.

The LTSSM approach involves the minimization of difference between the
threshold value from the computation of GM and WM segmentation and the average
value of thresholds.

2.2 Segmentation with the K-Means Clustering (SKMC)

In the k-means clustering, the sets of objects to be grouped into clusters could be sets of
physical objects, for example, the sets of pixel objects, WM, GM and CSF in MRI.
Considering the problem of images of T1w MRI in tissue segmentation, we would have
a problem of three dominant classes, WM, GM and CSF. This means that if we are
interested in segmentation from MRI, we have a three-class problem (classes of WM,
GM and CSF) during the k-means clustering with k = 3.

In the SKMC approach, we assume that the data of brain images are estimated
approximately with three dominant classes, corresponding to the WM, GM and CSF.
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During the k-means clustering, we label each of image pixel objects in MRI into
three clusters (WM, GM and CSF) in greyscale; since the greyscale is the summation of
vectors of R, G and B, we further map the labeled images into the RGB color space.

3 Implementation

During the implementation, we validate the two approaches, the LTSSM and the
SKMC, on the real-time OASIS data of brain MRI scans. On the OASIS data, each
subject has three to four T1w images, averaged in order to improve the signal/noise
ratio. All 198 MRI subjects on the OASIS data are right-handed, where images were
aligned within the Talairach reference frame via affine transform T.

3.1 The LTSSM Segmentation Results

Figure 2 shows an example of the experiments on the OASIS in the LTSSM imple-
mentation. Figure 2(a) is the raw images, and Fig. 2(b) is the greyscale histograms,
showing three dominant modes corresponding to the two types of tissues (from the
right: WM and GM), and CSF.

In the LTSSM evaluation process, we compute the Lt(k) and Ut(k), (see Eq. (1))
recursively in each likelihood threshold-based region xk (xk 2X), fixed by [Lt(k), Ut(k)],
in the histograms. The Sk (see Eq. (2)) is equal to ‘+1’ because the propagation
direction is defined from the left to the right in the one-dimensional histograms. We
select the nonnegative scalar a (see Eq. (3)) in a bin-width of 5, rather than of 1, in
order to avoid unnecessary computation of D(k) (see Eq. (3)) in the evaluation. The
results of the evaluation process are the two 2-D arrays of D(k){Lt(k), Ut(k)}, corre-
sponding the two types of GM and WM tissues.

Finally, the application of the LTSSM procedure in segmentation resulted in the
optimal bin ranges of [30, 70] for the GM and [70, 100] for the WM on the OASIS.
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Fig. 2. An example of the experiments on the OASIS in the LTSSM implementation; from the
left row: (a) raw images; (b) image greyscale histograms.
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Figure 3 presents the LTSSM implementation results from an example of the experi-
ments on the OASIS in their optimal bin range solutions for tissue segmentation of the
GM (see Fig. 3(a)) and the WM (see Fig. 3(b)), each with color lines in the left and
grey color in the right.

3.2 The SKMC Segmentation Results

Figure 4 presents the SKMC segmentation results from an example of the experiments
on the OASIS data; Fig. 4(a) is the raw image, and Fig. 4(b) displays the output of the
sample image labeled in greyscale by cluster index in clustering. Figure 5 shows an
example of the experiments on the OASIS in the SKMC implementation. Figure 5(a) is
obtained from the output of the mapped image in the RGB space during the k-means
clustering. Because the color information of the image in Fig. 5(a) exists in the space of
‘R’ ‘G’ ‘B’, each pixel in the image is categorized with a value of R, G and B in its
cluster index in the MRI.

Fig. 3. An example of the experiments on the OASIS in the LTSSM implementation: (a) the
GM segmentation results in the optimal bin range [30, 70], and (b) the WM segmentation results
in the optimal bin range [70, 100], with the color lines in the left and the grey color in the right.
(Color figure online)

(b)(a)

Fig. 4. An example of the experiments on the real-time OASIS data in the SKMC
implementation; (a) the raw image; (b) output of the labeled image by cluster index during the
clustering.
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By using the Euclidean distance to measure how close pixel objects are to each other,
the k-means clustering involved in the ISKC-PS approach then returns an index of the
color component (‘R’, or ‘G’, or ‘B’), corresponding to a cluster (WM, or GM, or CSF) in
the image; Fig. 5(b) presents the implementation results from an example of the exper-
iments on the OASIS, where the clusters of WM, GM and CSF (from the left to the right)
in the RGB color space are segmented individually in the ‘R’, ‘G’ and ‘B’ components.

3.3 Comparison Results

In the comparison, the Dice similarity (DI) index are utilized in order to assess the
capability of different methods qualitatively for tissue segmentation in brain MRI:

DI ¼ 2� TP
2� TPþ FPþ FN

� 100%; ð3Þ

where TP, FP and FN denote true positive (or sensitivity), false positive and false
negative, respective.

In terms of the DI, TP and true negative (TN, or specificity), Table 1 shows the
comparison results between the proposed approaches of the LTSSM and the SKMC on
the OASIS data. As shown in Table 1, the performance for both of the LTSSM and
SKMC approaches for classification of GM and WM are about on a par in terms of TN,
where the SKMC obtained the higher rate of 83.83% for WM while the LTSSM
obtained the lower rate of 82.45% for WM in segmentation. It also can be observe that,
from Table 1, the difference of DI among the methods for the segmented GM and WM
is ranged from 80.34% to 83.25%. In addition, overall, the proposed SKMC approach
achieves higher rates of DI and TP in segmentation performance, compared with those
obtained by the LTSSM approach.

Fig. 5. An example of the experiments on the OASIS in the SKMC implementation; (a) output
of the mapped image in the RGB space during clustering; (b) results of segmented WM, GM and
CSF (from the left to the right) in the components of ‘R’, ‘G’ and ‘B’ individually.

Table 1. Comparison results between the proposed approaches of the LTSSM and the SKMC

Methods WM/GM (DI %) WM/GM (TP %) WM/GM (TN %)

LTSSM 80.75/80.34 81.98/80.92 82.45/83.76
SKMC 81.25/81.05 82.32/81.76 83.83/83.81

Approaches to Brain Tissue Quantification with Comparison 83



4 Conclusion

In this study, the experimental results demonstrate the robustness of both approaches of
the LTSSM and the SKMC with different techniques for brain tissue segmentation in
MRI. Our future work will also be dedicated to examining the robustness of approaches
of both LTSSM and SKMC to large data of MRI samples for quantitative analysis in
the volumes of brain tissues clinically.
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Abstract. Emboli originating from the left atrial appendage are a major cause of
transient ischemic attack and cardioembolic stroke. Whereas this risk has been
shown to be correlated with left atrial appendage morphology (Cactus, Chicken
Wing, Windsock, and Cauliflower shapes) determined from 3D imaging, this
clinical correlation is found wanting with regard to a biomechanically grounded
underlying basis for thrombosis based on intra-atrial hemodynamics. We define a
novel probabilistic risk stratification paradigm for intra-atrial flow stasis based on
personalized computational fluid dynamics.

Keywords: Computational fluid dynamics � Flow stasis � Cardioembolic risk �
Left atrial appendage morphology

1 Introduction

In the presence of atrial fibrillation (AF), reduced cardiac contractility results in flow
stasis and thrombus formation, which in-turn increases the risk of cardioembolic
complications and stroke. The left atrial appendage (LAA) is hypothesized to be the
principal location for intra-atrial thrombus formation [1, 2] in approximately 2.3 mil-
lion US adults with AF [3], putting them at risk of cardioembolic stroke [2, 4, 5]. This
provides clinical rationale for exclusion/occlusion of the LAA in the interest of
reducing the risk of stroke. Currently most stroke and thromboembolism (TE) risk
predictions for AF patients are based on clinical risk stratification schemes like
Framingham, NICE, ChadS2 and CHA2DS2-VASc which are developed by series of
risk factors identified from trial cohorts [6]. Even more refined versions of these
schemes [7] do not determine stroke risk of an individual based on the patient-specific
hemodynamics and physics. In an attempt to stratify patient-specific stroke risk, the
LAA appearance has been classified into four unique categories (viz. Chicken-Wing,
Windsock, Cactus and Cauliflower appearance) to assist with preoperative planning for
LAA occlusion/exclusion based on some geometrical features such as existence of
obvious bend, LAA length, number of lobes and etc. [8] and correlated with stroke risk
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by considering clinical mortality statistics [9]. However, the relation between the LAA
morphology and stroke risk is not well defined and some studies have reported this
classification as being non-longitudinal for stasis stratification [10]. Further, while the
effect of atrial geometry on AF has received some attention in the literature [11], the
influence of patient-specific LAA shape on hemodynamics of stasis has not been
quantitatively analyzed. A hemodynamic model of the LA can help objectify decisions
making regarding the existence of regional stasis (and therefore cardioembolic stroke)
risk, which in-turn may help with oral anticoagulant (OAC) management for patients
with low CHA2DS2-VaSc and help guide therapeutic choices of intervention [9]. To
develop such a stasis risk stratification tool, we employ computational fluid dynamics
(CFD) to model probability of red blood cell (RBC) residence in the LAA and study
LAA-specific residence time distributions (RTD) for 8 AF patients. The remainder of
this paper is organized as follows: we present our methodology to segment LA
geometries from patient-specific medical images to surface geometries, followed by our
CFD modeling approach for transient particle transport and stasis probability compu-
tation from RTD data, and finally present results & conclusions from a comparative
analysis of unique patient-specific LAA geometries in our cohort, using our RTD-based
stasis probability scores.

2 Methods

2.1 Image Segmentation

Contrast-enhanced cardiac computed tomography (CCT) DICOM images of 8 AF
patients having unique LAA morphologies, were iteratively segmented in 3D to extract
the LA surface, including LAA and pulmonary venous inlets (including up to 2 inlet
diameters), until the mitral valve plane (excluding valvular structures), using a basic
iso-contouring approach, in Paraview (Kitware Inc.), followed by surface preparation
steps, including regional smoothing and definition of flat inlets and outlet planes in
Geomagic Studio 10 (Geomagic Inc.), in order to result in surface models suitable for
computational flow studies.

2.2 Mesh Preparation

To determine the maximum mesh element size, we calculated the Taylor micro-scale
(k) which is in between the largest and smallest length vortical scales. The mitral valve
outlet diameter ranged from 1.9–3.1 cm, making the minimum turbulence length scale,
l ¼ 0:07D ¼ 1:33mm. The assumed overall venous inflow rate of 2 L/min makes
Umax ¼ 2Q

A ¼ 0:235m/s and the turbulent kinetic energy, k ¼ 3
2 ðUIÞ2 ¼ 3:547�

10�4 J
kg, where I is a function of Reynolds number. Using the k � e model, the energy

dissipation rate is assumed e ¼ ð0:09Þ34k3
2l�1 ¼ 8:254� 10�4 J

kg:s [12]. Therefore, the

Taylor micro-scale will be, k ¼
ffiffiffiffiffiffiffiffiffiffi

10m k
e

q

¼ 3:878mm. So, the maximum element size in

our mesh was set to 3.5 mm. Further, to establish grid-independence for CFD studies,
we calculated the energy dissipation rate of the atrium and increased the mesh density
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until changes were less than 5%. The final blood-contacting volume were meshed in
3D with *250000–450000 tetrahedral elements including layered boundary fitted
inflation grids with prismatic elements, generated using the meshing utilities in ANSYS
Workbench 18 (Fig. 1).

2.3 Global CFD Assumptions

Two separate series of simu-
lations were conducted in this
study. The first was with a
cohort of 4 AF patients,
employing a coupled version
of unsteady flow and unsteady
scalar transport, implemented
using a modified solved in
OpenFOAM. The second was
with a larger cohort of 8 AF
patients using pre-solved
steady flow field as an input
to unsteady scalar transport
solver. Incompressible New-
tonian blood flow with rigid,
impermeable walls (simulative
of idealized AF conditions)

(µ = 0.00371 Pa.s, q = 1060 kg/m3) was assumed throughout both simulation series’.
Further, the mitral valve was considered to be open during all simulations.

2.4 Unsteady Flow Model

Probability of stasis was quantified by examining the RTD obtained by modeling
purely convective transport of a pulse of neutrally buoyant particles (viz. RBCs)
injected at the pulmonary inlet, after *35 cardiac cycles. An unsteady flow scalar
transport solver (developed from IcoFoam and ScalarTransportFoam, in OpenFOAM),
employed for simulation. LAA-specific RTD are established by using mean instanta-
neous particle density in the LAA as a proxy for the probability of a particle being
present in the LAA after a given period of time. To calculate the RTD, we injected a
Kronecker delta function of scalar concentration of unity (representative of RBCs) at
each of the four pulmonary venous inlets, with an injection pulse width of 0.01 s at the
beginning of the pulsatile pulmonary venous flow shifted waveform [13] (Fig. 2). The
waveform was delayed in a manner such that atrial systole took place at the end of each
cycle. Diffusion coefficient for the particles was considered 0 m2/s (i.e. advection only
transport). The time step, dt = 0.25 ms, was considered after a time-step independence
study evaluating the solution for time distribution of LAA particle concentration in the
WindSock geometry.

Fig. 1. Unique LAA morphologies from the study cohort
showing 3D tetrahedral mesh elements.
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2.5 Steady Flow Model

Unsteady simulations consume higher computational cost and further since the parti-
cles linger for a long time in the LAA relative to the rest of the LAA, observation for up
to 35–40 cardiac cycles is required prior to particles movement achieving a stable final
state; which adds up to long simulation times per geometry. Therefore, for a larger
cohort of 8 AF patients‚ we attempted to solve for a steady velocity field to initialize an
unsteady scalar transport solver in an uncoupled manner, to determine LAA-specific
RTDs similar to the previous section.

3 Results and Discussion

The CFD simulation based particle residence were validated against experimental
particle image velocimetry results in the WindSock LA geometry (Fig. 3) [14].

Fig. 2. Pulmonary venous flow waveform utilized at each pulmonary inlet to the LA (from
Smiseth et al. [13]).

B C

Fig. 3. (A) PIV vector computation result colored with flow velocity magnitude, normalized
from minimum (purple for stasis i.e. |V| = 0 m/s) to maximum (red), for particles seen in a
projection of the illuminated LAA volume. (B) Approximate path-lines of the particles (manually
traced as white lines) in the appendage, superimposed on an instantaneous screenshot of the same
projection plane. The fluorescent particles in the regions of stasis can be clearly seen,
corresponding with purple regions of stasis in the distal LAA regions. (C) CFD generated
streamlines of flow in the LAA, colored by velocity magnitude, normalized minimum to
maximum (blue to red) [14]. (Color figure online)
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Spatial particle density (i.e.
concentration) distributions after
*44 cardiac cycles are plotted in
Fig. 4. LAA-specific RTDs were
established by using mean instan-
taneous particle density in the LAA
region (i.e. ostium to distal tip) as a
proxy for the probability of a RBCs
being present in the LAA after a
given period of time, evaluating the
same 8 times every cardiac cycle,
for *44 cycles (35 s).

Comparing RTDs for the mod-
eledLAAs (see Fig. 5) revealed that
RBCs enter the LAA relatively
more easily and leave more quickly
in the Chicken Wing geometry, as
evidenced by the lower peak/
median RT. RBCs may be rela-
tively more prone to form thrombus
inside Cauliflower and Windsock
LAAs owing to its relatively higher
peak RT and right-skewed RTD.
Further, for purposes of compar-
ison, the cohort-averaged RTD for a

control volume in themiddle of the atrium reveals that LAAof any shape category ismore
likely to thrombus formation than other regions of atrium, as evidenced by its lower RTD
peak/median value.

Table 1 reports the RTD tail-area for RT > 20 s (i.e. 25 cycles), which describes
the probability of RBCs being resident in the LAA after 25 cycles. The Chicken Wing
geometry again had the lowest probability of particle residence and therefore stasis risk,
which is congruent with the clinical literature on LAA appearance-based cardioembolic
risk statistics. The common finding among prior clinical studies looking into LA
hemodynamics is that Chicken-Wing shaped LAA has the lowest risk of TE [9, 15, 16]
so those patients with CHA2DS2-VASc < 2 can avoid oral anticoagulant (OAC) ther-
apy for bleeding risk [15].

Fig. 4. RBC concentration in LA after *44 cardiac
cycles (i.e. 35 s) indicates highest RBC concentration
in the LAA with markedly higher RBC density in the
Cauliflower geometry relative to the Chicken
Wing LAA.

Table 1. Probability of RBCs remaining in the LAA beyond 25 cardiac cycles, based on CFD
for *44 cycles of unsteady and coupled particle transport of a pulse of RBCs injected at the
pulmonary venous inlets at the start of atrial diastole.

RTD tail-area (Stasis Probability) Chicken-Wing WindSock Cactus Cauliflower

LAA Region 0.178 0.186 0.1801 0.203
Control Volume in center of LA 0.017 0.008 0.0002 0.0008
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RTD results with our larger study cohort using the uncoupled RBC transport
simulated on an initialized steady CFD velocity field depicted that there is a significant
variation in stasis (and therefore, TE risk) between LAAs in a same group (see Fig. 6),
which warrants a larger clinical cohort to validate the relationship between the four

Fig. 5. Superimposed RTD probability density estimates for particles in the LAA volume (i.e.
LAA orifice to distal tip) of each unique geometry in our study cohort along with the
cohort-averaged RTD for a small central control volume inside LA (solid line), presented 35 s
after synchronized injection of the RBC pulses at the pulmonary venous inlets. In each case, the
LAA had a higher median residence time (RT) relative to the central intra-atrial control volume.

Fig. 6. RTD probability density estimates for RBC concentration in the LAA volume of each
unique geometry in our study cohort of 8 AF patients (2 per each group) showing a significant
variation in stasis risk prediction (i.e. RTD curves) between LAAs of same group especially for
the Windsock and Cauliflower morphologies.
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known LAA morphological classes and intra-atrial hemodynamics. Additionally, this
questions the simplicity of the clinical approach of using just LAA appearance as a
paradigm for TE risk assessment. This bolsters the hypothesis that quantifying
intra-atrial flow stasis from personalized CFD may offer a more meaningful TE risk
classification paradigm than imaging based 3D LAA appearance alone.

4 Conclusion

The relation between the LAA morphology and stroke risk has not well defined in
previous clinical studies and further, while the effect of atrial geometry on AF has
received some attention in the literature, the influence of patient-specific LAA shape on
hemodynamics and stasis has not been quantitatively analyzed previously. We define a
probabilistic model for thromboembolic risk, underpinned on quantifying intra-atrial
flow stasis from personalized CFD which clinically discussed morphology-based
clinical risk stratification models for stroke/transient ischemic attack to the underlying
biomechanical basis of LAA thrombus. RTD evaluation is an objective, reproducible
measure to stratify AF patients with regards to stroke risk which directly represents the
thrombus risk in a region. This method can improve the patient selection decision for
LAA exclusion/occlusion and increase the preciseness of anticoagulant management
based on not just shape alone.
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Abstract. Printed and/or digital atlases are important tools for medical research
and surgical intervention. While these atlases can provide guidance in identifying
anatomical structures, they do not take into account the wide variations in the
shape and size of anatomical structures that can occur from patient to patient.
Accurate, patient-specific representations are especially important for surgical
interventions like deep brain stimulation, where even small inaccuracies can result
in dangerous complications. This research effort extends the discrete deformable
2-simplex mesh into the multi-material domain where geometry-based internal
forces and image-based external forces are used in the deformation process.
Multi-material 2-simplex meshes having shared boundaries are initialized from
multi-material triangular surface meshes. A multi-material deformable frame‐
work is presented and used to segment anatomical structures of the deep brain
region such as the subthalamic nucleus.

Keywords: Segmentation · 2-Simplex mesh · Multi-material · Basal ganglia

1 Introduction

Printed and digital atlases are important tools for medical interventions. While these
atlases can provide reasonable guidance in identifying anatomical structures, they do
not take into account the large variations in the shape and size of anatomical structures
that occur from patient to patient. An accurate depiction of the anatomy is especially
important for surgical interventions like deep brain stimulation, where even small inac‐
curacies can result in potentially dangerous complications. In these situations, a patient-
specific representation of the anatomical structures of interest is preferred, rather than a
generic printed or digital atlas. Deformable surface meshes are one way to achieve such
patient-specific representations. An initial mesh model of the structures of interest can
be generated using a digital atlas, and then deformed using patient-specific CT or MR
data. Not only is the deformed multi-surface mesh capable of accurately representing
the structures of interest, this mesh is sparser than volumetric representations, such as
tetrahedral or hexahedral meshes, and thus reduces computational overhead. This work
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presents an extension of the discrete deformable 2-simplex mesh. The innovation here
is a multi-material implementation of deformable meshes which can be initialized with
relative ease and deformed using MRI data to accurately segment anatomical structures
of the deep brain region, while imposing continuous motion through various functional
structures. This applies to both introperative MRI-ready surgery planning and anatom‐
ical modeling with shared surfaces for surgery simulation.

1.1 Background and Motivation

Delingette formulated a specific type of deformable model: the k-simplex mesh [1] for
3D shape reconstruction and segmentation. A k-simplex mesh is defined as a k-manifold
discrete mesh where each vertex is linked to exactly k + 1 neighboring vertices. Delin‐
gette specifies a simplex angle and metric parameters, which can be used to represent
the position of any vertex with respect to its neighbors. 2-Simplex meshes are dual to
triangular meshes. Simplex forces, comprised of internal forces are based on mesh
geometry and external forces are based on input image gradients, together with enhance‐
ments such as shape constraints, smoothing parameters, shape memory constraints [2]
and statistical shape information [3] have allowed simplex meshes to be used for accurate
segmentation of anatomical structures. Gilles introduced a multi-surface 2-simplex
model with collision detection and handling to segment muscles and bone from MRI
data [2]. In the above, the 2-simplex surface meshes were used to represent singular
structures.

In this paper, we extend the 2-simplex model to achieve multi-material deformable
meshes consisting of two or more sub-meshes, where each sub-mesh bounds a specific
structure. The shared boundary between sub-meshes is consistent and removes any
possibility of volume overlap between sub-meshes. Our contribution is a method to
produce a deformable multi-surface mesh atlas from a voxel-based 3D digital atlas.

2 Methods

A 2-simplex model is 2-manifold discrete mesh where every vertex is connected to three
neighboring vertices. It undergoes deformations based on geometry-based internal
forces and image-based external forces, using the Newtonian law of motion [1]:

mi

d2
Pi

dt2 = −𝛾
dPi

dt
+ Fint + Fext

(1)

where mi is the mass, and Pi is the position of a vertex of the mesh. Fint represents all
internal forces and Fext represents all the image-based, gradient-attracted external forces
acting on Pi, while 𝛾 represents a damping coefficient.
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2.1 Initializing a Multi-material 2-Simplex Mesh

A 2-simplex mesh is the topological dual of a triangular mesh [1]. This geometric duality
can be exploited to generate 2-simplex meshes from triangular surface meshes.
Figure 1 shows an illustration of the duality. The centroids of triangles in the triangular
mesh coincide with the vertices of the simplex mesh, and edges of the simplex mesh are
created by linking these simplex vertices. In Fig. 1 the red dots on the triangular mesh
represents the centroids that eventually become vertices of the 2-simplex mesh. Two
assumptions are made when converting a triangular mesh into a simplex mesh:

1. The triangular mesh is assumed to be watertight (no holes or gaps),
2. The triangular mesh is assumed to be 2-manifold.

Fig. 1. Converting a triangular mesh into a simplex mesh (Color figure online)

A closed 2-simplex mesh is a watertight 2-manifold mesh with no gaps and/or boun‐
dary edges. On the other hand, a multi-material 2-simplex (MM2S) mesh will contain
non-manifold edges and/or vertices. This situation is analogous to the multi-material
triangular surface meshes discussed in the previous section. We use a modified version
of the Dual Contouring algorithm (DC) [4] to generate multi-material triangular surface
meshes, and use these to initialize MM2S meshes.

While the duality between 2-simplex meshes and triangular meshes remains true
even for multi-material meshes, the above algorithm needs to be adjusted slightly to
account for the multi-material nature of the meshes. The multi-material triangular
meshes contain material information associated with triangles, and this information can
be exploited to produce MM2S meshes in the following manner:

• Step 1: Compute the centroids of each triangle of the triangular mesh.
• Step 2: For each material index
• Step 2.1: For each ith vertex of the triangular mesh,

– Step 2.1.1: Locate all triangles with current material index containing ith vertex
– Step 2.1.2: Use the centroids of these triangles to create one simplex cell.

Since simplex vertices and cells are being created for each material index, care must
be taken to avoid duplicate and overlapping cells along the shared boundaries. Figure 2
illustrates the conversion process for a multi-material triangular mesh. Figure 2(a) shows
a synthetic box comprising two materials, Fig. 2(b) shows a wireframe rendering of the
box. The red colored part of the mesh represents one material while the blue colored
part represents the second. The green colored part of the mesh represents the shared
boundary. Figure 2(c) and (d) show the multi-material 2-simplex and its wireframe.
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Fig. 2. Converting a multi-material triangular mesh into a multi-material 2-simplex mesh. (Color
figure online)

2.2 Description of Multi-material 2-Simplex Meshes

The multi-material nature of the triangular surface meshes were described by assigning
pairwise material indices to triangles. Since the vertices of 2-simplex meshes are dual
to triangles in triangular meshes, it is reasonable to assign the triangles’ pairwise material
indices to their corresponding dual vertices in the 2-simplex mesh. This procedure
ensures the preservation of material information in the conversion process. The number
of vertices of the 2-simplex mesh will be the same as the number of triangles in the
triangular mesh. Furthermore, a MM2S mesh will have shared boundaries as well as
non-manifold edges and vertices. Because of its multi-material nature, this type of a k-
simplex mesh is not a true 2-simplex mesh in the sense that vertices along the non-
manifold edges of the shared boundary can have more than 3 neighboring vertices.

A MM2S mesh can be described as the set SM where V is the set of n vertices with
M being the set of positive integers describing material indices, and p and q are the
pairwise material indices assigned to each vertex. E is the set of m edges.

𝐒
M = {𝐕,𝐄} (2)

{
v

p,q
i

}
, {i = 0,… , n}, vi ∈ ℝ

3, {p, q ∈ 𝐌}, p ≠ q,𝐌 ∈ ℕ
+

{{
vi, vj

}
m

}
,∀vi ∈ 𝐕,∀vj ∈ 𝐕, i ≠ j

(3)

Each material sub-mesh of a multi-material simplex mesh is a pure 2-simplex mesh
in the sense that all vertices of the sub-mesh have exactly 3 neighboring vertices. This
aspect of the MM2S mesh can be exploited when performing deformation of the mesh.

2.3 Overview of Deformable Multi-material 2-Simplex Meshes

Once the initial MM2S mesh is generated from the triangular mesh, it is split into its
constituent sub-meshes. Both the MM2S mesh and its sub-meshes are kept in memory.
As mentioned above, each sub-mesh is a pure 2-simplex mesh where every vertex is
connected to exactly three neighboring vertices. For every iteration of deformation,
internal and external forces are computed. Internal forces are based on mesh geometry,
and external forces are based on an input image or volume. The forces are then used to
separately deform each sub-mesh sequentially using the mesh evolution process [2].
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Since forces are computed independently of sub-meshes, the corresponding vertices
making up the shared boundary may not necessarily remain consistent after deformation.
It is therefore necessary, after each deformation iteration, to ensure that all corresponding
vertices of the sub-meshes making up the shared boundary are aligned and consistent.
This is done by averaging the positions of each corresponding shared boundary vertex,
and then updating the shared boundary vertices in the MM2S mesh as well as the sub-
meshes with these newly computed vertex positions as in Fig. 3. This process for
deforming a multi-material 2-simplex mesh offers many advantages: (1) the proven
single surface 2-simplex mesh deformation framework of [1, 2] can be easily utilized,
(2) the shared boundary between the sub-meshes will always remain consistent, and (3)
there is no need to worry about the non-manifold edges of the shared boundaries since
the deformation occurs only on sub-meshes.

Fig. 3. Overview of the multi-material 2-simplex mesh deformation.

3 Segmenting Structures of the Basal Ganglia

The proposed multi-material 2-simplex deformable system has been also used on
realistic data to achieve meaningful segmentation of anatomical structures. The
subthalamic nucleus (STN) and the substantia nigra (SN) are two deep brain struc‐
tures that are difficult to detect and segment from MRI. The proposed system has
also been used to segment the globus pallidus (GP), the image gradient of which is
better defined. T1-weighted and T2-weighted MR data was used. The MR data used
in this section is freely available from Neuroimaging Informatics Tools and
Resources Clearinghouse (https://www.nitrc.org/projects/deepbrain7t). A labeled
volume is also provided (referred to as the Khan atlas), containing segmentations of
the left and right globus pallidus, mammillary body, red nucleus, substantia nigra and
subthalamic nucleus. This labeled volume, recently made public, serves as ground
truth for validating our multi-surface atlas-to-image registration approach.
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3.1 Segmentation of the Subthalamic Nucleus and Substantia Nigra

An initial watertight and 2-manifold multi-material triangular mesh of the left SN-STN
was constructed from Chakravarty’s atlas [6] using a modified version of the Dual
Contouring (DC) algorithm [4]. This atlas has a step size of 0.3 mm, and a triangular
mesh generated from this resolution is simply too large (approximately 410 k triangles
and 20 k vertices) to be practical. Therefore, the atlas was downsampled to an appropriate
size, and a much coarser multi-material triangular mesh was generated (2.5 k triangles
and 1.2 k vertices). Figure 4(a) shows a mesh representation of the SN and STN from
the Khan atlas, Fig. 4(b) and (c) shows the surface mesh and wireframe mesh, respec‐
tively, of the SN and STN constructed using Chakravarty’s atlas. For the deformation
process, the T2-weighted MR image was used because the SN and STN are more visible
than in T1-weighted MR images. The image was anisotropically, and then the gradient
image was computed. The external forces for the deformation were computed using the
gradient image. Laplacian-based internal forces were used to achieve a smooth mesh.
Figure 5 shows the deformation of the SN and STN mesh for several iterations.

Fig. 4. (a) A mesh representation of the SN (blue) and STN (pink) from Khan’s atlas, (b) the
Chakravarty multi-material triangular surface mesh of the SN (yellow) and STN (blue), (c) the
wireframe representation of the mesh, where the red part represents the shared boundary. (Color
figure online)

Fig. 5. Deformation of the SN and STN. The red outline represents the outline of the STN and
the blue outline represents the outline of the SN. The green outline represents shared boundary.
(Color figure online)

3.2 Segmentation of the Globus Pallidus and Striatum

In this section describes an attempt to segment the striatum (comprising the putamen
and the caudate nucleus) and the globus pallidus (GP) using high resolution 7 T MR
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data from [5]. In a T1-weighted MR image, both the striatum and GP have similar
intensities, whereas in a T2-weighted MR image the GP appears much more distinct.
Both T1 and T2-weighted images are to be used for the deformation process, with the
T1-weighted MR image used to mainly drive the deformation of the striatum, and the
T2-weighted MR image used to segment the GP. The shared boundary between the
striatum and GP will therefore be influenced by both the T1 and T2-weighted images.
The main purpose of here is to demonstrate that the proposed multi-material 2-simplex
framework can incorporate multi-modal data for deformation. The MR image was
anisotropically smoothed, and then the gradient image was computed. Laplacian-based
internal forces were used to achieve a smooth mesh.

In order to produce a coarse mesh, the volume was downsampled to an appropriate
size and smoothed using a Gaussian blurring-based smoothing process. Our multi-
material DC method [4] was then used to create a watertight multi-material triangular
surface mesh, which in turn was used by geometric duality to create the initial multi-
material 2-simplex mesh. Figure 6 (Left) illustrates the multi-material triangular mesh
created by the modified DC algorithm, and Fig. 6 (Right) shows the converted multi-
material 2-simplex mesh models of the striatum and GP, colored blue and yellow,
respectively.

Fig. 6. (Left) The multi-material triangular mesh of the Striatum, colored blue and Globus
Pallidus, colored yellow. (Right) The multi-material 2-simplex mesh initialized from the
triangular mesh. The red part of the mesh depicts the shared boundary between the GP and St.
(Color figure online)

Figure 7 shows the state of the deformation using both T1 and T2-weighted MRI
over several iterations. In this figure, the blue outline represents the outline of the

Fig. 7. Cross-sections of the striatum and globus pallidus during deformation using both T1 and
T2-weighted MRI. The blue outline represents the striatum, the yellow outline represents the GP,
and the red outline represents the shared boundary. (Color figure online)
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striatum, the yellow outline represents the outline of the GP, and the red outline shows
the shared boundary between the GP and striatum.

4 Validation

For validation, surface mesh representations of the SN, STN and GP were made from
the labeled volume that is a part of the data from [6], and this was used as the ground
truth. The opensource VTK libraries implementation of the Marching Cubes algorithm
was used to generate the surface meshes. A segmentation of the striatum is not available
in the data from [5], and so a quantitative analysis of the striatum is not possible.

The surface-to-surface distance between the deformed mesh and the ground truth
mesh of the SN, STN and GP was computed using uniform sampling. The metrics
calculated are: Hausdorff Distance (HD), Mean Absolute Distance (MAD), Mean
Square Distance (MSD) and Dice’s Coefficient (DC), reported in Table 1.

Table 1. Summary of deformation errors. All values in millimeters.

Anatomical structures HD MSD MAD DC Max over-
segmentation

Max under-
segmentation

Subthalamic nucleus 2.1054 0.3087 0.3500 0.7732 1.5529 –0.8978
Substantia nigra 2.5467 0.3578 0.4552 0.7993 1.9724 –1.6345
Globus pallidus 2.4272 0.2166 0.3077 0.9271 2.4272 –2.1850

Figure 8 shows the deformed meshes of the SN, STN and GP. For the deformation
of the STN, SN and GP as shown in Fig. 8, the highest over-segmentation error is
approximately 1.55 mm, 1.97 mm and 2.42 mm, respectively. The highest under-
segmentation error is –0.898 mm, –1.63 mm and –2.19 mm for the STN, SN and GP,
respectively.

Fig. 8. A color representation of deformation errors for (a) STN, (b) SN and (c) GP. (Color figure
online)

Table 1 also shows the HD, MSD, MAD and DC values for the deformed STN, SN
and GP. The MSD and MAD values of the STN, SN and GP are smaller because, along
the main body of the structures, the segmentation is fairly accurate (as shown by the
green coloring in Fig. 8), with over and/or under-segmentation occurring at the lateral
ends of the structures, coinciding with lesser gradient values.
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5 Conclusion

Accurate representations of anatomical structures in the deep brain regions is very
important for medical modelling and simulation purposes. This paper presented a multi-
material version of the deformable 2-simplex (MM2S) mesh framework. The meshes
are multi-material in the sense that they can have consistent shared boundaries with each
other. The MM2S meshes can be generated with relative ease because 2-simplex meshes
are topologically dual to triangular meshes. It has been shown that this topological
duality can be adapted for converting a multi-material triangular mesh into a multi-
material 2-simplex mesh such that the mesh’s material information is preserved. The
immediate application is ioMRI-ready surgery planning for deep-brain stimulation,
however a multi-material deformable surface atlas with shared boundaries is also vital
for achieving personalized surface mesh-constrained tetrahedral models for simulation.
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Abstract. Ultrasound imaging can be used to detect maternal risk fac-
tors, but it remains out of reach for most pregnant women in developing
countries because there is a severe shortage of well-trained sonographers.
In this paper we show the potential of combining the obstetric sweep
protocol (OSP) with image analysis to automatically obtain informa-
tion about the fetus. The OSP can be taught to any health care worker
without any prior knowledge of ultrasound within a day, obviating the
need for a well-trained sonographer to acquire the ultrasound images.
The OSP was acquired from 317 pregnant women using a low-cost ultra-
sound device in St. Luke’s Hospital in Wolisso, Ethiopia. A deep learning
network was used to automatically detect the fetal head in the OSP data.
The fetal head detection was used to detect twins, determine fetal pre-
sentation and estimate gestational age without the need of a well-trained
sonographer.

Keywords: Prenatal ultrasound · Obstetric sweep protocol · Image
analysis

1 Introduction

Worldwide, 99% of all maternal deaths occur in developing countries [1]. Ultra-
sound imaging can be used to detect risk factors, but requires a well-trained
sonographer to obtain and interpret the images. Unfortunately, there is a severe
shortage of well-trained sonographers in developing countries [2]. Therefore,
ultrasound imaging remains our of reach for most pregnant women in develop-
ing countries. In 2011, DeStigter et al. introduced the obstetric sweep protocol
(OSP) [3]. The OSP consists of six predefined free-hand ultrasound sweeps over
c© Springer International Publishing AG 2017
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the abdomen of the pregnant women, which are visualized in Fig. 1. The main
advantage of the OSP is that it can be taught to any health care worker without
any prior knowledge of ultrasound within a day, making wide application of this
protocol in developing countries feasible. In the paper of DeStiger et al. the OSP
data was sent via the Internet to radiologists, who interpreted the images and
sent back the result to the midwife. In this paper we combine the OSP with
image analysis, to automatically detect the fetal head. We show that it is feasi-
ble to estimate the gestational age, detect the fetal presentation and detect twin
pregnancies with the automated head detection using the OSP data. This would
mean that there is no need for a well-trained sonographer to both acquire and
interpret the ultrasound images. There is also no need for a technical infrastruc-
ture which includes an Internet connection and therefore this represents a next
step towards making prenatal ultrasound feasible and accessible to pregnant
women in developing countries.

Fig. 1. Visualization of the six free-hand sweeps of the obstetric sweep protocol. The
three transverse sweeps are obtained by moving the ultrasound transducer from the
pubic bone to the breast bone (green arrows). The three longitudinal sweeps are
obtained by moving the ultrasound transducer from the left side of the patient to
the right side of the patient (blue arrows). (Color figure online)

2 Methods

2.1 Data

An experienced gynecologist (second author of this paper) acquired both the
OSP together with the standard imaging plane, for measuring the reference
head circumference (HC), from 317 pregnant women using the MicrUs Ext-1H
(Telemed Ultrasound Medical Systems, Italy). The MicrUs EXT-1H is a low-cost
ultrasound device which was connected to a mid-range Windows based notebook
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via USB 3.0. The combination of a low-cost probe and a cheap notebook makes
this an affordable and portable solution for obtaining prenatal ultrasound images
in developing countries. The data was acquired in St. Luke’s Catholic Hospital
and College of Nursing and Midwifery in Wolisso, Ethiopia. Acquisition of this
data was approved by the local ethics committee.

2.2 Fetal Head Detection

A previously designed deep learning network was used to classify each frame within
the OSP data whether the fetal head was present. The deep learning network uses
three labels: present, partially present and not present. Present means that the
fetal head falls within the field of view (FOV) of the frame. Partially present means
that the fetal head falls partially outside of the FOV of the frame, which makes an
accurate head circumference measurement impossible. Not present means that the
fetal head is not present in the frame. The deep learning network was trained on a
separate dataset acquired from 183 pregnant women using the SonoAce R3 (Sam-
sung Medison, Korea). This dataset only contained the three transverse sweeps of
the OSP as explained in previous work [4]. The network architecture was inspired
by the VGG-Net of Simonyan and Zisserman [5]. The number of deep learning
network parameters was minimized, to only 843 thousand parameters, to make
deployment on low-cost hardware possible.

2.3 Estimation of Fetal Head Circumference

The OSP data will most likely not contain the standard plane that is normally
used to obtain the fetal HC. But in previous work we have shown that it is
possible to manually estimate the HC with the use of the OSP data [4]. In this
work we used a previously designed CAD system to automatically estimate the
HC in a random subset of thirty fetuses (excluding twins), with a GA ranging
from 23 until 40 weeks. The CAD system measures the HC in all frames that
were classified as containing the fetal head by the deep learning network. The
75th percentile of all measured HCs was taken as the final HC estimation, since
the HC obtained in the standard plane is one of the largest circumferences one
can measure from a fetal head. The automatically estimated HC was compared
to the reference HC, which was obtained by the experience sonographer in the
standard plane. The curve of Hadlock [6] was used to determine the GA from
the HC.

2.4 Automated Frame Separation

Since the six free-hand sweeps of the OSP were made in a predefined order, it was
possible to automatically separate the six sweeps to be able to determine fetal
presentation and detect twin pregnancies. The six sweeps were automatically
separated using the mean pixel intensity per frame. A threshold was used to
determine for which frames the transducer touches the abdomen of the pregnant
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woman. The threshold is defined by Eq. 1, where μ is the mean frame intensity
for all frames of one patient and σ is the standard deviation of the mean intensity
per frame.

Threshold = μ − σ (1)

The largest six connected components were selected as the six sweeps. Smaller
connected components were assigned to the nearest sweep. Figure 2 shows the
result of the automated frame separation for one patient. This simple procedure
turned out to be sufficient for correctly separating the sweeps in 306 of the 317
ultrasound series at our disposal.

Fig. 2. Visualization of the automated separation of the six sweeps for one patient.

3 Results

Figures 3, 4, and 5 show the result of the fetal head detection by the deep learning
network for a fetus in cephalic presentation, a fetus in breech presentation and a
twin pregnancy, respectively. The color bar shows the three labels of the network
classification. All frames classified as fetal head present (shown in red) were used
to automatically estimate the HC. Table 1 shows the mean difference (MD),
mean absolute deviation (MAD) and 1.96 standard deviations (SD), between
the automatically estimated HC, obtained from the OSP data, and the reference
HC, obtained by the experienced gynecologist from the standard imaging plane
for the thirty randomly selected cases. The GA could not be computed for six
fetuses, because the HC of these fetuses were larger than the largest reported



Combining Automated Image Analysis with Obstetric Sweeps 109

Fig. 3. Visualization of the head detection output by the deep learning network of a
fetus in cephalic presentation. The bottom two images show two example frames from
the sweep data. The left frame was classified as fetal head present. The right frame
was classified as fetal head partially present.

Fig. 4. Visualization of the head detection output by the deep learning network of a
fetus in breech presentation.
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Fig. 5. Visualization of the head detection output by the deep learning network of a
twin pregnancy.

Table 1. Mean difference (MD), mean absolute difference (MAD) and 1.96 standard
deviations (SD) between the automatic estimation and the manual reference.

HC (mm) HC (%) GA (days)

MD −6.6a −2.1a −3.6b

MAD 11.3a 3.7a 9.4b

1.96 SD 23.9a 7.4a 16.8b

aN = 30, bN = 24

value of the curve of Hadlock. This rather high number is associated with the
fact that most pregnant women visit the hospital in Ethiopia at a late stage in
their pregnancy.

4 Discussion

In this paper we show a system that can automatically extract information about
the fetus with the use of the OSP. The OSP can be taught to any health care
worker without any prior knowledge of ultrasound within a day. All data for
this study were acquired with a low-cost ultrasound device in Ethiopia and the
design of the automated image analysis system makes deployment on low-cost
hardware possible.

Fetal head detection: The results show that it is possible to automatically detect
the fetal head in the OSP frames with the use of the deep learning network. Sep-
aration between the head present and partially present was performed to make
automated estimation of the HC possible, since the HC can only be measured
when the fetal head falls within the FOV of the frame.
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Estimation of fetal head circumference: Table 1 shows the MD, MAD and SD
between the reference, obtained in the standard plane, and the automated esti-
mation, obtained from the OSP data, for both the HC and GA for thirty ran-
domly selected cases. The literature shows different inter-observer variabilities
for the HC measurements. Napolitano et al. reported in 2016 an inter-observer
variability with a 95% limits of agreement of 4.9% [7], which is only one and a
half times smaller compared to our 1.96 SD of 7.4%. Sarris et al. reported in
2012 an inter-observer variability with a 1.96 SD of 12.1 mm [8], which is twice
as small compared to our 1.96 SD of 23.9 mm, but Sarris et al. reported in 2013
a 97th percentile SD of 24.2 mm [9], which very similar to our reported 1.96 SD
of 23.9 mm. This comparison shows that the automated system estimates the
HC close to the reported inter-observer variability in literature and does this
without obtaining the standard imaging plane. The resulting MAD in GA of
9.4 days is very promising for automatic estimation of the GA using the OSP.
Future research has to show how this GA estimation can be used in practice.

Determine fetal presentation: Figures 3 and 4 shows that it could be feasible to
determine the fetal presentation from the OSP data, making it possible to plan
a caesarean section in case of breech presentation. At this moment, the deep
learning network only detects the fetal head. Retrain the network to detect both
the fetal head and the fetal abdomen could make this method more robust. To
the authors knowledge, only Maraci et al. have tried to automatically determine
fetal presentation with a single free-hand sweep, but this single sweep missed
either the fetal head or abdomen in 31% of the 129 test cases [10]. This problem
could be solved with the six sweeps of the OSP data, but future work is required
to show performance of our approach on the full dataset.

Detecting twin pregnancies: Figure 5 shows the deep learning classification result
for a twin pregnancy. Two fetal heads can be discriminated in sweep 1 and 3 of
the OSP, so it could be feasible to automatically detect twin pregnancies with
the OSP. Future research is required to determine if all 35 twins present in the
study data can be detected using the OSP data.

5 Conclusion

This paper shows the feasibility of using prenatal ultrasound in developing coun-
tries by combining the obstetric sweep protocol (OSP) with automated image
analysis. The OSP can be taught to any health care worker without any prior
knowledge of ultrasound within a day, so there is no need for a well-trained
sonographer to obtain the ultrasound images. We show that it is feasible to
automatically detect basic information about the fetus like: estimation of the
gestational age, determine fetal presentation and detect twin pregnancies.
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Abstract. We present an algorithm to automatically estimate the diam-
eter of the optic nerve sheath from ocular ultrasound images. The optic
nerve sheath diameter provides a proxy for measuring intracranial pres-
sure, a life threating condition frequently associated with head trauma.
Early treatment of elevated intracranial pressures greatly improves out-
comes and drastically reduces the mortality rate. We demonstrate that
the proposed algorithm combined with a portable ultrasound device
presents a viable path for early detection of elevated intracranial pres-
sure in remote locations and without access to trained medical imaging
experts.

1 Introduction

Portable ultrasound technology is well suited for the development of automated
diagnostics systems that enable emergency responders to quickly assess the sever-
ity of a patient’s injuries. Such light-weight portable automated systems can be
employed in remote environments in which expert medical imaging personnel
and advanced imaging equipment are not readily available.

This paper considers the application of a point-of-care, computer-assisted
ultrasound system for in-field traumatic brain injury (TBI) assessment via the
detection of increased intracranial pressure. Delayed treatment of increased
intracranial pressure can cause temporary or permanent brain damage or even
long-term coma and death. For example, it has been shown that acute subdural
hematomas in severe TBI patients cause significant increase in intracranial pres-
sure. Acute subdural hematomas are associated with 90 detected and treated
more than 4 h after injury, yet early treatment reduces the mortality rate to 30

In a clinical setting, a non-invasive approach to measure intracranial pressure
is by ocular ultrasound. From the ocular ultrasound image the physician manually
measures the diameter of optic nerve sheath at a location 3 mm behind the retina.
A diameter of the optic nerve greater than 5 mm indicates increased intracranial
pressure [Ma2015]. Acquiring such images and making these measurements is a

c© Springer International Publishing AG 2017
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challenging and time consuming task. We propose to automate the process of mea-
suring the diameter of the optic nerve sheath and integrate it with a portable ultra-
sound system to automatically report elevated intracranial pressure without the
need of manually measuring the optic nerve sheath diameter. The ultimate goal
is a system that is easy to use and does not require expert personnel or specific
training to diagnose TBI.

Using ultrasound for estimation of optic nerve sheath diameter is a well
establish approach to diagnose elevated intracranial pressure [Ki2008,Ro2011]
and various studies have been performed to establish the optimal threshold for
clinical diagnosis [Mo2009,Du2011,Ra2011]. However, to the best of our knowl-
edge this is the first time an algorithm is proposed to automate the estimation
process.

2 Algorithm

We propose a two step approach to automate the measurement of the optic
nerve sheath diameter. At a high level, the algorithm proceeds by locating the
eye through registration of an ellipse with the largest dark circle in the image
data. From the ellipse an approximate location of the optic nerve is constructed
and used to fit two bars to the walls of the acoustic shadow behind the optic
nerve. This high-level description leaves out several intermediate image process-
ing steps, described in detail in Sect. 2.1, that are required to achieve good
registration results. Figure 1 shows result of the fitting procedure and illustrates
that the proposed algorithm is applicable to a wide variety of ocular ultrasound
images.

Fig. 1. Result of the proposed algorithm on three ocular ultrasound images. The over-
lays illustrate the registration results of the algorithm. The blue ellipse delineates the
location of they eye and the red bars are the result of fitting the boundary of the
acoustic shadow induced by the optic nerve sheath. (Color figure online)

The algorithm is implemented in C++ and is available on github1. The user-
interface described in Sect. 2.2 is also avaialble on github2.
1 https://github.com/KitwareMedical/UltrasoundOpticNerveEstimation.
2 https://github.com/KitwareMedical/UltrasoundIntersonApps.

https://github.com/KitwareMedical/UltrasoundOpticNerveEstimation
https://github.com/KitwareMedical/UltrasoundIntersonApps
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2.1 Algorithm Details

This section describes the individual image processing steps to achieve an algo-
rithm that performs well on a large variety of images from different types of
probes and differences between subjects.

The first part of the algorithm is locating and estimating the size of the eye.
The liquid of the vitreous body of the eye has a very low acoustic impedance
and appears as black ellipse in B-mode ultrasound images. The boundary of
the vitreous body is frequently clearly delineated through the skin of the closed
eye and the adjacent tissue. However, acoustic shadows, poor probe contact and
collagen floaters cause imperfections in the boundary as well as the interior.
Thus, the proposed eye detection algorithm requires several image processing
steps illustrated in Fig. 2.

Fig. 2. Intermediate steps to locate and estimate the size of the eye. (a) Input image,
(b) Gaussian smoothing and threshold, (c) distance transform, (d) the ellipse image
generated from the initial eye location and size estimates and (e) the registered ellipse
and optic nerve sheath overlayed on the input image.

In detail the steps are:

1. Estimate initial eye center and size:
(a) Gaussian smoothing, binary thresholding, morphological closing and dis-

tance transform.
(b) The maximum distance provides the initial radius and the location of the

maximum distance the initial center of the eye.
2. Refine initial estimates:

(a) Distance transform over vertical image strip of width 20 pixels around
the initial eye center location estimate provides an initial minor ellipse
radius.

(b) Distance transform over horizontal image strip of width 20 pixels around
the initial eye center location estimate provides an initial major ellipse
radius.

3. Gaussian smoothing and binary thresholding.
4. Create a binary ellipse annulus with the initial estimates of the minor and

minor axis of width 0.2 times the major axis with center located at the initial
eye center estimate.
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5. Register ocular ultrasound (moving image) to ellipse image (fixed image)
under an affine transform with a masked mean squared error metric. The
mask is an ellipse that encompasses the ellipse annulus on the fixed image.
The affine transform is centered on the ellipse center.

6. Refine eye center and major and minor estimates by applying the transform
to the minor and major axis vectors and the center point.

The location of they eye provides an approximate region for locating the optic
nerve sheath. The optic nerve sheath has a very strong acoustic impedance and
reflects a significant amount of the energy of the ultrasound wave. This results
in an acoustic shadow that appears as a darker tube behind the optic nerve
sheath. We take advantage of this acoustic shadow to estimate the width the
optic nerve. The shadow boundary can exhibit several imperfections and have
strong intensity variations. We propose several image processing steps, illustrated
in Fig. 3, to enhance the shadow boundary before a registration of two parallel
vertical bars to delineate the width of the shadow.

Fig. 3. Intermediate steps to fit the acoustic shadow of the optic nerve sheath.
(a) Optic nerve sheath region extract based on the eye location and size estimates,
(b) Gaussian smoothing and intensity scaling of individual rows, (c) Distance trans-
form, (d) scaling of rows independently left and right of the initial center (e) thresh-
olding and (f) vertical bars before registration based on initial estimates.

In detail, the optic nerve sheath estimation steps are:

1. Extract optic nerve region below the eye using the eye location and size
estimates

2. Gaussian smoothing.
3. Scaling of intensities per individual rows to alleviate attenuation effects.
4. Compute initial center and width estimates:

(a) Binary threshold, morphological opening and distance transform.
(b) The maximal distance and its location provide and initial estimate of the

optic nerve shadow diameter and its location
5. Scale intensities per row and on each side of the initial optic nerve center

estimate independently (Often the left and right boundary exhibit vastly
different intensities).

6. Refine initial center and width estimates:
(a) Binary threshold, morphological opening and distance transform.

7. Use refined center and width to create an image with two vertical bars.
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8. Register the two vertical bars (fixed image) to the processed image (moving
image) under a similarity transform (rotation, translation and scaling) with a
masked mean squared error metric. The mask is a rectangle that encompasses
the two vertical bars. The similarity transform is centered on the initial center
estimate.

9. Refine width estimates by applying the registration transform to a vector that
spans from the left to the right vertical bar of the fixed image.

2.2 Interactive Graphical User Interface

The proposed algorithm is integrated into a user-friendly interface and performs
for interactive estimation of the optic nerve sheath diameter. The GUI performs
estimates at 4 frames per second, displays the registration results in near real-
time and reports statistics of the estimates as they are acquired. Depending
on the ultrasound probe, the algorithm can be simplified by skipping the eye
estimation step to run at around 20 frames per second. The GUI can be used
to report estimates of the optic nerve sheath diameter in near real time as an
ultrasound probe is swept across the closed eye of a patient (Fig. 4).

Fig. 4. The (a) GUI collecting estimates on an eye phantom in real time and (b) a
close-up of the user interface. The GUI is running on a windows tablet connected to a
USB linear array ultrasound probe from Interson.

3 Evaluation

We evaluated the performance of the proposed automatic estimator in two ways.
In Sect. 3.1 a comparison to manual estimates from novices and medical experts
shows that the method has high precision and performs within the range of
expert variability. Section 3.2 evaluates the automatic estimates using a gelatine
eye phantom with known ground truth diameters and shows that the method is
very accurate.
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3.1 Comparison to Manual Estimation

For this study 13 volunteers ranging from novices to medical professionals anno-
tated 23 ocular ultrasound images from the internet (in pixel units due to
unknown image spacing units). Two linear regressions of the automatic esti-
mates with two different parameter settings against the estimates of a medical
expert resulted in an R2 of 0.82 and 0.91, respectively. Both linear regressions
were statistically significant with a p-value on the order of machine precision
(2e−16).

Table 1 contains all pairwise correlations between all participants of the study
as well as two automatic estimates with different parameter settings.

Table 1. Pairwise Pearson’s correlation coefficients between novice (N1 - N10), expert
( E1 - E3 ) and automatic (A1, A2) estimates.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 E1 E2 E3 A1 A2

N1 1 0.42 0.34 0.29 0.33 0.68 0.32 0.91 0.56 0.29 0.52 0.54 0.36 0.35 0.52

N2 0.42 1 0.83 0.93 0.92 0.85 0.95 0.56 0.83 0.93 0.86 0.91 0.95 0.91 0.89

N3 0.34 0.83 1 0.88 0.92 0.84 0.90 0.45 0.70 0.91 0.80 0.74 0.88 0.83 0.83

N4 0.29 0.93 0.88 1 0.94 0.80 0.96 0.42 0.74 0.97 0.82 0.83 0.94 0.92 0.85

N5 0.33 0.92 0.92 0.94 1 0.83 0.93 0.45 0.72 0.94 0.83 0.82 0.91 0.85 0.85

N6 0.68 0.85 0.84 0.80 0.83 1 0.83 0.75 0.79 0.82 0.83 0.84 0.83 0.83 0.86

N7 0.32 0.95 0.90 0.96 0.93 0.83 1 0.46 0.83 0.95 0.80 0.90 0.97 0.95 0.89

N8 0.91 0.56 0.45 0.42 0.45 0.75 0.46 1 0.60 0.45 0.60 0.66 0.51 0.51 0.63

N9 0.56 0.83 0.70 0.74 0.72 0.79 0.83 0.60 1 0.73 0.82 0.88 0.82 0.74 0.78

N10 0.29 0.93 0.91 0.97 0.94 0.82 0.95 0.45 0.73 1 0.85 0.80 0.94 0.91 0.84

E1 0.52 0.86 0.80 0.82 0.83 0.83 0.80 0.60 0.82 0.85 1 0.71 0.82 0.72 0.77

E2 0.54 0.91 0.74 0.83 0.82 0.84 0.90 0.66 0.88 0.80 0.71 1 0.90 0.88 0.87

E3 0.36 0.95 0.88 0.94 0.91 0.83 0.97 0.51 0.82 0.94 0.82 0.90 1 0.95 0.90

A1 0.35 0.91 0.83 0.92 0.85 0.83 0.95 0.51 0.74 0.91 0.72 0.88 0.95 1 0.92

A2 0.52 0.89 0.83 0.85 0.85 0.86 0.89 0.63 0.78 0.84 0.77 0.87 0.90 0.92 1

Table 2 provides a summary of the pairwise correlations and reports the intra-
and inter-correlation between novice, expert and automatic estimates. The esti-
mates from the novice N1 were far off from any of the other novices and was
excluded from the results reported in Tabel 2. The automatic estimates are more
strongly correlated (0.85) to the medical expert than the correlation within the
group of medical experts (0.81).The correlation among experts matches results
of previous studies [Ze2014,Jo2016]. Thus, the proposed automatic estimator
performs on par or even better than the medical experts.

3.2 Gel Phantom Study

This evaluation is based on an eye phantom using 3D-printed optic nerves (plas-
tic discs) of known diameter embedded under gelatine orbs as described in detail
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Table 2. Inter- and intra-correlations (mean Pearson correlation coefficients) among
novice (excluding N1), expert and automated estimates.

Novice Expert Automatic

Novice 0.78 0.83 0.82

Expert 0.83 0.81 0.85

Automatic 0.82 0.85 0.92

in [Ze2014]. The eye phantom produces ultrasound images that closely resemble
clinical ocular ultrasound images.

The goal of this evaluation is to check if an accurate estimate of the optic
nerve is possible with the proposed algorithm. We imaged the phantom using
the graphical user interface described in Sect. 2.2 connected to an Interson linear
array probe with 127 transducer elements and a pixel resolution of 0.8 mm. A
novice (non-medical imaging expert) used the graphical user-interface, which
shows B-mode images in real-time, to first locate the optic nerve. Once the probe
was positioned to deliver a good image of the optic nerve, as judged by the novice
user, the automatic estimation process was started and run interactively for
about 10 s. This resulted in approximately 40 to 50 optic nerve sheath diameter
estimates.

Table 3 shows that, in this controlled setting, the means of the automatic
estimates are within less than +/- 5 mm and a relatively tight distribution of
estimates around the ground truth diameter.

Table 3. Automatic estimation results on eye phantom.

Disc size Mean Std. deviation Low. quartile Median Up. quartile

7 mm 7 mm 1 mm 6.4 mm 6.9 mm 7.7 mm

6 mm 6.1 mm 1 mm 5.8 mm 6.4 mm 6.6 mm

5 mm 5.1 mm 1.4 mm 4.4 mm 4.9 mm 5.7 mm

4 mm 4.4 mm 0.6 mm 4.2 mm 4.3 mm 4.5 mm

3 mm 3.4 mm 1.1 mm 2.9 mm 3.2 mm 3.5 mm

The standard deviations of the individual measurements per disc are too
large to accurately suggest elevated intracranial pressure. However, the mean
deviation of the mean estimates from the ground truth over the 5 measure-
ments is only 0.2 mm with a standard deviation of 0.18 mm. This suggest that
the means reported by the automatic estimation procedure measurements are
accurate enough to determine elevated intracranial pressure. In this small study
the proposed algorithm yields more accurate results than reported in a study on
intra-operator variations of manual estimates on the same type of phantom, but
with higher resolution ultrasound probes, reports an average bias of 0.33 mm
and standard deviations of 0.64 mm of the measurements [Jo2016].
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4 Conclusion

The results presented indicate that the algorithm performs well in a controlled
setting. A retrospective analysis of clinical images indicates that our system
performs similar to an expert, and a phantom study using 3D printed optic
nerves of known diameter suggests that our system is accurate.

The next step is to automatically identify high quality images as a probe is
swept over the eye. This will eliminate the need for the operator to view, inter-
pret, or make measurements on an ultrasound image when using it to assess a
dilated optic nerve sheath. Ultimately, we aim for a system that can be used
by novice operators with minimal ultrasound experience. The system will report
when a sufficient number of high quality images have been acquired for an accu-
rate estimate of the diameter. Based on this estimate it will be able to automat-
ically indicate if the diameter of the optic nerve is greater than 5 mm and alert
the user elevated intracranial pressure.

The long term goal is to develop a lightweight portable ultrasound system
that, in addition to automated diagnosis of TBI, includes automatic diagnosis
tools for pneumothorax (detached lung) and internal bleeding.

This work was supported, in part, by NIH/NIBIB and NIH/NIGMS via
1R01EB021396-01A1: Slicer+PLUS: Point-of-Care Ultrasound.
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Abstract. Ultrasound provides a useful and readily available imaging
tool. The big challenge in acquiring a good ultrasound image are pos-
sible shadow artefacts that hide anatomical structures. This applies in
particular to 3D ultrasound acquisitions, because shadow artefacts may
be recorded outside the visualized image plane. There are only a few
automatic methods for shadow artefact detection. In our work we like to
introduce a new shadow detection method that is based on an adaptive
thresholding approach. The development was attempted, after existing
methods had been extended to separate shadow and fluid regions. The
entire detection procedure utilizes only the ultrasound scan line informa-
tion and some basic knowledge about the ultrasound propagation inside
the human body. Applying our method, the ultrasound operator can
retrieve combined information about shadow and fluid locations, that
may be invaluable for image acquisition or diagnosis. The method can
be applied to conventional 2D as well as 3D ultrasound images.

Keywords: Ultrasound · Shadow artefact · Free fluid · Detection

1 Introduction

Ultrasound shadows are a big challenge in ultrasound imaging. This is espe-
cially true when applying 3D ultrasound, because there is only a finite number
of image planes that can be simultaneously visualized to the operator in a mean-
ingful way. Important secondary structures that are off screen might be hidden
inside a shadow artefact without the ultrasound operator even noticing. Auto-
matic detection methods for ultrasound shadows can help to minimize shadow
recording by indicating their presence during or after the acquisition. However,
shadow detection methods have not been a great focus in the literature. A pos-
sible reason for that is, that shadows can be easily spotted in conventional 2D
images, which are still the clinical standard. However, 3D ultrasound continues
to be applied more often, but herein shadows can’t be spotted as easily. In our
work we like to provide tools that enable the shadow detection and allow for
better image acquisitions. Besides shadows, fluids are also displayed with dark
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intensity values in the B-mode image. A general separation of both would be ideal
to allow further diagnosis potential. Especially for trauma and acitis patients,
a combined free fluid and shadow detection would assist the physician. In the
next sections we provide some information about existing literature approaches.
In our work we have enhances one of those methods to additionally achieve free
fluid separation from shadow regions. The approach was then altered to allow
a more simple thresholding based separation of shadows and fluids from nor-
mal tissue. The achievable result may be exploited in automatic image analysis
methods.

2 Shadow and Fluid Detection

To better understand the concept of our shadow and fluid detection method, we
give a brief overview on how the B-mode ultrasound image is generated. The
ultrasound transducer emits the ultrasound signal into the body. While passing
through the different tissue layers, the signal is attenuated due to reflection,
absorption and scattering of the ultrasound signal. The B-mode image is gen-
erated from the reflected signals by evaluating both the signal strength and the
signal run-time. The former determines the grey value and the latter determines
the depth along the ultrasound propagation direction. The inherent ultrasound
speckle noise is the result of the signal scattering at the tissue structures.

Fig. 1. Illustration of the shadow detection method in [6], with the B-mode input (a),
the entropy feature image (b), the detected shadow (dark grey) as well as the fluid
detection enhancement (light grey) (c).

Ultrasound shadows and fluids are both mapped to dark B-mode intensity
values. Shadows are dark because most of the ultrasound signal is reflected at
some point along the ultrasound propagation direction. This prevents the ultra-
sound signal from reaching deeper tissue layers and generates the characteristic
posterior shadow artefact. The reflections are caused by a significant change
in the tissue impedance which occurs among others at bone structures. Fluids
appear dark, because there are only small reflections within the fluid region that



Achieving Fluid Detection by Exploiting Shadow Detection Methods 123

exhibit a low signal strength. As a result, the ultrasound signal at the end of the
fluid region is approximately as strong as it was at the its beginning.

Only a few methods for both fluid and shadow detection have been presented
in the literature. A threshold based approach for free fluid segmentation has
been introduced in [3]. The method utilizes the accumulated intensity difference
of a pixels eight neighborhood to classify it as part of a fluid region or not.
Other publications like [4] or [2,6] have presented methods to detect ultrasound
shadows. In [4] the authors determine the probability, that a signal transmitted
from each pixel location can reach the transducer receiver. To achieve this all
neighboring pixels are connect to a pixel network with high intensity pixels
serving as attenuating network nodes. The signal simulation is performed using
a random walker approach. Both latter methods [2,6] utilize simulated scan
lines along the ultrasound propagation direction to detect signal discontinuities
that correspond to shadow interfaces. Also, both methods use the local Shannon
entropy as the detection feature (c.f. Fig. 1).

Fig. 2. Illustration of a promising new fluid feature, that is generated along simulated
scan lines. The feature represents sections along scan lines with a similar intensity value
at the section start and end. Two feature examples are given in (a) and (b), with (b)
being slightly oversegmented.

To achieve free fluid as well as shadow detection, we have extended the
shadow detection method in [6] so that it generates additional fluid entries to the
methods confidence mask. The basis of our approach is, that fluids are usually
surrounded by tissue structures that hold them. On this account, tissue layers
with higher intensities should exist below the darker fluid region. Shadows on
the other hand do not permit the existence of such layers. A shadow always
continues as far as the bottom of the ultrasound image. Thus, a fluid region may
be detected along a scan line as a scan line section, if a sufficiently large or high
valued tissue region lies adjacent to the fluid section. We have implemented this
premise as a basic threshold tr for the remaining scan line pixels after the poten-
tial fluid section. We have noticed, that for an easy application of the threshold,
a backward accumulation of the scan line intensities is preferable to the original
approach. This way, the remaining scan line energy can be directly accessed as a
scan line entry. The result of our enhancement is given as an example in Fig. 1c,
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with tissue (white; 255), fluid (light grey; 127) and shadow (dark grey; 64) pixels
determined along the scan lines. Because the approach utilizes the image entropy
for the detection (c.f. Fig. 1b), the branch in the newly detected fluid region is
swallowed up by the blurred tissue edges.

Fig. 3. The backwards accumulation result (c) compared to the results (b) of the
shadow detection in [4], with (a) being the input image.

To correct this, we have attempted to extract the fluid region directly by
establishing a fluid feature, that is characterized by the earlier mentioned prop-
erties. The basic idea to generate the feature is, to search for sections along the
scan line, that show only a slight increase in intensity, while at the same time
having approximately the same intensities at the sections’ start and end. We
achieve this by backtracking the pixel intensities along the scan line. The app-
roach is not unlike the dip feature for vessels, that was introduced in [7]. In Fig. 2
we provide a promising result and an oversegmented image. In Fig. 2a the feature
does not fully cover the entire fluid region. Also in Fig. 2b it also responds in the
tissue region, which is sufficiently dark and mistaken as fluid. Further research
is necessary to improvement the feature. The goal is to highlighting the entire
fluid region and reducing the amount of included tissue sections.

Furthermore, due to the alteration of the methods accumulation direction
to a backward accumulation, we now generate an image that is comparable to
the results of the method in [4] (see Fig. 3c and Fig. 3b). Both images show the
tissue area of a liver, though not generated on the same image. Dark image
regions denote the possible existence of shadowing. The mask can be used to
separate tissue from shadows and the background, as can be seen in Fig. 4. The
tissue mask (Fig. 4b) was generated using a simple threshold. The shadow mask
(Fig. 4c) is derived as the inverted tissue mask.

Because both target regions (fluid and shadows) mostly consist of dark inten-
sities, a well defined threshold ts should be sufficient to separate the target from
tissue information. The challenge is, that ultrasound intensities are in no way
normalized and can vary strongly between ultrasound devices. Also, fluids and
shadow intensities are not always as dark as one would suspect. A threshold
should be able to adapt to this difference in data.

Thus, our proposed algorithm aims to achieve the same results as the
enhanced method in Fig. 1c. But instead of using an entropy criterion to detect



Achieving Fluid Detection by Exploiting Shadow Detection Methods 125

Fig. 4. The intensities accumulated backwards (from the bottom to the top) (a), the
thresholded tissue masks (b) and its inversion, the shadow mask (c).

and evaluate discontinuities along scan lines, we like to extract the target regions
by only applying good thresholds and perform a pixelwise classification. The
basis for the approach is a denoised image. The noise reduction is necessary,
because we do not want speckle and other artefacts to have a huge impact on
the classification result. Most methods utilize speckle reduction methods that
are based on different statistical distribution models like Rayleigh or Fisher-
Tippett [5]. Another way of reducing speckle is the nonlinear, so called total
variation (TV) filtering. The TV filter tries to reconstruct the “original” signal
from the available data, by minimization of the global total variational (L1) [1].
The filter can achieve this even at low signal-to-noise ratios, which ultrasound is
known for. The optimization problem is solved iteratively and does reduce noise
while simultaneously preserving edges.

We propose our algorithm as follows: On the smoothed image, we first deter-
mine the maximum (imax) and minimum (imin) pixel intensities to initialize the
adaptive threshold value g for the fluid and shadow regions. The threshold g is
calculated as

g = imin + (imax − imin) ∗ λ (1)

The factor λ can be used to adjust the threshold location further, e.g. through a
user interaction. The default value for λ was chosen as 1/8 because it is sufficiently
dark and worked best on the test images. For the detection we simulate scan
lines for 3D or 2D images as in [6] and [2]. Applying the calculated threshold g on
the input image, all remaining intensities are accumulated along the simulated
scan lines. As a result we obtain the thresholded accumulation image Ieg .

Given that the pixel intensity is equal to the energy that was reflected at some
image location, the last value of each scan line holds the total energy eimax

that
was reflected by the tissue pixels along that scan line. This value is transferred
to each entry of the sampled scan line positions, which produces the maximum
energy image Iemax

.
To generate the threshold based detection result of shadows and fluids, we

apply Algorithm 1. The algorithm iterates over the entire image I and classifies
each pixels affiliation to one of the target regions based on the difference in
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accumulated threshold intensities g. Function f(p, I) extracts the intensity of
pixel p from the given image I.

Data: Iemax
, Ieg and g

Result: confidence mask with fluids, shadow and tissue regions
for each pixel pi ∈ I do

if f(pi, I) < g then
if f(pi, Iemax

) − f(pi, Ieg ) > m · γ then
pi = 127 ; /* fluid intensity */

else
pi = 64 ; /* shadow intensity */

end
end

end
Algorithm 1. Separation of fluid and shadow pixels.

3 Results and Evaluation

A qualitative comparison between the original algorithm, including the enhance-
ments for fluid detection (5b), and the new threshold based approach (5c) is
given in Fig. 5. The result of the thresholding approach basically shows the same
fluid and shadow regions as the original algorithm. However, due to the pixel-
wise classification, the result looks smoother and exhibits less tearing in form
of faulty shadow detection, as can be seen in the bottom center. Furthermore,
the fluid region could be extended to include most of the downwards oriented
fluid branch, that was not detected in the modification of the original algorithm,
due to the diffused entropy image (c.f. Fig. 1b). Additional results that show a
variety of image types are provided in Fig. 7.

Our threshold method results were compared to the algorithms in [2,6] with
the method in [2] being ported to 3D. The results can be seen in Table 1. The

Fig. 5. A comparisson of the original entropy based algorithm including the added fluid
detection extension (b) and the new threshold based detection approach (c), with (a)
being the input image.
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Table 1. Ground truth evaluation of the proposed method.

[2] ∅ [6] ∅ proposed method ∅

DICE Coefficient 0,8915 0,9050 0,902012

Relative Absolute Volume Difference[%] 18.3091 -0.6448 -13,26295

DICE coefficient for the proposed method is approximately the same as in [6].
However, the relative absolute volume difference deviates to the negative. This
is due to the parameter γ, since it can be chosen to adapt the result. At the
default setting with γ = 1/8, the algorithm is more conservative in extending the
tissue region, so more pixels are classified as shadows.

Because we currently apply the total variation filtering, the processing speed
is quite slow. The TV filtering at 20 iterations alone requires approximately 60%
of the algorithms processing time. A 3D volume is processed in 12-15 s. The 2D
processing can be performed in 1600 ms, while the noise removal requires roughly
1040 ms. Though, no optimizations have been attempted so far.

Fig. 6. Free fluid detection in Morison’s pouch, between liver and kidney (b) applying
the new algorithm (a). source: wikipedia.org

4 Discussion

We have extended a literature shadow detection method to simultaneously detect
shadows and free fluid regions (see Fig. 6.). The detection result was introduced
to the output label map as an additional fluid label. The method was then further
adapted to only require adaptive thresholds, that can be derived from the image
content. Those have replaced the entropy feature along scan lines of the original
approach. The output map can help the operator to collect images with less
shadowing while also classifying the image content. Because of the fluid and
shadow separation, the map can also be helpful for trauma scenarios as well as
acitis cases. We have briefly introduced a new fluid feature that might be useful
in different future scenarios. Further development should focus on enhancing the
algorithm speed and optimization of the parameter γ.
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Fig. 7. Additional results of the threshold based shadow and fluid detection algorithm.
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Abstract. This paper proposes a probe-camera system for 3D ultra-
sound (US) image reconstruction with probe-camera calibration and
probe localization methods. The probe-camera calibration method
employs an existing US phantom for convenience with a simple pro-
cedure. The probe localization method employs structure from motion
(SfM) to estimate the camera motion. SfM is used to reconstruct 3D
point clouds from multiple-view images and simultaneously estimate each
camera position. Through experiments using the developed system, we
demonstrate that the proposed method exhibits good performance to
reconstruct 3D US volume.

Keywords: 3D ultrasound · Probe localization · Structure from motion

1 Introduction

Ultrasound imaging has three key advantages: (i) high spatial resolution, (ii)
real-time imaging and (iii) non-invasiveness. US imaging is useful in point-of-care
due to such key advantages. Recently, three-dimensional (3D) US has attracted
much attention as a valuable imaging tool for a diagnostic procedure. This paper
explores 3D US imaging in the point of care. 3D US is acquired by sweeping
a US probe around the area of interests and integrating a set of US images to
reconstruct 3D volume data. Among 3D US acquisition protocols, we focus on the
freehand protocol [2] because of its cost-effectiveness and flexibility. The quality
of 3D volume data significantly depends on the accuracy of probe localization.

There are some approaches to estimate the motion of US probes. The first
approach is to use electromagnetic (EM) device to know the accurate position
of US probes [5,13]. The accuracy of probe localization is high, while the special
devices are required resulting in increasing cost. EM devices also have to be
attached on the US probe resulting in interfering the smooth manipulation and
EM devices are sensitive to ferromagnetic materials. The second approach is to
use an optical tracker to measure the position of US probes [3,15]. The accuracy
of probe localization is relatively high, while the optical sensors are required
c© Springer International Publishing AG 2017
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resulting in increasing cost. The third approach is to use markers to estimate
the motion of US probes [6,10,12]. The motion of the US probe is estimated by
detecting markers from the captured video sequence. The cost of the system is
cheaper than the first and second approaches, since only a camera is required,
while markers must be attached on the skin surface, resulting in decreasing the
flexibility and acceptability.

Sun et al. [16] proposed a markerless freehand 3D US method. The motion of
the US probe is estimated only from a video sequence of skin patterns captured
by a low-cost camera using simultaneous localization and mapping (SLAM).
This method is cost-effective compared with other methods, but the accuracy
has to be improved, since the cumulative estimation error of the probe motion
is about 10 mm for the probe travel distance of 100 mm. Ito et al. [8] proposed
a 3D US imaging method using structure from motion (SfM). SfM [4,17] is one
of 3D reconstruction methods in the field of computer vision and is used to
reconstruct the sparse 3D point clouds from multiple-view images and simul-
taneously estimate each camera position. To apply SfM to a video sequence,
an accurate method is required to track features between adjacent frames. The
motion estimation error is about 2 mm for the probe travel distance of 200 mm.

The above methods [8,16] need the geometric relationship between the US
probe and the camera so as to estimate the accurate US probe motion. Sun et al.
[16] manually measured the position of the US probe and the camera. Ito et al. [8]
assumed the translational displacement of the US probe and the camera. In prac-
tice, there is a complex movement of the US probe, since the human body consists
of soft, curved and complex structures. Calibration between the US probe and
the camera is indispensable for reconstructing accurate 3D US volume data. To
address the above problem, this paper develops an Ultrasound Probe-Camera
System (UPCS) for reconstructing 3D volume data and proposes a calibration
method for UPCS. Through experiments using the developed UPCS, we demon-
strate that the proposed method exhibits good performance to reconstruct 3D
US volume.

2 US Probe-Camera System (UPCS)

UPCS consists of an ultrasound diagnostic system and a camera. US images are
acquired by SONIMAGE HS1 (Konica Minolta, Inc.) with L18-4 linear probe
(center frequency: 10 MHz) as shown in Fig. 1(a), where the field of view (FOV)
of US images is 40×38 mm, the frame rate is 30 fps and the recording time is 10
seconds, i.e., 300 frames. A camera is C920 (Logicool, Webcam C920), where the
image size is 640×480 pixels and the frame rate is 30 fps. The camera is attached
on the US probe as shown in Fig. 1(b).

3 US Probe-Camera Calibration

This section describes the proposed calibration method between the US probe
and the camera. Figure 2(a) shows a flow diagram of the proposed calibration
method.
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(a) (b) (c)

Fig. 1. Developed UPCS for 3D US volume reconstruction: (a) US diagnostic system,
(b) camera attached on a US probe and (c) checker pattern used for camera calibration.

First, camera calibration is performed to obtain the intrinsic parameters of
the camera, i.e., focal length, image center and lens distortion. We employ the
camera calibration toolbox for Matlab1. Next, probe localization is performed
using the US phantom, which is used to evaluate the spatial resolution, contrast,
and geometry of the US probe. Figure 2(b) shows the US phantom used in the
experiment, RMI 403GS LE (Gammex, Inc.). This phantom is filled with water-
based gels with the appearance of human tissue and includes 8 nylon wires of
0.1 mm in diameter with a 2 cm interval. The US probe is located perpendicu-
lar to the horizontal plane of the phantom so that 8 wires are on the straight
line as shown in Fig. 2(c). Then, the extrinsic parameters, i.e., rotation R and
translation t, are estimated. Correspondence between the US probe and the cam-
era cannot be used for calibration, since the US probe observes the inside of the
phantom, while the camera observes the surface of the phantom. We estimate the
geometric relationship between the camera and the checker pattern and between
the US probe and the checker pattern, putting a checker pattern on the surface
of the phantom.

We assume that the center of the probe coordinate system is the center of the
contact area between the US probe and the phantom. Let one of corner points
of the checker pattern be the center of the world coordinate system, Mw. The
rotation matrix Rp and the translation vector tp from the probe center to Mw

are estimated. Note that Rp is an identity matrix, since the US probe is located
perpendicular to the horizontal plane of the phantom as mentioned above. Hence,
all we have to do is to measure the translational displacement tp between the
probe center to Mw. The rotation matrix Rc and tc from the camera center to
Mw can be estimated using the same approach of camera calibration.

The geometric relationship between 3D point Mc in the camera coordinate
system and 3D point Mp in the probe coordinate system is defined by

Mc = RcMw + tc, (1)
Mp = RpMw + tp. (2)

1 Camera Calibration Toolbox for Matlab: http://www.vision.caltech.edu/bouguetj/
calib doc/.

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
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Fig. 2. Calibration between the US probe and the camera: (a) flow diagram of probe-
camera calibration, (b) phantom used in the calibration and (c) US image of the
phantom.

Equation (1) is modified as

Mw = RT
c Mc − RT

c tc. (3)

Substituting this equation into Eq. (2), we obtain

Mp = RpR
T
c Mc − RpR

T
c tc + tp (4)

= RMc + t, (5)

where R = RpR
T
c and t = −RpR

T
c tc + tp. The camera motion can be con-

verted into the probe motion using Eq. (5). Note that Eq. (5) can be derived by
estimating only the extrinsic parameter of the camera, if the probe center is set
to Mw.

4 3D US Volume Reconstruction

This section describes 3D US volume reconstruction from a US video sequence.
This paper employs the similar method proposed by Ito et al. [8]. Figure 3
shows a flow diagram of the proposed method, which consists of 5 steps:
(i) contrast enhancement, (ii) feature point tracking, (iii) Structure from Motion
(SfM), (iv) coordinate conversion and (v) 3D reconstruction. The following is the
brief description for each step.

Video sequence

US data

Contrast 
enhancement

Feature point 
tracking

Structure from 
Motion (SfM) Camera position

Coordinate 
conversionProbe position3D 

reconstruction

3D US volume

Fig. 3. Flow diagram of 3D US volume reconstruction.
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4.1 Contrast Enhancement

Contrast enhancement is applied to captured camera images, since skin texture
may not be observed due to ultrasound gels. We employ the method implemented
in Matlab, which maps the intensity values in the input image I to new values in
the output image J such that 1% of data is saturated at low and high intensities
of I.

4.2 Feature Point Tracking

This step is to detect feature points from the first frame, track them in the
subsequent frame and then obtain the correspondence between adjacent frames.
We employ the similar approach proposed by Ishii et al. [7]. Let the image
frame be fi(n1, n2), where (n1, n2) is the pixel coordinate, i indicates the frame
index (0 ≤ i ≤ N) and N is the number of frames. First, feature points are
detected from image fi(n1, n2) using the corner detection method proposed by
Shi et al. [14]. We introduce parameter D to control the density of extracted
feature points so as to obtain the stable localization result. If feature points are
extracted from the area within ±D pixels centered on a feature point, these
points are removed. Next, we find the corresponding points in subsequent image
fi+1(n1, n2) from the extracted feature points in current image fi(n1, n2) to track
the feature points. We employ a correspondence matching method using Phase-
Only Correlation (POC) [18] to find accurate corresponding points. The use of
POC makes it possible to obtain the translational displacement with sub-pixel
accuracy between small image blocks and evaluate the similarity between images
according to the correlation peak of the POC function. If the corresponding
point pair has a low correlation value of the POC function, we eliminate it as an
outlier. Then, we extract feature points on fi+1(n1, n2) from the area without
the feature point tracked from fi(n1, n2). By repeating the above processes until
the last frame fN (n1, n2), we can obtain a set of tracked feature points through
a video sequence.

4.3 Structure from Motion (SfM)

This step is to estimate the rigid-body camera motion, i.e., rotation R and
translation t, using SfM [4,17]. SfM repeats the linear solution and nonlinear
optimization by sequentially adding images. The extrinsic camera parameters
R and t of i-th image fi(n1, n2) are estimated in the linear solution using the
method proposed by Kneip et al. [9] from the geometric relationship between the
reconstructed 3D points and the coordinates of tracked feature points. Note that
the extrinsic camera parameters R and t of the first two frames are estimated
with the normalized five-point algorithm [11]. We also employ random sample
consensus (RANSAC) [1] to robustly estimate the parameters in the first two
frames. The 3D points of tracked feature points are obtained using the estimated
extrinsic parameters in the i-th image fi(n1, n2) according to triangulation. The
reconstructed 3D points and estimated camera parameters are optimized by
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minimizing reprojection error using bundle adjustments [4,17]. The reprojection
error is defined by the Euclidean distance ||m − m rep||2, where m = (u, v) is
a feature point and m rep is a point obtained by projecting a 3D point M =
(X,Y,Z) onto the image using a projection matrix of a camera. We employ
global and local bundle adjustments [17] depending on the target range in this
paper. Finally, we obtain the camera motion represented by rotation R and
translation t for each frame and sparse 3D point clouds. The resultant camera
motion corresponds to the location of the US probe.

4.4 Coordinate Conversion

The coordinate Mc of estimated camera motion is converted into the coordinate
Mp of the probe coordinate system using Eq. (5).

4.5 3D US Volume Reconstruction

This step is to reconstruct 3D US volume from a set of US images. We use
Stradwin2 to reconstruct 3D US volumes from a set of US images and their
location in the 3D space obtained by the proposed method.

5 Experiments and Discussion

We evaluate the performance of the proposed method using the dataset acquired
by the developed system as shown in Fig. 1. Our dataset consists of camera
images and US images acquired from 2 volunteers. We scanned the area around
the arm and the thigh. The travel distance of the US probe is about 200 mm
for the arm and 100 mm for the thigh, respectively. The accuracy of US probe
localization is evaluated by the accuracy of 3D point clouds reconstructed by
SfM, since the accuracy of the camera motion is equivalent to that of 3D point
clouds. A 3D mesh model of each target is measured with the laser scanner
(Konica Minolta, Inc., VIVID910) for quantitative performance evaluation. The
accuracy of 3D reconstruction is evaluated by comparing the reconstructed 3D
point clouds and the ground-truth mesh model using the iterative closest point
algorithm [19].

Figure 4 shows the ground-truth 3D model, reconstructed 3D point clouds
and estimated camera position and reconstructed 3D US volume for the arm.
The shape of reconstructed 3D points is almost the same as the ground-truth
3D model. We observe that the camera is moved straight from the elbow to
the wrist. The Root Mean Square (RMS) of reconstruction error is about 2 mm
for the probe travel distance of 200 mm. In the conventional method [16], the
cumulative error of the probe localization is about 10 mm for the probe travel
distance of 100 mm.

The thigh area is used to confirm the effectiveness of probe-camera calibra-
tion, since this area has the curved shape. Figure 5 shows reconstructed 3D point
2 Stradwin: http://mi.eng.cam.ac.uk/∼rwp/stradwin.

http://mi.eng.cam.ac.uk/~rwp/stradwin
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Fig. 4. Experimental results for arm area: (a) ground-truth 3D model, (b) recon-
structed 3D point clouds, (c) 3D point clouds and estimated camera position and
(d) reconstructed 3D US volume.
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Fig. 5. Experimental results for thigh area: (a) 3D point clouds and camera posi-
tion, (b) reconstructed 3D US volume without probe-camera calibration and (c) recon-
structed 3D US volume with probe-camera calibration.

clouds and camera position and reconstructed 3D US volume for the thigh. The
3D US volume without probe-camera calibration is warped out of shape as shown
in Fig. 5(b), while the 3D US volume with probe-camera calibration represents
the curved shape of the thigh as shown in Fig. 5(c).

6 Conclusion

This paper proposed the probe-camera system for 3D US image reconstruction.
This paper also proposed the simple method for probe-camera calibration and
US probe localization method based on structure from motion. Through a set
of experiments, we demonstrated that the location of the US probe can be esti-
mated with about 2 mm error for the probe travel distance of 200 mm. We expect
that the use of the proposed system makes it possible to enhance the effective-
ness of US imaging in point-of-care, since 3D US volume can be obtained using
a US probe with a camera.
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Abstract. By using a laser projector and high speed camera, we can add
three capabilities to an ultrasound system: tracking the probe, tracking
the patient, and projecting information onto the probe and patient. We
can use these capabilities to guide an untrained operator to take high
quality, well framed ultrasound images for computer-augmented, point-
of-care ultrasound applications.

1 Motivation

We have developed algorithms that analyze ultrasound signals to detect internal
bleeding [1] and increased intracranial pressure (increased optic nerve sheath
diameter) [2]. These algorithms are part of a computer-augmented, point-of-care
ultrasound (CAPCUS) system that is intended to aid in the triage of patients
with abdominal or head trauma at the scene of an accident, helping emergency
medical service (EMS) personnel decide when to order expedited transport and
initiate life-saving measures in the field.

One of the critical, remaining challenges with deploying our CAPCUS system
is informing the EMS personnel on where to place and how to manipulate an
ultrasound probe at various anatomic locations in order to, for example, thor-
oughly examine the regions of the abdomen where blood tends to pool. This
positioning task requires extensive anatomic and ultrasound training, beyond
what most clinicians and/or EMS personnel typically receive.

This paper presents an innovative device that combines patient and probe
tracking with augmented reality to create an “augmented ultrasound” system.
It is one of a variety of methods and user interfaces that we are investigating to
guide EMS personnel in probe placement, to inform them of data quality and to
convey diagnoses.

2 Augmented Ultrasound

Rather than displaying data and instructions on a screen, our augmented ultra-
sound system proposes to concisely convey guidance and diagnoses by projecting
instructions onto the surface of the patient. There are several advantages. Unlike

c© Springer International Publishing AG 2017
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a screen, a projection does not require the operator to look away from the patient.
In addition, when combined with a tracker, the projection can provide directions
in absolute terms. For example, a CAPCUS system that uses our algorithm for
on body display would be able to direct the operator to “Place the scanner on
the bullseye,” instead of relying on more abstract instructions such as “Place the
scanner on the right side of the patient’s chest, half-way between the nipple and
the shoulder.” Furthermore, instructions can be updated based on the tracked
movement of the ultrasound probe and the images/anatomy captured in the
ultrasound data, ensuring coverage of an anatomic area or flashing a warning
icon when the probe is not making sufficient contact with the skin.

The augmented ultrasound system must be able to track the ultrasound probe
and the surface of the patient’s body and then use the generated model of the
body and the position of the probe to accurately project graphics/instructions
onto the patient’s body. Furthermore, the augmented ultrasound system must
work in sunlight and in rugged environments with minimal set-up time so that
it can be applied at the scene of an accident.

In the next section, we discuss our system for forming a three-dimensional
(3D) model of a scene using a laser projector and a high-speed camera. Then,
we describe how we track objects in that scene.

3 3D Scene Modeling

To form a 3D model of a scene, we replicated and extended the system described
in a paper by researchers at Carnegie Mellon University that performed depth
from structured light reconstruction using a portable projector, which uses laser
projection technology, and a high-speed camera. (See Fig. 1, adapted from [3].)
The laser projector draws only one line of a projected image at a time, but it does
so fast enough that the human eye only sees the complete image. The high-speed
camera is capable of precise timing and fast shutter speed. These properties allow
the camera to take a picture as the projector draws a specific line of the image.
Through a one-time calibration of the camera and the projector, and by using
structured-light reconstruction algorithms, each point on a projected line that is
seen by the camera can be efficiently and accurately triangulated to a point in 3D
space (i.e., each illuminated point seen in a camera image is at the intersection of
the plane/line of light emitted by the projector and the corresponding pixel/line
viewed by the camera). The camera/projector calibration process is adapted
from the method developed at Brown University [4], which is based on OpenCV
and uses the camera application programming interface (API).

Our system is composed of a Grasshopper3 camera and a SONY mobile
projector MP CL1. With a resolution of 2048× 1536, we can use the camera at
a frame rate of 300 fps. The update rate per image of the laser projector is 60 Hz
in scan line order. Given its resolution of 1920× 720, it projects 43,200 lines/s.

The augmented ultrasound system works under varied lighting conditions for
three reasons. First, the shutter speed simplifies the detection of which pixels are
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Fig. 1. The augmented reality system uses a pico projector (based on laser projection
technology) to display an image in a scene. A high-speed camera sees the individual lines
being drawn by the projector to create the image. Via appropriate camera calibration,
custom circuitry to detect the vertical reset of the laser and depth from structured
lighting algorithms, a 3D model of the scene can be formed at very high resolution in
about one second. Figure adapted from [3].

Table 1. Hardware used, with prices

Device Manufacturer Price

Grasshopper 3 GS3-U3-32S4C-C Point grey $975.00

MP-CL1 Projector Sony $349.00

Photodiode, BPW34S Vishay semiconductor Opto division $6.66

illuminated by the projector. It suppresses ambient light, even direct sunlight,
simply by remaining open for no more than a tiny fraction of a second (Table 1).

This benefit arises because the laser projector illuminates each point very
brightly, but only for a fraction of a millisecond. Alternatively, ambient sources
like the sun illuminate continuously at a lower intensity. Second, we use back-
ground subtraction to further reduce the effect of ambient light. In particular,
from each image that is taken, we subtract an image from when the laser is in
a different location. Third, we apply a custom method that quickly detects the
brightest point on a vertical scan line in a grayscale image.

The most difficult challenge with our low-cost, compact ultrasound aug-
mentation system was that the horizontal sync signal produced by the pro-
jector/HDMI protocol was not phase-locked to the actual vertical movement of
the laser. For this reason, we opted to trigger the camera off the light emitted
by the projector, using a photocell and a pair of Operational Amplifiers. This
horizontal sync is critically important because it is needed to determine which
line is being projected at any point in time. The amplifier circuit converts the
noisy photocell into a digital trigger signal. See Fig. 2.

Example reconstructions generated by the system are shown in Fig. 3.
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(a) (b)

Fig. 2. (a) Circuit diagram of the photo detector system used to determine when the
laser returns to the upper left and begins drawing a new image (approximately every
1/60th of a second). (b) Oscilloscope-measured photocell output (yellow) and circuit
output (blue) signals. The circuit output’s falling edge is used as a camera trigger.
(Color figure online)

(a) (b)

Fig. 3. Examples of 3D scenes captured by our system.

4 Object Tracking

Having formed a 3D model of a scene, the next step in ultrasound augmentation
is to track an ultrasound probe. To that end, we mounted a multi-cubed, color-
tagged marker (designed by InnerOptic) on the probe. The colors of the cube
are red, blue and green. They are optimized for the response curves of the color
detectors in the camera. By determining the intersection of three adjacent faces
on the cubes, we can determine the position and the orientation of the ultrasound
probe.

To simplify and speed the tracking algorithm, instead of estimating the spe-
cific location of each cube face, we estimate the planes that contain each of the
faces of the cube and then solve for the intersection of those planes. The plane
detection method begins with color pixel detection, using statistical models of
the appearance of the cube faces under a range of lighting conditions. Depending
on the image from the projector, the ambient light and the adjacent objects in
the environment, extraneous pixels may be incorrectly identified as cube pixels
based on color alone. To eliminate extraneous pixels, we compute the centers
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of gravity for each target color using robust statistics. Knowing the expected
position of each face relative to the others, we can redefine the estimates of the
centers of gravity by eliminating colored pixels that are inconsistent with the
centers of gravity or with the expected relative positions of each face. To further
reduce the influence of extraneous pixels, we also estimate the equations of the
planes using the random sample consensus (RANSAC) algorithm. It randomly
picks three points, computes the plane defined by them and then scores that
plane based on how many other cube points are included in that plane. Ulti-
mately, the planes with the best scores are chosen. The intersection point of the
three chosen planes is then used to define the position and the orientation of the
probe in space. A sample result of three detected planes intersecting the scene
is shown in Fig. 4.

)c()b()a(

Fig. 4. (a) The setup of the system, with the projector at the top left and the camera
and the bottom left. (b) The collected point cloud is shown in white. The intersection
of the estimated red, green and blue planes with that point cloud are shown in color.
This indicates that the faces of the cube are well represented by the estimated planes.
(c) A close-up of the scene shows the projected colored planes and a projected yel-
low instruction card (labeled “test image”) that automatically follows the tip of the
ultrasound probe. (Color figure online)

Our camera is capable of up to 300 frames per second, and our projector
runs at 60 sweeps per second. However, running the camera at full frame rate
does not result in an even coverage of the scene by the captured images. In
addition, some frames are not useful because they would be captured as the
laser is returning to the top of the screen. Finally, it is only possible to trigger
the camera at evenly spaced intervals, a variable delay after our optical detection
circuit fires. In our system, the camera fires three times every time the optical
detection circuit is activated by the laser, leading to a speed of 180 lines per
second, which is equivalent to 4 reconstructions per second.

Our system can trade frame rate for resolution of the point cloud, so we
tested the precision of tracking for a variety of point cloud resolutions. The
results of this test are shown in Fig. 5. We found that precision did not improve
past 45 lines per frame, achieving a standard deviation of 1.2 mm per axis. We
also investigated the shape of this error, finding it to be roughly isotropic, as
shown if Fig. 6.
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Fig. 5. The behavior of error as the number of lines per reconstruction is increased at
a distance of 60 cm

Fig. 6. Representative error in x, y, and z at a distance of 60 cm with 45 lines per
reconstruction

5 Projecting onto the Scene

Once the complete system has captured a point cloud, located the ultrasound
probe, and determined a diagnosis from the ultrasound data, the system must
display the results onto the patient’s skin. The position of the displayed results
should be relative to the probe and undistorted, i.e., “rectified” with respect
to the surface onto which they are being projected. To aid in this goal, display
elements, such as text annotations, images, and arrows, are specified in 3-D world
coordinates. We support commands such as “Color yellow all points within a
4 cm radius of the world-point (60, −12, 3)” or “Project the text ‘Poor Contact:
Apply pressure’ at the point 5 cm in front of the ultrasound probe.”

To achieve this effect, we use a stored, high resolution point cloud known as
the “canvas” that is captured during initialization and updated only when the
rapidly acquired reconstructions begin to deviate from the canvas. The canvas
point cloud has up to 700 lines, whereas rapid point clouds used for tracking
have only 45 lines.

Graphics primitives such as spheres or images as well as ray tracings and
volume renderings are drawn onto the canvas, by updating the color associated
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Table 2. Accuracy at 60 cm and 400 lx on 300 acquisitions

Lines on cube Std deviation

x y z

4 3.001 cm 2.248 cm 6.846 cm

5 0.884 cm 1.134 cm 2.937 cm

6 0.301 cm 0.875 cm 3.075 cm

7 0.229 cm 0.570 cm 1.000 cm

8 0.105 cm 0.455 cm 1.234 cm

10 0.074 cm 0.087 cm 0.084 cm

20 0.065 cm 0.077 cm 0.062 cm

30 0.057 cm 0.070 cm 0.062 cm

40 0.057 cm 0.068 cm 0.055 cm

with each point. Next, the canvas is transformed by the “Camera Matrix” of the
projector, which takes points from world coordinates to pixel coordinates on the
projected image. Finally, the points of the canvas point cloud are splatted onto
a bitmap and projected. This causes each point on a surface in the scene to be
illuminated with the color light of its corresponding approximate nearest point
in the canvas pointcloud.

The four frames per second reconstruction rate may seem slow, but our sys-
tem does not need to rely on a high frame rate to avoid nausea or support
smooth navigation. Only the annotations, not the full scene, are being driven by
the system. Additionally, the ultrasound probe is typically a slow moving object
and the environment is generally relatively static. See Table 2.

6 Conclusion

Ongoing work focuses on quantifying the performance of this algorithm.
Experiments presented in this paper indicate 2 mm consistency within a
30 cm× 60 cm× 60 cm operating environment, updated at four frames per sec-
ond. In other experiments, not presented in this paper, the system has been
shown to be insensitive to a wide range of ambient light brightness and to the
image being projected into the scene.

In future work, the probe tracker data will be used, in combination with a
custom image reconstruction technique, to compound a sequence of imprecisely
and sparsely tracked ultrasound images into a complete 3D Volume. In that vol-
ume, vessels, for example, could be identified and the scene could be augmented
with instructions on where to insert the needle, at what angle, and to what
depth, so as to best intersect with a target vessel. This is illustrated in Fig. 7.
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Fig. 7. An illustration of the end goal of the system. A target (black X) is projected
onto the skin as the camera computes depth from structured light using the raster
lines of the projected image as that image is drawn. Ultrasound can be used to detect
peripheral vessels, select needle insertion locations and verify needle placement patency.
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Abstract. With the shift in the medical education curriculum to a competency-
based model, objective proficiency assessment is necessary. In this work, we use
exploratory factor analysis to assess which primitive metrics convey unique
information about proficiency in point-of-care ultrasound applications. We ret-
rospectively validate the proposed methods on three datasets: FAST examina-
tion, femoral line, and lumbar puncture. We identify a minimal set of metrics for
proficiency assessment in each application. Furthermore, we validate that overall
proficiency assessment methods are unaffected by the removal of redundant
metrics. This work demonstrates that proficiency in point-of-care ultrasound
applications is multi-faceted, and that measuring completion time alone is not
enough and application-specific metrics have added value in proficiency
assessment.

Keywords: Surgical skills assessment � Ultrasound-guided interventions

1 Introduction

Medical education is undergoing a shift from a traditional time-based model to a
competency based model, where trainees graduate only upon achieving a competency
benchmark. With increasing demands on expert clinician time, this necessitates auto-
matic methods for proficiency assessment.

Accordingly, there has been a proliferation of methods of objective, automatic
technical proficiency assessment for many clinical applications. These methods per-
form computation on data from a different sources including: hand or tool motion
tracking data, video data of the surgical field or operating room, surgeon status
information from wearable sensors (e.g. eye gaze, cognitive load, muscle activity), or
quantification of resulting tissue. Reviews of methods for proficiency assessment for
medical interventions training can be found in [1, 2].

Computing overall proficiency from a combination of primitive performance
metrics is common practice. This is because primitive metrics are straightforward to
compute, easy for trainees to understand, and readily interpreted into actionable
feedback. Furthermore, they can be used to capture application-specific information
that generic assessment methods cannot. Fraser et al. and Stylopoulos et al. first
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addressed this, proposing a sum of normalized features [3] and a sum of z-scores [4],
respectively. Subsequently, Allen et al. showed that using support vector machines for
overall proficiency classification outperformed either of these methods [5]. Oropesa
et al. confirmed that support vector machines likewise outperform linear discriminant
analysis and adaptive-neuro fuzzy inference for classification overall proficiency
classification [6]. Modern machine learning techniques have also been applied to this
problem [7].

It is interesting to consider which metrics are critical for overall proficiency
assessment and which metrics are redundant. Primarily, metrics must be valid for
distinguishing novices from experts. Several valid metrics used in the assessment,
however, may measure the same aspect of proficiency and correlate strongly, while
others may address different aspects of proficiency. Redundant metrics may be
removed to reduce system complexity without reducing assessment accuracy or
feedback quality. Metrics addressing different aspects of proficiency, on the other hand,
must remain to achieve a complete assessment with feedback specific to each aspect of
proficiency.

In this work, we seek to evaluate which primitive metrics are sufficient and nec-
essary for a complete assessment of technical proficiency in point-of-care ultrasound
applications. In particular, we address whether simply measuring completion time is
sufficient for overall proficiency assessment and the role of application-specific metrics.

2 Methods

2.1 Primitive Metric Validity

While most primitive metrics are designed to measure a clinically important quantity, it
must still be show that they correlate with proficiency. To this end, we examined
primitive metrics from both novices and experts, and assessed whether there is a
difference between metrics for the two groups. Metrics which did not show evidence of
validity were removed from subsequent analysis.

First, we used the Mann-Whitney U test (a = 0.05) to determine if there is a
statistically significant difference between the two groups for each metric. We used
Cliff’s D to quantify the effect size. Additionally, we measured the information gain
associated with splitting on each metric. The information gain indicates how well
splitting the data improves the groups’ purity, where large information gain indicates
that a metric distinguishes novices from experts effectively. We further assessed if the
split produced significantly different groups using Fisher’s exact test (a = 0.05).

2.2 Primitive Metric Redundancy

Metric redundancy is most commonly computed using correlation, where a strong
correlation indicates a high likelihood of redundancy. As an initial check, we computed
the correlation between each pair of metrics.

Subsequently, we performed Exploratory Factor Analysis (EFA) on the primitive
metric values. EFA expresses each primitive metric as a linear combination of some set
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of latent factors. Two primitive metrics which are similar linear combinations of the
latent factors would be considered redundant. Furthermore, when combined with expert
knowledge, the latent factors can be interpreted as aspects of technical proficiency and
their importance can be identified. For this study, we used the principal components
methods and chose the smallest number of factors explaining at least 90% of the
variance in the data. Two primitive metrics were considered redundant if they both had
loading factors greater than 0.90 on the same latent factor.

2.3 Assessment Using Non-redundant Primitive Metrics

Once we identified which metrics were redundant using EFA, for each set of redundant
metrics we chose one “representative” metric. This metric was chosen to be the metric
with the best loading on each of the latent factors. We then computed an overall
proficiency classification for each participant using the “representative”metrics for both
the traditional sum of z-scores method [4] and the support vector machine method [5].
For the sum of z-scores method we used equal weighting. For the support vector
machine method, we normalized the data on the range [0, 1] and used the radial basis
function.

We compared the proficiency classification accuracies achieved using the “repre-
sentative” set of primitive metrics with the accuracies achieved using all primitive
metrics. The area under the receiver-operator characteristics curves was computed for
each metric set for each of the sum of z-scores method and the support vector machine
method. We determined whether the areas under the curves was different for the metric
sets using the Hanley-McNeil test (a = 0.05).

2.4 Datasets

We retrospectively analyzed datasets from three point-of-care ultrasound training
applications: FAST ultrasound examination, femoral line insertion, and freehand
lumbar puncture. In each case, we used previously computed metric values based on
tool tracking data. In each case, the metrics were specifically designed by experts to
capture relevant information on proficiency while performing the intervention.

In the FAST ultrasound training dataset, a group of fourteen novices and fifteen
intermediates performed a complete FAST examination on a healthy volunteer on each
of the four regions of interest (hepatorenal, splenorenal, pericardial, and pelvic regions)
[8]. The ultrasound probe was tracked relative to the volunteer, and the following
primitive metrics were computed: completion time, percentage of expert-defined points
of interest missed, and ultrasound probe path length.

The femoral line insertion dataset included ten novices and four experts performing
an ultrasound-guided insertion on a commercially available simulation phantom [9].
The motion of the operators’ hands was tracked relative to the phantom model, and the
following primitive metrics were computed: completion time, probe hand path length,
needle hand path length, probe hand rotational actions, needle hand rotational actions,
probe hand translational actions, and needle hand translational actions.

The lumbar puncture dataset included twenty-three novices and five experts per-
forming freehand lumbar puncture on a commercially available lumbar spine model [10].
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The pose of the operators’ hands and needle was tracked relative to the phantom model,
and the following primitive metrics were computed: completion time, left hand path
length, right hand path length, needle tip path length, tissue damage caused by needle,
needle tip path length in tissue, and needle tip time in tissue.

3 Results

3.1 Primitive Metric Validity

For the FAST dataset, all metrics were significantly different between novices and
intermediates, thus all metrics were kept for subsequent analysis. For the femoral line
dataset, probe hand and needle hand rotational actions were not significantly different
between novices and experts, thus these two metrics were removed. All other femoral
line metrics were kept. For the lumbar puncture dataset, all metrics were significantly
different between the novice and expert groups, thus all metrics were kept (Table 1).

3.2 Primitive Metric Redundancy

The correlation matrices for each dataset are shown in Fig. 1. Using EFA, two latent
factors were found for the FAST dataset, accounting for 91% of the variance. Two latent
factors were found for the femoral line dataset, accounting for 98% of the variance.
Three latent factors were found for the lumbar puncture dataset, accounting for 93% of
the variance. The loading plots for each dataset are present in Fig. 2.

Table 1. Validity of metrics for each dataset. MW indicates the p-value for the Mann-Whitney
test; D indicates the non-parametric effect size; F indicates the p-value for Fisher’s exact test; IG
indicates the maximal information gain associated with splitting on that metric.

Dataset Metric MW D F IG

FAST Completion time (s) <0.001 0.40 <0.001 0.10
Points missed (%) <0.001 0.58 <0.001 0.21
Probe path length (mm) <0.001 0.44 <0.001 0.08

Femoral Line Completion time (s) 0.002 1.00 <0.001 0.60
Probe hand path length (mm) 0.024 0.80 0.015 0.33
Needle hand path length (mm) 0.024 0.80 0.011 0.36
Probe hand rotational actions 0.056 0.68 0.070 0.26
Needle hand rotational actions 0.607 0.20 0.221 0.16
Probe hand translational actions 0.006 0.93 0.005 0.42
Needle hand translational actions 0.002 1.00 <0.001 0.60

Lumbar Puncture Completion time (s) <0.001 1.00 <0.001 0.47
Left hand path length (mm) 0.001 0.93 <0.001 0.32
Right hand path length (mm) 0.007 0.79 0.003 0.22
Needle tip path length (mm) 0.006 0.81 0.001 0.23
Tissue damage (mm2) 0.010 0.76 0.001 0.25
Needle path in tissue (mm) 0.026 0.65 0.026 0.14
Needle time in tissue (s) 0.022 0.67 0.008 0.15

Overall Proficiency Assessment in Point-of-Care Ultrasound Interventions 149



For the FAST dataset, completion time and probe path length both primarily load
on one latent factor, and points missed loads primarily on the other latent factor. We
interpret the first latent factor to be “efficiency” and the second latent factor to be
“thoroughness”. For the femoral line dataset, needle hand path length loads primarily
on one latent factor and probe hand translational actions loads primarily on the other
latent factor. We conjecture the first latent factor to be “needle hand efficiency” and the
second latent factor to be “probe hand efficiency”. All other primitive metrics
cross-load on the two latent factors. For the lumbar puncture dataset, tissue damage
caused by needle, needle tip path length in tissue, and time needle in tissue load
primarily on one factor, left hand path length and right hand path length load primarily
on another, and needle tip path length loads primarily on a third factor. Completion
time cross-loads. We hypothesize these three latent factors to be respectively “needle
insertion efficiency”, “landmarking efficiency”, and “needle placement efficiency”.

Based on the primitive metric loadings, the following metrics were kept as “rep-
resentative” metrics. For the FAST dataset, completion time and points missed were
kept. For the femoral line dataset, needle hand path length and probe hand translational
actions were kept. For the lumbar puncture dataset, right hand path length, needle tip
path length, and tissue damage were kept.

3.3 Assessment Using Non-redundant Primitive Metrics

Differences in the areas under the curves using all primitive metrics and using a
“representative” set were insignificant for all datasets using both the sum of z-scores

Fig. 1. Correlation matrices for metrics in the FAST (top), femoral line (left), and lumbar
puncture (right) datasets. White indicates high correlation; black indicates low correlation.
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and support vector machine methods (Table 2). The greatest change in area under the
curve was 0.052, for the lumbar puncture dataset using the z-score method (Fig. 3).

4 Discussion and Conclusion

In each dataset, the majority of the reported metrics were determined to be valid. There
were strong correlations between many of the metrics, and exploratory factor analysis
indicated that the metrics were associated with two to three latent factors. We interpreted

Fig. 2. Loading plots for metrics onto presumed factors in the FAST (top), femoral line (left),
and lumbar puncture (right) datasets.

Table 2. Area under the curve (AUC) for each method of overall proficiency assessment.
All AUC indicates the area under the curve using all metrics, and Rep. AUC indicates the area
under the curve using only the “representative metrics”. p-value indicates the p-value for the
Hanley-McNeil test.

Dataset Sum of Z-Scores Support Vector Machine
All AUC Rep. AUC p-value All AUC Rep. AUC p-value

FAST 0.84 0.83 0.45 0.84 0.84 0.44
Femoral line 1.00 1.00 0.50 1.00 1.00 0.50
Lumbar puncture 0.97 0.91 0.31 1.00 0.96 0.25
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the meaning of these latent factors using domain-specific knowledge. Taking only the
most representative metrics for each factor, we achieved accuracies for overall profi-
ciency assessment that were not significantly different from accuracies using all metrics.
This indicates that many of the metrics could be removed; however, completion time
cannot be used alone to measure proficiency. Furthermore, it shows application-specific
primitive metrics have added value in proficiency assessment.

This study, however, is not without limitations. Primarily, for the femoral line and
lumbar puncture datasets, the sample size is limited with the expert group including four
and five participants respectively. This can be especially problematic for EFA. The other
main limitation is that we have used experience as a proxy for ground-truth proficiency.
This does not account for experts who have developed bad habits or have an “off day”.
Ideally, ground-truth proficiency should be determined by a panel of experts using a
valid objective assessment tool. Finally, our analysis assumes a monotonic relation
between each metric and proficiency, which may not always be the case.

We suggest that these results will extend to other ultrasound-guided and freehand
interventions. Here we have tested three different interventions, and our metric reduction
techniques seem to apply well to each application, yielding less than six percent dif-
ference in proficiency classification for all datasets. We suggest this analysis could be
used in other point-of-care ultrasound applications to identify which primitive metrics
may be removed to reduce setup complexity and factors contributing to proficiency.

Fig. 3. Receiver operator characteristic curves for overall proficiency assessment for the FAST
(top), femoral line (left), and lumbar puncture (right) datasets. Black lines indicate all metrics
were used; red lines indicate only “representative” metrics were used. Solid lines indicate the sum
of z-scores method was used; dashed lines indicate the support vector machine method was used.
(Color figure online)
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Finally, for each of these datasets, we have more than one latent factor contributing
to proficiency. In particular, the application-specific metrics have added value and
completion time alone is insufficient for assessing these factors. In fact, there may be
additional factors which are not measured by the primitive metrics we chose. One
should be aware of all such factors when computing an overall proficiency score. We
suggest that providing a report card that addresses each of these factors may better
allow trainees to understand which aspects of their intervention require the most
improvement.
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Abstract. Accurate temperature monitoring is a crucial task that
directly affects the safety and effectiveness of thermal ablation procedures.

Compared to MRI, ultrasound-based temperature monitoring systems
have many advantages, including higher temporal resolution, low cost,
safety, mobility and ease of use. However, conventional ultrasound (US)
images have a limited accuracy due to a weak temperature sensitivity.
As a result, it is more challenging to fully meet the clinical requirements
for assessing the completion of ablation therapy.

A novel imaging method for temperature monitoring is proposed
based on the injection of virtual US pattern in the US brightness mode
(B-mode) image coupled with biophysical simulation of heat propagation.
This proposed imaging method does not require any hardware extensions
to the conventional US B-mode system. The main principle is to estab-
lish a bi-directional US communication between the US imaging machine
and an active element inserted within the tissue. A virtual pattern can
then directly be created into the US B-mode display during the ablation
by controlling the timing and amplitude of the US field generated by the
active element. Changes of the injected pattern are related to the change
of the ablated tissue temperature through the additional knowledge of
a biophysical model of heat propagation in the tissue. Those changes
are monitored during ablation, generating accurate spatial and temporal
temperature maps.

We demonstrated in silico the method feasibility and showed exper-
imentally its applicability on a clinical US scanner using ex vivo data.
Promising results are achieved: a mean temperature error smaller than
4 ◦C was achieved in all the simulation experiments. The system perfor-
mance is tested under different configurations of noise in the data. The
effect of error in the localization of the RFA probe is also evaluated.

1 Introduction

The use of image-guided thermal therapy has considerably expanded in the past
decades. But a major limitation is still the lack of detailed thermal information
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available. Temperatures are routinely measured invasively with thermocouples,
providing only sparse measurements at some single local points, resulting in
less information than it might be necessary to produce satisfactory temperature
distributions for assessing properly the delivered thermal dose. Several med-
ical imaging modalities have been proposed, tested, and employed like MRI [2],
which is used routinely to guide high intensity focused ultrasound (HIFU) in
clinical settings to treat uterine fibroids [9]. Nevertheless, compared to MRI,
ultrasound-based temperature monitoring remains particularly attractive in sim-
plicity, mobility, accessibility, and cost. It can also provide thermal images with
higher temporal and spatial resolutions.

Different methods have been proposed to use ultrasound (US) for tempera-
ture monitoring. They exploit either echo shifts due to changes in tissue thermal
expansion, attenuation coefficient, speed of sound (SoS), or frequency variations,
nonlinearity parameters, elasticity, or change in the backscattered energy from
tissue inhomogeneities [5]. But those existing temperature monitoring methods
have not yet provided a solution that effectively solves the problem of cov-
ering the entire range of temperature reached during ablation. The relation-
ship between SoS and temperature is parabolic; therefore, the correspondence
between echo-strain and temperature is not unique. Those methods also suffer
from low SNR and uncertainties in the US speckles. Moreover, they rely on a
reference usually measured before ablation, which makes them subject to motion
artefacts.

In this work, we propose a new imaging method for temperature monitoring
based on the injection of virtual pattern with high SNR in the US brightness
mode (B-mode) image [3], whose deformations are easily tracked. This novel
imaging method does not require any hardware extensions to the conventional US
B-mode system. As the SoS and attenuation coefficient change during the abla-
tion with the change in temperature, we show that the US information provided
by the virtual injected pattern combined with a biophysical model-based simula-
tion can be reconstructed into tomographic temperature maps. This method has
the potential to monitor temperature in a two dimensional (2D) image during
ablation without the need of costly MRI. Although the proposed US monitoring
method could be applied to all thermal therapies based on tissue heat absorption
(e.g. laser, radiofrequency (RFA), microwave, HIFU), this paper focuses on RFA.
In this contribution, we first introduce the proposed method. Then, we present
simulation experiments to validate its feasibility and a preliminary design for ex
vivo implementation.

2 Methods

The different steps of the method are illustrated in Fig. 1. US B-mode images
with pattern injection (PI) are simulated with their corresponding thermal maps
using a biophysical thermal ablation model to constitute a simulation-based
learning tool. As a new B-mode with PI is acquired during ablation, it is evalu-
ated with the learning tool to recover the corresponding thermal map.
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Simula on-based Learning Tool
Acquired B-mode 

with PI
Recovered

Thermal Map

xcorr
Simulated B-mode with PISimulated Thermal Maps

Thermal Abla on Modeling Simula on of US Images with PI

Fig. 1. Main steps of the proposed method. See text for details.

2.1 Active Ultrasound Pattern Injection (PI)

The proposed method requires the insertion in the targeted tissue of an active
element, made of a 2 mm diameter tube shape Lead Zirconate Titate material:
PZT-5H. With some hardware adjustment, it could be attached to the RFA
probe, which will not increase the procedure invasiveness. A MCU-based con-
trol system is built to establish a bi-directional ultrasound (US) communication
between this active element and a US machine. The active element transmits
US pulses at the designated timing after line and trigger signals from the US
machine are detected [4], creating a virtual pattern injection (PI) onto the orig-
inal B-mode images. As the active US pulse travels back to the imaging probe,
it appears as a bright spot on the B-mode image at a given location depending
on the timing, frequency, duration and amplitude of the active echo pulses. Any
virtual pattern can be injected onto the B-mode image, without the need of any
hardware or software modification to the US machine.

2.2 Simulation-Based Learning Tool

The temperature is estimated based on two physical phenomena: the speed of
sound (SoS) and attenuation thermal dependencies. The former is described as
a third order polynomial [7]. In most tissue media except fatty tissues, SoS
increases with temperature before reaching a plateau around 60 ◦C (Fig. 2, left).
The latter is described by a second order polynomial derived from measure-
ments [8] in a wide range of temperatures (Fig. 2, right). The local temperature-
induced changes of SoS and attenuation in the tissue during ablation modify the
virtual PI. These modifications are observed on the acquired B-mode image and
can be related to temperature changes in the ablated tissue. As a new B-mode
image is acquired with modification in the virtual PI, it is evaluated with the
simulation-based learning tool using normalized 2D cross-correlation to recover
the corresponding thermal map. In this work, the simulation-based learning tool
is made of two parts described in the following sections.

Thermal Ablation Modeling. The thermal diffusion in the tissue surround-
ing the RFA probe can be described by the bioheat equation, as proposed in
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Fig. 2. Speed of sound and attenuation coefficient as functions of temperature.

the Pennes model [6]. The temperature T is modeled by solving the following
reaction-diffusion equation:

ρtct
∂T

∂t
= Q + ∇ · (dtT ) + R(Tb0 − T ) (1)

where ρt, ct, dt are the density, heat capacity, conductivity of the tissue and Q
is the source term. Tb0 is the blood temperature and R is the reaction coefficient
that models the blood perfusion. R is set to zero as ex vivo data are considered in
this study. Equation 1 is solved using the Lattice Boltzmann Method (LBM) [1]
implemented on general purpose Graphics Processing Units (GPU) for fast com-
putation. A Multiple-Relaxation-Time (MRT) model on an isotropic Cartesian
grid with 7-connectivity topology is used, and Neumann boundary conditions
at the boundaries of the considered domain are employed. The computations
are done with a time step of δt = 0.01 s and a spatial resolution of δx = 1 mm,
with parameters values from [1]. A realistic heating profile is imposed at the
probe tip as a Dirichlet boundary condition. This model generates longitudinal
3D temperature maps, which are then converted into SoS and attenuation maps
using the relationships from Fig. 2.

Simulation of US Images with PI. At any given ablation time point, a
US B-mode image with temperature-induced changes in the virtual pattern is
simulated based on the heterogeneous SoS and attenuation maps derived from
the thermal ablation model presented above.

The nonlinear US propagation in heterogeneous medium is simulated using a
nonlinear k-space model [10]. To mimic the ex vivo experiment protocol, a linear
probe of 128 rectangular transducer elements is simulated using the k-Wave
MATLAB toolbox1. Four active source lines around 4 mm apart from each others
and driven by a four cycle tone burst with a center frequency of 1.5 MHz are
simulated to model the virtual pattern injected in the ex vivo experiments. The
1 http://www.k-wave.org.

http://www.k-wave.org
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computational grid used including the perfect match layer (PML) is 148 × 106
grid points with a grid point spacing of 4.7 mm. A delay and sum beamforming
algorithm is used to reconstruct the US B-mode images with PI, which together
with their corresponding thermal maps at each ablation time point constitute
the simulation-based learning tool.

3 Experiments and Results

3.1 In silico Validation

To study its feasibility, the method is first evaluated in silico. We used ther-
mal maps derived from the RFA simulation as ground truth to simulate the
acquisition of B-mode images with PI every 1 s. To recover the corresponding
thermal map, we chose the ablation time maximizing the maximum value of the
normalized 2D cross-correlation between the considered B-mode image with PI
and each of the simulated B-mode images of the simulation-based learning tool.
In this case, we manage to recover the accurate thermal map in 5 s without any
error as expected since the learning tool was created in a similar manner.

3.2 Sensitivity Analysis

Effect of Signal Noise. To emulate a more realistic clinical environment, the
effect of noise in the amplitude of the acquired data is studied. Different Gaussian
noise realizations are added to the simulated channel data with a Signal to Noise
Ratio (SNR) ranging from 10 to 1. At each ablation time point, the proposed
method is used to recover the actual ablation time (Fig. 3, left) and thus also the
temperature map from the simulation-based learning tool. (Fig. 3, right) shows
that the smaller the SNR is, the larger the error is. In the red circle, some outlier
points are observed at around 600 s. At this time, the RFA stops and a cooling
period starts, resulting in a small error in the recovered ablation time that can

Fig. 3. (Left) Time of the recovered thermal map over the ablation time. (Right) Max
error in temperature between the recovered thermal map and the ground truth for
Gaussian noise configurations with different SNR.
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Table 1. Time average and maximum of the max error in the 2D images for Gaussian
noise configurations with different SNR.

give a large maximal error in temperature. However, one observes that most
of the maximal errors are below 5 ◦C. Quantitative time average and maximal
errors for the different Gaussian noise realizations are reported in Table 1. With
a mean error of 1.2 ◦C in the recovered thermal map for SNR = 1, the proposed
method is robust to the presence of noise in the amplitude of the signal data.

Effect of RFA Probe Mislocalization. Knowing the actual position of the
ablation probe is paramount to simulate the virtual PI and thus to generate
the simulation-based learning tool. This position can be determined by a pre-
operative US image, but could be affected by localization errors. To study this
effect, a shift of 1 mm to 7 mm in the RFA probe position is introduced when
simulating the acquisition of a new B-mode image, resulting in different SoS and

Fig. 4. (Left) Time of the recovered thermal map over the ablation time. (Right) Max
error in temperature between the recovered thermal map and the ground truth for
different displacements e (in mm) of the RFA probe position.
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Table 2. Time average and maximum of the max error in the 2D images for different
displacements e (in mm) of the RFA probe position.

attenuation maps and thus a modified B-mode image. As illustrated in Fig. 4, the
larger the shift on the position is, the larger the error. By displacing the RFA
probe around 7 mm from its actual position, the mean error in the recovered
thermal map is only 4.0 ◦C. This simulation analysis suggests robustness of the
proposed method to the presence of errors in the RFA probe localization.

3.3 Ex vivo Feasibility Study

Two ex vivo experiments were performed on two chicken breast tissue samples.
A PZT element was inserted 2.4 cm away from the RFA probe and a 6 cm linear
probe of 128 elements (UltraSonix L14-5W/60) was used. To ensure a good in-
plane alignment, the PZT element position was adjusted until we observed the

RFA probe

PZT el.

US transducer

Tissue

Fig. 5. (Left) Experimental setup: the US imaging probe is placed on top of the tissue.
(Right) B-mode image acquired during the ablation: the RFA probe, the active PZT
element and the virtual PI (four distant lines) are visible.
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highest contrast in the B-mode image. The active element transmits four pulse
trains with designed delay after detecting a line trigger from the US machine [3].
The ablation protocol used was as follows: heating was applied for 10–13 min
followed by a 5-minute cooling period. We collected sequential B-mode images
with PI during the ablation. The RFA probe and inserted PZT element positions
were obtained from a pre-operative B-mode image, as illustrated in Fig. 5. Visual
observation of the B-mode image during ablation showed changes in intensity
and positions of the patterns over time. These variations were similar to those
observed in the simulated B-mode images. Although no thermal ground truth
was available for those ex vivo experiments, these qualitative observations sug-
gest the suitability of the proposed concept Fig. 5, right.

4 Discussion and Conclusion

In this paper, a new paradigm for the interventional monitoring of temperature
during thermal ablation is presented. The proposed method uses an active ultra-
sound (US) pattern injection (PI) system and relies on a learning tool based on
a biophysical model of thermal ablation coupled with the simulation of B-mode
images with PI. US is the imaging modality commonly used to guide the RFA
probe insertion. Moreover, the method does not require to have access to the
raw RF data from the US transducer (so-called channel or pre-beamformed RF
data) only available on specialized US research platforms. For those reasons, this
method might have a broad impact on the clinical practice. If available in real-
time, the provided information could be used as feedback to adapt treatment
parameters such as heating duration and/or power.

This work is a proof of concept with highly idealistic simulation and prelim-
inary ex vivo results to show that biophysical modeling can be combined with
virtual PI to monitor the temperature intraoperatively. To validate this novel
concept, we chose a simplistic learning tool with a basic 2D cross-correlation met-
ric to compare its elements to the acquired B-mode image. However, any learning
tool could be considered. For example, a machine learning approach could be
used to improve the applicability scope of the method by taking into account
different settings (RFA probe positions, different heating protocols, etc.).

A major limitation of this work is its tissue parameter dependency. We
assumed SoS and attenuation temperature dependencies from functions previ-
ously derived on different tissues [7,8]. While these assumptions were deemed
satisfactory to assess the method feasibility, further investigations are required
to evaluate their impact on the accuracy. The biophysical model could also con-
sider the blood perfusion, heterogeneous tissue, as well as patient-specific para-
meters [1]. The effect of limited knowledge about those parameters was not
evaluated but is important to consider in the future.

Nevertheless, we have showed that the current method is able to cope with
noise in the raw RF data amplitude and motion on the image features used for
temperature estimation. Furthermore, we have proposed an implementation for
ex vivo experiments that warrants the validation with a thermal ground truth.
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In conclusion, our results showed the method feasibility in silico. Future work
will investigate quantitative evaluation using in vivo experiment settings.
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